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Abstract 1 

Background: Cardiovascular Magnetic Resonance (CMR) imaging is an important 2 

modality that allows the assessment of regional myocardial function by measuring 3 

myocardial deformation parameters such as strain and strain rate throughout the 4 

cardiac cycle. Feature tracking is a promising quantitative post-processing technique 5 

that is increasingly used. It is commonly applied to cine-images, in particular Steady 6 

State Free Precession (SSFP), acquired during routine CMR examinations. 7 

Objective: To review the studies that have used feature tracking techniques in 8 

healthy subjects or patients with cardiovascular diseases (CVD). The article 9 

emphasises the advantages and limitations of feature tracking when applied to 10 

regional deformation parameters. The challenges of applying the techniques in 11 

clinics and potential solutions are also reviewed. 12 

Results: Research studies in healthy volunteers and/or patients either applied CMR-13 

feature tracking alone to assess myocardial motion or compared it to either 14 

established CMR-tagging techniques or to speckle tracking echocardiography. These 15 

studies assessed the feasibility and reliability of calculating or determining global 16 

and regional myocardial deformation strain parameters. Regional deformation 17 

parameters are reviewed and compared. Better reproducibility for global deformation 18 

was observed compared to segmental parameters. Overall, studies demonstrated that 19 

circumferential was the most reproducible deformation parameter, usually followed 20 

by longitudinal strain; in contrast, radial strain showed high variability. 21 

Conclusion: Although feature tracking is a promising tool, there are still 22 

discrepancies in the results obtained using different software packages. This 23 
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highlights a clear need for standardisation of MRI acquisition parameters and feature 1 

tracking analysis methodologies. Validation, including physical and numerical 2 

phantoms, is still required to facilitate feature tracking in routine clinical practice. 3 
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List of abbreviations 1 

CMR: Cardiovascular Magnetic Resonance  2 

CMR-FT: Cardiovascular Magnetic Resonance-Feature tracking 3 

CMR-Tagging: Cardiovascular Magnetic Resonance-Tagging 4 

STE: Speckle tracking echocardiography 5 

CVD: Cardiovascular diseases  6 

STE: Speckle tracking echocardiography 7 

SSFP: Steady state free precession   8 
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Background 1 

There is a growing recognition that early detection of cardiac abnormalities could 2 

improve patient quality of life and reduce both morbidity and mortality. Extensive 3 

improvements and developments in CMR sequences and post-processing techniques 4 

have been introduced to facilitate their use in clinical settings in order to improve the 5 

diagnostic accuracy of CVD in its onset stage. 6 

Recent extensive research has proven that global measures, such as ejection 7 

fraction, are only an indicator of global heart function and cannot be used to infer 8 

regional function, nor to detect any ventricle dysfunction at the very early stages of 9 

established diseases. 1 Contrary to visual myocardial wall-deformation analysis, 10 

indices including strain, strain rate and torsion can be sensitive indicators of 11 

underlying myocardial contractile dysfunctions. Those indices can be derived from 12 

CMR-tagging images. 2 Fig. 1 illustrates the different components of wall-13 

deformation indices relative to cardiac anatomy. Tagging sequences use spatially 14 

selective saturation pulses to create dark lines on the myocardial tissue at the end 15 

diastole, with those lines persisting throughout part of or all the cardiac cycle. 3  16 

These techniques have since undergone extensive development and improvement for 17 

both imaging sequences 4, 5, 6 and post-processing methods. 7, 8  CMR-tagging is now 18 

considered to be the gold standard for myocardial regional function assessment. 9, 10, 19 

11  20 

Feature tracking has been introduced to track myocardial motions, such as 21 

displacement and velocity, and derive cardiac deformation parameters, such as strain 22 

and strain rate in CMR. It tracks the tissue motion between the epicardial and 23 

endocardial borders throughout the cardiac cycle using optical flow methods, see the 24 
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appendix for more information about feature tracking and tagging post processing 1 

techniques. 12, 13, 14  This article reviews the expanding field of feature tracking with a 2 

particular emphasis on clinical and multimodality comparative studies.   3 
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Results 1 

Feature Tracking (CMR-FT) studies 2 

Cardiovascular Magnetic Resonance feature tracking (CMR-FT) is a quantitative 3 

post-processing technique that tracks myocardial tissue motion on SSFP cine images, 4 

the most commonly used sequence in clinical cardiac function assessment. The first 5 

software package based on FT techniques was introduced by TomTec Imaging 6 

Systems GMbH (Munich, Germany) and has been used in most clinical studies 7 

published to date 13, 15, 16; see Fig. 2. More recent studies used a different FT software 8 

package: a tissue tracking module within the CVI42 software (Circle Cardiovascular 9 

