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Zero-Shot Learning on Semantic Class
Prototype Graph

Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong

Abstract—Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In
such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among
them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance
metric in the semantic embedding space. Existing ZSL works employ either Euclidean or cosine distances. However, in a high-
dimensional space where the projected class labels (prototypes) are sparse, these distances are suboptimal, resulting in a
number of problems including hubness and domain shift. To overcome these problems, a novel manifold distance computed
on a semantic class prototype graph is proposed which takes into account the rich intrinsic semantic structure, i.e., semantic
manifold, of the class prototype distribution. To further alleviate the domain shift problem, a new regularisation term is introduced
into a ranking loss based embedding model. Specifically, the ranking loss objective is regularised by unseen class prototypes to
prevent the projected object features from being biased towards the seen prototypes. Extensive experiments on four benchmarks
show that our method significantly outperforms the state-of-the-art.

Index Terms—Zero-shot learning, semantic embedding, class prototype graph, hubness, semantic manifold, absorbing Markov
chain process
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1 INTRODUCTION

A recent trend in visual recognition research is to scale up
the number of object categories. However, most existing
recognition models are based on supervised learning and
require a large number (at least 100s) of training samples to
be collected and annotated for each object class to capture
its intra-class appearance variations. This severely limits
their scalability – collecting images of common objects
such as chairs is easy, but many other categories are rare,
e.g. a newly identified specie of beetles on a remote pacific
island. None of these models can work with few or even no
training samples for a given class. This is one of the reasons
why the popular large-scale visual recognition challenge
(ILSVRC) [54] mainly focuses on the task of recognising
1K classes, a rather small subset of the ImageNet dataset of
which there are in total 21,814 classes with 14M images.
The difficulty is that many object classes of the larger
ImageNet dataset are only composed of a handful of images
including 296 classes with only one image. In this wider
context, scalability poses a critical challenge to large-scale
visual recognition.

Humans can identify approximately 30,000 basic object
categories [7] and many more sub-classes, e.g. breeds of
dogs and combination of attributes and objects. Importantly,
humans are very good at recognising objects without seeing
any visual samples. In machine learning, this is considered
as the problem of zero-shot learning (ZSL). For example, a
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child would have no problem recognising a zebra if he/she
has seen horses before and read somewhere that a zebra
is but a horse with black-and-white stripes. Inspired by
humans’ ZSL ability, recently there is a surge of interest in
machine ZSL for scaling up visual recognition [20], [34],
[46], [51], [44], [3], [52], [29], [31], [26], [36], [66], [64],
[9].

The reason why humans can perform ZSL is be-
cause there exist language knowledge bases, e.g. books,
Wikipedia, which provide high-level/semantic description
of a new/unseen class (zebra) and make connection between
it and seen classes and visual concepts (horse, stripe). Sim-
ilarly machine zero-shot recognition relies on the existence
of a labelled training set of seen classes and the knowledge
about how each unseen class is semantically related to the
seen classes. Seen and unseen classes are usually related in
a high dimensional vector space, which is called semantic
embedding space. Such a space can be a semantic attribute
space [34], [19] or a semantic word vector space [22],
[44], [59]. In the semantic embedding space, the names
of both seen and unseen classes are embedded as vectors
called class prototypes [23]. The semantic relationships
between classes can then be measured by a distance, e.g. the
prototypes of zebra and horse should be close to each
other. Importantly, the same space can be used to embed
a feature representation of an object image, making visual
recognition possible.

Specifically, almost all existing ZSL methods adopt a
Semantic Embedding (SE) approach (Fig. 1(a)). First, a
projection function between the visual feature space and
the semantic embedding space is learned using the labelled
training visual data consisting of seen classes only. This
function is then used to project/embed the visual repre-
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Fig. 1: A semantic manifold distance model unifies Semantic Embedding (SE) and Semantic Relatedness (SR) based
methods for ZSL. Given an unseen class image, x and Px are the visual feature vector and its projection in the embedding
space respectively. The seen and unseen class prototypes are denoted as y and z respectively.

sentation of each unseen class image into the space where
the unseen class prototypes also reside. The final step of
recognition is typically based on simple nearest neighbour
(NN) – the class is determined by the nearest unseen class
prototype1. Although rarely used recently, there exists a
second approach called Semantic Relatedness (SR) [34]
(Fig. 1(b)). Taking this approach, a n-way discrete classifier
for the seen classes is first learned, which is then used to
compute a visual similarity vector between an image of
unseen class and those of the seen classes [4], [51]. The
semantic relatedness between the seen and unseen classes
is measured by the distance between their prototypes. The
resultant semantic relatedness (similarity) vector is then
compared with the visual similarity vector and the image is
classified to an unseen class if the two types of similarities
match as the closest by NN.

For either SE or SR, measuring the similarity between
prototype vectors in the semantic embedding space for NN
search is the key. However, most existing works on ZSL
focus on learning the best semantic embedding space or
the projection function from the feature to the embedding
space. When it comes to computing distance/measuring
similarity in the embedding space, they simply use Eu-
clidean or cosine distance. This results in two major prob-
lems: (1) Hubness – in a high dimensional space, nearest
neighbour suffers from the existence of hubs, i.e. the class
prototypes which are the nearest neighbours of many test
data points, regardless which classes they belong to [47].
The problem is intrinsic to a high-dimensional vector space
when NN search is performed. Although the semantic space
used in ZSL may not have a particularly high dimension,
the number of unseen class prototypes is normally small
therefore aggravating the hubness problem. (2) Domain
shift – for a SE-based approach, this is the projection
domain shift problem [24]; that is, since the projection for
visual feature embedding is learned from the seen classes,
the projected unseen class data points would be biased
towards the seen classes. As a result, they could be far away
from their corresponding unseen class prototypes, making
hubs easier to emerge and directly measuring similarity

1. DAP [34] and PST [49] are notable exceptions.

using Euclidean/cosine distance less meaningful. Although
this bias does not occur for a SR-based approach, by which
no explicit feature embedding is necessary, another form
of domain shift, the visual-semantic domain shift takes its
place – visually similar objects may not be semantically
similar, e.g., an orange and a tennis ball are visually similar
but semantically distinct. A NN search based on a simple
distance such as Euclidean or cosine would thus suffer from
both types of domain shift.
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Fig. 2: An example of semantic manifold: The class proto-
types of object classes from the ImageNet 2012 1K dataset
are grouped into eight superclasses (food, invertebrate,
canine, bird, instrument, vehicle, structure and covering)
according to [13] and visualised by the 1,000D word2vec
embedding [42] in a 2D space using t-SNE [38].

In this work, we explore the semantic manifold structure
of class prototypes distributed in an embedding space and
define a new semantic manifold distance for ZSL. Our
approach is motivated by the inadequacies of Euclidean
or cosine distance elaborated above and the fact that the
distribution of class prototypes in the semantic embedding
space usually has a rich semantic manifold structure. In
particular, visual object classes often form groups or super-
classes and the object classes from the same super-class lie
on the same sub-manifold. Such a structure is illustrated
clearly in Fig. 2. With the existence of such manifold struc-
ture, it is natural to conjecture that a more optimal distance
would be a manifold distance which takes into account the
distribution of class prototypes. The advantage of using a
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Fig. 3: The advantage of semantic manifold distance:
Without considering the distribution of class prototypes
captured by the semantic manifold structure, a test image
x is classified as an unseen class z1 using the Euclidean
distance. When considering the prototype distribution, x is
classified to z2 by being on the same class manifold in the
semantic embedding space.

semantic manifold distance over Euclidean distance is illus-
trated in Fig. 3. By providing a more meaningful similarity
measure to the unseen class prototypes, such a semantic
distance also offers a solution to the hubness and domain
shift problems. For the former, the distance is computed
over a manifold which reduces the dimensionality therefore
hubness; for the latter, being biased towards the seen class
prototypes is less detrimental as the entire manifold defined
by all prototypes is used to compute the distance.

