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Abstract 

The explosive growth of molecular sequence data has made it possible to estimate species divergence 

times under relaxed-clock models using genome-scale datasets with many gene loci.  In order both to 

improve model realism and to best extract information about relative divergence times in the sequence 

data, it is important to account for the heterogeneity in the evolutionary process across genes or 

genomic regions.  Partitioning is a commonly used approach to achieve those goals.  We group sites 

that have similar evolutionary characteristics into the same partition and those with different 

characteristics into different partitions, and then use different models or different values of model 

parameters for different partitions to account for the among-partition heterogeneity.  However, how to 

partition data in practical phylogenetic analysis, and in particular in relaxed-clock dating analysis, is 

more art than science.  Here, we use computer simulation and real data analysis to study the impact of 

the partition scheme on divergence time estimation.  The partition schemes had relatively minor 

effects on the accuracy of posterior time estimates when the prior assumptions were correct and the 

clock was not seriously violated, but showed large differences when the clock was seriously violated, 

when the fossil calibrations were in conflict or incorrect, or when the rate prior was mis-specified.  

Concatenation produced the widest posterior intervals with the least precision.  Use of many partitions 

increased the precision, as predicted by the infinite-sites theory, but the posterior intervals might fail 

to include the true ages because of the conflicting fossil calibrations or mis-specified rate priors.  We 

analyzed a dataset of 78 plastid genes from 15 plant species with serious clock violation and showed 

that time estimates differed significantly among partition schemes, irrespective of the rate drift model 

used.  Multiple and precise fossil calibrations reduced the differences among partition schemes and 

were important to improving the precision of divergence time estimates.  While the use of many 

partitions is an important approach to reducing the uncertainty in posterior time estimates, we do not 

recommend its general use for the present, given the limitations of current models of rate drift for 

partitioned data and the challenges of interpreting the fossil evidence to construct accurate and 

informative calibrations. 
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Introduction 

It is well recognised that different parts of the genome are evolving at different rates with different 

patterns (such as different transition/transversion rate bias and different base composition bias) (Yang 

et al., 1995; Springer et al., 1999; Shapiro et al., 2006).  Even the evolutionary histories (gene trees 

and divergence times) may differ among genes or genomic regions because of processes such as 

lateral gene transfer, gene duplication and loss, and deep coalescence due to ancestral polymorphism 

(Maddison, 1997; Nichols, 2001; Szollosi et al., 2014).  With large molecular datasets typically 

analyzed in phylogenetic studies (Meusemann et al., 2010; dos Reis et al., 2012; Jarvis et al., 2014; 

Misof et al., 2014), there is an increasing need to accommodate the heterogeneity in evolutionary 

characteristics across sites or regions of the genome.  For Bayesian divergence time estimation under 

relaxed-clock models, the heterogeneity among genomic regions in the relative substitution rates and 

in the patterns of substitution rate drift over branches of the phylogeny is expected to be particularly 

important. 

There are mainly two kinds of models to deal with such among-site or among-region 

heterogeneity: mixture models and partition models.  These correspond to ‘random-effects’ and 

‘fixed-effects’ models in statistics, respectively.  Take the modelling of substitution rate variation 

among sites in the same gene or sequence as an example.  A mixture model assumes different classes 

of sites with different rates, but a priori we do not know which site is from which site class.  This 

group of models include the finite-mixture model (Yang, 1995), the infinite-mixture (Dirichlet-

process) model (Lartillot and Philippe, 2004; Huelsenbeck and Suchard, 2007; Lartillot et al., 2009), 

and the continuous gamma model (Yang, 1993; Mayrose et al., 2005).  The parameters in the model 

include the probabilities and relative rates for the site classes in the finite-mixture model or the 

parameters in the gamma distribution or Dirichlet process.  In a partition model, biological knowledge 

is used to group sites or genes into different partitions, with sites in the same partition sharing similar 

evolutionary characteristics while those in different partitions having different characteristics 

(Nylander et al., 2004; Brown and Lemmon, 2007).  One knows which sites are in which partition a 

priori.  For example the three codon positions have different rates and base compositions and may be 

treated as different partitions (Yang et al., 1995; Yang, 1996; Shapiro et al., 2006).  The two kinds of 

models are often combined, with the partitions accounting for large-scale differences in while the 

mixture model accommodates fine-scale variation among sites in the same partition.  It is important to 

use biological knowledge to formulate partition models.  For example it is ill-advised to use an 

automatic algorithm to partition all sites in a super-alignment into different partitions, as this runs into 

a problem of data dredging and risks lumping similar observed sites (e.g., constant sites from all three 

codon positions) into spurious partitions.   

What evolutionary characteristics are important and should be accounted for by the use of 

partitions should depends on the analysis.  For divergence time estimation under relaxed-clock 
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models, an important factor may be the rate differences among partitions and the different processes 

of rate drift over branches among partitions.  In this paper, we consider the species tree and 

divergence times to be fixed and shared by all partitions.  Even in this simple case, choosing an 

appropriate partition scheme for divergence time estimation is challenging, partly because our 

knowledge of the process of sequence evolution (in particular, how evolutionary rate drifts over 

lineages and among genomic regions) is far from perfect and partly because fossil calibrations (which 

are critical in a dating analysis) are fraught with uncertainties and errors.  The common practice has 

been to define partitions by genes or codon positions, or according to whether the sites are coding or 

non-coding, or whether they are from mitochondrial or nuclear genomes (Ho and Lanfear, 2010; dos 

Reis et al., 2012; Jarvis et al., 2014).  An automatic approach, known as PartitionFinder, starts from 

user-defined data subsets (also called data blocks) and iteratively merge the sets according to the 

Bayesian Information Criterion (BIC) (Lanfear et al., 2012; Lanfear et al., 2014).  This is mostly 

designed for selecting partition models for phylogenetic tree reconstruction but is also used in 

divergence time estimation.  Because the number of possible partition schemes is often too large 

(Lanfear et al., 2012), heuristic algorithms are used in the search for the best-fit scheme. ClockstaR is 

another automatic approach for “estimating” the best partition scheme for a given dataset, especially 

suited to Bayesian divergence time estimation (Duchene et al., 2014).  This uses the maximum 

likelihood estimates of branch lengths on the fixed unrooted species tree topology for each data block 

and calculates a distance metric between data blocks to measure whether the branch lengths are 

proportional between them.  A clustering algorithm is then used to partition the data blocks and to 

assign data blocks to partitions.  Duchêne and Ho (2014) used simulation to demonstrate the utility of 

ClockstaR for partitioning data in molecular clock dating analyses.   

The choice of partition schemes may affect downstream phylogenetic analyses.  Several studies 

have examined the effect of data partitioning on the inference of tree topology (Strugnell et al., 2005; 

Leavitt et al., 2013), finding that under-partitioning may lead to highly supported but incorrect nodes 

on the estimated tree (Kainer and Lanfear, 2015).  However, there has been no systematic effort to 

explore the effect of partitioning on the estimation of species divergence times under the clock or 

relaxed-clock models.  Poux et al. (2008) and Voloch and Schrago (2012) found that different 

partition schemes produced similar posterior divergence time estimates.  However those studies used 

closely related species so that the molecular clock holds approximately, and the conclusions may not 

apply in general to relaxed clock dating with serious clock violation.  According to the infinite-sites 

theory, increasing the number of partitions is essential to improving the precision of posterior time 

estimation in relaxed-clock dating if the fossil calibrations are fixed (Rannala and Yang, 2007; Zhu et 

al., 2015).  We thus expect the choice of data partition schemes to have a major impact on the 

accuracy and precision of divergence time estimation in a relaxed-clock dating analysis. 

Here, we explore the performance of several commonly used partition schemes on Bayesian 

estimation of species divergence times using simulated data of multiple protein-coding gene 
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sequences, including concatenation, partitioning by codon position, and by gene.  We simulate 

sequence alignments from a nine-species phylogeny with known node ages and analyze them to 

estimate the divergence times using six partition schemes.  We study two cases of clock violation 

(slight and severe clock violations) and examine the impact of various factors (such as the prior on the 

rate-drift process, the number and quality of fossil calibrations) on divergence time estimation, when 

the sequence data are partitioned using different strategies.   

