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Abstract 

We revisit the question whether commodities should be included in investors' portfolios.  We employ for 

the first time a stochastic dominance efficiency (SDE) approach to construct optimal portfolios with and 

without commodities and we evaluate their comparative performance.  SDE circumvents the necessity to 

posit a specific utility function to describe investor's preferences and it does not impose distributional 

assumptions on asset returns.  We find that commodities provide diversification benefits both in- and 

out-of-sample.  This evidence is stronger when commodity indices which mimic dynamic commodity 

trading strategies are used.  We explain our results by documenting that commodity markets are 

segmented from the equity and bond markets. 
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1. Introduction 

Investments in commodities have grown significantly over the last years along with the revived 

academic interest in the properties of this alternative asset class (for reviews see e.g., Geman, 2005, Erb 

and Harvey, 2006, Gorton and Rouwenhorst, 2006, Skiadopoulos, 2013).1  One of the explanations 

commonly invoked to explain investors’ interest in commodities is their alleged diversification benefits.  

Commodity returns are expected to have low or negative correlation with the traditional asset classes 

like bonds and equities returns.  Their inclusion in portfolios consisting of traditional asset classes is 

expected to increase the augmented portfolio’s expected return per unit of risk.  Surprisingly though, in 

the academic literature there is no consensus yet about whether investments in commodities do offer 

diversification benefits.  In this paper, we revisit this open question.  Our main contribution is that we 

deviate from the previous literature and we construct optimal portfolios and assess their performance in 

a non-parametric way.  We manage to do so by employing a stochastic dominance efficiency (SDE) 

approach which extends the standard stochastic dominance (SD) concept.   

SD offers criteria to rank two mutually exclusive investments when compared pairwise (Quirk 

and Saposnik, 1962, Fishburn, 1964, Hadar and Russell, 1969, Hanoch and Levy, 1969, Levy and 

Hanoch, 1970, Bawa, 1975).  The theoretical attractiveness of SD lies in its nonparametric nature.  SD 

criteria do not require any assumption on the distribution of returns of the two investments under 

consideration and they are consistent with a general class of preferences in contrast to the popular mean-

variance portfolio construction setting.  Commonly, first order and second order stochastic dominance 

criteria (FSD, SSD, respectively) are being used.  The FSD criterion is equivalent to using a general 

utility setting where no restriction on the form of the utility function is placed beyond the requirement 

                                                 
1 The total value of commodity investments rose from $170 billion in July 2007 to $410 billion in February 2013 (Croft and 

Norrish, 2013) accompanied by the 2003-2008 remarkable increase in commodity prices (commodity boom, only the third 

since 1950). 
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that it is non-decreasing, i.e., investors prefer more to less.  Thus, this criterion is appropriate for both 

risk averters and risk lovers since the utility function may contain concave as well as convex segments.  

The SSD criterion adds the assumption of global risk aversion, associated with increasing and concave 

utility functions (for a characterization of FSD and SSD criteria in terms of Bernoulli utility functions, 

see also Follmer and Schied, 2011, Section 2.4, who present a general version of these results).2  The 

drawback of the FSD and SSD criteria though is that they can only compare pairwise any two given 

portfolios.  Hence, they cannot be used to test whether a portfolio stochastically dominates every single 

portfolio because there is an infinite number of alternative portfolios.  The concept of SD efficiency 

(SDE) introduced by Post (2003) and Kuosmanen (2004) circumvents this constraint.  It is a direct 

extension of SD to the case where one can compare the return distribution of any portfolio constructed 

from a set of assets with another fixed portfolio by exhausting all possible combinations of portfolio 

weights.   

We address our research question both in- and out-of-sample.  First, we employ a two-step 

procedure which uses Scaillet and Topaloglou (2010) SDE test to assess whether a portfolio originated 

from a traditional asset universe stochastically dominates a portfolio originated from the same asset 

universe augmented by including commodities.  Scaillet and Topaloglou (2010) build on the general 

distribution definition of SD by relying on Kolmogorov-Smirnov type of tests and they develop 

consistent statistical tests for SDE at any order for time-dependent data.  Next, we conduct our analysis 

out-of-sample.  At any point in time, we construct optimal portfolios based separately on an asset 

universe comprising traditional asset classes and on an asset universe augmented with commodities by 

                                                 
2 Mean variance optimal portfolio maximizes expected utility only in the case where investor preferences and return 

distributions obey highly restrictive conditions (i.e. quadratic utility function and/or normally distributed returns, see, e.g., 

Hanoch and Levy, 1969, Levy, 1992).  The mean-variance criterion also corresponds to the maximization of preferences of 

an investor with specific variational preferences without imposing any assumption on the return distribution (Maccheroni et 

al., 2006). 
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employing the Scaillet and Topaloglou (2010) SDE methodology in a rolling window fashion this time.  

We evaluate the out-of-sample performance of the two optimal portfolios constructed from the two 

respective asset universes over January 2001-September 2013.  We conduct the assessment using the 

Scaillet and Topaloglou (2010) SDE test and a number of performance measures that take into account 

deviations from normality as well as transaction costs in line with De Miguel et al. (2009). 

To ensure the robustness of our analysis, we implement the SDE approach under the first order 

and second order SDE criteria (FSDE, SSDE, respectively).  In addition, we employ ten first, second 

and third generation commodity indices as alternative vehicles to invest to the commodity asset class.  

First generation indices mimic passive commodity futures portfolio strategies where only long positions 

in the constituent futures are allowed.  Second and third generation commodity indices mimic dynamic 

(long and long/short, respectively) commodity futures portfolio strategies which exploit popular 

commodity trading signals such as momentum and switches from backwardated to contangoed markets 

and vice versa (Miffre, 2012); Gorton et al. (2012) find that these dynamic strategies yield significant 

risk premia, Rallis et al. (2013) document that they outperform passive strategies similar in spirit to the 

first generation indices and Giamouridis et al. (2014) employ dynamic commodity indices to explore the 

diversification benefits of commodities.  Furthermore, given that we consider dynamic commodity 

indices, we also employ the Fama-French (1993) size and value factors on top of the S&P 500 which 

represents a passive equity strategy.  Their use ensures that indices which represent dynamic trading 

strategies are used in both asset universes and hence it allows a fair comparison of the two asset 

universes.  Finally, we employ alternative stock indices to capture passive and dynamic equity strategies 

(Russell 2000 and Vanguard value and small-cap, respectively) as well as a momentum factor.  

We find that the inclusion of the commodity asset class in portfolios comprising traditional asset 

classes makes the investor better off both in-sample and out-of-sample.  The documented diversification 
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benefits of commodities are more pronounced in the case where the investor access commodities via the 

second and third order generation commodity indices.  We explain our results on the outperformance of 

the augmented by commodities optimal portfolios by documenting that commodity markets are 

segmented from equity and bond markets using the Campbell and Hamao’s (1992) approach.  In the 

case where markets are segmented, assets in different markets are not priced by the same stochastic 

discount factor.  This implies that assets in one market are not spanned by assets in the other markets 

and hence diversification benefits exist (see e.g., Ferson et al., 1993, Bekaert and Urias, 1996, for the 

case of mean-variance spanning and DeRoon et al., 2003, for the non mean-variance case).   

Related literature.  Our paper is related to three strands of literature: portfolio choice with commodities, 

the SDE literature and the evidence of whether commodity markets are integrated with other markets.  

Bodie and Rosansky (1980), Fortenbery and Hauser (1990), Ankrim and Hensel (1993), Abanomey and 

Mathur (1999), Anson (1999), Jensen et al. (2000), Belousova and Dorfleitner (2012) find that the 

investor is better off by including commodities in her portfolio whereas Cao et al. (2010) find that 

commodities should not be included in investors’ portfolios.  These studies are conducted within an in-

sample mean-variance Markowitz (1952) portfolio setting.  In contrast, Daskalaki and Skiadopoulos 

(2011) account for the fact that real-time investors are interested in the out-of-sample performance and 

commodity futures returns deviate from normality (Gorton and Rouwenhorst, 2006, Kat and Oomen, 

2007).  They consider alternative utility functions, yet they constrain their analysis to first generation 

commodity indices and passive equity strategies.  They find that commodity investing could be 

beneficial in-sample, yet these benefits are not preserved out-of-sample just as we document for the first 

generation commodity indices.3  Dai (2009) and Giamouridis et al. (2014) use a dynamic asset 

                                                 
3 Chan et al. (2011), Tang and Xiong (2012), Delatte and Lopez (2013), Silvennoinen and Thorp (2013) and Buyuksahin and 

Robe (2014) also call the diversification benefits of commodities in question because they report that correlations between 

commodities and equities have increased over the last decade.  
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allocation setting and they find that commodities offer diversification benefits in-sample and both in- 

and out-of-sample, respectively; the latter study again documents benefits only in the case where 

dynamic type of commodity strategies are used.  However, all studies require the specification of 

investor’s utility function and make specific modeling assumptions on the asset prices distributional 

characteristics.  To the best of our knowledge, we are the first who explore whether commodities yield 

diversification benefits by employing an SDE approach; portfolio selection based on SDE is non-

parametric.  

Regarding the SDE literature, Post (2003), Kuosmanen (2004), Post and Versijp (2007) and Post 

and Kopa (2013) develop tests for SDE and test whether the market portfolio is efficient from a 

stochastic dominance perspective; no portfolio construction and evaluation of its performance is 

undertaken though.  In addition, these tests assume that asset returns are identically and independently 

distributed (i.i.d.); the empirical evidence does not support this assumption.  Hodder et al. (2015) is the 

closest to our study from a SDE portfolio construction perspective.4  They construct stock portfolios that 

are SSDE over the CRSP all share index and they evaluate their out-of-sample performance assuming 

that asset returns are i.i.d.  Scaillet and Topaloglou (2010) SDE methodology is more general than the 

previous SDE methodologies in that it does not assume that asset returns are i.i.d.  Furthermore, it 

allows for a stronger definition of SDE allowing to test for global SDE.  According to the previous 

studies, a portfolio is defined to be SD efficient if and only if it is not stochastically dominated by any 

other portfolio that can be constructed from a given asset universe for any given SDE criterion under 

consideration; this definition may give rise to multiple SD efficient portfolios though.  Scaillet and 

Topaloglou (2010) use a stronger version of stochastic dominance efficiency where a portfolio is defined 

                                                 
4 Meyer et al. (2005) use SD criteria in an i.i.d. setting to check whether international portfolios outperform domestic 

portfolios; certain portfolio weights are assumed in advance and hence comparison is pairwise.  In contrast, rather than 

choosing in advance the portfolio weights, we use the SDE methodology to deliver the optimal weights of the SDE portfolio. 
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to be SD efficient when it stochastically dominates all other portfolios for any given SDE criterion under 

consideration.  If a portfolio dominates all other portfolios then it is not dominated by any other 

portfolio, thus it is SD efficient. 

Finally, there is mixed evidence on the integration of commodity markets with equity and bond 

markets.  On the one hand, a number of papers document that the standard equity asset pricing factors 

cannot explain the cross-section of commodity futures returns implying market segmentation (e.g., 

Bessembinder and Chan, 1992, Erb and Harvey, 2006, Daskalaki et al., 2014, Bakshi et al., 2015).  In 

addition, Bessembinder (1992) and de Roon et al. (2000) find that commodity futures returns are 

affected by commodity specific variables.  Gorton and Rouwenhorst (2006) suggest that the low 

correlations of commodities with other asset classes could be regarded as evidence for market 

segmentation.  Giampietro et al. (2016) find that the stochastic discount factor prices assets more 

accurately when commodity-specific factors are considered in conjunction with macro-based factors.  

On the other hand, Tang and Xiong (2012) and Boons et al. (2014) argue that the financialization of 

commodity futures tends to integrate equity and commodity markets.  Bakshi et al. (2011) and Hong and 

Yogo (2012) find that there are common variables which predict the commodity futures and the equity 

returns whereas Asness et al. (2013) document that there are common factors which explain the pooled 

cross-section of various asset classes including commodities.  As a by-product of our analysis, our 

findings contribute to this ongoing debate. 

