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Abstract—The advent of software defined networking enables
flexible, reliable and feature-rich control planes for data center
networks. However, the tight coupling of centralized control and
complete visibility leads to a wide range of issues among which
scalability has risen to prominence. To address this, we present
LazyCtrl, a novel hybrid control plane design for data center
networks where network control is carried out by distributed
control mechanisms inside independent groups of switches while
complemented with a global controller. Our design is motivated
by the observation that data center traffic is usually highly
skewed and thus edge switches can be grouped according to
traffic locality. LazyCtrl aims at bringing laziness to the global
controller by dynamically devolving most of the control tasks
to independent switch groups to process frequent intra-group
events near datapaths while handling rare inter-group or other
specified events by the controller. We implement LazyCtrl and
build a prototype based on Open vSwich and Floodlight. Trace-
driven experiments on our prototype show that an effective switch
grouping is easy to maintain in multi-tenant clouds and the
central controller can be significantly shielded by staying lazy,
with its workload reduced by up to 82%.

I. INTRODUCTION

Public clouds are becoming increasingly popular due to
their pay-as-you-go model, which attracts many small and
medium business. Some of them, thanks to their success,
have grown very large, each containing hundreds thousand
of servers and hosting up to millions of virtual machines [1].
To support flexible and efficient inter-node communication in
these large-scale cloud data centers, researchers have proposed
many novel designs (e.g., [2], [3]) for data center networks
to replace traditional tree-based architectures. However, the
routing and forwarding protocols used in most designs are
restricted to very specific deployment settings, leading to
inflexible configuration and management. The situation has
been revolutionized by Software Defined Networking (SDN),
where the control plane, separated from the data plane, is im-
plemented with a logically centralized controller. As a result,
when adopting SDN, flow-based polices can be conveniently
applied to achieve fine-grained control over the data center
network.

While flow-based centralized control has been recently
employed in several proposals for traffic management in data
center networks [4], [5], [6], the excessive coupling of central
control and complete visibility has brought many scalability
challenges to both the network control and data planes in large-
scale data centers. On the one hand, having the controller
to set up all flows would bring too much workload to the
controller and such centralized bottlenecks are difficult to

scale. On the other hand, maintaining visibility of all flows
in a large-scale network can require hundreds of thousands of
flow table entries at each switch, which is far from practical
for commodity switches.

A. Bringing Laziness to the Controller

“Laziness is the first step towards efficiency.”
– Patrick Bennett

It has been demonstrated that full control and visibility over
all flows are not always necessary and devolving some control
authority to the data plane by proactively suppressing frequent
events can result in better scalability in software defined data
center networks [7]. However, the right granularity of flows
to be handled by the controller is still not clear (or hard to
define). In this paper, we advocate a new solution for control
devolvement in data center networks based on traffic locality.
Our idea stems from the observation that traffic distribution
in data centers (especially those with multi-tenancy support)
could be highly skewed, i.e., frequent communications are
more likely to take place inside certain small groups of hosts.
As a result, it is possible to shield the global controller from
many frequent events inside these groups if distributed control
mechanism is applied independently in each of the groups.

We propose LazyCtrl, a hybrid network control plane design
for large-scale data centers, which seeks to bring laziness to
the global controller. In the LazyCtrl design, edge switches are
grouped dynamically according to their communication affin-
ity. The central controller devolves the coarse-grained control
for frequent intra-group events to each switch group while han-
dling infrequent inter-group and other specified (fine-grained)
control tasks by itself. Each switch group autonomously carries
out distributed control within the group, keeping the intra-
group packets in the data plane. The controller groups the
switches in such a way that the size of each group is as large
as possible to exhaust switches’ memory (such as TCAMs)
capacity while inter-group traffic is minimized to support the
laziness of the controller.

We have completed a full implementation of LazyCtrl based
on Open vSwitch and the Floodlight OpenFlow controller.
Experiments on our prototype with both real and synthetic
traffic traces show that an effective switch grouping is easy to
maintain in multi-tenant clouds and the hybrid control design
highly reduces the workload of the controller and provides
lower delay in packet forwarding. As expected, the laziness we
introduced to the controller decouples centralized control and
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complete visibility and consequently scale the system much
better compared with totally centralized designs.

Section II reveals some observations that motivate our de-
sign. Section III presents the LazyCtrl architecture with design
details. Section IV presents our implementation, followed by
the performance evaluation in Section V. Section VI concludes
the paper.

B. Related Work

Ethernet stands as one of the most widely used networking
technologies today due to its plug-and-play semantics such
as automatic host location learning and flat addressing, which
can highly simplify many aspects of network configuration and
ensure service continuity. However, replying on network-wide
dissemination of per-host information makes Ethernet-based
solutions difficult to scale and forcing paths to comprise a
spanning tree introduces substantial inefficiencies. In contrast,
IP networks can easily scale to large networks but require
massive effort to configure and manage.

As a promising solution for building large-scale data center
networks, network overlay can exploit the advantages of both
Ethernet and IP networks. An overlay network in a data center
consists in creating a dynamic mapping between the overlay
(virtual) network and the underlying (physical) infrastructure.
This mapping ensures that packets can be transmitted by the
routing substrate between any pair of overlay nodes. However,
in order to handle location resolution at network edge, a global
location information base has to be maintained, which can be
challenging in large networks.

There has been a large body of work falling in this
category. SEATTLE [8] simplifies network management by
flat addressing while providing hash-based resolution of host
information (using a one-hop DHT) to ensure scalability. VL2
[9] implements a layer 2.5 stack on hosts and uses IP-in-
IP encapsulation to deliver packets. PortLand [10] assigns
Pseudo MAC (PMAC) addresses to all end hosts to enable
efficient, provably loop-free forwarding with small switch state
while leveraging a central fabric manager to address IP to
PMAC translation in multi-rooted tree networks. NetLord [11]
employs a light-weight agent in the end-host hypervisors to
encapsulate and transmit packets over an underlying, multi-
path L2 network, using an unusual combination of IP and
Ethernet packet headers.