 

Methods 

Design of the simulation experiment 

We use the nine-species phylogeny of Figure 1 to simulate 50 alignments of protein-coding genes.  

The divergence times are fixed at t1 = 1 (for the root), t2 = 0.95, t3 = 0.55, t4 = 0.40, t5 = 0.25, t6 = 0.15, 

t7 = 0.10, and t8 = 0.50.  One time unit is 100 Myrs so that the root age is 100 Myrs.  We chose to use 

a fixed tree and fixed divergence times so that the simulation results are easily interpretable and we do 

not expect the tree topology to have major effects on our results (relative to other factors that we 

consider such as the number and quality of the fossil calibrations and the prior model of evolutionary 

rate drift).  We simulate random rates for branches using an independent-rates model, but allow 

variable rates among genes.  The branch rate here should be considered an average over the branch as 

the sequence data is not informative about rate variation within a branch.  We set the overall rate 

across lineages for the gth gene to be a random variable from the gamma distribution, μg ~ G(10, 

010  ), with mean μ0 = 0.5 (0.5 substitutions per site per time unit or 5 × 10–9 substitutions per site 

per year) and the 95% interval (0.24, 0.85).  The log-rates for the branches of the gth gene are 

generated as independent random variables from the normal distribution, log gb ~ N(log g − 2/2, 

2), for b = 1, …, 16.  Note that this log-normal distribution has mean E(gb) = g and variance V(gb) 

= 2 2exp{ } 1 g    , with coefficient of variation (SD/mean) to be 2exp{ } 1  , so that 2 is a 

scale-free measure of the violation of the clock, independent of the time unit (Brown and Yang, 

2011).  We multiply μgb with the time duration of the bth branch to calculate the branch length on the 

gth gene tree.  In this way we construct 50 gene trees with branch lengths.  We use two values for the 

variance parameter of the rate-drift process: σ2 = 0.01 and 0.25, corresponding to slight and serious 

clock violations respectively.  A previous simulation found that at σ2 = 0.01, the likelihood ratio test 

rarely rejected the clock and the Bayesian credibility intervals under the strict clock model included 

the true ages, while at σ2 = 0.25, the likelihood ratio test almost always rejected the clock and the 

posterior intervals under the strict clock rarely included the true ages (Brown and Yang, 2011, Figs. 1 

& 3).  In either case the 50 genes may have different overall rates, but all genes have the same extent 

of among-branches rate variation (the same σ2).  Note that according to our simulation design, all 
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genes share the same tree topology and divergence times, but they have independent overall rates, and 

given the overall rates, the branch rates vary independently among genes.  Simple R code is written to 

sample the branch rates and to generate the gene trees. 

The generated gene trees have branch lengths measured in substitutions per site.  We multiply all 

branch lengths by 3 as there are ~3 nucleotide sites in each codon.  Gene sequence alignments are 

then simulated on the gene trees under the M3 (discrete) model of codon evolution (Yang et al., 2000) 

using the program EVOLVERNSSITES from PAML v4.8 (Yang, 2007).  This model allows for three 

classes of codons with different nonsynonymous to synonymous rate ratios: ω0 = 0.01, ω1 = 0.5 and 

ω2 = 0.9.  We simulate 25 conserved genes with probabilities p0 = 0.8, p1 = 0.19, and p2 = 0.01 for the 

three site classes, with the average ω to be 0.112; and 25 less-conserved genes with probabilities p0 = 

0.5, p1 = 0.3, and p2 = 0.2, with the average ω to be 0.335.  The sequence length of each gene is n = 

500 codons, the transition/transversion rate ratio is κ = 2 and the codon frequencies are assumed to be 

equal.  The number of replicates is 100.  In total 2 × 100 datasets were simulated, each consisting of 

50 genes, with 100 datasets for σ2 = 0.01 and 100 for σ2 = 0.25. 

 

Estimation of divergence times from the simulated gene alignments 

We analyzed the simulated gene alignments with the program MCMCTREE v4.8 (Yang, 2007) to 

estimate the species divergence times.  We evaluated the following partition schemes, which are 

commonly used in phylogenomic studies:  

1) We concatenated all genes into a single “supergene” (concatenation, C). 

2) We concatenated the 1st and 2nd codon positions from all genes into one partition and the 3rd 

codon positions from all genes into another (codon position, CP).   

3) We used the program PartitionFinder v1.1.1 (Lanfear et al., 2012; Lanfear et al., 2014), with 

codon positions 1+2 and 3 of each gene treated as two separate data blocks (PartitionFinder, 

PF).  The program explores different partitioning strategies using the BIC.  The number of 

inferred partitions ranges from 1 to 100. 

4) We analyzed the data as 50 partitions with each partition to be a gene (gene, G). 

5) We treat the 1st and 2nd codon position of each gene as one partition and the 3rd codon positions 

as another, creating in total 2 × 50 = 100 partitions (gene and codon position, GCP). 

6) We used ClockstaR v2.0.1 (Duchene et al., 2014) as another automatic method for 

determining the partition scheme (ClockstaR, CS).  As with PartitionFinder, we use 100 data 

blocks per replicate dataset.  Branch lengths on the fixed unrooted tree were estimated using 

BASEML (Yang, 2007) for each data block.  These were then used as input for ClockstaR to 

calculate a distance metric between data blocks and the resulting distance matrix was used to 

cluster data blocks into partitions. 
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The PartitionFinder analysis may merge (concatenate) different data blocks into one partition, but 

will never separate sites in the same data block into different partitions.  The program estimates the 

best-fitting partition scheme and the best-fitting substitution model for each partition from a user-

specified set of models based on an information criterion.  The tree topology is either provided by the 

user or estimated from the data.  We used the 100 data blocks defined in the GCP scheme as the 

starting point and the fixed tree of Figure 1.  We did not search for the best-fitting substitution model 

for each partition but used HKY85+4 throughout.  We note that automatic model selection (e.g. 

Posada and Crandall, 1998) often leads to parameter-rich pathological models, such as the ‘I+Γ’ 

model, and that furthermore the use of different substitution models for the same data blocks in 

different partition schemes may compromise the comparison of partition schemes.  Note that with 

different parameter values for partitions, the HKY85+4 model is capable of accommodating the 

heterogeneity (among partitions) in the substitution rate, base compositions, transition/transversion 

rate ratio, and the extent of among-site rate variation.    

We used the greedy heuristic algorithm with the BIC score to search for the best scheme since it 

was found to perform better than other algorithms (i.e., rcluster and hcluster), although it requires 

more computation (Lanfear et al., 2014).  We used the linked option for branch length estimation by 

which one set of branch lengths is estimated and a scaling parameter is used to adjust the branch 

lengths for each partition.   

The ClockstaR program runs in three steps: (i) estimating the best-fitting substitution model 

using the BIC score and the branch lengths on the fixed unrooted tree using maximum likelihood for 

each data block, (ii) estimating the distance for each pair of data blocks, and (iii) using cluster analysis 

to find the optimal number of partitions and to assign data blocks to partitions.  We used BASEML to 

estimate the branch lengths for each of the 100 data blocks under HKY85+4.  As in the case of 

PartitionFinder, we used the same model for all data blocks.  The function trees.bsd was then used 

to estimate the sBDSmin distance metric between partitions and the partitions.object function 

was used for the cluster analysis.  This calculates the Gap statistic (Tibshirani et al., 2001) for each 

number of partitions (k), using 500 bootstrap replicates (Duchene et al., 2014). The lowest k that 

triggers a peak in the Gap statistic is the optimal.  Data blocks were assigned to partitions by applying 

the Partitioning Along Medoids algorithm (Kaufman and Rousseeuw, 2009). 