The remainder of the paper is structured as follows.  Section 2 describes the tests for SDE and 

the construction of optimal portfolios under the SDE criteria, respectively.  Section 3 describes the 

dataset.  Sections 4 and 5 present and discuss results from the in-sample and out-of-sample analysis, 
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respectively.  Section 6 presents the evidence on markets’ segmentation and Section 7 concludes and 

discusses the implications of our findings. 

 

2. Stochastic dominance efficiency: The test and portfolio construction 

2.1. Description of the test 

We describe the Scaillet and Topaloglou (2010) test for SDE.  Let the asset returns be described by a 

strictly stationary process {Yt} taking values in Rn.  Observations consist of a realization of {Yt ; t = 

1,...,T}.  We denote by F(y), the continuous cumulative distribution function of Y=(Y1,…Yn)' at point 

y=(y1,…yn)'.  Let a portfolio consisting of n assets and the vector λ of portfolio weights in L, where L = 

{λ ∈  Rn : e' λ=1} with e being a vector of units.  Let G(z,λ;F) denote the cumulative density function of 

the portfolio return λ'Y at portfolio return point z given by  

 ( , ; ) : { ' } ( )
nR

G z F I u z dF uλ λ= ≤∫   (1) 

where I( ) denotes the indicator function taking the value of 1 if zu ≤'λ  and 0 otherwise.  Further, 

define  

 
1

2 1

( , ; ) : ( , ; ),

( , ; ); ( , ; ) ( , ; )
z z

J z F G z F

J z F G u F du J u F du

λ λ

λ λ λ
−∞ −∞

=

= =∫ ∫
 (2)

 
The hypothesis for testing SDE of order j (j=1 for first SDE and j=2 for second SDE) can be 

written compactly as: 

   );,();,(:0 FzJFzJH jj
j λτ ≤     for all Rz∈ , and for all ,L∈λ  

   );,();,(:1 FzJFzJH jj
j λτ >     for some Rz∈ , and for some .L∈λ  
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Under the null hypothesis jH 0 , there is no portfolio λ formed from the set of assets that dominates the 

benchmark τ at any order j, i.e. the benchmark portfolio τ is SDE.  In this case, the function );,( FzJ j τ  

is always lower than the function );,( FzJ j λ  for any possible portfolio λ constructed from the set of 

alternative assets for any point z.  Under the alternative hypothesis jH1 , we can construct a portfolio λ 

that for some points z, the function );,( FzJ j τ  is greater than the function );,( FzJ j λ , i.e. the 

benchmark portfolio τ is not SDE.   

We test the null hypothesis by employing the Scaillet and Topaloglou (2010) test which uses a 

ˆ
jS  Kolmogorov-Smirnov type test statistic of order j 

 
,

ˆ ˆ ˆ: sup[ ( , ; ) ( , ; )]j j j
z

S T J z F J z F
λ

τ λ= −  (3) 

where F̂  is the empirical distribution of F.  We reject jH 0  if ,ˆ
jj cS >  where cj is some critical value 

(for the test properties, see Scaillet and Topaloglou, 2010).  We provide details on the implementation of 

the test under the first and second order SDE criteria in Appendix A.1 and A.2.   

Three remarks are in order regarding the test under consideration.  First, the test builds on the 

distribution definition of SD which has a nice economic interpretation.  FSD and SSD can be 

characterized in terms of Bernoulli utility functions as has already been discussed in the introduction.  In 

particular, under the stated above null hypothesis, FSD is equivalent to [ ( )] [ ( )]E U E Uτ λ≥  for any non-

decreasing monotonic utility function ( )U z  of z, i.e., ' ( ) 0U z >  and SSD is equivalent to 

[ ( )] [ ( )]E U E Uτ λ≥  for any non-decreasing monotonic and concave utility function of z, i.e., ' ( ) 0U z >  

and '' ( ) 0U z <  where the expectation operator for [ ( )]E U τ  and [ ( )]E U λ  is formed with respect to the 

cumulative distribution functions of portfolios τ and λ returns, respectively.  Second, rejection of the null 
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hypothesis does not necessarily imply that there is a portfolio that stochastically dominates the 

benchmark portfolio.   

Third, given that the distribution of ˆ
jS  is not known, we calculate the p-value corresponding to cj 

by bootstrap.  We use the Hall et al. (1995) block bootstrap method which does not assume that asset 

returns are identically and independently distributed (i.i.d.); this is in contrast to SDE tests employed by 

the previous literature which rely on the i.i.d. assumption.  The method divides the original data into 

blocks.  Blocks are resampled with replacement from the original data to mimic the time dependent 

structure of the original data.  The block size equals the sample size once it is raised to the third power.  

We generate R=500 bootstrap samples.   We define the p-value * * ˆ: [ ]j j jp P S S= > , where *
jS  is the test 

statistic corresponding to each bootstrap sample.  The p-value is approximated by 

 
1

1 ˆ{ }
R

r
j j j

r
p I S S

R =

= >∑ 

  (4) 

where the r
jS~ is the test statistic corresponding to the rth bootstrapped sample.  Proposition 3.1 in 

Scaillet and Topaloglou (2010) ensures that the power of the test is preserved under the bootstrapped 

critical values.   

 

2.2. Portfolio construction 

We describe how we form the SDE portfolio (if it exists) in the case where the null hypothesis is 

rejected.  Portfolio λ is termed to dominate a benchmark portfolio τ under the first order and second 

order stochastic dominance efficiency criteria (FSDE, SDEE) respectively, if it solves the following 

maximization problem with respect to λ 

 
,

max[ ( , ; ) ( , ; )]
z

G z F G z F
λ

τ λ−   (5) 



 11 

 
,

max[ ( , ; ) ( , ; ) ]
z

z z

G u F du G u F du
λ

τ λ
−∞ −∞

−∫ ∫   (6) 

The resulting portfolio is also termed efficient.  Therefore, a portfolio is defined to be efficient when it 

stochastically dominates all other portfolios constructed from a given asset universe for any given SDE 

criterion under consideration.5  Equations (5) and (6) highlight the difference between the standard SD 

and the SDE concepts.  In the latter case, the dominant portfolio is derived by taking the maximum over 

all possible portfolios and returns whereas in the former case two given portfolios are being compared.  

Figures 1 and 2 display the FSDE and SSDE concepts.  Note that FSDE is a sufficient but not a 

necessary condition for SSDE. 

Hadar and Russell (1969) and Bawa (1975) show that FSD (SSD) amounts to choosing the 

investment that maximizes investor’s expected utility assuming that investors preferences are 

characterized by non-satiation (non-satiation and risk aversion).  Given these theoretical results, the 

optimal portfolio is the SD efficient portfolio derived from the solution of equations (5) and (6).  From 

an implementation point of view, one needs to search for the portfolio weights so that the optimal 

portfolio will yield a cumulative distribution function that solves equations (5) and (6), i.e. a portfolio 

that maximizes the distance between the two cumulative distribution functions (FSDE) and the distance 

between the integrals of the cumulative distribution functions (SSDE) for any given return.  To this end, 

we need to choose a benchmark portfolio as well as the size of the historical sample of asset returns.  

Appendix A.3 provides further details. 

 

3. The data 
                                                 
5 Notice that Markowitz (1952) concept of efficient portfolio differs from the efficient one under the stochastic dominance 

efficiency criterion.  The latter is the optimal portfolio whereas the former may not be the optimal one even if Markowitz 

assumptions hold; from the set of efficient à la Markowitz portfolios, only one will be the optimal for a given investor if 

Markowitz assumptions hold. 
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We use data on monthly closing prices of a number of indices obtained from Bloomberg.  We employ 

the S&P 500 Total Return Index, Barclays U.S. Aggregate Bond Index and the one-month Libor rate to 

proxy the traditional asset universe, i.e. the equity market, the bond market and the risk-free rate, 

respectively.  To access the commodity asset class, we use various widely-followed commodity futures 

indices.  We use first, second and third generation commodity indices.  This is in contrast to the previous 

literature that uses only first generation commodity indices.   

The first generation indices are long-only fully-collateralized investments.  They reflect a 

strategy consisting of the shortest maturity commodity futures contracts which rolls to the subsequent 

month’s contracts as the lead or front month expires.  We consider the S&P Goldman Sachs Commodity 

Index (S&P GSCI), the Dow Jones-UBS Commodity Index (DJ UBSCI) and the Deutsche Bank Liquid 

Commodity Index (DBLCI) as representatives of the first generation indices.  By construction, the first 

generation indices provide positive roll returns only in the case that the term structure of commodity 

futures prices is in backwardation.  However, given that futures markets switch from backwardation to 

contango and vice versa, the first generation indices perform poorly in contangoed markets.  In addition, 

the contracts close to expiration tend to be more contangoed and volatile and as a result they experience 

a negative roll yield.   

The second generation indices take these facts into account and they attempt to minimize the 

harmful impact of contangoed markets by investing into sufficiently liquid contracts which are further 

out in the term structure of commodity futures prices.  We consider the JP Morgan Commodity Curve 

Index (JPMCCI), the Deutsche Bank Liquid Commodity Index-Optimum Yield (DBLCI-OY), the 

Morningstar Long/Flat Commodity Index (MSDILF) and the Morningstar Long-Only Commodity Index 

(MSDIL) as representatives of the second generation indices.   
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Finally, the third generation indices allow taking both long and short positions.  We consider the 

Morningstar Short/Flat Commodity Index (MSDISF), the Morningstar Short-Only Commodity Index 

(MSDIS) and the Morningstar Long/Short Commodity Index (MSDILS) as representatives of the third 

generation indices.  Appendix B provides details on the construction of these third generation indices.  

To ensure that both asset universes employ indices which represent dynamic trading strategies, we use 

also the Fama-French (1993) equity factors to proxy the equity market, i.e. the value and the size factors.  

We obtain these factors from Kenneth French’s website.  Table 1 describes the set of equity, bond and 

commodity indices employed in this study.  

The dataset spans January 1990 to September 2013 with the exception of DJ-UBSCI that covers 

the period January 1991 to September 2013 due to data availability constraints.  Table 2 reports 

summary statistics regarding the performance of the employed indices over this period.  We can see that 

the monthly average return on commodity indices is higher than that of stocks and bonds and in most 

cases it exhibits greater standard deviation.  With a few exceptions, the Sharpe ratio is considerably 

greater for bonds and stocks than commodity indices.  The reported evidence is consistent with previous 

studies, which document that the stand-alone risk-adjusted performance of commodity indices is inferior 

to other asset classes (see e.g., Jensen et al., 2000, Daskalaki and Skiadopoulos, 2011). 

Finally, we obtain data on a set of variables documented to forecast returns in equity and bond 

markets.  We obtain data on the dividend yield on MSCI World, the junk bond premium (or default 

spread, defined as the excess of the yield on long-term BAA corporate bonds rated by Moody’s over the 

yield on AAA-rated bonds), the term spread (defined as the difference between the Aaa yield and the 

one-month bill rate) and the Baltic Dry Index from Bloomberg.  We obtain data on the 3-month 

Treasury Bill, Industrial Production, and money supply from the Board of Governors of the Federal 

Reserve System (U.S.). 
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4. In-sample Analysis: Results and discussion 

In this section, we test in-sample whether the inclusion of commodities in the asset universe makes the 

investor better off compared to the case where the asset universe consists of only traditional asset classes 

(stocks, bonds and cash).  We proceed in two steps.  In the first step, we define the benchmark portfolio 

τ to be the S&P 500 index.  Then, we apply the Scaillet and Topaloglou (2010) test to assess the null 

hypothesis that the S&P 500 is SD efficient relative to any λ portfolio to be formed based on the 

constrained asset universe for every return level.  In the second step, we choose the benchmark portfolio 

to be the one dictated by the first step.  This would be the S&P 500 in the case the null hypothesis is not 

rejected or the portfolio based on the constrained asset universe if the null is rejected.  If there are many 

portfolios consisting of these three asset classes that dominate the S&P 500, we take as optimal the one 

that maximizes the distance from the cumulative distribution function of the S&P.  This maximum 

distance portfolio dominates all other portfolios and is not dominated by any other portfolio, thus it is 

SD efficient.  Then, we re-apply the Scaillet and Topaloglou test to assess the null hypothesis that the 

redefined benchmark portfolio is efficient relative to any λ portfolio to be formed based on the 

augmented with commodities asset universe for every return level.  We apply the two-step testing 

procedure for FSDE and SSDE criteria, separately.   