However, computing a semantic manifold distance for
class prototypes is non-trivial. Specifically, different from
class data samples, there is only one prototype per class;
they are thus sparse, in relation to the dimensionality of
the embedding space. This renders most explicit manifold
learning methods unsuitable as they assume dense data dis-
tributions. In the work, we propose to model the manifold
structure implicitly using a semantic class prototype graph
where each prototype is a graph node and the connectivity
on the graph is determined by the semantic relatedness be-
tween classes. ZSL is thus cast into a distance computation
problem on the semantic graph. Our class prototype graph
consists of two different types of graph nodes, i.e., seen
and unseen prototypes, which should be treated differently.
However, existing graph-based distance methods do not
distinguish different nodes. To overcome this problem, we
propose a new semantic distance metric on the graph based
on an Absorbing Markov chain Process (AMP) specifically
designed for ZSL, in which seen class prototypes are
viewed as the transient states whilst unseen class prototypes
the absorbing states. A test image is connected to a set of
seen class nodes as a transient state on the graph, which is
achieved by either a n-way seen class classifier (SR like)
or the semantic embedding of the visual feature vector (SE
like) as shown in Fig. 1(c). For measuring the semantic
similarity distance between the image and any unseen class
on the semantic graph, the Markov chain process starts from
the test image node (transient node) and ends (absorbed)
in one of the absorbing states (unseen class nodes). The
absorbing probabilities from the test image node to unseen
class prototypes are treated as the final semantic manifold
distances between them.

The proposed AMP semantic distance has a number of

attractive characteristics: (1) It has a closed-form solution
that is very efficient to compute. (2) Importantly it is now
straightforward to combine the SE and SR approaches as
well as different embedding spaces. This is useful to combat
the domain shift problem because as mentioned earlier
each approach is susceptible to one type of domain shift
but not the other. To further alleviate the domain shift
problem, we introduce a regularisation term in the feature-
to-semantic space project/embedding model to project an
object feature vector into the semantic embedding space.
The objective of the embedding model is based on a max-
margin ranking loss as in [22], [1] with a new regularisation
term that requires a visual sample from a seen class not
only to project tightly around its seen class prototype, but
also to have the chance of being close to semantically
related unseen prototypes. By doing so, when the learned
projection function is applied to an unseen class image, it
is less likely to be biased towards the seen class prototypes.
This embedding model is closely related to the AMP
distance described above in that ZSL is performed by first
projecting visual features into the embedding space using
the proposed embedding model, followed by AMP-based
recognition in that space.

Our contributions are: (1) To overcome the limitation of
existing ZSL methods from relying on simplistic distance
metric for NN search, we model the semantic embedding
space by a rich manifold structure represented by a seman-
tic class prototype graph. (2) A novel semantic manifold
distance is formulated by exploring an Absorbing Markov
chain Process (AMP) on the semantic graph, which leads
to a closed-form highly efficient ZSL algorithm. (3) A new
embedding model is introduced to incorporate unseen class
prototypes therefore alleviate the domain shift problem in
ZSL. (4) Given the new AMP model, existing SE and
SR-based approaches are readily combined to complement
each other. Extensive experiments on the widely used
Animal with Attribute (AwA) dataset [35], the CUB-200-
2011 Birds (CUB) dataset [63], the aPascal-aYahoo (aP&Y)
dataset [19], and the large-scale ImageNet dataset [13]
show that the proposed method outperforms significantly
the state-of-the-art.

A preliminary version of this work was presented in [26].
In contrast [26], this work adds (1) an unseen prototype
regularised semantic embedding (UPR-SE) model; (2) a
detailed analysis of various manifold-based distances for
ZSL; (3) additional evaluations on CUB and aPascal-
aYahoo datasets; (4) additional discussion and evaluation
on hubness problem in ZSL; (5) an additional generalised
zero-shot learning experiment; and (6) new n-shot learning
experiments.

2 RELATED WORK

Semantic embedding space: Various semantic embedding
spaces have been employed for zero-shot visual recognition.
Earlier works used primarily semantic attributes [34], [19].
Given a defined attribute ontology, each class name is em-
bedded in to an attribute space as a binary attribute vector.
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More recently, embedding based on semantic word vector
space has started to gain popularity especially in large-scale
zero-shot learning [22], [44], [59], [23]. Better scalability
is typically the motivation as no manually defined ontology
is required and any class name can be embedded for free
(vs. costly labelling of attributes and ontology thereof).
Beyond semantic attribute or word vector [17], [36] pro-
posed directly learning from the rich textual descriptions of
categories, such as Wikipedia articles, for ZSL. Reported
results [2], [65], [35], [3], [52] seem to suggest that (1)
attribute space is the most effective space which is hardly
surprising as additional attribute annotations are required;
and (2) combining attribute with word vector spaces often
leads to improved performance. Both spaces are exploited
in this work. Besides the semantic attribute and word vector
spaces, context-based embedding is another popular se-
mantic embedding model [39], in which the co-occurrence
statistics of visual concepts in images is exploited for
knowledge transfer. A context-based embedding is usually
more robust than the embedding in a semantic space such
as attribute or word vector spaces.
Projection to embedding space: Given an embedding
space, most existing approaches (SE-based) also differ in
the projection functions used for embedding feature vectors
and can be categorised into two groups: (1) learning a
projection function by regression with pre-extracted fea-
tures [46], [35], [31] or end-to-end deep neural network
regression [59], [22], [44]; or (2) implicitly learning the
relationship between the visual and semantic spaces through
a common intermediate space [36], [2], [52], [23]. The SE
part of our model is based on direct projection/regression.
Specifically, our project function uses a max-margin rank-
ing loss; it is thus related to those in [22], [2], [52],
[65]. What distinguishes our projection function from the
existing ones is the introduction of the novel regularisation
term to prevent the projected unseen class data to be biased
towards the seen class prototypes in order to alleviate the
projection domain shift problem.
The domain shift problem: The projection domain shift
problem in ZSL was first identified by Fu et al. [24].
In order to overcome this problem, a transductive multi-
view embedding framework was proposed together with
label propagation on graph which requires the access of
all test data at once. This assumption is often invalid in
the context of ZSL because new classes typically appear
dynamically and recognition needs to be done immediately.
Similar transdutive approaches are proposed in [49], [31].
Instead of relying on accessing the test unseen class data
as a whole by transductive learning, we tackle the domain
shift problem using the proposed semantic distance as well
as the new embedding model, neither of which requires
the availability of the complete unseen test data set as
in [24], [49], [31]. This makes our method more generally
applicable in practice.
The hubness problem: The phenomenon of the presence
of ‘universal’ neighbours, or hubs, in a high-dimensional
space for nearest neighbour search was first studied by
Radovanovic et al. [47]. They show that hubness is an

