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Abstract – The symbolic dynamics technique is well known for low-dimensional dynamical sys-
tems and chaotic maps, and lies at the roots of the thermodynamic formalism of dynamical
systems. Here we show that this technique can also be successfully applied to time series gener-
ated by complex systems of much higher dimensionality. Our main example is the investigation
of share price returns in a coarse-grained way. A nontrivial spectrum of Rényi entropies is found.
We study how the spectrum depends on the time scale of returns, the sector of stocks consid-
ered, as well as the number of symbols used for the symbolic description. Overall our analysis
confirms that in the symbol space transition probabilities of observed share price returns depend
on the entire history of previous symbols, thus emphasizing the need for a modelling based on
non-Markovian stochastic processes. Our method allows for quantitative comparisons of entirely
different complex systems, for example the statistics of symbol sequences generated by share price
returns using 4 symbols can be compared with that of genomic sequences.

perspective Copyright c© EPLA, 2017

Introduction. – The symbolic dynamics technique is
a powerful method to describe trajectories of a dynamical
system in a coarse-grained way [1–10]. It has been ap-
plied to many low-dimensional maps exhibiting chaotic or
critical behavior. Nontrivial correlations in the dynami-
cal system manifest themselves in a nontrivial spectrum of
Rényi entropies [1,4,5,11–13] and other observables asso-
ciated with the set of allowed symbol sequences and their
corresponding probabilities. This technique, which was
very popular in the 1980s and 1990s when a lot of re-
search on 1-dimensional maps was done [2–5,10], has been
revived in more recent work and applied in a more general
context [14–17].

Our main aim in this paper is to illustrate that the
symbolic dynamics technique borrowed from dynamical
systems theory can be successfully applied to time se-
ries generated by general complex systems in higher di-
mensions, far beyond the original 1-dimensional chaotic
map approach. Our main example in the following will
be share price dynamics, which is of course ultimately
produced by a complex market and trader dynamics in
a high-dimensional phase space [18]. It is well known that
financial time series exhibit multifractal features [19–22],

but here we present a somewhat different approach to this
problem based on the symbolic dynamics technique. We
will investigate the correlations and complex behavior as-
sociated with discrete symbol sequences generated from
observed share price returns on various time scales. We
will quantify this by the calculation of the correspond-
ing Rényi entropies [1,11–13] for symbol sequences based
on historical data sets of share price returns for various
sectors, both on long (daily) time scales and on short
time scales (minutes). It turns out that the stochastic
process of symbol sequences observed for real share price
data exhibits non-Markovian character. To characterize
differences between various companies (or communities
in a complex system context), we will introduce a Rényi
difference matrix which compares Rényi entropies of differ-
ent subsystems. The method developed allows for quan-
titative comparisons of different complex subsystems, or
even different scientific problems due to the encoding in
the symbolic dynamics space. For example, it is possible
to quantitatively compare the statistical properties of ge-
nomic sequences [23–25] with those generated by coarse-
grained share price movements, although both problems
come from completely different areas of science.
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Fig. 1: (Colour online) Time series of log returns of a share
price (in this example Alcoa Inc.) over the period from 1998
to 2013, exhibiting intermittent outbursts of strong volatility.
The time unit of t consists in trading days. A year has about
251 trading days.

Symbolic dynamics for share prices. – Let us apply
the symbolic dynamics technique, well known from dy-
namical systems theory, to a coarse-grained description
of a given time series. This time series is assumed to
be generated by a suitable observable of a dynamically
evolving complex system. Rather than being very theo-
retical, we choose a concrete example: Share price evolu-
tion, as created by complex market structures and trader
speculations. Often, one is interested only in a very ba-
sic question related to a given complex system. For the
example of share prices, this question is quite straightfor-
ward: Basically one is interested in whether the share price
of a particular company will go up or down, and this prob-
lem of course also depends on the time scale considered.
To generate symbol sequences associated with a question
of this type we first need to choose a suitable partition
of the phase space (a generating partition in the case of
low-dimensional maps).

The easiest and most straightforward way for share
prices is to consider just two symbols, i.e., to consider the
possible values of logarithmic share price returns log Sn+1

Sn

in two disjoint subsets A1 = (−∞, 0) and A2 = (0,∞),
corresponding to negative and positive changes of the
share price Sn on a discrete time scale labelled as n. This
is kind of a reduced phase-space description for the ques-
tion asked here. Note that A1 and A2 are chosen as open
intervals. The point 0 (corresponding to no change) has
measure 0, it does not influence the analysis. Of course,
for other complex systems/time series one can define the
subsets generating the symbol sequences differently, which
depends on the problem and the question asked about the
complex system. In general, much more complicated gen-
erating partitions arise in this way [9,14–17].