Imaging Inc. Calgary, Canada) 17; see Fig. 3. A summary of studies using CMR-FT 10 

is given in Table 1. 11 

Some clinical studies were dedicated to assessing the reproducibility of FT by 12 

evaluating inter- and intra-observer reproducibility, whereas others applied FT to 13 

both healthy subjects and patients to quantify the difference in cardiac deformation 14 

parameters between those groups. 16, 18 Feature tracking can be applied to evaluate 15 

the function and the mechanics of all heart chambers: right ventricle (RV), left 16 

ventricle (LV) and atrial deformations. 17 

CMR-FT was applied to detect quantitative motion changes at rest and stress of 18 

LV, 13, 19  as left ventricular motion abnormalities detected by CMR post-processing 19 

techniques could be an early and sensitive tool for any contractile dysfunction. The 20 

quantitative wall parameters derived from cine images were assessed at rest and 21 

during dobutamine stress in healthy volunteers  19  and in patients with ischaemic 22 

cardiomyopathy. 13  CMR-FT demonstrated its ability to detect wall motion changes 23 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

between rest and stress, where circumferential and radial strains increased 1 

significantly with dobutamine in both studies. However, there was no response to 2 

dobutamine in dysfunctional segments with scar in patients with ischaemic 3 

cardiomyopathy compared to non-dysfunctional segments. In stress studies, the more 4 

reproducible myocardial deformation parameter for inter- and intra-observer was 5 

circumferential strain. 13, 19  CMR-FT can then be used to assess strain measures at 6 

rest and stress and could provide a potential method for assessing wall contraction 7 

changes. 8 

Heart failure and cardiomyopathies have also been evaluated using CMR-FT in 9 

particular hypertrophic cardiomyopathy. 18   The ability of CMR-FT to differentiate 10 

between patients and healthy controls was evaluated in two studies. 15, 18  In 11 

hypertrophic cardiomyopathy and heart failure patients, both left atrium longitudinal 12 

strain (22.1% and 16.3 %) and strain rate (0.9 s-1 and 0.8 s-1) were lower than in 13 

healthy subjects (strain 29.1% and strain rate 1.1 s-1).18  Scarred segments showed 14 

lower contractile function, radial displacement, radial velocity, radial strain and 15 

longitudinal strain values compared to non-scar segments. Radial strain was shown 16 

to be the best parameter to discriminate between scarred segments from non-scarred 17 

ones. 15  18 

Diseases of the aorta have also been given a great deal of attention in clinical 19 

research, in particular coarctation of the aorta (COA). 16 , 20  Repaired COA patients 20 

were assessed using CMR-FT compared to normal subjects. 16 Global radial strain 21 

and global longitudinal strain were decreased in patients, while global 22 

circumferential strain was preserved compared to normal subjects. In the presence of 23 
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hypertrophy, global longitudinal strain was significantly reduced, which could be 1 

used as an indicator of early LV dysfunction. 2 

A study carried out by Maret et al. assessed the ability of the CMR-FT technique 3 

to detect scar defined with gadolinium-enhanced CMR of LV. 15  Scarred segments 4 

showed lower functional measurements than distant segments. Myocardial function 5 

can also be measured by FT-motion parameters, such as velocity and displacement of 6 

a specific myocardial point or segment. Myocardial wall contractility will be reduced 7 

in the presence of scar and as a consequence of reduced myocardial blood flow. 8 

   CMR-FT applications were not limited to cardiovascular disease patients, but 9 

included healthy subjects to assess inter-study reproducibility at global and 10 

segmental levels. Circumferential strain was found to be the most reproducible 11 

component, as its coefficient of variation (CV) is 20.3%, whereas reproducibility for 12 

radial strain was poor (CV= 27.2%). 21 In another study, observer-variability for 13 

inter- and intra- at rest was best for circumferential. observer-variability did not 14 

significantly increase with stress. 19   15 

To evaluate whether inter-study reproducibility is affected by physiological 16 

variations, sixteen healthy volunteers underwent CMR examinations 3 times on the 17 

same day: the first scan was conducted after fasting, the second scan immediately 18 

after the first scan, and the last examination was a non-fasting scan in the afternoon. 19 

No diurnal variation was observed. 21 Global measures showed no significant 20 

difference among the three repeated scans, as opposed to segmental measures, which 21 

were significant for radial strain.  22 

  23 
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Comparison between CMR-FT and CMR-tagging 1 