inherent property of data distributions in a high-dimensional
vector space, and a specific aspect of the curse of di-
mensionality. A couple of recent studies [15], [57] noted
that SE-based zero-shot learning methods suffer from the
hubness problem and proposed solutions to mitigate this
problem. Among them, the method in [15] relies on the
modelling of the global distribution of test unseen data
ranks w.r.t. each class prototypes to ease the hubness prob-
lem. It is thus transductive. In contrast the method in [57] is
inductive: It argued that least square regularised projection
functions make the hubness problem worse and proposed to
perform reverse regression, i.e., embedding class prototypes
into the low-level feature space. In our work, a ranking
loss is adopted to learn the projection function, to avoid
the unwanted hubness-worsening property of least square-
based losses. In addition, the hubness is further mitigated
by computing a semantic distance instead of a simple
Euclidean or cosine distance to exploit the rich manifold
structure of class prototype distributions.
Manifold learning: Our ZSL model is based on a new
semantic manifold distance defined on the class proto-
type graph in the semantic embedding space. It is thus
relevant to manifold learning, a well-studied field with
many models proposed including linear models (such as
principal components analysis (PCA) [28] and multidimen-
sional scaling (MDS) [56]), and nonlinear models (such
as Isomap [61], locally linear embedding (LLE) [53] and
Laplacian Eigenmaps [6]). Most of these models learn
a manifold space explicitly where a simple Euclidean
distance is computed. However, in the context of ZSL, the
sparse class prototypes and high-dimensional embedding
space make these conventional manifold learning models
inappropriate. More relevant to our semantic distance are
the distance metrics computed on a discrete graph without
explicit manifold space computation. These include the
shortest path distance [21] and diffusion maps distance [33].
However, not designed for ZSL, they are unable to dis-
tinguish different types of nodes (transient and absorbing
nodes in our case) corresponding seen and unseen class
prototypes respectively. Furthermore, our distance considers
all possible paths probabilistically on the graph using a
random walk process which is particularly suitable for
sparse graphs at hand. More detailed analysis (Sec. 3.4)
and experimental evaluations (Sec. 4.3) on the advantages
of the proposed manifold distance are provided later.
Label relationship on graph: We should point out that
the idea of exploiting the class label relationship as a graph
is not entirely new, e.g., the WordNet has been exploited
widely for transfer learning in visual recognition [51].
More recently, a specific type of label relation graph, the
Hierarchy and Exclusion (HEX) graph [12] was employed
for large-scale visual recognition tasks including ZSL. The
HEX is a hierarchical graph of class labels, while our
semantic graph is an graph of class prototypes in a semantic
embedding space, designed for representing the manifold
structure in that space. [18] is another relevant work, in
which the image distance is measured through embedding
in a semantic manifold. However, in [18], the semantic
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(image) manifold is constructed using the labelled training
images, while in this work, the semantic (class) manifold
is constructed only using the class prototypes in a semantic
embedding space.

3 ZSL SEMANTIC MANIFOLD DISTANCE

3.1 Problem Definition
Let Y = {y1, . . . , yp} denote a set of p seen class labels,
and Z = {z1, . . . , zq} a set of q unseen class labels. These
two sets of labels are disjoint, i.e. Y ∩ Z = ∅. We are
given a labelled training dataset XY = {(xj , yj)} where
xj is a d-dimensional feature vector extracted from the j-
th labelled image and yj ∈ Y . In addition, a test dataset
XZ = {(xi, zi)} is provided where xi is a d-dimensional
feature vector extracted from the i-th unlabelled test image
and the unknown zi ∈ Z . The goal of zero-shot learning
is to learn a classifier f : XZ → Z to predict the unseen
class label zi.

3.2 Unseen Prototype Regularised Semantic Em-
bedding (UPR-SE)
The first step of a ZSL method is to choose a semantic em-
bedding space. This space is used for two purposes: (1) To
measure the distance between an embedded test image and
an unseen class prototype in a semantic embedding (SE)
based method, and (2) to measure the semantic relatedness
between different classes by computing a distance between
their corresponding prototypes in a semantic relatedness
(SR) based method. In this work, two of the most widely
used spaces are considered: attribute space and semantic
word vector space. For an attribute space, a manually
defined attribute ontology is required, with which each class
label is represented in the attribute space (its dimension is
the number of attributes) as an attribute vector. For a word
vector space, similar to [59], [22], [23], [2], [64], we adopt
the skip-gram text model introduced in [41], [42]. This
language sentence model learns from a large text corpus
to represent each English word or bi-gram (class name in
the context of ZSL) as a fixed-length continuous embedding
vector, so that semantically related words (e.g. horse and
zebra) are adjacent in this embedding space. For notation
conciseness, we denote the semantic embedding vector or
class prototype of a class label yj as ȳj , regardless which
embedding space is used.

Next, if a SE approach is taken, an embedding model is
required to project an object feature vector to a semantic
vector in the semantic embedding space. The proposed se-
mantic embedding model, termed as Unseen Prototype Reg-
ularised Semantic Embedding (UPR-SE), adds a domain
shift repellent regularisation term to a max-margin ranking
loss formulation. Margin-based ranking loss has been used
in structured SVMs [62], [45] and recently employed for
learning a ZSL visual feature embedding model [2], [22].
With a standard ranking loss, the embedding function is
a linear transformation with a trainable parameter matrix
M from a visual feature space to a semantic space, i.e.,
for a visual feature x, its embedding in the semantic space

z1z2
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1

(a) Ranking loss embed-
ding

z1z2

z3

y1

1

(b) UPR-SE

Fig. 4: (a) The conventional ranking loss objective will
force the projected visual feature vectors (yellow circle)
from the same seen class to be tightly around their corre-
sponding prototype in the semantic embedding space. (b)
By considering the unseen class prototypes, our UPR-SE
model will generalise better from seen to unseen classes.

is Mx. As in [2], [22], [1], the dot-product similarity in
the semantic embedding space is applied and for a class
prototype ȳ, its similarity with respect to the embedding
of x is ȳTMx. During training, the ranking loss objective
requires the correct label/prototype to be ranked higher than
any of wrong prototypes. This learning objective essentially
aims to push the projection of a seen training image feature
vector to be close to the prototype of its corresponding seen
class as well as being simultaneously far away from all
other seen prototypes, as illustrated in Fig. 4(a). Concretely,
for a pair of training data (xj , yj), the ranking loss objective
is defined as:

loss(xj , yj) =
∑

yk 6=yj

max[0, l(xj , yj , yk)], (1)

where

l(xj , yj , yk) = margin− ȳTj Mxj + ȳTkMxj . (2)

In this work the margin is set to be 1 and 0.1 for the
attribute and word vector space respectively.

If the objective of learning the embedding model M was
to recognise test seen class data, this standard ranking loss
makes sense: it will project each seen class image tightly
around its corresponding seen class prototype. However,
the objective of ZSL is to use this embedding model to
project the unseen class data points to be close to their
(unknown) unseen class prototypes. Since those unseen
class prototypes were not considered in the embedding
model in Eq. (1), there is no guarantee that this will happen.
In fact, as shown in [24], the projected unseen class data
points are often biased towards some seen class prototypes
and far away from the unseen class prototypes they belong,
resulting in poor recognition performance. To rectify this
problem and importantly to do it in an inductive manner,
we propose to use the unseen class prototypes to regularise
the ranking loss objective.