Let us now look at an example data set of daily stock
prices Sn of the company Alcoa Inc. that covers the period
from January 1998 to May 2013 (fig. 1). If the log return
is an element of A1, which is equivalent to Sn+1 < Sn,
then we denote such a price-decrease event by the sym-
bol d. Otherwise a price in A2 stands for Sn+1 > Sn and
is denoted by u which means a price increase. By this
method we can attribute to the time series of share prices

Fig. 2: (Colour online) Joint probabilities p
(N)
j of the daily

share prices movement dynamics for symbol sequence of length
from 2 to 8 for Alcoa Inc.

a symbol sequence i0, i1, i2, . . . , in, . . . , where in ∈ {d, u}.
We now consider subsequences of symbols of length N ,
where N is small as compared to the total number of data
available. As we only have data for a limited set of data
points, we divide up the whole data sequence into R seg-
ments of equal length N . Because each symbol has only
two choices which are either u or d, for any given N we get
up to ω(N) = 2N allowed subsequences. Since the parti-
tion of the phase space is rather simple and our dataset
is big enough to satisfy R ≫ ω(N), there will be many
occurences that correspond to the same symbolic pattern.
Hence we can easily acquire the probabilities of each al-
lowed symbol sequence by determining the frequencies of
how often the symbol sequence occurs in the given data
set. The probability of a given symbol sequence of length

N is then denoted as p
(N)
j = p(i0, . . . , iN−1), where j la-

bels all possible sequences i0, . . . , iN−1.
Now by encoding each allowed symbol sequence of

length N into a real number α on the unit interval us-
ing the binary expansion with 0 = d and and 1 = u, we
can produce a plot to visualise our probabilities. This
means that any given sequence of symbols i0, . . . , iN−1

can be represented by a sequence of bits, in particularly
we assign

xin
=

{

1, if in = u,

0, if in = d,
(1)

where n = 0, 1, . . . , N − 1. One can implement this
by defining a coordinate α assigned to a given symbol
sequence as

α(x(N)) =

N
∑

n=1

xin−1
2−n. (2)

Note that α(x(N)) ∈ [0, 1). In this way we allocate to
each symbol sequence a real number α on the unit interval
so that we can easily visualize our results on the frequency
of a given symbol sequence. This is shown in fig. 2.

Note that numerically we restrict ourselves to N ≤ 8
because of the fact that we only have a limited amount of
data points. Larger N would induce large stochastic errors
due to the fact that the statistics is not high enough to
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estimate the frequency of a given symbol sequence in a
reliable way.

Also note that while for the simple example considered
here all symbol sequences are possible, for more general
complex systems (and more complicated questions asked
that are then encoded into the symbols, such as the prob-
lems in [14–17]) there will be a set of allowed and forbidden
sequences in the symbol space. In this case the distribu-
tion in fig. 2 will have gaps and generally there will be a
multifractal structure. Still everything that we define in
this paper can still be done in an analogous way.

Information contents of the symbolic sequences.

– Given experimentally determined probability distribu-
tions with possible self-similar features such as in fig. 2, it
is meaningful to find a proper way to measure multifractal
features. For this purpose we use the well-known concept
of Rényi information [1,11–13] defined as

Iq(p
(N)) =

1

q − 1
ln

ω(N)
∑

j=1

(p
(N)
j )q. (3)

Here q is a real number and ω(N) is the number of al-
lowed symbol sequences for a given N (an allowed symbol

sequence is one that satisfies p
(N)
j �= 0). The index j labels

the various sequence probabilities. The Rényi information
measure can be regarded as a generalisation of the Shan-
non information, as for q → 1 we have

lim
q→1

Iq(p
(N)) =

ω(N)
∑

j=1

p
(N)
j ln p

(N)
j = I(p(N)), (4)

where I(p(N)) denotes the Shannon information.
An important special case in eq. (3) is the choice q = 0,

I0(p
(N)) = − lnω(N), (5)

which means I0(p
(N)) decreases in a logarithmical way

with the number of allowed symbol sequences. Note that
when we have a limited length N of symbol sequences,
eq. (3) yields a finite value as ω(N) is finite.

