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Abstract

Music signal analysis is a research field concerning the extraction of meaningful informa-

tion from musical audio signals. This thesis analyses the music signals from the note-level

to the song-level in a bottom-up manner and situates the research in two Music infor-

mation retrieval (MIR) problems: audio onset detection (AOD) and music structural

segmentation (MSS).

Most MIR tools are developed for and evaluated on Western music with specific musical

knowledge encoded. This thesis approaches the investigated tasks from a cross-cultural

perspective by developing audio features and algorithms applicable for both Western and

non-Western genres. Two Chinese Jingju databases are collected to facilitate respectively

the AOD and MSS tasks investigated.

New features and algorithms for AOD are presented relying on fusion techniques. We

show that fusion can significantly improve the performance of the constituent baseline

AOD algorithms. A large-scale parameter analysis is carried out to identify the relations

between system configurations and the musical properties of different music types.

Novel audio features are developed to summarise music timbre, harmony and rhythm for

its structural description. The new features serve as effective alternatives to commonly

used ones, showing comparable performance on existing datasets, and surpass them on

the Jingju dataset. A new segmentation algorithm is presented which effectively captures

the structural characteristics of Jingju. By evaluating the presented audio features and

different segmentation algorithms incorporating different structural principles for the

investigated music types, this thesis also identifies the underlying relations between audio

features, segmentation methods and music genres in the scenario of music structural

analysis.
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Chapter 1

Introduction

1.1 Scope and Motivation

Music plays an indispensable role in our everyday lives. Music information retrieval

(MIR) is an interdisciplinary research field concerning the extraction of meaningful infor-

mation from music, including the musical content itself as well as its ancillary knowledge

sources related to such as the artist details and the performance venues. It has many

real-world purposes such as music retrieval, indexing and browsing, recommendation

and audio production. While early MIR research focused on working with symbolic

representations such as MIDI [Swi97], progress in signal processing and data mining in

recent decades has enabled the processing and analysis of the digitised acoustical sound

signal [SGU14]. The scope of this thesis is the acoustic aspect, where we will analyse

the music content from its audio-based representations.

Music is primarily an event-based phenomenon. It comprises a series of musical

elements that unfold in time such as the melodic stanzas and harmonic passages. These

elements then collectively composite the overall aesthetics of music with vivid structural

characteristics. In both listening and analysis activities, one can give music boundaries to

pinpoint specific musical units and to facilitate the music content discovery with certain

1
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within-piece sectional information.

Music structure can be rendered at different hierarchies with different levels of abstrac-

tions. It can be broken all the way down from large compositional parts, such as sections,

into smaller elements such as bars and beats whose basic units includes the music notes.

What occurs at low-level hierarchies is embodied in high-level ones [Nar91]. While the

lower levels of the hierarchy relate closely to the physical properties of the sound signal,

the higher levels can reflect how humans perceive and interpret the music contents. The

overarching goal of this thesis is to analyse the music structure at various abstractions

from polyphonic audio recordings in a bottom-up manner.

Previous works have shown that MIR systems rely on musical knowledge to yield

meaningful results [Bel03]. The term “knowledge-based” originates from the field of

artificial intelligence (AI) [CF81]. It refers to the ability to represent, manage and use

knowledge within a given problem domain. Source knowledge characterising the music

itself can be used to inform the design of the analysis methodologies of the MIR system.

For example, Eggink and Brown introduced a knowledge-based fundamental frequency

(F0) detection system where source knowledge about the instrument properties and tone

durations was used to select the correct F0 from the candidates [EB04]. Another type

of knowledge is the contextual knowledge. It can assist putting the analysis in specific

contexts so that algorithms are able to make informed decisions in specific scenarios

or for required applications. For example, musical phenomena observed in the recent

past can be used as contextual information to assist the prediction of current events

in a probabilistic manner [LS08; MND09]. This thesis proposes to use knowledge-based

feature extraction techniques to enhance the contextual awareness to solve MIR problems.

Specifically, we situate this goal in two tasks: audio onset detection and music structural

segmentation.

Musical notes describe the music content at the lowest meaningful level. The melody

and harmony are largely determined by the sequential occurrence of the pitched notes;

the music beat, tempo and rhythm are set by the temporal recurrence patterns of note
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onsets. Much effort has been made by the MIR community to approach the automatic

detection of note onsets [Bel+05; Dix06; Mar+14]. Many methods detect the presence

of note onsets based on changes of spectral properties. Machine learning techniques are

also employed by more recent methods. The majority of these methods, however, either

employ only a single feature to encode the entire onset properties, or require an expensive

training process for the relevant information to be learnt from the audio signals.

A promising solution to onset detection problems hence lies in the fusion of differ-

ent onset-related features or detection rules for a more comprehensive representation of

onset characteristics and a more precise standard to select onsets [Deg+09; ZG11]. A

widely accepted definition for data fusion is provided by the Joint Directors of Labo-

ratories (JDL) [Fra87]: “A multi-level process dealing with the association, correlation,

combination of data and information from single and multiple sources to achieve refined

position, identify estimates and complete and timely assessments of situations, threats

and their significance.” This thesis will investigate a fusion-based approach for improved

onset detection. We will present new onset detection algorithms by combining differ-

ent features to summarise the music signal, as well as by combining the results from

multiple detections. The underlying hypothesis is that the inferences made by one con-

stituent feature or method can provide complementary contextual information to those

by another.