More specifically, we introduce an additional regularisa-
tion term to the standard ranking loss in Eq. (1). As shown
in Fig. 4(b), with this additional regularisation term, our
new learning objective requires that if an unseen class zr
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is semantically related (i.e., has a small Euclidean distance
in the embedding space2) to a seen class yj , the embedding
of a seen class data point xj from yj should be close to
both the prototype vectors of yj and zr. The intuition is
that if during testing, an unseen class data point of zr is
projected using the embedding model, it will not be pulled
too close to yj , i.e., being biased. Instead, it will have a
better chance to be close to the correct prototype zr rather
than some arbitrary hubs. Formally, the loss function for
UPR-SE is:

loss(xj , yj) =
∑

yk 6=yj

max[0, l(xj , yj , yk)]

+ λ
∑

zr∈Nyj

wjr[ȳTj Mxj − z̄Tr Mxj ]
2,

(3)

where Nyj
is a prototype set consisting of K neighbouring

unseen class prototypes of the seen class prototype ȳj , and
wjr is the similarity/distance between ȳj and zr used to
weight the pulling power of each unseen prototype in this
neighbourhood for the projection Mxj . The regularisation
term is weighted by λ which is set to λ=0.1 in this work.
Our final embedding model M is learned by minimising
the loss objective in Eq. (3), through Stochastic Gradient
Descent (SGD).

3.3 Absorbing Markov Chain Process (AMP)

We propose to measure the distance/similarity between a
projected unseen class data point and an unseen class pro-
totype using a semantic manifold distance. To represent the
manifold structure of the distribution of class prototypes,
we first construct a class prototype graph. Such a graph is
essentially a nearest neighbour graph, that is, on the graph,
each class prototype (regardless seen or unseen) will have
a corresponding graph node. This node is connected with
a set of K1 other class prototype nodes that correspond to
the most semantically related classes. Again the semantic
relatedness/similarity between classes is measured using
the Euclidean distance between their prototypes in the
semantic embedding space. Note, in this graph, the unseen
class prototype nodes are only connected to the seen class
prototype nodes, with reasons to be explained below. Each
edge connecting two graph nodes has a weight wij which
is computed out of the Euclidean distance between the two
nodes in the embedding space.

To compute the distance between an unseen class data
point and an unseen class prototype, we define an absorbing
Markov chain process on the class prototype graph. More
specifically, each seen class prototype node is viewed as
a transient state and each unseen class prototype node an
absorbing state, whilst the transition probability from node
i to node j is computed as pij = wij/

∑
j wij , i.e. the

normalised similarity. An absorbing state means that for

2. Note that we assume that Euclidean distance is sufficient for mea-
suring semantic relatedness between two prototypes but inadequate for
that between visual feature embedding and a prototype especially unseen
prototype due to hubness and domain shift problems explained earlier,
hence the proposed semantic distance on prototype graph.
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Fig. 5: After incorporating a test image into a semantic
class prototype graph, zero-shot learning can be viewed as
an extended absorbing Markov chain process (AMP) on the
graph.

each unseen class prototype node i, we set pii = 1 and
pij = 0 for i 6= j. Note that since all of the unseen
class nodes are absorbing states, any path generated by the
absorbing Markov chain process will not include more than
one unseen class node.

We re-number the class nodes (as states in a Markov
process) so that the seen class nodes (transient states) come
first. Then, the transition matrix P of the above absorbing
Markov chain process defined on the class prototype graph
has the following canonical form:

P =

(
Qp×p Rp×q
0q×p Iq×q

)
. (4)

In Eq. (4), Qp×p describes the probability of transition-
ing from a transient state (seen class) to another, Rp×q
describes the probability of transitioning from a transient
state (seen class) to an absorbing state (unseen class). In
addition, 0q×p and the identity matrix Iq×q denote that the
absorbing Markov chain process cannot leave the absorbing
states once it arrives.

For zero-shot learning, i.e., predicting the label zi of an
unseen test image represented as a feature vector xi, we
first need to incorporate/ingest xi into the class prototype
graph. This is followed by applying an extended absorbing
Markov chain process (see Fig. 5). Specifically, xi is
connected with a subset of K2 seen class nodes3 selected
in two ways, depending on whether a semantic relatedness
(SR) strategy or a visual feature semantic embedding (SE)
strategy is adopted. More concretely, if a SR strategy is
taken, we utilise the training dataset XY to learn a n-way
probabilistic classifier in the visual feature space for seen
classes. For a test image xi /∈ XY , the classifier can provide
a probability pr(yj |xi) of image xi belonging to the seen
class yj . If a SE strategy is adopted, the test image xi
is projected into the embedding space using the proposed
UPR-SE model (Sec. 3.2), and the seen class nodes with

3. This means that each Markov chain process always starts from xi,
goes through a number of seen class prototypes and end up in an unseen
class prototype.
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the highest similarities are selected. More precisely, the
similarity between the embedding of xi, i.e. Mxi, and
the prototype of the seen class j, ȳj can be computed as
sij = ȳTj Mxi. The similarities of the edges connecting the
seen classes and the test image are then normalised as a
probability pe(yj |xi) = sij/

∑
j sij and used to select the

K2 seen class prototypes to connect. In addition, with the
proposed semantic class prototype graph, the two strategies
can be easily combined by simply averaging the probability
pr from semantic relatedness and the probability pe from
semantic embedding, which gives pc = (pr + pe)/2. Given
the probabilities, we have Ti = [tij ]1×p as a row vector of
p elements. Each element is tij = p(yj |xi) which can be
computed using either pr, pe or pc depending on whether
a SR, SE, or SR+SE strategy is adopted.

Note that each test image xi is incorporated into the
semantic graph as a transient state. Specifically, for xi,
there is no stepping in probabilities and the Markov process
can only step out from xi to other seen class nodes. The
stepping out probabilities from xi to seen class nodes are
Ti, which are the probabilities computed using the seen
class classifier scores or embedding similarities as described
above. Now the transition matrix P̃ of the extended ab-
sorbing Markov chain process has the following canonical
form:

P̃ =

 Qp×p 0p×1 Rp×q
(Ti)1×p 01×1 01×q

0q×(p+1) Iq×q

 . (5)

In the meantime, the extended transition matrix on all
transient states, including all seen class nodes and one extra
test image node xi, are written as

Q̃(p+1)×(p+1) =

(
Qp×p 0p×1

(Ti)1×p 01×1

)
, (6)

and the extended transition matrix between transient states
and absorbing states is

R̃(p+1)×q =

(
Rp×q
01×q

)
. (7)

Our semantic manifold distance is computed as the ab-
sorbing probability from xi to zj . The intuition is that if
the test image xi belongs to an unseen class zj , it should
be connected to a number of semantically related seen
class prototypes. Being semantically related, there should
exist some short paths between the seen class prototypes
and the unseen prototype z̄j following the Markov chain
process, resulting in high absorbing probability or low
manifold distance. Of course none of these is certain: xi
could be connected to a wrong seen class prototype; part
of the manifold structure could be badly represented in
the graph due to the sparseness of the nodes. However,
since we are taking a global approach, allowing multiple
entry points for xi and exhausting all the possible paths
to compute a global distance using the entire manifold
structure, the proposed semantic distance is robust against
the imperfections of either the graph construction or the
ingestion of the test images. Further discussion on this in

the context of alternative manifold learning models will be
presented later.

Formally, the absorbing probability bij is the probability
that the absorbing Markov chain will be absorbed in the
absorbing state sj if it starts from the transient state si [30].
The absorbing probability matrix B̃ = [bij ](p+1)×q can be
computed as follows:

B̃ = Ñ × R̃, (8)

in which Ñ is the fundamental matrix of the extended
absorbing Markov chain process and is defined as follows:

Ñ(p+1)×(p+1) = (I−Q̃)−1 =

(
Ip×p −Qp×p 0p×1
−(Ti)1×p 1

)−1
.