With the rapid evolvement of SDN, flow-based centralized
control has been recently adopted as a mainstream control
plane design for data center networks. As one of the first
SDN solutions for enterprise networks, Ethane [12] enables
the direct application of fine-grained flow-based polices to
the network by coupling flow switches with a centralized
controller. However, exposing all flows to the controller could
bring too much workload to the controller, leading to poor
scalability. Even after applying multi-threading optimizations
that help achieve graceful linear core scaling factors [13], the
gap between actual and desired performance of the centralized
controller is still very significant. It was shown that the popular
OpenFlow controller can only be able to handle approximately

30 thousand flow initiation requests per second on commodity
x86 platforms [14]. Unfortunately, a small network consists
of only 100 switches could have a spike of more than 10
million flow arrivals per second [15]. Even after applying
multi-threading optimizations that help achieve graceful linear
core scaling factors [13], the gap between actual and desired
performance of the centralized controller is still very signifi-
cant.

Recently, massive effort has been devoted to scaling cen-
tralized control to large networks. Onix [16], HyperFlow [17],
ElastiCon [18], and Pratyaastha [19] are distributed platforms
on top of which the network control plane can be implemented
as a distributed system. DIFANE [20] aims at handling all
traffic in the data plane by selectively directing packets through
intermediate (authority) switches that store the necessary rules
pre-installed by the controller. DevoFlow [7] decouples control
and global visibility and partly devolves control to switches
by employing rule cloning and local actions at switches.
Kandoo [21] is a two-layer control framework where network
applications are classified and local and global control ap-
plications are handled by bottom- and top-layer controllers,
respectively. Recently, Jain et al. [22] presented B4, a private
WAN connecting Google’s data centers worldwide based on a
multi-layer software defined networking architecture.

LazyCtrl also targets the scalability issue of centralized
control in large-scale data center networks, but is orthogonal
to the above designs in the sense that it employs a hybrid
control model, aiming at trying best to offload frequent coarse-
grained control tasks from the central controller and handle
them using distributed control mechanisms near datapaths.
Therefore, the aforementioned research effort for scaling flow-
based fine-grained control is still applicable on top of LazyCtrl
to further mitigate the performance bottleneck at the controller
and consequently improve control plane scalability in data
center networks.

II. MOTIVATION

The following salient features of current cloud data centers
largely motivate our design of LazyCtrl.

A. Traffic Locality in Data Centers

In cloud data centers, the traffic among the hosts is usually
unevenly distributed and is strongly localized within some
groups of hosts. To verify the correctness of this notion, we
collected a day-long traffic trace from a production data center
in Europe running multi-tenant applications and made the
following quantitative findings:
. The traffic distribution is uneven among hosts. Among a

total of 6509 hosts, only 11,602 of more than 20 million
distinct 〈src, dst〉 host pairs exchanged traffic in the trace.
And over 90% of the flows are contributed by about 10%
of the host pairs that exchanged traffic.

. The traffic appears to be concentrated within some groups
of hosts. For example, when partitioning the 6509 hosts
evenly into 5 groups using k-way partitioning, we observe
that only less than 9.8% of the traffic traversed different



groups. We define the centrality of a group as the ratio
(in [0, 1]) of the intra-group traffic and the total traffic
related to the hosts in this group. For the collected trace,
the average centrality of the 5 groups is 0.853, indicating
a very high concentration of the data center traffic.

The above findings are not accidental and similar evidences
can be found in [15], [23]. Actually, in a multi-tenant data
center, network traffic tends to be localized within each tenant,
as the applications from different tenants are isolated by
virtualization techniques [24]. Therefore, we believe that by
taking advantage of traffic locality, a global, fine-grained, and
real-time network control may not be necessary for multi-
tenant data centers.

B. Relatively Stable Tenant Size

For multi-tenant cloud data centers, we observe that the
number of virtual machines for a single tenant is changing
slightly, while the number of tenant users, as well as the total
number of hosts in a multi-tenant data center, is experiencing
a significant increase. For Amazon, a popular cloud service
provider, the number of tenants, as well as total virtual
machine instances of Amazon’s EC2, grew about 2.5 times
annually since 2006 [25]. The total number of objects held
by Amazon S3 has grown 150 times from 2006 to 2011 [26].
In contrast, the size of a specific tenant in terms of number
of rented virtual machines is constantly around 20–100 [1].
These facts consequently lead to the property that traffic is
aggregated within some size-limited groups of hosts in multi-
tenant data centers as the traffic exchanged among different
tenant slices is very limited. By taking full advantage of this
property, we show that the explosive increase in the number
of tenants does not necessarily result in scalability issues for
centralized control in data center networks.

III. DESIGN

LazyCtrl realizes a hybrid control plane for data center
networks. In this section, we discuss four aspects of its
design: the architecture, the switch grouping scheme, the
packet forwarding routine, and the failover mechanisms. We
first provide a high-level overview to state the intuition of our
design.

A. High-level Overview

In conventional flow-based centralized control environ-
ments such as those based on OpenFlow [27], the controller
maintains the network-wide state (the host-to-switch map-
ping here) and handles all the flows between every pair of
switches that exchange data, bringing extremely high burden
to the controller. LazyCtrl mitigates this problem by clustering
the switches into multiple switch groups according to their
communication affinity and devolving intra-group control to
these switch groups (termed Local Control Group, LCG).1

To support its laziness, the controller prefers clustering the
switches into a few big groups in order to reduce inter-group

1We will use group and local control group (LCG) interchangeably in the
rest of this paper.
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Figure 1. Example to demonstrate the idea of LazyCtrl. Edge switches are
clustered into multiple local control groups according to their communication
affinity.

communication. However, larger group size would result in
larger distributed forwarding tables and more control tasks
inside each local control group. Due to the limited size of
high-speed memory in switches, the largest size of a group
will be constrained by some constant. The controller clusters
the switches in such a way that the size of each group is
maximized under a given limit while the inter-group traffic
volume is minimized.