The structure of a music piece typically refers to its song structure or musical form.

The foundation of the structure of popular music is the “verse” and “chorus” form.

Although much work has been presented to discover music structure in recent years, the

focus of the majority of the existing research is Western pop music [Smi14; Jia15; Ong06;

Nie15; Gro12; MND09; ME14a]. Most state-of-the-art methods attempt to analyse the

music structure by finding repetitive patterns at a segment level. Such strategy, however,

does not address the form of the so-called through-composed music (a term derived from

the German word “durchkomponiert”) which is relatively continuous and non-repetitive.

The features employed describe attributes observed mainly for Western pop music such
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as the chord progressions therefore may be less effective beyond the Western scenario.

Meanwhile, this thesis aims to analyse music structure setting aside the assumption that

sectional repetitions must present.

There has been a dedication of recent research on the algorithms for music structural

analysis to improve the precision of structural discoveries. To this end, we propose to

improve the representation and interpretation of the underlying structural information

by investigating new feature descriptors and segmentation methods. In this process, the

source knowledge related to the music will be used to develop novel audio features, and

the properties of such features can be used as the contextual knowledge to assist the

design of segmentation algorithms.

The current MIR research is predominantlyWestern-centric [Dow03b; SGU14]. Under-

standing of the music characteristics can be genre-dependent and an MIR algorithm

designed for one corpus may have weak assumptions for another. The acquisition of

non-Western datasets and methodologies is particularly valuable to combat the bias

towards Western popular music genres within current MIR research [Dow03b]. In the

recent decade, a few non-Western traditional music corpora have been included in the

MIR research, such as Turkish Makam, Indian Carnatic, Arabian Andalusian and Chi-

nese Jingju music. Among these music cultures, the Chinese music is the one that has

had the least contact with the Western academic school and most existing studies have

been published only in Mandarin and available in China [Ser11; Tia+13]. Jingju, also

referred to as Beijing Opera or Peking Opera, is one of the most representative Chinese

traditional music genres combining singing, dance and theatre art. Despite its rich her-

itage and the sheer size of its audience, little analytic work has been done to understand

its music content from an MIR perspective until very recent years [Rep+14].

Jingju orchestra uses very characteristic instruments that are traditional to the Chi-

nese music repertoire. This hence broadens the variety of existing research subject and

confronts the retrieval of the music content with new challenges. Unlike Western clas-

sical or popular music, the bar-beat structure is rather loose for Jingju and the music
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does not follow a “chorus-verse” or “ABBA” structure. The music form of Jingju can

have distinctively different characteristics from Western music in the sense that harmony

or chordal structure is hardly present in Jingju songs at the segment-level. The music

form is composed, however, mainly of its sung sections with narrative lyrics and vivid

melodies [Wic91]. It is what musicians call “through-composed”. This music melody is

characterised by a heterophonic texture, i.e., variations introduced by different instru-

ments exist in the unitary basic melody. One of the main characteristics of Jingju

aesthetics is the rhythmicity that directs the overall performance [Rep+14]. With an

absence of bars or measures as defined for Western music, Jingju uses very specific percus-

sion and metrical patterns to set its timing. Therefore, as a genre newly brought under

the MIR spotlight, Jingju has many unique musical properties and can offer intriguing

research questions to complete the existing methods and paradigms.

So far we have highlighted the importance of knowledge awareness in a music analysis

system. One aspect of the musical knowledge we are particularly interested in is the

music genre. We hereby propose a cross-genre approach for the research carried out

of this thesis. By introducing Jingju into our analysis framework, we do not intend to

investigate into methods suitable for this genre alone. Because in this way, we would

only be introducing a new bias to replace the existing Western bias instead of confronting

the semantic gap between different music types. Rather, this thesis will be focused

on investigating novel features and algorithms to address the overarching goal of music

structure analysis for different music genres. To evaluate the analysis beyond the Western

context, new databases of Jingju music have been constructed featuring its instrument

ensembles for an onset detection study and its songs for a structural segmentation study.

Besides assessing the presented features and algorithms, we also aim to identify the new

challenges for existing MIR paradigms by evaluating our experiments on both existing

datasets and the new Jingju ones.
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1.2 Outline of the Thesis

This thesis is outlined as follows:

Chapter 2 reviews the background of the computational music content analysis and

the signal processing methods used in this thesis. It starts by introducing the time-

frequency analysis of music signals and proceeds to introduce the MIR tasks focusing on

the two main targets of this thesis: audio onset detection and music structural segmen-

tation. It also surveys common methods for evaluating MIR tasks.