(9)
We use the following block matrix inversion formula [27]
to compute Ñ .(

A B
C D

)−1
=

(
E F
G H

)
, (10)

in which we have{
G = −(D − CA−1B)−1CA−1

H = (D − CA−1B)−1.
(11)

Since we only care about the absorbing probabilities for
the absorbing Markov chain process starting from the test
image node xi, we only need to compute the last row of
B̃, denoted as B̃p+1,· for xi (xi corresponds to the last
transient state in the extended canonical form in Eq. (5)).
In particular, we can apply the above block matrix inversion
formula to compute the last row of Ñ first as

Ñ(p+1),· =
(

(Ti)(I −Q)−1, 1
)
1×(p+1)

(12)

and then we further compute B̃p+1,· as

B̃p+1,· = (Ñ(p+1),·)× R̃ = Ti × (I −Q)−1R. (13)

For the whole test dataset with n images, we use a
matrix Sn×q to store the computed absorbing probabilities,
in which the i-th row Si,· of S equals to the absorbing
probabilities of xi. If we stack the results of all test images
together, we have the final matrix S as follows:

S = T (I −Q)−1R. (14)

In Eq. (14), T is a n×p matrix and (I−Q)−1R is a p×q
matrix that is only related to the semantic graph structure
and can be pre-computed. The only dimension variable
in Eq. (14) is the number of test images n. Therefore,
our method is linear with respect to the number of test
images. Moreover, since the seen class number p and
unseen class number q are usually much smaller than the
instance number, the matrix (I −Q)−1R can be computed
very efficiently and computed only once.

Finally, for the test image xi, we assign it to the unseen
label that has the maximum absorbing probability when
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Algorithm 1: Semantic manifold distance based on
absorbing Markov chain process (AMP) for ZSL

Input: The seen/unseen prototypes and a test data xi.
Output: The label of xi.

1 Construct the transition matrix Q and R respectively;
2 Compute the transition probabilities Ti from xi to the

seen class prototypes;
3 Compute the absorbing probabilities

Si = Ti(I −Q)−1R

from xi to the unseen class prototypes;
4 Choose the unseen class as the label of xi with the

highest absorbing probability as in Eq. (15).

the absorbing Markov chain starts from xi. Our final ZSL
classifier is

f(xi) = arg max
zj

Si,j (15)

Note, although we use the graph-based formulation, un-
like [24], [49], [31] our AMP distance model is not a trans-
ductive method. Once the class label graph is constructed, it
is fixed and used in the subsequent zero-shot classification
process. Consequently, we only need to access a single
test image to perform recognition. Our ZSL algorithm is
summarised in Algorithm 1.

3.4 Alternative Manifold-based Distances
Numerous manifold learning models have been proposed in
the literature. In this section, we discuss why the proposed
semantic distance computed on a class prototype graph
in an embedding space using the absorbing Markov chain
process (AMP) is advantageous over the alternative models
for ZSL.

Existing manifold-based distances can be roughly cate-
gorised into two groups:
Explicit manifold space learning Most manifold learn-
ing models belong to this group, which construct explic-
itly a low-dimensional semantic manifold space where
standard Euclidean distance can then be deployed. A
large variety of models exist, which can be either linear
(e.g. principal components analysis (PCA) [28]) or nonlin-
ear (e.g. Isomap [61], locally linear embedding (LLE) [53]
and Laplacian Eigenmaps [5], [6]), and differ in whether
the local (e.g. LLE and Laplacian Eigenmaps) or global
(e.g. PCA and Isomap) manifold structure is to be preserved
in the manifold space. With explicit dimensionality reduc-
tion these models naturally alleviate the hubness problem.
However, there is a serious problem when they are applied
to the ZSL problem: Instead of using data samples to learn
the manifold space, the input to these models are class
prototypes in a semantic embedding space. Consequently
we have a handful of data points in a high dimensional
space. None of the existing explicit manifold space learn-
ing models are designed for this sparse data setting and
all of them would therefore struggle as validated in our
experiments (see Sec. 4.3).

Manifold distance on graph Alternatively one could
model the manifold structure implicitly using a data graph
and define a manifold structure on the graph. This group of
methods obviously are more closely related to the proposed
AMP distance. The most popular graph-based manifold
distance is the shortest path distance (SPD) [61]. SPD
aims to compute a manifold distance by approximating
the geodesic distance using the shortest distance on the
graph. Several algorithms can be applied to compute the
shortest distance including the Floyd’s algorithm [21] and
the Dijkstra’s algorithm [14]. In contrast to our AMP-based
distance, the main shortcoming of the SPD distance is that
it only considers one possible path between a test image
and each unseen class prototype, whist our AMP distance
computes all possible paths exhaustively and combines
them in a probabilistic manner. Our distance is thus much
more robust against noise or errors incurred by either the
process of ingesting a test image into the graph (visual
feature embedding) or the process of constructing the label
prototype graph (class label embedding). By exploiting the
manifold structure globally and probabilistically, The AMP
distance is also less susceptible to the hubness problem.
This shortcoming of SPD is partially addressed by existing
global graph distances such as diffusion maps distance
(DD) [11], [33] which also considers all possible paths.
Specifically, diffusion maps distance defines a distance
family through a Markov chain process on graph [11],
[33] and can provide a multi-scale (long-term) analysis
to the graph structure through the time (scale) parameter.
However, similar to SPD, diffusion maps distance is not
designed for ZSL, specifically not for the extended label
prototype graph where the seen class prototypes and unseen
class prototypes have different meanings in the context
of ZSL and thus play different roles in computing the
distance (i.e. unseen class prototypes are absorbing states
and always terminate the Markov process). As a result
these alternative graph-based manifold distances lead to
inferior performance compared to the proposed AMP-based
distance (see Sec. 4.3).

4 EXPERIMENTS
4.1 Datasets and Settings
Datasets: We use four datasets for our evaluations. The An-
imals with Attributes (AwA) dataset4 was introduced by
Lampert et al. [34], [35]. It consists of 50 classes of animals
(30,475 images), and 85 associated class-level attributes.
The AwA dataset also provides a pre-defined seen/unseen
split for ZSL with 6,180 images of 10 classes held out for
testing and the rest as seen classes for training. The same
split is used in our evaluation for fair comparisons against
published results. The CUB-200-2011 Birds (CUB) [63]
contains 11,788 images of 200 fine-grained bird species. We
use the same split as in [2] with 150 classes for training
and 50 disjoint classes for testing. The aPascal-aYahoo
(aP&Y) [19]5 consists of a 12,695-image subset of the

4. http://attributes.kyb.tuebingen.mpg.de/
5. http://vision.cs.uiuc.edu/attributes/.
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TABLE 1: A summary of the four datasets
Dataset AwA CUB aP&Y ImageNet
# Classes 50 200 32 1,000
# Images 30,475 11,788 15,339 1.2 million
# Attributes 85 312 64 –
# word2vec dimension 100 – – 1,000

PASCAL VOC 2008 dataset6 and 2,644 images that were
collected using the Yahoo image search engine. The class
sets in the PASCAL part (20 classes) and in the Yahoo part
(12 classes) are disjoint, which makes them ideal for zero-
shot learning. As in most previous works, the PASCAL part
is used as training data, and the Yahoo part as test data. In
aP&Y, 64 binary attributes are annotated at instance-level
and they are transformed to class-level attribute vectors
through averaging the instance-level annotations from each
class. Compared to AwA and CUB, since the seen and
unseen class data are from two different datasets, aP&Y
provides an additional challenge of the cross-dataset bias.