There are currently two main CMR post-processing techniques that have been 2 

applied in order to quantify regional myocardial function: analysis of CMR tagging, 3 

and CMR-FT using functional cine images. 18, 22, 23 Regional myocardial deformation 4 

strain is a sensitive measure for detecting onset stages of myocardial dysfunctions 5 

and can be derived from CMR-FT and CMR-tagging techniques. CMR-FT and 6 

CMR-tagging techniques can help in early identification of myocardial dysfunctions. 7 

These techniques could prove important for clinical risk management, starting 8 

treatment and helping in therapy decision-making. 2, 24 CMR-FT is increasingly 9 

being used in studies to assess its potential in routine clinical evaluation, as CMR-FT 10 

analysis computes strain from routinely performed SSFP cine images without the 11 

need to acquire any additional CMR sequences. However, CMR-FT requires 12 

standardisation of MRI acquisition and post-processing protocols to reduce any 13 

possible discrepancies between studies beside inherent natural physiological 14 

variability between healthy subjects. 25 As for CMR-tagging, tagged lines fade out 15 

towards the end of the cardiac cycle making them difficult to track using post-16 

processing techniques. 26 Few studies have compared CMR-FT to CMR-tagging in 17 

healthy subjects or patients to diagnose subtle myocardial motion abnormalities. The 18 

number of subjects in each study needs to be taken into account when comparisons 19 

are being made with other studies. A summary of the studies is given in Table 2. 20 

Muscular dystrophies such as Duchenne Muscular Dystrophy were the subject of 21 

regional myocardial function assessment using both FT and tagging techniques. 25 22 

The study included healthy volunteers and a large population of Duchenne Muscular 23 

Dystrophy patients of different age groups and severity; when strain values from the 24 
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mid-left ventricular short-axis slice were compared between the two techniques, the 1 

mean circumferential strain was highly correlated. This study showed that the two 2 

techniques were comparable. 3 

Comparison between the two techniques was also carried out in 4 

cardiomyopathies. 11, 2, 27 One study compared the techniques in both healthy subjects 5 

and hypertrophic cardiomyopathy patients. 11 The results showed a closer agreement 6 

in time-to-peak circumferential strain than in the magnitude of strain peak between 7 

both techniques. A second study compared the techniques in healthy volunteers, 8 

patients with left bundle branch block and hypertrophic cardiomyopathy. 27  The 9 

segmental peak and time-to-peak for systolic circumferential strains were assessed, 10 

and both the intra- and inter-observer reproducibility were evaluated. This study 11 

demonstrated that absolute values of peak systolic circumferential strain are higher 12 

with CMR-FT than with tissue tagging. There was also a significant difference in 13 

mean peak systolic circumferential strain values between the populations studied. 14 

The inter- and intra-observer agreements were both lower with CMR-FT than with 15 

tagging. 16 

While most studies 11, 25 focused solely on systolic deformation parameters, a 17 

study by Moody et al. 2 compared both techniques in short and long axis views, both 18 

in systole and diastole, in healthy subjects and patients with dilated cardiomyopathy. 19 

The study showed a good agreement between CMR-FT and CMR-tagging techniques 20 

for systolic global circumferential strain (-22.7 6.2% vs. -22.5 6.9%, bias= 0.2 21 

4%, p=0.8) respectively and early diastolic global circumferential strain rate (1.21 22 

0.44 s-1 vs. 1.07 0.3 s-1, bias= -0.14 0.34 s-1). There was an acceptable agreement 23 

for systolic global longitudinal strain (-18.1 5 % vs. -16.7 4.8 %, bias=1.3 3.8%, 24 
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p=0.03) in healthy subjects. In dilated cardiomyopathy patients, the difference 1 

between both techniques was not significant (-9.7 4.5% vs. -8.8 3.9%, p=0.44), 2 

whereas the agreement for early diastolic global longitudinal strain rate was poor, 3 

and the difference between both techniques was significant (p < 0.001) in healthy 4 

subjects. Overall, there was an acceptable agreement between systolic and diastolic 5 

strains for some parameters measured by both techniques in both groups. However, 6 

the study only included 35 healthy subjects and 10 dilated cardiomyopathy patients; 7 

this could have had an impact on the statistical results, and should be considered 8 

when comparing this study to other studies with larger population sizes. 9 

A different study was carried out to compare the two techniques for diastolic and 10 

systolic strain measurements in patients with aortic stenosis. 28 In this study, the 11 

strain parameters were consistently higher with FT than with tagging. Furthermore, 12 

the interstudy reproducibility for circumferential peak systolic strain was excellent 13 

with FT and good with tagging, whereas the reproducibility for circumferential peak 14 

end diastolic strain rate was good only with basal and mid-slices. 15 

Finally, FT and tagging were compared in healthy adults. 29  For global 16 

measurement of strain, there was a good agreement between both techniques with 17 

circumferential strain, but this was not the case with radial and longitudinal strains. 18 

