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ABSTRACT
Many success stories involving deep neural networks are instances
of supervised learning, where available labels power gradient-based
learning methods. Creating such labels, however, can be expensive
and thus there is increasing interest in weak labels which only provide
coarse information, with uncertainty regarding time, location or value.
Using such labels often leads to considerable challenges for the learn-
ing process. Current methods for weak-label training often employ
standard supervised approaches that additionally reassign or prune
labels during the learning process. The information gain, however,
is often limited as only the importance of labels where the network
already yields reasonable results is boosted. We propose treating
weak-label training as an unsupervised problem and use the labels
to guide the representation learning to induce structure. To this end,
we propose two autoencoder extensions: class activity penalties and
structured dropout. We demonstrate the capabilities of our approach
in the context of score-informed source separation of music.

Index Terms— Autoencoder, unsupervised learning, class-
activity penalties, deep learning.

1. INTRODUCTION

Training neural networks is often a complex endeavor, which is some-
what simplified if clear labels are available in a supervised learning
scenario [1]. Annotating data, however, is typically an expensive
process and hence there is increasing interest in using unlabeled data
to support learning using smaller labeled dataset (semi-supervised
learning) [2]. Another approach to address the cost issue are weak la-
bels, where the annotator provides only relatively coarse information.
For example, an annotator might indicate whether a car is shown in
a 5-minute video, without specifying when, where or how long it is
visible. Settings based on this type of weak labels are often referred
to as multiple-instance learning, as one label provides spatially or
temporally coarse information for a bag of instances [3]. Another type
of weak label specifies several possible outcomes: A picture shows
either a bird, a plane or a dark cloud, or in regression a value might be
somewhere in an interval. For these two types, a weak label provides
rough information about the existence of a concept, while the lack of
a weak label gives clear information about its non-existence.

The effort to create weak labels is often only a fraction of highly
detailed annotation. For learning, however, weak labels present
considerable challenges [4]. For example, training a frame-wise
car-detector can be difficult using weak labels if in a 5-minute clip
labelled with ‘car’ the car is actually only shown for 3 seconds. A
first naive way is to use supervised learning methods using the la-
bel ‘car’ for each frame in the 5-minutes block. Multiple-instance
learning methods try to improve on this concept by iteratively re-
labeling instances as negative examples in a block [5] or pruning
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them [6, 7] if they are not clearly detected as positive after an initial
naive training step, see also [8] for a comparison. Alternatively, one
can learn using only the frame which yielded the clearest positive
response in a block [9]. As a special case, one can use so called
saliency maps to improve the temporal accuracy for networks with
multi-frame inputs [10]. However, often such approaches are not
effective [10], as re-labeling/pruning methods only re-interpret exam-
ples that are already correctly classified by the network (limiting the
gain in information for the learning process), while highest-saliency
learning ignores a considerable amount of annotated data that could
be potentially useful for training.

All of these measures remain supervised learning methods, which
requiring clear output labels cannot directly account for the fact that
weak labels have an inherent uncertainty. In this paper, we propose to
treat learning based on weak labels fundamentally as an unsupervised
learning problem and use the labels only as a guidance to encourage
structure in the learned representations. More precisely, we start from
the standard autoencoder architecture [11], where one network trans-
forms the input to a low-dimensional representation, which is then
used to re-synthesize the input – differences between the input and
output are measured using a reconstruction error term. Usually, this
learned representation is not readily interpretable, which we change
using the weak labels. To this end, before training, we associate
each class to be detected with a number of units in the representation
layer. Then, using the class activity information provided by weak
labels, we encourage using an activity cost term on the representation
that the units corresponding to the inactive classes are zero. This
way, the encoder must model the input using only the units for the
active classes in each frame. After training, activity in the output
of this structured representation layer is already a surprisingly good
indicator for class activity which only needs to be refined further in
standard end-to-end learning (either as improved input or as a new,
more accurate output target).

To enforce these activity constraints, one typically needs to dras-
tically favor the activity cost over the reconstruction error. However,
this sometimes had detrimental effects on the training efficiency:
the gradient is dominated by the activity cost in this case and thus
gradient-based learning methods often set all network weights to zero,
thus deactivating all activity (i.e. ignoring the reconstruction error).
This often slowed down training considerably. Therefore, we propose
a second extension to accelerate training. More precisely, during a
first training stage we propagate the input through the network and
force-set the units associated with inactive classes to zero. This sim-
ple idea can be interpreted in several ways. First, it is a variant of
the well-known stochastic dropout technique for regularization [12],
just that our dropout is deterministic and induces structure instead
of noise. Second, the decoder part of the network can operate early
during training under conditions it will find once the network is fully
trained, resembling properties of batch-normalization [13]. Third, the
gradient is ‘sharpened’ crossing the representation layer and affects
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in each input frame particularly those parts of the encoder network
that are responsible for creating the active class representations.

