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ABSTRACT 
The purpose of this paper is to present Robinflock, an al-
gorithmic system for automatic polyphonic music genera-
tion to be used with interactive systems targeted at chil-
dren. The system allows real time interaction with the gen-
erated music. In particular, a number of parameters can be 
independently manipulated for each melody line. The de-
sign of the algorithm was informed by the specific needs 
of the targeted scenario. We discuss how the specific needs 
of the polyphony with children influenced the develop-
ment choices. Robinflock was tested in a field study in a 
local kindergarten involving 27 children over a period of 
seven months. 

1. INTRODUCTION 
Polyphonic music is widespread in western music tradi-
tion. It consists of at least two melodic lines that are sim-
ultaneously performed and that produce coherent harmo-
nies when overlap. Polyphonic music originated with vo-
cal music, grown during the Renaissance [22], and has 
been fundamental for classical composers (e.g. Bach, 
Haydn, and Mozart), for modern composers (e.g. Schoen-
berg and Stockhausen), and for music studies [31].  
Performing polyphonic music is particularly demanding as 
it requires musicians to master score reading and the abil-
ity to play with other performers. The difficulties of per-
forming polyphonic music are even more demanding for 
young children due to their limited musical experience. 
Despite these difficulties, children seem to have an innate 
predilection for polyphony [33]. 
We argue that an algorithmic solution can increase chil-
dren confidence with polyphonic music. In particular, an 
algorithmic composition system that generates polyphonic 
music in real time can be applied in interactive situations 
to familiarise children with polyphony. We propose to del-
egate part of the complexities of performing polyphonic 
music to the computer, enabling children to directly ma-
nipulate different lines by interacting with a number of pa-
rameters. 
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The contribution of this paper is the proposition of a real 
time algorithmic composer of polyphonic music. Indeed, 
to the best of our knowledge, related studies in algorithmi-
cally generated polyphonic music never address interac-
tive purposes. As a consequence, the development of an 
algorithm that generates polyphonic music in real time was 
not strictly necessary. Previous algorithmic systems for 
polyphonic music generation exist; however, they have 
been developed from a computational linguistic perspec-
tive, aiming at generating polyphonic music that avoid 
composition and counterpoint errors. The objective of 
these studies was to imitate specific styles [8] or to apply 
compositional rules derived from music theory [2, 10, 32]. 
These algorithms successfully generated good quality 
counterpoint compositions, but their application domain 
was limited to off-line non-interactive music.  
The novelty of the Robinflock lies in the possibility to in-
dependently manipulate each musical line on several mu-
sical parameters in real time. Robinflock was developed in 
the context of Child Orchestra [9], a research project aimed 
at exploring new solutions to use technology in context of 
music making for children. In this paper, we describe the 
technical implementation of the algorithm underling how 
the technical choices are grounded on specific require-
ments: design solutions were taken to meet a number of 
requirements related to the specific interactive scenario of 
polyphonic music for children. The architecture is based 
on Robin, an algorithm developed by some of the author 
that generates piano music for interactive purposes [24, 
26]. 
Robinflock was adopted in the Child Orchestra field study, 
which involved 27 kindergarten children over a period of 
seven months [9]. The result of this field study suggested 
that the algorithm is particularly effective to help children 
to familiarise with polyphonic music.  
The remainder of this paper is organized as follows. Sec-
tion 2 presents related work in algorithmic composition 
and in music for children. Section 3 describes in details the 
architecture of Robinflock. Section 4 introduces the field 
work in which the algorithm was used and presents the re-
sults. We conclude this paper with discussions and consid-
erations on future work. 
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2. RELATED WORK 
The work presented in this paper is mainly based on related 
literature in algorithmic composition. We also present the 
main child-related musical theories on which we grounded 
the choices at the basis of the interactive system. 

2.1 Algorithmic composition 

Algorithmic composition has been widely explored for 
both research and artistic purposes since the beginning of 
computer music [17] (see [11, 28] for comprehensive sur-
veys). Given the scope of this paper, we here mainly focus 
on real time algorithmic systems and systems that generate 
polyphonic music. 

