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Abstract

Share price returns on different time scales can be well modeled by a superstatistical

dynamics. We provide an investigation which type of superstatistics is most suit-

able to properly describe share price dynamics on various time scales. It is shown

that while chi-square-superstatistics works well on a time scale of days, on a much

smaller time scale of minutes the price changes are better described by lognor-

mal superstatistics. The system dynamics thus exhibits a transition from lognormal

to chi-square-superstatistics as a function of time scale. We discuss a more gen-

eral model interpolating between both statistics which fits the observed data very

well. We also present results on correlation functions of the extracted superstatisti-

cal volatility parameter, which exhibits exponential decay for returns on large time

scales, whereas for returns on small time scales there are long-range correlations

and power-law decays.

We also apply the symbolic dynamics technique from dynamical system theory

to analyse the coarse-grained evolution of share price returns. A nontrivial spectrum

of Renyi entropies is found. We study how the spectrum depends on the time scale

of returns, the sector of stocks considered, as well as the number of symbols used

for the symbolic description. Overall our analysis confirms that in the symbol space

transition probabilities of observed share price returns depend on the entire history

of previous symbols, thus emphasizing the need for a model of share price evolution

based on non-Markovian stochastic processes. Our method allows for quantitative

comparisons of entirely different complex systems, for example the statistics of

coarse-grained share price returns using 4 symbols can be compared with that of

other complex systems.
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6.8 Comparison of the Rényi entropy for large and small time scale

symbol sequences of different length N . . . . . . . . . . . . . . . 104

6.9 Probabilities for the 4-level sequences on large time scales for Alcoa

Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 Probabilities for the 4-level symbol sequence on small time scales

for Alcoa Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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Chapter 1

Introduction

1.1 Previous studies

People might be surprised that the first finding of power-law distributions was pub-

lished in the social science rather than the natural sciences. It was 100 years ago

when Pareto, an Italian social economist, modelled the wealth of individuals by a

power-law [5]. Another concept, which is applied in virtually all fields of investi-

gations in the natural science, is the random walk. The formalization of a random

walk was also achieved for the first time in a research topic in finance by Bachelier

in 1900, and it was until five years later, when Einstein released the first mathemati-

cal characterization of a random walk in the natural science [6]. Bachelier stated in

his PhD thesis [7] that the distribution of option price changes follows a Gaussian

distribution. Note that Bachelier’s research was dealing with the behaviour of price

changes while mainstream research afterwards was concerned with the differences

in the logarithm of price. This includes the well known Black and Scholes option

pricing model, which has been the most influential model in option-pricing theory

since 1973 when it was published. It was assumed in the Black and Scholes model

[8] that stock prices are evolving according to a geometric Brownian motion and

the changes in the logarithm of price(log returns) possess a Gaussian distribution.

Accordingly, the stock prices are log-normal distributed.

Although the Black and Scholes model has been regarded as a milestone

in option-pricing theory since it was published, the assumptions on price evolu-



1.1. Previous studies 17

tion cannot reveal the so called ”stylized facts” of financial markets. In 1963,

Mandelbrot was the first one who pointed out that the unconditional distribution

of empirical returns is non-Gaussian with positive excess kurtosis and fat tail.

To reproduce the featured fat tails, Mandelbrot [9] and Fama [10] suggested to

use the Levy stable distribution (with index a < 2), which decays with a power

law(Prob(xt < x)⇠ 1� x�a ), to describe the price changes. The central limit theo-

rem states that a rescaled sum of n of independent and identically distributed(i.i.d.)

random variables will be aggregated to have a normal distribution as n approaches

infinity, if those variables have finite variance. The stability property of a Levy dis-

tribution is raised by a generalized version of the central limit theory, which suggests

that the sum of independent identically distributed random variables possessing the

same Levy distribution with power-law tails of index a will tend to be characterized

by the same Levy stable distribution of index a as the number of variables tends to

infinity. Particularly, when individual variables have a > 2, the sum converges to

have a Gaussian distribution(a special case of the Levy stable distribution with the

index a = 2) and if 0 < a  2, the sum will converge to obey a standard case of

the Levy stable distribution with a fat tail property. Due to fact that the variance

of Levy stable random variables is infinite for a < 2, this method is less handy to

implement in reality.

Instead of modelling the entire series of price changes by a specific distribution,

one can characterize the tail region on its own by means of statistical extreme value

theory [11]. Speaking of fat tails, the largest realizations of price returns(under

normalization) are customarily described by a power law, i.e,Prob(xt < x) ⇠ 1�

x�a . Without a hypothesis on the distribution of the entire return series, one can use

the semi-parameter inference to estimate the tail index a . An abundant literature

regarding this topic arisen during the nineties has demonstrated that the tail index a

lies between 3 and 4 [12][13][14]. At this point of view, the Levy stable hypothesis

is rejected.

Now we turn to the second stylized fact of stock returns, which is the known

”volatility clustering”. It is known that there are very short range correlations in the
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logarithm returns as the autocorrelation function decays exponentially. However,

it cannot be concluded from pairwise independence that asset returns are indepen-

dent random variables. In 1969, Mandelbrot recognized that there exists a type of

dependency or complex behaviour that affects the returns [15]. This dependency is

prominent in absolute returns, squared returns and any other nonlinear functions of

returns(referred to as volatility). In these measures, there is a visible long-lasting au-

tocorrelation [16]. Theses findings suggested that volatility itself is an underlying

stochastic processes that is characterizing the price returns. Accumulated studies

have shown that there is long memory in volatility and the autocorrelation function

of the volatility decays with a power law. Evidences of power-law decay in auto-

correlations of volatility estimated by squared returns, local standard deviation or

local average of the absolute returns are presented in [17][18][14][19][20][21][22].

Studies on the statistical properties of volatility are motivated by several as-

pects. For a given time, volatility levels reflect the amount of information that is

arriving in the market. Volatility is also an indispensable indicator in the measure of

investment risk. Moreover, volatility is playing an important role in the modelling

of asset prices.

Among the emerging literature of volatility analysis, the GARCH(Generalized

autoregressive conditional heteroskedasticity) model is considered as a benchmark

model. It was put forward in 1986 by Bollerslev [23] in order to generalize the

ARCH model which was introduced by Engle in 1982 [24]. In both models, the

return at time t is modelled as a mixture of a normal random variable and a local

variance. The variance, representing the squared volatility, varies with time and is

deterministic at any time t given prior variances and returns.

Note that the volatilities characterized by conditional variances are not a priori

stochastic. To add the randomness to the variance process, Taylor came up with the

stochastic volatility(SV) model in 1986 [25]. The instantaneous variance at time t

is described by

ht �a = f(ht�1 �a)+ht , ht ⇠ N(0,s2
h

) (1.1)
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where ht is the desired random part in the formulation of volatility. a is the mean

of ht . f is the autoregressive parameter which is always restricted to satisfy |f |< 1

to ensure that the process is stationary.

The requirement for refinement for both the GARCH and the SV models lies

in the fact that these two models exhibit exponential decay in the volatility.

Both the GARCH and SV model are required to be refined due to the fact

that these two models just exhibit exponential decay of the autocorrelations in the

volatility. In order to meet the requirement of long memory in volatility, the initial

GARCH model can be extended to the fractionally integrated GARCH(FIGARCH)

model, see Baillie et al [26]. The elementary SV model has been extended to a long-

memory stochastic volatility model by Breidt et al [27]. Besides, there are contin-

uous time stochastic volatility models whose returns and volatilities are driven by

stochastic differential equations(SDE), e.g. the Heston model [28].

Recently, with the accessibility of high frequency prices, crowding studies in

the financial field are employing asset prices that are recorded more frequently than

daily [29]. High frequency data bring advantages in exploring the microstructure

of the financial behaviours, which contributes to the estimation of volatility. The

stylized facts for high-frequency returns are similar but not quite the same as those

for daily returns. For example, although the returns from both daily and small time

scale observation exhibit fat tails in their distribution, the kurtosis will increase

when observing the price more frequently [29]. The study of high-frequency share

prices is still challenging and is worth more effort.

1.2 Superstatistical analysis
In recent years, achievements of researches on the study of financial market are

inseparable from similar developments in the field of physics. Since 1990, a volu-

minous literature dealing with topics in the social sciences has been published by

physicists. A new discipline, called econophysics, was set up to deal with finan-

cial problems by borrowing concepts and methods developed in physical research.

Finding the appropriate distribution of log returns is one of the important research
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aspects of this discipline [30][31][32][33][34], and is also one of the main objec-

tives of this thesis.

Particularly, documentation of analogies and differences between price dy-

namics for financial data and similar dynamics in turbulence can be found in

[31][35][36]. In financial market, the arriving information will spread from large to

smaller scale markets and finally be reacted to by individual investors. On a qual-

itative level, this is similar to the way by which the injected energy is transferred

from the large to smaller scale and finally be dissipated on the smallest scale in

turbulence. From the quantitative point of view, the relation between price fluctu-

ations and volatility is parallel to the relation between velocity fluctuations and a

generalized inverse temperature parameter.

In 2003, Beck and Cohen introduced the Superstatistics concept, which is a

powerful statistical method devoted to study complex systems with spatial-temporal

variations in a given environment [37][38]. The core idea of the method is to char-

acterize the given non-equilibrium system by a superpositon of several different

statistical models referring to different time scales. For example, the most ele-

mentary baseline superstatistics models the velocity of a Brownian particle moving

through a turbulent fluid by a superposition of local Gaussians weighted with a

probability density f (b ), where b the slowly varying intensive parameter repre-

senting the inverse temperature. General kinds of complex systems have been well

described by using this technique of superstatistics, such as hydrodynamics turbu-

lence [39][40][41][42], wind velocity fluctuations [43][44], train delay statistics [3],

cancer survival statistics [4] and much more. Most recent progress has been made

in superstatistics includes analysis of sealevel fluctuations [45](2015) and statistics

of daily rainfall [46](2016).

In the determination of f (b ) in most complex systems, there are basically three

types of distributions to be considered. They are the c

2 distribution, inverse-c2

distribution and log-normal distribution. Thus, the three classes of superstatistics

are named according to f (b ). In the analysis of asset prices, the superstatistical

parameter b can be interpreted as the volatility.
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In the later chapters of this thesis, I apply superstatistical approach to study

and model the stylised facts for financial returns. I investigated the stylized facts

(fat tail distribution of returns, absence of autocorrelations of returns and volatility

clustering) of share price returns on various time scales, which have been reported

in previous studies [47][48][49]. It is verified that different types of superstatis-

tics need to be adopted in describing asset price dynamics on different time scales.

Specifically, c

2-superstatistics works well on a time scale of days. It is equivalent

to Tsallis statistics and has also been shown to be connected with the GARCH type

model [50]. This finding is consistent with some recent studies [51][52]. On a much

smaller time scale of minutes, the correlations of b exhibit power-law behaviour

and the price changes are better characterized by lognormal-superstatistics. The as-

set price dynamics exhibits a transition from lognormal to c

2-superstatistics as a

function of time scale. A more general model interpolating between both statistics,

which fits the observed data very well, will be introduced.

1.3 Multifractal analysis

Both a power-law decay of the probability density of unconditional returns and

the power-law decline of the autocorrelation in volatilities can be characterized by

scaling laws in finance. Fractal (Multifractal) analysis has been proved to be a useful

tool to capture the scaling behaviour by means of a singularity spectrum f (a) and

generalized dimension function D(q), and has been applied to financial time series

[53][54][55].

A fractal has a self-similar structure with a fractal dimension, which is a non-

integer lying between the Euclidian and topologic dimension. Fractals cannot be

explicitly described by descriptive statistical measures like mean µ because such

measures depend on the scale e of observation in a power law fashion

µ2

µ1
=

✓
e2

e1

◆h
(1.2)

where h is the scaling exponent. However, the fractal dimension, also called the
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capacity dimension

D =� lim
e�>0

logr(e)
loge

(1.3)

is defined as a scale-free measure of fractals. e is scale and r(e) is the minimum

number of cells with size e needed to cover the object. The scaling exponent h is

referred to as the Hurst exponent H in a fractal time series and it is linked to the

capacity dimension by

H = 2�D. (1.4)

Note that D is a measure of roughness and higher values correspond to rougher

processes, while the Hurst exponent refers to long memory persistence (or anti-

persistence) [56]. A Brownian motion (Bm) has H = 1/2. A fractional Brownian

motion (fBm) has 0 < H < 1/2 for an anti-persistent process and 1/2 < H < 1

for a persistent process. The Hurst exponent can be estimated by many methods

including rescaled range analysis (R/S) [57], detrended fluctuation analysis (DFA)

[58] and detrending moving average (DMA) [55].

While D is a universal measure for a (mono-)fractal time series, it changes

along the processes possessing multi-scaling properties. In this case, a local scaling

exponent a is defined for multifractal time series as

|Xi+D �Xi| µ |D|a(i). (1.5)

a is called the Hölder exponent quantifying the local degree of singularity at a given

time i and it varies though time. Calculating the fractal dimension for subsets with

the same a yields the singularity spectrum f (a). A mono-scaling process has a

unique Hölder exponent a along its path which is identical to the Hurst exponent

H.

The singularity spectrum can be obtained via calculating different moments of

the proper measure µ

hµq(e)i µ e

qH(q). (1.6)

H(q) is the generalized Hurst exponent describing the scaling behaviour of the qth-



1.3. Multifractal analysis 23

moment. The obtained qH(q) vs. q determines different kinds of processes: In the

simplest case, qH(q) is linear, which means H(q) is constant and reduces to the

Hurst exponent H. Such a process is called mono-scaling. On the other hand, if

qH(q) is non-linear, this means H(q) depends on q. Such a process is said to be

multi-scaling.

Different measures µ are adopted in different methods. The generalized Hurst

exponent method (GHE) studies the qth moments of the increments of the process

[59][60]. Multifractal detrended fluctuation analysis(MF-DFA) [61] and multifrac-

tal detrended moving average (MF-DMA) [62] both consider the qth moments of a

fluctuation measure F , where the F in MF-DFA is determined as the deviation from

the local trend and in MF-DMA as the deviation from the moving average.

The box counting method [63] and wavelet transform modulus maxima

(WTMM) [64][65] analyse the singularity spectrum by using the partition function

Z(e,q) =
r(e)

Â
i=1

µ

q
i (e), (1.7)

t(q) = lim
e!0

logZ(e,q)
loge

, (1.8)

where t(q) is called the scaling function (or free energy function). It can be ex-

pressed by H(q) as

t(q) = qH(q)�DT (1.9)

where DT is the topological dimension, which equals 1 for time series.

Finally, f (a) can be obtained from t(q) through Legendre transform. The

shape of f (a) for a multifractal time series is concave while it reduces to a fixed

value for mono-fractals [66].

Each method has both advantages and disadvantages and performs well for

particular types of data. Barunik and Kristoufek [67] tested the Hurst exponent

estimation of R/S, MF-DFA, DMA and GHE for fat tail distributions. They demon-

strated that the R/S method is robust to the presence of heavy tails, however, it

is very sensitive to the presence of short-range memory. MF-DFA and DMA ap-
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proaches are not suitable for small size data and data with heavier tails. Overall the

GHE method gives the best result among all the methods considered. Other com-

parative studies on multifractal techniques can also be found in the publications of

Eke et al. [68] and Salat et al. [69].

The generalized fractal dimension, also called the Rényi dimension, is another

scale-free feature of a multifractal time series. It is related to t(q) and H(q) by

D(q) =
t(q)
q�1

=
qH(q)�1

q�1
. (1.10)

For a time series with non- or mono-fractal property, the shape of D(q) will be con-

stant over different q’s. While a multifractal time series will have different Rényi

dimensions for different q. There has been a bunch of literatures characterizing

the multifractal behaviour for given systems by the spectrum of D(q), for exam-

ple, [70][71][72][73] explored the non-trivial D(q) spectrum of human genomic

sequences.

1.4 Symbolic dynamics
In my thesis, the financial time series is transformed into symbols prior to further

analysis. The technique we used for the symbolic representation is called the sym-

bolic dynamics technique, which is powerful in describing trajectories of a dynam-

ical system in a coarse grained way. By cutting the entire symbol sequence into

small segments of size N, the probability measure of each possible pattern of size

N can be obtained. The Rényi entropy K(q) is derived as

K(q) = lim
N!•

1
1�q

1
N

ln
w

Â
j=1

�
pN

i
�q
, (1.11)

where w is the number of allowed sequences of size N. By mapping each allowed

symbol sequence of size N to a cell of size e on the unit interval, w = r(e), K(q)

and D(q) are linked to each other:

K(q)⇠�D(q) lne +Cq, (1.12)
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where Cq is a constant independent of e . In this regard, the multifractal feature of

a financial symbol sequence can be described in terms of the Rényi entropy K(q).

The Rényi entropy is regarded as the dynamical counterpart of the Rényi dimension

[74].

There have been many applications of symbolic dynamics in the study of finan-

cial time series. Tino [75] et al. predicted the direction of daily volatility changes

by transforming the volatility changes into a symbolic stream in 1999. Bandt and

Pompe [76] developed a technique for estimating the probability distribution based

on counting ordinal patterns in 2002. Zanin [77] investigated the financial market

efficiency by using the concept of forbidden patterns in 2008.

In the later chapters of this thesis, the symbolic dynamics technique is applied

to investigate the share price dynamics for historical data sets of various sectors.

The complex behaviour of share prices is quantified in terms of Rényi entropies

and Rényi dimensions. It is also demonstrated that the stochastic process of sym-

bol sequences observed for real share price data has significantly non-Markovian

character.

1.5 Organisation
The rest of this thesis is organised as follows.

Chapters 2-4 give some general background which is useful for the actual re-

search investigation in chapters 5-7.

Chapter 2 is providing some background knowledge on stochastic volatility. It

begins with the GARCH type model in which the volatility is a deterministic vari-

able at any given time. Then we introduce the stochastic volatility model which

describes the volatility as a latent stochastic variable. Discrete and continuous

stochastic volatility models are both mentioned. Finally, some distributions, which

incorporate the stylized facts of asset returns, are introduced.

Chapter 3 gives a review of the superstatistics concept from theoretical ap-

proaches to applications. The reason for the occurrence of the often observed Tsal-

lis statistics is explained by fluctuations of an intensive parameter. A generalized
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version of Tsallis statistics is constructed based on superstatistics. Three types of

distributions used in the description of intensive parameters for most complex sys-

tems are given. Finally some applications of different classes of superstatistics are

presented.

Chapter 4 discusses fractal phenomena and multifractals. Commonly used

multifractal analysis method such as Wavelet transform modulus maxima method

and Multifractal detrended fluctuation analysis are introduced. Relevant back-

ground knowledge on symbolic dynamics and information measures is provided.

Finally, the Rényi dimension and Rényi entropy are introduced as two important

measurements of multifractality.

Chapter 5 discusses which type of superstatistics is most suitable to properly

describe share price dynamics on various time scales. I firstly look at share price

returns on large (daily) time scales and then do a similar analysis on small (minute)

time scales. It is shown that while c

2-superstatistics works well on a time scale of

days, on a much smaller time scale of minutes the price changes are better described

by lognormal superstatistics. We also present results on correlation functions of the

extracted superstatistical volatility parameter, which exhibit exponential decay for

returns on large time scales, whereas for returns on small time scales there are long-

range correlations and power-law decays. Since the system dynamics exhibits a

transition from lognormal to c

2 superstatistics as a function of time scale, a syn-

thetic model interpolating between both statistics is introduced. I have repeated

the same experiment for different types of companies and looked at the similarities

and differences among sectors and industries. The work of this chapter has been

published in Physica A [78].

In chapter 6 the method of symbolic dynamics is applied for the multifractal

analysis of financial time series. It offers a coarse-grained way to trace the time

evolution of share price trajectories. A nontrivial spectrum of Rényi entropies is

found. It is studied how the spectrum depends on the time scale of returns, the sec-

tor of stocks considered, as well as the number of symbols used for the symbolic

description. It is confirmed that in the symbol space transition probabilities of ob-
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served share price returns depend on the entire history of previous symbols. Thus

the coarse-grained share price data has significantly non-Markovian character. The

content of this chapter is being organized into a new paper.

The thesis is closed with a conclusion in chapter 7.



Chapter 2

Stochastic Volatility

2.1 Stylized facts for financial returns

General properties that all sources of return data manifest are called stylized facts.

Through years of investigations in the financial market, daily returns often possess

three remarkable properties. The first stylized fact is that the distribution of returns

is non-Gaussian, especially it has a fat tail and is almost symmetric. Second, the

correlations between returns are almost zero. Third, there are statistically significant

positive correlations between absolute or squared returns. All of these properties are

related to the fluctuations in volatility.

It is well-known that the volatility of asset prices is changing through time.