Chapter 3 is devoted to presenting the musical background and the design of two

evaluation datasets for this thesis. A survey of the current MIR research for Jingju are

firstly presented, by which we are aiming to give an essential background of our work and

to identify the research goal of this thesis. We will introduce the basic musical elements

of Jingju and identify how they collectively constituent the music structure – from the

note level to the piece level. Two annotated Jingju datasets are presented along with

a survey of existing Western ones from related work. The first dataset is designed for

music onset detection tasks consisting of ensembles of the four major Jingju percussion

instruments. The second one is a music structural segmentation dataset with audio

samples collected from commercial CDs and annotations made by professional listeners.

This chapter hereby identifies the source knowledge of two different roles. The music

database holds knowledge related to problem solving, from which observations can be

made. The annotations are explicitly related to the questions the algorithms attempt to

address and will be used as the ground truth to evaluate their behaviours.

Chapter 4 presents original work on audio onset detection using fusion strategies and

evaluates the new onset detectors in the scenario of Western and Chinese music. By

fusion, distinct knowledge sources, in our case different kinds of spectral information or

features are merged together to yield a more comprehensive representation of the onset

properties. An exhaustive parameter analysis is carried out aiming to assess the effects

of signal processing methods in an AOD framework as well as to discover the optimal
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uses of signal processing methods in the scenario of different music types.

Chapter 5 is focused on feature design for music structural analysis. This chap-

ter starts with revisiting commonly used features designed for Western pop music in

the scenario of Jingju and proposes using chroma features with different bins-per-octave

(BPO) settings. It then proposes harmonic-percussive source separation (HPSS) as a

feature enhancement technique for music structural segmentation and analyses its effect

in the scenario of structural description. Two new sets of features are presented to sum-

marise the rhythmic and auditory aspects of the music content. The presented features

are extracted in a Vamp plugin environment with the Resource description framework

(RDF) web ontology tools [Onl09] and evaluated in a segmentation framework. We

also analyse the effects of different audio features and signal processing methods for the

investigated music genres.

Chapter 6 aims to investigate different segmentation algorithms in an integrated

music structural analysis system. Five state-of-the-art methods are included covering

different structural hypotheses. These methods are evaluated using features introduced

in Chapter 5 on three datasets consisting Western and Chinese music. This chapter

hereby attempts to answer the following question: how do audio features capture the

structure of different music types and how do different segmentation methods interpret

the reflected structural patterns? This chapter will also investigate the effects of signal

processing parameters involved in the segmentation algorithms.

Finally, Chapter 7 concludes this thesis and identifies some directions for future work.

1.3 Main Contributions

This thesis describes signal processing methods for music structure analysis, where the

use of music knowledge plays a key role. The main contributions of this thesis is sum-

marised as below:
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Chapter 3 presents two Jingju datasets to replenish the existing Western-centric eval-

uation corpora. The first one consists of studio recordings of Jingju percussion instru-

ments. It is used to evaluate the onset detection study carried out in this thesis. We also

identify that it can be used to evaluate other MIR tasks such as instrument recognition

and percussion transcription. The second dataset is designed for MSS with audio samples

collected from commercial CDs. The structural annotations are created by professional

musicians with the associated metadata recorded.

New onset detection methods based on fusion are presented in Chapter 4 outperform-

ing the state-of-the-art algorithms. By fusion, multiple knowledge sources are brought

together to complement the inference each other makes. A thorough evaluation of

involved signal processing components is carried out with their effects extensively tested.

We highlight that parameter configuration for the underlying signal processing system

can be a significant factor for a successful onset detection and that some default param-

eter configurations in existing systems have adverse effects. In this experiment, various

processes responsible for the fusion, onset detection, parameter selection as well as result

evaluation are conceptualised and fully automated in an integrated system relying on

Audio Features Ontology and Vamp Plugin Ontology. We demonstrate that Semantic

Web technologies can be useful tools for the analysis of large-scale audio signals.

Novel audio features are developed for music structural description in Chapter 5. The

new rhythmic features demonstrate different temporal patterns for different genres. We

also indicate further applications of this feature set. Features extracted from the Gam-

matone auditory representation are proved to be at least as effective as the commonly

used structural descriptors such as MFCCs and chroma features. The advantage of this

feature set is more pronounced for music characterising singing voice. A critical analysis

of existing chroma features for Jingju is carried out. We find that it is an effective feature

descriptor for Jingju too although different bins per octave settings should be used.

In Chapter 6, We contribute a cross-cultural evaluation of the state of the art in

MSS algorithms with various audio features. We show that although repetition-based
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segmentation methods are very successful for Western pop music, they are less effective

for Jingju with its lack of chordal structures. Novelty- and homogeneity-based methods

(introduction of these methods will be given in Section 2.5.3) can be more genre-invariant

when used to summarise the similarity-level music structure. The outcomes of this chap-

ter give strong indications to direct the creation of an intelligent system that automates

the selection of audio features and segmentation algorithms, given contextual knowledge

of the audio signals such as the genre and the level of music structure to analyse.