As a further interpretation, this procedure can be seen as a non-
linear extension of non-negative matrix factorization (NMF) in combi-
nation with certain activity constraints [14]. This leads to an intuitive
interpretation of our approach as a part-based representation of the
input, similar to NMF. Therefore, we motivate our procedure starting
from the well-known NMF and demonstrate the capabilities of our
method using a task previously addressed with NMF: Score-informed
source separation of music signals [14]. In this case, we have weak
labels providing coarse information about the activity of notes, with-
out specifying intensity or progression parameters. As shown by our
experiments, our proposed system surpasses the NMF results by more
than 0.5dB SDR without any specific hyperparameter tuning.

The remainder is organized as follows. In Section 2 we describe
our proposed method in more detail. In Section 3, we show how
our method can be employed for score-informed source separation
and discuss in Section 4 our experimental results. We conclude in
Section 5 with a prospect on future work.

2. FROM NMF TO AN AUTOENCODER WITH
STRUCTURED DROPOUT

The basic idea behind non-negative matrix factorization is to represent
a series of N input vectors in the matrix V ∈ RM×N

≥0 as a product
of two matrices W ∈ RM×K

≥0 and H ∈ RK×N
≥0 with K < M . If

we associate a specific class to be detected with one of the K NMF
components (or a group thereof), we can incorporate information
from weak labels into the NMF learning process by setting entries
in H to zero: e.g. to express that class k will be inactive in input
n, we can set Hk,n to zero – using multiplicative rules to iteratively
updateW andH as usually done, these constraints will remain active
throughout the learning process [15]. This way, we only specify
which classes are not active but do not specify the exact intensity a
class should have or whether it should be active at all.

To translate this NMF-based approach to incorporating weak
labels to the world of neural networks, we first see that NMF and its
learning process resemble the one of an autoencoder quite closely.
Assuming we obtained a W and H with V ≈ WH using NMF, it
follows that H ≈W+V , where W+ ∈ RK×M is an approximation
to a left-inverse of W , for example the Moore-Penrose pseudoinverse
of W or simply the transpose of W if its columns are approximately
orthogonal. We obtain V ≈WW+V , which is an autoencoder with
linear activation functions and some non-negativity constraints on its
weight matrices [11].

Let us generalize this a bit further. In particular, let hΦ : RM →
RK and fΥ : RK → RM be multi-layer (feed-forward) networks
with corresponding weight parameters in Φ and Υ, respectively.
From an autoencoder point of view, h is the encoder or analysis
part transforming the input Vn to a K dimensional representation
Rn := hΦ(Vn), that is then used by the decoder or synthesis part f to
reconstruct the input from the low-dimensional information, compare
Fig. 1a. Here, Vn denotes the n-th column of V . From an NMF point
of view, h and f generalize the matrix productsW+V (as above) and
WH to more general non-linear functions. The autoencoder fΥ ◦ hΦ

is usually trained minimizing a distance function comparing the input
with the reconstruction:

argmin
Υ,Φ

c(Φ,Υ, V ) =
1

N

N∑
n=1

d(fΥ(hΦ(Vn)), Vn), (1)

where d is a distance or divergence. This type of unsupervised feature-

Fig. 1. Incorporating weak labels into an autoencoder (red connec-
tions indicate distance measures): (a) activity cost approach, (b)
structured dropout approach.

learning has been found useful in a variety of tasks – however, the
resulting low dimensional representation usually cannot easily be
interpreted, in particular if f and h represent deep networks [11].