We conduct the analysis using each one of the commodity indices under scrutiny separately.  We 

access investment in commodities via the first (S&P GSCI, DJ-UBS CI, DBLCI), second (JPMCCI, 

DBLCI-OY, MSDILF, MSDIL) and the third generation commodity indices (MSDISF, MSDILS, 

MSDIS), separately. The test statistics and respective p-values (within parentheses) for the null 

hypothesis that the optimal portfolio based on the traditional asset universe (stocks, bonds and cash) 

augmented with commodities stochastically dominates the optimal portfolio based on the traditional 
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asset universe.  In case the null hypothesis is rejected, this would imply that the benchmark portfolio is 

not optimal and hence commodities may offer diversification benefits.   We consider two in-sample 

periods.  The first is the full sample period January 1990 to December 2013 and the second is January 

1990 –December 2000.  The latter is the period we retain as a starting point to conduct the out-of-sample 

analysis over January 2001 – September 2013 in Section 5.  

 Table 3 reports the FSDE and SSDE test statistics and respective p-values for the null hypothesis 

that a set of benchmark assets consisting of stocks, bonds and the risk-free asset is SD efficient versus 

the benchmark asset universe augmented with the commodity asset class over the period January 1990 

to September 2013.  Investors access investment in commodities via the first generation indices (S&P 

GSCI, DJ-UBS CI, DBLCI), second generation indices (JPMCCI, DBLCI-OY, MSDILF, MSDIL) and 

third generation indices (MSDISF, MSDILS, MSDIS), separately.  Panel A reports results for the case 

where the benchmark asset universe consists of the S&P 500 Total Return Index, Barclays Aggregate 

Bond Index and one-month LIBOR rate.  Panels B and C report results when the benchmark set includes 

dynamic equity indices in lieu of the S&P 500, i.e. the Fama-French (1993) size factor (Small minus 

Big, SMB) and the value factor (High minus Low, HML), respectively.  The use of the Fama-French 

(1993) factors ensures a fair comparison of the traditional asset classes universe with the augmented 

with commodities one.  This is because in both asset universes, we use indices that represent dynamic 

trading strategies.  

We can see that the null hypothesis can be rejected in almost all cases at 10% significance level, 

but the S&P GSCI when the SMB factor is considered.  This evidence suggests that the performance of 

traditional portfolios, consisting of stocks, bonds and cash, can be significantly improved by investing in 

commodities.  In fact, we find that there is a portfolio that consists of stocks, bonds, cash and 
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commodities which is SDE.  We obtain qualitatively similar results over January 1990 to December 

2000.  Results are not reported due to space limitations. 

 

 

5. Diversification benefits: Out-of-sample analysis 

In Section 4, we found that commodities may yield diversification benefits in-sample.  In this section, 

we examine whether commodities provide diversification benefits out-of-sample, too.  We form optimal 

portfolios separately for two asset universes, one that includes “traditional” asset classes (i.e. equities, 

bonds, risk-free asset) and an “augmented” one that also includes commodity indices.  At any point in 

time (every month in our case), we apply the two-step Scaillet and Topaloglou (2010) methodology 

described in Section 4 under the under the FSDE and SSDE efficient criteria separately by allowing for 

short selling.  Every month, the described procedure delivers two optimal portfolios for the two 

respective asset universes.  We repeat the two steps throughout our sample in a rolling window fashion.  

Assume that the dataset consists of T (in our case, T=285) monthly observations for each asset and K is 

the size of the employed rolling window used for the calculation of the portfolio weights.  Standing at 

each month t, we use the previous K observations to estimate the SDE portfolio weights (i.e. weights 

that maximize expected utility).  Next, we use the estimated weights to compute the out-of-sample 

realised return over the period [t, t+1].  We repeat this process by incorporating the return for the next 

period and ignoring the earliest one, until the end of the sample is reached.  This approach allows 

deriving a series of monthly out-of-sample optimal portfolio returns.  Then, we use the time series of 

realised portfolio returns to evaluate the out-of-sample performance of the two derived optimal 

portfolios.   
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We choose the size of the rolling window K=120.   This delivers January 1990 –December 2000 

as the starting time interval for the estimation of optimal portfolio weights and January 2001 – 

December 2013 as the out-of-sample period.   

 

 

5.1. Performance evaluation 

We compare the out-of-sample performance of the two optimal portfolios based on the respective asset 

universes by using non-parametric and parametric tests.  First, we use the Scaillet and Topaloglou 

(2010) non-parametric test to test the null hypothesis that the optimal portfolio based on the augmented 

asset universe (stocks, bonds, cash and commodities) stochastically dominates the traditional asset 

universe.  The alternative hypothesis is that the augmented asset universe based portfolio does not 

stochastically dominate the traditional asset universe based optimal portfolio.6  We test the null 

hypothesis by using first order and second order stochastic dominance criteria. 

Next, in line with DeMiguel et al. (2009), Kostakis et al. (2010) and Daskalaki and Skiadopoulos 

(2011), we employ four commonly used parametric performance measures: the Sharpe ratio (SR), 

opportunity cost, portfolio turnover and a measure of the portfolio risk-adjusted returns net of 

transaction costs.  These performance measures, yet parametric, will supplement the evidence obtained 

                                                 
6 Note that in contrast to the way we formulate the null hypothesis in the in-sample analysis’ case, now we choose to 

formulate the null hypothesis in the reverse way.  Such a formulation is feasible from a computational perspective since in 

the out-of-sample case we compare two portfolios pairwise.  It has the advantage that acceptance of the null would mean that 

the augmented portfolio is SD dominant.  This interpretation leaves no ambiguity.  In contrast, if we had formulated the null 

hypothesis as in the in-sample case, rejection of the null would not necessarily mean that the augmented portfolio is 

dominant; it may be the case that the two portfolios could not be assessed under a given stochastic dominance criterion.  

Unfortunately, such a hypothesis formulation is not possible in the in-sample case. This is because for the SD efficiency tests, 

the existing methodologies can only test the efficiency of a given benchmark portfolio relative to portfolios which can be 

constructed from the augmented asset universe. 
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from the previously discussed non-parametric SDE measure; the greater the value of each one of these 

measures, the greater the diversification benefits of commodities.  To fix ideas, let a specific strategy 

denoted by c.  The estimate  cSR  of the strategy’s SRc is defined as the fraction of the sample mean of 

out-of-sample excess returns ˆ cµ  divided by their sample standard deviation ˆ cσ , i.e. 

  c
c

c

SR µ
σ

=
ˆ
ˆ

  (7) 

To test whether the SRs of the two optimal portfolios based on the traditional and augmented with 

commodities asset universes, are statistically different, we use Memmel’s (2003) statistic; the null 

hypothesis is that the SRs of the two strategies are equal.  The use of SR is in line with the finance 

industry practice even though it can lead to misleading conclusions (e.g., Rothschild and Stiglitz, 1970, 

Section IV).   

Next, we use the concept of opportunity cost (Simaan, 1993) to assess the economic significance 

of the difference in performance of the two optimal portfolios, respectively.  Denote by wc ncr r, the 

optimal portfolio realized returns obtained by an investor with the augmented investment opportunity set 

that includes commodities and the investment opportunity set restricted to the traditional asset classes, 

respectively.  The opportunity cost θ is defined to be the return that needs to be added (or subtracted) to 

the portfolio return ncr  so that the investor becomes indifferent (in utility terms) between the two 

strategies imposed by the different investment opportunity sets, i.e. 

 ( ) ( )1 1nc wcE U r E U rθ   + + = +     (8) 

Therefore, a positive (negative) opportunity cost implies that the investor is better (worse) off in case of 

an investment opportunity set that allows commodity investing.  Notice that the opportunity cost takes 

into account the entire probability density function of asset returns and hence it is suitable to evaluate 

strategies even when the assets return distribution is not normal.  To calculate the opportunity cost, we 
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use an exponential and a power utility function alternatively and we employ alternative values of 

investor’s risk aversion. 

The portfolio turnover (PT) is computed so as to get a feel of the degree of rebalancing required 

to implement each one of the two strategies.  For any portfolio strategy c, the portfolio turnover cPT  is 

defined as the average absolute change in the weights over the T-K (T-120) rebalancing points in time 

and across the N available assets, i.e. 

 ( )1
1 1

1 T K N

c c j t c j t
t j

PT w w
T K

−

+ +
= =

= −
− ∑∑ , , , ,  (9) 

where 1, , , ,,c j t c j tw w + are the derived optimal weights of asset j under strategy c at time t and t+1, 

respectively; , ,c j tw + is the portfolio weight before the rebalancing at time t+1; the quantity 

1, , , ,c j t c j tw w+ +−  shows the magnitude of trade needed for asset j at the rebalancing point t+1.  The PT 

quantity can be interpreted as the average fraction (in percentage terms) of the portfolio value that has to 

be reallocated over the whole period. 

 Finally, we also evaluate the two investment strategies under the risk-adjusted, net of transaction 

costs, returns measure proposed by DeMiguel et al. (2009).  This metric provides an economic 

interpretation of the PT; it shows how the proportional transaction costs generated by the portfolio 

turnover affect the returns from any given strategy.  To fix ideas, let pc be the proportional transaction 

cost and 1, ,c p tr +  the realized portfolio return at t+1 (before rebalancing).  The evolution of the net of 

transaction costs wealth cNW for strategy c, is given by: 

 ( ) ( )1 1 1
1

1 1
N

c t c t c p t c j t c j t
j

NW NW r pc w w+ + + +
=

 
= + − × − 

 
∑, , , , , , , ,  (10) 

Therefore, the return net of transaction costs is defined as 
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 1
1 1c t

c t
c t

NW
RNTC

NW
+

+ = −,
,

,

 (11) 

The return-loss measure is calculated as the additional return needed for the strategy with the restricted 

opportunity set to perform as well as the strategy with the expanded opportunity set that includes 

commodity futures.  Let µ µ,wc nc be the monthly out-of-sample mean of RNTC from the strategy with 

the expanded and the restricted opportunity set, respectively, and wc ncσ σ, be the corresponding standard 

deviations.  Then, the return-loss measure is given by: 

 wc
nc nc

wc

return loss µ σ µ
σ

− = × −  (12) 

A positive return-loss measure indicates that the investor is better off when commodities are included in 

investor’s portfolio.  To calculate 1c tNW +, , we set the proportional transaction cost pc equal to 50 basis 

points per transaction for stocks and bonds (for a similar choice, see DeMiguel et al., 2009), 35 basis 

points for the commodity indices (based on discussion with practitioners in the commodity markets), 

and zero for the risk-free asset.7 

 

5.2 Results and discussion 

                                                 
7 To ensure the robustness of the obtained results, we have also employed alternative values for the level of transaction costs 

for equities.  The CME report (2016) quantifies the cost of replicating the total return of the S&P 500 index and concludes 

that the round-trip transaction costs range from 2.9 basis points for index futures to between 6.5 and 7.5 basis points for 

ETFs.  We recalculate the return-loss measure by considering the cases where the transaction costs for equities equal these 

values.  The results remain qualitatively similar, i.e. the return loss metric remains positive which confirms the out-of-sample 

superiority of the portfolios that include commodity indices, even after deducting the incurred transaction costs.  Regarding 

the transaction costs for commodities, Szakmary et al. (2010) provide indirect estimates for commodities by relying on a 

formula which the authors develop.  The average pc value for commodity futures is 10.65 bps and the median value is 8.64 

bps.  Given that a commodity index may be viewed as an average commodity, the employed value of 35 bps for the pc of a 

commodity index does not bias results in favor of commodities. 
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This section discusses the results on the out-of-sample performance of the traditional asset classes 

portfolios and the augmented with commodities ones.  Table 4 reports the Scaillet and Topaloglou 

(2010) test statistics and p-values (within parentheses).  We employ first order and second order 

stochastic dominance criteria (FSD, SSD, respectively).  Panel A reports results for the case where the 

benchmark asset universe consists of the S&P 500 Total Return Index, Barclays Aggregate Bond Index 

and one-month LIBOR rate.  Panels B and C report results when the benchmark set includes dynamic 

equity indices in lieu of the S&P 500, i.e. the Fama-French (1993) size factor (Small minus Big, SMB) 

and the value factor (High minus Low, HML), respectively.  We can see that we cannot reject the null 

hypothesis, i.e. we document that the augmented with commodities optimal portfolios stochastically 

dominate the optimal portfolios based on the traditional asset universe.  This holds for all employed 

commodity and equity indices under both FSDE and SSDE criteria.  Thus, under the SD setting, we 

extend the in-sample evidence on the diversification benefits provided by commodities. 