Reproducibility showed the same trends with reasonable inter-observer variability 19 

for circumferential measures. The study showed some variation in strain with gender: 20 

longitudinal strain values were higher in females, whereas radial values were higher 21 

in males. 22 

There are obvious limitations in comparison studies that could explain the 23 

published disparities and disagreements in results. CMR-FT studies have been 24 
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published by numerous centres using heterogeneous equipment (including field 1 

strength) and sequence acquisition parameters (temporal resolution, spatial 2 

resolution, slice orientation etc.). All these differences can affect the reported results 3 

and unfortunately, few studies include detailed limitations and reproducibility data 4 

Although MRI acquisition parameters (temporal resolution, spatial resolution, slice 5 

orientation etc.) could be made as close as possible for both tagging and SSFP 6 

sequences, they are not identical. 27, 30  There were also differences in external 7 

parameters such as population (population size, age, gender, heart rate, race etc.). 31   8 
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Comparison between CMR-FT and Echocardiography 1 

The calculation of strain and strain rate always depends on image quality; this can 2 

have an effect on the reliability and reproducibility of deformation parameters 3 

derived from echocardiographic images. Echocardiography is limited by acquisition 4 

angle and operator dependence. 26, 32  CMR is increasingly the method of choice 5 

because of its wide field-of-view, better image quality and reproducibility. 33  A few 6 

clinical studies have compared echocardiography and CMR-FT in patients and 7 

healthy subjects to evaluate the clinical usefulness of the latter in assessing 8 

myocardial deformation parameters. 34, 35  A summary of studies comparing CMR-FT 9 

to echocardiography is given in Table 3. 10 

Most comparative studies have focussed on adult congenital heart disease, in 11 

particular Tetralogy of Fallot (TOF). 34, 36  A study was carried out in adult TOF 12 

patients and healthy subjects comparing CMR-FT to speckle tracking 13 

echocardiography (STE). 36 There was a close agreement between global 14 

longitudinal and circumferential LV strains measured by CMR-FT and STE 15 

techniques, but the agreement was poor for global radial LV strain. There was also a 16 

good agreement between both techniques for global longitudinal RV strain. Inter-17 

observer agreement for both techniques was similar for LV global longitudinal 18 

strain; however, CMR-FT showed better inter-observer reproducibility for LV 19 

circumferential and radial strains and RV global longitudinal strain. There was no 20 

significant difference between TOF patients and healthy subjects in LV 21 

circumferential strain (-23.5 6 vs. -22 3.9%, p=0.28) with CMR-FT, while LV 22 

longitudinal strain (-19.2 4 vs. -21.3 3.3%, p=0.048) and LV radial strain (22 8.9 23 

vs. 28 11.3%, p=0.2) were found to be lower in patients. Furthermore, RV 24 
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longitudinal strain was lower in patients compared to healthy subjects (18.3 4.3 vs. 1 

24.1 4%, p=0.0001).  36   2 

The agreement between CMR-FT and STE techniques were also assessed for LV 3 

and RV global longitudinal, radial and circumferential strains in TOF patients. 34  LV 4 

global circumferential and longitudinal strains had the best inter-modality agreement, 5 

whereas poorer inter-modalities and inter-observer variability were found for global 6 

radial strain, contrary to what was observed for radial strain in a previous study. 36  7 

When comparing TOF patients to healthy subjects, LV global circumferential, radial 8 

and longitudinal strains and RV global longitudinal strain were lower in patients 9 

compared to healthy subjects; this is in line with previously reported data. 36  10 

The feasibility of CMR-FT technique was assessed in patients with dyssynchrony. 35  11 

There was a reasonable agreement in radial dyssynchrony in patients with more 12 

marked dyssynchrony between CMR-FT and STE. The results showed a significant 13 

increase in radial myocardial contraction and circumferential strain after stent 14 

implantation. The feasibility of CMR-FT technique compared to echocardiography 15 

was also assessed in healthy subjects and patients with left ventricle hypertrophy 16 

cardiomyopathy. 33  CMR-FT-derived strain and strain rate correlated well with 17 

echocardiography, and consequently could become an alternative to 18 

echocardiography for assessing myocardial deformation parameters in clinical 19 

settings in the future. 20 
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Discussion 1 