Next, we extend this standard autoencoder to impose structure on
the output of h. However, we cannot directly use the same approach
as in NMF as we do not employ optimization rules based on multi-
plicative updates. Therefore, we propose a different approach and
train the autoencoder to yield a network that behaves similarly. To
this end, we first associate each unit (or dimension) in the output of
hΦ with a specific class used in our weak labels. Note that each class
can (and often will) be associated with several units – in general, this
is part of the application specific design process. Optionally, we can
add some free units useful for noise or general background modelling.
Next, we exploit the availability of weak labels to create a matrix
L ∈ {0, 1}K×N , which encodes the potential class activity in each
input frame. More precisely, we set Lk,n = 1 if there is a weak label
specifying that the class associated with unit k is potentially active in
input frame n, while free units are always set to one. This approach
generalizes ideas used in [16], which used a single class: noise or
no-noise. We can now incorporate L into our objective function to
discourage activity in units that should not be active in a frame:

argmin
Υ,Φ

c(Φ,Υ, V, L) =
1

N

N∑
n=1

d(fΥ(hΦ(Vn)), Vn)

+ λ
∥∥(1− Ln)� hΦ(Vn)

∥∥2

2
, (2)

where λ is a term balancing the reconstruction error and our activity
cost and � is the Hadamard product (point-wise multiplication),
see also Fig. 1a. Using this modified `2 penalty on the output of
hΦ, we penalize activity in units associated with classes known to be
inactive and exclude the potentially active ones. Further, in contrast to
classical supervised methods, we do not specify what should happen
if a class is active, i.e. what value a unit should have. However,
if a unit becomes active it is often a spatially/temporally accurate
indicator that a certain class is present.

In practice, however, our new objective function led to some
numerical problems, especially with deeper networks. In particular,
to enforce the activity constraints, the parameter λ needs to be set
to a relatively high value. As a consequence, the gradient will be
dominated by our new term, which in many cases steered the learn-
ing process towards a local minimum with all weights in Φ set to
zero, rather accepting the reconstruction error than making a mistake
w.r.t. activity costs. A possible workaround was to employ a schedule
for λ that would slowly increase its value with the number of training
iterations – setting such a schedule, however, can be difficult, as it



depends on properties of the error surface described by the objective
function c. If the schedule is too slow, the convergence rate can be
very slow, and if it is too fast, the training might not converge.

We therefore propose a different learning scheme, which is in-
spired by the idea of dropout [12]. Using the regular dropout, one
multiplies the output of a network layer element-wise with a randomly
generated binary dropout vector. The idea is to disable certain units
in the network, which is thus encouraged to make the most important
information redundantly available in the network [12, 17], a form of
regularization. For our method, we will follow the same principle but
use a deterministic and structured dropout vector. More precisely, we
employ our binary label matrix L as follows (see also Fig. 1b):

argmin
Υ,Φ

c(Φ,Υ, V, L) =
1

N

N∑
n=1

d(fΥ(Ln � hΦ(Vn)), Vn). (3)

This simple modification has several advantages. First, similar to
batch normalization [13], we can accelerate the training process by
supplying the synthesis layers with the conditions we expect the
analysis part to deliver once it is fully trained (i.e. the inactive classes
are indeed inactive). Further, similar to regular dropout [12], setting
some units to zero naturally cuts the error back propagation and
channels the entire error information to those network weights in the
analysis part that are actually responsible for the active classes in a
frame. Overall, training the network using objective (3) in a first step
followed by a refinement using objective (2) typically led to a drastic
acceleration, in our specific application scenario often reducing the
number of iterations by a factor of 1000 (however, we do not claim
that this is generally the case). Further, with this two step procedure,
we did not require a complicated schedule for λ anymore.

3. APPLICATION: SCORE-INFORMED SOURCE
SEPARATION OF MUSIC SIGNALS

To demonstrate the capabilities of our proposed approach, we employ
it in a specific application scenario. To this end, we assume we are
given an audio recording and a MIDI file encoding the uninterpreted
score for a piece of music. The note information given by the score
provides coarse information when certain instruments and pitches
are active. However, the score does not specify exactly when and
how notes are played, how they spectrally manifest or what their
temporal progression is. The MIDI events can thus be regarded
as weak labels in both ways discussed in the introduction, i.e. the
temporal information is coarse and target values are uncertain.

Based on these labels, we could use our proposed method as a
basis for a (frame-wise) instrument or pitch detection method. In
this case, we would need to train an actual classifier based on our
learned representation – using it either as an improved input or as
a temporally more accurate target. However, instead of introducing
this added complexity, we chose a task where we can use our au-
toencoder directly and still demonstrate the induced structure in the
representation layer: score-informed source separation [18]. Here,
the task is to extract those parts of the recording that correspond to
a specified group of notes, for example, all notes associated with a
specific instrument or a specific MIDI pitch. Next, we describe how
a specific instance of our autoencoder can be used in this context.