Next, we compare the out-of-sample performance of the two optimal portfolios using the four 

standard parametric measures of performance.  Note that the SDE optimization algorithm assigns non-

zero weights to the various commodity indices.  In most cases, the average weight exceeds 70% for 

either the FSDE or the SSDE criterion.  Table 5 reports results for each one of the four performance 

measures.  Panels A and B report results for the cases where portfolio weights are calculated by FSDE 

and SSDE criteria, respectively.  In the case of opportunity cost, we assume various levels of 

(absolute/relative) risk aversion (ARA, RRA=2, 4, 6) for the individual investor.  To assess the 

statistical significance of the superiority in SRs, we also report the p-values of Memmel’s (2003) test 

within parentheses.   

In the case of the first generation indices, results are mixed depending on the employed 

performance measure.  We can see that the optimal portfolios formed based on the augmented 



 22 

investment opportunity set yield greater SRs than the corresponding portfolio strategies based on the 

traditional investment opportunity set.  However, the p-values of Memmel’s (2003) test indicate that the 

differences in SRs are not statistically significant.  Regarding the opportunity cost, we can see that in 

some cases this is positive and in some other cases it is negative.  This implies that the investor is not 

always better off when the augmented investment opportunity set is considered.  Furthermore, with the 

exception of S&P GSCI, the portfolios that include only the traditional asset classes induce more 

portfolio turnover compared with the ones that include commodities.  Finally, we can see that the return-

loss measure that takes into account transaction costs is positive.   

At this point two remarks are in order.  First, the mixed evidence on the existence of 

diversification benefits of commodities across the various performance measures extends the evidence in 

Daskalaki and Skiadopoulos (2011) who document that there are no diversification benefits in the case 

of the first generation commodity indices where a passive equity index (S&P 500) is used.  The two 

papers are not directly comparable though since they cover different periods of time and they differ in 

the implementation process (e.g. the size of the employed rolling windows).  Second, the difference in 

the results between the SD setting and the parametric performance measures regarding the first 

generation indices can be attributed to the inherent assumptions of the two approaches.  Note that the SD 

setting makes no assumptions on the distribution of asset returns and it is consistent with a very general 

family of utility functions whereas the employed parametric performance measures either focus on mean 

and variance or they assume a specific utility function and specific risk aversion coefficients. 

On the other hand, in the case of the second and third generation commodity indices, the 

parametric performance measures indicate that there is strong evidence on the diversification benefits of 

commodities.  We can see that the optimal portfolios formed based on the augmented investment 

opportunity set yield greater SRs than the corresponding portfolio strategies based on the traditional 
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investment opportunity set.  In contrast to the first generation indices, the p-values of Memmel’s (2003) 

test show that the differences in SRs are statistically significant.  The differences in SRs are statistically 

significant when investments in commodities are accessed by any commodity index but MSDIS.  

Regarding the opportunity cost, we can see that this is positive in all cases which implies that the 

investor is better off when the augmented investment opportunity set is considered.  In most cases, the 

opportunity cost decreases as the risk aversion increases, yet it still remains sizeable ranging up to 7% 

and 7.9% for the second and third generation indices, respectively.  This implies that the investor who 

does not include commodities is not as happy as the investor who has included commodities and this 

loss in happiness can be offset only by offering her a 7% (7.9%) return on top of the constrained 

portfolio’s return.  Notice that the fact that MSDIS constitutes an exception when the SR is being used 

highlights the superiority of commodity indices that mimic dynamic trading strategies; MSDIS is a 

passive short index.  Finally, we can see that the return-loss measure that takes into account transaction 

costs is positive which confirms the out-of-sample superiority of the portfolios that include commodity 

indices, even after deducting the incurred transaction costs.  These findings hold both for the cases 

where portfolios are constructed by FSDE and SSDE criteria.   

Table 6 and Table 7 report results in the case where investors access investment in equities via 

dynamic indices, i.e. the Fama-French (1993) value factor (High minus Low, HML) and the size factor 

(Small minus Big, SMB), respectively.  We can see that in the case where we replace the S&P 500 with 

the size factor, the results do not change compared to the case where we proxy the equities asset class 

with the S&P 500, i.e. commodities should be included in investors’ portfolios when second and third 

generation commodity indices are used.  Moreover, we can see that in the case where we replace the 

S&P 500 with the value factor, commodities are beneficial to investors even for the first generation 

commodity indices. 
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To sum up, the employed parametric performance measures indicate that the diversification 

benefits of commodities are more pronounced when the investor accesses commodities via the second 

and third generation commodity indices which exploit signals such as momentum and changes in the 

term structure signals and/or allow for short positions.  This is in accordance with the evidence in 

Giamouridis et al. (2014) on the performance of dynamic commodity strategies in a portfolio setting; 

yet, their results are subject to their modelling assumptions.  One possible additional explanation 

regarding the weaker results of the first generation commodity indices is that the monthly rolling process 

followed by these indices may deteriorate the commodity index performance (Mou, 2011).    

 

5.3 Further robustness tests 

In this section, we perform further tests to assess the robustness of the results reported in section 5.2.  To 

this end, we consider additional indices in the traditional asset universe.  First, we repeat the analysis 

where we proxy the equity asset class by including both the S&P 500 and a dynamic equity index.  Note 

that the SMB and HML indices have lower annualized Sharpe ratios (-0.088 and 0.111, respectively) 

compared to the S&P 500 (0.419).  Thus, replacing S&P500 with SMB or HML may favor 

commodities.  To ensure the robustness of our results, we include both the S&P 500 and the HML index 

in the traditional asset universe; we choose the HML because its risk-adjusted performance is superior to 

SMB index.  In addition, we further augment the traditional asset universe with an equity momentum 

factor in line with Giamouridis et al. (2014).  We obtain the momentum factor from Kenneth French’s 

website (its Sharpe ratio equals 0.189).    

Table 8 reports the results on the out-of-sample performance of the traditional asset classes 

portfolios and the augmented with commodities ones.  The traditional investment opportunity set 

includes the S&P 500 Equity Index, the HML dynamic index, the Momentum factor, the Barclays US 
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Aggregate Bond Index and the 1-month LIBOR rate.  We can see that the optimal portfolios formed 

based on the investment opportunity set that also includes commodities yield statistically significant 

greater SRs than the corresponding portfolio strategies based on the traditional investment opportunity 

set.  Regarding the opportunity cost and the return loss metric, we can see that they are positive in all 

cases which further confirms the superiority of the commodity investment.  These findings hold 

regardless of whether portfolio weights are constructed either by the FSDE or the SSDE criteria.  

Second, we repeat the analysis where we proxy the equity asset class by including Russell 2000 

equity index, Vanguard value and Vanguard small-cap index funds in lieu of the S&P 500 and Fama-

French factors.  It is worth stating that the risk-adjusted performance of the Vanguard index funds is 

superior to that of the Fama-French factors and this would pose a stricter hurdle for commodities to pass.  

In particular, the annualized Sharpe ratios equal 0.170 and 0.235 for the Vanguard value and the 

Vanguard small-cap indices, respectively, whereas the respective figures for HML and SMB are 0.111 

and -0.088.  On the other hand, Russell 2000 index is a well-followed equity index with Sharpe ratio 

equal to 0.315, lower than that of S&P500 (0.419).  Table 9 reports the results when the traditional set 

includes the Russell 2000 Index, the Vanguard value and small index funds, the Barclays US Aggregate 

Bond Index and the 1-month LIBOR rate.  We can see that all performance measures indicate that there 

are still diversification benefits for commodities, albeit reduced compared to the case where we proxy 

the equities asset class by the S&P 500 and the Fama-French factors.8 

 

6. Why do investments in commodities offer diversification benefits? 

                                                 
8 Note that for both alternative traditional asset universes, in the out-of-sample setting, we cannot reject the null hypothesis 

that the optimal portfolio based on the augmented asset universe (stocks, bonds, cash and commodities) stochastically 

dominates the traditional asset universe. This holds in all cases under both FSDE and SSDE criteria. Results are not reported 

due to space limitations. 



 26 

In this section, we investigate the reason of the outperformance of the augmented portfolios which 

include commodities versus the ones which do not as documented in the previous sections.  To this end, 

we test whether the commodity market is integrated/ segmented with the equity and bond market.  

Market integration is defined to be the case where financial assets that trade in different markets yet they 

have identical risk characteristics, will have identical expected returns (Bessembinder, 1992, Campbell 

and Hamao, 1992).  Hence, in the case of market integration, there is a common stochastic discount 

factor which prices the various asset classes.  In this case, commodity returns would be spanned by the 

traditional asset classes’ returns and there will be no diversification benefits (see, e.g., Ferson et al., 

1993, Bekaert and Urias, 1996, DeRoon et al., 2003). 

We follow Campbell and Hamao (1992) approach to test for market integration.  Let a K-factor 

asset pricing model 

 ( ), , , ,

K

i t t i t ik k t i t
k

R E R f eβ+ + + +
=

= + +∑1 1 1 1
1

  (13) 

where ,i tR +1  denotes the excess return on asset i held from time t to time t+1, ,k tf +1  the kth factor 

realization, ikβ  the factor loading with respect to the kth factor and ,tie +1  the error term.  Equation (13) 

maps to an expected return-beta representation (Cochrane, 2005) 
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where ktλ  is the market price of risk for the kth factor at time t.  The time variation in the kth factor 

market price of risk is modeled as 
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n

Xλ θ
=
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  (15) 

where there is a set of N predictors ntX , n=1,2,…,N.  Assuming that (1) markets are integrated, i.e. they 

have the same prices of risk, and (2) the time variation in expected returns stems from time variation in 
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the prices of risk, equations (14) and (15) imply that predictor variables that drive prices of risk should 

be the same across assets.9  Therefore, evidence that the predictors of the price of risk differ across asset 

classes would imply that the market price of risk is not the same across assets and hence markets are 

segmented.   

We use predictors which have been documented to predict equity and bond markets returns: the 

dividend yield, the yield on the three-month Treasury bills, the default spread (Bessembinder and Chan, 

1992), the term spread (Fama and French, 1989), the industrial production growth (Fama, 1990), the 

money supply growth (Chen, 2007), and the growth in the Baltic Dry Index (Bakshi et al., 2011).  Table 

10 presents the evidence on the forecastability of the asset returns during the period 1999-2013; the 

choice of the period is consistent with the choice of the out-of-sample period in Section 5.1 where we 

evaluate the portfolios’ out-of-sample performance.  We can see that the S&P 500 equity index can be 

predicted by the T-bills, the term spread and the growth in the Baltic Dry Index.  The Barclays Bond 

index can be predicted by the T-bills, the dividend yield and the term spread. On the other hand, these 

predictors do not forecast commodity indices returns.  This evidence is also supported by the F-statistic 

and the respective p-values: the hypothesis that all coefficient estimates equal to zero can be rejected 

only for the traditional asset classes, i.e. the S&P 500 equity index and the Barclays Bond Index.   

Our results show that commodity returns cannot be forecasted by variables that predict stock and 

bond market returns.  This suggests that the price of risk is driven by different predictors across the 

various asset classes which in turn implies that the prices of risk differ.  As a result, commodity markets 

are segmented from equity and bond markets and hence the inclusion of commodities in investors’ 

portfolios is expected to yield diversification benefits.  Note that the market integration test offers a 

statistical setting on top of the economic significance setting applied in the previous sections to assess 

                                                 
9 Ferson and Harvey (1991) document that assumption (2) holds; expected returns are driven by time variation of prices of 

risk rather than time variation of betas. 