2.1.1 Algorithmically generated polyphonic music   
Researchers in algorithmic composition explored polyph-
ony and counterpoint, i.e. the set of rules to compose pol-
yphonic music, mainly with a generative linguistic per-
spective, mostly with the objective of exploring the poten-
tial of computers to imitate specific styles.  
David Cope’s pioneering work in Experiment with Music 
Intelligent (EMI) approached counterpoint to compute dif-
ferent voices in a specific music style, for instance in a 
Bach-style Chorale. EMI works by analysing, deconstruct-
ing, and then recombining elements of existing music. 
EMI obtained great results in emulating the style of differ-
ent composers [8].  
Other studies explored counterpoint species (see [19] for a 
definition of species.) For instance, Aguilera developed an 
algorithm that generates first specie counterpoint using 
probabilistic logic [2]. Other systems explored the possi-
bilities to compute more complex polyphonic structures 
adopting fifth specie counterpoint. For instance, Polito, 
Daida, and Bersano-Begey [32] developed a genetic algo-
rithm that can compose fifth specie counterpoint based on 
an existing cantus firmus. Their system adopted a fitness 
function based on rules proposed by Fux for the counter-
point species. Similarly, Herremans and Soorensen [12] 
developed Optimuse, a neighbourhood search that gener-
ates fifth species counterpoint fragments. Another ap-
proach was proposed by Martín-Caro [23] who developed 
a system to compute two-voices fifth species counterpoint 
using a first-order Markov chain. 
Other systems were developed specifically to algorithmi-
cally compose four-part counterpoint music. Among these 
systems, Phon-Amnuaisu developed a genetic algorithm 
[30] based on a subset of the four-part rules as a fitness 
function and Donnelly [10] presented an algorithm based 
on melodic, harmonic, and rhythmic rules.  
All the presented systems achieved a good quality imita-
tion of renaissance and baroque counterpoint. But, as in-
teractivity was behind the scope of these researches, none 
of them allowed a manipulation of the different line in real 
time. 

2.1.2 Real time interactive algorithmic systems 
Real time algorithms have been largely explored for per-
formative purposes, especially to create dialogues with hu-
man musicians. Most of these systems adopted a multi-

agent architecture. For instance, Rowe’s Cypher [34] is a 
real time algorithmic music system designed to improvise 
with human performers. The system is composed by two 
main agents, a listener and a player and coordinates a num-
ber of small modules such as chord analyser, beat tracking, 
phrase grouping, and other compositional modules that 
generate the new musical output. A similar approach was 
adopted in Lewis’ Voyager. Indeed, in Lewis' system, the 
control on the music is shared among 16 “players” [21]. 
Another real time algorithmic system based on a multi-
agent architecture is the Free Improvisation Simulation by 
Nicholas Collins [7].   
The above described systems have been mainly developed 
with performative purposes. Interactive algorithmic com-
position systems have also been developed with different 
objectives. The Roboser, for instance, is an algorithmic 
composition system developed to use real-world behaving 
as input source to an algorithmic composition system [40]. 
Another example is Music Blox, which explores the use of 
generative algorithm in the context of interactivity [12].  
With respect to the role of a specific style in interactive 
algorithms, Aspromallis and Gold recently presented a 
study on a method for interactive real time music genera-
tion that preserves traditional musical genres [3].  
All these systems generate a quite large variety of musical 
genre for interactivity, but the adoption of polyphonic mu-
sic in this contest is currently overlooked. 

2.2 Music and children 

In this section, we introduce relevant aspect of music ped-
agogy and some musical interactive systems for children. 

2.2.1 Music theories for children 
Since the beginning of the last century, a number of theo-
ries have been proposed to discuss musical activities for 
children [12, 14, 18, 37]. 
Music Learning Theory by Gordon, one of the most rele-
vant theories for young children, underlines the im-
portance of learning music by ear [14]. Learning by ear 
implies the development of the listening abilities, which 
are fundamental also for spatio-temporal reasoning [16]. 
Listening abilities can be enhanced by physical interaction 
and active participation of the children, as active participa-
tion engages children's attention and memory. Physical in-
teraction and active participation increase children's atten-
tion as they are required to respond to the music by chang-
ing their body movements [36]. In addition, body move-
ments could help to memorise rhythms [18]. The aware-
ness of rhythmic patterns in music is promoted as it helps 
the development the control of body language and percep-
tual skills [14, 18]. A general consensus also suggests that 
to maximize musical experience that target children should 
be both complex and musically coherent [14]. 