AwA, CUB and aP&Y are all widely used in existing
ZSL works. However, they are not really large-scale thus
somewhat contradictory to the original motivation of ZSL
for scaling up visual recognition. We thus select the Ima-
geNet dataset [13] as the fourth dataset. In particular, we
use the ImageNet 2010 1K dataset, which consists of 1,000
categories and more than 1.2 million images. We use the
same training/test (seen/unseen) split as [40], [22] for fair
comparison, which gives 800 classes for training and 200
classes for testing. We summarise the characteristics of the
four datasets in Table 1.
Visual features: Earlier ZSL works used hand-crafted
feature representations for objects. They have been replaced
by deep Convolutional Neural Network (CNN) extracted
features in the past two years. CNN features are thus used
in our experiments for all four datasets. In order to better
compare with published results, different CNN models are
used in our experiments on different datasets for feature
extraction. Specifically, on AwA and aP&Y, given that all
recent works are tested using either VGG-19 (4096D) [58]
or GoogleNet (1024D) [60] CNN features, we report our
results using the same VGG-19 and GoogleNet features on
AwA and aP&Y. On CUB, the GoogleNet (1024D) feature
is adopted due to its advantages in ZSL over other CNN
features [2], [9]. On the ImageNet dataset, AlexNet [32] is
adopted for fair comparison because all published results
on this dataset used this CNN model. More specifically, we
trained the AlexNet from scratch using 800 seen classes.
After training, for each test image, the 4,096 dimensional
top-layer hidden unit activations (fc7) of the CNN are used
as the features.
Semantic embedding space: For AwA, both attribute
space and word vector space are used as the semantic
embedding space. For the word vector space, we train the
skip-gram text model to obtain the word2vec space7 [42],
[41] on a corpus of 4.6M Wikipedia documents. As for

6. http://www.pascal-network.org/challenges/VOC/.
7. https://code.google.com/p/word2vec/

TABLE 2: Evaluation on AwA in classification accuracy
(%). Different types of CNN features are used: FD for
decaf [16], FO for overfeat [55], FV for VGG-19 [58]
and FG for GoogleNet [60] (* indicates the transductive
methods).

Method F SI Result

Deng et al. [12] FD A 44.2
HAP [29] FD A 45.6
Kodirov et al. [31]* FO A+W 75.6
TMV-BLP [24]* FO A+W 80.5
SS-Voc [25] FO A 78.3
DAP [35] FV / FG A 57.2 / 60.1
ESZSL [52] FV / FG A 75.3 / 76.3
SSE-ReLU [65] FV A 76.3
MLZSC [8] FV A 77.3
JLSE [66]* FV A 80.5
DeViSE [22] FG A 59.0
Socher et al. [59] FG A 60.8
ConSE [44] FG A 63.3
RRZSL [57] FG A 66.4
Ba et al. [36] FG A 69.3
SJE [2] FG A+W+H 73.9
HAT [3] FG A 74.9
Xian et al. [64] FG A+W+H 76.1
SynCstruct [9] FG A+W 76.3
Deep-SCoRe [43] FG A+W 78.3
Ours FV / FG A+W 82.9 / 86.5

the dimensionality of the obtained word2vec space, we set
it to 100 for AwA in order to compare with the recent
results in [23], [2], [31]. For CUB and aP&Y, only the
attribute space is used. For ImageNet, there are no attribute
definitions, so only word vector space can be used. With
much more classes, 100D is not sufficient; we thus adopt
an 1000D word2vec space as in [40], [22], [50].
Parameters settings: There are a number of free param-
eters in the proposed UPR-SE model and the AMP-based
semantic distance. For learning the UPR-SE embedding,
we use Stochastic Gradient Descent (SGD) with the step
parameter set to 0.05 on all four datasets. The regularisation
term in our UPR-SE model is computed over a neighbour-
hood of size K (Sec. 3.2). Similarly when we construct the
semantic graph, two more neighbourhood sizes need to be
determined: Each seen/unseen class prototype is connected
to K1 nearest neighbours, and a given test image is ingested
into the graph by connecting to K2 seen class prototypes
(Sec. 3.3). Since the ZSL problem has no validation set
available (the train/test labels are disjoint), we use 20%
of the seen classes in the training sets as validation sets
and perform a 5-fold cross-validation to choose the optimal
values of K, K1 and K2. Finally, when the semantic
relatedness (SR) strategy is adopted, a n-way seen class
classifier needs to be learned from the training data. A linear
SVM classifier is used in the experiments.

4.2 Comparison to the State-of-the-Art
4.2.1 Evaluation on AwA
Competitors: For AwA, we select 20 representative ZSL
methods for comparison with an emphasis on the most
recent and competitive methods, as shown in Table 2.
These 20 models differ in various aspects: (1) Features (F):
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TABLE 3: Evaluation on CUB in classification accuracy
(%).

Method F SI Result

DAP [35] FG A 36.7
DeViSE [22] FG A 33.5
ConSE [44] FG A 36.2
RRZSL [57] FG A 45.4
ESZSL [52] FG A 47.2
SJE [2] FG A 50.1
DS-SJE [48] FG A 50.4
SynCstruct [9] FG A 54.4
Ours FG A 50.2

Although the AwA dataset provides the low-level features,
recently the CNN features have been used [12], [2], [65],
[24], [31]. The state-of-the-art performance of ZSL reported
so far was mostly achieved by either using VGG-19 [58]
or GoogleNet [60] features. (2) Side information (SI): This
refers to what semantic information extracted from human
knowledge is used. In addition to embedding each class
label into either an attribute space (A) or word vector space
(W), the Wordnet hierarchy (H) is used in [1], [2], [64].
(3) Most of them are based on the SE approach, with the
exception being ConSE [44] which uses the SR strategy.
(4) Three compared methods including TMV-BLP [23],
Kodirov et al. [31] and JLSE [66] are transductive thus
require all test data to be used as a whole for inference,
which gives them an advantage over the other inductive
learning-based models including ours.
Comparison: From the results in Table 2, we can make the
following observations: (1) Our method outperforms all 20
compared methods. Compared to the inductive learning-
based methods, our model beats the closest competitor
Deep-SCoRe [43] by 8.2%. (2) As expected, the three
transductive methods (Kodirov et al. [31], JLSE [66] and
TMV-BLP [24]) are very competitive. However our method
still yields superior performance despite of using less
information for being inductive. (3) Many of the compared
methods (e.g. [2], [52], [65]) focus on learning advanced
embedding models. However, once the test image of an
unseen class is projected into the embedded space, nearest
neighbour search based on Euclidean distance is applied.
In contrast, our model explores the semantic manifold
structure in the semantic embedding space and replaces the
suboptimal Euclidean distance with the semantic manifold
distance computed on a class prototype graph, leading to
better performance. (4) Note that our results are obtained
using a manifold modelled by 50 class prototypes in AwA,
which is clearly insufficient to capture the rich intrinsic
structure of a semantic embedding space. Yet the result
shows that our manifold distance remains effective in this
embedding space sparsely populated with class prototypes.

It should be noted that the results in Table 2 are evalu-
ated in mean per-image accuracy. However, as the image
samples per class on AwA are imbalanced, a mean per-
class accuracy metric is more appropriate. We compare the
performance our model against that of six alternative mod-
els with publicly available codes using the mean per-class

TABLE 4: Evaluation on aP&Y in classification accuracy
(%).