We set the time unit in MCMCTREE to 100 Myrs and applied three calibration strategies.  (i) We 

assigned the calibration 0.8 < t1 < 1.2 on the root age, represented by the calibration density t1 ~ B(0.8, 

1.2).  Here ‘B’ stands for a pair of bounds, represented by a soft uniform distribution, with left and 

right tail probabilities 2.5% that the root age is outside the bounds (Yang and Rannala, 2006, Fig. 2c).  

This mimics a soft-bound calibration on the root between 80 Ma and 120 Ma based on the fossil 

record.  (ii) We applied the same constraint on the root age 0.8 < t1 < 1.2, and in addition the constraint 

0.525 < t3 < 0.575 on node 3, mimicking a weak calibration on the root and an informative calibration 
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on node 3.  (iii) We used the same constraint on the root age and a conflicting constraint t3 ~ B(0.575, 

0.625) on node 3.  Since the true age (t3 = 0.55) is outside those bounds, this mimics an incorrect 

calibration on node 3.  The prior for the ages of the uncalibrated internal nodes was specified using a 

birth-death-sampling process with birth and death rates λ = μ = 1 and sampling fraction ρ = 0, which 

represents a uniform kernel (Yang and Rannala, 2006).  We ran the MCMCTREE program without 

data and confirmed that the marginal time priors on the calibrated nodes closely matched the user-

specified densities.   

We used the relaxed-clock model implemented in MCMCTREE to analyze the data (Rannala and 

Yang, 2007).  The independent-rates (IR) model assumes that given the overall rate for the locus, the 

rates for branches on the tree are independent log-normal variables.  The overall locus rates are 

assigned the gamma-Dirichlet prior (dos Reis et al., 2014): a gamma prior is assigned to the average 

rate over all loci ( ) and the locus rates are then assigned by partitioning the total rate according to 

the uniform Dirichlet distribution.  We used  ~ G(2, 4) with mean 0.5, meaning 5 × 109 

substitutions per site per year with prior 95% interval (0.06, 14.0).  The mean of this prior matches the 

overall substitution rate (μ0 = 0.5) of all genes in the simulation but the shape parameter (2) means 

that the prior is fairly diffuse.  In addition we used two “incorrect” rate priors, to assess the 

performance of the partition schemes under incorrect rate priors: (i) a slow rate,  ~ G(2, 40) and (ii) 

a fast rate  ~ G(2, 0.4).  We also used the autocorrelated-rates model (AR) in which the branch rates 

evolve from the rate at the root according to the geometric Brownian motion (Thorne et al., 1998; 

Thorne and Kishino, 2002; Rannala and Yang, 2007).  A gamma prior, 2 ~ G(2, 20), was assigned to 

the average rate drift parameter (σ2) among loci with the locus-specific parameters to be defined from 

the Dirichlet distribution.  The topology of Figure 1 was used along with the HKY85+Γ4 model of 

nucleotide substitution.  The approximate likelihood method was used for computational efficiency 

(dos Reis and Yang, 2011).  The test of dos Reis and Yang (2011; see also Inoue et al., 2010) suggests 

that the approximation is acceptable with 100 sites while here each partition has at least 500 sites (if 

the partition has only one data block of codon position 3).   

Markov chain Monte Carlo (MCMC) was run with a burn-in of 106 steps, sampling every 500 

steps to collect 104 samples from the posterior.  For the partitioning strategy GCP, posterior samples 

were collected every 250 steps to save computational time.  Convergence was evaluated for only the 

first replicate for each combination of rate prior, calibration strategy, rate-drift model and partition 

scheme by running two independent MCMC runs with different starting values.  For each replicate we 

estimated the posterior means and the 95% high posterior density (HPD) intervals of divergence 

times.  Those are averaged over the 100 replicates to assess the performance of different partition 

schemes.   
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The performance of different partitioning strategies 

We evaluate different partition strategies by using four measures of accuracy and precision of 

posterior time estimates.  Each measure is calculated for every node in the species tree (Fig. 1) as an 

average over the replicate datasets, and then averaged over all nodes. 

(i) Average Relative Error.  We calculate the relative error of the time estimate for node i in the jth 

replicate dij = ij i

i

t t

t


, where ti is the true age of node i and ijt  is its estimate (the posterior mean), with j 

= 1, ..., 100, i = 1, ..., s−1, where s is the number of species.  This may be considered a measure of 

accuracy for the point estimate. 

(ii) Relative HPD Width.  We calculate the relative HPD interval width of the time estimate for node 

i in replicate j as swij = wij/ti, where wij is the 95% HPD interval for node age ti in replicate j.  This is a 

measure of precision. 

(iii) Mean Square Error (MSE).  The square root of MSE of the time estimate of node i in replicate j 

is 2MSE ( ) ( )ij ij ij iV t t t    , where 2( ) [ (2 1.96)]ij ijV t w  .  This is a measure of both accuracy 

and precision of the time estimates. 

(iv) Coverage probability.  For each node i, coverage (Pi) is calculated as the percentage of 

replicates in which the 95% HPD interval contains the true age ti. 

Divergence times of plants 

We estimated the divergence times of fifteen plant species using the six partition schemes considered 

in the simulation.  The molecular data are from Ruhfel et al. (2014) and consist of 78 plastid gene 

alignments (58,347 sites in total).  Note that here the G scheme involves 78 partitions (one for each 

gene) while GCP involves 156 (=78  2; for codon positions 1&2 versus 3 for every gene). 

We used PartitionFinder and ClockstaR with the same settings as in the simulation analysis, 

except that the GTR+Γ4 model was used to estimate branch lengths by maximum likelihood for each 

data block.  We used three priors for the average rate,  ~ G(1, 100),  ~ G(1, 10) and  ~ G(1, 1) 

(Magallon et al., 2013), with the prior mean rate to be 10–10, 10–9 and 10–8 substitutions per site per 

year.  The time prior was constructed from the calibrations together with the birth-death-sampling 

process, with a uniform kernel (λ = μ = 1, and ρ = 0).  For the rate-drift parameter we used the prior 

2 ~ G(1, 10).  The GTR+Γ4 substitution model was used in all partitions and approximate likelihood 

calculation was used to save computational time (dos Reis and Yang, 2011).  We used both the 

independent- and the autocorrelated-rates models for the among-branches rate variation. 

All MCMC analyses were run with the same settings as in the simulation.  Two MCMC runs 

were used for each analysis to confirm convergence. 
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Results 

The six partition schemes we evaluated by simulation were: (i) concatenation (C, 1 partition); (ii) 

codon positions (CP, 2 partitions); (iii) PartitionFinder (PF, variable number of partitions); (iv) gene 

(G, 50 partitions); (v) gene and codon positions (GCP, 100 partitions), and (vi) ClockstaR (CS, 

variable number of partitions).  The number of partitions determined by PartitionFinder varied from 9 

to 17 among the replicate datasets with serious clock violation (σ2 = 0.25) and from 9 to 16 with mild 

clock violation (σ2 = 0.01).  ClockstaR showed much larger variations among datasets, with the 

number ranging from 1 to 96 for the non-clock-like data and from 1 to 50 for clock-like data.  There 

was little correlation between the two methods (Fig. S1).  We note that if the molecular clock holds, 

ClockstaR should ideally infer a single partition and be equivalent to concatenation, but surprisingly 

the method inferred a single partition for many datasets simulated with serious clock variation as well.  

Note that we generated the data under a codon-based substitution model so that there does not exist a 

‘true’ partition scheme.   

Results from simulations when the clock is seriously violated 

The molecular clock is seriously violated in datasets simulated using σ2 = 0.25.  We evaluated 

different partition schemes using four performance measures: relative error, relative HPD width, mean 

square error and coverage probability.  The relative error, relative HPD width, and mean square error 

averaged over the 100 replicates and over all internal nodes are shown in Table 1, while the results for 

two representative nodes (node 1, the root, with a fossil calibration; and node 4 without calibration) 

are shown in Table 2.  Corresponding results on coverage are in Tables 3 and 4.   