As a start, we use the recording and compute a short-time Fourier
transform (STFT) X ∈ CM×N (Hann window of 93ms, stepsize
23ms) and use the frames of its magnitude V ∈ RM×N

≥0 as input to
our encoder. To keep it simple, we use for both fΥ and hΦ standard
multi-layer feed-forward networks with sigmoid activation functions

Fig. 2. Example Label Matrix.

(to obtain a reasonable amount of non-linearity), except for the repre-
sentation and output layer where we use rectified linear activations
to enforce non-negativity. For the reconstruction error, we use the
generalized Kullback-Leiber divergence, which was found useful in a
variety of source separation applications [18]:

d(a, b) :=

M∑
m=1

am log
am + ε

bm + ε
− am + bm,

with some a, b ∈ RM
≥0 and 0 < ε� 1.

As in [14], we improve the temporal accuracy of the score in-
formation by employing the method described in [19] to temporally
align the MIDI file to the given audio recording. This way, we at least
roughly know where notes are being played by which instrument and
which pitch they roughly have – all further details, however, are un-
known. Next, we associate each combination of instrument and MIDI
pitch (corresponding to a class) used in the piece with P ≥ 2 units in
our representation layer. Each instrument-pitch class is further sub-
divided following ideas presented in [14]: In each block of P units,
we associate the first unit with the onset of a note being ‘active’ and
the remaining units with the sustain phase being ‘active’. Using these
associations, we can create the label indicator matrix L, see Fig. 2 for
an example. More precisely, for each MIDI note we read the start and
end time, the instrument-ID and MIDI pitch. Using the instrument
and pitch information, we identify the block of P associated units.
If unit p in this block is the unit associated with the onset, we set an
entry Lp,n = 1 if frame n is in a close vicinity of the start time of
the note (for example ±0.5sec to account for possible inaccuracies
in the MIDI-audio alignment). Similarly, if unit p in this block is
associated with the sustain phase, we set an entryLp,n = 1 if frame n
corresponds to a time point between the start and end time of the
note, subject to a similar temporal tolerance. A simplified example is
shown in Fig. 2: three different combinations of instrument and pitch,
and with P = 3, we thus have 9 units overall. Using a total of four
notes, we can see that the onset units are indicated by a short block
of ones around the expected onset, and the remaining units encode
the expected note length.

Using this L, we train our autoencoder using our proposed ob-
jectives (3) and (2), using the audio recording corresponding to the
score as input. The actual separation is performed after convergence,
where we can exploit the parts-based interpretation for our learned
representation. To this end, we choose a group of notes N we aim
to keep. Then, we set all entries in L that do not correspond to these
notes to zero. Using this LN , the structured dropout will cancel all
activity information related to unwanted notes when sending the input
through the network. As a consequence we now expect at the output
only the part of the magnitude spectrum that corresponds to the notes
to be kept. We refer to this modified output as ṼN . Finally, we obtain
our separation result via soft-masking (or Wiener filtering) ṼN

Ṽ
�X ,

where the division is element-wise, and use an inverse STFT to obtain
a time-domain signal.



As we will see in the next section this basic configuration already
yields good separation results. However, we found a few simple
tricks to improve the separation quality even further, which might be
useful in other contexts as well. First, we observed that while our
learned representation typically yields a parts-based representation,
the subsequent synthesis function learned without any constraints can
weaken this interpretation which then lowers the separation quality.
In particular, if entries in the weight matrices used in the feed-forward
network fΥ can contain negative entries, the network can eliminate
some energy associated with a specific note based on the energy
associated with another note. The argument is the same used to
compare Independent Component Analysis (ICA) and NMF [20]: the
autoencoder is building the output not in a purely constructive way
starting from the learned representation. Therefore, analogously to
moving from ICA to NMF, we constrain in a variant of our method
all weight matrices in Υ to be non-negative. Note, as shown in [21],
that this constraint does not lower the network’s theoretical capability
to approximate arbitrary functions. As a second extension, we used
as input to our analysis network hΦ not only a single frame of V but
provided the surrounding frames as well. In this case, we select the
center frame of the input as the target for our autoencoder, i.e. the
output remains a single frame