 28 

whether commodities may offer diversification benefits.  In addition, the test is applied to the full 

sample and hence the obtained results are meant to be discussed in light of the in-sample evidence 

provided in Section 4.  

A remark is in order at this point.  Our results do not contradict the previous literature which 

documents that commodities can be predicted by various macroeconomic factors.  Most studies employ 

individual commodity futures to examine the predictability of the chosen instruments (e.g., 

Bessembinder and Chan, 1992, Bjornson and Carter, 1997) or passive commodity indices (e.g., Bakshi 

et al., 2011, Hong and Yogo, 2012).  We consider dynamic portfolio strategies via commodity indices 

rather than individual commodity futures which represent passive strategies.  Interestingly, Gargano and 

Timmerman (2014) who examine the predictability of (spot) commodity indices also provide weak 

evidence that returns on commodity indices can be predicted by a set of macroeconomic variables over 

the period 1947-2010. 

 

7. Conclusions 

One of the key yet still open questions is whether commodities offer diversification benefits once 

included in a portfolio that consists of traditional asset classes.  The previous literature does not reach a 

unanimous agreement.  Most importantly, to answer this question, it makes strong assumptions on 

investor’s preferences and on the distributional properties of asset returns.  We revisit this research 

question and we bypass these two obstacles by employing the non-parametric stochastic dominance 

efficiency (SDE) setting which accommodates any utility function to the extent that the investor is 

greedy or greedy and risk averse as well as any distribution for asset returns.  To the best of our 

knowledge, the application of the SDE setting for the purposes of investigating the diversification 

benefits of commodities is novel.   
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We conduct our analysis both in- and out-of-sample by constructing and comparing optimal 

portfolios derived from two respective asset universes: one that includes only the traditional asset classes 

(equities, bonds and cash) and one that is augmented with commodities, too.  To this end, we apply a 

two-step procedure that uses Scaillet and Topaloglou (2010) SDE test.  We consider first and second 

order SDE criteria and we provide evidence on the performance of various first, second and third 

generation commodity indices in a portfolio setting.   

We find that commodities provide diversification benefits.  The results are robust both in- and 

out-of-sample for both SDE criteria, for a number of portfolio performance evaluation measures, stock 

indices and alternative periods.  Interestingly, the evidence for diversification benefits is more 

pronounced in the case where the investor access commodities via second and third generation 

commodity indices.  We explain the reported diversification benefits by documenting that commodity 

markets are segmented from equity and bond markets. 

Our results have two implications.  First, an investor should include commodities in her portfolio 

because commodity and traditional markets are segmented.  Second, the investor should access 

commodities via dynamic commodity futures trading strategies such as the ones mimicked by the second 

and third generation indices.  It would be worth exploring further the effect of transaction costs on the 

optimal portfolios’ performance.  Most commodity indices started trading in early 2000s.  This implies 

that trading these indices via Index Funds or Exchange Traded Funds was not possible prior to these 

dates and hence a replication of the index would be required.  Thus, the cost of a replication strategy 

should be estimated using the actual weights and the actual transaction costs of the individual 

commodity futures contracts.  It would also be worth exploring the diversification benefits of other 

alternative asset classes such as hedge funds by employing the SDE setting.  These topics fall beyond 

the scope of the current study, yet they deserve to be topics for future research.    
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Appendix A: Mathematical formulations of Scaillet and Topaloglou (2010) test 

In this section we present the mathematical formulation of the Scaillet and Topaloglou (2010) stochastic 

dominance efficiency (SDE) test under the first two SDE criteria and some details on its numerical 

implementation for the purposes of portfolio construction. 

 

A.1 Mathematical formulation for FSDE 

To test for first order stochastic dominance efficiency (FSDE), we optimize the test statistic 

 1 1 1
,

ˆ ˆ ˆ: sup[ ( , ; ) ( , ; )]
z

S T J z F J z F
λ

τ λ= −  (16) 

The above formulation permits testing the dominance of a given portfolio strategy τ over any potential 

linear combination λ of the set of the available assets.  Hence, we implement a test of stochastic 

dominance efficiency and not a test of standard stochastic dominance.  To formulate the mathematical 

model of the above optimization, we will use two auxiliary binary variables to express the 1
ˆ( , ; )J z Fτ  

and 1
ˆ( , ; )J z Fλ  cumulative distribution functions.  These are step functions in our discrete case.  The 

mathematical formulation of the problem is the following: 
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where M is the greatest portfolio return.  The model is a mixed integer program maximizing the distance 

between the sum of two binary variables, 
1 1

1 1,
T T

t t
t t

L Q
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∑ ∑ , which represent 1

ˆ( , ; )J z Fτ  and 1
ˆ( , ; )J z Fλ , 

respectively; sums are taken over all possible values of portfolio returns.  We need to constrain the 



 31 

binary variable Lt to be equal to 1 if z ≥ τ′Yt  and zero otherwise.  This is achieved by using the first 

group of inequalities.  If z ≥ τ′Yt these inequalities force Lt to equal 1, and 0 otherwise.  Similarly, we 

need to constrain the binary variable Qt to be equal to 1 if z ≥ λ′Yt  and zero otherwise.  This is achieved 

using the second group of inequalities.  Qt equals 1 for each return t for which z ≥ λ′Yt.  These two 

groups of inequalities ensure that the two binary variables are cumulative distribution functions.  The 

third equation defines the sum of all weights to be unity.  

To solve the problem described by equation(17), we discretize the variable z and we solve 

smaller problems P(r) in which z is fixed to a given return r (see Scaillet and Topaloglou 2010 for the 

proof).  Then, we take the value for z that yields the maximum distance in equation (5).  The advantage 

of doing so is that the optimal values of the Lt variables are known in P(r) because Lt is not a function of 

the (unknown) optimal portfolio weights.  Hence, problem P(r) boils down to the following 

minimization problem. 
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In this case, we only have one auxiliary binary variable, Qt, so the problem is solved much faster. 

 

A.2 Mathematical formulation for SSDE 

The model for second order stochastic dominance efficiency is formulated in terms of standard linear 

programming.  Numerical implementation of first order stochastic dominance efficiency is much more 

computationally demanding because we need to develop mixed integer programming formulations.  To 
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test for second order stochastic dominance efficiency (SSDE) of portfolio τ over any potential linear 

combination λ, we optimize the test statistic 

 2 2 2
,

ˆ ˆ ˆ: sup[ ( , ; ) ( , ; )]
z

S T J z F J z F
λ

τ λ= −   (19) 

The mathematical formulation of the problem is the following 
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The model is a mixed integer program maximizing the distance between the sum of all returns over t of 

two variables, 
T T

t t
t t

L W
T T= =

−∑ ∑
1 1

1 1
 for each given value of z, which represent 2 2

ˆ ˆ( , ; ), ( , ; )J z F J z Fτ λ , 

respectively. Again, we will use one auxiliary binary variable Ft.  According to the first group of 

inequalities, Ft equals 1 for each return t for which z ≥ τ′Yt , and 0 otherwise.  Analogously, the second 

and third groups of inequalities ensure that the variable Lt equals  z - τ′Yt  for the scenarios for which the 

difference is positive, and 0 otherwise.  The fourth and last inequalities ensure that Wt equals z - λ′Yt  for 

the scenarios for which the difference is positive, and 0 otherwise.  The fifth equation defines the sum of 

all weights to be unity. 

For computational convenience, we reformulate the problem, following the same steps as for 

first-order stochastic dominance efficiency.  Then, the model is transformed to the following linear 

program  
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A.3 Portfolio construction and numerical implementation 

From a computational time cost perspective, it takes one hour to solve the FSDE model described in 

Section Α.1.  This is a considerable amount of time given that to solve the model we discretize z and we 

solve the FSDE problem for each discrete value of z.  We have 120 different z since we have 120 

observations at each point in time (rolling window of 120 observations).  Hence, we solve 120 mixed 

integer programming problems for each commodity index for each one of the 165 out-of-sample points 

in time.  In contrast, the solution of the SSDE problem described in Section Α.2 is not computationally 

expensive since it takes less than one minute to solve it at each point in time.  We solve the FSDE and 

SSDE problems with Gurobi solver on an iMac with 4*2.93 GHz Power, 16 GB of RAM.  The Gurobi 

solver uses the branch and bound technique.  We model the optimization problems by using GAMS 

(General Algebraic Modeling System). 

  



 34 

Appendix B: Description of the commodity indices 

First generation commodity indices 

S&P GSCI was launched in January 1991 with historical data available since January 1970.  The index 

currently invests in twenty four commodities classified into five groups (energy, precious metals, 

industrial metals, agricultural and livestock) and is heavily concentrated on the energy sector (almost 

70% of the total index value).  The S&P GSCI is a world-production weighted index based on the 

average quantity of production of each commodity in the index over the last five years of available data.  

DJ-UBSCI was launched in July 1998 with historical data beginning on January 1991.  The index 

invests in nineteen commodities from the energy, precious metals, industrial metals, agricultural and 

livestock sectors.  In contrast to the S&P GSCI, the DJ-UBSCI relies on two important rules to ensure 

diversification: the minimum and maximum allowable weight for any single commodity is 2% and 15%, 

respectively, and the maximum allowable weight for any sector is 33%.  The DJ-UBSCI construction 

algorithm constructs weights by taking liquidity and (to a smaller extent) production into account.  

DBLCI was launched in 2003 with available price history since 1 December 1988.  It tracks the 

performance of six commodities in the energy, precious metals, industrial metals and grain sectors.  The 

chosen commodity futures contracts represent the most liquid contracts in their respective sectors.  

DBLCI has a constant weights scheme which reflects world production and inventory, thus providing a 

diverse and balanced commodity exposure (for a detailed description of the first generation indices, see 

also for instance, Geman, 2005, Erb and Harvey, 2006). 

 

Second generation commodity indices 

JPMCCI was launched in November 2007 with historical data available since December 1989.  JPMCCI 

includes thirty three commodities and it uses commodity futures open interest to determine the inclusion 
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and relative weights of the individual commodity futures.  DBLCI-OY was launched in May 2006 with 

historical data available since December 1988.  The index components and weighting scheme are 

identical with these of DBLCI.  DBLCI-OY is designed to select the futures contracts that either 

maximises the positive roll yield in backwardated term structures or minimises the negative roll yield in 

contangoed markets from the list of tradable futures that expire in the next 13 months.  The Morningstar 

Commodity indices were launched in 2007 with historical data beginning on 1980.   

To be considered for inclusion in the Morningstar Commodity Index family, a commodity should 

have futures contracts traded in one of the U.S. exchanges and being ranked in the top 95% by the 12-

month average of total dollar value of open interest.  Morningstar indices are built based on a 

momentum strategy.  The weight of each individual commodity index in each of the composite indices 

is the product of two factors: magnitude and the direction of the momentum signal.  In brief, for each 

commodity, they calculate a “linked” price series that converts the price of the contract in effect at each 

point in time to a value that accounts for contract rolls.  The Morningstar Long-Only index (MSDIL) is a 

fully collateralized commodity futures index that is long all twenty eligible commodities.  The 

Morningstar Long-Flat index (MSDILF) is a fully collateralized commodity futures index that is long 

the commodities whose linked price exceeds its 12-month moving average.  If the linked price is lower 

than its 12-month moving average, the weight of that commodity is moved into cash, i.e. it is zeroed 

(flat position). The Morningstar second generation indices were launched in January 2007 with historical 

data backfilled since December 1979. 

 

Third generation commodity indices 

Morningstar Long/Short index is a fully collateralized commodity futures index that uses the momentum 

rule to determine if each commodity is held long, short, or flat.  At each point in time, if the linked price 
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exceeds its 12-month moving average, it takes the long side in the subsequent month.  Conversely, if the 

linked price is below its 12-month moving average, it takes the short side.  An exception is made for 

commodities in the energy sector.  If the signal for a commodity in the energy sector translates to taking 

a short position, the weight of that commodity is moved into cash.  The Morningstar Short/Flat 

commodity index is a fully collateralized commodity futures index that is derived from the positions of 

the Long/Short index.  It takes the same short positions as the Long/Short index and replaces the long 

positions with flat positions.  The Morningstar Short-Only commodity index is a fully collateralized 

commodity futures index that is short in all eligible commodities.  The Morningstar third generation 

indices were launched in January 2007 with historical data available backfilled December 1979. 
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Figure 1. First-degree stochastic dominance efficiency of portfolio λ over the market portfolio τ. 