Many papers have been published devoted to explain the underlying reasons be-

hind such variation in volatility. For example, the volatility of stock market is

usually high in the period of economic crises, and afterwards, turns to a normal

level [79][80][81]. Also, the variation of volatility is partially affected by the level

of the market [82][83]; this phenomenon is the so-called market leverage effect.

Moreover, the volatility is also influenced by the information arriving at the market.

Based on this postulation, Clark [84] and Epps and Epps [85] proposed a model

which shows that volatility varies with the amount of related news reaching the

market.

Fluctuations of asset prices and volatilities are described by different mod-

els emphasising particular features of asset prices. In this chapter, the ARCH-
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type models, stochastic volatility models in both discrete-time and continuous-time

frameworks will be introduced in brief, according to Taylor’s textbook [86].

2.2 ARCH models

Autoregressive, conditional heteroskedastic(ARCH)-type models describe the dy-

namics of price and volatility by specifying the conditional variance ht of the return

for period t, conditional on the prior information. The asset return is defined as

rt = log pt
pt�1

where pt and pt�1 are the asset prices observed at time t and t �1.

2.2.1 ARCH(1) model

Assume the return can be described by the equation

rt = µ +ht
1/2zt (2.1)

where zt are i.i.d. N(0,1) random variables. The distribution of returns over the

period t, conditional on all previous returns, is normal with constant mean µ and

time-varying conditional variance ht . Thus rt can be also represented as

rt |rt�1,rt�2, ...⇠ N(µ,ht) (2.2)

The residual at time t is defined as

et = rt �µ = ht
1/2zt . (2.3)

The simplest ARCH(1) model by Engle [24] is then represented as

ht = w +ae2
t�1, (2.4)

where w > 0 and a  0 are the two parameters of the volatility ht . The volatility in

period t is only affected by the return of period t �1.
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The autocorrelation of the returns is zero

cov(rt ,rt+t

) = cov(et ,et+t

) = E[ht
1/2ztht+t

1/2zt+t

] (2.5)

= E[ht
1/2ztht+t

1/2]E[zt+t

] = 0 (2.6)

for all t > 0, where E[x] denotes the expected value of x.

The forecast error is measured by the deviation of actual squared residuals

from predicted squared residuals as

vt = e2
t �E[e2

t |rt�1, ...] = e2
t �ht . (2.7)

The series of the forecast errors are uncorrelated. Replacing ht in eq.2.4 by e2
t � vt

yields

e2
t = w +ae2

t�1 + vt (2.8)

and hence squared residuals follow an autoregressive process of order one, abbre-

viated as AR(1) process. As a has to satisfy |a| < 1 to make sure that the AR(1)

process is stationary, recalling a  0, we have a < 1. The autocorrelation function

of squared residuals is equal to r

t

= a

|t|.

The unconditional variance of et is

Var(et) = E[e2
t ]� (E[et ])

2 (2.9)

= E[e2
t ] (2.10)

= E[htz2
t ] (2.11)

= E[ht ] (2.12)

= w +aE[e2
t�1] (2.13)

and since et is stationary, Var(et) =Var(et�1) = E[e2
t�1], then

Var(et) =
w

1�a

. (2.14)
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And since et = h1/2
t zt , E[h1/2

t ] = E[e2
t ], the unconditional variance of the returns is

also w/(1�a).

The kurtosis of et is

kur(rt) =
E[e4

t ]

(E[e2
t ])2 (2.15)

=
E[h2

t ]E[z4
t ]

(E[ht ])2(E[z2
t ])2 (2.16)

=
3E[h2

t ]

(E[ht ])2 . (2.17)

By Jensen’s inequality, E[h2
t ] > (E[ht ])2, we have kur(rt) > 3. Since if rt has a

normal distribution, kur(rt) = 3, thus the time-varying volatility ht results in fat

tails in the unconditional distribution of rt .

2.2.2 GARCH(1,1) model
The ARCH(1) model is generalised to a GARCH model [23] by inserting a lagged

variance term to the conditional variance equation as

ht = w +a(rt�1 �µ)2 +bht�1. (2.18)

One previous return rt�1 and one previous value of the conditional variance ht�1 are

used to define the conditional variance for period t. The four volatility parameters

µ,a,b and w are required to satisfy w � 0,a > 0,b > 0 and a+b < 1 to determine

a non-negative outcome of ht and to guarantee the stationary of ht .

Substituting the forecast error vt = e2
t �ht into Eq.2.18 yields

e2
t = w +(a +b )e2

t�1 + vt �bvt�1. (2.19)

Hence squared residuals follow an ARMA(1,1) process. The autocorrelation of

squared residuals, which are modelled by ARMA(1,1), is C(a + b )t > 0 for all

t > 0 where C is positive and is determined by a and b as

C(a,b ) =
a(1�ab �b

2)

(a +b )(1�2ab �b

2)
(2.20)
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Other properties of a GARCH(1,1) model can be obtained by using similar

calculations as in the ARCH(1) model. The autocorrelation of the returns is zero

for all t > 0; the unconditional variance of rt is finite and Var(rt) = w/(1�a �b );

the kurtosis of rt is always larger than 3.

2.2.3 EGARCH model

If the logarithm of the conditional variance ht , rather than ht itself, is characterized

by an AR(1) process, with an asymmetric function of the standardized residuals

zt�1, the exponential-GARCH(EGARCH) model, proposed by Nelson [87] ,is given

as

log(ht) = µlog(h) +D(log(ht)�µlog(h))+g(zt�1), (2.21)

and

g(zt�1) = Jzt�1 + g(|zt�1|�E[|zt�1|]), (2.22)

where µlog(h) is the mean of log(ht), �1 < D < 1 is the autoregressive parameter

of this AR(1) process, J and g are two parameters of the function g(). g(zt�1)

are i.i.d., and if zt are normal distributed, E[|zt�1|] =
p

2/p . It is obvious that the

slope of the function g changes with the sign of zt , in which way the asymmetry is

incorporated into the model.

More details can be found in papers of Bollerslev, Chou, and Kroner [88] and

Bollerslev, Engle and Nelson [89] which provide reviews on the ARCH model in

terms of theories and empirical applications.

2.3 Stochastic volatility models

Stochastic volatility models provide alternative approaches to describe returns and

volatilities. Since the volatility is changing all the time frequently, it is plausible

that one can model the volatility by using a random variable. Different stochastic

processes, rather than the conditional variance process, for volatility are investigated

in this chapter.
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2.3.1 Standard stochastic volatility model

The standard SV model introduced by Taylor [25] is defined by

rt = µ +stut (2.23)

and

log(st)�a = f(log(st�1)�a)+ht , (2.24)

for return rt and volatility st . From Eq.2.23, the excess return rt � µ is factorised

as a product of st and ut , where ut are assumed to be i.i.d. normal random vari-

ables: ut ⇠ N(0,1). st is the unpredictable part of the volatility whose dynamics is

described by Eq.2.24. The logarithm of st is modelled by the AR(1) process. a is

the mean of log(st). f is the autoregressive parameter which is always restricted

to satisfy |f | < 1 to ensure that the process is stationary. ht are i.i.d. white noises

with E[ht ] = 0,E[h2
t ] = s

2
h

and E[htht�1] = 0. A further assumption is made that

ht are Gaussian distributed, which implies log(st) are also Gaussian distributed.

Particularly, log(st) ⇠ N(a,b 2) and ht ⇠ N(0,s2
h

), with s

2
h

= b

2(1�f

2). Thus,

Eq.2.24 is also called a Gaussian AR(1) process. The standard stochastic volatility

model also assumes that the processes st and ut are stochastically independent.

The unconditional density function of rt is given by the integral over the volatil-

ity variable s as

f (rt) =
Z •

0
y(rt |µ,s2)L(s |a,b 2)ds , (2.25)

where y(·) is the Gaussian probability density function and L(·) is the lognor-

mal probability density function. The integration uses the lognormal-normal den-

sity(LNN), whose shape is symmetric about µ . LNN density integrals can only be

numerically evaluated. Note that the density in Eq.2.25 is equal to the density of

systems obeying lognormal superstatistics for µ = 0, which will be introduced

later in Chapter 3.
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2.3.2 Asymmetric stochastic volatility model

The standard stochastic volatility model does not specify the volatility process ac-

cording to the direction of price changes. Asymmetric volatility effects can be cap-

tured by postulating that there is some dependence between ht of the volatility and

ut in the logarithms of prices.

The general SV model that incorporates asymmetric effects is defined as before

by

rt = µ +stut (2.26)

and

log(st)�a = f(log(st�1)�a)+ht (2.27)

where now the variables (ut ,ht+1)T have bivariate normal distributions with

0

@ ut

ht+1

1

A⇠ i.i.d.N

0

@

0

@0

0

1

A ,

0

@ 1 ds

h

ds

h

s

2
h

1

A

1

A (2.28)

so that d is the correlation between ut and ht+1 [86].

2.4 Continuous time stochastic processes

The previous models characterize asset price and volatility for discrete moments

in time. However, how to characterize the price and volatility dynamics in the

continuous time framework is also of particular interest. In this section, univariate

and bivariate diffusion processes used in the financial market are introduced.

2.4.1 Geometric Brownian motion

Denote the process of an asset price by S(t), the simplest continuous time model

used for describing the dynamics of S(t) is the well-known Geometric Brownian

Motion, which is represented by

logS(t)� logS(0) = (µ � 1
2

s

2)t +sW (t), (2.29)
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where (µ � 1
2s

2) is called the drift function with s the constant volatility, and

W (t) denotes a Wiener process. S(t) is lognormal distributed, which guarantees its

positive outcomes.

Another way to represent the Geometric Brownian motion is to use the stochas-

tic differential equation (SDE):

dS/S = µdt +sdW. (2.30)

2.4.2 Bivariate diffusion process

2.4.2.1 The Bivariate Wiener Process

Consider two Wiener processes W (t) and Y (t) which are independent of each other.

A third Wiener process Z(t) defined by a linear combination of the previous two

processes with a correlation coefficient r in the range of -1 to 1 is given as

Z(t) = rW (t)+
q

1�r

2Y (t). (2.31)

The stochastic process B(t), defined by a column vector as [86]

B(t) = (W (t),Z(t))T , (2.32)

is called the general bivariate Wiener process. A detailed discussion can be found

in [90]. The coefficient r then equals the correlation between the increments of the

elemental processes:

cor(W (t)�W (s),Z(t)�Z(s)) = r. (2.33)

This correlation is often described by a compressed expression:

dWdZ = rdt. (2.34)
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2.4.2.2 Example

The stochastic volatility (SV) models of the previous section specify a volatility

formula and then engage the volatility variable in an equation that defines the evo-

lution of returns. A discrete SV model is an approximation to a bivariate diffusion

process for asset price S(t) and its stochastic variance V (t), which is defined by the

following equations:

dS/S = µdt +
p

V dW (2.35)

and

dV = a(V )dt +b(V )dZ. (2.36)

where dW and dZ are correlated by

dWdZ = rdt. (2.37)

One of the choices is to specify Eq.2.36 as

d(logV ) = k(a � logV )dt +sdZ, (2.38)

which generates an Ornstein-Uhlenbeck(OU) process [91][92][93] for logV . a is

the mean, thus the drift function a(V ) = k(a � logV ) is negative or positive when

logV is above or below its mean level. k is a parameter that governs the rate at

which logV is pulled back towards a . Thus, the OU process is the continuous

time extension of the previously mentioned AR(1) process, and Eq.2.38 combined

with Eq.2.35 and Eq.2.37 is a continuous stochastic volatility model that can be

approximated by the general SV model, which simplifies to the standard SV model

when r = 0.

Another specification of a square-root process (Cox, Ingersoll, and Ross [94])

for V (t) is used in the Heston model [28], which is of the form

dV = k(a �V )dt +s

p
V dZ. (2.39)
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The drift function is attained as in the OU process. A further enhancement in the

volatility function b(V ) = s

p
V ensures that the process only produces positive

values. Closed-form option prices can be calculated from a stochastic volatility

model that specifies the V (t) as a square-root process with any value of r .

More theory of continuous-time stochastic process can be found in the books

by Cont and Tankov [95] and Etheridge [96]. Shephared provided a review of the

stochastic volatility models in the text [97] and he also published a detailed survey

of SV and ARCH models in [98].

2.5 Probability Distributions for Returns
Probability distributions are only plausible to describe returns if they are consistent

with the mentioned stylized facts. They are expected to have fat tails and must be

proximately symmetric. We are going to review some of the distributions that have

these features.

Clark [84] and some others have suggested that the asset returns can be mod-

elled by a mixture of normal distributions. Then, the conditional normal distribution

of returns:

rt |wt ⇠ N(µ, f (wt)) (2.40)

are defined by a constant mean µ and a function f of mixing variables wt which

represents the conditional variance s

2
t = f (wt). There should be some assumptions

that make the unconditional distribution of returns have excess kurtosis.

The mixing variable wt is possibly related to several observable quantities such

as number of transactions [99], trading volume [84] or number of new informations

that arrive at the market on day t [100]. The unconditional distribution of returns

can be constructed by adopting a particular distribution for the conditional variance

s

2
t = f (wt).

Praetz [101] suggested that w

2
t is distributed as an inverse gamma distribution

and unconditional returns are then distributed with a generalized Student-t distribu-

tion with degrees of freedom v > 2. Then central moments of order N < v are finite

and the unconditional returns have a finite kurtosis 3+6/(v�4) when v > 4. The
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Student-t distribution converges to a Gaussian distribution as v ! •. A gamma dis-

tribution has also been suggested for s

2
t by Madan dan Seneta [102], which implies

that 1
s

2
t

, instead of s

2
t , is inverse gamma distributed.

A lognormal distribution for s

2 is advocated by Clark [84] so that the resulting

unconditional distribution for returns is the so-called lognormal-normal distribution.

This result is supportive of the standard stochastic volatility model and is still pop-

ular in the literature dealing with stochastic volatility. The unconditional kurtosis is

3exp(V ), where V is the variance of log(s2
t ). Besides, all the other moments are

also finite. However the density function can only be represented by an integral and

evaluated numerically.

Barndorff-Nielsen and Shephard [103] also showed that gamma and inverse

gamma distribution are appropriate choices for the conditional variance in the mod-

elling of returns recorded over various time scales.

Returns measured over time lags which are less than or equal to 5 minutes

are referred to as high-frequency returns. There exist similarities in the stylized

facts of daily and high-frequency returns. First, fat tail behaviour is also captured

in high-frequency return. Additionally, the kurtosis of the distribution is observed

to increase as the frequency of return measurement increase. Second, there are

almost no correlations between high-frequency returns, however, the first-lag au-

tocorrelation is usually negative. Third, there is nonnegligible dependence among

high-frequency absolute returns. The magnitude of dependence has periodic U-

shape corresponding to the intraday variation in volatility. Finally, volatility can

have short but high bursts due to the fact that the intraday price is sensitive to the

news absorbed by the market and the return becomes volatile after such a news

release.

High-frequency returns can also be reasonably modelled by other mixtures of

normal distributions. Among those literatures, Tauchen and Pitts [100], Clark [84]

and Taylor [25] showed strong evidences that a lognormal distribution for the time-

varying s

2
t was most appropriate.

Note that the the idea of constructing the unconditional returns by a mix-
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ture of normal distributions, weighted by some appropriate densities for the con-

ditional variance, is consistent with the concept of Superstatistics [37][38]. This

technique was originally developed in the context of nonequilibrium statistical me-

chanics(Chapter 3) and can be applied to financial systems as well(Chapter5). The

mentioned distributions, which are commonly chosen for characterizing s

2
t , are also

favoured in Superstatistics when it comes to fitting the variance related parameter b .

Barndorff-Nielsen and Shephard [103] also stated that the class of distribution used

to describe w

2
t must be selfdecomposable. It will be explained in detail in chapter 3

that gamma, inverse gamma and lognormal distribution are all selfdecomposable.



Chapter 3

Superstatistics

3.1 Motivation for Superstatistics
In this chapter we introduce a technique that is useful in the study of many kinds

of nonequilibrium systems, called superstatistics [37][38][104]. The name of this

method can be briefly understood as a superposition of different statistics on differ-

ent time scales. It generalises Boltzmann statistics and explaines why the Tsallis

distribution is quite often observed in many driven nonequilibrium systems.

3.1.1 Boltzmann statistics

Consider an ideal gas that is composed of many molecules that do not interact with

each other except during collisions. Each particle in this system possess as a cer-

tain level of energy and the entire system contains an amount of E energy. For an

isolated system under consideration, the total number of particles N, the volume of

the gas V as well as the energy E are all fixed. Then questions of how is E assigned

among the particles and how are the particles distributed among the system are of

interest to Boltzmann’s theory.

If one looks at such a system from the classical mechanics perspective, the N

particles are each in a six-dimension phase space which can be divided into W ⌧ N

cells with local volume wi. Each cell consists of ni particles and holds ei =
1
2mv2

i

kinetic energy at its center. Then the macrostate of the system is represented by

the number of particles, the volume and the energy of i = 1,2, ...,W cells, i.e. {ni},

{wi} and {ei}. The disorder number, W ({ni}), represents the number of possible
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microstates for the given macrostate.

It is easy to calculate that the number of ways to allocate n1 particles to cell

i = 1 is N!
ni!(N�n1)!

, and the number of ways to allocate n2 particles to cell i = 2 is
N!

ni!(N�n1�n2)!
and so on. Then the ways to distribute {ni} among i = 1,2, ...,W cells

is

N!
n1!(N �n1)!

⇥ N!
n2!(N �n1 �n2)!

⇥ · · ·

=
N!

n1!n2! · · ·nW !

=
N!

’W
i=1 n j!

.

(3.1)

Since each cell has a volume wi, any of the ni particles can be assigned to anywhere

in wi. The number of ways to allocate particles locally in their own cells for W cells

is ’W
i=1 w

ni
i . Then the disorder number is enumerated as

W ({ni}) =
N!

’W
i=1 ji!

W

’
i=1

w

ni
i . (3.2)

Under the A Priori assumption which states that all microstates have equal prob-

abilities, the macrostate at equilibrium must include a maximum W ({ni}). Thus

W ({ni}) also denotes a thermodynamic probability. Maximising W ({ni}) while

keeping the number of particles N and energy E fixed as

W

Â
i=1

ni = N, (3.3)

E =
W

Â
i=1

niei, (3.4)

yields the Maxwell-Boltzmann distribution

n̄i =
1
Z

e�bei , i = 1,2, ...,W (3.5)

where Z is the partition function and b = 1
kBT , where kB is the Boltzmann constant

and T is the temperature. Note that the probability to find a particle in cell i is
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proportional to ni under the a priori assumption, p̄i ⇠ n̄i. The equilibrium entropy

Seq in terms of p̄i is

Seq({p̄i}) =�kB

W

Â
i=1

p̄i log p̄i + constant. (3.6)

Moreover, the Boltzmann’s formula

S(E) = kB logW (E) (3.7)

describes the relation between entropy and the number of probable microstates

W (E), corresponding to a certain system of energy E. Eq.3.7 is obtained from

Eq.3.6 for p̄i = 1/W .

3.1.2 Tsallis statistics

For more complex systems where W cannot be postulated, the Boltzmann statistics

is not adequate to reflect the information provided by the system. The probability

of finding the occupancy in certain regions in the phase space should be determined

by the system’s dynamics. Tsallis [105] generalised the Boltzmann statistics by

defining the entropy as

Sq = kB
1�ÂW

i=1 pq
i

q�1
(3.8)

where q1 is a real parameter that should be adapted to the system under considera-

tion. The Boltzmann-Gibbs-Shannon entropy is a special case of Tsallis entropy as

when q = 1, Eq.3.8 leads to

S1 =�kB

W

Â
i=1

pi log pi (3.9)

Maximising Sq under two constraints

Â
i

Pi(q) = 1 (3.10)

1The q parameter related to the Tsallis statistics is different from the q parameter in the context
of multifractal analysis in this thesis.
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and

Â
i

Pi(q)Ei =Uq (3.11)

where

Pi(q) =
pq

i

ÂW
i=1 pq

i
(3.12)

are the so called escort probabilities [66], yields

p̄i =
1
Zq

[1� (1�q)b̃Ei]
1/(1�q) (3.13)

where Z�1
q is a normalisation factor in order that Âi p̄i = 1, Ei is the energy level of

the system and b̃ is related to the temperature. In the case of q = 1, p̄i ⇠ e�bEi is of

the exponential form of the Maxwell-Boltzmann distribution. While for q 6= 1, p̄i is

a power law. In addition, Eq.3.8 indicates a non-extensivity of the physical entropy

for q 6= 1 as

Sq(A+B) = Sq(A)+Sq(B)+(1�q)Sq(A)Sq(B) (3.14)

where A and B are two independent systems. In fact, many non-equilibrium systems

may have this property.