An increasing number of research studies are using feature tracking and 2 

comparing it to tagging techniques or echocardiography in both patients and healthy 3 

subjects. Some studies have proved the usefulness of feature tracking for evaluating 4 

myocardial deformation indices and differentiating between healthy and disease 5 

states. As summarised in Table 1, Table 2 and Table 3, the number of subjects vary 6 

between studies, so that comparison between those studies is affected by the number 7 

of subjects, with a subsequent impact on statistical results. 36  The feature tracking 8 

technique was used to assess regional cardiac function by calculating myocardial 9 

deformation parameters and their variation with age, gender and different cardiac 10 

dysfunction conditions. 11 

The detection of motion abnormalities in the early stage of CVD is of great 12 

importance for an accurate diagnosis. Feature tracking provides a quantitative 13 

assessment of left ventricular motion, 13, 19 and can therefore be a sensitive tool to 14 

detect contractile dysfunction. Significant changes between rest and dobutamine 15 

stress were detected by FT technique in ischaemic cardiomyopathy, with no response 16 

to dobutamine in dysfunctional parts with scar. 13 FT can distinguish scarred 17 

segments from distant ones as scarred segments showed lower functional measures. 18 

15   19 

Global strain measures proved to be more reproducible than regional results. 18, 21, 20 

34  The potential benefit of global myocardial strain assessment has been shown to be 21 

a sensitive indicator of RV function in TOF patients. 34  In another study that 22 

assessed inter-reproducibility in TOF patients, a close agreement was found between 23 
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global left (LV) and right ventricular (RV) global strain measures. 36  The most 1 

consistently reproducible strain components were global longitudinal and global 2 

circumferential strain, whereas large variations were observed in global radial strain. 3 

13, 19   4 

Despite the increasing number of published studies in feature tracking, there is 5 

still an obvious lack of comparison, standardisation and validation studies. 6 

Therefore, results of these studies have highlighted discrepancies between the 7 

different FT software packages available. Unlike speckle tracking echocardiography, 8 

37, 38  CMR-FT has not gone through standardisation and validation in physical or 9 

numerical phantom and/or animal models in order to validate it as a routine clinical 10 

tool. It is of paramount importance to understand the origin of these discrepancies in 11 

CMR-FT results. Consequently, in order to validate and compare the different FT 12 

software, it would be ideal to develop a “ground truth” numerical phantom. Such a 13 

phantom would also allow for the optimisation of clinical applications. Feature 14 

tracking software providers should aim to reach a consensus for the validation and 15 

standardisation of reliable deformation parameters and MRI acquisitions and analysis 16 

of post-processing methods.  17 

  18 
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Conclusion 1 

The current review summarised the main results, reproducibility, and clinical 2 

applications of feature tracking studies, as well as their limitations, while also 3 

suggesting important possible avenues for future work. 4 

Although comparative studies with tagging and echocardiography are a necessary 5 

step in validating CMR-FT, only numerical phantoms could give an absolute answer 6 

when evaluating different algorithms. Ideally, synthetic images mimicking known 7 

LV motions should be used to validate and compare the different FT software 8 

solutions. This approach has already yielded significant results in validating speckle 9 

tracking in echocardiography. 39 Additionally, companies offering feature tracking 10 

software should be encouraged to release their algorithms to help with a scientific 11 

understanding of differences between vendors and to assist in reaching a consensus 12 

on the best method of analysis. 38  Standardising MRI acquisition parameters for FT 13 

analysis will also be crucial to its wider accepted in routine clinical practice.  14 

  15 
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Figure legends 1 

Figure 1: Myocardial deformation contains three strain components, circumferential, 2 

radial and longitudinal of the left ventricle: longitudinal (A), radial and 3 

circumferential (B). The direction of the deformation in diastole is shown as a dashed 4 

line and in systole shown as a solid line. The myocardial fibres shorten and lengthen 5 

in the three spatial directions: longitudinal, radial and circumferential. The strain can 6 

be calculated as the difference between myocardial fibre length (radial, 7 

circumferential and longitudinal) at end-diastole and at end-systole divided by the 8 

length at end-diastole, and expressed as percentage (%). 40    9 

Figure 2: Example of FT analysis using Tomtec. Endocardial and epicardial 10 

contours of the LV are drawn on one frame and propagated throughout the cardiac 11 

cycle. (a) A short axis slice with endocardial and epicardial contours (left-hand side), 12 

and the corresponding radial (upper right-hand side) and circumferential strains 13 