 

 

Figure 2. Second-degree stochastic dominance efficiency of portfolio λ over the market portfolio τ. 
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Table 1: Description of the Indices 
Entries describe the set of stock, bond and commodity indices employed in this study. 
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Table 2: Descriptive Statistics 
Entries report the descriptive statistics for the alternative asset classes used in this study.  The annualized mean returns (with the respective t-statistics), the 
standard deviations, the Sharpe Ratios as well as the skewness and the kurtosis figures are reported.  The dataset spans January 1990 to September 2013, with the 
exception of DJ-UBSCI that covers January 1991 to September 2013.   

  Annualized 
Average Return tstat 

Annualized 
Standard 
Deviation 

Annualized 
Sharpe Ratio Skewness Kurtosis 

First Generation indices 
      Deutsche Bank Liquid Commodity Index 0.097 (2.265) 0.208 0.292 0.208 5.644 

S&P Goldman Sachs Commodity Index 0.063 (1.426) 0.213 0.124 -0.148 5.078 
Dow-Jones-UBS Commodity Index 0.055 (1.777) 0.149 0.142 -0.562 5.666 

       Second Generation indices 
      JP Morgan Commodity Curve Index 0.078 (2.421) 0.157 0.265 -0.575 5.985 

DBLCI-Optimum Yield 0.104 (2.876) 0.175 0.385 -0.190 5.455 
Morningstar Long/Flat Commodity Index 0.087 (4.026) 0.105 0.482 0.117 5.654 
Morningstar Long-Only Commodity Index 0.087 (2.712) 0.157 0.325 -0.361 5.607 

       Third Generation Indices 
      Morningstar Short/Flat Commodity Index 0.039 (3.325) 0.057 0.049 0.573 7.204 

Morningstar Long/Short Commodity Index 0.093 (4.193) 0.107 0.529 0.225 4.992 
Morningstar Short-Only Commodity Index -0.007 (-0.248) 0.149 -0.293 0.499 5.558 

       Equity Indices 
      S&P 500 Total Return 0.099 (3.228) 0.149 0.419 -0.601 4.137 

SMB 0.026 (1.108) 0.115 -0.088 0.823 11.382 
HML 0.048 (2.146) 0.109 0.111 0.619 5.755 

       Bond Index 
      Barclays US Aggregate Bond Index 0.065 (8.455) 0.037 0.769 -0.270 3.739 
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Table 3: In-sample testing for Stochastic Dominance Efficiency: Jan. 1990 – Sep. 2013 
Entries report the Scaillet and Topaloglou (2010) FSDE and SSDE test statistics and respective p-values (within parentheses) for the null hypothesis that a set of 
benchmark assets consisting of stocks, bonds and the risk-free asset are SD efficient versus the benchmark assets plus the commodity asset.  We access 
investment in commodities via first, second and third generation indices, separately.  Panel A reports the results when the benchmark set of assets consists of the 
S&P 500 Total Return Index, Barclays Aggregate Bond Index and 1-month LIBOR.  Panels B and C report the results when the benchmark set includes dynamic 
equity indices, i.e. the Fama-French (1993) size factor (Small minus Big, SMB) and the value factor (High minus Low, HML), respectively.  Results are based on 
monthly observations from Jan. 1990 –Sep. 2013.  One and two asterisks indicate that the null hypothesis of spanning can be rejected at 10% and 5% significance 
level, respectively. 
Test Asset Panel A: S&P 500 Panel B: SMB Panel C:HML 

 FSD                          SSD FSD                        SSD FSD                        SSD 
First generation indices 

   Deutsche Bank Liquid Commodity Index 0.087**                     0.005* 0.049*                  0.048* 0.088**                 0.047** 

 
(0.049)                      (0.053) (0.068)                 (0.055) (0.037)                  (0.014) 

S&P Goldman Sachs Commodity Index 0.087*                       0.004* 0.088                    0.019 0.087*                   0.019* 

 
(0.093)                     (0.098) (0.104)                 (0.115) (0.087)                  (0.085) 

Dow-Jones-UBS Commodity Index 0.006**                     0.005* 0.087*                  0.048* 0.060**                 0.048** 

 
(0.044)                      (0.051) (0.053)                 (0.052) (0.039)                  (0.041) 

Second generation indices 
   JP Morgan Commodity Curve Index 0.087*                       0.0031*  0.087**                0.029* 0.035**                 0.029**  

 
(0.065)                      (0.077) (0.048)                 (0.056) (0.039)                  (0.044) 

Deutsche Bank Liquid Commodity Index-Optimum Yield 0.087*                       0.0117* 0.013*                  0.014* 0.011*                   0.0065** 

 
(0.083)                      (0.073) (0.063)                 (0.065) (0.054)                  (0.047) 

Morningstar Long/Flat Commodity Index 0.014**                     0.015**  0.014**                0.017** 0.005**                 0.014**                           

 
(0.029)                      (0.014) (0.035)                 (0.045) (0.027)                  (0.023) 

Morningstar Long-Only Commodity Index 0.087**                     0.044* 0.086**                0.016* 0.070**                 0.018** 

 
(0.038)                      (0.053) (0.048)                 (0.065) (0.044)                   (0.049) 

Third generation indices 
   Morningstar Short/Flat Commodity Index 0.084**                     0.016**  0.084**               0.047* 0.070**                  0.048** 

 
(0.017)                      (0.014) (0.037)                 (0.053) (0.039)                   (0.034) 

Morningstar Long/Short Commodity Index 0.021**                     0.023**  0.009*                 0.009* 0.071**                  0.009** 

 
(0.022)                      (0.049) (0.063)                 (0.075) (0.034)                   (0.039) 

Morningstar Short-Only Commodity Index 0.084**                     0.023**  0.087*                 0.048* 0.071**                  0.049* 

 
(0.041)                     (0.049) (0.057)                 (0.066) (0.044)                   (0.051) 
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Table 4: Out-of-sample testing for Stochastic Dominance: January 2001 – September 2013 
Entries report the Scaillet and Topaloglou (2010) first and second order stochastic dominance (FSD, SSD, respectively) test statistics and respective p-values 
(within parentheses) for the null hypothesis that the optimal portfolio based on the traditional asset universe (stocks, bonds and cash) augmented with 
commodities stochastically dominates the optimal portfolio based on the traditional asset universe.  Optimal portfolios’ performance is evaluated out-of-
sample.  We access investment in commodities via the first generation indices, the second generation indices and the third generation indices, separately.  
Panel A reports results when the traditional asset universe consists of the S&P 500 Total Return Index, Barclays Aggregate Bond Index and Libor 1-month.  
Panels B and C report results when the stock asset class in the traditional asset universe is proxied by dynamic equity indices, i.e. the Fama-French (1993) 
size factor (Small minus Big, SMB) and value factor (High minus Low, HML), respectively.  Results are based on out-of-sample monthly portfolio returns 
spanning January 2001 –September 2013. 
Test Asset Panel A: S&P 500 Panel B: SMB Panel C:HML 

 FSD                          SSD FSD                        SSD FSD                        SSD 
First generation indices 

   Deutsche Bank Liquid Commodity Index -0.005                       -0.004 -0.008                    -0.005  -0.010                   -0.006 

 
(0.583)                      (0.530) (0.483)                 (0.560) (0.563)                  (0.573) 

S&P Goldman Sachs Commodity Index -0.004                        -0.003  -0.007                    -0.002 -0.005                     -0.005 

 
(0.553)                     (0.490) (0.507)                 (0.577) (0.570)                  (0.627) 

Dow-Jones-UBS Commodity Index -0.0019                     -0.002 -0.006                  -0.003 -0.006                   -0.004 

 
(0.530)                      (0.557) (0.533)                 (0.537) (0.507)                  (0.573) 

Second generation indices 
   JP Morgan Commodity Curve Index -0.007                        -0.005  -0.009                   -0.005  -0.009                   -0.008  

 
(0.533)                      (0.517) (0.560)                 (0.527) (0.543)                  (0.567) 

Deutsche Bank Liquid Commodity Index-Optimum Yield -0.009                         -0.006  -0.009                   -0.007  -0.010                   -0.009  

 
(0.517)                      (0.557) (0.543)                 (0.550) (0.590)                  (0.563) 

Morningstar Long/Flat Commodity Index -0.006                        -0.004   -0.008                   -0.005  -0.007                    -0.006                           

 
(0.533)                      (0.560) (0.543)                 (0.603) (0.583)                  (0.570) 

Morningstar Long-Only Commodity Index -0.009                        -0.006  -0.009                   -0.006  -0.008                    -0.008 

 
(0.487)                      (0.487) (0.507)                 (0.583) (0.610)                   (0.567) 

Third generation indices 
   Morningstar Short/Flat Commodity Index -0.003                       0.001   -0.003                  -0.002  -0.004                     -0.002 

 
(0.527)                      (0.503) (0.477)                 (0.547) (0.550)                   (0.563) 

Morningstar Long/Short Commodity Index -0.002                       -0.002   -0.007                  -0.004  -0.009                     -0.005 

 
(0.510)                      (0.560) (0.510)                 (0.570) (0.510)                   (0.517) 

Morningstar Short-Only Commodity Index -0.005                       -0.002  -0.004                   -0.003 -0.005                     -0.004 

 
(0.513)                      (0.547) (0.493)                 (0.523) (0.547)                   (0.520) 
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Table 5: Out-of-sample performance: Parametric portfolio measures  
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the S&P 500 Equity Index, the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test 
are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from 
the expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately.  The dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is conducted over Jan. 2001-Sep. 2013. Panels A and B report the 
results for the first and second order stochastic dominance efficiency, respectively.  

Panel A: First Order Stochastic Dominance   

                                           1st generation indices                              2 nd generation indices                                                    3 rd generation indices 

  Benchmark set S&P GSCI DJ-UBS CI DBLCI   JPMCCI 
DBLCI-

OY MSDILF MSDIL   MSDISF MSDILS MSDIS 
Sharpe Ratio 0.21 0.35 0.34 0.42   0.74 0.79 0.77 0.81   0.60 0.43 0.90 
Memmel p-value   0.341 0.358 0.253   0.055 0.037 0.041 0.040   0.115 0.273 0.019 
PortfolioTurnover 8.20% 13.37% 3.84% 3.49%   4.95% 3.45% 2.98% 9.19%   6.41% 0.95% 3.15% 
Return-Loss   0.71% 1.40% 1.96%   6.16% 6.63% 6.98% 6.83%   5.23% 2.95% 9.38% 
Opportunity Cost                           
Exponential Utility                         

ARA=2   1.80% 1.68% 3.60%   7.92% 9.00% 7.08% 9.24%   4.08% 2.64% 6.48% 
ARA=4   -0.60% 1.08% 1.44%   6.96% 7.80% 6.96% 8.16%   4.56% 2.64% 7.20% 
ARA=6   -3.24% 0.36% -0.84%   6.00% 6.60% 6.96% 7.08%   5.04% 2.76% 7.80% 

Power Utility                           
RRA=2   1.80% 1.68% 3.24%   7.92% 9.00% 7.08% 9.24%   4.08% 2.64% 6.48% 
RRA=4   -0.72% 0.96% 1.08%   6.96% 7.80% 6.96% 8.16%   4.56% 2.76% 7.20% 
RRA=6   -3.36% 0.24% -1.32%   5.88% 6.48% 6.96% 7.08%   5.04% 2.76% 7.92% 
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Table 5: Out-of-sample performance: Parametric portfolio measures (cont’d) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the S&P 500 Equity Index, the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test 
are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from 
the expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately. Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is conducted over the period from Jan. 2001-Sep. 2013. Panels A and B 
report the results for the first and second order stochastic dominance efficiency, respectively. 
 