In the following, we will discuss why it is the Tsallis statistics that is adapted

by to many non-equilibrium physical systems, adopting the superstatistical point

of view.

3.1.3 Superstatistics and derivation of Tsallis statistics

Let us first give a brief introduction of what is superstatistics [37][104][38] and then

provide a simple example, a Brownian particle moving in a turbulent fluid.

Consider a nonequilibrium system which is spatio-temporally inhomogeneous.

Such a system can be partitioned into many spatial cells with different values of an

intensive parameter b . This parameter may stand for the inverse temperature, the

energy dissipation or a chemical potential and so on, depending on the system under

consideration. Locally, each cell, with a constant b , is assumed to reach equilib-

rium within a very short relaxation time. The local behaviour can be described by

an ordinary statistics, i.e.Boltzmann factor e�bE , where E is an effective energy of
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the cell. In the long term, the intensive parameter b is fluctuating on a time scale T

which is much larger than the relaxation time that a cell needs to reach local equi-

librium. Then the entire inhomogeneous system is described by a superposition of

ordinary Boltzmann factors weighted with a probability density distribution f (b ).

In this case, the long term stationary distribution of this supertatistical system is

defined as

p(E) =
Z •

0
f (b )

1
Z(b )

e�bEdb (3.15)

where e�bE is normalised by a constant factor Z(b ).

Later in this section we will use an example to show that Eq.3.15 becomes

equivalent to the Tsallis distribution if f (b ) is a c

2 distribution. But generally, the

intensive parameter b does not stick to c

2 distribution in different systems. Three

often observed distributions will be discussed later.

Consider a Brownian particle of mass 1 moving in a fluid with its velocity u

modelled by a Langevin equation

u̇ =�gu+sL(t) (3.16)

where g > 0 represents the friction constant, L(t) is the white noise term with a

Gaussian probability distribution and s denotes the strength of the noise. If g and

s are constant-in other word, the inverse temperature denoted by b := g/s

2 is

constant-then the stationary probability density of u is Gaussian distributed with

variance b

�1. However, the environment through which the particle is moving can

be spatio-temporally inhomogeneous due to the external dynamics of environmental

changes, like the situation sketched in Fig.3.1.

As shown in Fig.3.1, the particle is moving through an environment that consist

of many spatial cells. The relaxation time in each cell, which the Brownian parti-

cle needs to reach local equilibrium, is g

�1. Each cell is assigned a local inverse

temperature bi, however, while the particle is moving through the environment, the

inverse temperature varies from cell to cell on a large time scale T � g

�1 and it has
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Figure 3.1: A Brownian particle is moving through a spatially inhomogeneous environment
with fluctuating inverse temperatures bi dominate different regions. (Picture
taken from [1].)

the probability density distribution f (b ). Then one gets the conditional probability

of the velocity u conditional on an observed intensive parameter b ,

p(u|b ) =
r

b

2p

exp
✓
�1

2
bu2

◆
, (3.17)

which is Gaussian. The joint probability of observing a certain u together with a

certain b is

p(u,b ) = p(u|b ) f (b ), (3.18)

and the marginal probability of u, regardless of the observation of b , is

p(u) =
Z •

0
p(u|b ) f (b )db , (3.19)

which is a generalisation of the canonical distribution. As a result, Eq.3.19 is said to

be superstatistical due to the fact that it is a ”statistics ( f (b )) of a statistics (Gaus-

sian)”.

To be specific, if g and s are fluctuating in a way that b is c

2 distributed, then

f (b ) =
1

G
�n

2
�
✓

n
2b0

◆n/2
b

n/2�1 exp
✓
�nb

2b0

◆
, (3.20)

where n represents the degrees of freedom. b0 denotes the average of the varying b
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which is calculated as

hb i=
Z •

0
b f (b )db = b0. (3.21)

and the variance is given by

hb 2i�b

2
0 =

2
n

b

2
0 . (3.22)

Substituting Eq.3.17 and Eq.3.20 into Eq.3.19 yields

p(u) =
Z •

0
p(u|b ) f (b )db =

G
�n

2 +
1
2
�

G
�n

2
�
r

b0

pn
1

⇣
1+ b0

n x2
⌘ n

2+
1
2

(3.23)

which can be rewritten in the form of a Tsallis distribution

p(u)⇠ 1
⇣

1+ 1
2 (q�1) b̃u2

⌘ 1
q�1

(3.24)

with the following identifications:

1
q�1

=
n
2
+

1
2

() q = 1+
2

n+1
(3.25)

1
2
(q�1)b̃ =

b0

n
() b̃ =

2
3�q

b0 (3.26)

Note that we have obtained a power law distribution 3.24 from the fluctuating b

with distribution 3.20.

3.2 Observed universality classes
Note that b is a positive fluctuating parameter determined by the spatio-temporal

dynamics, so a Gaussian distribution is not proper for f (b ). In the following some

possible kinds of distributions are considered [39].

3.2.1 c

2-superstatistics

Suppose there are microscopic random variables x j, j = 1, . . . ,J independently af-

fecting b in an additive way. According to the Central Limit Theorem, the rescaled
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sum of the random variables 1p
J ÂJ

j=1 x j will be close to a Gaussian random vari-

able X1 when J is large enough. Then there can be a collection of n independent

Gaussian random variables X1, . . . ,Xn and each of them are contributing by those

microscopic random variables. If b = Ân
i=1 X2

i , then b is positive as expected and

distributed according to the c

2 distribution, i.e.

f (b ) =
1

G(n
2)

✓
n

2b0

◆n/2
b

n/2�1e�
nb

2b0 . (3.27)

f (b ) has two parameters, where b0 is the average of b and n is the degree of

freedom. We have shown that a c

2 type of f (b ) leads to c

2-superstatistics accord-

ing to Eq.3.19, which is equivalent to Tsallis statistics.

3.2.2 Inverse c

2-superstatistics

On the other hand, if, instead of the inverse temperature b , b

�1 is the sum of n

squared Gaussian random variables Xi ,b�1 = Ân
i=1 X2

i , where Xi are generated by

the same way in 3.2.1. The resulting b has a inverse c

2 distribution:

f (b ) =
b0

G(n
2)

✓
nb0

2

◆n/2
b

�n/2�2e�
nb0
2b . (3.28)

3.2.3 Lognormal-superstatistics

b may be generated by multiplicative random processes. Start from a local cascade

random variable X1 = ’J
j=1 x j, where J is the number of cascade steps and the

x j are positive microscopic random variables. The random variable 1p
J

logX1 =

1p
J ÂJ

j=1 logx j becomes Gaussian as J !• according to the Central Limit Theorem.

Hence X1 has log-normal distribution. If there are n such product contributions to b ,

that is, b = ’n
i=1 Xi, then logb = Ân

i=1 logXi is a sum of Gaussian random variables,

and is Gaussian as well. Thus b has a log-normal distribution, i.e.,

f (b ) =
1p

2psb

exp

8
<

:
�(ln b

µ

)2

2s2

9
=

; , (3.29)

where µ and s are mean and variance parameters.
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3.3 Application to turbulent flow
The first example of application of supersatistics is the statistics of Taylor-Couette

turbulent flow. The data used in this example is a velocity time series v(t) measured

in turbulent Taylor-Couette flow, which is taken from the experiments made by The

velocity differences are defined by u(t) := v(t +d )�v(t), where v(t) represents the

velocity and d denotes the time lag by which the velocity series is extracted. The

stationary probability distribution of the velocity difference P(u) is known to be

non-Gaussian. The value of Reynolds number and time lag used in the paper of der

Straeten and Beck [2] are Re = 540000 and d = 16, and the number of data points

is n ⇡ 2⇥107.

Let b represent the time-varying inverse variance in u. Comparing the his-

togram of b with the c

2, inverse-c2 and log-normal distributions yields that the

log-normal distribution

f (b ) =
1

a

p
2p

1
b

e�(lnb�q)2/2a

2
(3.30)

with a = 0.5222 and q =�1.51 is the best fit to the experimental distribution of b ,

see Fig.3.2.

Figure 3.2: The probability distribution(dots) of the inverse variance parameter b calcu-
lated from the experimental turbulent data is well fitted by the log-normal
distribution f (b )(solid line) with parameters a = 0.5222 and q =�1.51. This
figure is taken from [2]
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Figure 3.3: The empirical distribution of u(dots) extracted from the time series of velocity
differences in turbulent Taylor-Couette flow is fitted by p(u)(dashed line). This
figure is taken from [2]

Then the unconditional distribution of u can be expressed as

P(u) :=
Z •

0
db fT (b )

r
b

2p

e�
1
2 bu2

(3.31)

which can be understood as a superposition of local Gaussians weighted with a

distribution of the slowly varying parameter b . Fig.3.3 shows that the empirical

distribution of u can be well modelled by p(u) , by which we can conclude that the

distribution of velocity differences in turbulent Taylor-Couette flows can be well

described by log-normal superstatistics.

For quantum turbulent flows, c

2-superstatistics yields a better fit [106][107].

3.4 Other applications of Superstatistics

The superstatistical technique has been widely applied to many different kinds of

complex systems. Here we will describe some further applications, corresponding

to the other two classes of superstatistics: c

2 superstatistics and inverse-c2 super-

statistics.
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3.4.1 Application to train delays

The probability distribution of train delays in England is found to be a q-exponential

functions with asymptotic power law tails, and the underlying reason for the occur-

rence of q-exponentials can be explained by means of superstatistics [3].

Train delays are often observed at various stations in the UK. Suppose that the

waiting time t until the actual departure is described by a Poisson process [93] , the

probability distribution of the waiting time t is given by

P(t|b ) = be�b t , (3.32)

which represents the probability distribution of the delay time t conditional on a

given positive rate parameter b . The above Poisson distribution is already nor-

malised since Z •

0
P(t|b )dt = b

Z •

0
e�b tdt = 1. (3.33)

Under the assumption that the delay time is no less than 1 minute, a large value of

b indicates that most trains depart with a short period of delay, whereas a small b

means there is a higher probability for rather long delays. In reality, on a large time

scale, b is fluctuating in terms of the railway network environment which makes

the above model superstatistical. Temporal variations in b may happen due to a

surge in passenger numbers during the begin of the holiday season, bad weather

conditions or many other extreme events like derailments, strikes, etc. There can

also be spatial variations in b , in addition to the temporal ones.

The observed long term distribution of the delay time becomes a superposition

of local Poisson distributions with a fluctuating parameter b . If the slowly chang-

ing parameter b is distributed in accordance with a probability density f (b ), the

marginal distribution of train delays is given by

p(t) =
Z •

0
f (b )p(t|b )db =

Z •

0
f (b )be�b t (3.34)

which is actually to be compared with the experimental data. Assuming the fact that
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the n causes of fluctuations in b can be represented by n Gaussian random variables

and they are affecting b in an additive way, b is obtained to be c

2 distributed with

n degrees of freedom.

For such f (b ), Eq.3.34 can be evaluated to a q-exponential form

p(t)⇠ (1+b(q�1)t)
1

1�q (3.35)

with q = 1+ 2/(n+ 2) and b = 2b0/(2� q) where b0 is the average b . The q-

exponential is actually a power law for large t.

The fitting result shown in Fig.3.4 demonstrates the above model is in good

accordance with the recorded train delays with fitted parameters b and q.

Figure 3.4: All-route data of train delay times with the best fitted c

2 superstatistics. This
picture is taken from [3].

In summary, the British railway delays are well described by a c

2 superstatis-

tics.

The c

2 type of superstatistics is quite often observed to be applicable in a

variety of complex systems. We will give three further applications of this type

which are applications to sea-leval fluctuations(2015) [45], daily rainfall(2016) [46]

and traffic flow(2016) [108].
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3.4.2 Application to sea-level fluctuations

P. Rabassa and C. Beck present an analysis of the probability densities of measured

sea-levels at five coastal locations in the UK [45]. They investigated the time series

of the difference of the recorded non-tidal residuals. The non-tidal residual is the

stochastic part of the three components of sea-level measurement. Concretely, each

observed sea-level Z(t) is the sum of an annual mean M(t), an astronomical tide

X(t) and a non-tidal residual Y (t). As the finding of slight skewness in the histogram

of non-tidal residuals conflicts with the stipulation of local Gaussian behaviour, the

statistics of non-tidal residual differences Y (ti+1)�Y (ti) rather than the residual

themselves are of interest. By virtue of the Kolmogorov-Smirnov(K-S) test, it is

clearly verified that the experimental distribution of the sea-level differences can be

well modelled by c

2 superstatistics.

3.4.3 Application to daily rainfall

G.C. Yalcin, P. Rabassa and C. Beck investigated the probability distribution of daily

rainfall amounts of different locations around the world [46]. It is demonstrated that

the daily rainfall amounts possess a q-exponential distribution with q ⇡ 1.3. On the

other hand, though the waiting time between the rainy days is tentatively observed

to obey an exponential distribution, it is manifested that a q-exponential distribu-

tion with exponent q close to 1 as q ⇡ 1.05 allows a better fit to the empirical data.

Observed q-exponentials are interpreted by c

2-superstatistics, for which there ex-

ist two well separated time scales in the system. For the daily rainfall dataset, the

probability distribution is modelled by a superposition of local Gaussian distribu-

tions weighted by the density of a variance parameter b , where b is fluctuating

slowly on a large time scale and follows a c

2-distribution. Differently, the waiting

time is described as a superstatistical Poisson process where the data follows Pois-

son process locally with a positive rate parameter b which is c

2-distributed on the

large time scale.
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3.4.4 Application to traffic flow

C. Kosun and S. Ozdemir applied the technique of superstatistics to the modelling of

one-directional traffic flow monitored at Izmir highway [108]. They demonstrated

that the vehicle speeds, the differences of vehicle speed and the shuffled vehicle

speeds are all observed to follow q-exponentials, which implies c

2-superstatistics.

However, for data sets of speeds and speed differences, the exponent q obtained

directly from the fitted q-exponential distribution differs from the value of q cal-

culated from the parameter of the c

2-distribution characterizing the variance pa-

rameter. They claim that the reason of this is due to the fact that the index q of

the q-exponential distribution is a time-independent parameter while the q, which

is obtained from superstatistics(3,26) and associated with the variance for given

data slices, is time-dependent. Such phenomenon is also noticed in the analysis of

financial data which will be presented in Chapter 5.

3.4.5 Application to cancer survival

The second type of superstatistics, inverse c

2-superstatistics is observed to be ap-

plicable in the study of metastasis and cancer survival [4]. To have insights into

the mechanisms of metastasis, cancer progression is analysed in the context of a

complex nonequilibrium system. It is been illustrated in [4] that the superstatisti-

cal model can fit the probability distributions of the survival time of breast cancer

patients perfectly.

Based on the fact that the proliferation of distant metastases is the immediate

cause of death for over 90% of the cancer patients [109], death from cancer can

be regarded as a consequence of multiple occurrences of cancer cell metastasis.

Fig.3.5 describes the two pathways through which distant metastases may arise:

the lymphatic system and the vascular system. For example, cancer cells of the

primary tumor can invade into the local lymph nodes, proliferating while spreading

to distant sites. On the other hand, cancer cells could also transmit to distant organs

by intervening the blood circulation.

Let T be the survival time of a cancer patient. Then T is a continuous random

variable that denotes the waiting time until n events of metastases have accumu-
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Figure 3.5: Macroscopic pathways of the metastatic cascade. This picture is taken from
[4].

lated to induce death. Each event obeys a Poisson process and is exponentially

distributed. Thus, the density of T is a gamma distribution G(n, 1
l

) with parameter

l [110],

f (t|l ) = tn�1
l

n exp�l t
G(n)

(3.36)

where n � 1 controls the shape and l � 0 adapts the scale. However the above

model becomes superstatistical due to the fact that the parameter l fluctuates, indi-

cating various levels of aggressiveness of the cancer propagation. It is explained in

[4] that the probability distribution of l is an inverse-c2 distribution with n degrees

of freedom

f (l ) =
l0(nl0/2)n/2

G(n/2)
l

�n/2�2 exp
✓
�nl0

2l

◆
. (3.37)

The probability density function of survival time is obtained by multiplying

Eq.3.36 and Eq.3.37, and integrating over all possible l :

p(t) =
Z •

0

tn�1
l

ne�l t

G(n)
l0(nl0/2)n/2

G(n/2)
l

�n/2�2e
�nl0

2l dl , (3.38)
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or

p(t) =
(nl0)3n/4

G(n)G(n/2)

⇣ t
2

⌘3n/4�1
"p

2nl0t
n

Kn/2+1

⇣p
2nl0t

⌘

� Kn/2

⇣p
2nl0t

⌘i
, (3.39)

where Kv(z) is the modified Bessel function. This density function with estimated

parameters is fitted to the observed distribution of survival time, see Fig.3.6.

(a) linear (b) log

(c) semi-log (d) log-log

Figure 3.6: Data of the survival statistics together with the fitted curve as given by Eq.3.38
(n = 3.00004,l0 = 0.08712). This picture is taken from [4].

Clearly, the inverse-c2 superstatistical model is in a good agreement with the

real data, keeping in mind that the data shown are survival distributions conditional

on death from cancer.

A more recent paper [111] published in 2015 makes a careful investigation of

migration processes of cancer cells in a heterogenous environment and comes to the

conclusion that a superstatistical model is in very good agreement with the data.
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3.5 Application to finance
Many well established concepts in mathematical finance (such as the Black-

Scholes model) are based on the assumption that an index or a stock price fol-

lows a geometric Brownian motion, and as a consequence the log returns of

these processes are Gaussian distributed. But nowadays it is well known that

the log returns of realistic stock prices are typically non-Gaussian with fat tails

[112][50][113][2][114][115][116][117][118]. Such behaviour revealed in the fi-

nancial market can also be well captured by superstatistical models.

In finance, early applications of the superstatistics concept were worked out by

Duarte Queiros et al. [112, 50] and Ausloos et al. [113]. Van der Straeten and Beck

[2] analysed daily closing prices of the Dow Jones Industrial Average index (DJI)

and the S&P 500 index. They verified that both log-normal superstatistcs and c

2 su-

perstatistics result in good approximations. Biro and Rosenfeld [114] also studied

the data sets of the Dow Jones index and verified that the distribution of log re-

turns is well fitted by a Tsallis distribution. Katz and Li Tian [115] showed that the

probability distributions of daily leverage returns of 520 North American industrial

companies during the 2006-2012 financial crisis comply with the q-Gaussian distri-

bution which can be generated by c

2 superstatistics. They also verified in [116] that

the Tsallis entropic parameter q obtained by direct fitting to q-Gaussians coincides

with the q obtained from the shape parameters of the c

2 distribution fitted to the

histogram of the volatility of the returns. Gerig, Vicente and Fuentes [117] consider

a similar model that indicates that the volatility of intra day returns is well described

by the c

2 distribution, see also [118] for related work in this direction.

In a later chapter of this thesis, various datasets of historical share prices will

be carefully analysed and it will be demonstrated which type of superstatistics is

best suited to model the dynamics.



Chapter 4

Multifractal Analysis

4.1 Fractals

A fractal is a complicated set that exhibits selfsimilar structures on arbitrary scales.

Fractals can be found all over in nature. Moreover, fractals can be artificially formed

by iterative processes. In this section we will first look at how fractal structures

are built by studying some simple examples of fractals and we will then explain a

dimension parameter which is called the ’fractal dimension’.

4.1.1 Examples of fractals

4.1.1.1 Cantor sets

One example of a fractal is the so called classical Cantor set. We start with a unit in-

terval, equally divide the interval into three subintervals of length e1 =
1
3 . Removing

the central subinterval, there are two left-over subintervals which lie on the left and

right ends of the original unit interval. These two subintervals are again segmented

into three subintervals of size e1 = 1
9 respectively and the central subintervals are

taken out again. If we repeat such a procedure infinitely many times, the classical

Cantor set is obtained (see Fig.4.1).

Such subset of the claimed Cantor set contains an infinite amount of real num-

bers and the elements of this set are uncountable. The real numbers in this set can
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Figure 4.1: Construction of the classical Cantor set.

be represented by the ternary notation as

x =
•

Â
k=1

sk3�k (4.1)

where sk is equal to 0 or 2.

4.1.1.2 Sierpinski carpet

A 2-dimensional version of the Cantor set is the so called Sierpinski carpet. We

start with a unit square and divide this square into 32 = 9 identical subsquares of

side length 1/3 of the original square. We delete the central subsquare and repeat

this ’divide then delete’ procedure for the other eight subsquares which were sur-

rounding the central one that has been removed. The ’remainder’ after infinitely

repetition of such iteration is called the ’Sierpinski carpet’ (See Fig.4.2). Note that

the area of this remainder is zero. As a 2D version of the Cantor set, the Sierpinski

carpet contains the Cantor sets as subsets. These particular subsets are lying on the

two central lines through the Sierpinski carpet, one of which is horizontal and the

other one is vertical.