With a single calibration 0.8 < t1 < 1.2 and under the rate prior   ~ G(2, 4) and the independent-

rates model, time estimates were close to the true values for all partition schemes (Figure 2B).  The 

relative error of the point estimates averaged over all nodes and replicates were 0.028, 0.046, 0.039, 

0.039, 0.048, and 0.036 for partition schemes C (concatenation), CP (codon position), G (gene), GCP 

(gene and codon position), PF (PartitionFinder), and CS (ClockstaR), respectively, with scheme C 

being the most accurate (Table 1).  The differences in time estimates among the partition schemes 

were small.  The true ages were well within the HPD time intervals for all partition schemes (Table 

1).  Concatenation produced wider HPD intervals, with lower precision than all other schemes.  

According to the root MSE, which is a combined measure of both precision and accuracy, the G and 

GCP schemes performed the best (Table 1).  We also note that some nodes on the tree were dated 

better than other nodes: the age of the root was estimated more accurately than those of other nodes 

for all partition schemes, apparently because the root was the only node with a calibration.  

When we added another good fossil calibration on node 3, 0.525 < t3 < 0.575 (the true age is t3 = 

0.55), time estimates became more precise for all nodes and partition schemes (compare Figure 2B' 

with 2B).  For example the relative HPD width over all nodes decreased from 0.50 to 0.26 for the C 
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scheme and from 0.43 to 0.17 for the G scheme (Table 1).  Accuracy was either the same or improved 

for the partition schemes C, CP, PF, and CS but was slightly worse for the highly partitioned schemes 

G and GCP (Table 1).  The age of node 3 was accurately and precisely estimated for all partition 

schemes owing to the informative calibration on it, whereas the age of the root was not accurately 

estimated in some partition schemes.  For example, the relative error for the root age increased from 

0.002 to 0.029 for the C scheme and from 0.003 to 0.030 for the G scheme after the inclusion of the 

additional calibration on node 3 (Table 2).  All partition schemes except schemes C and CS had 

similar root MSE (i.e., 0.026, 0.027, 0.025, and 0.026 for schemes CP, G, GCP, and PF, respectively; 

Table 1) but the highly partitioned schemes G and GCP had smaller coverage probabilities (Table 3), 

with higher precision but lower accuracy (Table 1).  

Use of an incorrect rate prior   ~ G(2, 40), with the rate ~10 times too slow, and with a single 

calibration on the root led to seriously biased time estimates for all partition schemes (Figure 2A).  

For example, the relative error with the slow-rate prior was 0.177 and 0.204 for partition schemes C 

and CP, in comparison with 0.028 and 0.046 with the correct rate prior (Table 1).  Moreover, the use 

of the slow-rate prior produced misleadingly precise estimates (Tables 1 and 2), since the estimates 

are far from the true values and for many nodes the true ages were not within the HPD intervals for all 

partition schemes (Figure 2A).  For example, the age of the root (true age = 100) was estimated at 

114, 115, 116, 115, 117, and 115 for schemes C, CP, PF, G, GCP, and CS, respectively, but the HPD 

interval had a coverage probability of 66% for CS, 48% for scheme C (concatenation), and 0% for the 

other schemes (Table 4).  In terms of the overall measure MSE, all partition schemes performed 

poorly with the mis-specified slow-rate prior when a single calibration is used on the root, with 

scheme G to be better than others (Table 1).  The use of an additional correct calibration on node 3 

improved the time estimates with the slow rate prior for all partition schemes.  The fast-rate prior,   

~ G(2, 0.4), with the rate to be ten times too fast, gave similar estimates to the correct rate prior, 

especially when two calibrations are used (Tables 1 and 2).  

We then explored time estimates in case of an incorrect calibration 0.575 < t3 < 0.625 on node 3 

(true age t3 = 0.55), in addition to the correct calibration on the root (Figure 2C').  The accuracy of 

time estimates was worse for all partition schemes than when correct calibrations were used.  For 

example, the relative error for schemes C and CP were 0.072 and 0.080, respectively, compared with 

0.028 and 0.046 when a single calibration was used on the root, with the GCP scheme having the 

smallest relative error (Table 1)Table 1.  The precision of time estimates was higher than under a 

single calibration on the root for all partition schemes with the PF and GCP schemes achieving the 

highest precision (Table 1)Table 1.  In general, all node ages were overestimated for all partition 

schemes owing to the incorrect informative calibration on node 3.  The age estimate of node 3 was 

most seriously affected, with the HPD interval failing to include the true age for all partition schemes.  

Overall, the GCP scheme had the highest accuracy and precision but the coverage probability is low 
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(63%, Table 3). 

We also analyzed the simulated datasets with the autocorrelated-rates model (Figure 2D and 

2D').  In that case, the time estimates showed considerable differences among the partition schemes.  

With a single calibration on the root, increasing the number of partitions produced older and biased 

time estimates for all nodes (Figure 2D).  For example, the relative error for scheme C (concatenation) 

was 0.060 while it was ~7 times higher (0.435) for scheme G (Table 1).  Moreover, the highly 

partitioned schemes (G and GCP) led to misleadingly high precision (Figure 2D, Table 1).  With the 

addition of a correct calibration on node 3, the accuracy of time estimates was improved, particularly 

for schemes G and GCP.  However, the ages of the deep nodes (nodes 1 and 2) were more severely 

underestimated as the number of partitions increased while those of younger nodes were more 

severely overestimated (Figure 2D').  This is probably because the calibration on node 3 was more 

informative (with uncertainty, defined as the 95% prior interval width divided by the mid-value, at 

10%) than the one on the root (uncertainty 40%).  Whatever the calibration strategy, a highly 

partitioned scheme (PF, G, or GCP) led to seriously biased time estimates (Figure 2D & D') with 

small coverage probabilities (Table 3).  The mis-specified rate prior thus caused serious problems in 

divergence time estimation (cf: Figure 2B' vs. Figure 2D').   

Results from simulation when the clock is slightly violated 

The relative error, relative HPD width, and mean square error averaged over the replicates and 

internal nodes for data simulated with slight clock violation (σ2 = 0.01) are shown in Table S1, while 

the results for nodes 1 and 4 are shown in Table S2.  Time estimates showed similar trends to those 

under serious clock violation but were more precise and accurate (Fig. 3), indicating that time 

estimation is easier when the clock roughly holds.  For example, the relative error in case of a single 

calibration on the root with correct rate prior for partition scheme C (concatenation) was 0.019, 

compared with 0.028 with serious clock violation, and the relative HPD width was 0.43, in 

comparison with 0.50 (cf: Tables 5 and 1).  In general, posterior time estimates were more similar 

among partition schemes than in the case of serious clock violation. 

The effect of an incorrect rate prior was also the same as when the clock is seriously violated, 

with the slow-rate prior producing less accurate estimates than the correct rate prior, for all partition 

schemes.  When two correct calibrations were used with the correct rate prior the time estimates were 

more precise than when a single calibration was used (Table S1).  For example, the relative HPD 

width for nodes 1 and 4 with the C scheme was 0.16 and 0.13, respectively, with two correct 

calibrations, while they were 0.40 and 0.43 with a single calibration in the root (Table S2).  When an 

incorrect calibration was used on node 3 all node ages were slightly overestimated for all partition 

schemes, as in the case of serious clock violation. 

With the incorrect autocorrelated-rates model the time estimates showed the same pattern as in 

the case of serious clock violation, although the differences among partition schemes were smaller.  
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With a single calibration on the root time estimates under partition schemes C, CP, PF, G, and CS 

were close to the true values while time estimates under the GCP scheme were older and less 

accurate, especially for the deep nodes (Fig. 3D).  Adding a correct calibration on node 3 improved 

time estimates for all partition schemes (Fig. 3D').  However, all except the C and CS schemes tended 

to give younger and less accurate estimates for the deep nodes. 

Overall, with the slight clock violation the results show similar trends to those with serious clock 

violation, but the effects are much less serious.  Use of the incorrect rate-drift model (autocorrelated 

rates versus independent rates), incorrect rate prior (too high or too low rates), and incorrect fossil 

calibrations all had less damaging effects on posterior divergence time estimates when the clock is 

only slightly violated.   