Recall that for a given N any symbol sequence is
mapped onto a point of [0, 1), with equal distance be-
tween neighboring points. We call the distance of two
neighboring coordinates at a given level in fig. 2 box size

and denote it by ε. In our case the box size is determined
by N as ε = 1

2N . This means that ε is getting smaller as
N grows and when N → ∞, ε is approaching 0, in which
case the Rényi information defined by eq. (3) diverges. It
is then useful to define the Rényi dimension which is a
useful quantity as it stays finite in the limit ε → 0:

D(q) = lim
ε→0

Iq(p
(N))

ln ε
= lim

ε→0

1

ln ε

1

q − 1
ln

ω(N)
∑

j=1

(p
(N)
j )q. (6)

An example of (finite box size) Rényi dimensions evaluated
for the data given in fig. 2 is shown in fig. 3.

Fig. 3: (Colour online) Rényi dimensions together with the up-
per (orange dashed line) and lower (green dashed line) bounds
for daily share prices movement of shares of Alcoa Inc (as nu-
merically obtained for N = 8).

Of course the size of any data set is limited, in our
case the smallest ε that can be achieved with reliable non-
fluctuating results is 1

28 . Given the finiteness of the data
set it is useful to check some rigorous upper and lower
bounds and monotonicity properties of the Rényi dimen-
sions, valid for arbitrary probability measures. The Rényi
dimensions are monotonically decreasing and their values
must be positive for all q. Also, if all symbol sequences are
allowed then we must get the value 1 when q = 0. This is
because

D(0) = lim
ε→0

(

−
1

ln ε

)

ln

ω(N)
∑

j=1

1 = lim
ε→0

(

−
ln 2N

ln 1
2N

)

= 1.

(7)
In addition, as shown in [12] there is a restriction of

possible values of the Rényi dimensions as a general upper
and lower bound can be proved:

q′ − 1

q′
D(q′) ≥

q − 1

q
D(q), for q′ > q, q′q > 0.

(8)
If we substitute +∞ and −∞ for q in eq. (8), we obtain
the upper bound

D(q) ≤
q

q − 1
D(+∞), for q > 1, (9)

and a lower bound is given by

D(q) ≥
q

q − 1
D(−∞), for q < 0. (10)

We have checked these bounds for our data set with
N = 8, the result is also shown in fig. 3. Clearly the
inequalities (9) and (10) are satisfied by our experimental
data.

From the Rényi dimensions D(q) one can proceed to
the singularity spectrum f(α̃) of crowding indices α̃ by
a Legendre transformation in the thermodynamic formal-
ism. However, as the information contained in f(α̃) spec-
tra is the same as the one in the generalized dimensions
D(q), we will not further proceed along these lines here,
but refer the reader to suitable literature introducing to
this topic [1,26].
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Fig. 4: (Colour online) Rényi entropies for the daily share price
movement dynamics for symbol sequence of length from 2 to 8
for Alcoa Inc.

Rényi entropies. – Unlike the Rényi dimension,
which generally is a property of a given multifractal prob-
ability measure and which does not a priori contain any
dynamical information, the Rényi entropy K(q) measures
the production (or loss) of information encoded in the
symbol sequences. This is the quantity of direct inter-
est for share price evolution. The Rényi entropy K(q) is
defined in the limit N → ∞ and given by

K(q) = lim
N→∞

−I
(N)
q

N
= lim

N→∞

1

1 − q

1

N
ln

ω(N)
∑

j=1

(p
(N)
j )q.

(11)
Of course, by projecting symbol sequences onto points on
the real line (as done in fig. 2), both approaches can be
made formally equivalent, but the dynamical information
is then just encoded in a suitable multifractal measure.

Figure 4 shows finite-N versions of Rényi entropies for
share price returns where N grows from 2 to 8. The Rényi
entropies have of course the same dependence on q as the
Rényi dimensions of the corresponding multifractal mea-
sure that encodes the symbol sequence probabilities on the
unit interval.

For q = 0 we get

K(0) = lim
N→∞

1

N
ln 2N = ln 2, (12)

which is the topological entropy. Moreover, for q → 1,
using eq. (4),

K(1) = lim
N→∞

−I(p(N))

N
, (13)

we get the Kolmogorov-Sinai entropy asssociated with the
symbol sequences of share price changes. Again one can
proceed from the function K(q) to an equivalent spectrum
of dynamical indices g(α̃) by Legendre transformation
(see, e.g., [1]).

Small time scales. – We have quantified the joint
probabilities of the daily share price movements by the cor-
responding Rényi entropies. We are now interested in how

Fig. 5: (Colour online) Joint probabilities of share price dy-
namics for symbol sequence of length from 2 to 8 for Alcoa
Inc., evaluated on a time scale of minutes.