1.4 Associated Publications

This thesis covers the work carried out by the author between September 2012 and June

2016 at Queen Mary University of London. The majority of the work presented in this

thesis has been published in peer-reviewed conferences and journals:

• M. Tian and M. B. Sandler, 2016, “Towards music structural segmentation across genres:

features, structural hypotheses and annotation principles”, Intelligent Systems and Tech-

nology, Special Issue on Intelligent Music Systems and Applications, ACM Transactions

on, Volume 8, Number 2, pp. 23-41.

• M. Tian and M. B. Sandler, 2016, “Music structural segmentation across genres with Gam-

matone features, in Proceedings of International Society on Music Information Retrieval

Conference”, pp. 561-567, New York, USA.

• M. Tian, G. Fazekas, D. A. A. Black and M. B. Sandler, 2015, “On the use of tempogram

to describe audio content and its application to music structural segmentation”, in Pro-

ceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,

pp. 419-423, Brisbane, Australia.

• L. Yang, M. Tian and E. Chew, 2015, “Vibrato characteristics and frequency histogram

envelopes in Beijing Opera singing”, in Proceedings of the 5th International Workshop on

Folk Music Analysis, pp. 139-140, Paris, France.

• M. Tian, G. Fazekas, D. A. A. Black and M. B. Sandler, “Design and evaluation of onset
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• D. A. A. Black, L. Ma and M. Tian, 2014, “Automatic identification of emotional cues in

Chinese opera singing”, in Proceedings of the 13th International Conference on Music Per-

ception and Cognition and the 5th Conference for the Asian-Pacific Society for Cognitive

Sciences of Music, pp. 250-255, Seoul, South Korea.

• M. Tian, A. Srinivasamurthy, M. Sandler and X. Serra, 2014, “Study of instrument-wise

onset detection in Beijing Opera percussion ensembles”, in Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, pp. 2159-2163, Florence,

Italy.

• M. Tian, G. Fazekas, D. A. A. Black and M. B. Sandler, 2013, “Towards the representation

of Chinese traditional music: A state of the art review of music metadata standards”, in

Proceedings of International Conference on Dublin Core and Metadata Applications, pp.

71-81, Lisbon, Portugal.



Chapter 2

Signal Analysis for Music

Information Retrieval

2.1 Introduction

This chapter reviews the background, state-of-the-art methods, applications and evalua-

tion approaches for Music information retrieval (MIR) research. We will firstly introduce

the mathematical background for the time-frequency representations of audio signals in

Section 2.2. This is followed by an introduction of several popular audio features in Sec-

tion 2.3. As the main focuses of this thesis, audio onset detection and music structural

segmentation will be introduced in Section 2.4 and Section 2.5. The background and

research methodologies for these tasks are also surveyed. We introduce the Vamp Plugin

audio processing framework as will be used in this thesis in Section 2.6. Section 2.7 intro-

duces the analysis of signal processing parameters in audio-based MIR systems. Finally,

evaluation methods for MIR tasks will be introduced in Section 2.8.

11
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2.2 Audio Signal Representations

2.2.1 Human Listening and Music Perception

Sounds can be described in terms of their perceptual attributes such as pitch, loudness,

subjective duration and timbre. The human auditory system is capable of analysing

complex sounds by performing a spectrographic analysis of any auditory stimulus.

Hearing perception has been studied by researchers since the 1870s [Hel63]. Fletcher

suggested that the peripheral auditory system behaves as if it contains a bank of band-

pass filters with overlapping passband [Ros07]. Computational models for sounds require

the input signal to be subject to a band-pass filterbank which approximates the frequency

selectivity function of the inner ear. These filters are denoted auditory filters [Fle40].

Besides the semitone or the logarithmic scale which is typically used to visualise

the pitch contours for music, different scales have also been established from auditory

observations. The Mel scale is introduced from psychoacoustic experiments with simple

tones (sinusoids). In the experiment, subjects were asked to divide the frequency ranges

given into four perceptually equal intervals or to adjust the frequency of a tone to be half

as high as that of a reference tone [SVN37]. The name “Mel” indicates that the scale

is based on pitch to measure the music melody. One Mel is defined as one thousandth

of the pitch of a 1-kHz tone. Increasingly large intervals are indicated by listeners to

produce equal pitch increments when the frequency goes beyond 500 Hz.

Despite its popularity in MIR research, some surveys have pointed out that the

Mel scale is often used mainly for the reason of its historical priority [Tra90]. Since the

hearing system also performs a temporal analysis that contributes to frequency resolution

for low frequencies, some work argues that the auditory frequency resolution cannot be

fully represented by the Mel scale, which does not provide sufficient resolutions for the

low-frequency sound sources [Tra97; MG83].
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Auditory frequency resolution can also be rendered by the equivalent rectangular

bandwidth (ERB) [MG83]. It is the bandwidth of a rectangular filter which approximates

human hearing [Ben08]. ERB is proportional to the centre frequency fc when it is

above 500 Hz. For lower frequencies, it decreases with dropping fc because the fine

temporal structure of the signal contributes substantially to frequency resolution [MG83].

Glasberg and Moore [GM90] express the ERB as a function of fc of each filter as,

ERB(fc) = minBW + fc ∗ 10−3/eq, (2.1)

where minBW and eq are the Glasberg and Moore parameters respectively set to 24.7

and 9.26449 derived from psychoacoustic experiments.