Figure 4.2: Construction of the Sierpinski carpet.
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4.1.1.3 Sierpinski sponge

Again, the 3-dimensional analog of the Sierpinski carpet is called the Sierpinski

sponge (also named as Monger sponge). Cutting a unit cube into 33 = 27 identical

subcubes of side length 1/3 of the original cube, and removing the 6 subcubes in the

middle of each face and 1 subcube in the very centre of the original cube, we will

have 27�6�1 = 20 subcubes remaining. Repeating this iterative process for each

of the remaining subcubes, we obtain the so called Sierpinski sponge (see Fig.4.3).

Similar to the Sierpinski carpet, the volume of the sponge is zero when the above

procedure is infinitely operated.

Figure 4.3: Third step of the construction of the Sierpinski sponge.

4.1.2 The fractal dimension
There is no doubt that traditional geometrical objects have an integer dimension that

we denote as D(0) here. For example, a fibre has dimension 1, a piece of paper has

dimension 2, a book has dimension 3, moreover, a grain of dust has dimension 0.

But how is the dimension D(0) defined for a fractal is our interest in this section.

Let define r(e) the number of d-dimension cells of volume e

d that are needed to

fully cover a typical object. Here d is called the embedding dimension, which is an
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arbitrary integer so that D(0)  d. As we mentioned, D(0) is the dimension of the

object under discussion. For example, small cells of volume e

3 (d = 3) can be used

to cover not only a book, but also a piece of paper or a fibre. In order to cover these

objects thoroughly, we need

r(e)⇠ e

D(0) (4.2)

small cells, where D(0) adopts 3, 2, 1 accordingly. The dimension is determined by

the growth rate of r(e) with respect to e ! 0 as

D(0) =� lim
e!0

lnr(e)
lne

. (4.3)

This equation can be applied among traditional geometrical objects as well as frac-

tals. However, the fractal dimension , also named the box dimension or capacity,

will give a noninteger value in Eq.4.3.

For simple fractals with rigorous self-similarity and straightforward construc-

tion prescription, an easier method can be put forward to determine the fractal di-

mension. The fractal dimensions of the examples we discussed in 4.1.1 are all

achievable by this method. In the case of the classical Cantor set, we can use inter-

vals of length e as the boxes. For the Sierpinski carpet, the boxes can be selected

as squares of side length e and area e

2. For the Sierpinski sponge, the boxes can be

selected to be cubes of side length e and volume e

3. Since the classical Cantor set,

the Sierpinski carpet and the Sierpinski sponge are initialized as a unit interval, a

unit square and a unit cube, we set an initial side length e0 = 1 and cut down its size

by a factor a at each step of the construction. For all the three examples we men-

tioned above, we have a = 1/3. After the Nth iteration, the box size is diminished

to

e = aN
e0. (4.4)

In each step, the increment factor of boxes that is required to fully cover the next

stage of the fractal is G. So the total number of the boxes used to cover the fractal

after the Nth step is

r(e) = GNr(e0). (4.5)
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Removing N from Eq.4.5 by Eq.4.4, we obtain for N ! •

N ⇠ lne/ lna, (4.6)

r(e)⇠ exp [(lnG)(lne)/ lna] (4.7)

Now we can reassemble Eq.4.3 and obtain the fractal dimension from the two pa-

rameters G and a as

D(0) = lim
e!0

lnr(e)
lne

=� lnG
lna

. (4.8)

Hence we can simply calculate the fractal dimensions for the classical Cantor set,

the Sierpinski carpet and the Sierpinski sponge as

G = 2,D(0) =
ln2
ln3

= 0.6309..., (4.9)

G = 8,D(0) =
ln8
ln3

= 1.8928..., (4.10)

G = 20,D(0) =
ln20
ln3

= 2.7268..., (4.11)

respectively.

4.2 Multifractals spectrum analysis

Multifractals are a generalization of fractals where a single fractal dimension is not

enough to fully describe the set or system under consideration. The measure of the

ith box of size e is represented by µi(e). Then one could obtain the singularity

exponent of each box as

ai =
log µi(e)

loge

or µi(e)⇠ e

ai (4.12)

where ai is also called Holder index. The number r
a

(e)of boxes with the same

Holder index a scales with the fractal dimension f (a) of the subsets with the same

a as

r
a

(e)⇠ e

f (a). (4.13)
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The function of f (a) is called multifractal spectrum. The shape of f (a) converges

to a point for non- and mono-fractals while the spectra of multifractal datasets are

humped over a relatively large range of a . A bunch of papers in the field of multi-

fractal analysis evolve around finding the multifractal spectrum f (a) from a given

data set. Here we will introduce three most common methods.

4.2.1 Box-counting method

In the original box-counting method [63], one divides the d-dimensional shpase

space into boxes of equal size e and compute a normalized measure µi(e) for each

box. The number of boxes with non-zero measure is r(e). One can then introduce

a partition function

Z(e,q) =
r(e)

Â
i=1

µ

q
i (e)⇠ e

t(q) (4.14)

which scales with the scaling function t(q) for �•  q  •. When q > 0 the

partition function emphasizes the effect of the regions with higher µi(e). On the

contrary, the partition function emphasizes the effect of the region with lower µi(e)

when q < 0.

The relation between the multifractal spectrum f (a) and the scaling function

t(q) can be obtained by the substitution of Eq.4.12 and Eq.4.13 into the expression

for the partition function in Eq.4.14:

Z(e,q) =
r(e)

Â
i=1

e

� f (a)
e

aq =
r(e)

Â
i=1

e

aq� f (a) = e

t(q); (4.15)

equivalently,
N(e)

Â
i=1

e

aq� f (a)�t(q) = 1 (4.16)

By using the stationary phase method it can be found that

t(q) = qa(q)� f (a(q)), (4.17)

where a(q) is value for which the expression qa � f (a) is maximized for a given

q. This condition is equivalently interpreted by f 0(a) = q under the assumption that
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f (a) is differentiable. Substituting f 0(a) = q back into Eq.4.17 gives t

0(q) = a .

Hence Eq.4.17 is the Legendre transform of f (a), for this reason it contains the

same information. The generalized dimension, which is also known as the Rényi

dimension of order q, is defined as

D(q) = lim
s!0

1
q�1

lnZ(e,q)
lne

=
t(q)
q�1

. (4.18)

which will be discussed in detail later.

4.2.2 Wavelet transform modulus maxima method

Another method to calculate f (a) is the wavelet transform modulus maxima

method [64][65], which comes from the original wavelet transform approach [119]

in signal theory. The wavelet transform of a discrete time series x(i), i = 1, ...,n is

defined as

T
y

(t,s) =
1
s

n

Â
i=1

y

✓
i� t

s

◆
x(i) (4.19)

where y is called the mother wavelet which is shifted by a position parameter t and

stretched by a scale parameter s [120]. The wavelet coefficients depend on both the

position and the scale and the transform serves as a tool for the decomposition of

the time series into the time-scale plane. The mother wavelet y , which should have

zero mean, are most frequently chosen to be the mth derivative of a Gaussian

y

(m)(x) =
dm

dxm

⇣
e�x2/2

⌘
. (4.20)

After picking out the local maxima of T
y

, one can calculates the partition function

for the moduli of the maxima

Z(s,q) =
jmax

Â
j=1

|T
y

(t j,s)|q (4.21)

so that |T
y

(t j �1,s)| < |T
y

(t j,s)| and |T
y

(t j +1,s)|  |T
y

(t j,s)| for j = 1, ..., jmax

where t j denotes the positions of the local maxima of |T
y

(t j,s)|. For any given

scale s, if a maximum at a certain time position t j is identified to be smaller than a
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maximum at a near position t
0
j ⇡ t j for a lower scale s0 < s, then T

y

(t j,s) is replaced

by T
y

(t
0
j,s

0).

If the time series is supposed to have fractal properties, the partition function

is expected to scale with the scaling function t as in Eq.4.14

Z(s,q)⇠ st(q). (4.22)

The singularity spectrum f (a) is related to t(q) by the same formulas as in the

box-counting method [120]:

a = t

0(q) and f (a) = qa � t(q) (4.23)

4.2.3 Multifractal detrended fluctuation analysis

The multifractal detrended fluctuation analysis [61] is an alternative method that has

become a commonly used technique in determination of the multifractal spectrum.

It is a generalized version of the detrended fluctuation analysis [58] that serves

as a tool for identifying the scaling properties of mono-fractal time series. The

procedure for determining the multifractality of a given time series x(i), i = 1, ...,n

is outlined as follows [120].

We first calculate the cumulative profile Y ( j) by

Y ( j) =
j

Â
i=1

(x(i)�hxi), j = 1, ...,n (4.24)

One first divides the n elements of Y into Ns non-overlapping segments of length s

starting from the beginning of the time series and then one divides another Ns non-

overlapping segments of length s starting from the end. Since n/s may not be an

integer, such 2Ns segments can make sure that none of the data at the end or at the

beginning of Y ( j) is ignored. Each segment, labelled with v(v = 1, ...,2Ns), has a

local tendency P(l)
v , which is obtained by fitting an lth order polynomial. The square

average of the deviation from the local tendency for the vth segments and for the
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segment lengths s is calculated by

F2(v,s) =
1
s

s

Â
j=1

{Y [(v�1)s+ j]�P(l)
v ( j)}2 (4.25)

This average is calculated for all the segments and for all the possible scale s. The

qth-order fluctuation function over all the segments is obtained by:

Fq(s) =

 
1

2Ns

2Ns

Â
j=1

[F2(v,s)]q/2

!1/q

(4.26)

For a time series with fractal properties, the fluctuation function Fq(s) is expected

to scale like

Fq(s)⇡ sH(q), (4.27)

where H(q) is called the generalized Hurst exponent. For a mono-fractal series,

H(q)=const and for a series with multifractal structure, H(q) is a decreasing func-

tion of q. The singularity spectrum of the Holder exponents f (a) which is our

interest here is connected to the generalized Hurst exponent by the following for-

mulas [120]:

a = H(q)+qH 0(q), f (a) = q[a �H(q)]+1. (4.28)

4.3 Symbolic dynamics method and Rényi entropy

The generalized dimension, which is the so-called the Rényi dimension, is an im-

portant index of the multifractal properties for a given time series. The key point in

the implementation of this generalized dimension is to identify a normalized mea-

sure(probability measure) for a given support. In this thesis we use the symbolic

dynamics technique to analyse the multifractal property of the share price dynamics

in terms of the Rényi dimension and the Rényi entropy.
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4.3.1 Symbolic dynamics
The method of symbolic dynamics offers a coarse-grained way to trace the time

evolution of a signal such as the share price trajectories [66]. The first step is to

construct the symbol sequence from the dynamical system under consideration.

Symbol sequence can only be generated by a proper partition of the phase

space, i.e. the set of possible values that are relevant for the given times series.

For share price, we will often just use 2 symbols u and d for up or down move-

ments(more details in chapter 6). The easiest way is to choose d-dimensional cubes

of equal size, the so called boxes, to partition a general d-dimensional phase space

X . The size of the cubes is determined by their length e of the side. The entire phase

space X is covered by a total number of R boxes. The boxes do not overlap and they

are labeled by an index i that runs from 1 to R.

However, a more flexible way is to use cells of variable size rather than boxes

to partition the phase space. The cells are also disjoint, meaning that they do not

have a point in common. Unlike the boxes, the cells could have different sizes and

shapes. The cells Ai are also labeled by an index i. In general, if we have the

following two conditions:

Ai \A j (4.29)

and
R[

i=1
Ai = X (4.30)

we call it a partition of X into cells. If the cells are particularly of equal size, we

call them boxes.

Suppose we have a sequence of data points, say a time series, the first data

point x0 is in the cell labeled by i0, the second data point is in the cell i1 and so on.

In this way, the data time series is attributed to a symbol sequence

i0, i1, i2, ..., in, .... (4.31)

Such a sequence of symbols in is called a ’symbol sequence’, and the word ’sym-

bolic dynamics’ describes the mapping from the phase space to the symbol space.
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The trajectory is recorded in a coarse-grained way by this technique. Then if the

size of the boxes, or cells, is relatively large, the description of the trajectory will

be rather rough, for the fact that many trajectories are represented by one symbol

sequence. In order to get a detailed description, the size of the boxes has to be taken

relatively small. We will look at the case when e is going to 0, meaning that the

total number of the boxes R goes to infinity. Moreover, to obtain a rather complete

description by the symbol sequence, we are interested in the length of the sequence

N going to infinity. We will investigate the situation of e ! 0 and N ! • in the

following chapters.

4.3.2 Information measures

4.3.2.1 Bit-numbers

Consider a bit-storage unit of a computer as a trigger switch with two possible

positions, a number A of such switches can generate

N = 2A (4.32)

different states, also named N different bit patterns. Each of the bit patterns cor-

responds to a particular integer in the range of 0 to N � 1. This can be explained

by defining such an integer m as the decimal representation of a binary number of

length A:

m =
A�1

Â
k=0

sk2k (4.33)

where sk is 0 or 1, representing one of the two possible positions of the kth switch.

From Eq.4.32 we know that, to select one of N events, we need

A =
lnN
ln2

(4.34)

bits. If we use ln2 as a unit, then the ’bit-number’ is defined as

b = lnN. (4.35)
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Now, suppose there is a sample set of N ’elementary’ events a of equal probability,

where N is relatively large. We divide this set into R disjoint subsets. Each subset i

is regarded as a compound event, containing Ni ’elementary’ events. That is,

N =
R

Â
i=1

Ni. (4.36)

Then, the probability of the compound event i, namely, the probability of finding an

elementary event a lying in the subset i, is given by

pi = Ni/N. (4.37)

We denote the set of all pi as the probability distribution p. In the following, we

essentially follow C.Beck and F.Schögl [66].

To select an elementary event from the large sample set, it always requires a

minimum bit-number of lnN, no matter whether we first select the subset i which

a is in and then select a out of this subset, or we select a directly from the large

sample set. Also, the minimum bit-number required for selecting an elementary

event a out of the subset i it lies in is lnNi. Now, let denote the bit-number needed

to select the subset i by bi. Then we can construct the formula

bi + lnNi = lnN, (4.38)

meaning that the sum of the bit-number needed for selecting the subset i and the bit-

number needed for selecting a out of the subset i, is equivalent to the bit-number

required for selecting a directly from the large sample set. As a result, conforming

Eq.4.37 and Eq.4.38, we obtain that

bi =� ln pi (4.39)

is the bit-number lacked for an observer to identify whether the event i will defi-

nitely occur, under the situation that he only knows the probability pi of this event.
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4.3.2.2 The Shannon information

Since bi measures a lack of knowledge, �bi measures a knowledge. The mean value

of �bi we can get, after a long series of observations where each event i happens

with probability pi, is

I(b) =
R

Â
i=1

pi ln pi. (4.40)

This function of the distribution p is known as the ’Shannon information’

[121][122]. It is regarded as a measure for the knowledge of the observer about

the question of which event of the sample set is to be expected, if he knows only

the distribution p.Note that as 0  pi  1, I(p)  0, and it reaches its maximum

value 0 with an optimum knowledge. That means I(p) = 0 when only one of the

R microstates occurs. On the other hand, I(p) takes on its minimum value � lnN

when all events i = 1, ...,R are distributed with a uniform distribution, namely,

pi = 1/R. (4.41)

Here the knowledge reaches minimum since no event is distinguished.

The negative Shannon information measure

S(p) =�I(p) (4.42)

is called the Shannon entropy, which is always positive. It measures the lack of

knowledge regarding the above circumstances.

4.3.2.3 The Rényi information

Now we introduce another information measure , the so called Rényi information

[123][124],

I
b

(p) =
1

b �1
ln

r

Â
i=1

(pi)
b , (4.43)

where the parameter b is an arbitrary real number; r is the number of all nonempty

states i, in other word, i runs through all the nonzero probabilities and all the events

with probability zero are excluded.
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One important feature we can capture in Eq.4.43 is that, when b = 0,

I0(p) =� ln
r

Â
i=1

1 =� lnr. (4.44)

That means I0(p) decreases in a logarithmical way with the number of all the re-

alised events.

A power expansion with respect to e = b �1 shows that for b ! 1 one has in

first order of e

r

Â
i=1

p1+e

i =
r

Â
i=1

pi exp(e ln pi)⇡
r

Â
i=1

pi(1+ e ln pi)

= 1+ e

r

Â
i=1

pi ln pi.

(4.45)

Hence,

lim
e!

I1+e

(p) = lim
e!

1
e

ln(1+ e

r

Â
i=1

pi ln pi)

=
r

Â
i=1

pi ln pi

(4.46)

or

lim
b!1

I
b

(p) = I(p). (4.47)

Thus I1 is identical with the Shannon information. We therefore regard the Rényi

information as a generalisation of the Shannon information. The Shannon informa-

tion is contained as a special case b = 1.

4.3.3 Multifractals and Rényi dimensions

A fractal with a probability measure associated with its support is called a multifrac-

tal. The information about the probability distribution can be statistically described

by the Rényi dimensions. We divide the d-dimensional phase space into boxes of

equal size. The d-dimensional boxes are cubes with side length e . We exclude

the boxes with zero probability and label those boxed with nonzero probability by

i = 1,2, ...,r. The number of the boxes with nonzero probability r, is distinguished
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from the total number of boxes R ⇠ e

�d . Other than keeping the number R of boxes

finite, we are interested in the limit behaviour of box size e ! 0, which implies

R ⇠ e

�d ! •. When e approaches 0, the Rényi information defined as Eq.4.43

diverges. However, we can re-introduce the Rényi dimension [124] D(b ) as the

changing of the Rényi information with respect to e ! 0:

D(q) = lim
e!0

Iq(p)
lne

= lim
e!0

1
lne

1
q�1

ln
r

Â
i=1

pq
i . (4.48)

The Rényi dimension is a decreasing function of q and will stays finite for e ! 0.

Depending on the values of q, the Rényi dimension reveals different features of the

system. For q= 0, the negative Rényi information becomes equal to the logarithm of

the number r(e) of nonempty boxes. This is the smallest number of boxes necessary

to cover the entire fractal. Hence,

D(0) =� lim
e!0

lnr(e)
lne

(4.49)

is the fractal dimension which has already been discussed in the previous section.

For q ! 1, according to Eq.4.47, the Rényi information becomes the Shannon in-

formation. Therefore

D(1) = lim
e!0

1
lne

ln
r

Â
i=1

pi ln pi, (4.50)

which describes how the Shannon information flows with the refinement of the box

size, is called the information dimension. In general, q determines how much weight

is assigned to the probability measure p, When q > 0, D(q) is mostly influenced by

the boxes with high probability while when q < 0, the boxes with lower probability

have stronger effects on D(q).

Similar as the f (a) spectrum, the spectrum of D(q) vs. q is also regarded as

an indicator of multifractality. For a signal with non- or mono-fractal property, the

shape of D(q) will be constant over different q’s. While a multifractal signal will

have different Rényi dimensions for different q.

In [125], C. Beck put forward a rigorous restriction on the Rényi dimension,
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where a general upper and lower bound of the Rényi dimension was proved:

q0 �1
q0

D(q0)� q�1
q

D(q) for q0 > q,q0q > 0. (4.51)

This bound is valid for arbitrary probability distributions. If we substitute +• and

�• for q in Eq.6.13, we can obtain an upper bound

D(q) q
q�1

D(+•) for q > 1 (4.52)

and a lower bound

D(q)� q
q�1

D(�•) for q < 0. (4.53)

4.3.4 Statistics of dynamical symbol sequence and Rényi en-

tropies

Whereas in the above sections we have discussed the static properties of dynamical

systems, now we look at the dynamical features of the symbol sequences. First, we

partition the entire phase space A into subsets Ai,

{A}= {A1,A2, ...,AR} (4.54)

where Ai are either boxes of equal size e , or cells of variable size and R is the total

number of the cells.

Recall from subsection 4.3.1, each trajectory x0,x1, ... is attributed to a symbol

sequence i0, i1, i2, ... by the following condition:

xn 2 Ain . (4.55)

Consider a finite symbol sequence i0, i1, ..., iN�1 of length N, the number of all al-

lowed sequences is denoted by w(N). The probability of the jth symbol sequence

is represented as

p(N)
j = p(i0, i1, ..., iN�1), j = 1,2, ...,w(N). (4.56)
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Compared to the Rényi dimension we have studied above, where we partitioned the

phase space using the boxes of equal size e and looked at the scaling behaviour of

this static partition function in the limit e ! 0, here we use a finite partition {A}

whose cells may have different finite size. The quantity named the ’Rényi entropy

of order q’,

K(q) = lim
N!•

�I(N)
q

N
= lim

N!•

1
1�q

1
N

ln
w

Â
j=1

(p(N)
j )q, (4.57)

describes the scaling behaviour of the dynamical partition function with respect to

the time N rather than with respect to the box size e . It is a measure of the changing

of the negative Rényi information for time N ! •.