Divergence times of plants 

We estimated the divergence times of fifteen plant species using the six partition schemes with the 

given tree topology of Fig. 4A.  The number of partitions is 1 for C and CS, 2 for CP, 11 for PF, 78 

for G and 156 for GCP.  Note that ClostaR inferred 1 partition while PartitionFinder suggested 11.  

The posterior means and 95% HPD intervals of divergence times are shown in Table 5.  Time 

estimates were very similar for the three rate priors G(1, 100), G(1, 10) and G(1, 1), possibly because 

several calibrations were applied on a large phylogeny, so that the overall rate was well-constrained.  

Thus only the estimates under the prior   ~ G(1, 10) are reported in Fig. 4. 

Fig. 4B&C shows the posterior means and 95% HPD intervals of divergence times estimated 

under the six partition schemes.  The differences in time estimates among the partition schemes were 

very large, even for some nodes with calibration.  As in the analysis of the simulated data with serious 

clock violation, fine partitioning (schemes G and GCP) led to very narrow posterior intervals and high 

precision.  Under the independent-rates model, the estimated ages of the deep nodes (i.e., nodes 16, 

17, and 29) became older as the number of partitions increased, whereas those of the other nodes 

became younger.  For example, the age of pteridophytes (node 29) varied between 264 Ma (C and CS 

schemes) and 368 Ma (GCP scheme) while the age of angiosperms (node 19) varied between 127 Ma 

(GCP scheme) and 204 Ma (C and CS schemes) (Table 5).  The time estimates for the angiosperms 

were within the calibration bounds with the youngest estimate to be very close to the minimum bound 

(124 Ma).  However, for node 28 the posterior time estimates varied from 13 Ma (GCP scheme) to 70 

Ma (C and CS schemes) with the estimates under the G and GCP schemes to be well below the 

minimum bound (65 Ma).   

The estimates under the autocorrelated-rates model showed similarly large discrepancies among 

partition schemes.  For example, the posterior age estimates of the root varied from 438 Ma (C and 

CS schemes) to 453 Ma (GCP scheme) and the age of node 29 from 303 Ma (schemes C and CS) to 

375 Ma (schemes PF and G).  The age estimates of the deepest nodes became older as the number of 

partitions increased.  The time estimates under the autocorrelated-rates model were in general older 
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than those under the independent-rates model.  For example, the posterior mean of node 29 was 264 

Ma and 296 Ma with the schemes C, CS, and CP, respectively, under the independent rates model, 

compared with 303 Ma and 347 Ma, under the autocorrelated-rates model (Table 5).   

In general the differences among the partition schemes were large, similar to the analysis of 

simulated data with serious clock violation under the incorrect rate-drift model.  The highly 

partitioned schemes G and GCP tended to produce precise estimates, far from those for the other three 

schemes.  In some cases those estimates were outside the calibration bounds (e.g., node 28) 

irrespective of the clock model, raising concerns about their accuracy.  Note that the posterior 

estimate for the rate drift parameter σ2 using the C scheme and the independent rates model was 0.58, 

much larger than the value we used in the simulation (0.25), indicating the plant sequence data show 

much more serious clock violation than in the simulated data. 

Discussion 

When the molecular clock is seriously violated, partition schemes have a major impact on 

divergence time estimation 

Previously Poux et al. (2008) and Voloch and Shrago (2012) examined the impact of partition 

schemes on divergence time estimation and found little difference in time estimates among partition 

schemes.  We suggest that this is because those studies used many calibrations and focused on the 

analyses of closely related species, for which the molecular clock approximately holds.  Indeed the 

infinite-sites theory for divergence time estimation under the molecular clock (Yang and Rannala, 

2006; dos Reis and Yang, 2013) predicts that the choice of partition schemes is unimportant when the 

clock roughly holds.  If the strict clock holds, the branch lengths will be proportional among 

partitions, and either one or many partitions will provide about the same amount of information 

concerning the relative node ages (if each partition has a substantial number of sites), and partition 

schemes should have little effect on posterior time estimation (Yang and Rannala, 2006; dos Reis and 

Yang, 2013).   

However, if the clock is seriously violated and a relaxed-clock model is assumed, partition 

schemes become very important.  According to the infinite-sites theory, with serious clock violation 

the use of many partitions is essential for improving the precision of posterior time estimates (Rannala 

and Yang, 2007; Zhu et al., 2015).  The different partitions act like replications of the rate-drift 

process, providing essential information to tease apart the effects of divergence times and local rate 

variation.  For example a long branch in a particular gene tree is compatible with both a long time 

duration and a high rate, but a high rate and short time duration is more likely if the same branch is 

short in other partitions.  Different partition schemes and the number of partitions are then expected to 

have a major impact on divergence time estimation when the clock is seriously violated.  Results from 

our simulation and real data analyses suggest that coarse partition schemes (e.g., C, CP schemes) 
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produce uncertain time estimates with wide HPD intervals but achieve high coverage probabilities.  In 

contrast, fine partitions (e.g., PF, G, GCP schemes) produced narrow posterior intervals with high 

precision (Table 1).  When the calibrations and rate priors are correct, the finest partition scheme GCP 

gives overall the best performance (Table 1).  Note that our simulation generates substitution rate 

variation among codon positions and among sites of the same codon positions, and independent rate 

drift among partitions.  While a nucleotide-based model may not fit a codon model perfectly, we 

expect the G partition scheme (50 partitions for 50 genes) should be a good approximation, as the 

HKY+ model can deal with the rate variation among sites of the same gene.  We note that this G 

scheme as well as the GCP scheme worked fairly well when the rate-drift model is correct and the 

fossil calibrations are correct.  However, if the calibrations are incorrect or the prior is mis-specified, 

fine partitioning still produce narrow intervals, but the narrow intervals may fail to include the true 

ages as the time estimates may be seriously biased.  Incorrect calibrations, in particular, exert a 

significant impact on time estimates.  If a highly partitioned scheme is used in combination with 

incorrect prior assumptions about the relative rates or incorrect fossil calibrations, posterior time 

estimates may be highly precise and seriously biased, although the direction of the bias depends on 

the locations and precision of fossil calibrations on the tree (Figure 2D & 2D').   

Automated partitioning (PartitionFinder and ClockstaR) did not produce consistently superior 

time estimates 

In our simulation the two automated approaches to selecting the best-fitting partition scheme, 

PartitionFinder and ClockstaR, did not appear to outperform simple schemes of partitioning by gene 

or codon position.  PartitionFinder tests for the goodness of fit of the substitution and partition models 

while in relaxed-clock dating analyses, the most important factors may be those that affect the 

estimation of branch lengths in gene trees for the partitions such as the relative rates for partitions and 

the different patterns of rate drift among partitions.  Note that factors that affect model adequacy or 

the goodness of fit of a model (as judged by the likelihood values or information criteria) may be very 

different from those that affect model robustness or sensitivity of posterior estimates.  For example, 

accommodating the transition/transversion rate ratio or the different frequencies of the four 

nucleotides is known to improve the fit of the model hugely, but they do not impact the estimation of 

branch lengths as much as among-site rate variation (Yang et al., 1994).  In relaxed clock dating, the 

assumptions about how the evolutionary rate drifts over branches in the different partitions should be 

important.  In this regard, the linking option of PartitionFinder that we used (which implies that 

branch lengths are proportional across partitions) may not be very appropriate, and it is unclear 

whether unlinking branch lengths may cause PartitionFinder to infer more partitions or lead to better 

performance.  In our simulation the branch rates were independently generated for the 50 protein-

coding genes, so that the use of 50 partitions may be justifiable.  However, a major consideration of 

our simulation is to allow for mis-specified rate-drift models and incorrect fossil calibrations, as such 
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mis-specifications appear to be commonplace in modern dating analysis.  In this regard, we note that 

none of the biologically motivated partition schemes (CP, G, and GCP) achieved consistently better 

performance than the other schemes, and in particular the G scheme tended to produce posterior 

intervals that are too narrow and fail to include the true ages.   