(lower right-hand side). (b) A 2-chamber view with endocardial and epicardial 14 

contours (left-hand side), with corresponding radial (upper right-hand side) and 15 

longitudinal strains (lower right-hand side). (c) A 4-chamber view with endocardial 16 

and epicardial contours (left-hand side), and the corresponding radial (upper right-17 

hand side) and longitudinal strains (lower right-hand side). Other deformation 18 

parameters such as velocity, displacement and strain rates can be calculated. 19 

Figure 3: Example of CVI42 FT analysis. The software semi-automatically defines 20 

the endocardial (red contour) and epicardial (green contour) LV contours throughout 21 

the cardiac cycle. (a) A short axis slice with delineated endocardial and epicardial 22 

contours (left-hand side) and the corresponding radial (middle) and circumferential 23 

strains (right-hand side). (b) A 2-chamber long axis slice with delineated endocardial 24 
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and epicardial contours (left-hand side) and the corresponding radial (middle) and 1 

longitudinal strains (right hand side). (c) A 4-chamber long axis slice with delineated 2 

endocardial and epicardial contours (left hand side) and the corresponding radial 3 

(middle) and longitudinal strains (right hand side). Additional calculated parameters 4 

include velocity, displacement and strain rates. 5 
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Table 1: Comparison between studies using CMR-FT technique 

 

C= Circumferential, R= Radial, L= Longitudinal, CS= Circumferential strain, RS= Radial strain, LS= Longitudinal strain, CSR= Circumferential strain rate, GRS= Global radial strain, GLS= Global longitudinal strain, GCS= 

Global circumferential strain, LV= Left ventricle, RV= Right ventricle, LA= Left atrial. 

Tomtec= (TomTec Imaging Systems, Munich, Germany). CVI42= CVI42 (Circle Cardiovascular Imaging Inc. Calgary, Canada). 

  

Study Strain parameters Software 
Healthy 

subjects 

Subjects 

Disease studied 

Main findings 
Limitations 

Positive Negative 

Schuster et al., 2011 19 

  

RV & LV 

C, R, L 

Segmental, Global 

 

Tomtec 10  - 

- During dobutamine stress, CS & RS 

increased significantly. 

- CS, Best observer variability of LV.  

- Worse observer variability of RV- 

LS. 

- Small sample size. 

Schuster et al., 2013 13  

LV 

C, R 

Segmental 

Tomtec 

 

CVI42 

- 

15  

Ischaemic 

cardiomyopathy 

 

- No response to dobutamine in dysfunctional 

segments with scar in all C & R strain 

parameters. 

 - Small sample size. 

- No Follow up post-revascularization 

data. 

- No functional recovery data. 

Kowallick et al., 2014 18  

LA 

L 

Global and segmental 

 

Tomtec 
10  

20  

Hypertrophic 

cardiomyopathy (10) 

Heart failure (10) 

- Excellent inter- & intra-observer variability 

for all strain and SR. 

- LS discrimination between patients and 

healthy controls. 

 - Small sample size. 

Taylor et al., 2014  22   

LV 

C, R 

Segmental 

 

Tomtec 55  
108 

Cardiomyopathy 

 

- Lower CS & RS in patients than healthy 

controls. 

 - Heterogeneous age and gender 

groups. 

Maret et al., 2009 15   

LV 

R, L 

Global and segmental 

 

Tomtec 

- 
30  

Presence of LV scar 

 

- Lower functional measures in scarred 

segments than distant segments. 

 - Heterogeneous related to gender. 

- A large number of infarctions with 

subendocardial distribution is needed 

to be tested by the FT-technique. 

- Low accuracy of ejection fraction. 

Morton et al., 2012  21       

LV 

R, L 

Global and segmental 

 

Tomtec 

16  - 

 

- More reproducible for global measurements 

than segmental ones.  

 

- CS most reproducible measure of LV. 

- Variable inter-study reproducibility. 

- L measures least reproducible 

segmental measure of RV 

measurements. RS least reproducible 

global measurement.  

- Small sample size. 
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Table 2: Comparison between studies using CMR-FT and tagging techniques 

C= Circumferential, R= Radial, L= Longitudinal, CS= Circumferential strain, RS= Radial strain, LS= Longitudinal strain, SCS= Systolic circumferential strain, T2P-SCS= Time-to-peak-systolic circumferential strain, LV= Left 

ventricle. 

Study Strain parameters Software 
Healthy 

subjects 

Subjects 

Disease studied 

Main findings 
Limitations 

Positive Negative 

Hor et al., 

2010  25   

LV 

C 

Global and 

segmental 

TomTec 

HARP 

 

42  

19 

Duchenne Muscular 

Dystrophy (DMD) 

- CS derived by FT highly correlated 

with tagging technique. 

- Low intra-observer and inter-

observer bias and variability for FT. 

 

- Analysis only performed on a mid-left ventricular short axis 

slice. 

- Only average strain was calculated, regional measures were 

not included in the study. 

Harrild, D.M 

et al. 2009  11  

LV 

C 
 

13  

 

11 

Hypertrophic 

cardiomyopathy 

- Close agreement between both 

techniques. 