The Rényi entropy is equal to the ’Kolmogorov-Sinai entropy’ [126][127]

when b ! 1 . It describes the average information loss with respect to the time

N.

Now suppose that each box of scale e that has non-zero probability in the phase

space represents a symbol sequence, and the probability of this symbol sequence is

equal to the probability measure of that box, then the Rényi dimension and the

Rényi entropy are clearly connected. Jizba and Arimitsu discussed how these two

measures are related to each other in detail in the paper ”The world according to

Rényi: thermodynamics of multifractal systems” [74]. In the later experimental

chapter on multifractal analysis of the share prices, we will discuss the multifractal

properties of the considered data by looking at the spectra of both measures, which

are connected with the help of the symbolic dynamics technique.



Chapter 5

Superstatistics in Finance

We now come to the central results off this thesis. We will demonstrate that share

price returns on different time scales can be well modeled by a superstatistical dy-

namics. Here we provide an investigation which type of superstatistics is most

suitable to properly describe share price dynamics on various time scales. It is

shown that while c

2-superstatistics works well on a time scale of days, on a much

smaller time scale of minutes the price changes are better described by lognormal

superstatistics. The system dynamics thus exhibits a transition from lognormal to

c

2 superstatistics as a function of time scale. We discuss a more general model

interpolating between both statistics which fits the observed data very well. We also

present results on correlation functions of the extracted superstatistical volatility pa-

rameter, which exhibits exponential decay for returns on large time scales, whereas

for returns on small time scales there are long-range correlations and power-law

decay.

In this chapter, we will carefully analyse for various data sets of historical

share prices which type of superstatistics is best suited to model the dynamics.

While Tsallis statistics (= q-statistics) is known to be equivalent to c

2 superstatis-

tics [37][128], there are other types of superstatistics, such as lognormal super-

statistics and inverse c

2 superstatistics [39], which are known to be different from

q-statistics (though all these different statistics generate similar distributions if the

variance of the fluctuations in b is small [37]). We show that in our analysis c

2-

superstatistics appears best suitable to describe the daily price changes, whereas
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on much smaller time scales of minutes lognormal superstatistics seems preferable.

We analyse the relevant time scale of the changes in the superstatistical parameter b

and present results for the decay of correlations in b . For small return time scales,

correlation functions exhibit power law decay and there are long memory effects. In

the final section, we develop a synthetic stochastic model that fits the data well. This

is kind of a hybrid model interpolating between lognormal and c

2-superstatistics.

5.1 Superstatistics of log-returns of share prices on a

large time scale

Non-equilibrium system dynamics can often be regarded as as superposition of a

local equilibrium dynamics and a slowly fluctuating process of some variance vari-

able b [37]. These types of ‘superstatistical’ nonequilibrium models are also useful

for financial time series [112][50]. In this chapter, the empirical data we use as

an example is the historical stock prices of Alcoa Inc(AA), which is an American

company that engages in the production and management of primary aluminium,

fabricated aluminium and alumina. We have looked at shares of many other com-

panies as well (see Tab.5.1) in section 5.4, with similar results. Our data set covers

the period January 1998 to May 2013. The source data are minutely recorded share

prices. The last minute price quoted each day is used as the daily closing price. We

study the log return Ri denoted by

Ri = log
✓

Si+1

Si

◆
(5.1)

where i = 0,1,2, ...,N; Si and Si+1 are two successive daily closing prices. We

consider the normalised log returns

ui =
Ri �hRiq
hR2i�hRi2

(5.2)

which have been rescaled to have variance 1. The symbol h· · ·i denotes the long-

time average.



5.1. Superstatistics of log-returns of share prices on a large time scale 76

From the simplest superstatistics model point of view, the entire time series of

stock prices can be divided into N smaller time slices T . We will later determine the

optimal window size T . Within each T , the financial volatility b is approximately

temporarily constant and the log return of the stock price is assumed to be Gaussian

distributed. b has some probability distribution f (b ) to take a particular value in a

given slice. The conditional probability p(u|b ) is

p(u|b ) =
r

b

2p

exp
✓
�1

2
bu2

◆
(5.3)

and the marginal probability distribution of u under long time observation is the

average over local Gaussians weighted with the probability density f (b )

p(u) =
Z

p(u|b ) f (b )db . (5.4)

The integration over b yields non-Gaussian behaviour with fat tails.

We now describe our technique to obtain the optimal window size T for a given

time series. Firstly we split the time series into

n = b N
Dt

c (5.5)

equal intervals, where Dt is the window size taken and N the total number of data

points. Generally the kurtosis of a random variable u is defined as

k =
hu4i
hu2i2 (5.6)

and it is equal to 3 for a Gaussian distribution of arbitrary variance. For a given

window size Dt, the kurtosis in the jth window is given by

kDt( j) =
1
Dt Â jDt

i=( j�1)Dt+1 u4
i

⇣
1
Dt Â jDt

i=( j�1)Dt+1 u2
i

⌘2 , (5.7)

where j = 1,2, ...,n. When we have all the values of kurtosis for all windows, we
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Figure 5.1: Determination of the optimal window size for the Alcoa share price data. The
intersection with the line kurtosis k̄ = 3 yields T = 18±0.5. The various values
of k̄ for a given Dt (indicated by different colors in the online version) are
obtained for different translational shifts of the sliding windows. The scattering
of the data can be used to estimate the standard deviation as d k̄ ⇠ 0.03.

can calculate an average kurtosis of the n windows as

k̄Dt =
1
n

n

Â
j=1

kDt( j). (5.8)

The aim is to achieve an optimum window size such that for a given data set the

distribution in each window is as close as possible to a Gaussian, but with varying

variance. For this purpose the optimal window size T should satisfy the condition

k̄Dt = 3. (5.9)

Fig. 5.1 shows how the average kurtosis changes with the window size. We

obtain from condition (5.9) the optimal window size 18±0.5 for this example. The

result makes financial sense. 18 trading days correspond to a time scale of about

3-4 weeks. It is a typical time scale where market volatility changes, due to events

such as changes in the confidence in the future economic development, anticipated

interest changes, and so on. See also [129] for related work.

With the given optimal window size, we can now calculate the local volatility
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parameter b in each time interval as

bk =
1

1
T�1 ÂkT

i=(k�1)T+1(ui � ūi)2
(5.10)

where k = 1,2, ...,n. Note that the variance of u in each window is b

�1. One can

then plot a histogram of the bk and fit it with some suitable model distribution.

Here we will consider three distributions to be compared with our experimental

distribution of b , which were previously advocated in [39]. The first one is the c

2

-distribution for which f (b ) is given by

f1 (b ) =
1

G
⇣

d1
2

⌘
✓

d1

2b0

◆d1/2
b

d1/2�1e�d1b/2b0 . (5.11)

The second one is the inverse c

2-distribution where

f2 (b ) =
b0

G
⇣

d2
2

⌘
✓

d2b0

2

◆d2/2
b

�d2/2�2e�d2b0/2b . (5.12)

The third distribution that will be tested is the log-normal distribution for which the

probability density function is given by

f3 (b ) =
1p

2psb

exp

 
�(lnb �µ)2

2s2

!
(5.13)

where

µ = lnb0 �
s2

2
. (5.14)

The b0 in Eq. (5.14), (5.11), (5.12) is the mean value of b , given by

b0 = hb i= 1
n

n

Â
k=1

bk, (5.15)

and d1,d2,s are parameters. Lognormal superstatistics often occurs for complex

systems described by a cascading dynamics [130], whereas c

2 and inverse c

2 su-

perstatistics are more common for additive degrees of freedom contributing to a
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(a)

(b)

Figure 5.2: Best possible fits that can be achieved for the distribution of the volatility b of
Alcoa shares (plotted by dots), in a log-linear (top) and double logarithmic plot
(bottom). Blue: c

2 distribution f1(b ) with d1 = 1.51,b0 = 2.19, Green: inverse
c

2 distribution f2(b ) with d2 = 0.45,b0 = 2.19, Red: lognormal distribution
f3(b ) with s = 0.87,µ = 0.45,.

fluctuating temperature or inverse temperature [39].

We have fitted our experimental histograms f (b ) with the above distributions.

Given b0, we used the ”method of moments” method to find the optimum d1,d2 and

s of Eq. (5.11), (5.12), (5.13) in order to obtain the optimum fit to our observed

f (b ).

It can be seen in Fig. 5.2 that lognormal, c

2- and inverse c

2 superstatistics all

yield a more or less decent fit, though inverse c

2-superstatistics seems less favor-

able.
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Figure 5.3: Comparison of the histogram of u (plotted by dots) with the 3 types of super-
statistics, integrated with the same parameters as in Fig. 5.2. Blue: c

2 Su-
perstatistics p1(u), Green: inverse c

2 Superstatistics p2(u), Red: lognormal
Superstatistics p3(u).

Still for consistency we also need to check the validity of Eq. (5.4). We thus

also compare the original histogram of returns u with the following integrals where

the parameters take the same values as in Fig.5.2:

pi(u) =
Z r

b

2p

exp
✓
�1

2
bu2

◆
fi(b )db i = 1,2,3 (5.16)

As shown in Fig. 5.3, for the integrated densities c

2 superstatistics seems to fit

better to the probability density of u compared with lognormal superstatistics and

inverse c

2 superstatistics.

Thus, if independent variation of the volatility parameter in each interval is as-

sumed, then the data clearly point to c

2 superstatistics, equivalent to Tsallis statis-

tics [128]. On the other hand, independence of bk may not always be a good ap-

proximation. There can be strong correlations of the volatility parameter bk, and

variations of the time scales where it is approximately constant. In that case more

complicated dynamics arise, and one could then possibly get a better fit for the inte-

grated distributions p(u) if other effective parameters are used. For this reason, we

also allowed the fitting parameters for p1(u), p2(u), p3(u) to take on other possible

values. The result of this ‘amended superstatistics’ is shown in Fig. 5.4.

After the adjustment, we find in Fig.5.4 that in fact all three superstatistics can
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Figure 5.4: Amended Superstatistics Blue: c

2 Superstatistics p1(u) with d1 = 1.51,b0 =
2.19, Green: inverse c

2 Superstatistics p2(u) with d2 = 1.2,b0 = 2.19, Red:
lognormal Superstatistics p3(u) with s = 1.2,µ = 0.65.

describe p(u) quite well. To distinguish between them, one would need much more

data so that the tail behaviour would be clearer. In practice, more data are available

if one considers price changes on much smaller time scales than days. This will be

done in the next section.

5.2 Short time scales
Let us extend our analysis to returns on much smaller time scales. Let si be the stock

price for every recorded minute, in our example chosen as that of Alcoa Inc(AA).

The total number of data points is about 150 million. We look at the returns

ri = log
✓

si+t

si

◆
(5.17)

where t is an integer in units of minutes. The log returns are again normalized to

variance 1:

ui =
ri �hriq
hr2i�hri2

(5.18)

There is one small technical problem for these types of data, as the returns are

not given overnight but only during normal working hours. This can lead to big

overnight jumps and affect the analysis. For this reason, if si+t

and si are from two

successive trading days, we removed the corresponding log
⇣

si+t

si

⌘
. t = 1 means
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Figure 5.5: Determination of the optimum window size for the 1-minute data of Alcoa. The
intersection with the line kurtosis = 3 yields T ⇡ 11.

(a) (b)

Figure 5.6: Best fits that can be achieved for the distribution of the short-scale volatility
parameter b (time scale of returns: 1 minute). Blue: c

2 distribution f1(b ) with
d1 = 0.13,b0 = 6.33, Green: inverse c

2 distribution f2(b ) with d2 = 2.83,b0 =
6.33, Red: lognormal distribution f3(b ) with s= 1.11,µ = 1.23, top: log-linear
plot, bottom: double logarithmic plot.

the log return is extracted every minute. Again we determined the optimal window

size, using the same technique as in the previous section. We obtain T ⇡ 11 (see

Fig. 5.5).

Again this time scale of about 11 minutes makes sense. It is a typical time

scale on which new relevant information becomes availbale to the traders, leading

to changes in the small-scale volatility. It also coincides with typical time scales on

which observed correlations in short-term returns start to decay [131]. Our results

of fitting the three types of superstatistics are shown in Fig. 5.6-5.8.
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Figure 5.7: Comparison of histogram of u (plotted by dots) with the integrated superstatis-
tics distributions, using the same parameters as in Fig.5.6. Blue: c

2 Super-
statistics p1(u), Green: inverse c

2 Superstatistics p2(u), Red: lognormal Su-
perstatistics p3(u). None of the curves is a good fit, indicating the presence of
strong correlations for the volatility parameter bk.

Figure 5.8: Amended Superstatistics Blue: c

2 Superstatistics p1(u) with d1 = 0.36,b0 =
6.33, Red: lognormal Superstatistics p3(u) with s = 2.7,µ = 3.9, Green: in-
verse c

2-superstatistics (d2 = 0.2,b0 = 1.8).

As can be seen in Fig. 5.6, the lognormal distribution is by far best fit of f (b )

if the time scale is 1 minute.

Fig. 5.7 shows a clear difference as compared to the daily data in Fig. 5.3: The

integrated formula now does not give good fits to p(u). The reason is that the bk

on a time scale of minutes are not anymore statistically independent, hence random

sampling of Gaussians with different variance is not appropriate anymore.

After the free adjustment in the parameters of p1(u), p2(u), p3(u), again both

c

2 and lognormal superstatistics can provide good fits of p(u). See Fig. 5.8.

If one does not allow for parameter amendments, then we can conclude that

there is a transition from c

2 to lognormal superstatistics when the time scale

changes from 1 day to 1 minute. Also, a more general conclusion seems to be
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that the assumption of a sequence of independent volatility parameters bk is not

valid, as we are getting in general differences between the optimum fit of f (b ) and

the corresponding fit of p(u) written as an integral over Gaussians with the same

corresponding parameters.

T.-L. Xu also discussed another possible reason why p(u) could deviate from

the histogram of the experimental data in her Msc thesis[132] where she applied

the superstatistical technique and repeated the method of our thesis. She explained

this phenomenon in terms of the problem of discreteness[103]. Share prices are

discrete random variables and their values are recorded at discrete time points. The

average of a large amount of such independent random variables will converge to

a Gaussian variable based on the central limit theorem. This is the basis of the

assumption that in each window the normalized log return is Gaussian distributed

with a constant inverse parameter b . However when the time lag t in Eq.5.17 is

below 5 minutes[103], there may not be enough data points during the period t

to implement the central limit theorem. In this situation, the assumption that the

normalized log return is Gaussian in each window is not valid.

5.3 Correlation functions
For the development of a suitable dynamical model, it is very important to look

not only at probability densities but also on correlation functions and memory ef-

fects [133][134][135][136][137][138]. In our case there are two types of correlation

functions: the one of the original data ui,

Cu(t) =
1

N � t

N�t

Â
i=1

uiui+t �huii2 (5.19)

and those of the volatility parameter bk,

C
b

(t) =
1

n� t

n�t

Â
k=1

bkbk+t �hbki2. (5.20)

Figs. 5.9-5.12 show Cu(t)/Cu(0) and C
b

(t)/C
b

(0), both for the daily returns as

well as for the 1-minute returns. As is illustrated in Fig. 5.9 and 5.10, Cu(t) decays



5.3. Correlation functions 85

Figure 5.9: Correlation function of log-returns u on a daily time scale for AA shares. The
time unit of t is days.

Figure 5.10: Correlation function of log-returns u on a time scale of minutes. The time unit
of t is minutes.

almost immediately to zero, both for the daily and minute data.

More interesting is the correlation function C
b

(t). We did an analysis of the

decay rates of correlation functions of the volatility for many different shares from

different sectors. The data used for all those companies are in the same period from

January 1998 to May 2013. The results are summarized in Tab.5.1. We observe that

the correlation functions of volatility decay in an exponential way for daily returns,

C
b

(t) ⇠ e�gt , whereas for minute return there is a power law decay C
b

(t) ⇠ t�a

with a periodic modulation, see Figs. 5.11-5.12 for the example of AA shares.

The period of oscillations that we observe in figures such as Fig. 5.12 corre-

sponds (roughly) to one trading day and is consistent with periodic oscillations of
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Figure 5.11: Correlation function of volatility b for returns on a daily time scale for AA
shares.

Figure 5.12: Correlation function of volatility b for returns on a time scale of minutes.

intraday volatility reported previously in [136].

The data in Tab.5.1 is summarized as plots of (g,a) in Fig.5.13. It can be

observed that the decay parameters g and a depend slightly on the sectors. For

example, shares from basic materials (except for DD.) have the strongest correla-

tion decay (largest g) on the daily scale and shares from industrial goods (except

for GE.) have relatively strong correlation decay (large a) on the minute scale.

Note that a strong decay of the volatility correlation function in a sense measures a

‘volatility of a volatility’ and is an interesting quantity to study.
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Table 5.1: Decay rates(with standard errors) of correlation functions of volatility for shares
of different sectors.

Company Sector g±SE T[Days] a±SE T[Mins]
Alcoa Inc. (AA) basic materials 0.115±0.0165 18 0.094±0.0029 11
Chevron Corporation (CVX) basic materials 0.152±0.0157 20 0.164±0.0035 13
E. I. du Pont de Nemours and Company (DD) basic materials 0.060±0.0035 17 0.125±0.0037 13
Exxon Mobil Corporation (XOM) basic materials 0.138±0.0158 19 0.139±0.0030 13
General Motors Company (GM) consumer goods 0.084±0.0094 16 0.112±0.0028 11
The Coca-Cola Company (KO) consumer goods 0.056±0.0040 15 0.101±0.0032 13
Mondelez International, Inc. (MDLZ) consumer goods 0.098±0.0236 15 0.171±0.0055 11
Altria Group Inc. (MO) consumer goods 0.040±0.0036 15 0.104±0.0035 13
The Procter & Gamble Company (PG) consumer goods 0.056±0.0056 15 0.117±0.0037 12
American International Group, Inc. (AIG) financial 0.079±0.0046 15 0.108±0.0024 11
American Express Company (AXP) financial 0.079±0.0089 19 0.090±0.0025 13
Bank of America Corporation (BAC) financial 0.056±0.0040 20 0.073±0.0033 13
Citigroup Inc. (C) financial 0.054±0.0043 17 0.059±0.0020 13
JPMorgan Chase & Co. (JPM) financial 0.072±0.0076 18 0.089±0.0024 13
The Travelers Companies, Inc. (TRV) financial 0.081±0.0062 15 0.117±0.0045 11
Johnson & Johnson (JNJ) healthcare 0.037±0.0034 16 0.102±0.0036 13
Merck & Co. Inc. (MRK) healthcare 0.071±0.0075 16 0.113±0.0046 12
Pfizer Inc. (PFE) healthcare 0.064±0.0063 17 0.088±0.0029 14
UnitedHealth Group Incorporated (UNH) healthcare 0.084±0.0102 15 0.178±0.0043 11
The Boeing Company (BA) industrial goods 0.064±0.0063 15 0.131±0.0039 12
Caterpillar Inc. (CAT) industrial goods 0.061±0.0057 15 0.143±0.0033 12
General Electric Company (GE) industrial goods 0.066±0.0072 18 0.062±0.0018 14
Honeywell International Inc. (HON) industrial goods 0.057±0.0029 15 0.126±0.0041 12
3M Company (MMM) industrial goods 0.056±0.0075 15 0.148±0.0049 12
United Technologies Corp. (UTX) industrial goods 0.077±0.0073 18 0.166±0.0049 12
The Walt Disney Company (DIS) services 0.064±0.0042 18 0.088±0.0032 13
The Home Depot, Inc. (HD) services 0.058±0.0046 16 0.109±0.0038 13
McDonald’s Corp. (MCD) services 0.039±0.0039 15 0.088±0.0031 13
Wal-Mart Stores Inc. (WMT) services 0.036±0.0029 16 0.092±0.0035 13
Cisco Systems, Inc. (CSCO) technology 0.038±0.0046 15 0.096±0.0020 13
Hewlett-Packard Company (HPQ) technology 0.078±0.0082 15 0.131±0.0026 12
International Business Machines Corporation (IBM) technology 0.047±0.0035 15 0.145±0.0038 13
Intel Corporation (INTC) technology 0.050±0.0037 17 0.096±0.0022 13
Microsoft Corporation (MSFT) technology 0.059±0.0066 16 0.104±0.0026 13
AT&T, Inc. (T) technology 0.055±0.0036 16 0.087±0.0022 13
Verizon Communications Inc. (VZ) technology 0.063±0.0054 17 0.105±0.0033 12

5.4 Synthetic model

Based on the results of the previous sections, it is desirable to construct a simple

superstatistical dynamical model that incorporates the possibility of both lognormal

and c

2 superstatistics on different scales, and allows for different decay patterns of

correlation functions.