Example: Consider a multi-tenant cloud data center con-
taining a central controller and five edge switches (namely
SA, SB, SC, SD, and SE) with hosts2 directly attached. We
focus on the scenario shown in Fig. 1. There are three tenants,
A, B, and C, each of which has some virtual machines. The
left figure illustrates the case when centralized controlling is
applied directly and thus the central controller has to handle
all the flows among all edge switches. LazyCtrl changes
this situation by clustering edge switches into independently
groups. As can be seen in the right figure, the controller
clusters SA, SC, and SE into the first group while SB and SD
together form the second group. (We assume that the group
size limit is three in our example.) This way, the traffic within
the first group (e.g., SA↔SC), as well as the traffic within
the second group (e.g., SB↔SD), can be handled by carrying
out local control mechanism that is dedicated for each group.
The controller then is only needed to take charge of the inter-
group traffic, i.e., SA↔SD. The switches will be dynamically
regrouped in response to traffic variation.

B. LazyCtrl Architecture

The architecture design of LazyCtrl is depicted in Fig. 2. In
our design, the network is separated into two parts: the core
and the edge. We employ a hybrid control model where control
tasks are handled by the distributed control mechanisms in
LCGs at the network edge, complemented by a central con-
troller.

1) Core–Edge Separation: Our design splits the core from
the edge. The network core can be any simple and scalable
network (e.g., an IP unicast network), which serves as the
underlay providing connectivity for the edge switches. The
core–edge separation releases the network core from handling
complicated and dynamic network control tasks (e.g., network

2With a bit abuse of notation, we will use host to refer to virtual machine
that is running in a physical server.
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Figure 2. Architecture design of LazyCtrl, where the network control plane
consists of a logically centralized controller and distributed control modules
in multiple local control groups.

virtualization, virtual machine migration) and thus allows the
network core to be constrained only by performance and
reliability. Since our focus is the control plane, we omit the
detailed design of the network core.

In contrast, the network edge is in charge of network
intelligence, i.e., host-to-switch mapping. The layer two virtual
networks (overlays) for providing connectivity for the edge
switches are conducted by the network edge via encapsulation
or tunneling on top of the underlying physical network core.
As a result, one-hop distance can be assumed for each pair of
edge switches. We introduce a hybrid control model for the
control plane to handle network control tasks.

2) Hybrid Control Model: To extend the scalability of the
control plane, we introduce a hybrid control model in the
LazyCtrl design. This hybrid control model involves a central
controller and a set of local control groups.

The central controller has holistic visibility over the entire
data center network and is responsible for i) maintaining a
Central Location Information Base (C-LIB) which preserves
host location information, ii) adapting the grouping of the
edge switches, and iii) managing the flow tables on the edge
switches to handle inter-group traffic and any specific traffic
that needs flexible centralized control. The goal of the central
controller is to stay lazy by devolving as many control tasks
as possible to the local control groups. The central controller
can be a stand-alone physical server or a logical controller
comprised of a cluster of servers with strong reliability and
coherency of network state.

A local control group is a group of edges switches whose
clients are observed to have frequent mutual communication.
These switches are grouped together by the controller and
share the network state with each other consistently. Each
local control group employs a distributed control mechanism
to take over the control workload of intra-group traffic from
the controller. The distributed control mechanism inside each
group is carried out by equipping each edge switch with
some local forwarding tables, which are maintained by the
switches themselves. These local forwarding tables keep track
of network states such as host-to-switch mapping inside the
corresponding group. For each local control group, a desig-
nated switch (with some backups) is selected randomly by
the controller, which is responsible for aggregating group-
wide network states from the edge switches in this group and
reporting them to the controller in an asynchronous manner.

3) Control Message Channels: In the hybrid control model
for LazyCtrl, there are three types of control message channels,
i.e., logical links.
. Control link. A control link refers to a logical control

channel (an IP tunnel or a TCP/SSH connection on top of
the underlay network) via which the controller receives
forwarding requests, and/or sends commands or rules to
individual edge switches. The control link is extended
from the secure channel between an OpenFlow controller
and an OpenFlow switch by allowing the exchange of
switch grouping and other related messages. When a
control task cannot be handled by local control groups,
packets will be forwarded to the controller and the
controller will react to the edge switches by sending them
flow rules or other commands, all through the control
link.

. State link. A state link is a logical communication
channel between the controller and a designated switch.
The designated switch in each group aggregates the
network states it collects from other edge switches in the
group and reports them to the controller periodically via
the state link. Thus, global and coherent visibility can be
achieved at the controller.

. Peer link. A peer link refers to a logical control channels
used for disseminating network states for address learning
and updating among the switches in the same local
control group. In principle, peer links would rely on
multicasting. However, assuming native multicast support
for the underlay may not be practical. Therefore, our
design adopts an alternative approach: the designated
switch (or its backup, if any) gathers network states from
every peer edge switch and then disseminates them to all
other switches in the same group with multiple unicast
messages.

C. Switch Grouping

The design of LazyCtrl is based on the concept of group-
ing switches to form multiple local control groups. Thus
the quality of efficiency of the grouping is essential to the
whole design. Given a limit for the group size (determined
according to empirical or historical data), a good grouping
scheme is defined as one in which the inter-group traffic is
small (in order to facilitate the laziness of the controller) and
the computational complexity of the grouping algorithm is
sufficiently low such that it can fast adapt to traffic dynamics.
Our grouping algorithm aims at satisfying the above principles
and we base our design on solving the classical graph partition
problem, with improvements on time complexity and support
for incremental updates.