- Better agreement for time to peak 

strain than peak strain magnitude. 

 

- Small sample size. 

- Endocardial circumferential strain from mid-left ventricle 

was the only examined parameter. 

- Further study needed to examine radial and longitudinal 

strains as well as epicardial strain.  

    Augustine et al. 

2013  29     

C, R, L 

Global and 

segmental 

TomTec 

CIMTag2D 

 

 

145  

 
- 

- Good agreement between both 

techniques for CS. 

- Acceptable global inter-observer 

variability for circumferential 

measures. 

- Some variation in strain with 

gender: longitudinal strain higher and 

radial lower in females. 

- Poor agreement between FT and tagging 

for R and LS. 

 

- Poor inter-observer reproducibility for R 

and LS for both techniques. 

 

- Healthy subjects were heterogeneous related to gender. 

 

Singh et al., 

2014 28   

C, L 

Global and 

segmental 

TomTec 

InTag 

 

- 
18 

aortic stenosis (AS) 

- Excellent inter study reproducibility 

for circumferential peak systolic 

strain with FT and good with tagging. 

- Good reproducibility for 

circumferential peak end diastolic 

strain rate for basal and mid slices 

only. 

- Strain parameters consistently higher with 

FT. 

- Small sample size. 

 

Wu et al., 

2014 27   

LV 

C 

Segmental 

TomTec 

MASS 

 

 

10  

20 

left bundle branch 

block (10) 

hypertrophic 

cardiomyopathy (10) 

 

- Intra and inter-observer agreement of 

segmental peak SCS and T2P-SCS 

substantially lower with FT compared with 

tagging. 

- Significant differences in mean peak SCS 

values between FT and tagging. 

- Higher absolute values of peak SCS with 

FT compared with tagging. 

- Significant difference in mean peak SCS 

values. 

- Small sample size. 

- Similar but not identical slice level used for CMR-FT and 

CMR-tagging. 

 

Moody et 

al., 2014  2  

LV 

C, L 

Global 

TomTec 

CIMTag2D 

 

35  

10 

 dilated 

cardiomyopathy 

- Good agreement between both 

techniques at peak global systolic 

circumferential strain and early global 

diastolic circumferential strain rate. 

- Acceptable agreement at peak 

systolic global longitudinal strain. 

- Poor agreement for early diastolic global 

longitudinal strain. 

- Small sample size. 

- As a result of tag fading, late diastolic strain measures not 

possible. 
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Tomtec= MR FT analysis (TomTec Imaging Systems, Munich, Germany). Tagging analysis: HARP= (Diagnosoft, Palo Alto, California). CIMTag2D= (CIMTag2D v.7, Auckland MRI Research Group, New Zealand). InTag= 

(Creatis, Lyon, France) and MASS= (Medis, Leiden, The Netherlands). 
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Table 3: Comparison between studies using CMR-FT and echocardiography 

 

     C= Circumferential, R= Radial, L= Longitudinal, CS= Circumferential strain, RS= Radial strain, LS= Longitudinal strain, CSR= Circumferential strain rate, GRS= Global radial strain, GLS= Global longitudinal strain, 
GCS=Global circumferential strain, LV= Left ventricle, RV= Right ventricle. 

 

Tomtec= MR feature tracking analysis. Echocardiography FT: Tomtec (2DE) = 2D Echocardiography analysis. Tomtec (STE)= Speckle Tracking analysis. (TomTec Imaging Systems, Munich, Germany).

Study Strain parameters Software 
Healthy 

subjects 

Subjects 

Disease studied 

Main findings 
Limitations 

Positive Negative 

Kempny et 

al., 

2012 36   

 

RV & LV 

C, R, L 

Global and 

segmental 

TomTec 

 

Tomtec (STE) 
25   

 

28  

Tetralogy of Fallot 

 

 

- Close agreement between global LV and 

global RV strain measurements. 

- Similar inter-observer agreement for both 

modalities for LV GLS. 

- Better inter-observer reproducibility for LV 

CS or RS and RV GLS measured by FT. 

- Reproducibility for regional strain 

using FT technique was poor. 

- No TOF patients with different severity of pulmonary 

regurgitation data, for the association between the severity of 

pulmonary regurgitation and strain measurements. 

 

Padiyath et 

al., 

2013  34  

 

RV & LV 

C, R, L 

Global and 

segmental 

TomTec 

 

Tomtec (2DE) 

20  

 

20 

Tetralogy of Fallot 

- Best intermodality agreement for GCS 

followed by GLS. 

- Acceptable inter-observer agreement for 

GLS and GCS of LV and RV with both 

modalities. 

 

- Inter-modality and inter-observer 

agreements were poor for GRS. 