Here we propose the following model. We start from a linear superstatistical

Langevin equation

u̇ =�gu+sL(t) (5.21)

where L(t) is Gaussian white noise and the ‘inverse temperature’ b , in accordance
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Figure 5.13: Plots of (g,a) for shares(a) of different sectors(b).

with Einstein’s theory of Brownian motion, is defined as

b =
g

2s

2 . (5.22)

This equation is –by construction– superstatistical as we do not keep the parameter

b constant but regard it as a random variable that fluctuates on a large time scale.

Let us now consider n+ 1 Gaussian random variables Xi, i = 0,1,2, . . . ,n which

are statistically independent and have the same variance and mean 0 (except for X0

which may have potentially a different variance and different mean). We then write
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b as

b = keX0 +(1�k)(X2
1 +X2

2 + . . .+X2
n ), (5.23)

where k 2 [0,1] is a parameter. We now see that if k = 1, this system generates

lognormal superstatistics, as logb = X0 is a Gaussian random variable. On the other

hand, if k = 0 this system generates c

2-superstatistics with n degrees of freedom,

as in this case b = Ân
i=1 X2

i is c

2 distributed. Choosing any value of k 2 [0,1] one

can interpolate between lognormal and c

2 superstatistics, getting a mixed type of

behaviour.

The Gaussian random variables Xi can again be simulated by ordinary linear

Langevin equations of the form

Ẋi =�GXi +SLi(t), i = 0, . . . ,n (5.24)

For constant G and S these equations generate the Ornstein Uhlenbeck process, i.e.

a Gaussian Markov process with exponential decay of correlation functions. More

complicated dynamics, leading e.g. to power law decay of correlation functions, can

be constructed if the driving forces in these linear stochastic differential equations

are not Gaussian white noise but more complicated correlated processes, or critical

maps with a near-vanishing Liapunov exponent [139].

Fig. 5.14 and Fig. 5.15 show that indeed the observed distributions of f (b ) for

Alcoa shares are best fitted by intermediate distributions (a superposition of a log-

normal and c

2 distribution with appropriate weights). The parameter k increases if

one goes from larger to smaller time scales of returns. The mixed synthetic model is

able to reproduce the transition scenario of observed densities from c

2 superstatis-

tics to lognormal superstatistics in a quantitatively correct way, giving good fits on

any time scale.

We did this analysis for a variety of time scales t of returns, taking again the

example of Alcoa shares. In Fig. 5.16 we show how the parameter k depends on the

time scale of returns. As expected, the parameter k that best fits the observations

decreases as a function of time scale. In fact we observe a logarithmic dependence
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Figure 5.14: Mixed distribution fit to f (b ) with k = 0.36 on the daily time scale.

Figure 5.15: Mixed distribution fit to f (b ) with k = 0.92 on the time scale of minutes.

if the time scale is not too big, see the straight line fit in Fig. 5.16.

We carefully repeated our analysis for various companies from different sec-

tors. The summary is shown in Tab.5.2 and Fig.5.17. It can be observed that k has

larger values for small times scales than that for 2 to 3 hours time scales t or daily

time scales t . Our results for different sectors are visualized in Fig.5.17. For all

sectors k changes most rapidly near t ⇡ 100.

5.5 Conclusion
Many investigations of complex systems in the past have focused on the application

of a particular statistics, for example q-statistics [128], and then studying the effect
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Figure 5.16: Parameter k describing the relative weight of lognormal and c

2 superstatistics
in the mixed model as a function of the time scale t of return. k decreases
if the time scale t is increased. For not too big time scales t a logarithmic
dependence is observed: The straight line corresponds to a fit of the first six
data points of the form k = 0.907�0.044logt .

of varying system parameters, which may change the entropic index q. Here we

have shown that for financial time series it is sometimes useful to consider broader

classes of statistics and even proceed from one class of superstatistics to another

when the scale or other system parameters under consideration are changed. The

example we considered in detail in this chapter were share price returns of various

companies. We provided evidence that there is a transition scenario from lognormal

superstatistics to c

2 superstatistics, with lognormal superstatistics giving a better

fit to the data on small time scales and c

2 superstatistics (= q-statistics) on larger

time scales. We constructed a hybrid superstatistical model that allows to imple-

ment both types of superstatistics, with a weighting parameter k that describes how

far away we are from one of the two cases. Correlation functions of the extracted

superstatistical volatility parameter bk were shown to exhibit different qualitative

behavior as a function of the time scale of returns, with exponential decay on large

time scales and power law decay on small time scales, modulated by intraday peri-

odicity. The decay parameters of the exponential or power law decay were extracted

from the data and were shown to depend slightly on the sector of shares considered.

The general transition scenario from lognormal to c

2 superstatistics as a function of
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Figure 5.17: Plots of t versus k for 36 companies from seven sectors.
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Table 5.2: The parameter k as a function of t for 36 companies from seven sectors.

t[Mins]
Company Sector 1 2 4 8 16 30 60 120 180 1440
aa basic materials 0.920 0.888 0.803 0.848 0.809 0.763 0.608 0.775 0.696 0.360
cvx basic materials 0.976 0.954 0.918 0.926 0.945 0.913 0.875 0.484 0.569 0.391
dd basic materials 0.933 0.944 0.954 0.957 0.979 0.960 0.920 0.651 0.450 0.327
xom basic materials 0.956 0.932 0.932 0.939 0.913 0.896 0.785 0.606 0.227 0.780
gm consumer goods 0.859 0.809 0.767 0.739 0.807 0.692 0.593 0.628 0.439 0.173
ko consumer goods 0.921 0.964 0.967 0.985 0.966 0.883 0.613 0.434 0.015 0.365
mdlz consumer goods 0.768 0.888 0.900 0.940 0.945 0.880 0.711 0.861 0.806 0.206
mo consumer goods 0.789 0.881 0.916 0.945 0.944 0.935 0.679 0.707 0.657 0.214
pg consumer goods 0.880 0.914 0.891 0.876 0.932 0.852 0.592 0.340 0.000 0.502
aig financial 0.944 0.943 0.843 0.926 0.789 0.743 0.719 0.638 0.642 0.574
axp financial 0.811 0.873 0.842 0.860 0.934 0.914 0.823 0.616 0.557 0.445
c financial 1.000 0.877 0.842 0.845 1.000 0.703 0.829 0.798 0.627 0.583
jpm financial 0.742 0.809 0.822 0.851 0.851 0.809 0.829 0.601 0.437 0.399
trv financial 0.822 0.823 0.826 0.797 0.843 0.798 0.589 0.455 0.260 0.514
jnj healthcare 0.882 0.888 0.888 0.915 0.970 0.949 0.936 0.742 0.705 0.552
mrk healthcare 0.880 0.893 0.898 0.905 0.942 0.967 0.778 0.906 0.814 0.289
pfe healthcare 0.645 0.648 0.755 0.791 0.912 0.891 0.555 0.518 0.158 0.237
unh healthcare 0.945 0.916 0.902 0.912 0.925 0.921 0.786 0.497 0.476 0.342
ba industrial goods 0.978 0.981 0.956 0.990 0.980 0.941 0.741 0.743 0.473 0.443
cat industrial goods 0.971 0.965 0.948 0.914 0.962 0.934 0.702 0.651 0.394 0.469
ge industrial goods 0.681 0.757 0.788 0.841 0.822 0.886 0.636 0.543 0.577 0.647
hon industrial goods 0.945 0.951 0.927 0.901 0.919 0.855 0.847 0.602 0.604 0.003
mmm industrial goods 0.970 0.972 0.951 0.947 0.949 0.930 0.574 0.742 0.524 0.619
utx industrial goods 0.962 0.961 0.940 0.936 0.960 0.948 0.886 0.851 0.330 0.168
dis services 0.823 0.848 0.836 0.853 0.872 0.890 0.848 0.577 0.239 0.143
hd services 0.880 0.892 0.903 0.885 0.941 0.940 0.726 0.754 0.671 0.277
mcd services 0.976 0.974 0.987 0.978 0.993 0.974 0.937 0.910 0.782 0.865
wmt services 0.842 0.862 0.800 0.906 0.901 0.833 0.340 0.153 0.000 0.000
csco technology 0.630 0.803 0.828 0.864 0.940 0.920 0.381 0.295 0.002 0.178
hpq technology 0.908 0.922 0.926 0.976 0.988 0.967 0.937 0.776 0.607 0.896
ibm technology 0.972 0.945 0.900 0.857 0.853 0.857 0.671 0.491 0.000 0.000
intc technology 0.684 0.720 0.806 0.904 0.959 0.958 0.548 0.560 0.007 0.422
msft technology 0.668 0.758 0.831 0.890 0.920 0.928 0.990 0.594 0.272 0.643
t technology 0.739 0.807 0.880 0.887 0.905 0.924 0.723 0.556 0.503 0.294
vz technology 0.784 0.893 0.923 0.935 0.968 0.900 0.694 0.476 0.273 0.512

the time scale of returns, however, is a robust phenomenon and occurs for all sectors

in a similar way. Our detailed investigations of 3 different companies, as displayed

in Fig.5.17, shows that the parameter k most rapidly changes close to the limit scale

t ⇡ 100min, at which point the system makes a pronounced change from lognormal

to c

2 superstatistics.



Chapter 6

Symbolic dynamics and multifractal

analysis in finance

Fat-tailed probability distributions and long-range correlations in financial data

were investigated in the previous chapter by the superstatistical method. These

two features are known as being closely related to multifractality in a time series

[53][61][54]. We will use an approach borrowed from dynamical systems theory to

understand share prices in a coarse grained way. In this chapter we draw the method

of symbolic dynamics [70][71][72][73] into our study on financial data which offers

a coarse-grained way to trace the time evolution of share price trajectories. We can

then study the attributed probability of a given coarse-grained orbit of the so-called

symbol sequence and introduce the Rényi dimension and Rényi entropy to measure

stochastic properties in a quantitative way. Different datasets will be compared.

6.1 Symbolic dynamics of share prices
Symbol sequence can be generated by a proper partition of the phase space. Since

the log returns of a share price log Si+1
Si

can theoretically be moving anywhere along

the real number axis and the average of which is assumed to be 0 (Fig.6.1) , the

easiest way is to partition the phase space interval X = (�•,•) into two disjoint

subsets A1 = (�•,0) and A2 = (0,•). Note here A1 and A2 are all open and the

zero point is not under consideration. This is because for very small time scale price

data, say minutely recorded prices, due to the finite precision, a rounded-off price
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Figure 6.1: The log returns of a share(Alcoa Inc., over the period 1998 to 2013) fluctuate
around 0.

will somehow stay unchanged until the same value is caught again at the next point

in time, hence, we eliminate the effect of zero changes on the probability measure

for both subsets.

We start with a dataset of daily stock prices of AA Inc. that covers the period

January 1998 to May 2013. For any given value (except 0) of a log return at a time,

it has roughly equal chances to fall into either of the two sets A1 and A2. If the log

return is an element of A1, which is equivalent to say Si+1 < Si, then we denote such

a price decrease by d. Otherwise a price in A2 stands for Si+1 > Si and is denoted

by u which means a price increasing. By this method we can allocate to the time

series of share prices an attributed symbol sequence

i0, i1, i2, ..., in, ...where in 2 {d,u}

As we only deal with the trajectory over a limited period of time, we divide up the

whole sequence into R segments of equal length N. We use a sliding window of

certain length N that moves from the beginning of then entire symbol sequence to

the right by one step at each time and extract all the segments enveloped in that

window. By using this method, we can get more segments than that if we cut the

whole sequence into non-overlapping segments.

Because each symbol has only two choices to settle, which are either u or d,



6.1. Symbolic dynamics of share prices 96

for any given N we get

w(N) = 2N

allowed sequences. Since the partition of the phase space is rather simple and our

dataset is big enough to satisfy R >> w(N), there would be many segments that

correspond to the same symbolic pattern. Then we can easily acquire the probabil-

ities of each allowed symbol sequences by computing the frequencies of different

sequences that occur. Namely

p(N)
j = p(i0, ..., iN�1)

=
r(i0, ..., iN�1)

Âi0,...,iN�1 r(i0, ..., iN�1)

=
r(i0, ..., iN�1)

R
j = 1, ...,w(N),

(6.1)

where j runs over all the possible sequences and r(i0, ..., iN�1) is the number of

times that a certain sequence i0, ..., iN�1 appears. Now by encoding each allowed

symbol sequence of length N into a decimal in a range between 0 and 1, we can

produce a scatter plot to visualise our results. Any given sequence of symbols

i0, ..., iN�1 can be represented by a sequence of bits, particularly we assign

xin =

8
<

:
1 if in = u

0 if in = d
(6.2)

where n = 0,1, ...,N � 1. We regard the encoded binary version x(N) =

xi0 , ...,xin , ...,xiN�1 of a N-step share price movement as a binary number, which

can be eventually converted into a decimal fraction. One can implement this by

defining the coordinate assigned to a given symbol sequence

a(x(N)) =
N

Â
n=1

xin2�n, (6.3)

note that a(x(N)) 2 [0,1). By now, we allocate each symbol sequence a position on

the real number axis so that we can easily illustrate our results on the frequency of
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a given symbol dynamics, as shown in Fig.6.2. The probabilities of the empirical
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Figure 6.2: Joint probabilities of the daily share prices movement dynamics for symbol
sequence of length 2 to 8 for Alcoa Inc.(solid lines) and those of purely random
symbols sequences(dashed lines). The amount of symbols is the same.

symbol sequences are compared with random sequences with a same amount of

symbols. The difference is not clearly visible. Note that N is kept as N  8 because

of the fact that we only have limited data points of AA daily price values. Similar

bounds on N were also used in [70][71][72][73]. Using higher N is beyond the

computing power and will result in unreliable numerical statistics since there are

many patterns which do not occur.

We are also interested in the conditional probabilities which are defined by

P(Xn = xn|Xn�1 = xn�1,Xn�2 = xn�2, ...,X0 = x0)

=
P(Xn = xn,Xn�1 = xn�1,Xn�2 = xn�2, ...,X0 = x0)

P(Xn�1 = xn�1,Xn�2 = xn�2, ...,X0 = x0)
.

(6.4)

Conditional probabilities need to satisfy

Â
w2W

P(w|B) = 1. (6.5)

Table.6.1 shows all the possible conditional probabilities of for symbol se-

quences of N = 3 in 4 columns labelled as p(i3 = d|i2 = d, i1), p(i3 = u|i2 = d, i1),
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Table 6.1: Conditional probabilities of large scale sequences

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
d 0.483063 0.517199 0.493853 0.506409
u 0.523150 0.477112 0.515060 0.484135

p(i3 = d|i2 = u, i1), p(i3 = u|i2 = u, i1), where the observations of i1 are listed on

the left which can be either d or u.

It can be seen that the condition described by Eq.6.5 is satisfied, e.g.p(d|d,d)+

p(u|d,d) = 0.483063+0.517199 ⇡ 1.00(also satisfied for other combinations).

6.2 Non-Markovian property

Conditional probability a is crucial indicator in the discussion of the Markovian

property. From the definition of the discrete-time Markov chains, one has

P(Xn = xn|Xn�1 = xn�1,Xn�2 = xn�2, ...,X0 = x0)

=P(Xn = xn|Xn�1 = xn�1).
(6.6)

where P(Xn = xn|Xn�1 = xn�1,Xn�2 = xn�2, ...,X0 = x0) is defined by Eq.6.4.

If the Markovian property is satisfied, one must have

p(i3 = d|i2 = d, i1 = d) = p(i3 = d|i2 = d, i1 = u)

p(i3 = u|i2 = d, i1 = d) = p(i3 = u|i2 = d, i1 = u)

p(i3 = d|i2 = u, i1 = d) = p(i3 = d|i2 = u, i1 = u)

p(i3 = u|i2 = u, i1 = d) = p(i3 = u|i2 = u, i1 = u)

which means each column in Table.6.1 must has same values. From the empir-

ical results displayed in Table.6.1, one can conclude the daily share price data

has slightly non-Markovian character and the conditional probabilities of observed

share price returns depend on the history of previous symbols.
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6.3 Renyi dimensions

For given probability distributions, it’s practically meaningful to find a proper way

to measure multifractal features. In this part we consider the Rényi Dimension from

which some useful features will be revealed for the symbolic share price dynamics.

Before the investigation of the Rényi Dimension we first look at the Rényi informa-

tion defined as

Iq(p(N)) =
1

q�1
ln

w(N)

Â
j=1

(p(N)
j )q (6.7)

where q is an arbitrary real number and w(N) is the number of allowed symbol

sequences for a certain N, so that j labelled all the probabilities. We regard the

Rényi information as a generalisation of the Shannon information as for q ! 1,

lim
q!1

Iq(p(N)) =
w(N)

Â
j=1

p(N)
j ln p(N)

j = I(p(N)) (6.8)

where I(p(N)) denotes the Shannon information.

Another important feature we can capture in Eq.6.7 is that when q = 0,

I0(p(N)) =� lnw(N), (6.9)

which means I0(p(N)) decreases in a logarithmical way with the number of allowed

symbol sequences. Note that when we have a limited number of symbol sequences,

Eq.6.7 yields a finite value as w(N) is finite.

Recall Eq.6.3 and from that shown in Fig.6.2, for given N, any symbol share

price movements are mapped onto the phase space of (0,1] and are located with

equal distances. We call the distance of two neighboring coordinates box size and

denote it by e . In this way e is simply determined by N as

e =
1

2N . (6.10)

That means e is getting smaller as N grows and when N ! •, e is approaching 0,

in which case the Rényi information defined by Eq.6.7 diverges. Now we look at
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the Rényi dimension which is important as it stays finite for e ! 0.

D(q) = lim
e!0

Iq(p(N))

lne

= lim
e!0

1
lne

1
q�1

ln
w(N)

Â
j=1

(p(N)
j )q. (6.11)

Figure 6.3: Finite-N Rényi dimensions for the daily share prices movement dynamics for
symbol sequence of length 2 to 8 for Alcoa Inc.

The plots of Rényi dimensions for our daily share prices is shown in Fig.6.3

for various finite N. However, as the size of our dataset is limited, the smallest e

can be achieved is 1
28 , when N takes 8. The Rényi dimensions are monotonically

decreasing and one can see the smaller the e is the stronger dependence on q. In

fact, D(q) maintain positive for all q. Also, all lines intersect at 1 when q = 0. This

is because

D(0) = lim
e!0

� 1
lne

ln
w(N)

Â
j=1

1 = lim
e

� ln2N

ln 1
2N

= 1. (6.12)

In [125], C.Beck(1990) put forward a rigorous general bound on Rényi dimen-

sions where a general upper and lower bound of the Rényi dimension was proved:

q0 �1
q0

D(q0)� q�1
q

D(q) for q0 > q,q0q > 0. (6.13)

If we substitute +• and �• for q in Eq.6.13, we can obtain an upper bound

D(q) q
q�1

D(+•) for q > 1 (6.14)
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Figure 6.4: Rényi dimensions with the upper(orange dash line) and lower(green dash line)
bounds for the daily share prices movement dynamics for symbol sequence of
8 for Alcoa Inc .

and a lower bound

D(q)� q
q�1

D(�•) for q < 0. (6.15)

Here we check these conditions for our dataset with N = 8 in Fig.6.4. It is

shown that Eq.6.14 and Eq.6.15 are indeed followed by our experimental data .

6.4 Renyi entropies

Unlike the Rényi dimension, which describes how the Rényi information grows

with the refining scale e , the Rényi entropy K(q) measures the changing of the

negative Rényi information over time N ! •.

K(q) = lim
N!•

�I(N)
q

N
= lim

N!•

1
1�q

1
N

ln
w(N)

Â
j=1

(P(N)
j )q (6.16)

We have plots of Rényi entropies where N grows from 2 to 8 in Fig.6.5.

The Renyi entropies have the same dependence on q as D(q). This is because

in the context of the current study, each box with size e represents an observation

of a symbol sequence with length N. According to Eq.6.11, Eq.6.16 and Eq.6.10,
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Figure 6.5: Rényi entropies for the daily share prices movement dynamics for N = 2, ...,8
for Alcoa Inc.

the Rényi dimension D(q) is related to the Rényi entropy by

D(q) = K(q) ln2. (6.17)

the multifractal properties of symbol sequences can be described in terms of

Rényi entropy, which is regarded as the dynamical counterpart of Rényi dimension.