Method F SI Result

DAP [35] FG A 35.5
ESZSL [52] FG A 38.2
RRZSL [57] FG A 38.8
HAT [3] FG A 45.4
Long et al. [37] FV A 42.3
SSE-ReLU [65] FV A 46.2
JLSE [66] FV A 50.4
MLZSC [8] FV A 53.2
Ours FV / FG A 62.0 / 63.3

accuracy and found that the same set of conclusions can
be drawn. Detailed results on all datasets and a discussion
can be found in the Supplementary Material.

4.2.2 Evaluation on CUB
Competitors: Eight existing ZSL models are compared
with our model on the CUB dataset. All the methods are
evaluated using the same GoogleNet feature (FG) and the
semantic attribute space (A) for fair comparison.
Comparison: The results in Table 3 show that our ap-
proach outperforms DAP [35], DeViSE [22], ConSE [44],
RRZSL [57] and ESZSL [52]. It yields very similar per-
formance as SJE [2] and DS-SJE [48] but is slightly
inferior to SynCstruct (50.2% vs. 54.4%). Importantly,
these results show clearly the advantage of using the AMP
distance over the Euclidean distance-based methods, such
as DeViSE. It is also evident that given the initial low
performance of both the SE method DeViSE and the SR
method ConSE, by combining these two strategies in the
proposed semantic manifold distance model, it improves
significantly the performance.

4.2.3 Evaluation on aPascal-aYahoo
Competitors: With fewer methods reporting results on
aP&Y, the number of competitors available are limited.
In Table 4, our method is compared against eight alterna-
tive methods: Lampert et al.’s DAP [35], Romera-Paredes
and Torr’s ESZSL [52], RRZSL [57], the HAT model
from [3], Long et al.’s method [37], Zhang and Saligrama’s
semantic similarity embedding [65] (SSE-ReLU), their im-
proved model called Joint Latent Similarity Embedding
(JLSE) [66] and the recent MLZSC [8]. Note that for these
experiments, since all existing methods reported results
using attribute space only, our model also only uses the
attribute space for fair comparison. Since four of the
compared methods used GoogleNet features and three of
them used VGG-19 features, we evaluate our approach
using both of them on aP&Y.
Comparison: The zero-shot learning results on aP&Y are
shown in Table 4. Similar observations can be made. First,
after considering the semantic manifold structure, our ZSL
model can achieve the state-of-the-art zero-shot learning
result of 63.3% using GoogleNet, 10.1% higher than the
nearest competitor MLZSC [8]. Note that with only 32
classes, the class prototype graph has even fewer nodes



11

TABLE 5: The hit@5 classification accuracy (%) of com-
pared methods on ImageNet 2010 1K.

Method Result

ConSE [44] 28.5
DeViSE [22] 31.8
Mensink et al. [40] 35.7
Rohrbach et al. [50] 34.8
PST [49] 34.0
ESZSL [52] 28.2
Ours 43.3

than that of AwA. However, even bigger margin is achieved
using our method, further validating that the semantic
distance computed using AMP is particularly effective for
sparse manifold modelling. Second, compared to the results
in Table 2, these results also suggest that existing ZSL
methods also suffer from having fewer seen classes during
training as the learned embedding model would generalise
more poorly to the unseen classes.

4.2.4 Evaluation on ImageNet
Competitors: Even fewer works reported results on the
large-scale ImageNet dataset. For comparison, we choose
six state-of-the-art alternatives. Among them, Norouzi et
al.’s convex semantic embedding ZSL (ConSE) [44] is a
SR-based method. As in our method, it learns a n-way
probabilistic classifier for the seen classes. The result for
ConSE is based on our own implementation so the same
n-way classifier is used with the same AlexNet features. In
contrast, DeViSE [22] and Mensink et al.’s metric learning-
based method [40] are end-to-end deep embedding models
which directly project an input image into the output
1,000D word vector space with the convolutional layers of
the model identical to that of AlexNet. Different from other
models, PST [49] is a transductive ZSL method, which
learns using the full test dataset. Finally, we also compare
the Romera-Paredes and Torr’s ESZSL method [52] by
using the author provided code and the same features8. Note
that we could compare with more state-of-the-art methods
which provide codes. However, we found that none of
them, including SSE-ReLU [65] and Kodirov et al. [31],
is tractable on this large-scale dataset: On a reasonably
powerful computer server with 512G memory, the codes
could not run due to insufficient memory. This reveals a
serious problem of many existing ZSL methods: when their
embedding models have a least square-based loss, rather
than a margin-based one, the computation typically involves
large matrix manipulation which makes them intractable for
large-scale problems.
Comparison: The performance of different methods, evalu-
ated using the flat hit@5 classification accuracy9 as in [40],
[22], [50], is compared in Table 5. The result shows
that our method clearly outperforms the state-of-the-art

8. Note that the kernalised version could not run on a server with 512G
of memory due to the ‘out of memory’ issue. We thus used the linear
version.

9. Each image is deemed to be classified correctly if the correct label
is among the top 5 predicted labels.

TABLE 6: Evaluating different manifold-based distances
for ZSL (%).

Method AwA CUB aP&Y ImageNet

Euclidean 59.0 33.5 43.5 31.8
PCA 55.2 30.5 42.3 30.1
Isomap 59.2 23.3 42.3 7.9
LLE 72.4 37.3 45.4 39.1
Eigenmaps 73.7 36.5 50.7 42.5
SPD 20.0 12,6 15.2 0.9
DD 59.0 31.3 41.3 34.8
Ours 86.5 50.2 63.3 43.3

alternatives. This superior performance can be explained by
our semantic manifold-based distance metric and the ability
to combine both the semantic relatedness and semantic
embedding strategies in a unified framework.

4.3 Further Analysis

Comparison to alternative manifold distances: As men-
tioned in Sec. 3.4, our AMP-based distance on the class
prototype graph is advantageous over existing explicit
manifold space learning methods and alternative graph-
based manifold distances. To validate this, six represen-
tative manifold-based distances are selected together with
the non-learning-based Euclidean distance for comparison.
Among the six manifold distance models, four learn a mani-
fold space explicitly followed by Euclidean distance-based
NN in the learned space. They are principal components
analysis (PCA) [28], Isomap [61], locally linear embedding
(LLE) [53] and Laplacian Eigenmaps [5], [6]. The other two
are graph-based distances including shortest path distance
(SPD) [61] and diffusion maps distance (DD) [11], [33].
For fair comparison, for all compared methods, the same
embedding space, visual feature representation and embed-
ding model are used as in our method. The difference is
thus only in how the manifold-based distance is computed.

From Table 6, it is clear that our class prototype graph-
based manifold distance achieves significantly better per-
formance on all four datasets. It is noted that among four
manifold learning methods, the globally nonlinear method
Isomap performs the worst and its performance is even
worse than that of the linear manifold learning method
PCA and the Euclidean distance. This is due to the fact
that Isomap is based on the shortest path distance which is
sensitive to the noisy connections on the semantic graph.
In contrast, the two locally nonlinear manifold learning
methods, i.e. LLE and Laplacian Eigenmaps, perform bet-
ter than the Euclidean distance. Especially, on ImageNet
with a class prototype number of 1,000, the performance
of LLE and Laplacian Eigenmaps is quite competitive.
However, on AwA, CUB and aP&Y with smaller number
of class prototypes (50, 200 and 32 respectively), LLE
and Laplacian Eigenmaps are much less effective than our
AMP distance. This is expected because both LLE and
Laplacian Eigenmaps need enough samples to learn a good
low-dimensional semantic manifold space, while our AMP
distance is computed using an absorbing Markov chain
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TABLE 7: ZSL results (%) obtained using AwA 40 seen
classes, ImageNet 1K classes and AwA 40 plus ImageNet
1K classes to construct the semantic graph on AwA. Only
the 1000D word2vec space is used for embedding due to
the use of ImageNet prototypes.