2.2.2 Interactive music systems for children 
In this paragraph, we introduce musical tools and interac-
tive systems aimed at providing musical experiences to a 
young population. Some systems were developed to allow 
children to manipulate musical tracks through their move-
ments. An example of body interaction for children aged 
between 7 and 10 years is offered by Antle and colleagues 
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[4]. Their system, which was designed with the help of 
four music experts, proposed a metaphor based on body 
movements. The movement of the children were captured 
by a tracking system and mapped into a percussive sound 
output, which varied according to the children's move-
ments. Specifically, tempo was mapped to the speed of the 
children, volume to the intensity of the activity, and pitch 
to the proximity among children. The system did not con-
trol harmonic and melodic features, and consequently did 
not require a complex algorithmic system to deal with such 
elements. Another example is the Continuator, that is par-
ticularly relevant for the scope of this paper as it involves 
algorithmic elements [29, 1]. The Continuator, takes as in-
put the music performed on the keyboard and plays back 
coherent excerpts that mirror performer's play. The system 
facilitated piano improvisation by automatically generat-
ing musical replies. The system resulted to be effective in 
promoting flow state for children [1], but does not have 
any aim in acculturating children in any particular musical 
technicality.  

3. SYSTEM ARCHITECTURE 
The algorithmic composer was developed following a 
number of musical needs that emerged during a prelimi-
nary design phase. The design phase, whose details are 
discussed in a related publication [34], involved experts 
in the domain of music theory, music teaching, and peda-
gogy, who participated in four focus groups and one 

workshop. We present here the main musical needs that 
emerged is the design phase. 

The generated music should be varied, coherent, and com-
pliant with compositional rules, thus aiming to provide 
children with a valid stimulus for learning by ear [14]. 
Moreover, the system is required to allow multiple chil-
dren to interact with it at the same time. Thus, each child 
needs to have control over a specific voice of the music. 
In particular, low-level parameters should be directly ac-
cessible to actively stimulate the children and foster par-
ticipation. The parameters individuated during the design 
phase were volume, speed, and articulation.  
These interactive and musical requirements can be met by 
using an algorithmic solution insofar as it allows to gen-
erate and manipulate the different lines in real time. This 
would provide each child with the control over his own 
melodic line, thus allowing children to modify the music 
without reciprocal interference. Furthermore, as opposed 
to a solution based on triggering pre-recorded melodies, 
algorithmic composition guarantees continuous access 
and control to structural parameters. Finally, an algorith-
mic solution can guarantee a virtually infinite number of 
compositions but, at the same time, restrain the musical 
outputs to correct melodic and harmonic rules. 
As highlighted in the related work section, most of the 
systems that algorithmically generate polyphonic music 
are not designed for interactive purposes [2, 10, 12, 23, 
30, 32]. We therefore decided to base the architecture of 
the algorithm on Robin, an algorithm previously devel-
oped by some of the authors [24, 26], which follows a 

rule-based approach to manipulate a number of musical 
parameters in real-time (i.e. speed, articulation, melody 
direction, timbre, volume, consonance, and mode). Robin 

Figure 1. Scheme of the architecture of the algorithm. 
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controlled a single voice with accompaniment generated 
by using some piano clichés of classical music, and was 
adopted in several interactive contexts [25, 27].  How-
ever, as each child needs to control a different voice, the 
algorithm had to be extended to support multiple voices. 
To this end, we implemented an algorithm that allows in-
dependent manipulation on each line of polyphonic mu-
sic. Robinflock was developed with a rule based ap-
proach.   
 
Similarly to most of the interactive systems previously de-
scribed [7, 21, 34], the structure of Robinflock is modular. 
The algorithm is composed of three modules that sepa-
rately deal with: i) harmony, rhythm, and melody. The Har-
mony Generation Module (HGM) follows traditional har-
monic rules [31, 35] implemented with a first order Mar-
kov chain. The Rhythm Generation Module (RGM) is 
composed of four modules that compute the rhythm of 
each line. The rhythm is computed each quarter while the 
harmony is computed each four quarter. A global metro-
nome synchronises the two modules. The Melodies Gen-
eration Module (MGM) fills all the four rhythms with 
notes that are coherent to the current chord to avoid coun-
terpoint errors like parallel fifths and octaves [17]. The 
generated music is performed with four FM synthesisers, 
one for each line. The overall architecture of Robinflock 
can be seen in Figure 1.  
 