The effect of bandwidth on loudness is essential in human perception of music. For

example, for a given amount of energy, a complex sound is louder if its bandwidth exceeds

one ERB than if its bandwidth is less than one ERB [Moo12]. Altogether, Mel and

ERB are both very effective scales for sound signal analysis.

2.2.2 Time-frequency Representations of Music Signals

The human auditory perception discussed so far starts with the frequency analysis of

the sound in human perception. The musical sounds must use time-dependent variables

to expose the dynamics of the sounds and represent its spectral content evolving over

time. There are two main domains that music signals can be represented by: time and

frequency [KD06]. Dennis Gabor wrote a fundamental article in which he explicitly

defined a TF representation of a signal [Gab46]. Gabor demonstrated that, in addition

to the time representation (the signal itself) and the frequency representation, one can

construct a two-dimensional representation, where each point corresponds to both a

limited interval of time and a limited interval of frequency.

The time-frequency (TF) representation of a music signal mapping its time represen-
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tation to the frequency representation is thus an intuitive starting point for a computa-

tional music analysis. There exist different forms of TF representations. In this section

we review two commonly used TF representations for audio analysis and visualisation:

spectrogram and Gammatonegram. The first characterises the Fourier transform (FT)

and the latter incorporates human auditory perception cues and processes the signal in

the time domain using the Gammatone filters on an ERB scale.

The theorem of FT is that any complex waveform can be decomposed into a series of

sinusoids with specific frequencies. In the context of audio or music analysis, the FT is

normally applied to a finite series of signal. At this point it is usually called a short-time

Fourier transform (STFT). At the vicinity of a time instant t0, we extract a portion of

the signal x(t), denoted a frame. The corner of this portion is rounded after multiplied

with a window [KD06]. More precisely, the frame at time t0 with the window function

W is defined as:

xW
t0 (t) = x(t)W (t0 − t). (2.2)

From frames, it is easy to build the STFT as the FT of successive frames in a short-

time window:

STFTW
x (t, f) =

∫ +∞

−∞
x(ς)W (t− ς)e−2jwπfςdς. (2.3)

Spectrograms are the energy of the STFT mathematically defined as its squared

modulus:

X(t, f) = |STFTW
x (t, f)|2, (2.4)

where the spectrogram of a short-time discrete signal x(n) is expressed as X(n, f).

The length and shape of the selected window is a measure of the bandwidth discrimi-

nating the analysis. The main parameters that influence the TF analysis are the window

size WN and the step size (also called the hop size) between adjacent windows WH . The
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frequency resolution, i.e., the distance between consecutive frequency bins, is defined by
fs
WN

, where fs is the sample rate with larger WN leads to better frequency resolution.

For an effective analysis, a compromise must be reached between having a good temporal

resolution by using shorter windows and having a good frequency resolution by using

longer windows. Experiments by Rasch indicate that the perception of tones in ensemble

music is accurate to only 30 to 50 ms [Ras79]. A window size of 5 to 50 ms is typically

used for STFT calculations in the MIR scenario [SGU14]. Standard window functions

include Hann1, Hamming and Blackman and the choice is generally flexible.

One way to address the conflict in retaining high temporal resolution and high fre-

quency resolution in audio signal analysis is to resort to auditory filters. An auditory

representation is typically obtained as the output of a computational model approximat-

ing the auditory processing with parameters of the model derived from psychoacoustic

experiments [PP07]. As opposed to the spectrogram which displays the TF components

according to the physical intensity levels of the audio signals, auditory representations

attempt to emphasise their perceptually salient aspects [PP07]. This is mainly aimed to

counter the effect of auditory masking, which means that the perception of one sound

source can be affected by the presence of another in its vicinity.

In the Patterson model, the cochlea processing is simulated by Gammatone auditory

filters [Pat+87]. The Gammatone function is defined in the time domain by the impulse

response of the audio signal:

G(t, fc) = at(p−1)e(−2πbt)cos(2π(fc)t+ ϕ), (2.5)

where a is the amplitude factor, p is the order of the filter, b is the frequency bandwidth

of the filter in Hz which largely determines the duration of the impulse response, fc in

Hz is the central frequency of the filterbank and t is the time in seconds.
1“Hann” is the original name of this window function. However, the name “Hanning” is also used

occasionally derived from the expression “hanning a signal” which had originally been used to mean “to
apply a Hann window to the signal”.
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Given the number of filters M , the lower and upper frequency bounds, centre fre-

quencies of the filter banks are uniformly spaced between the lower and upper frequency

bound on the ERB scale. The impulse response of the Gammatone filter can be seen as

a burst of fc enclosed in an envelope defined by the Gamma function, Here, the name

“Gammatone” refers to the fact that the exponential expression in Equation 2.5 is the

gamma function from mathematics, and that the cosine term is a tone for an auditory fre-

quency range [Pat+87]. Fourth-order Gammatone filters form frequency responses that

can closely approximate auditory filter shapes measured from psychoacoustic experi-

ments [PP07]. An efficient implementation is provided by Slaney [Sla93]. The filter

outputs may also be subject to rectification, compression and low-pass filtering as well

as adaptive thresholding, which approximate the functions of the neural transduction.