1) Problem Modeling: Denote by S = {S1, S2, ..., SN} the
set of edge switches in the multi-tenant data center network.
Let W = {wi,j | Si, Sj ∈ S} be an intensity matrix where
each element wi,j represents the normalized traffic intensity
(i.e., number of new flows per second) between two edge
switches Si and Sj . A grouping scheme G is a series of
disjoint subsets of edges switches, which can be defined by



G = {G1, G2, ..., GK | (Gi ⊆ S) ∧ (Gi ∩ Gj = ∅)}. Then,
the normalized inter-group traffic intensity (denoted by Winter)
can be represented by

Winter =
∑

{x,y∈[1,...,K]∧x 6=y}

∑
{Sm∈Gx,Sn∈Gy}

wmn.

Given an intensity matrix W, the goal of the switch grouping
problem is to find out a grouping scheme G such that the
inter-group traffic intensity Winter is minimized. This problem
is similar to the graph partition problem where the goal is to
partition a given graph into k roughly equal components such
that the total weigh of the edges connecting the vertices in
different components is minimized (called k-way partitioning).
The graph partition problem has been shown to be NP-hard
[28]. The switch grouping problem differs slightly from the
graph partition problem in terms of that the largest size of a
group is strictly contained by a constant while the number of
groups is variable.

2) Solving the Switch Grouping Problem: Our design for
the switch grouping algorithm is based on the Multi-Level
k-way Partition (MLkP) algorithm proposed by Karypis and
Kumar for fast k-way partitioning for a given graph [28].
MLkP first reduces the size of the graph by collapsing vertices
and edges. When a k-way partitioning of the smaller collapsed
graph is found, the algorithm uncoarsens and refines this
partitioning to construct a k-way partitioning for the original
graph. The running time of MLkP is linear in the number of
edges in the graph. However, direct application of MLkP to
the switch grouping problem may lead to infeasible solutions,
i.e., the sizes of the resulted partitions may exceed the given
group size limit.

We propose SGI, a Size-constrained Grouping algorithm
with Incremental update support. In the initial stage (function
IniGroup), SGI first determines the right number k of
groups to be generated. This value can be estimated by the
number switches divided by the group size limit. Next, SGI
constructs an intensity graph where the vertices in the graph
represent all the switches while each edge represents the
communication between the two end switches of this edge. The
weight on each edge indicates the normalized traffic intensity
between any pair of switches, which is estimated based on
history traffic statistics. Then, an initial feasible grouping of
the switches is produced by using the MLkP algorithm with
the constructed graph as input. Hereafter, SGI keeps running
by monitoring the traffic condition on the network. Upon a
significant change3 on the traffic distribution, SGI carries out a
greedy refinement function called IncUpdate to incremen-
tally update the grouping in order to reduce the inter-group
traffic. The refinement process runs iteratively and in each
iteration, two groups between which traffic volume increases
the most are merged and split again to ensure minimized
communication between the two new groups. This is identical
to finding a minimum bisection cut of a given graph, which

3The controller evaluates the significance of traffic change by measuring
the difference in its workloads.

IniGroup:
1: // construct the intensity graph
2: ConstructGraph(history intensity matrix)
3: // obtain the initial grouping
4: MLkP(intensity graph, #partition k)

IncUpdate:
5: // running in background
6: while(true):
7: // the controller is overloaded
8: while (controller.load > threshold.high):
9: // find two candidate groups with
10: // the most significant traffic change
11: FindGroups(all groups)
12: MergeGroups(candidate groups)
13: SplitGroup(the combined group)
14: // the controller is underloaded
15: if (controller.load < threshold.low):
16: break

Figure 3. Pseudocode for the SGI algorithm.

can be accomplished efficiently in polynomial time [29]. The
refinement process will terminate when the workload of the
controller meets some threshold. The pseudocode of the SGI
algorithm is given in Fig. 3.

D. Packet Forwarding

1) Setup Phase: Similar to that of typical OpenFlow con-
trol, in LazyCtrl, the edge switches are configured to point to
the central controller at the setup phase. Besides generating
the local control groups by invoking the SGI algorithm, the
controller is also in charge of the following configurations
for every group before the whole LazyCtrl system comes into
function.

Selecting designated switches. For each local control group,
the controller selects a designated switch among all edge
switches in this group by applying some given principle such
as shortest physical distance, shortest response time to the
controller. If necessary, the selection process also includes
choosing some backups for the designated switches.

Ordering and informing edge switches. The controller
orders all switches in a group according to the physical (MAC)
address of switch’s management interface. This is for building
a logical ring for failure auto-detection (detailed in Section
III-E). The controller then delivers to each switch its neighbors
on the logical ring. Besides that, the controller will also inform
the switches in a group with the designated switch ID and
some global timing and performance parameters such as the
group size, the frequency to apply group synchronization or
keep-alive heartbeats.

2) Table Organization: The core–edge separation enables
one-hop “logical” distance between any pair of edge switches,
leaving basic packet routing to the IP underlay. What remains
unsolved is the host-to-switch mapping.

In the LazyCtrl design, each edge switch is associated with
a Local Forwarding Information Base (L-FIB), which tracks
the hosts or virtual machines that are attached to this switch.
To handle intra-group traffic, each edge switch also maintains
a replica of the L-FIBs of all other switches in the same group,
which we call Group Forwarding Information Base (G-FIB).
The central controller retains global visibility of the network
by maintaining a Central Location Information Base (C-LIB),
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Figure 4. Table organization in the LazyCtrl design.

which contains the L-FIBs of all edge switches in the network.
Using this C-LIB, the controller can handle inter-group traffic
and any other specific flows whose control requires global
visibility. A general overview of the table organization in the
LazyCtrl design is depicted in Fig. 4.

L-FIB: The L-FIB of each edge switch is implemented with
a conventional lookup mechanism similar to the MAC/ARP
table in ordinary layer two switches.