 

 

- Small sample size. 

 

- Heterogeneous related to age and gender in both groups. 

- No Right ventricle out flow assessment by FT technique. 

Onishi et al., 

2013 35  

 

R 

Segmental 

TomTec 

 

Tomtec 

 

72 

Dyssynchrony 

 

- Reasonable agreement between both 

modalities for the patients with more marked 

dyssynchrony. 

 

 

- No available long term follow up data. 

Orwat et al., 

2014 33    

L, C 

Global 

TomTec 

 

Tomtec 20  

20 

patients with left 

ventricular 

hypertrophy 

cardiomyopathy 

(HCM) 

- Good agreement between both modalities for 

LV GLS for healthy and patients. 

- Poor agreement for CS and all SR 

measurements. 

- Higher LV and RV strain, inter-

observer reproducibility compared to 

SR. 

 

- Small sample size. 

- Heterogeneous related to age in both group. 
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Figure 2 Click here to download Figure Figure 2.tiff 



Figure 3 Click here to download Figure Figure 3.tiff 



Appendix 

 

A1: CMR Tagging 

The first CMR-tagging sequence was introduced in the late eighties by Zerhouni. 1 CMR-tagging is based on 

applying spatially selective saturation pulses perpendicular to the imaging plane, which cause a saturation of 

the magnetisation along one (line tagging) or two (grid tagging) spatial directions. The intersection of the 

selected slice and imaging plane create visible dark lines (low signal intensity) on the myocardial tissue before 

image acquisition. CMR-tagging acquisition sequences have since undergone extensive development and 

improvements. 1, 2  Different post-processing techniques exist to extract and track myocardial tagging lines’ 

deformation from consecutive frames and calculate local and global parameters such as displacement or 

velocity throughout the entire cardiac cycle. 3 The most common CMR-tagging post processing approaches 

are listed below. 

 

 1) Active contour: This semi-automated method, introduced in 1994 4, uses an active shape model that 

delineates the image contours in a region of interest in the LV. A deformable spline is constrained by image 

forces which pulls it iteratively towards the LV and tagged lines’ contours until the delineating contour 

matches the LV boundaries or tagged lines. 5  

2) Optical flow: This method determines motion by tracking and detecting the displacement vector (image 

velocity) of the different image signal intensities and image features (tagged and non-tagged tissues) as they 

move throughout the cardiac cycle.. 6 Myocardial deformation is calculated from the corresponding 2D motion 

field.   

3) Sinusoidal Analysis: This method extracts motion from CMR-tagging images based on a sinusoidal 

approach. Image intensity distribution of each pixel in the tagging image is modelled as a moving sine wave 

with local frequency and amplitude. The displacement is assessed at subpixel accuracy, making it highly 

accurate. 7  

Appendix



4) Volumetric modelling: To allow three-dimensional detection of the tagged lines, a set of tagged short-axis 

and long-axis slices are used to compute 3D myocardial deformation and rotation parameters. 8 

5) Finite element modelling: This method reconstructs 3D myocardial motion from CMR-tagging images 

without prior detection of the boundaries and tagging lines locations. A model is used to define the heart shape 

and motion. Model tagging points are generated as a material surface, which defines the location of the tagged 

lines. The difference between the model tagging points and images’ tagging lines is extracted and minimised 

to allow the model to deform the images tagging lines. 9 

 

     A2:  Feature tracking 

In 2011, the CMR-FT technique was introduced as a quantitative post-processing technique for cine SSFP 

sequences that are acquired as part of routine clinical cardiac examinations. 10 The fundamental principle of 

the feature tracking method is based on optical flow to extract spatiotemporal image features, such as varying 

image signal intensities, local textures and patterns from the cine images. The technique can then track 

anatomical features, such as epicardial and endocardial borders and myocardial tissue, in consecutive cine 

image frames by searching for the most comparable features in a local neighbourhood (defining a local voxel 

search window).  

Current FT software packages are semi-automated and rely on an operator to manually delineate the initial 

endocardial and epicardial contours, usually on the end-diastolic cardiac phase. This frame then serves as the 

initial time point from which all motion parameters are calculated. Myocardial deformation parameters such 

as displacement, velocity, strain and strain rates can be computed at local and global levels. 11 

FT was initially developed for 2D cine images but can easily be extended to 3D cine images based on the 

same principles. The details of how tracking is implemented in different FT-software packages are not always 

known and this might affect the quality and accuracy of the tracking and of the derived strain measurements. 

Furthermore, results are also affected by CMR imaging sequence parameters, such as temporal and spatial 

resolutions, and image quality, in particular signal-to-noise ratio.  
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