More details for the calculation of and the applications for Gammatone filters will be

given in Section 5.5.

The Gammatone filters process a audio signal to yield GF (t, fc) which keeps the

original sample frequency fs. In order to convert it into a spectrogram-like TF repre-

sentation, noted a Gammatonegram or a Cochleagram, it is necessary to sum up the

energy over fixed time windows. Although Gammatone filters have been successfully

applied for TF descriptions in speech processing [Sch+07; Qi+13], relatively little work

has attempted to use it to address MIR problems [Cas+08].

The main parameters influencing the calculation of a Gammatonegram are hence the

number of filters m, the summation window NG as well as the hop size between con-

secutive frames HG. M = 20, 32, 48, 64 and 128 are typically used following practices

in speech and audio processing where many works have reported that 32 - 64 chan-

nels are appropriate for a robust speech recognition or music spectral mapping [VA12;

HWW14; Qi+13; Sch+07]. McKinney and Breebart used 18-channel Gammatone fea-

tures for music classification [MB03]. Newton and Smith also showed that a 15-channel

Gammatone filterbank with a frequency range of 200 Hz to 5 KHz can yields an abstract

yet effective tone descriptor for musical instrument recognition [NS12]. The selection of
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(b) 32 filters.
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(c) 64 filters.

Figure 2.1: Gammatonegram computed with 20, 32 and 64 filters and the corresponding
filter frequency responses for a 5-second excerpt (10.0 s - 15.0 s) of song “Help” by The
Beatles. The lower and upper frequency bounds are respectively 50 Hz and 22.1 KHz.
Only every 2nd channel is shown when using 64 filters for visualisation purposes.

NG and HG are typically similar to the window size and hop size chosen for the STFTs.

Figure 2.1 illustrates the Gammatonegrams and the filter bank frequency responses

calculated using the implementation provided by Slaney [Sla93] on a 5-second excerpt
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of the Beatles song “Help” (10.0 s - 15.0 s). M is set respectively to 20, 32 and 64 and

NG and HG are set to 46 ms and 23 ms. The lower and upper frequency bounds are

50 Hz and 22.1 KHz (half the sample rate) for all. We can observe narrower frequency

bins and increasing frequency resolutions with increasing number of channels. Unlike

the Fourier-based TFRs, however, this does not lead to any loss of temporal resolution.

We also observe that the “brightest” areas become more compressed and that the spec-

tral centroids of individual frames appear to be shifting downwards with increasing M ,

although a constant frequency range is used, due to the non-linearity of the ERB scale.

A promising approach for distinguishing the frequency or temporal events hence lies in

the replacement of the standard spectrogram with the output of auditory filters such

as the Gammatone filters for the audio signal representation. We will investigate the

feature extraction with Gammatone filters in Chapter 5.

2.3 Audio Feature Extraction

Feature extraction constitutes the core process for audio content description. Though the

digital signal contains all the information of the sound, it must be summarised somehow

to facilitate the subsequent information retrieval. The goal of feature extraction in

our scenario is to find descriptors of the audio content that are invariant to irrelevant

transformations and having good discriminative power across different classes. Note that

in this thesis we refer “audio features” to descriptors calculated from the audio signal in

a derived way, i.e., from its TFRs, to summarise specific aspects of the audio content,

since one may argue that the more general TFRs such as the spectrogram are features

of the signals too [SGU14].

Audio features can be categorised based on the abstraction level of the information

they summarise. The low-level features are considered to be related to the physical

properties or musical attributes related to the signal itself, such as the root mean square

(RMS) energy. The so-called mid-level features are commonly derived from the statistical
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Figure 2.2: Calculation of the MFCCs feature.

descriptions or summaries of the low-level features, for example, the tempogram, as will

be introduced shortly. The high-level features, sometimes also denoted semantic features,

expose aspects that are typically approximating how humans would perceive the music.

A popular approach for feature extraction is to use explicit domain knowledge about

the underlying source signal to derive abstract and salient signal representations. In

MIR, the selection of audio features contributes crucially to the acquirement of a rep-

resentation of specific aspects of the music content, such as the timbre, loudness, key,

harmony, melody and rhythm [Cas+08]. Well-known feature descriptors include the

Mel-frequency cepstral coefficients (MFCCs) which capture the music timbre, chroma

features which describe the harmony, perceptual descriptors such as loudness and sharp-

ness and rhythmic features characterising the metre, timing, tempo as well as their

grouping rules [Pee04]. A popular method is to extract features from consecutive frames

of the TFRs, typically the spectrogram, of the input audio signal. Here we introduce

three features, MFCCs, chromagram and tempogram, describing respectively the tim-

bral, harmonic and rhythmic contents of the music content.
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2.3.1 Mel-frequency Cepstral Coefficients

Timbre refers to the quality of the sound. The American National Standards Institute

defines timbre as “the attribute of auditory sensation in terms of which a listener can

judge that two sounds similarly presented and having the same loudness and pitch are

dissimilar”. It is the third attribute of the subjective experience of musical tones after

pitch and loudness. Timbre-related features are of general importance in describing audio

content [Deu12].