ClockstaR attempts to determine the right number of ‘molecular clocks’ for the given dataset, by 

grouping data blocks with proportional branch lengths into the same partition (Duchene et al., 2014).  

Duchêne and Ho (2014) simulated sequence data with 1, 2, or 3 true partitions and found that 

ClockstaR was most often able to select the correct number of partitions and to produce much better 

time estimates than random partitioning.  Our simulation in this study is more complex and involves 

far more potential partitions.  Furthermore, partition schemes CP, G, and GCP, which we used for 

comparison, are based on genes and/or codon positions and should be superior to random partitioning.  

We found the inference by ClockstaR of only one partition for the simulated datasets with serious 

clock violation (Fig. S1) and for the empirical plant dataset to be surprising.  As the rates for branches 

were independently generated for the 50 protein-coding genes in the simulated datasets, the use of 50 

partitions may be justifiable, and the use of one partition may lead to under-fitting.  Similarly in the 

analysis of data for 24 pinniped species by Duchêne and Ho (2014), ClockstaR grouped 15 nuclear 

genes into one partition and 13 mitochondrial genes into another.  The precise reasons for this 

behavior of ClockstaR are not well understood, but we note that the distance metric used in the 

method is based on the sum of squared differences between (scaled) branch lengths (Duchene et al., 

2014, eq. 1).  This metric ignores the variances of branch length estimates and is dominated by large 

branch lengths.  In contrast, Bayesian clock dating analysis naturally accommodates such differences 

in variance in calculation of the likelihood function, and extremely short branches may be as 

problematic as extremely long branches in causing serious violations of the clock and in affecting 

posterior time estimation.  It may be interesting to examine whether a weighted distance metric, using 

the reciprocal of the variance of the branch length as the weight, may lead to improved performance.   

Bias, variance, concatenation and partitioning in relaxed clock dating analysis  

We note that the effects of concatenation versus partitioning are opposite in phylogenetic tree 

reconstruction and in divergence time estimation.  In phylogeny estimation, concatenation typically 

leads to high support values (such as high bootstrap proportions or posterior probabilities) for inferred 

clades, even if the clades may be spurious.  This is particularly the case for species tree estimation 

when the different genes undergo incomplete lineage sorting due to ancestral polymorphism (Edwards 

et al., 2016; Xu and Yang, 2016).  The problem with concatenation lies in its use of an under-

specified model that fails to account for the heterogeneity in the substitution process and in the gene 

tree topology and branch lengths among the genes or partitions, leading to biased and over-confident 

species tree estimates.  The pattern is similar to bias-variance trade-off in which use of a simplistic 

under-parametrized model leads to smaller variance and larger bias.  In contrast, in estimation of 
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divergence times under relaxed-clock models, concatenation is seen to produce wider posterior 

intervals, with higher coverage but lower precision, than partition analysis.  This pattern may be 

understood through the infinite-sites theory (Yang and Rannala, 2006; Rannala and Yang, 2007; dos 

Reis and Yang, 2013; Zhu et al., 2015).  Molecular clock dating analysis involves a serious 

confounding effect between times and rates.  When the clock holds, even one gene or partition (with 

many sites) can be very informative about the relative node ages.  Increasing the number of sites in 

one gene will be sufficient for the posterior time estimates to converge to the infinite-data limit (in 

which the posterior becomes one-dimensional), whereas using more genes or partitions adds little 

extra information, since the rates (and thus the branch lengths) are proportional among partitions 

(Yang and Rannala, 2006).  However, when the clock is violated and a relaxed-clock model is 

assumed, the relative node ages are confounded with the local branch rates for each gene or partition.  

Then different partitions act as independent realizations of the rate-drift process, providing the 

information to resolve the confounding effect of the relative node ages and the local branch rates.  

Thus adding loci tends to be much more effective than adding sites for each locus in improving the 

precision of posterior time estimates under relaxed-clock models (Zhu et al., 2015).  The main 

problem of concatenation is then its under-use of the information in the multi-partition data 

concerning the rate-drift process and the divergence times.   

We note that evolutionary rate-drift models implemented in current computer programs all ignore 

lineage effects (species or genome effects) that affects the rates of all genes in the whole genome.  

Such effects may be due to life history characteristics such as generation times, population sizes, etc. 

that may affect the evolutionary rate throughout the genome.  Our simulation similarly ignores such 

lineage effects, as the rate drift process assumed in the simulation is independent among genes or 

partitions.  Lineage effects would create strong correlations in evolutionary rates among genes or 

partitions.  It appears to be straightforward to implement rate-drift models with lineage effects, and 

simulation under such models is simple as well.  Nevertheless genome-wide rate changes will be 

confounded with the prior model on divergence times on the species tree, thus creating a dire situation 

of model un-identifiability, and increasing the number of partitions will then not improve the 

precision of posterior time estimates.  See dos Reis et al. (2016) and Donoghue and Yang (2016) for 

further discussions of the shortcomings of current rate-drift models. 

Limitations of our simulation strategy 

Protein-coding genes are commonly used in molecular clock dating analysis (Meusemann et al., 2010; 

dos Reis et al., 2012; Misof et al., 2014).  We thus simulated gene alignments under a codon model 

that allows for different ω ratios across codons.  Because of selection against nonsynonymous 

changes, the model is expected to introduce rate variation among codon positions and among sites of 

the same gene.  We did not simulate changes to selective pressure or to the efficacy of selection on 

particular lineages, as accounted for by the branch-site model (Yang and Nielsen, 2002).  We also 
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assumed equal codon frequencies for all genes in our simulation.  This is unrealistic but may not have 

a major effect on the estimation of the branch lengths and of divergence times.  We assumed the same 

gene tree topology for all genes and ignored factors that may cause the gene trees to differ from the 

species tree, such as ancestral coalescent process that cause gene tree-species tree conflicts (Nichols, 

2001).  Designing partition strategies to deal with both gene tree-species tree conflicts and the 

heterogeneity in the substitution process will be challenging.  Finally, as mentioned earlier, our 

simulation assumed independent rate drift among partitions and ignored lineage effects, which are 

expected to have large impact on divergence time estimation. 
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Figure Legends 

Figure 1.  Species tree with node ages used to simulate gene alignments.  Internal nodes are numbered 

1 to 8, and their ages are indicated by the time axis.  Branch lengths are shown in blue, calculated 

assuming a substitution rate of 5 × 10–9 substitutions per site per year throughout the tree. 

 

Figure 2.  Posterior divergence time estimates from simulated data for different combinations of rate 

prior, calibration strategy and rate-drift model, when the clock is seriously violated.  The true timetree 

is shown in black.  Horizontal bars represent the 95% highest posterior density (HPD) intervals for the 

six partition schemes.  These are (from top to bottom): (i) concatenation (C), 1 single partition; (ii) 

codon positions (CP, 2 partitions); (iii) PartitionFinder (PF, variable partitions); (iv) gene (G, 50 

partitions); (v) both gene and codon positions (GCP, 100 partitions); and (vi) ClockstaR (CS, variable 

partitions).  The gap within the bar represents the posterior mean.  The time estimates and their 

intervals are averages over the 100 replicates.  IR: independent-rates model, AR: autocorrelated-rates 

model.   

 

Figure 3.  Posterior divergence time estimates from simulated data when the clock is slightly violated.  

See legend to Figure 2. 

 

Figure 4.  A) Phylogeny of 15 plant species, based on Magallon et al. (2013) and Ruhfel et al. (2014) 

with fossil calibrations.  Nodes are numbered from 16 to 29.  Fossil calibrations for five nodes are 

shown in blue next to the nodes.  The fossil bounds are soft, with 5% probability for the true age to be 

outside the bounds (2.5% probability on each side).  The calibrations are from Clarke et al. (2011) and 

Zanne et al. (2014).  B) Posterior divergence times for the plant phylogeny using six partition 

schemes.  The independent-rates model (IR) was used.  Horizontal bars represent the 95% HPD 

intervals with gaps denoting the posterior mean.  The partition schemes are (from top to bottom): (i) 

concatenation and ClockstaR (C and CS, 1 partition); (ii) codon positions (CP, 2 partitions); (iii) 

PartitionFinder (PF, 11 partitions); (iv) gene (G, 78 partitions); and (v) both gene and codon positions 

(GCP, 156 partitions).  The timetree shown in black was estimated using scheme C (1 partition).  