G-FIB: The G-FIB of each edge switch is a replica of the
L-FIBs of all switches in the same group. To save storage
space, we implement G-FIB using Bloom Filter (BF), as the
storage space required by a BF is independent from the number
of elements it contains. The G-FIB of each edge switch is
comprised of multiple BFs generated from the L-FIBs of
all switches in this group. Given an address of a virtual
machine, each BF decides whether this address is under the
corresponding edge switch. All the BFs together will return
a vector of Boolean values indicating the possible location of
this address. Note that it might happen that there are multiple
possible locations for one address, which is resulted from
the false positive of BFs. However, the false positive rate is
predictable and controllable by space-time trade-offs [30].

3) State Dissemination: State dissemination consists of the
mechanisms to spread and synchronize network states (e.g., the
host-to-switch mapping) and updates in the control plane. In
general, there are two types of state dissemination in LazyCtrl:

Live/Synchronized state dissemination. Live state dissemi-
nation refers to the host discovery process driven by the end
hosts via ARP broadcasting in the bootstrapping stage and at
virtual machine migration or removal. In the LazyCtrl design,
live state dissemination can be cascaded in three different
levels: i) Upon receiving an ARP request, the edge switch
learns the source address by inserting or updating an item in
its L-FIB and then floods the request to all relevant local ports.
ii) If no local hosts (that are attached to this edge switch)
answer this request and the requested destination cannot be
recognized by the G-FIB of the switch either, this request
will be forwarded to the designated switch in this group for
an intra-group “broadcasting”. iii) Further, if there is still no
response from the hosts in this group, the request will be
forwarded to the central controller, which relays the request to
the designated switches in all other groups that contain hosts
belonging to the relevant tenant (e.g., according to tenants’
VLAN settings).

Upon arrival of a packet P at an edge switch S:
1: // P originates from a local host
2: if (P is a local plain packet):
3: // handled by flow table
4: if (P matches S.flow_table.rule):
5: apply S.flow_table.action to P
6: // handled by local control group
7: else:
8: // lookup in the L-FIB
9: host = LookUp(L-FIB, P.dest_addr)
10: // no match found
11: if (host == none):
12: // query in the G-FIB
13: dst_vec = Query(G-FIB, P.dst_addr)
14: // no match found, handled by controller
15: if (dst_vec == empty):
16: send P to the controller
17: // send P to all possible targets
18: else: for each (dst in dst_vec):
19: encap. and send a copy of P to dst
20: // match a local host
21: else: forward P to host
22: // P is an encapsulated packet
23: else:
24: Decapsulate(P)
25: // lookup in the L-FIB
26: host = LookUp(L-FIB, P.dst_addr)
27: // no match found (due to false positive)
28: if (host == none): Drop(P)
29: else: forward P to host

Figure 5. Packet forwarding routine in LazyCtrl.

Asynchronous state dissemination. When the traffic pattern
changes, the grouping of the switches may not be effec-
tive for shielding the central controller thus needs to be
adjusted. The condition of inter- and intra-group traffic is also
changed. Therefore, the host-to-switch mapping must be re-
disseminated across the control plane in order for local control
groups to handle all intra-group traffic. This is different from
the case of virtual machine migration in the sense that there is
no change to the host-to-switch mapping. As a result, the end
hosts cannot sense this change and thus cannot accordingly
drive any updates. Moreover, in an extreme case where all
hosts from a certain tenant appear in the same local control
group, the controller may want to block all ARP request from
that tenant to avoid unnecessary workload of itself. However,
this could lead to incomplete visibility for the controller as the
traffic from that tenant will be transparent to the controller.

In order to handle the above circumstances, an asynchro-
nized switch-driven state dissemination mechanism must be
introduced. In LazyCtrl this mechanism contains two aspects:
i) When an update event occurs at an edge switch, this
switch sends its updated L-FIB to the designated switch in
the group via the peer link; the designated switch then relays
this update to all the other switches in the same group to
synchronize the group-wide network state. The designated
switch then sends the update to the controller via the state
link to synchronize the network state between the controller
and the local control group. ii) When the grouping of the
switches has been changed, the controller sends the L-FIBs
of the switches in a new group to the designated switches
in this group via the state links. The designated switch then
“broadcast” the L-FIBs to all the edge switches in this group
for updating their G-FIBs.

4) Packet Forwarding Routine: We describe now how traf-
fic control is carried out in LazyCtrl. The detailed forwarding



Failure Packet loss
Sn → Sn−1 Sn → Sn+1 Controller→ Sn

Control link X
Peer link (Up) X

Peer link (Down) X
Switch (Sn) X X X

Table I
INFERRING FAILURES IN THE CONTROL PLANE ACCORDING TO THE PLACE

OF PACKET LOSS.

routine of a packet is shown in Fig. 5. When a packet arrives
at an edge switch, depending on packet type, the following
two actions will be applied: i) If the packet is plain (which
originates from a local host), the switch first carries out a
lookup in its flow table to check whether there are matched
rules for this packet. If so, the action corresponding to the rule
is then applied to the packet; otherwise, the switch continues
looking up in its L-FIB to check whether the destination of
this packet is a local host. A packet with an address of a
local host will be forwarded directly to that host. If no entry
matched the L-FIB, the switch carries out a query in its G-
FIB. Note that there might be multiple targets for this packet
returned from this query due to the false positive of BFs. The
switches then send to all the targets a copy of the packet.
If all the elements in the Boolean vector are false, it means
that the target of this packet is not in the current group and
thus the packet will be forwarded to the controller to request
inter-group control rules. ii) If the packet is encapsulated, the
switch first decapsulates it and then carries out a lookup in its
L-FIB to determine its destination host. If no matched entries
are found, the switch simply drops the packet as it knows
that this packet is mis-forwarded to the switch due to BF’s
false positive. Optionally, this mis-forwarded packet could also
be directed to the controller for installing flow entries on
related switches to avoid further false positive for the same
destination.