Robinflock is developed in Max-MSP, and each module is 
implemented with JavaScript, using the Max-JS object, 
with the only exception of the rhythm module, which is 
composed of four JS objects, one for each line. 
To ensure time synchronisation of the four voices, a met-
ronome is set to the minimum metric unit (the sixteenth) 
and each voice is encoded using arrays of sixties. All the 
four arrays are generated by the MGM, which combines 
the four rhythm arrays generated by the RGMs with the 
current harmony. A metronome scans the four arrays at the 
same time: each cell of the array (sixteenth note) contains 
a MIDI pitch value in case a new note has to be performed 
or a -1 flag if a new note is not required. In the latter case, 
the previous note continues to play. These MIDI values are 
sent to the four synthesisers, that are also implemented in 
Max-MSP. 

3.1 Harmony Generation Module 

Traditionally in tonal/modal music, harmony is organized 
on the basis of chord progressions and cadences. One com-
mon approach to manage harmony is that of Generative 
Grammar, which can compute good quality chord progres-
sions but it is based on time-span reduction of the musical 
structure, and requires a knowledge a priori on the overall 
structure [38]. Following the design requirements, we 
needed a high level of flexibility in real time. Therefore, 
we computed harmony as a stream of chords that are not a 
priori generated. Each chord is defined as a scale degree 
and computed as a state of a Markov chain. Since the his-
torical works of Xenakis, Markov chains have been 
adopted in algorithmic composition [39] to manage tem-
poral successions of musical events. Concerning harmony, 

the transition probabilities between successive chords have 
already been modelled as a Markov process [33]. Chords 
transition data can be extracted by the analysis of existing 
music [8], surveying of music theory [33], or following 
personal composing aesthetic [39].  
To guarantee a high degree of music adaptability, chord 
and degrees’ correlation does not depend on previous 
states of the system: a first-order Markov process deter-
mines the harmonic progression as a continuous stream of 
chords. We implemented the matrix following a rule-based 
approach deriving the transition probabilities from har-
mony manuals (Table 1) [31, 35]. 
As the music was required to offer a variety of stimuli, 
Robinflock was developed to compute music in all the ma-
jor and minor keys, and in all the Gregorian modalities. 
To cope with this requirement, the system computes the 
harmony progression applying the scale degree to the de-
sired tonality or modality. For example, a first degree in C 
major key corresponds to the C-E-G chord while the same 
degree in G minor key corresponds to the G-Bb-D chord. 
 
 I II III IV V VI VII 
I 0 0,05 0,07 0,35 0,35 0,08 0,1 
II 0,05 0 0,05 0,15 0,65 0,2 0 
III 0 0,07 0 0,2 0,8 0,65 0 
IV 0,15 0,15 0,05 0 0,6 0,05 0 
V 0,64 0,05 0,05 0,13 0 0,13 0 
VI 0,06 0,35 0,12 0,12 0,35 0 0 
VII 1 0 0 0 0 0 0 

Table 1. The Markov matrix in the Harmony Module 
 
The harmonic rhythm of Robinflock is similar to that of 
Robin: each chord corresponds to a bar, and every eight 
chords/bars the system is forced to cadence to a tonic, 
dominant or subdominant (I, IV, V). The introduction of 
cadences allows to coherent music harmony, while main-
taining real time flexibility. 

3.2 Rhythm Generation Module 

The Rhythm Generation Module (RGM) manages the 
rhythm of each musical line autonomously, thereby it is 
composed of four different instances of the same agent.  
During the design process, speed was identified as one of 
the musical parameter that should be manipulated autono-
mously on each voice. To keep coherence among the four 
voices, we decided to express speed as note density. 
Changing the value of the BPM on each voice would in-
deed have resulted in unwanted results. The rhythm den-
sity ranges from a continuum of sixteenths notes up to a 
four-quarters note, with a simple metric division (no tuples 
are adopted).  
To reduce the latency, thus guaranteeing a real time re-
sponse, the rhythm is computed at each quarter (four times 
each bar). Nevertheless, for low note density situations, it 
could be necessary to have two, three, and four quarters 
notes. Consequently, the length of the note has to be mod-
ified while the note is playing. The length of the note is 
thereby not computed at the beginning of the notes but de-
fined at the end, allowing continuous access to the note 
density parameter.  
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To this end, the rhythm was encoded using note ON-OFF 
messages. Given that each line is rhythmically computed 
autonomously we use the note ON message also to termi-
nate the previous note. The ON-OFF messages are stored 
in an array - the Rhythm Array - of four Boolean values. 
Each position of the array corresponds to a sixteenth notes: 
1 means new note; and 0 means that the previous note con-
tinues to play. For example, the array [1,1,1,1] corresponds 
to four sixteenths note and the array [1,0,0,0] corresponds 
to one quarter note (Figure 2 and Figure 3).  
 