Panel B: Second Order Stochastic Dominance 
    1st generation indices   2nd generation indices   3rd generation indices 

  Benchmark set 
S&P 
GSCI 

DJ-UBS 
CI DBLCI   JPMCCI 

DBLCI-
OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.21 0.36 0.32 0.39   0.49 0.53 0.58 0.58   0.27 0.43 0.63 
Memmel p-value   0.339 0.376 0.317   0.224 0.191 0.161 0.166   0.437 0.289 0.132 
PortfolioTurnover 7.32% 28.75% 13.82% 7.89%   5.56% 2.78% 4.03% 7.65%   15.32% 0.95% 5.42% 
Return-Loss   0.40% 0.77% 1.19%   2.66% 2.99% 4.19% 3.54%   2.87% 2.67% 5.93% 
Opportunity Cost                           
Exponential Utility                         

ARA=2   2.04% 1.44% 2.52%   4.32% 5.16% 4.44% 5.76%   -0.12% 2.64% 3.24% 
ARA=4   0.24% 0.60% -0.48%   2.40% 2.64% 4.20% 3.96%   1.08% 2.52% 3.96% 
ARA=6   -1.68% -0.24% -3.72%   0.24% -0.12% 4.08% 1.80%   2.16% 2.28% 4.68% 

Power Utility                           
RRA=2   1.92% 1.44% 2.40%   4.20% 5.04% 4.44% 5.76%   -0.12% 2.64% 3.24% 
RRA=4   0.12% 0.60% -0.72%   2.16% 2.52% 4.20% 3.84%   1.08% 2.52% 3.96% 
RRA=6   -1.92% -0.36% -4.32%   -0.24% -0.48% 4.08% 1.56%   2.16% 2.28% 4.68% 
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Table 6: Out-of-sample performance: Parametric portfolio measures and a value strategy 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Value Factor (HML), the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test are 
also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from the 
expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6).  Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints.  The out-of-sample analysis is conducted over the period from Jan. 2001-Sep. 2013.  Panels A and 
B report the results for the first and second order stochastic dominance efficiency, respectively. 

Panel A: First Order Stochastic Dominance 
    1st generation indices   2nd generation indices   3rd generation indices 

  Benchmark set 
S&P 
GSCI 

DJ-UBS 
CI DBLCI   JPMCCI 

DBLCI-
OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.05 0.76 0.49 0.77   0.76 0.87 0.75 0.67   0.56 0.87 0.53 
Memmel p-value   0.017 0.088 0.018   0.018 0.012 0.027 0.039   0.060 0.012 0.031 
PortfolioTurnover 3.88% 17.48% 10.57% 8.34%   16.17% 6.73% 8.29% 6.71%   14.46% 7.54% 11.54% 
Return-Loss   8.04% 4.87% 8.32%   8.07% 9.73% 8.66% 7.19%   6.75% 9.95% 5.92% 
Opportunity Cost                           
Exponential Utility                           

ARA=2   10.32% 6.24% 10.92%   10.20% 11.88% 8.64% 8.88%   5.40% 11.04% 5.88% 
ARA=4   9.60% 5.52% 9.84%   9.60% 11.16% 8.76% 8.16%   6.12% 10.80% 6.12% 
ARA=6   8.88% 4.80% 8.76%   8.88% 10.56% 9.00% 7.44%   6.96% 10.56% 6.48% 

Power Utility                           
RRA=2   10.32% 6.24% 11.04%   10.20% 11.88% 8.64% 8.88%   5.40% 11.04% 5.88% 
RRA=4   9.60% 5.52% 9.84%   9.60% 11.16% 8.76% 8.16%   6.24% 10.80% 6.12% 
RRA=6   8.88% 4.68% 8.76%   8.88% 10.56% 9.00% 7.44%   6.96% 10.56% 6.48% 
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Table 6: Out-of-sample performance: Parametric portfolio measures and a value strategy (cont’d) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Value Factor (HML), the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test are 
also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from the 
expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints.  The out-of-sample analysis is conducted over the period from Jan. 2001-Sep. 2013.  Panels A and 
B report the results for the first and second order stochastic dominance efficiency, respectively. 

Panel B: Second Order Stochastic Dominance  
    1st generation indices   2nd generation indices   3rd generation indices 

  Benchmark set 
S&P 
GSCI 

DJ-UBS 
CI DBLCI   JPMCCI 

DBLCI-
OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.04 0.51 0.42 0.41   0.65 0.65 0.62 0.61   0.42 0.57 0.56 
Memmel p-value   0.094 0.136 0.153   0.044 0.050 0.072 0.059   0.152 0.094 0.035 
PortfolioTurnover 4.88% 28.89% 14.10% 4.51%   18.12% 8.02% 1.97% 8.30%   23.63% 3.49% 61.64% 
Return-Loss   4.52% 3.96% 3.67%   6.36% 6.38% 6.89% 6.16%   4.80% 6.23% 4.39% 
Opportunity Cost                           
Exponential Utility                           

ARA=2   6.12% 4.92% 5.04%   8.76% 9.24% 7.08% 8.04%   3.72% 6.48% 5.64% 
ARA=4   5.64% 4.32% 2.76%   7.56% 7.08% 6.96% 6.96%   4.56% 6.36% 6.00% 
ARA=6   5.04% 3.84% 0.36%   6.48% 4.68% 6.72% 5.76%   5.40% 6.24% 6.36% 

Power Utility                           
RRA=2   6.12% 4.92% 4.92%   8.76% 9.24% 7.08% 8.04%   3.72% 6.48% 5.64% 
RRA=4   5.64% 4.32% 2.64%   7.56% 6.96% 6.96% 6.84%   4.56% 6.36% 6.00% 
RRA=6   5.04% 3.84% 0.00%   6.36% 4.20% 6.72% 5.76%   5.40% 6.24% 6.48% 
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Table 7:  Out-of-sample performance: Parametric portfolio measures and a size strategy 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Size Factor (SMB), the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test are 
also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from the 
expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is conducted over the period from Jan. 2001-Sep. 2013.  Panels A and B 
report the results for the first and second order stochastic dominance efficiency, respectively. 

Panel A: First Order Stochastic Dominance 
    1st generation indices   2nd generation indices   3rd generation indices 

  Benchmark set 
S&P 
GSCI 

DJ-UBS 
CI DBLCI   JPMCCI 

DBLCI-
OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.16 0.61 0.61 0.65   0.81 0.88 0.87 0.84   0.56 0.77 0.79 
Memmel p-value   0.153 0.121 0.116   0.030 0.023 0.026 0.030   0.120 0.055 0.032 
PortfolioTurnover 4.66% 12.11% 15.87% 2.90%   10.97% 3.63% 4.27% 7.11%   9.43% 1.72% 2.23% 
Return-Loss   3.88% 4.02% 4.63%   7.37% 8.34% 8.67% 7.84%   5.15% 7.47% 8.82% 
Opportunity Cost                           
Exponential Utility                         

ARA=2   6.12% 5.52% 7.32%   9.60% 11.28% 9.00% 9.96%   4.32% 7.80% 5.76% 
ARA=4   4.92% 5.04% 5.52%   8.76% 9.96% 8.88% 9.12%   4.80% 7.68% 6.48% 
ARA=6   3.60% 4.44% 3.60%   7.92% 8.64% 8.88% 8.40%   5.28% 7.56% 7.32% 

Power Utility                           
RRA=2   6.12% 5.64% 7.32%   9.60% 11.28% 9.00% 9.96%   4.32% 7.92% 5.76% 
RRA=4   4.92% 5.04% 5.52%   8.76% 9.96% 8.88% 9.12%   4.80% 7.68% 6.60% 
RRA=6   3.60% 4.44% 3.60%   7.92% 8.64% 8.88% 8.40%   5.40% 7.56% 7.32% 
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Table 7: Out-of-sample performance: Parametric portfolio measures and a size strategy (cont’d) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Size Factor (SMB), the Barclays US Aggregate Bond Index and the 1-month LIBOR. The p-values of Memmel's (2003) test are 
also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived from the 
expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and 
different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first generation indices, second 
generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception of DJ-UBSCI that spans 
Jan. 1991 to Sep.2013 due to data availability constraints.  The out-of-sample analysis is conducted over the period from Jan. 2001-Sep. 2013.  Panels A and 
B report the results for the first and second order stochastic dominance efficiency, respectively. 
 

Panel B: Second Order Stochastic Dominance 
    1st generation indices   2nd generation indices   3rd generation indices 

  Benchmark set 
S&P 
GSCI 

DJ-UBS 
CI DBLCI   JPMCCI 

DBLCI-
OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.19 0.22 0.32 0.40   0.42 0.56 0.60 0.52   0.53 0.77 0.72 
Memmel p-value   0.465 0.363 0.289   0.269 0.166 0.166 0.194   0.194 0.055 0.083 
PortfolioTurnover 14.64% 30.79% 21.72% 4.39%   10.52% 0.22% 3.48% 5.15%   13.59% 1.72% 26.10% 
Return-Loss   -0.45% 1.05% 2.25%   2.39% 4.26% 4.26% 3.82%   0.24% 7.47% 7.20% 
Opportunity Cost                           
Exponential Utility                         

ARA=2   -0.48% 1.56% 3.12%   3.36% 6.00% 5.16% 5.04%   2.88% 7.80% 3.72% 
ARA=4   -3.24% 0.24% -0.12%   1.08% 3.36% 4.92% 3.12%   3.60% 7.68% 4.56% 
ARA=6   -6.24% -1.20% -3.72%   -1.44% 0.48% 4.80% 1.08%   4.44% 7.56% 5.52% 

Power Utility                           
RRA=2   -0.48% 1.56% 3.00%   3.24% 6.00% 5.16% 5.04%   2.88% 7.92% 3.72% 
RRA=4   -3.36% 0.12% -0.36%   0.96% 3.24% 4.92% 3.00%   3.60% 7.68% 4.56% 
RRA=6   -6.48% -1.44% -4.20%   -1.80% 0.12% 4.80% 0.84%   4.44% 7.56% 5.52% 
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Table 8: Out-of-sample performance: Value and Momentum Factor in the benchmark set  
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the S&P500, the HML index, the Momentum factor, the Barclays US Aggregate Bond Index and the 1-month LIBOR rate. The p-
values of Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity 
set is equal to that derived from the expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute 
risk aversion (ARA=2, 4, 6) and different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first 
generation indices, second generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception 
of DJ-UBSCI that spans Jan. 1991 to Sep.2013 due to data availability constraints.  The out-of-sample analysis is conducted over the period Jan. 2001-Sep. 
2013. Panels A and B report the results for the first and second order stochastic dominance efficiency, respectively 
 

Panel A: First Order Stochastic Dominance 

    1st generation indices   2nd generation indices   3rd generation indices 

  

Benchmark 

set 

S&P 

GSCI 

DJ-UBS 

CI DBLCI   JPMCCI 

DBLCI-

OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.146 0.817 0.853 0.856   0.856 1.051 0.752 0.717   0.671 0.919 0.691 

Memmel p-value   0.017 0.008 0.014   0.013 0.002 0.020 0.025   0.043 0.007 0.022 

PortfolioTurnover 6.12% 12.81% 11.28% 9.77%   9.82% 13.21% 8.59% 12.78%   10.49% 12.65% 19.56% 

Return-Loss   9.77% 10.24% 10.30%   10.39% 12.25% 8.80% 8.14%   8.29% 10.98% 7.30% 

Opportunity Cost                           

Exponential Utility                         

ARA=2   4.56% 4.92% 4.92% 

 

4.92% 6.72% 4.56% 4.32%   3.48% 5.28% 4.20% 

ARA=4   5.64% 6.00% 6.00% 

 

6.00% 7.68% 5.64% 5.28%   4.56% 6.36% 5.16% 

ARA=6   6.84% 7.08% 7.08% 

 

7.08% 8.76% 6.60% 6.36%   5.76% 7.44% 6.24% 

Power Utility                           

RRA=2   4.56% 4.92% 4.92% 

 

4.92% 6.72% 4.56% 4.32%   3.48% 5.28% 4.20% 

RRA=4   5.64% 6.00% 6.00% 

 

6.00% 7.68% 5.64% 5.28%   4.56% 6.36% 5.16% 

RRA=6   6.84% 7.08% 7.20% 

 

7.08% 8.76% 6.60% 6.36%   5.76% 7.44% 6.24% 
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Table 8: Out-of-sample performance: Value and Momentum Factor in the benchmark set (cont’d) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the S&P500, the HML index, the Momentum factor, the Barclays US Aggregate Bond Index and the 1-month LIBOR rate. The p-
values of Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity 
set is equal to that derived from the expanded set that includes commodities. The results for the opportunity cost are reported for different degrees of absolute 
risk aversion (ARA=2, 4, 6) and different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment in commodities separately via first 
generation indices, second generation indices and third generation indices, separately.  Τhe dataset for all assets spans Jan. 1990-Sep. 2013 with the exception 
of DJ-UBSCI that spans Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is conducted over the period from Jan. 2001-
Sep. 2013. Panels A and B report the results for the first and second order stochastic dominance efficiency, respectively. 