E. Failover

1) Failure Detection: The switch grouping scheme ensures
that switches in the same group are “strongly connected”
due to their frequent traffic exchange. As a result, failures in
the data plane can be passively detected quickly. In contrast,
handling failures in the control plane is more laborious.

In the LazyCtrl design, we propose a self-detection mech-
anism to handle failures in the control plane based on a
group-wide failure-detection wheel with the controller at the
center and the switches at the edge. As we have mentioned
previously, at the setup phase the controller orders the switches
to form a wheel and informing the switches in the same
group their neighbors on the wheel. To detect failures, keep-
alive messages will be initiated from upstream switches to
downstream switches and from the controller to each switch.
All possible cases of failures depending on the place of packet
loss are listed in Table I.

2) Failover of Links: Link failures indicate routing-related
issues, e.g., packet loss due to link congestion or temporary
routing loops on the underlay. We adopt detour routing based
approaches to handle link failures in LazyCtrl. When a data
path failure occurs, for instance, between Sn and Sn−1, the

controller will be notified and an alternative path will be
chosen for delivering packets following Sn → Sn−1. For a
failure on the control link between the controller and a switch
such as Sn, the controller will send a request to the upstream
switch of Sn on the failure-detection wheel, i.e., Sn−1, to
pass on the control message from Sn to the controller. When
a peer link failure occurs (between Sn and Sn−1), the control
functionality is affected only when one of the two end switches
is the designated switch. In this case, the controller will ask
Sn or Sn−1 to quit as the designated switch and reselects one
from the backups for the designated switch to fulfill the role
of designated switch.

3) Failover of Switches: A switch failure usually turns to
be a reboot or a reset of the switch, especially in the case
where edge switches are implemented with virtual switches
in hypervisors. The controller is responsible for detecting the
malfunction of the switch and then carries out the following
actions: i) informing the designated switch in the same group
this switch failure and asking the designated switch to spread
the temporary outage of the failed switch in the group in order
to avoid unexpected detour routing requests; ii) rebooting the
failed switch remotely and checking its comeback periodically;
iii) removing the outage signal and proactively triggering a
state synchronization in the group when the switch is back to
function.

If the failed switch is the designated switch in the group,
in addition to the above actions, the controller will select a
new designated switch for the group. If backups are set for
the designated switch, no single point of failure exists since
those backups work simultaneously and will be fixed upon a
failure independently.

IV. IMPLEMENTATION

We implement LazyCtrl by extending the OpenFlow proto-
col and developing edge switches and the controller based on
Open vSwitch [31] and Floodlight [32]. The source code of
our implementation can be found on [33].

A. Open vSwitch-based Edge Switch

The main forwarding component of Open vSwitch con-
sists of the ovs-vswitchd and datapath modules. The
ovs-vswitchd module works in the user space, handling
slow path processing such as learning, remote configuration,
full flow-table lookup; the datapath module in the kernel space
handles fast path processing including packet forwarding,
quick-table lookup, modification, and tunneling. The imple-
mentation of the LazyCtrl edge switch follows a similar design
principle. Fast path processing, such as L-FIB lookup (includ-
ing BF matching), packet encapsulation, and forwarding, are
integrated into the kernel space (datapath) module while a few
slow path modules are integrated into ovs-vswitchd which
are listed as follows.
. Ctrl-IF module is an interface for the switch to interact

with the controller, which also implements the control
link. Unknown packets (from inter-group traffic) will be



forwarded to the controller using OpenFlow Packet_In
messages.

. State advertisement module is introduced for collecting
and disseminating local host information and traffic statis-
tics among the switches in the same group.

. FIB maintenance module maintains the L-FIB and the
Bloom filter based G-FIB structures according to the net-
work states collected by the state advertisement module
and then updates the kernel space module for fast path
processing.

. State reporting module will only be activated when the
switch is selected as the designated switch for the group.
This module implements all functions associated with the
state link.

B. Floodlight-based Controller

The Floodlight OpenFlow controller provides a rich set of
components. The central controller in LazyCtrl is implemented
based on the existing Floodlight controller by introducing the
following extensions.
. Encap action realizes packet encapsulation in edge

switches by extending the existing OpenFlow v1.0 proto-
col. In the LazyCtrl architecture, packet forwarding in the
data plane overlay replies on a GRE-like encapsulation.
When a rule with this action is applied to a flow, the
switch will encapsulate the packets with a new header
targeting a given remote IP address.

. C-LIB maintenance module implements the functions of
acquiring L-FIBs from the designated switch in every
group and building the C-LIB at the controller.

. Switch grouping management module handles the man-
agement of the local control groups. We base our im-
plementation of switch grouping on the proposed SGI
algorithm. A daemon module is introduced to handle the
state reports from the designated switches in all groups
and keep analyzing the changes in traffic pattern. Re-
grouping will be triggered when i) the workload of the
controller suffers from an accumulated growth of up to
30% from last update or ii) it has been two minutes
since last update. Setting up a minimum update interval
(2 minutes here) is to prevent the oscillation caused by
short-term traffic fluctuation.

. Tenant information management module is used to man-
age tenant information such as VLAN IDs in switches.
Being aware of this information, the controller can de-
termine where to spread the ARP messages and when
inter-group traffic control is necessary.

. Failover module is in charge of failure detection and
recovery as we have discussed in Section III-E.

V. EVALUATION

A. Prototype Setup

To validate the performance of the LazyCtrl implementa-
tion, we conducted experiments based on a real traffic trace
collected from an enterprise production data center in Europe,
which consists of 272 GigE edge switches and 6509 hosts.

Trace # of flows Avg. centrality p (%) q (%)

Real 271M 0.85 N/A N/A
Syn-A 2720M 0.85 90 10
Syn-B 3806M 0.72 70 20
Syn-C 5071M 0.61 70 30

Table II
CHARACTERISTICS OF THE TRAFFIC TRACES.