Calibrated nodes are indicated by red circles.  C) Same as B using the autocorrelated-rates model 

(AR). 
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Table 1.  Performance measures for different partitioning strategies when the clock is seriously violated 

   rel.  error HPD width/age MSE  

 
Model   Calibration 

C 
(1P) 

CP 
(2P) 

G 
(50P)

GCP 
(100P)

PF 
(V) 

CS 
(V) 

C 
(1P) 

CP 
(2P) 

G 
(50P) 

GCP 
(100P)

PF 
(V) 

CS 
(V) 

C 
(1P) 

CP 
(2P) 

G 
(50P)

GCP 
(100P)

PF 
(V) 

 CS 
(V) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.177 0.204 0.138 0.177 0.204 0.186 0.40 0.27 0.27 0.22 0.25 0.35 0.092 0.097 0.082 0.094 0.098  0.094 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.028 0.046 0.039 0.039 0.048 0.036 0.50 0.45 0.43 0.43 0.44 0.48 0.060 0.058 0.056 0.056 0.058  0.060 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.032 0.036 0.052 0.037 0.032 0.032 0.50 0.45 0.43 0.42 0.44 0.48 0.060 0.057 0.057 0.055 0.055  0.059 

 G(2, 40) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.030 0.032 0.040 0.032 0.030 0.029 0.27 0.16 0.16 0.14 0.14 0.23 0.034 0.024 0.026 0.022 0.023  0.030 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.028 0.030 0.046 0.040 0.032 0.029 0.26 0.16 0.17 0.14 0.15 0.22 0.033 0.026 0.027 0.025 0.026  0.030 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.029 0.040 0.048 0.041 0.033 0.031 0.26 0.18 0.17 0.14 0.15 0.22 0.033 0.029 0.027 0.026 0.026  0.031 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.575, 0.625) 

0.072 0.080 0.063 0.062 0.072 0.071 0.26 0.17 0.17 0.15 0.15 0.23 0.047 0.040 0.043 0.038 0.038  0.044 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.060 0.040 0.435 0.388 0.091 0.036 0.53 0.47 0.31 0.26 0.45 0.48 0.067 0.059 0.161 0.150 0.069  0.059 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.044 0.036 0.101 0.084 0.034 0.029 0.25 0.19 0.15 0.13 0.17 0.22 0.037 0.030 0.051 0.045 0.027  0.030 

Note.−The performance measures are averages over the 100 replicates and over the 8 internal nodes on the tree.  The partitioning strategies are C: concatenation (1 partition); 
CP: codon position (2P); PF: PartitionFinder (Variable); G: gene (50P); GCP: gene and codon position (100P); CS: ClockstaR (Variable).  IR: independent-rates model, AR: 
autocorrelated-rates model.  Incorrect rate prior and calibrations are highlighted in bold.  Cells in bold indicate the preferred partitioning strategy according to the respective 
measure.   
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Table 2.  Performance measures for nodes 1 (root) and 4 for different partitioning strategies when the clock is seriously violated 

   rel.  error  HPD width/age MSE   

 
Model   Calibration 

C 
(1P) 

CP 
(2P) 

G 
(50P) 

GCP 
(100P) 

PF 
(V) 

CS 
(V) 

 C 
(1P) 

CP 
(2P) 

G 
(50P) 

GCP
(100P)

PF 
(V) 

CS 
(V) 

C 
(1P) 

CP 
(2P)

G 
(50P) 

GCP 
(100P)

PF 
(V) 

CS 
(V) 

 

IR G(2, 40) t1 ~ B(0.8, 1.2) 0.141
0.183

0.154 
0.216 

0.151 
0.136 

0.166 
0.188 

0.159 
0.218 

0.148 
0.195 

 0.23 
0.40 

0.20 
0.27 

0.21 
0.27 

0.17 
0.22 

0.19 
0.25 

0.23 
0.35 

0.153
0.084

0.162
0.091

0.160 
0.061 

0.172 
0.078 

0.166 
0.091 

0.159 
0.086 

 

 G(2, 4) t1 ~ B(0.8, 1.2) 0.002
0.030

0.005 
0.054 

0.003 
0.033 

0.015 
0.038 

0.010 
0.056 

0.008 
0.040 

 0.40 
0.50 

0.40 
0.45 

0.40 
0.43 

0.40 
0.43 

0.40 
0.44 

0.40 
0.48 

0.102
0.053

0.102
0.052

0.102 
0.046 

0.102 
0.047 

0.102 
0.052 

0.102 
0.053 

 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 0.027
0.032

0.026 
0.034 

0.027 
0.051 

0.025 
0.033 

0.026 
0.032 

0.026 
0.031 

 0.40 
0.49 

0.40 
0.45 

0.40 
0.42 

0.40 
0.42 

0.40 
0.44 

0.40 
0.48 

0.105
0.053

0.105
0.049

0.105 
0.049 

0.105 
0.046 

0.105 
0.047 

0.105 
0.051 

 

 G(2, 40) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.027
0.016

0.031 
0.020 

0.028 
0.026 

0.028 
0.019 

0.033 
0.018 

0.028 
0.017 

 0.24 
0.18 

0.15 
0.12 

0.15 
0.13 

0.13 
0.11 

0.13 
0.12 

0.21 
0.16 

0.070
0.020

0.051
0.016

0.050 
0.018 

0.045 
0.014 

0.049 
0.015 

0.062 
0.018 

 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.029
0.026

0.046 
0.017 

0.030 
0.040 

0.039 
0.029 

0.049 
0.019 

0.036 
0.024 

 0.23 
0.19 

0.15 
0.13 

0.16 
0.14 

0.13 
0.12 

0.14 
0.12 

0.20 
0.17 

0.068
0.022

0.063
0.016

0.053 
0.022 

0.055 
0.018 

0.063 
0.015 

0.066 
0.020 

 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.031
0.027

0.048 
0.020 

0.031 
0.042 

0.041 
0.031 

0.051 
0.020 

0.038 
0.026 

 0.23 
0.19 

0.15 
0.14 

0.16 
0.14 

0.13 
0.12 

0.14 
0.12 

0.20 
0.17 

0.069
0.023

0.065
0.017

0.053 
0.023 

0.057 
0.018 

0.065 
0.016 

0.067 
0.020 

 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.575, 0.625) 

0.063
0.067

0.045 
0.086 

0.073 
0.047 

0.054 
0.062 

0.041 
0.079 

0.055 
0.070 

 0.22 
0.20 

0.15 
0.14 

0.16 
0.14 

0.14 
0.13 

0.14 
0.13 

0.20 
0.17 

0.087
0.034

0.063
0.037

0.085 
0.024 

0.068 
0.028 

0.057 
0.035 

0.077 
0.034 

 

AR G(2, 4) t1 ~ B(0.8, 1.2) 0.013
0.071

0.012 
0.041 

0.166 
0.478 

0.168 
0.433 

0.055 
0.096 

0.007 
0.040 

 0.40 
0.53 

0.40 
0.47 

0.17 
0.30 

0.17 
0.26 

0.37 
0.45 

0.40 
0.48 

0.103
0.063

0.102
0.052

0.171 
0.194 

0.173 
0.175 

0.112 
0.062 

0.102 
0.052 

 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

0.030
0.039

0.029 
0.027 

0.141 
0.054 

0.129 
0.046 

0.042 
0.020 

0.036 
0.024 

 0.28 
0.15 

0.22 
0.12 

0.11 
0.11 

0.10 
0.10 

0.17 
0.12 

0.20 
0.17 

0.079
0.022

0.065
0.017

0.144 
0.025 

0.132 
0.022 

0.065 
0.015 

0.066 
0.020 

 