The use of MFCCs in MIR studies was first proposed by Logan [Log00]. MFCCs

provide a compact way to model the signal spectra. Figure 2.2 shows the process of

calculating the MFCCs. First, the input signal is divided into short frames. Then the

framed signal is subject to a fast Fourier transform (FFT) (see Section 2.2.2). The

magnitude spectrum of the transformed signal is passed through the Mel filterbank

(see Section 2.2.1) and then converted to a logarithmic scale. The purpose of the Mel

warping is to convert the representation into a perceptually meaningful scale where higher

resolution is assigned to lower frequency components. As the final step, a discrete cosine

transform (DCT) [ANR74] is taken to derive a compact feature representation. DCT is

a Fourier-based transform similar to the discrete Fourier transform (DFT) but operates

only on real data hence leading to an even symmetry. The “log-DCT” analysis, also

referred to as the “cepstral” analysis, is commonly used to decorrelate convolved data

for feature representation (for example, human speech can be modelled as the convolution

of an excitation and a vocal tract).

Despite its wide application in many MIR tasks [APS05; Jen+06; Rum+10; LS06;

RBH13; TSB05], little work has attempted to justify the choice of the Mel filters used

in MFCCs after Logan, whose conclusion is only “using the Mel cepstrum to model

music in the speech and music discrimination problem is not harmful” [Log00]. It hence

remains unaddressed to quantify the suitability of the Mel scale in MIR scenarios. In

this thesis, we will investigate the use of different TF representations to characterise the
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timbre description.

2.3.2 Chromagram

Chroma features, which closely correlate to the aspect of tonality, are well-established

tools in processing and analysing pitched music data [Góm06; BW05; EP07]. A chro-

magram, for the definition of which readers are often directed to Fujishima [Fuj99], also

called Harmonic pitch class profile (HPCP), is a B-dimensional vector representation

of a chroma, where B is the bins per octave (BPO) in the scale. A chromagram hence

represents the relative intensity of each bin in a chromatic scale with equal temperament

in a tuning-independent manner. Since the type of a chord rests on the position of its

constituent tones in a chroma, a chromagram would consist the whole information to

represent a chord. Besides used to capture the harmonic aspect of music, chromagram

features have also been proven useful as timbre descriptors [MBH12].

One popular implementation of this feature is based on the constant-Q transform

(CQT) as described in Brown [Bro91]. The framework is shown in Figure 2.3. First,

the framed input audio signal is subject to a CQT and passed through a logarithmic

frequency filterbank with centre frequencies decided by Equation 2.6:

f(klf ) = fmin ∗ 2
kf
B , (2.6)

where fmin is the minimum frequency of the analysis in Hz, kf ∈ [0, B ∗No] is the filter

index with B as the number of semitones in the scale and No the number of octaves.

The outcome of this step is a log-frequency magnitude spectrum. The chromagram

is then derived from binning the spectrum across octaves into a B-dimensional vector

representation.

Alternatively, the CQT can be replaced by a DFT followed by a log-frequency warp-

ing. Whereas the CQT-based method provides a constant ratio of frequency resolution
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Figure 2.3: Computation of the chromagram feature.

by adjusting the window size for each frequency bin, the DFT-based approach would

lead to unfixed resolutions – the resolution is lower at low frequencies and higher at high

frequencies.

While B = 12 is typically used for the Western equal temperament, some work has

proposed to use different BPO settings for specific tasks or music genres [HSG06; Góm06].

In [HSG06], Harte and Sandler proposed a 36-bin semitone-quantised chromagram to

improve the accuracy of locating the boundaries between semitones for chord recognition.

We will investigate the effect of BPO settings for different music types in Chapter 5.

Different variants of the chroma features have been proposed to improve its timbre-

and orchestration-invariance such as Chroma Energy Normalized Statistics (CENS) [MEK09],

Chroma DCT-Reduced log Pitch (CRT) [ME10a] and the Complexity Features [WM15].

Different approaches have also been presented to counter the interference for chroma

bin assignment introduced by overtones. Mauch and Dixon introduced the Non-negative

Least Squares (NNLS) Chroma with improved note dictionary [MD10]. Jiang et al.

introduced a filterbank-based chroma feature with a logarithmic compression before the

octave mapping for chord recognition [Jia+11].
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2.3.3 Tempogram

Rhythmic features describe the temporal events and their organisations in music. Most

rhythmic descriptors are based on locating the note events, typically note onset, as will

be introduced in Section 2.4. By measuring their periodicity of note onsets, higher level

rhythmic descriptions can be obtained such as the beat and metre estimations [GD05].