Accordingly, we built a prototype system using 6 Pronto 3290
switches and 24 IBM x3550 8-core (two quad cores) servers.
The switches were interconnected with a full mesh via 10
GigE links, severing as the network core (IP-based underlay).
Each switch was connected with 4 servers via GigE links.
To emulate the 272 edge switches in the real data center, we
deployed 272 Linux virtual hosts running our modified Open
vSwitch implementation on the 24 servers. A custom-made
trace re-player was developed and deployed on each of the 272
Linux virtual host to replay the inter-switch traffic generated
by the 6509 hosts in the trace. The Floodlight-based central
controller was hosted on a standalone Linux PC (with Intel
Core 2 Duo CPU 2.2 GHz) and could be configured to run in
either lazy or normal mode.

B. Datasets

The real traffic trace we collected consists of the traffic
among 272 GigE edge switches and 6509 hosts over a whole
day. To check the consistency of the performance results
under different traffic scenarios, we generated three synthetic
traffic traces based on the real trace. The main characteristics
of all traces are summarized in Table II. In the synthetic
traces, traffic is assumed to be exchanged through 2713 edge
switches among 65090 hosts, with a scaling-up factor of 10
compared with the real trace. The traffic flows in the synthetic
traces were generated in the following manner so that the key
characteristics such as the temporal patterns could be retained:
p% of the flows are generated by selecting from a given set
of host pairs (q% of all host pairs) uniformly at random in
the synthetic topology, and assigning each selected host pair
a payload randomly chosen from the real trace. We vary the
values for p and q and three synthetic traces are generated
with significant differences in traffic locality represented by
average centrality. The rest flows are generated by selecting
host pairs uniformly at random from all host paris in the
synthetic topology. Each selected host pair is assigned with
a payload randomly chosen from the real trace.

C. Performance of Switch Grouping

We evaluate the quality of the proposed switch grouping
scheme by calculating the normalized inter-group traffic inten-
sity (Winter as defined in Section III-C). Fig. 6(a) depicts the
results of applying the size-constrained MLkP algorithm (the
IniGroup function in SGI) to the traffic derived from each of
the three synthetic traces with various numbers of groups. We
observe that the grouping quality varies across different traces.
In general for traces with higher average centralities, it tends to
have smaller values for Winter, indicating better performance
in reducing the workload of the controller. We also observe
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Figure 6. a) Normalized inter-group traffic intensity when grouping with
different numbers of groups on each of the three synthetic traffic traces. b)
Computation time of switch grouping under different group size limits on
each of the three synthetic traffic traces.

that Winter increases almost linearly with the increase of
the number of groups, confirming that maximizing the sizes
of single groups (thus consequently reducing the number of
groups) will best facilitate the laziness of the controller.

We also carry out measurements to examine the computation
time in switch grouping generation on the three synthetic
traffic traces. The results of applying the IniGroup function
in SGI with various group size limits are shown in Fig. 6(b).
It can be seen that switch grouping can be accomplished as
fast as less than 5 seconds and the grouping time is inversely
proportional to group size limit. Note that switch grouping
is only carried out when there is a very significant change
in traffic pattern and incremental updates are not possible to
retain good grouping quality in reasonable time. During most
of the time, applying the IncUpdate function is sufficient,
which is more than one order of magnitude faster than the
IniGroup function.

D. Effectiveness of LazyCtrl

Controller workload. We validate the effectiveness of
LazyCtrl by measuring the controller workload under traffic
dynamics. We first conduct a comparison to standard Open-
Flow control (with the original Floodlight implementation)
using the real traffic trace. For LazyCtrl, the initial grouping is
done based on the first-hour traffic pattern and we test in both
static and dynamic cases with and without incremental updates
for the grouping, respectively. To further verify the consistency
of the results, we expand the real trace by introducing 30%
extra flows among the hosts that did not communicate with
each other in the real trace during the time interval from
8 to 24. Using the expanded trace, we test again in both
static and dynamic cases. We compare the workload of the
controller in the above cases and the experimental results are
illustrated in Fig. 7. It can be observed that i) LazyCtrl can
help achieve a significant level of workload reduction (about
61%–82%) for the controller; ii) The controller workload
in LazyCtrl is relatively stable during the day on the real
trace, which is due to the fact that majority of the traffic
growth happens among those “strongly connected” hosts inside
local control groups, being transparent to the controller. iii)
The controller workload can be significantly reduced when
the IncUpdate function is applied due to the fact that

the additionally introduced flows keep breaking the skewness
of the traffic over time and thus grouping updates have to
be applied continuously to adapt to the changes in order to
prevent the controller from being overloaded.

Grouping update. In addition, we examine the update
frequency of switch grouping on both the real and expanded
traces. The update frequency results are shown in Fig. 8.
It can be noticed that the incremental update function has
very limited influence on the controller workload on the real
trace. At the same time, the update frequency keeps at a very
low level (10 updates per hour), indicating that maintaining
a relatively effective grouping is feasible in practice. On the
expanded trace, the cost for keeping the controller lazy is a
reasonable increase in update frequency (with a maximum of
34 updates per hour).

Storage overhead. The storage cost of the BF-based G-FIB
on each switch is linear with the group size. For example,
when a group consists of 46 switches, for each switch the
BF-based G-FIB contains 45 bloom filters. Assuming that each
bloom filter has 16 128-byte entries, the memory required for
the BF-based L-FIB on each switch is 45×16×128 = 92, 160
bytes, resulting in a false positive rate of less than 0.1%.