 
Figure 2. Rhythmic pattern corresponding to the array 
[1,1,1,1]. 

 
Figure 3. Rhythmic pattern corresponding to the array 
[1,0,0,0]. 

The density can range between an entire 4/4 bar of six-
teenths, and a minimum of four quarter notes. The corre-
sponding array for one entire bar are [1,1,1,1] [1,1,1,1] 
[1,1,1,1] [1,1,1,1] for the sixteenths (maximum density), 
and [1,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] for the four quar-
ter note (minimum density). 
The continuum that ranges between the two extremes is 
discretised in sets of possible rhythms. Each set refers to a 
basic note length: two quarter note, one quarter note, 
eighth note and sixteens note. The sets contain regular and 
irregular patterns, for instance the sixteenths note, contains 
[1,0,1,1] but also [1,1,0,1] and quarter notes set contains 
[1,0,0,0] but also [0,0,1,0]. According to the selected den-
sity a pattern is chosen from the corresponding set.  
To avoid illegal syncope, the RGM saves information on 
the previous quarter and which quarter of the bar is cur-
rently being computed. For instance, if the density value 
suddenly jumps from maximum to minimum the system 
would compute the succession [1,1,1,1] [0,0,0,0] that pro-
duces illegal rhythm. In this case the system bypasses the 
rhythm density and computes: [1,1,1,1] [1,0,0,0]. 

3.3 Melodies generation module (MGM) 

At each quarter, the Melody Generation Module (MGM) 
receives the four Rhythm Arrays and the current chord 
from RGMs and HGM, and computes the four melodies 
arrays, one for each voice. The MGM outputs four streams 
of MIDI notes. 
 
The computation of the notes of the arrays occurs in two 
steps. 
 
1. The downbeat notes of the four voices (first position 

in the position in the Rhythm Array) are filled with 
notes of the chord, as in first species counterpoint. The 
first voice to be computed is the bass: it can be the 
fundamental or the third note of the chord. This note 
cannot be the fifth of the chord to avoid the second 
disposition of the chord, which was not used in poly-

phonic music [19]. Then, the other voices are com-
puted in the following order: tenor, alto, and soprano. 
A chord note is assigned to each voice. If the current 
Rhythm Array corresponds to the first quarter of the 
measure, and consequently to a new chord, the algo-
rithm checks that it does not produce a parallel octave 
or a fifth interval with the previous chord in a two-
steps recursive procedure. In the first step, the system 
selects a note of the chord; in the second step, the sys-
tem checked that this note does not produce octave or 
fifth with the previous quarter. If the selected note pro-
duces illegal parallel octave or fifth, the algorithm 
goes back to step one, choosing a different note. For 
the second, third, and fourth quarter of the measure, 
the chord is the same, and the melodies reposition 
chord notes. As a consequence, it is not necessary to 
pay attention to the illegal octaves [31]. Having the 
harmony stable for four quarters was not common in 
historic counterpoint. However, we adopted this solu-
tion to guarantee the flexibility of the note length 
while keeping the harmony coherent.   

2. The other notes of the four voices are computed. The 
algorithm enters the second step only if the density of 
the voice is higher than a quarter. Two different main 
cases are identified: i) syncope: as the chord is the 
same, the algorithm computes the note as a consonant 
arpeggio; ii) non-syncope: the second eight is com-
puted with a chord note, and the sixteenth upbeat notes 
are computed as passage notes. 

Given the real-time constraints, no prediction on succes-
sive notes can be made. Thus, in the current version of the 
system, some elegant ornamentations of the fifth species 
counterpoint (e.g. dissonant suspensions, neighbour note, 
and double passing tones) are not implemented. 