In our case the two contain the same information, since we map the probabilities

of observed symbol sequence onto a multifractal probability measure on the unit

interval.

Again the intersection when q = 0 is worth mentioning, as

K(0) = lim
N!•

1
N

ln2N = ln2. (6.18)

is the topological entropy, no matter what value N takes. Moreover for q ! 1, based

on Eq.6.8,

K(1) = lim
N!•

�I(p(N))

N
(6.19)

where the negative Shannon information �I(p(N)) is the Shannon entropy and K(1)

is also called the Kolmogorov-Sinai entropy.

From the non-trivial spectra shown in Fig.6.5, we can say that the symbol se-

quences are not independent and identically distributed random variables and there
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Figure 6.6: Joint probabilities of the minute scale share prices movement dynamics for
symbol sequence of length 2 to 8 for Alcoa Inc.(solid lines) and those of purely
random symbols sequences(dashed lines). The amount of symbols is the same.

are non-trivial correlations in the price movement dynamics.

6.5 Small time scales
We have quantified the joint probabilities of the daily share price movement by

Rényi dimension and Rényi entropy, and have numerically provided evidence that

the share price movement has a slightly non-Markovian property. We are now inter-

ested in how these measurements work for the small time scale symbolic dynamics

for the same company. Instead of using the daily share prices, the new dataset in-

cludes the minutely recorded share prices for the same period from 1998 to 2013

that covers about 1.5 million data points. Since there is a substantial increase in the

data size, dividing the whole sequence into non-overlapping segments will not cause

big errors in the result of our experiment. By using the same partition method of

the previous section the probability distributions of symbol sequence with different

length are shown in Fig.6.6.

Compared with Fig.6.2, the probability distributions on small time scales are

significantly different from those of daily time scale. Random symbol sequences

tend to have probabilities that are evenly distributed over all the possible patterns.

All the sub-figures in Fig.6.6 have symmetry around 1
2 and it seems there is some
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self-similarity. We show the Rényi entropies and the Rényi dimensions together

with bounds for small scale data in Fig.6.7.

(a)

(b)

(c)

Figure 6.7: (a)The Rényi entropy of minute scale symbolic dynamics for N = 2, ...,8. (b)
the Rényi dimensions of minute scale symbolic dynamics for N = 2, ...,8.
(c)The Rényi dimension for N = 8 with the upper and lower bounds.

We see, similar to the daily time scale, both the Rényi entropy and the Rényi

dimension are monotonically decreasing with respect to q, with larger N having

stronger dependence than smaller one for q > 0. However, the scaling behaviour

for negative q can be hardly distinguished for different N.
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Comparison of the multifractal spectra for large and small time scale symbol

sequences of different length N is shown in Fig.6.8. We can see when q > 0, the

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.8: Comparison of the Rényi entropy for large and small time scale symbol se-
quences of different length N

Rényi entropies of the minute scale data always have stronger dependence on q, no
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Table 6.2: Conditional probabilities of small scale sequences

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
d 0.474592 0.525938 0.567106 0.431542
u 0.432986 0.568584 0.52401 0.475199

matter how long the symbol sequence is. While for q < 0, daily data produce more

flat spectra of Rényi entropy than minute data for small N(2-6) and have stronger

q-dependence than minute data for larger N(7-8). We also test the non-Markovian

character for the small time scale data by constructing a similar table as in the pre-

vious section. The conditional probabilities of small time scale share price changes

for N = 3 are listed in Table.6.2. We can say the non-Markorvian character is also

visible for the small scale share prices.

6.6 4-symbol partition
By now we have used the simplest method to study the symbolic dynamics of the

share price movements. To detect further details, we can generate a refined version

of the phase space partition A = {A1,A2} where A1 = (�•,0) and A2 = (0,•).

Assume there exists a real number c where the log returns have equal probabilities

to fall into each element of the partition B = {B1,B2,B3,B4} where

B1 = (�•,�c),B2 = (�c,0),B3 = (0,c),B4 = (c,+•). (6.20)

In other words, the probabilities p(Bi), i = 1,2,3,4 of the log returns lying in each

set Bi are identical to 1/4. For Alcoa Inc. share prices on daily and minutely time

scales, we find c is equal to 0.014 and 0.00088, respectively. Instead of denoting

the time evolution by u and d, we redefine our symbol sequence by

i0, i1, ..., in, ... in 2 {b1,b2,b3,b4} (6.21)

where bi corresponds to a log return in Bi, resulting in the number of allowed se-

quences, for a given length N, w(N) = 4N . Also we update the bit sequence to a

4-level sequence by
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xin =

8
>>>>>><

>>>>>>:

0 if in = b1

1 if in = b2

2 if in = b3

3 if in = b4,

(6.22)

and any such sequence of length N can be encoded to a coordinate based on

the representation

a(x(N)) =
N

Â
n=1

xin4�n, a(x(N)) 2 [0,1) (6.23)

We show the plots for the joint probabilities of allowed symbol sequences of length

N for both large and small time scales in Fig.6.9 and Fig.6.10. Again we use over-

lapping segments for daily data and non-overlapping segments for minutely data.

The multifractal spectra are shown in Fig.6.11 and Fig.6.12.

Figure 6.9: Probabilities for the 4-level sequences on large time scales for Alcoa Inc.

The overall shapes of the multifractal spectra produced from the 4-level sym-

bol sequences are similar to that of the 2-level sequences. We will compare them by

picking up a certain sequence length N and plot the curves from 2- and 4-level sym-

bolic description in one figure for both small and large time scales as in Fig.6.13.

We use N = 4 for the large time scale and N = 5 for the small time scale in the

comparison since those are the longest sequence lengths that we can achieve for

4-level sequences. It can be clearly seen that the Rényi entropy of the 4-level sym-
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Figure 6.10: Probabilities for the 4-level symbol sequence on small time scales for Alcoa
Inc.

(a) large time scale (b) small time scale

Figure 6.11: Rényi entropies for the 4-level symbol sequence of Alcoa Inc. All curves
intersect at (0, ln4).

bol sequence has much stronger dependence on q than that of the 2-level symbol

sequence, for both large and small time scales.

We have also checked if the 4-level symbol sequences also have the non-

Markovian property. If the 4-level symbol sequences are Markovian, then one

would expect in Table.6.3 and 6.4 that each row has same values no matter what

the columns is. This is not the case in both tables, thus we confirm that 4-level

symbol sequences also display the non-Markovian character.

6.7 Differences in companies
So far we have mainly taken one company as an example, to introduce our study

based on symbolic dynamics. We now repeat the same experiment for share prices
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Table 6.3: Conditional probabilities for 1-day time scale symbol sequences using an alpha-
bet of 4 symbols

0 1 2 3
p(0|0,•) 0.311193 0.221756 0.275773 0.297476
p(1|0,•) 0.155596 0.259502 0.275773 0.21567
p(2|0,•) 0.214871 0.283093 0.224358 0.204515
p(3|0,•) 0.318602 0.235911 0.224358 0.282602
p(0|1,•) 0.252403 0.199314 0.200889 0.239379
p(1|1,•) 0.229032 0.302662 0.32226 0.269301
p(2|1,•) 0.252403 0.310044 0.301334 0.218006
p(3|1,•) 0.266425 0.188241 0.175778 0.273576
p(0|2,•) 0.257986 0.172459 0.252985 0.222807
p(1|2,•) 0.221778 0.275934 0.256877 0.24651
p(2|2,•) 0.244408 0.295096 0.237416 0.308138
p(3|2,•) 0.27609 0.256772 0.252985 0.222807
p(0|3,•) 0.31162 0.257077 0.229227 0.33487
p(1|3,•) 0.211594 0.271099 0.308414 0.204401
p(2|3,•) 0.2039 0.23838 0.262569 0.191354
p(3|3,•) 0.273148 0.233706 0.195885 0.269636

Table 6.4: Conditional probabilities for 1-minute time scale symbol sequences using an
alphabet of 4 symbols

0 1 2 3
p(0|0,•) 0.351143 0.203533 0.185173 0.324927
p(1|0,•) 0.0835436 0.267288 0.260761 0.0745199
p(2|0,•) 0.0851713 0.294743 0.318656 0.0795201
p(3|0,•) 0.475625 0.226481 0.224449 0.525986
p(0|1,•) 0.207999 0.143277 0.114662 0.189087
p(1|1,•) 0.300433 0.35597 0.331887 0.295299
p(2|1,•) 0.327608 0.391438 0.444153 0.352179
p(3|1,•) 0.183645 0.11066 0.110332 0.167896
p(0|2,•) 0.164538 0.115243 0.117974 0.181273
p(1|2,•) 0.342409 0.441557 0.38673 0.322428
p(2|2,•) 0.297351 0.326313 0.354183 0.307034
p(3|2,•) 0.189177 0.11653 0.137152 0.192841
p(0|3,•) 0.523817 0.221966 0.229088 0.468126
p(1|3,•) 0.0804287 0.319912 0.294505 0.0857177
p(2|3,•) 0.0744439 0.270986 0.277406 0.0833825
p(3|3,•) 0.323635 0.176169 0.205183 0.360224
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(a) large time scale (b) small time scale

(c) large time scale (d) small time scale

Figure 6.12: (a)(b)Rényi dimensions for the 4-level symbol sequence of Alcoa Inc. All
curves intersect at (0, 1). (c)(d)Rényi dimensions with the upper and lower
bounds(dashed curves).

Table 6.5: companies belonging to different sectors

Company Sector Industry
Alcoa Inc. (AA) basic materials Aluminum
Bank of America Corporation (BAC) financial Money Center Banks
General Electric Company (GE) industrial goods Diversified Machinery
Intel Corporation (INTC) technology Semiconductor - Broad Line
Johnson & Johnson (JNJ) healthcare Drug Manufacturers - Major
The Coca-Cola Company (KO) consumer goods Beverages - Soft Drinks
Wal-Mart Stores Inc. (WMT) services Discount, Variety Stores

of 7 different companies belonging to different industries and sectors (Table.6.5).

The plots of joint probabilities are shown in Fig.6.14-6.19.

To quantitatively analyse these joint probabilities, the corresponding Rényi en-

tropies are shown in Fig.6.20

It can be observed that the spectrum of Rényi entropies is different for different

companies. For 2-level sequences, Bank of America Corporation seems to have

the lowest Rényi entropy for q > 0, on the other hand, the healthcare company
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(a) large time scale

(b) small time scale

Figure 6.13: Comparisons of the 2-level and 4-level symbol sequence for given N in term
of Rényi entropy (Alcoa Inc.)

Johnson & Johnson seems to have the highest Rényi entropy for q < 0. When using

the more-refined 4-level partition function, Bank of America Corporation has the

strongest dependence on q for both negative and positive vales of q. Overall the q-

dependence is most pronounced for financial stocks. This could have to do with the

fact that financial stocks have relatively strong fluctuations and exhibit non-trivial

correlations, described by a non-trivial spectrum of Rényi entropies. They are more

volatile than, say, healthcare sector stocks.

6.8 Memory length and predictability revealed by the

conditional probabilities
The investigated non-Markovian behaviour indicates that the memory length of the

symbolic share price is longer than 1. Let us provide evidence that the price move-

ments depend on the entire history of previous symbols by investigating the condi-
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Table 6.6: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1 minute scale share price

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.451 0.550 0.548 0.451

d 0.475 0.526 0.567 0.432
u 0.433 0.569 0.524 0.475

d, d 0.488 0.514 0.551 0.444
d, u 0.421 0.577 0.533 0.472
u, d 0.459 0.543 0.579 0.419
u, u 0.451 0.556 0.515 0.479

d, d, d 0.488 0.506 0.536 0.460
d, d, u 0.441 0.556 0.531 0.468
d, u, d 0.463 0.536 0.597 0.413
d, u, u 0.445 0.575 0.516 0.470
u, d, d 0.490 0.526 0.558 0.437
u, d, u 0.404 0.583 0.528 0.462
u, u, d 0.463 0.536 0.563 0.440
u, u, u 0.461 0.549 0.508 0.492

d, d, d, d 0.517 0.514 0.523 0.467
d, d, d, u 0.441 0.555 0.521 0.500
d, d, u, d 0.476 0.524 0.576 0.430
d, d, u, u 0.440 0.561 0.502 0.486
d, u, d, d 0.478 0.528 0.572 0.434
d, u, d, u 0.387 0.603 0.537 0.446
d, u, u, d 0.442 0.541 0.564 0.413
d, u, u, u 0.455 0.564 0.515 0.491
u, d, d, d 0.462 0.508 0.543 0.448
u, d, d, u 0.443 0.565 0.545 0.447
u, d, u, d 0.452 0.553 0.617 0.398
u, d, u, u 0.454 0.593 0.509 0.472
u, u, d, d 0.455 0.526 0.563 0.452
u, u, d, u 0.423 0.561 0.529 0.481
u, u, u, d 0.487 0.524 0.555 0.440
u, u, u, u 0.475 0.527 0.494 0.491

tional probabilities for longer symbol sequences. The conditional probabilities of

the 2-level symbol sequences with length up to N = 6 for both 1 minute and 1 day

share prices are listed in Table.6.6 and Table.6.7.

For instance, in both tables, the value in column p(u|d,•), row (d, d, u) repre-

sent the conditional probability p(i5 = u|i4 = d, i3 = u, i2 = d, i1 = d), which can be

written in a compact form as p(u|d,u,d,d). Assume the price has a memory length
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Table 6.7: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1 day scale share price

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.503 0.497 0.505 0.495

d 0.483 0.517 0.494 0.506
u 0.523 0.477 0.515 0.484

d, d 0.467 0.533 0.492 0.508
d, u 0.513 0.487 0.510 0.488
u, d 0.498 0.502 0.496 0.505
u, u 0.534 0.466 0.520 0.480

d, d, d 0.496 0.505 0.526 0.474
d, d, u 0.516 0.484 0.536 0.465
d, u, d 0.513 0.488 0.491 0.509
d, u, u 0.506 0.494 0.496 0.504
u, d, d 0.442 0.558 0.458 0.542
u, d, u 0.509 0.491 0.483 0.513
u, u, d 0.485 0.516 0.498 0.502
u, u, u 0.564 0.437 0.546 0.454

d, d, d, d 0.463 0.537 0.518 0.482
d, d, d, u 0.481 0.519 0.483 0.517
d, d, u, d 0.488 0.512 0.530 0.471
d, d, u, u 0.515 0.485 0.449 0.551
d, u, d, d 0.395 0.605 0.449 0.551
d, u, d, u 0.469 0.531 0.462 0.530
d, u, u, d 0.448 0.552 0.508 0.492
d, u, u, u 0.556 0.445 0.555 0.445
u, d, d, d 0.527 0.473 0.533 0.468
u, d, d, u 0.557 0.444 0.581 0.419
u, d, u, d 0.539 0.461 0.451 0.550
u, d, u, u 0.496 0.505 0.543 0.458
u, u, d, d 0.488 0.512 0.466 0.534
u, u, d, u 0.545 0.455 0.505 0.496
u, u, u, d 0.519 0.481 0.486 0.515
u, u, u, u 0.572 0.429 0.535 0.465

of 3 only, then one should observe the following identity:

p(u|d,u,d,d) =p(u|d,u,d,u)

=p(u|d,u,d,d,d)

=p(u|d,u,d,d,u)

=p(u|d,u,d,u,d)

=p(u|d,u,d,u,u),

(6.24)

which means only three movements in the past will affect the next movement while

what happened previously to the latest three movements is not supposed to have
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influence on the next movement. But this is not what we see in both of the tables.

Thus we have provided again numerical evidence that the share price movement is

depending on the entire history of previous symbols.

Moreover, in Table.6.6, it can be observed that p(u|d,•) and p(d|u,•), irrele-

vant of the length of the symbol sequence, always have probabilities that are slightly

higher than 0.5, while p(d|d,•) and p(u|u,•) are always slightly lower than 0.5. The

data in this table has been summarized in a bar chart with error bars in Fig.6.21.

Each symbol length N corresponds to 4 bars representing the means of the condi-

tional probabilities of the 4 types(p(d|d...), p(u|d...), p(d|u...), p(u|u...)), which are

separated by columns in Table6.6. Except for the case of N = 2, where the means

are exactly the conditional probabilities of p(d|d), p(u|d), p(d|u), p(u|u), the er-

ror bars(mean± standard deviation) are shown for other N’s. It is clearly seen in

Fig.6.21 that no matter how long the symbol sequence is, the average probability of

observing a u(d) conditional on a d(u) in the previous step is always higher than the

average probability of observing a u(d) conditional on a u(d) in the previous step.

This means the occurrence of two successive movements in alternate directions has

higher probability than the occurrence of two successive movements in one single

direction. We can say that on the small time scale, a price increasing(decreasing)

is more likely to be followed by a price decreasing(increasing). This result is also

observable in the joint probabilities shown in Fig.6.6 where the highest probabili-

ties are always hold by the symbol sequences with alternate d and u, e.g. 1,0,1,... or

0,1,0... However, this pattern is not valid for daily time scale share prices. Similar to

the 2-level minute data, the 4-level sequences also get the highest joint probabilities

for the patterns with alternate 3 and 0, e.g. 3,0,3,... or 0,3,0...

Indeed, this fact is observed for all companies on the minute time scale. Details

of conditional probabilities and corresponding bar charts are listed in Appendix A

and Appendix B.
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6.9 Stationary test

In this section, we will investigate how the multifractal features of the financial time

series are affected by an unstable period of financial crisis. This analysis is focused

on a financial company, Bank of America (BAC), which was seriously influenced

by the 2008 financial crisis.

Fig.6.22 shows the daily log returns r of BAC from January 1998 to May 2013.

It can be clearly observed that the log returns with index in the range 2400-3000

exhibit large fluctuations; this the period corresponds to the 2008 financial crisis

We consider two new return series by splitting the original time series into

two parts of equal amount of data, so that only the second part includes the period

of financial crisis. To have enough data for this analysis, we use the minute scale

log returns. Distributions of the normalized minute scale log returns are plotted

in Fig.6.23 for both the time span without financial crises (January 1998 - August

2005) and that with the crisis (September 2005 - May 2013).

It is easy to see that the distribution of the data including the crisis period

has fatter tails than the data excluding the crisis period. It means that the strongly

fluctuating log-returns in the duration of financial crisis increase the probability of

extreme values.

Now we repeat the analysis in the previous sections to compare the multifractal

features of the two return series by means of Rényi entropies. The result is shown in

Fig.6.24, where it is obvious that K(q) of data influenced by the financial crisis has

much stronger dependence on q than K(q) of the data which does not include the

crisis period. We can draw the conclusion that an unstable period with large price

fluctuations increases the multifractality of the time series.

This result is in agreement with Morales et al.’s paper [140] where they con-

firmed that multifractality increased when the crisis occurred by using the General-

ized Hurst exponent method.
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6.10 Conclusion
In this chapter, we applied the symbolic dynamics technique to analyse the evolu-

tion of share price returns in a coarse-grained way. Non-trivial spectra of Rényi

entropies and Rényi dimensions were found which manifest nontrivial correlations

in the symbolic share price dynamical systems. Such spectra were found to de-

pend on the time scale of returns, the number of symbols used for the symbolic

description and the sector of stocks considered. Also, The-Markovian property is

investigated for the price movement dynamics and we provided evidence that the

price movements depend on the entire history of previous symbols. It was also seen

that alternating symbolic sequences occur with slightly higher than 0.5 conditional

probability for the minute time scale data and this is observed for all the 7 compa-

nies taken into consideration in this chapter. This can possibly be interpreted as a

small-sale feature related to the fact that a smaller price in the previous time interval

motivates to buy as a kink of ’bargain’ effect, and vice versa. In this way alternating

sequences may get a slightly higher probability than random sequences, though the

effect observed is only tiny.
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.14: Joint probabilities of share price dynamics for Bank of America Corporation
(BAC)
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.15: Joint probabilities of share price dynamics for General Electric Company
(GE)
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.16: Joint probabilities of share price dynamics for Intel Corporation (INTC)
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.17: Joint probabilities of share price dynamics for Johnson & Johnson (JNJ)
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.18: Joint probabilities of share price dynamics for The Coca-Cola Company (KO)
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(a) large time scale, 2-level symbol sequence

(b) small time scale, 2-level symbol sequence

(c) large time scale, 4-level symbol sequence

(d) small time scale, 4-level symbol sequence

Figure 6.19: Joint probabilities of share price dynamics for Wal-Mart Stores Inc. (WMT)
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(a) large time scale

(b) small time scale

(c) large time scale

(d) small time scale

Figure 6.20: Rényi entropies for 7 companies. (a)(b)2-level sequence. (c)(d) 4-level se-
quence.
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Figure 6.21: For N = 2, ...,6, the mean values of the conditional probabilities of the 4
types(p(d|d...), p(u|d...), p(d|u...), p(u|u...)) are represented by the height of
the 4 bars(with error bars). No matter how long the symbol sequence is, the
average probability of p(u|d...) and p(d|u...) is always higher than the average
probability of p(d|d...) and p(u|u...)