Panel B: Second Order Stochastic Dominance 

    1st generation indices   2nd generation indices   3rd generation indices 

  

Benchmark 

set 

S&P 

GSCI 

DJ-UBS 

CI DBLCI   JPMCCI 

DBLCI-

OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.409 0.677 0.811 0.765   0.743 0.786 0.984 0.776   0.679 0.929 0.744 

Memmel p-value   0.184 0.087 0.121   0.154 0.127 0.039 0.126   0.204 0.062 0.143 

PortfolioTurnover 16.22% 32.83% 24.68% 10.55%   9.33% 14.94% 8.92% 22.47%   33.34% 8.70% 44.03% 

Return-Loss   2.45% 4.13% 4.28%   4.02% 3.96% 6.10% 3.42%   5.03% 5.76% 2.74% 

Opportunity Cost                           

Exponential Utility                         

ARA=2   0.48% 1.20% 1.20% 

 

1.32% 1.68% 2.40% 1.68%   -1.32% 1.92% 0.48% 

ARA=4   0.96% 1.56% 1.56% 

 

1.68% 2.04% 2.76% 2.04%   -0.72% 2.40% 0.96% 

ARA=6   1.32% 2.04% 1.92% 

 

1.92% 2.28% 3.12% 2.40%   0.00% 2.76% 1.44% 

Power Utility                           

RRA=2   0.48% 1.20% 1.20% 

 

1.32% 1.68% 2.40% 1.68%   -1.32% 1.92% 0.48% 

RRA=4   0.96% 1.56% 1.56% 

 

1.68% 2.04% 2.76% 2.04%   -0.72% 2.40% 0.96% 

RRA=6   1.32% 2.04% 1.92% 

 

1.92% 2.28% 3.12% 2.40%   0.00% 2.76% 1.44% 
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Table 9: Out-of-sample performance: Alternative equity indices in the benchmark asset universe 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Russell 2000 Index, the Vanguard value index, Vanguard small cap index, the Barclays US Aggregate Bond Index and the 1-
month LIBOR rate.  The p-values of Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the 
traditional investment opportunity set is equal to that derived from the expanded set that includes commodities. The results for the opportunity cost are 
reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment 
in commodities separately via first generation indices, second generation indices and third generation indices, separately.  The dataset for all assets spans Jan. 
1990-Sep. 2013 with the exception of DJ-UBSCI that covers Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is 
conducted over the period Jan. 2001-Sep. 2013. Panels A and B report the results for the first and second order stochastic dominance efficiency, respectively. 

Panel A: First Order Stochastic Dominance 

    1st generation indices   2nd generation indices   3rd generation indices 

  

Benchmark 

set 

S&P 

GSCI 

DJ-UBS 

CI DBLCI   JPMCCI 

DBLCI-

OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.387 0.447 0.477 0.461   0.533 0.644 0.598 0.678   0.492 0.627 0.420 

Memmel p-value   0.392 0.333 0.383   0.251 0.103 0.209 0.135   0.330 0.145 0.441 

PortfolioTurnover 8.58% 13.21% 18.75% 14.07%   10.47% 21.15% 11.62% 10.71%   14.19% 8.80% 5.44% 

Return-Loss   1.25% 1.87% 2.24%   3.36% 4.86% 5.86% 6.91%   2.93% 6.02% 1.90% 

Opportunity Cost                           

Exponential Utility                         

ARA=2   1.20% 1.44% 0.84%   2.40% 4.44% 1.68% 3.60%   1.20% 2.88% 0.24% 

ARA=4   1.92% 2.88% 2.76%   3.84% 5.52% 4.56% 5.88%   3.48% 5.28% 2.40% 

ARA=6   2.76% 4.56% 4.80%   5.40% 6.72% 7.56% 8.28%   6.00% 7.80% 4.80% 

Power Utility                           

RRA=2   1.20% 1.44% 0.84%   2.40% 4.44% 1.80% 3.60%   1.20% 2.88% 0.24% 

RRA=4   2.04% 3.00% 2.88%   3.96% 5.52% 4.68% 6.00%   3.60% 5.40% 2.52% 

RRA=6   3.00% 4.68% 5.04%   5.64% 6.84% 7.80% 8.52%   6.12% 8.04% 5.04% 
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Table 9: Out-of-sample performance: Alternative equity indices in the benchmark asset universe (cont’d) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return-Loss) when the 
benchmark set includes the Russell 2000 Index, the Vanguard value index, Vanguard small cap index, the Barclays US Aggregate Bond Index and the 1-
month LIBOR rate.  The p-values of Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the 
traditional investment opportunity set is equal to that derived from the expanded set that includes commodities. The results for the opportunity cost are 
reported for different degrees of absolute risk aversion (ARA=2, 4, 6) and different degrees of relative risk aversion (RRA=2, 4, 6). Investors access investment 
in commodities separately via first generation indices, second generation indices and third generation indices, separately.  The dataset for all assets spans Jan. 
1990-Sep. 2013 with the exception of DJ-UBSCI that covers Jan. 1991 to Sep.2013 due to data availability constraints. The out-of-sample analysis is 
conducted over the period Jan. 2001-Sep. 2013. Panels A and B report the results for the first and second order stochastic dominance efficiency, respectively. 
 

Panel B: Second Order Stochastic Dominance 

    1st generation indices   2nd generation indices   3rd generation indices 

  

Benchmark 

set 

S&P 

GSCI 

DJ-UBS 

CI DBLCI   JPMCCI 

DBLCI-

OY MSDILF MSDIL   MSDISF MSDILS MSDIS 

Sharpe Ratio 0.269 0.234 0.448 0.570   0.564 0.570 0.788 0.892   0.863 0.732 0.549 

Memmel p-value   0.553 0.263 0.131   0.150 0.131 0.040 0.024   0.026 0.079 0.151 

PortfolioTurnover 13.44% 31.22% 28.26% 24.76%   9.10% 24.76% 7.01% 15.25%   30.68% 7.33% 46.79% 

Return-Loss   -0.64% 4.11% 5.35%   7.33% 5.35% 12.08% 12.69%   14.00% 11.09% 4.90% 

Opportunity Cost                           

Exponential Utility                         

ARA=2   -0.24% 1.44% 3.72%   2.64% 3.72% 3.84% 5.64%   2.28% 3.36% 2.64% 

ARA=4   1.68% 3.96% 5.40%   5.04% 5.40% 6.48% 8.04%   5.28% 6.00% 5.04% 

ARA=6   3.60% 6.60% 7.20%   7.56% 7.20% 9.24% 10.68%   8.52% 8.88% 7.68% 

Power Utility                           

RRA=2   -0.24% 1.44% 3.72%   2.64% 3.72% 3.84% 5.76%   2.40% 3.36% 2.76% 

RRA=4   1.68% 4.08% 5.52%   5.04% 5.52% 6.60% 8.16%   5.40% 6.12% 5.16% 

RRA=6   3.84% 6.84% 7.32%   7.68% 7.32% 9.48% 10.92%   8.76% 9.00% 7.92% 
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Table 10: Testing for market integration  
Entries report coefficients of predictor variables.  Predictive regressions are run to implement Campbell and Hamao (1992) test for market integration.  Dependent 
variables for the regressions are the excess returns on commodity, equity and bond indices.  The independent variables are the instrumental variables lagged one 
month:  the dividend yield, yield on the three-month Treasury bills, the junk bond premium (or default spread) defined as the excess of the yield on long-term BAA 
corporate bonds rated by Moody’s over the yield on AAA-rated bonds, the term spread defined as the difference between the Aaa yield and the one-month bill rate, 
the Industrial Production growth, the money supply growth, and the growth in the Baltic Dry Index.  A constant term is included in all regressions.  The coefficient 
estimates, the respective t-statistics, the Adjusted R2, the F-statistic and the respective p-values are reported.  The dataset spans 1999-2013.  One and two asterisks 
indicate that the coefficient estimates are statistically significant different from zero at 10% and 5% significance level, respectively. 

Index Intercept T-bill Dividend Yield Junk bond yield Term Spread Money Growth Industrial Production growth Baltic Dry Index Adj R squared F-statistic p-value 

            S&P GSCI 0.180 -0.008 -0.060 0.002 -0.008 -0.850 0.687 0.023 1.77% 1.449 0.189 
t-stat (1.574) (-1.104) (-1.495) (0.128) (-1.005) (-1.559) (0.815) (0.962) 

   DJ -UBS CI 0.057 -0.001 -0.022 0.005 -0.003 -0.266 0.710 0.012 -1.14% 0.719 0.656 
t-stat (0.680) (-0.192) (-0.762) (0.429) (-0.430) (-0.663) (1.143) (0.696) 

   DBLCI 0.119 -0.003 -0.039 0.000 -0.006 -0.500 0.716 0.021 0.85% 1.213 0.298 
t-stat (1.112) (-0.489) (-1.032) (0.022) (-0.712) (-0.979) (0.906) (0.955) 

   JPMCCI 0.088 -0.004 -0.025 0.005 -0.006 -0.555 0.668 0.019 0.72% 1.181 0.317 
t-stat (0.992) (-0.700) (-0.815) (0.386) (-0.874) (-1.308) (1.018) (1.054) 

   DBLCI-OY 0.073 -0.002 -0.021 0.001 -0.004 -0.387 0.669 0.018 -0.28% 0.930 0.485 
t-stat (0.769) (-0.297) (-0.632) (0.096) (-0.559) (-0.852) (0.952) (0.913) 

   MSDILF 0.026 0.001 -0.013 -0.001 0.001 -0.125 0.370 -0.017 -1.19% 0.707 0.666 
t-stat (0.424) (0.338) (-0.614) (-0.145) (0.248) (-0.431) (0.827) (-1.371) 

   MSDILF 0.100 -0.003 -0.035 0.008 -0.005 -0.433 0.664 0.012 -0.59% 0.853 0.545 
t-stat (1.120) (-0.594) (-1.135) (0.597) (-0.737) (-1.021) (1.014) (0.636) 

   MSDISF 0.008 0.001 -0.005 -0.007 0.001 0.088 -0.203 -0.002 -1.28% 0.687 0.683 
t-stat (0.259) (0.285) (-0.452) (-1.523) (0.637) (0.634) (-0.944) (-0.308) 

   MSDILS 0.030 0.002 -0.016 -0.008 0.003 -0.034 0.163 -0.019 0.08% 1.020 0.419 
t-stat (0.493) (0.510) (-0.751) (-0.898) (0.566) (-0.119) (0.366) (-1.546) 

   MSDIS -0.061 0.004 0.018 -0.005 0.003 0.532 -0.647 -0.011 -0.98% 0.758 0.624 
t-stat (-0.725) (0.649) (0.599) (-0.426) (0.553) (1.322) (-1.040) (-0.623) 

   S&P 500  0.137* -0.012** -0.032 0.008 -0.012** -0.217 0.119 0.031** 3.24% 1.833 0.084 
t-stat (1.825) (-2.542) (-1.213) (0.749) (-2.139) (-0.606) (0.215) (1.997) 

   Barclays Bond Index -0.042** 0.003** 0.010* -0.002 0.004** 0.123 0.103 -0.001 0.069 2.845 0.008 
t-stat (-2.471) (2.773) (1.692) (-0.668) (3.372) (1.541) (0.834) (-0.321) 

    