Fig. 6: (Colour online) The Rényi entropies as obtained for
Alcoa shares on a time scale of minutes, with N = 2, . . . , 8.

these observables depend on the time scale of the symbolic
dynamics. Instead of using the daily share prices, the now
analysed data set consists of share prices recorded each
minute for the same period from 1998 to 2013; this covers
about 1.5 million data points. We repeat the same analy-
sis as before and consider symbol sequences up to length 8.
By using the same partition method as in the previous sec-
tion we obtain the multifractal probability distributions of
symbol sequences as shown in fig. 5.

Compared with fig. 2, the probability distributions on
a small time scale are significantly different from those
on the daily time scale. Note that there are some local
maxima which are reproduced in a self-similar way. While
these densities are non-smooth, the advantage of proceed-
ing to the Rényi dimensions (or entropies) is that in this
way a smooth dependence on the scanning paramter q is
produced. This is shown in figs. 6 and 7.

We see, similarly to the daily time scale, that both
the Rényi entropies and the Rényi dimensions are mono-
tonically decreasing with respect to the paramter q, with
larger N generating a more pronounced q-dependence for
positive q, whereas there is hardly any N -dependence for
q < 0. Figure 7 also shows the upper and lower bound.

An important property that we have checked for our
data sets is the fact that quite generally the conditional
probabilities

p(iN |i0, . . . , iN−1) = p(i0, . . . iN )/p(i0, . . . iN−1) (14)

30001-p4
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Fig. 7: (Colour online) Upper and lower bounds (dashed lines)
for the Rényi dimensions (solid line) of Alcoa shares on a time
scale of minutes (N = 8).

Fig. 8: (Colour online) Symbol sequence probabilities of length
N for Alcoa shares using an alphabet of 4 symbols (daily (a)
and minute (b) time scale).

depend on the entire history i0, . . . , iN−1, i.e., a Marko-
vian model cannot capture the complex features in the
symbol space. For example, given a long alternating se-
quence u, d, u, d it is statistically slightly more likely to
observe the next symbol as u.

4-symbol partitions. – So far we used the simplest
method to study the symbolic dynamics of the share price
movements, just considering whether a share price goes
up or down. We may, however, also ask a more detailed
question, such as whether the share price goes up slightly
or strongly. To detect further details, we may generate a
refined version of the phase-space partition A = {A1, A2}
where previously A1 = (−∞, 0) and A2 = (0,∞). Assume
there exists a real number c where the log returns have
equal 1-point probabilities to fall into each element of a
partition B = {B1, B2, B3, B4} given by

B1 = (−∞,−c), B2 = (−c, 0), B3 = (0, c), B4 = (c,+∞).
(15)

Fig. 9: (Colour online) Finite-N Rényi entropies for the same
data as in fig. 8(a), (b).

In other words, this partition is chosen in such a way that
the 1-point probabilities p(Bi), i = 1, 2, 3, 4 of the log re-
turns lying in each set Bi are identical to 1/4. For Alcoa
Inc. share prices on daily and minutely time scales, we
find c is equal to 0.014 and 0.00088, respectively. Instead
of denoting the time evolution by u and d, we redefine our
symbol sequence by

i0, i1, . . . , in, . . . , in ∈ {b1, b2, b3, b4}, (16)

where bi corresponds to a log return in Bi. For a given
length N , the number of allowed sequences is ω(N) = 4N .
We may also upgrade the previous approach to a 4-level
symbolic sequence given by

xin
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if in = b1,

1, if in = b2,

2, if in = b3,

3, if in = b4.

(17)

A symbol sequence of length N can be encoded as a coor-
dinate α on the unit interval based on the representation

α(x(N)) =

N
∑

n=1

xin−1
4−n, α(x(N)) ∈ [0, 1). (18)

The plot of joint probabilities in the case of an alphabet
of 4 symbols is shown in fig. 8, the corresponding finite-N
Rényi entropies are shown in fig. 9.

Different companies. – So far we only looked at a
particular example of a stock, Alcoa shares. The really
interesting work on complex system analysis starts when
one compares Rényi entropies of different companies, or
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Fig. 10: (Colour online) Rényi entropies for 7 different com-
panies on daily scale (a) and minute scale (b). The alphabet
contains 2 symbols.

even Rényi entropies of entirely different complex systems
described by the same alphabet of symbols. Ultimately we
really want to learn something about the complex market
structure and dynamics represented by different compa-
nies, sectors, or communities for general complex systems.
Still one can let each community generate a suitable time
series for a suitable observable and then analyse this time
series with the symbolic dynamics technique described so
far. We are then interested in differences or similarities of
the obtained Rényi entropies.