3.4 Synthesiser  

The synthesiser is realized using simple FM synthesis with 
a different carrier modular ratio for the nearby voices, 
(bass FM ratio 2, tenor FM ratio 3, alto FM ratio 2, soprano 
FM ratio 3). The choice of using the FM and avoiding sam-
ples were suggested by the expert in music pedagogy dur-
ing the design process. Using a real instrument timber 
could indeed cause the child to be positively or negatively 
emotionally influenced by a specific instrument, and this 
could decrease his attention over the specific exercise (e.g. 
the sound of a piano for the daughter of a pianist). 
The synthesiser controls both the volume and the articula-
tion. The articulation is manipulated by changing the 
ADSR (attack, decay, sustain, release) parameters, in the 
range that continues between 02 02 0 0 for the staccato and 
200 100 1 100 for the legato. These values follow the 
standard ADSR (attack, decay, sustain, release) codifica-
tion of the Max-MSP object. Attack, decay, and release are 
expressed in milliseconds. The sustain is a multiplicative 
factor used to calculate the volume during the sustain of a 
note, its value is normalized between 0 and 1. 
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4. ROBINFLOCK IN THE CONTEXT OF 
CHILD ORCHESTRA  

This section shows a field application of Robinflock. We 
present the practical adoption of Robinflock in a kinder-
garten and report the main observations collected in this 
context. Full details on the field study that involved Robin-
flock can be found in a dedicated paper [9]. 

4.1 Activities 

Robinflock was used over a period of seven months in a 
local kindergarten. A total of 27 children (14 females) aged 
3 and 4 took part in the study. They were divided into two 
groups: 15 children of 3 years old (4 males) and 12 chil-
dren of 4 years old (9 males). Both groups followed the 
same cycle of 12 lessons, which were facilitated by a mu-
sic teacher with a specific expertise in music pedagogy for 
pre-schoolers. One kindergarten teacher was also present 
at each lesson to supervise the activities. 
For this field study two different use of the system have 
been adopted. In the first half of the lessons, Robinflock 
was controlled by the music teacher via a mobile applica-
tion. In the second half of the lessons, the system was di-
rectly operated by the children by means of their move-
ments, which were tracked via motion tracking (details on 
the interfaces below). The observations were conducted by 
three of the authors.  

4.2 Interfaces 

Two different interfaces were developed to control Robin-
flock: a web app, which allows the teacher to remotely ma-
nipulate the music using a smartphone, and a motion 
tracker, which allows the children to directly manipulate 
the music. 

4.2.1 Web app 
The web app was used by the teacher in the first phase of 
the field study to help children familiarise with the music 
played by Robinflock and to propose a number of exercises 
that were specifically centred on polyphony.  
The implementation of the app was based on web applica-
tion technologies (node.js and javascript), which allow 
compatibility with smartphones and tablets. The capability 
of interacting wirelessly through a smartphone allowed the 
teacher to freely move in the room and to offer support to 
children. The application was implemented using sliders 
and buttons typical of mobile UI.  

4.2.2 Motion tracking 
Following the suggestions of the related studies that 
stressed the importance of movement to stimulate music 
learning [14, 18, 36], we implemented an interface that in-
volved body movements to control the music. We adopted 
a solution based on accelerometers and gyroscope, which 
were embedded on a small (3x4 cm) and lightweight Blue-
tooth board (Texas instrument CC2650) powered by a 
small coin battery. The sensors were hidden inside a num-
ber of colourful cardboard objects aimed at attracting chil-
dren’s attention such as a crown and a magical wand. 

The mapping between the movement of the children and 
the music was discussed with the experts and adapted ac-
cording to the observation of the system. Initially, we 
planned to map the speed of melodies with the speed of the 
children, and the articulation with the distance of chil-
dren’s barycentre to the floor. During the field work, we 
realised that the manipulation of more than one parameter 
would have been too demanding for the children. As a con-
sequence, we maintained only speed. 