Note.−The performance measures for each node are averages over the 100 replicates.  The first row in each cell refers to node 1 (the root) and the second to node 4.  See 
caption of Table 1 for more details. 
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Table 3.  Average coverage for different partitioning strategies when the clock is seriously violated 
 
Model   Calibration 

C
(1P)

CP
(2P)

G 
(50P)

GCP 
(100P) 

PF 
(V) 

CS 
(V)

IR G(2, 40) t1 ~ B(0.8, 1.2) 72 7 46 11 5 56
 G(2, 4) t1 ~ B(0.8, 1.2) 100 100 100 100 100 100
 G(2, 0.4) t1 ~ B(0.8, 1.2) 100 100 100 100 100 100

 G(2, 40) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

100 96 92 93 95 99

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

100 94 85 86 91 98

 G(2, 0.4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

99 93 83 84 90 97

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.575, 0.625) 

82 52 68 63 53 73

AR G(2, 4) t1 ~ B(0.8, 1.2) 100 100 0 0 100 100
 G(2, 4) t1 ~ B(0.8, 1.2) 

t3 ~ B(0.525, 0.575) 
95 92 38 43 92 98

Note.− Coverage is averaged over the 100 replicates and over the 8 internal nodes on the tree.  See caption of 
Table 1 for more details. 

 
 
 
Table 4.  Average coverage for nodes 1 (root) and 4 for different partitioning strategies when the 
clock is seriously violated 
 
Model  ~ Calibration 

C 
(1P) 

CP 
(2P) 

G  
(50P) 

GCP 
(100P) 

PF 
(V) 

CS  
(V) 

IR G(2, 40) t1 ~ B(0.8, 1.2) 48 
73 

0 
4 

0 
56 

0 
2 

0 
1 

66 
53 

 G(2, 4) t1 ~ B(0.8, 1.2) 100 
100 

100 
100 

100 
100 

100 
100 

100 
100 

100 
100 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 100 
100 

100 
100 

100 
100 

100 
100 

100 
100 

100 
100 

 G(2, 40) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

100 
100 

93 
99 

99 
99 

96 
100 

89 
100 

100 
99 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

99 
99 

82 
99 

99 
90 

80 
96 

68 
99 

92 
99 

 G(2, 0.4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

99 
99 

78 
99 

98 
84 

79 
94 

61 
99 

90 
99 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.575, 0.625)

92 
86 

85 
22 

57 
78 

65 
58 

85 
30 

92 
65 

AR G(2, 4) t1 ~ B(0.8, 1.2) 100 
100 

100 
100 

0 
0 

0 
0 

100 
99 

100 
100 

 G(2, 4) t1 ~ B(0.8, 1.2) 
t3 ~ B(0.525, 0.575) 

100 
96 

98 
97 

0 
64 

0 
74 

91 
99 

92 
99 

Note.− Coverage for each node is averaged over the 100 replicates.  The first row in each cell refers to node 1 
and the second to node 4.  See caption of Table 1 for more details. 
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Table 5.  Posterior means and 95 CIs (in parentheses) of divergences times (Myrs) using different partition schemes for the plant dataset  

Node Clade Prior  CP (2P)  C and CS (1P) PF (11P)  G (78P) GCP (156P) 
Independent-rates model        
16 Root 437 (417, 455)  442 (421, 456)  440 (419, 456) 451 (440, 457) 453 (448, 457) 454 (450, 458) 
17 Helianthus / Psilotum 412 (386, 443)  427 (397, 452)  420 (389, 448) 445 (431, 455) 452 (446, 456) 453 (449, 457) 
18 Angiosperms / Ginkgo 337 (306, 367)  329 (304, 361)  332 (305, 363) 326 (305, 349) 310 (302, 319) 305 (297, 311) 
19 Angiosperms 186 (124, 249)  197 (155, 245)  204 (155, 251) 184 (164, 206) 144 (136, 152) 127 (122, 133) 
20 Helianthus / Nymphaea 172 (111, 237)  183 (40, 223)  189 (142, 237) 172 (152, 191) 135 (128, 143) 120 (114, 125) 
21 Helianthus / Acorus 158 (102, 223)  159 (122, 197)  166 (123, 211) 147 (131, 164) 115 (109, 121) 101 (97, 106) 
22 Eudicots 134 (76, 211)  131 (99, 167)  138 (97, 180) 121 (106, 137) 95 (89, 101) 84 (80, 88) 
23 Helianthus / Eucalyptus 111 (38, 180)  103 (74, 134)  109 (70, 148) 93.1 (81, 107) 75 (70, 80) 67 (63, 70) 
24 Helianthus / Cornus 71 (0, 132)  79 (47, 108)  82 (39, 120) 74 (63, 87) 59 (54, 63) 53 (50, 57) 
25 Oxalis / Eucalyptus 71 (0, 131)  81 (52, 113)  85 (44, 123) 76 (64, 88) 63 (58, 67) 57 (53, 60) 
26 Monocots 130 (78, 192)  137 (103, 171)  141 (102, 184) 129 (114, 144) 96 (90, 103) 84 (80, 89) 
27 Yucca / Chamaedorea 101 (66, 152)  103 (80, 130)  106 (77, 141) 98 (88, 110) 59 (53, 64) 51 (48, 56) 
28 Elaeis / Chamaedorea 74 (65, 81)  68 (64, 76)  70 (64, 80) 65 (62, 67) 17 (15, 20) 13 (12, 15) 
29 Ferns 146 (0, 369)  296 (185, 385)  264 (138, 386) 339 (303, 374) 362 (349, 376) 368 (356, 378) 
          
Autocorrelated-rates model        
16 Root 437 (417, 455)  439 (418, 455)  438 (418, 455) 443 (426, 456) 452 (446, 457) 453 (446, 458) 
17 Helianthus / Psilotum 412 (386, 443)  419 (390, 446)  416 (387, 443) 433 (414, 452) 450 (443, 455) 450 (443, 455) 
18 Angiosperms / Ginkgo 337 (306, 367)  347 (320, 368)  342 (313, 368) 361 (348, 371) 358 (347, 367) 344 (332, 355) 
19 Angiosperms 186 (124, 249)  232 (204, 253)  229 (197, 254) 237 (222, 251) 191 (178, 203) 166 (155, 176) 
20 Helianthus / Nymphaea 172 (111, 237)  221 (195, 243)  219 (187, 245) 226 (210, 240) 179 (167, 192) 156 (146, 166) 
21 Helianthus / Acorus 158 (102, 223)  196 (170, 219)  162 (129, 192) 199 (184, 213) 152 (141, 164) 131 (122, 140) 
22 Eudicots 134 (76, 211)  165 (139, 191)  119 (87, 154) 168 (153, 183) 122 (113, 132) 106 (99, 114) 
23 Helianthus / Eucalyptus 111 (38, 180)  122 (94, 152)  95 (68, 130) 127 (112, 143) 90 (82, 98) 80 (74, 87) 
24 Helianthus / Cornus 71 (0, 132)  100 (73, 127)  99 (69, 131) 106 (91, 121) 73 (66, 80) 66 (60, 71) 
25 Oxalis / Eucalyptus 71 (0, 131)  102 (74, 129)  177 (149, 205) 108 (93, 124) 76 (69, 823) 68 (63, 74) 
26 Monocots 130 (78, 192)  179 (155, 202)  141 (116, 167) 181 (167, 194) 133 (122, 143) 114 (105, 122) 
27 Yucca / Chamaedorea 101 (66, 152)  142 (122, 165)  71 (64, 80) 143 (131, 155) 92 (83, 100) 77 (70, 84) 
28 Elaeis / Chamaedorea 74 (65, 81)  69 (64, 77)  303 (153, 396) 65 (63, 68) 29 (24, 33) 21 (18, 24) 
29 Ferns 146 (0, 369)  347 (288, 397)  162 (129, 192) 375 (353, 396) 375 (362, 387) 369 (357, 380) 
Note.−Node numbers are according to Figure 4.  The rate prior was  ~ G(1, 10).  See caption of Table 1 for more details. 
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Slight clock violation
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