4. EXPERIMENTS

To evaluate our method, we conducted a series of experiments fol-
lowing the experimental setup used in [14]. In particular, our task
is to separate in piano recordings the notes played by the left hand
from those played by the right hand. This task highlights, in con-
trast to general music source separation, our capability to separate
arbitrary groups of notes, even originating from the same instrument.
The dataset consists of four Bach pieces (mainly inventions) and six
Chopin pieces (mainly preludes and mazurkas) and contains MIDI
files from the Mutopia Project1 for each piece. As in [14], we con-
duct our quantitative experiments using synthetic data. To this end,
we first synthesized the downloaded MIDI files using a high-quality,
multi-sample wave table synthesizer (Native Instruments) to obtain
corresponding audio recordings. Further, we synthesized the notes
for the left and right hand separately for each piece, to obtain ground
truth separation results. Each recording is 30 to 300 seconds long.

We implemented our proposed method in TensorFlow, with three
layers for the analysis network h and two layers for the synthesis
network f – more layers lowered the separation quality for variants
of our method without non-negativity constrains on the synthesis
network weights and did not improve the quality otherwise. Each
intermediate layer used 1500 units – the size of the input, output and
representation layers were defined by the input data. As optimizer, we
used ADAM, a first-order method offering many features of second-
order approaches, a property often useful in cases where the objective
function needs to be minimized with a relatively high accuracy [22].
All parameters were left at their recommended values [22], except for
the step size which was decreased to 1/10th of its default. Further,
since we trained a new network for each piece, we used full-batch
training. The optional non-negativity constraints for the synthesis
network were implemented using intermediate projection onto the
non-negative orthant. As a proof of concept, we did not use any
specific hyperparameter optimization nor regular dropout or batch
normalization.

Separation quality is assessed using the BSSEVAL toolkit [23].
Note that, in contrast to [14], we here use the Normalized Signal-to-

1http://www.mutopiaproject.org
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Fig. 3. Averaged results for several methods. (A): NMF baseline [14].
(B): Prop. method. (C): Prop. method & non-neg. synthesis weights.
(D): Prop. method & non-neg. synthesis weights & multiple input
frames.

Distortion Ratio (NSDR), where we subtract from the actual SDR
value the SDR value we obtain using the full mixture recording
as the separation result. The NSDR value represents the gain a
method yields over simply using the original mixture and, in contrast
to the plain SDR, accounts for energy differences between sound
sources which are a major factor influencing the difficulty to obtain a
separation.

Fig. 3 shows the results for four methods. As we can see, the
NMF baseline [14] already yields a relatively high separation quality
of 12.4dB NSDR (method A). Using the same interpretation and
dimension of the internal representation as used for NMF (i.e. K),
our proposed method (B) without additional extensions yields results
on a similar level but remains below the result for NMF. However,
if we add the non-negativity constraints on the weight matrices for
the synthesis network (method C), the differences switch and our
proposed method improves upon the NMF baseline by 0.4dB. These
results might indicate that the pure parts-based representation might
indeed be an important factor for this application. Further, in compar-
ison to the linear NMF model, the additional layers and non-linear
sigmoids might enable the autoencoder to obtain a more meaningful
learned representation. Finally, in a last modification we used several
consecutive frames as input to our autoencoder. This extension im-
proved the results again by a small margin of 0.15 db NSDR, leading
to an overall improvement of 0.55dB NSDR.

5. CONCLUSIONS

We presented a method for learning using weakly labeled data based
on neural networks. Existing methods had previously tried to extend
supervised learning methods to account for the often strong uncer-
tainty in the labels. However, since these approaches typically only
enhance the treatment of labels or classes for which the network
already yields clear results, the impact on the learning process can be
limited. As an alternative, we proposed treating the problem funda-
mentally as an unsupervised learning problem, i.e. starting without
labels, and then only induce some structure in the resulting learned
data representations based on the weak labels. To this end, we intro-
duced an activity cost term, which enabled us to train an autoencoder
and express our uncertainty about the target value of a weak label.
To accelerate the training process, we additionally proposed a struc-
tured variant of dropout, where, compared to the regular dropout,
labels are used to enforce a specific structure in the network early
on during training. Our experiments based on score-informed source
separation showed that indeed our proposed method can be used to
induce structure in data representations learned via autoencoders. In
the future, we plan to employ our proposed method in a variety of
tasks, either as a pre-processing step to provide a semantically more
meaningful input representation for actual classifiers or as a training
target, enhancing the label accuracy of the weak labels.

http://www.mutopiaproject.org
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