4.3 Observation  

The experience in the kindergarten was evaluated integrat-
ing observations, interviews, and more than 300 drawings 
sketched by children at the end of each session. We sum-
marise here the main considerations. Full detailed on the 
methodology adopted for the analysis can be found in [9].   
The first important observation is that children identified 
and reacted properly to the three parameters. We observed 
how children reacted to changes of musical parameters us-
ing specific exercises designed along with the music 
teacher. We asked children to change their behaviour, for 
instance jump outside or inside a carpet, following the 
changes of the music.  Volume, was the most difficult pa-
rameter for some of the children, as they struggled per-
forming the exercise. By contrast, differences in articula-
tion and speed were immediately perceived.  
Robinflock was also particularly successful in helping 
children to familiarise with polyphonic music. This fact 
was assessed by observing how children reacted to the 
changes of specific musical lines. For the polyphony we 
also asked children to change their behaviour following the 
changes of the music, in this case different child were 
asked to follow the changes of different voices.  
Combining the observation of children behaviour with the 
discussion with the music teacher allowed us to understand 
children that children had difficulties to manipulate more 
than one parameter. We also observed that a four lines po-
lyphony was too complex to be manipulated by children. 
For this reason, we reduced the polyphony to two voices.  
Despite these limitations, the observations revealed that 
Robinflock succeeded in encouraging children to actively 
participate in music making. Comments collected from the 
children confirmed this finding, as they commented on the 
experience stating that “I did the music” and “we played 
the music”. 
To summarize, Robinflock proved helpful to familiarise 
children with polyphonic musical structures and peculiari-
ties.  

5. DISCUSSION  
In this paper. we presented an algorithmic system that gen-
erates polyphonic music in real time developed for inter-
active scenarios with children. With respect to other at-
tempts to algorithmically compose polyphonic music, we 
introduced the possibility to manipulate in real time the 
generated music. Due to the real-time necessity, we needed 
to come to terms finding a trade-off between accuracy of 
the counterpoint and the responsiveness of the system. 
With respect to other systems, the accuracy is indeed re-
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duced because of the evolution of music cannot be antici-
pated. Despite of this, this interactive system offered sev-
eral benefits. 
We propose that algorithmic composers can be adopted to 
help children to familiarise with polyphonic music: dele-
gating part of the complexity of composing and perform-
ing polyphonic music to a computer allowed children to 
experience the control of this complex musical structures. 
In particular, Robinflock proved useful in helping children 
to recognise different lines in polyphonic music. 
Reflecting on our experience with Robinflock, we propose 
that the development of algorithmic system for interactive 
scenarios should be based on the specific needs of the spe-
cific scenario, considering for instance, the target users, the 
environment. These needs were necessary to define the 
characteristic of the music and the parameters to be manip-
ulated. For instance, Robinflock was influenced by the ne-
cessity of having a variety of music stimuli and by the ne-
cessity of manipulating three musical parameters (volume, 
speed, and articulation) independently for each voice. 
The necessity of offering a variety of music stimuli is re-
flected in the HGM, which computes music in all the major 
and minor keys and in all the Gregorian to widen the music 
variety. 
With respect to the three parameters, we shown that vol-
ume and articulation can be managed by a synthesiser, 
whereas speed has to be manipulated by an algorithmic 
composition system. 
The necessity of manipulating the speed in real time influ-
enced the decision to express speed as the density of the 
notes in the Rhythm Array. This choice allows different 
voices to have different behaviours. For instance, bass and 
soprano voices can be very slow, performing four quarter 
length notes, while the alto and tenor are performing six-
teens notes. The manipulation of speed is probably the 
most significant contribution of this algorithmic system. 
The interactive necessity introduces the need to determine 
the length of the note while the note is performing as op-
posed to computing it at the beginning of the note. This 
specific requirement leaded us to develop the ON-OFF 
Boolean note encoding that influenced all the RGM struc-
ture, and, to the best of our knowledge is a novelty in al-
gorithmic composition of polyphonic music.  

6. FUTURE WORKS 
A number of solutions described in this paper are grounded 
on the specific needs of our target users. Future implemen-
tations of the system could aim at targeting different ages, 
for instance an adult population. This study would test the 
system in different interactive contexts and study how to 
adapt musical features and the interactive parameters to 
fulfil different needs. 
From a musical point of view, the main limitation of the 
current implementation of Robinflock is the absence of el-
egant ornamentations of the fifth species counterpoint. Fu-
ture version of the algorithm could include more complete 
counterpoint rules and include polished ornamentations 
such as dissonant suspensions, neighbour note, and double 
passing tones. 
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