.

Figure 6.22: The daily log returns of Band of America (BAC) from January 1998 to 2013.



6.10. Conclusion 125

Figure 6.23: Distributions of log returns for time series including and not including the
financial crisis 2008.

Figure 6.24: Rényi entropies of the above time series. The dashed lines include the finan-
cial crisis.



Chapter 7

Conclusion

This PhD thesis was devoted to the investigation of share price dynamics in terms

of the statistics of log return distributions, correlation functions of share prices and

their volatilities, and changes in the behaviour of volatility on various time scales.

The study also explored the coarse-grained evolution of share price returns on var-

ious time scales, the probabilities of the generated symbol sequences and the cor-

responding Rényi entropies. All the analyses took into account share price datasets

from different industries and sectors. Many of the studies in the field of finance

have targeted at revealing the stylized facts of asset prices and seeking models for

describing the price dynamics properly. Our study was engaged in answering the

following three questions.

• What statistics is applicable in the modelling of log returns?

• Is there a difference between the characterization of log returns on small and

large time scales?

• What properties can be disclosed from the coarse-grained evolution of share

price returns?

The background of the applied methods and previous work in the literature

were introduced in chapter 2 Stochastic volatility, chapter 3 Superstatistics and

chapter 4 Symbolic dynamics and multifractal analysis. The concrete data anal-

yses were performed in chapter 5 Superstatistics for share price returns and chapter
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6 Symbolic dynamics and multifractal analysis for share price returns. The theo-

retical methods used, along with the main results of our thesis regarding the three

questions, are summarized here.

• Share price returns, which on different time scales exhibit non-Gaussian dis-

tributions with fat tails, can be well modelled by superstatistical methods.

The time series of returns is regarded as a superposition of local Gaussian

processes weighted with a process of a slowly changing variance parameter

b . The method of superstatistics is borrowed from nonequilibrium statistical

mechanics, and put here into finance context.

• It was shown that c

2-superstatistics works well for daily price returns, while

on a much smaller time scale of minutes the price returns are better modelled

by lognormal superstatistics. The system dynamics performs a transition from

lognormal to c

2-superstatistics as a function of time scale.

• We introduced a new superstatistical dynamical model that incorporates both

lognormal and c

2-superstatistics, with a weighting parameter k 2 [0,1] that

describes how far away a given model of share price dynamics is from one of

the two cases. k = 1 and k = 0 respectively imply a lognormal and a c

2 su-

perstatistics and a value in between 0 and 1 generates a mixed superstatistics.

• Correlation functions of the extracted superstatistical volatility parameter bk

are shown to exhibit different qualitative behaviour as a function of the time

scale of returns, with exponential decay on large time scales, modulated by

intraday periodicity.

• Similar phenomena were found for all the companies considered in thesis

thesis. However, the relevant parameters(such as decay rates of correlation

functions) differ slightly among different stocks.

• The share price returns were analysed in a coarse-grained way using the sym-

bolic dynamics technique from dynamical system theory. Symbol sequences

were analysed for share price changes on time scales of 1 day and 1 minute,
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from different stock sectors. The corresponding probabilities of the allowed

symbol sequences were calculated. A nontrivial spectrum of Rényi entropies

was found.

• The stylized fact of multifractality and the nontrivial correlations in the share

prices are quantitatively measured by a nontrivial spectrum of Rényi en-

tropies. It was numerically confirmed that the stochastic process of symbol

sequences observed for real share price data has significantly non-Markovian

character and the transition probabilities of observed share price returns de-

pend on the entire history of previous symbols.

• The Rényi entropies have more dependency on the scale parameter q for 4-

level symbol sequences compared to 2-level symbol sequence. It was also

found that both the time scales of returns and the sector of stocks considered

appear to affect the detailed form of the spectrum of Rényi entropies.

• For the small time scale share prices, we prenatally observed that a price

increasing(decreasing) is slightly more likely to be followed by a price de-

creasing(increasing). The occurrence of two successive movements in alter-

nate directions has higher probability than the occurrence of two successive

movements in one single direction.

Some previous studies have already applied the technique of superstatistics in

the area of finance [112][50][113][2][114][115][116][117][118]. c

2-superstatistics,

or equivalently Tsallis statistics are often observed to work well to describe the daily

returns [112][50][113][2][114][115][116][117][118]. In this thesis, we present for

the first time a systematic analysis where the time scale changes from minutes to

daily scales, choosing the optimum superstatistical model properly according to

the given time scale. In a previous paper by E. Van der Straeten and C. Beck [2],

it was found that it is sometimes hard to distinguish which of lognormal and c

2-

superstatistics is best suitable to model the price changes. In my study here, such

observed distributions were shown to be better modelled by a mixed case of super-

statistics.
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Not surprisingly, using a mixture of different distributions in the characteriza-

tion of financial time series is prevailing recently. Non-Gaussian process like Lély

processes are successful in characterizing the heavy tails of financial data but they

fail to pose finite moments. Alexander [141] and Tan [142] have pointed out that

a mixture of statistics will make promising improvement in modelling the excess

kurtosis while ensuring finite moments. Superstatistics, which depicts the consid-

ered system as a mixed statistics of a Gaussian and a non-Gaussian distribution, has

made nonnegligible contributions in the field nonequilibrium statistical mechanics,

and can be applied in finance as well.

Previous studies on volatility extractions[143][144] from a time series of re-

turns used different techniques from ours presented in this thesis. They usually cut

the N data points into n = N/D time slices with equal length D and calculate an

average of the absolute returns or the squared returns for each time slice. The his-

togram of the averages is fitted with some known distributions. The type of the fitted

distribution has been observed not to change with the varying D, while different D

result in different sets of parameters for that distribution. Recently, with the acces-

sibility of high-frequency intraday data, D is often set to one day in previous studies

[145][117]. Note that in the concept of superstatistics, D is fixed to a large time

scale T . In addition, for every time slice with length T , the volatility b is defined

as the local inverse variance. Because the T was determined as the optimal window

size, in which the return is Gaussian distributed, the distribution of the return can

be represented by a mixture of Gaussian distributions weighted by the density of b ,

f (b ).

As to the symbolic dynamics method, it can be applied to symbol sequences

generated by time series of other complex systems as well. In this way the Renyi

entropies associated with such a symbolic description allow for a quantitative com-

parison of the dynamical properties in symbol space, making it easy to compare

different complex systems. In fact, one can in this way compare entirely differ-

ent complex systems, for example the Rényi entropies associated with share price

changes (using an alphabet of 4 symbols) can be compared with those of genomic
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sequences [72]. The most important dynamical information is then encoded in form

of the shape of the function K(q), allowing the application of thermodynamic tools

[66]. It is an advantage that a quantitative comparison of different systems is pos-

sible, solely based on the multifractal properties of the coarse-grained symbolic

description.

Meanwhile, this study presented here encountered some limitations which

need need to be considered. For example, in the original superstatistical framework,

the integral over the volatility parameter b is performed under the assumption that

those volatility parameters are changing independently on a given time scale. How-

ever, in fact there are nonnegligible correlations of the volatility, especially for data

on the small time scales. In this case, a better fit for the integrated distribution p(u)

is obtained by adjusting the parameters in p(u), rather than adopting the estimated

parameter from f (b ) directly. This has, to some extent, added complexity to the

operation of superstatistics. A similar issue is also recognized by a recent study

on the superstatistics of vehicular traffic flow by C. Kosuna and S. Ozdemir(2016)

[108]. Thus, a more general superstatistical model that releases the assumption of

independent variation of the variance parameter might be desired.

Xu [132] explained the reason for the daily log-returns being modelled better

than the minute data by superstatistics in terms of the problem of discreteness [103].

When the timespan t , over which each data point is extracted, is below 5 minutes,

there may not be enough data points during the period t to implement the central

limit theorem. In this situation, the assumption that the normalized log return being

Gaussian in each window is not valid.

In the application of the symbolic dynamics technique for share prices, the

length N of the symbol sequence is restricted to N  8 for daily prices and small

time scale prices due to the limited amount of data and computational resources

that are limited. Larger N would induce large stochastic errors because of the fact

that the statistics is not high enough to estimate the frequency of a given symbol

sequence in a reliable way. To eliminate the data size limitation, a proper model,

which emulates the evolution of share price based on the observed non-Markovian
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character, is required. The analysis of an artificial time series will in turn help to

build up the awareness of additional features of share prices.

A more comprehensive and profound understanding of the characters of as-

set prices contributes to constructing share price evolution models with improved

accuracy and validity. The establishment of such models can further provide the

foundations for plenty of further financial analysis such as option valuation and in-

vestment risk management and facilitates the construction of more efficient trading

strategies. Biondo, Pluchino, Rapisarda and Helbing explored in an recent paper

[146] that the performance of the most used trading strategies, which are based on

the historical time series, is not better than a completely random strategy. This find-

ing is remarkable in the research area of finance engineering and modern finance

theory where the construction of a profitable investment strategy is still an open

question. My study confirms the stylized facts of the historical share prices in terms

of superstatistical and coarse-grained multifractal features on various time scales

and developed a new model that fulfils the desired features.



Appendix A

6 companies’ conditional

probabilities
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Table A.1: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Bac

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.441 0.557 0.561 0.440

d 0.451 0.544 0.572 0.429
u 0.434 0.570 0.549 0.450

d, d 0.458 0.535 0.559 0.451
d, u 0.421 0.577 0.554 0.448
u, d 0.442 0.553 0.587 0.414
u, u 0.456 0.547 0.533 0.464

d, d, d 0.464 0.539 0.530 0.477
d, d, u 0.429 0.566 0.559 0.450
d, u, d 0.428 0.566 0.605 0.400
d, u, u 0.442 0.565 0.560 0.449
u, d, d 0.459 0.537 0.564 0.429
u, d, u 0.398 0.591 0.558 0.433
u, u, d 0.446 0.545 0.582 0.431
u, u, u 0.475 0.541 0.526 0.461

d, d, d, d 0.478 0.520 0.521 0.476
d, d, d, u 0.435 0.555 0.530 0.473
d, d, u, d 0.445 0.538 0.564 0.438
d, d, u, u 0.439 0.547 0.533 0.455
d, u, d, d 0.463 0.552 0.560 0.422
d, u, d, u 0.386 0.592 0.586 0.442
d, u, u, d 0.438 0.549 0.579 0.413
d, u, u, u 0.463 0.523 0.522 0.458
u, d, d, d 0.453 0.532 0.570 0.462
u, d, d, u 0.433 0.569 0.570 0.444
u, d, u, d 0.444 0.593 0.621 0.382
u, d, u, u 0.440 0.579 0.555 0.463
u, u, d, d 0.486 0.528 0.558 0.444
u, u, d, u 0.429 0.572 0.534 0.467
u, u, u, d 0.457 0.533 0.541 0.434
u, u, u, u 0.486 0.521 0.529 0.470
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Table A.2: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Ge

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.445 0.554 0.559 0.442

d 0.453 0.545 0.567 0.435
u 0.439 0.558 0.553 0.451

d, d 0.458 0.544 0.544 0.455
d, u 0.424 0.574 0.554 0.445
u, d 0.450 0.551 0.582 0.424
u, u 0.457 0.536 0.550 0.453

d, d, d 0.457 0.538 0.522 0.478
d, d, u 0.450 0.567 0.542 0.459
d, u, d 0.434 0.570 0.583 0.418
d, u, u 0.443 0.555 0.544 0.456
u, d, d 0.449 0.549 0.551 0.428
u, d, u 0.416 0.582 0.557 0.448
u, u, d 0.465 0.538 0.581 0.419
u, u, u 0.475 0.525 0.552 0.447

d, d, d, d 0.475 0.540 0.495 0.492
d, d, d, u 0.448 0.568 0.518 0.458
d, d, u, d 0.434 0.547 0.556 0.446
d, d, u, u 0.454 0.542 0.546 0.432
d, u, d, d 0.453 0.555 0.555 0.438
d, u, d, u 0.409 0.595 0.574 0.429
d, u, u, d 0.447 0.543 0.584 0.421
d, u, u, u 0.457 0.543 0.547 0.452
u, d, d, d 0.463 0.549 0.529 0.453
u, d, d, u 0.430 0.584 0.578 0.446
u, d, u, d 0.448 0.554 0.612 0.387
u, d, u, u 0.444 0.546 0.547 0.445
u, u, d, d 0.446 0.542 0.569 0.440
u, u, d, u 0.451 0.552 0.557 0.461
u, u, u, d 0.473 0.525 0.563 0.439
u, u, u, u 0.479 0.498 0.554 0.489
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Table A.3: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Intc

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.448 0.551 0.556 0.445

d 0.450 0.552 0.556 0.442
u 0.446 0.554 0.555 0.446

d, d 0.451 0.551 0.540 0.452
d, u 0.437 0.565 0.551 0.444
u, d 0.453 0.553 0.566 0.438
u, u 0.456 0.540 0.552 0.449

d, d, d 0.442 0.541 0.530 0.477
d, d, u 0.438 0.574 0.544 0.453
d, u, d 0.443 0.561 0.570 0.431
d, u, u 0.453 0.562 0.560 0.448
u, d, d 0.461 0.542 0.548 0.440
u, d, u 0.433 0.569 0.539 0.431
u, u, d 0.457 0.543 0.561 0.439
u, u, u 0.465 0.536 0.560 0.444

d, d, d, d 0.462 0.568 0.510 0.482
d, d, d, u 0.438 0.562 0.521 0.439
d, d, u, d 0.446 0.561 0.545 0.447
d, d, u, u 0.455 0.565 0.559 0.457
d, u, d, d 0.444 0.568 0.543 0.434
d, u, d, u 0.426 0.583 0.546 0.433
d, u, u, d 0.461 0.540 0.557 0.425
d, u, u, u 0.460 0.523 0.566 0.455
u, d, d, d 0.436 0.519 0.550 0.450
u, d, d, u 0.448 0.558 0.564 0.449
u, d, u, d 0.443 0.564 0.578 0.425
u, d, u, u 0.456 0.565 0.555 0.441
u, u, d, d 0.471 0.534 0.565 0.430
u, u, d, u 0.443 0.560 0.572 0.435
u, u, u, d 0.473 0.539 0.553 0.439
u, u, u, u 0.491 0.507 0.569 0.448
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Table A.4: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Jnj

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.462 0.536 0.541 0.460

d 0.468 0.531 0.550 0.451
u 0.454 0.542 0.536 0.468

d, d 0.476 0.528 0.535 0.467
d, u 0.438 0.555 0.534 0.468
u, d 0.464 0.532 0.571 0.436
u, u 0.469 0.526 0.525 0.477

d, d, d 0.483 0.522 0.507 0.487
d, d, u 0.447 0.560 0.528 0.466
d, u, d 0.458 0.554 0.574 0.442
d, u, u 0.469 0.544 0.526 0.471
u, d, d 0.477 0.528 0.531 0.463
u, d, u 0.428 0.553 0.540 0.470
u, u, d 0.470 0.516 0.543 0.447
u, u, u 0.478 0.521 0.518 0.479

d, d, d, d 0.478 0.521 0.509 0.472
d, d, d, u 0.461 0.539 0.521 0.461
d, d, u, d 0.466 0.541 0.529 0.438
d, d, u, u 0.464 0.540 0.539 0.479
d, u, d, d 0.468 0.526 0.546 0.440
d, u, d, u 0.423 0.569 0.533 0.448
d, u, u, d 0.467 0.514 0.555 0.435
d, u, u, u 0.483 0.517 0.533 0.466
u, d, d, d 0.480 0.516 0.529 0.467
u, d, d, u 0.461 0.570 0.529 0.464
u, d, u, d 0.444 0.568 0.588 0.434
u, d, u, u 0.458 0.545 0.513 0.456
u, u, d, d 0.486 0.551 0.566 0.476
u, u, d, u 0.454 0.553 0.539 0.481
u, u, u, d 0.492 0.503 0.561 0.444
u, u, u, u 0.495 0.507 0.513 0.479
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Table A.5: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Ko

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.454 0.548 0.540 0.458

d 0.467 0.534 0.556 0.440
u 0.442 0.560 0.526 0.475

d, d 0.476 0.531 0.534 0.460
d, u 0.429 0.569 0.532 0.473
u, d 0.462 0.542 0.567 0.430
u, u 0.455 0.547 0.515 0.480

d, d, d 0.479 0.517 0.518 0.470
d, d, u 0.445 0.561 0.520 0.483
d, u, d 0.456 0.550 0.577 0.420
d, u, u 0.449 0.570 0.515 0.463
u, d, d 0.468 0.540 0.552 0.454
u, d, u 0.419 0.580 0.544 0.451
u, u, d 0.462 0.524 0.542 0.442
u, u, u 0.481 0.544 0.514 0.490

d, d, d, d 0.490 0.537 0.528 0.488
d, d, d, u 0.458 0.540 0.514 0.478
d, d, u, d 0.459 0.522 0.579 0.431
d, d, u, u 0.460 0.553 0.517 0.478
d, u, d, d 0.459 0.535 0.558 0.441
d, u, d, u 0.408 0.599 0.555 0.450
d, u, u, d 0.457 0.554 0.543 0.406
d, u, u, u 0.470 0.540 0.531 0.488
u, d, d, d 0.470 0.508 0.515 0.476
u, d, d, u 0.430 0.561 0.517 0.468
u, d, u, d 0.453 0.563 0.587 0.401
u, d, u, u 0.432 0.572 0.540 0.466
u, u, d, d 0.466 0.544 0.546 0.460
u, u, d, u 0.457 0.577 0.523 0.493
u, u, u, d 0.468 0.515 0.536 0.451
u, u, u, u 0.463 0.524 0.494 0.509
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Table A.6: Conditional probabilities of the 2-level symbol sequences with length up to N =
6 for 1-minute scale share price of Wmt

p(d|d,•) p(u|d,•) p(d|u,•) p(u|u,•)
0.473 0.529 0.525 0.473

d 0.483 0.515 0.534 0.465
u 0.464 0.540 0.520 0.479

d, d 0.486 0.508 0.525 0.482
d, u 0.455 0.553 0.521 0.476
u, d 0.475 0.521 0.544 0.447
u, u 0.478 0.524 0.514 0.489

d, d, d 0.494 0.502 0.510 0.496
d, d, u 0.461 0.544 0.513 0.470
d, u, d 0.461 0.523 0.546 0.441
d, u, u 0.470 0.538 0.516 0.490
u, d, d 0.490 0.530 0.544 0.469
u, d, u 0.442 0.566 0.534 0.473
u, u, d 0.484 0.513 0.529 0.467
u, u, u 0.483 0.504 0.507 0.489

d, d, d, d 0.496 0.494 0.503 0.513
d, d, d, u 0.472 0.543 0.501 0.488
d, d, u, d 0.484 0.523 0.529 0.464
d, d, u, u 0.482 0.525 0.512 0.492
d, u, d, d 0.510 0.516 0.530 0.461
d, u, d, u 0.430 0.575 0.550 0.478
d, u, u, d 0.466 0.516 0.548 0.447
d, u, u, u 0.490 0.536 0.507 0.482
u, d, d, d 0.478 0.493 0.506 0.477
u, d, d, u 0.445 0.539 0.512 0.461
u, d, u, d 0.465 0.542 0.555 0.426
u, d, u, u 0.478 0.545 0.515 0.487
u, u, d, d 0.480 0.517 0.538 0.466
u, u, d, u 0.476 0.549 0.516 0.503
u, u, u, d 0.500 0.500 0.535 0.475
u, u, u, u 0.485 0.483 0.496 0.493
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conditional probabilities
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(a) Bank of America Corpora-
tion(bac)

(b) General Electric Com-
pany(ge)

(c) Intel Corporation(intc)

(d) Johnson&Johnson(jnj) (e) The Coca-Cola com-
pany(ko)

(f) Wal-Mart Stores Inc(wmt)

Figure B.1: For N = 2, ...,6, the mean values of the conditional probabilities of the 4
types(p(d|d...), p(u|d...), p(d|u...), p(u|u...)) are represented by the height of
the 4 bars(with error bars). No matter how long the symbol sequence is, the
average probability of p(u|d...) and p(d|u...) is always higher than the average
probability of p(d|d...) and p(u|u...). This phenomenon occurs for all the six
companies.
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