E. Latency Overhead

Cold-cache forwarding latency. We evaluate the forwarding
latency under “cold-cache” scenarios upon the first packet of
a fresh flow is injected into the network. We emulate cold-
cache scenarios by launching 45 new flows among 5 newly
deployed hosts and compare the average forwarding latency
of the first packets of these flows in LazyCtrl to that in the
standard OpenFlow control. For intra-group traffic, the cold-
cache forwarding latency in LazyCtrl (0.83 ms) is more than
an order of magnitude smaller than that in OpenFlow (15.06
ms). This is due to the fact that packets from intra-group traffic
will be forwarded locally without involving the controller.
The data plane operations such as L-FIB lookup and packet
encapsulation are very fast and thus packets can be processed
at line speed. For inter-group traffic, LazyCtrl also outperforms
standard OpenFlow by achieving a cold-cache latency of 5.38
ms. This is because LazyCtrl requires no passive learning
of the network topology through all ARP flooding as is the
case of standard OpenFlow (the learning-switch module
in Floodlight), which is another benefit brought by the lazy
principle in LazyCtrl.

Steady-state latency. Steady-state latency refers to the
average forwarding latency of all processed packets over a
relatively long period of time (2 hours here). The experimental
results on the real trace with a 24-hour span are illustrated in
Fig. 9. It can be observed that on average a 10% reduction on
latency can be achieved by LazyCtrl compared with standard
OpenFlow. Moreover, this improvement is a byproduct of
reducing the workload of the controller as less load on the
controller leads to higher processing speed. Moreover, the
synchronized state dissemination speeds up topology learn-
ing, which implicitly help reduce the response time of the
controller.
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VI. CONCLUSIONS

In this paper we present LazyCtrl, a novel hybrid control
plane design for data center networks. LazyCtrl is based on a
core-edge separated architecture and the control functionality
is implemented in a hybrid fashion: frequent coarse-grained
control tasks are largely devolved to network edge by cluster-
ing edge switches into local control groups according to traffic
locality and carrying out distributed control independently in-
side each group; the central controller is only in charge of very
limited number of inter-group or other fine-grained control
events. The central controller keeps adapting the grouping
of edge switches to maintain its laziness. Our evaluation on
the LazyCtrl prototype with both real and synthetic traffic
traces show that LazyCtrl can help reduce the workload of
the central controller by up to 82%, improving the scalability
of standard OpenFlow to a large extend. Moreover, LazyCtrl is
fully compatible with existing solutions for scaling flow-based
centralized control to large networks.
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APPENDIX

A. Extended Discussion on Scalability

Both distributed and centralized control approaches have
some instinct limitations in scaling to large-scale data center
networks. In general, distributed control such as link-state
protocols depends on broadcasting to synchronize network
states, which will be a disaster when the network becomes
inconceivably large. Moreover, the edge switches need to learn
the locations of all hosts, leading to explosive forwarding table
sizes. While eliminating the need for state synchronization
in principle, centralized control suffers from the stress of
handling frequency and resource-exhaustive events such as
flow arrivals and network-wide statistics collection events at
the controller, which consequently limits the scalability of
network control in data centers.

LazyCtrl aims at finding out the right balance between dis-
tributed and centralized control and integrates the advantages
from both sides to fundamentally solve the scalability issue of
network control in data centers. The scalability of LazyCtrl is
interpreted in three aspects:

. Table organization and state dissemination. Due to the
group size limit, the L-FIB and G-FIB on each switch
will be constrained to limited sizes and thus do not have
any scalability issue. Switch-wide state dissemination
is also constrained in specific group and is decoupled
from the size growth of the data center. The controller
is designed to passively receive network states from
local control groups for state dissemination and address
leaching, which scales as well.

. Location resolution. Location resolution responsibility
in LazyCtrl is shared among switches and the controller.
Switches handle the majority of tasks locally in local
control groups while the controller is only involved when
intra-group control is not sufficient. As a result, the
workload of the controller can be kept at a very low level,
mitigating the scalability issue.

. Failure detection and failover. Clustering switches into
“strongly connected” groups with limited sizes simpli-
fies the process of failure detection and recovery of a
large network system as failover tasks can be carried
out independently in each of the groups. In addition,
control authority in LazyCtrl is shared by local control
groups and the controller, avoiding a single performance
bottleneck.

B. Possible Optimizations on Switch Grouping

For simplicity of exposition, we omitted some optimization
efforts we carried out for switch grouping in Section III-C.
Now we highlight some of them.

. Host exclusion in switch grouping. When a edge switch
is connected to hosts belonging to many tenants, it may
be difficult for a greedy method to generate a grouping
with superb quality. In this case, the controller can choose
some hosts and exclude them from the grouping process.

The control tasks for these hosts will be accordingly
handled by the controller.

. Preload for seamless grouping update. During grouping
updates, the L-FIBs on the related switches will be
modified, leading to forwarding interruptions. To relieve
this, the controller can preload some rules to the related
switches to temporarily handle the control tasks for them.
These rules will be removed when the grouping becomes
stable.

. Acceleration by parallelism. The IncUpdate func-
tion in the SGI algorithm can be easily parallelized by
carrying out merge and split operations simultaneously
for multiple group pairs. Consequently, the computation
overhead brought by the regrouping process can be fur-
ther reduced.

C. Methods for Determining the Right Group Size

Determining the right sizes for groups plays an important
role in keeping LazyCtrl effective. Intuitively, the larger the
group size, the lower the expected workload for the controller
due to less inter-group traffic. On the other hand, the larger
the group size, the higher the control overhead on the switch
side, as a larger group means more network states to spread
among the switches in the group and more L-FIBs and G-FIBs
to maintain.

Compared with empirically driven or static group sizes, we
believe that a dynamic group size negotiation between the
controller and the switches can be helpful, as networks can
be heterogeneous and the switches might differ significantly in
terms of performance and capacity. Furthermore, the flexibility
of on-demand group size makes it possible for the controller to
customize its workload (e.g., during peak hours). As an alter-
native, we also implement a game-based (modified Rubinstein
Bargain Model) dynamic group size limit negotiation approach
in LazyCtrl. Before the controller calculates the grouping, the
switches are allowed to dynamically bargain the group size
limit with the controller according to their real-time monitored
and self-evaluated data.
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