To illustrate this we looked at symbol sequences as gen-
erated by share prices of 7 different companies, Alcoa
(aa), Bank of America (bac), General Electric (ge), Intel
(intc), Johnson & Johnson (jnj), Coca Cola (ko), WalMart
(wmt), representing the sectors basic materials, financial,
industrial goods, technology, healthcare, consumer goods,
services. The results are shown in fig. 10. It can be ob-
served that bac appears to have the lowest Rényi entropy
in the region q > 0 as compared to other stocks, overall
the q-dependence for financial stocks is most pronounced.
This could have to do with the fact that financial stocks
have relatively strong fluctuations and exhibit nontrivial
correlations, described by a non-trivial spectrum of Rényi
entropies. In any case, different companies are character-
ized by a different spectrum of Rényi entropies both on a
daily (fig. 10(a)) and minute (fig. 10(b)) time scale. The
smooth dependence on the parameter q can be used for
an effective thermodynamic description of the complex be-
havior involved, with different emphasis given to low and
high proababilities depending on the value of the scanning
parameter q.

Quantifying similarities in the symbol sequence

statistics. – We may now wish to compare in a

Fig. 11: (Colour online) Rényi difference matrix Rij on a daily
time scale (a) and minute time scale (b) for 36 stocks traded at
the NYSE-Nasdaq. The value of the parameter κ was chosen
as κ = 1. Similar pictures arise for other values of κ.

quantitative way how much the Rényi entropies of dif-
ferent companies (or communities in the general complex
system context) differ. For this purpose we define a Rényi

difference matrix Rij as follows:

Rij =
1

qmax − qmin

∫ qmax

qmin

|Ki(q) − Kj(q)|
κdq. (19)

Clearly, if two companies i and j have the same statistics
of symbol sequences, described by the same functional de-
pendence Ki(q) = Kj(q), then the Rényi difference matrix
element is Rij = 0. Otherwise, the entry Rij integrates
up differences in the Rényi entropy spectra, and averages
them over q, weighted with the parameter κ.

Figure 11 shows a colour encoding of such a Rényi dif-
ference matrix. For 36 different companies we evaluated
Rij , choosing κ = 1 and qmin = −40, qmax = +40. The
Rényi difference matrix allows one to single out major dif-
ferences and similarities in the symbol sequence statistics
of different companies/communities in a quantitative way.

30001-p6
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In our case, for example, the healthcare company Merck
(mrk) is identified as having an unusual Rényi entropy
spectrum on a daily scale, different from that of most other
companies, visible here as a pronounced vertical and hor-
izontal blue line in the pattern generated. On the other
hand, on the small time scale of minutes this company is
much more similar to the others.

An interesting final remark is at order. Once a suitable
question has been asked about a complex system, and
a symbolic dynamics constructed, we can then compare
different complex systems, or subsystems thereof, what-
ever their origin, as all relevant information is encoded
in the symbol sequence statistics. To give an example,
in [24,25] the complexity of DNA sequences of the hu-
man genome was investigated, by calculating the Rényi
entropies associated with the sequence statistics of the
4 bases A, T, G, C. Once this function is obtained, it
can then be compared using the above Rényi difference
matrix with other genomes, in just the same way as we
compared the differences between different companies in
fig. 11. But more drastically, we can even compare in
a quantitative way (via Rij) the Rényi spectra of com-
pletely different complex systems, such as the complex-
ity of financial markets and the complexity of genomes.
This is the advantage of the symbolic dynamics encod-
ing technique: Once a function Ki(q) has been obtained,
one can compare it in a quantitative way with another
function Kj(q), whatever its origin, and thus measure dif-
ferences in complexity and information production in a
quantitative way.

Conclusions and outlook. – Although the examples
considered in this paper were all based on symbol se-
quences generated by share price returns, it is clear that
the same method can be applied to symbol sequences gen-
erated by time series of all kinds of complex systems,
whatever their origin. In this way the Rényi entropies
associated with such a symbolic description allow for a
quantitative comparison of the dynamical properties in the
symbol space, making it easy to compare different complex
systems, or different substructures/communities within a
given big complex system. In fact, in this way one can
compare entirely different complex systems, for example
the Rényi entropies associated with share price changes
(using an alphabet of 4 symbols) can be compared with
those of genomic sequences [24,25] or those of successive
quantum-mechanical measurements [27]. The most impor-
tant dynamical information is then encoded in the form of
the shape of the function K(q), allowing the application of
thermodynamic tools [1]. In this way a quantitative com-
parison of different systems is possible, solely based on

the Rényi information contents of the coarse-grained sym-
bolic description. The extension of the methods presented
here to more complicated symbolic dynamics generated by
other types of complex systems is straightforward.
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