AwA 40 ImNet 1K AwA 40 + ImNet 1K

Ours 64.0 55.9 60.9

process on the semantic graph, thus much less constrained
by the sparsity of the prototype distribution.

As for the two alternative graph distances, it can be seen
from Table 6 that the shortest path distance (SPD) is the
worst among all compared manifold-based distances, and
is even much worse than the Euclidean distance. Similar
to Isomap, it is mainly because SPD only considers one
possible path from a test data to an unseen class prototype
and thus is vulnerable to the noisy connections on the
semantic graph. In comparison, the diffusion maps distance
(DD) performs better; however, it still struggles to beat the
Euclidean distance and is worse than the locally nonlin-
ear explicit manifold space methods LLE and Laplacian
Eigenmaps. As analysed in Sec. 3.4, the main shortcoming
of DD is that it cannot treat the seen and unseen class
prototypes as different types of nodes in the graph which
is important for the ZSL problem at hand: the goal is
to measure the similarity between a test image and an
unseen class prototype; there is thus no point continuing
the random walk process once it reaches the unseen class
prototype.

One may wonder if the data sparsity is the main problem
for existing manifold learning methods, can we simply in-
troduce more class prototypes into the semantic embedding
space, which do not belong to either the seen and unseen
classes? After all, it is free to embed arbitrary number
of English words into the word2vec space used in our
experiments. To find out whether it is the case, we carry
out an experiment on AwA using word2vec space only
and our AMP distance. We compare our original distance,
computed using 40 seen class prototypes (AwA 40) with
two alternatives: ImNet 1K: in this model, the 1,000 Im-
ageNet classes are used as the seen class prototypes to
ingest the test images; AwA 40 + ImageNet 1K: in this
model, the 1,000 class prototypes are used to augment
the original 40 seen class prototypes. Table 7 shows that
introducing the additional 1K prototypes would not help.
Similar results are obtained for the other six alternative
manifold distances compared in Table 6. The main reason
still lies with the embedding model: the projection function
learned in the embedding model is trained using the 40
seen classes in AwA. Adding more seen class prototypes
may enrich the manifold structure, but it will also introduce
more projection domain shift problems which neutralise the
benefit of having a densely populated semantic space for
manifold learning.
Effectiveness of unseen prototype regularisation: Table 8
compares our model with the proposed unseen proto-

TABLE 8: Evaluating the unseen prototype regularisation
(UPR) (%).

Method UPR AwA CUB aP&Y ImageNet

Ours without 82.1 46.5 62.9 41.0
with 86.5 50.2 63.3 43.3

type regularisation term for semantic embedding (UPR-SE)
(Eq. (3)) and without UPR (Eq. (1), i.e., standard ranking
loss). The results show that the proposed new embedding
model benefits from the regularisation term on all four
datasets. This suggests that reducing the projection domain
shift by regularising the project function using unseen class
prototypes helps.
Hubness reduction: One of the motivations of the proposed
semantic graph distance is to reduce hubness: with one
unseen class represented by a single class prototype only,
nearest neighbour (NN) search is the only option; however
in a high dimensional space, any NN search would suffer
from the existence of hubs: prototypes that are neighbours
to many test images regardless which class they come from.
We found that the hubness problem is much alleviated
after our AMP-based distance is used in comparison with
the conventional Euclidean distance. For example, on Im-
ageNet, among the 200 unseen class prototypes, the worst
hub appears in the top-10 neighbours of 29.1% of all test
images using an Euclidean distance-based NN. After using
the AMP distance, this number is reduced to 10.2%.

TABLE 9: Comparative evaluation measured in AUSUC
(the higher the better) for generalised zero-shot learning on
AwA.

Method AUSUC

DAP [35] 0.366
IAP [35] 0.394
ConSE [44] 0.428
ESZSL [52] 0.449
SynCstruct [9] 0.583
Ours (NN + calibration) 0.621
Ours (SVM + threshold) 0.683

Generalised zero-shot learning: Another ZSL test set-
ting emerged recently is the generalised zero-shot learning
(GZSL) test setting, under which the test data set contains
images from both seen and unseen classes. We follow the
same setting of [10]. Specifically, 20% of the images from
the seen classes are held out and mixed with the test
images from unseen classes. As in [10], the Area Under
Seen-Unseen accuracy Curve (AUSUC) is adopted as the
evaluation metric. AUSUC measures how well a zero-shot
learning method can trade-off between recognising images
from seen classes and that of unseen classes.

Two strategies are applied to our AMP approach for
GZSL: (1) NN+calibration and (2) SVM+threshold. In the
NN+calibration strategy, the initial GZSL result is given
by a nearest neighbour classifier. Such classification scores
are then calibrated per [10]. For a test image classified as
unseen classes, our AMP model is further deployed to re-
classify the image into one of the unseen classes. In the
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SVM+threshold strategy, a n-way seen class classifier based
on SVM is first used to classify the test images into the seen
classes. After thresholding the seen class SVM scores, those
test images with scores below the threshold will be further
re-classified into unseen classes using our AMP model. In
this experiment, the AMP model is compared against five
alternatives on AwA and the results are shown in Table 9.
It is evident that our model significantly outperforms the
competitors, more so with the SVM+threshold strategy.

It should be pointed out that in both strategies, if a
test data is classified to an unseen class, we assume that
it must belong to one of a fixed set of unseen classes.
Such an assumption is unrealistic in a practical application
scenario, even though it is made by almost all existing ZSL
methods. A more generalised ZSL setting would thus be
considering a much larger pool of unseen classes labels,
most of which have no corresponding test data samples.
Developing solutions to GZSL under this more generalised
setting is beyond the scope of this paper and part of our
ongoing work.

More experimental results can be found in the Sup-
plementary Material document, where a n-shot learning
evaluation is given, comparative results in the mean per-
class accuracy are presented, the effectiveness of combining
SR and SE is evaluated, the computational cost of the
proposed model is reported, and some qualitative results
are also included.

5 CONCLUSION

We have introduced a novel zero-shot learning approach
based on measuring a manifold distance between a test
image and an unseen class prototype on a semantic class
prototype graph. This approach is designed to overcome the
hubness and domain shift problems suffered by existing
ZSL methods by exploiting the manifold structure of the
class prototype distribution in a semantic embedding space.
The sparsity problem of the distribution is overcome by
introducing a novel absorbing Markov chain process for
computing a manifold distance directly on the graph rather
than explicitly learning the manifold space. The proposed
model also has the advantage of enabling easy fusion
of existing semantic relatedness (SR) based and semantic
embedding (SE) based approaches for ZSL. Extensive
experiments have been carried out to demonstrate that our
method outperforms the state-of-the-art methods for ZSL on
four benchmarks. Ongoing work includes developing a deep
end-to-end embedding model that is regularised by unseen
class prototypes which can be further extended to integrate
the learning of the semantic embedding space (word space)
also as part of the model.
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