One rhythmic descriptor is the tempogram. A tempogram is a time-pulse represen-

tation of an audio signal indicating the variation of pulse strength over time given a

specific time lag lt or a BPM value τt. This property makes it an appropriate base

for higher level feature representations to be extracted from incorporating tempo and

rhythm information. By pulse, also called beat, or more technically tactus, we mean the

basic unit of time in music which can be categorised according to where it falls in the

bar: as “weak” (the second and fourth in a four-beat bar, the second and third in a

three-beat bar, or the second in a two-beat bar), or “strong” (the first and, to a lesser

degree, the third in a four-beat bar, and the first in a three-beat or a two-beat bar)2.

The tempo of a piece is defined as the speed of the pulse. We hence note the periodicity

of a pulse with a tempo value in beats per minute (BPM).

The calculation of a tempogram is based on a one-dimensional temporal signal indi-

cating the presence of the beginning of notes, denoted the onset detection function (ODF)

as will soon be detailed in Section 2.4. The two main methods presented in the liter-

ature employ respectively the Fourier transform (FT) and the autocorrelation method.

While the first method yields tempograms with harmonics, the latter yields tempograms

emphasising the subharmonics [Pee05]. Here we introduce these two approaches.

In the first approach, the ODF is analysed using an FT. We note F (t, τt) the ampli-

tude spectrum of ODF (n) for a tempo τt and at time t where τt in BPM can be mapped

to the frequency f in Hz by τt = 60∗f . A Hann window with window lengthWf is used.
2Besides being used as synonyms, a distinction is occasionally made between “pulse” and “beat”: for

example, 6/8 time may be said to have six “pulses” but only two “beats” [SW70]
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This process is shown in Equation 2.7.

F (t, f) = |
∑
n∈Z

ODF (n) ·Wf (n− t) · e−2πifn|, (2.7)

These periodic patterns may also be characterised by peaks in the autocorrelation

function (ACF) of the ODF at certain time lags. In the autocorrelation-based method,

the local ACF of the ODF is calculated using a rectangular window Wa as shown in

Equation 2.8. We note A(t,Λ) the ACF of the ODF for a time lag Λ and time t. A(t,Λ)

will hence represent the level of periodicity at the lag Λ/fs where fs is the sample rate

and the time lag Λ corresponds to the tempo τt = 60/(sr · Λ).

A(t,Λ) =

∑
n∈ZODF (n)ODF (n+ Λ) ·Wa(n− t)

2N + 1− Λ
, (2.8)

for time t ∈ Z, time lag Λ ∈ [0 : N ] and sr is the feature rate.

Figure 2.4 demonstrates the tempogram computed using both approaches of the pop

music “Help” (Figure 2.4a) and Jingju music “Jin yu nu” (Figure 2.4b) from our evalu-

ation dataset BeatlesTUT and CJ (details of the datasets will be given in Section 3.4).

The average tempo for the two tracks are respectively 95 BPM and 78 BPM. The FFT

window size and step size are respectively 0.046 s and 0.023 s to derive the ODF, and the

time window Wf and Wa are set to 6 s. Note that in the FT-based method, the STFT

has been carried out twice, once to derive the spectrogram where the ODF is calculated

and once to derive the tempogram. We use the implementation from Tempogram Tool-

box by Grosche and Müller [GM11b]. The upper and bottom pane show the tempogram

calculated using the FT - and the ACF -based method respectively and the left and right

pane show the tempogram in the tempo (in BPM) and lag (in second) domain. It is

noticeable that while the two approaches both present the dominant tempo, the sub-

harmonics are delineated in the ACF-based tempogram but suppressed in the FT-based

tempogram.
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(a) Tempograms for the audio example “Help” using the Fourier Transform based method (left)
and the autocorrelation based method (right).
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(b) Tempograms for the audio example “Jin yu nu” using the Fourier Transform based method
(left) and the autocorrelation based method (right).

Figure 2.4: Tempogram for Western pop music “Help” and an excerpt of Jingju music
“Jin yu nu” from dataset BeatlesTUT and CJ (see Section 3.4). The left and the right
pane show respectively tempograms derived using the autocorrelation and the Fourier
transform based method.
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Some works also propose to use the tempogram as a basis to extract rhythmic descrip-

tions at a higher abstraction. Grosche and Müller introduced the Cyclic tempogram and

the derived Predominant local pulse (PLP) curve reflecting the predominant pulse at

each time position [GM11a]. The main idea of the PLP curve is to derive for each time

position a sinusoidal kernel for the tempogram indicating the local periodicity of the

novelty curve obtained prior to the tempogram. The kernels are then accumulated over

time using the overlap-add technique such that the derived signal feature can reveal the

PLP. This feature is proved an effective tool for beat tracking [GM11a].

As can be seen from the above examples, specific audio features normally describe

specific aspects of the music content and convey specific semantic meanings. The design

and the selection of features in the MIR scenario hence rest with the tasks they are

used for. An overview of the extraction of commonly used audio features and their

applications can be found in [Pee04; BDC15]. In the next two sections we introduce in

detail two MIR tasks investigated in this thesis: audio onset detection (AOD) and music

structural segmentation (MSS).

2.4 Audio Onset Detection

2.4.1 Definition and Applications

Musical notes are discrete events that underpin the music composition. The succession

of pitched notes comprises the melody of a piece of music, and the starting times of

notes, percussion notes in particular, decide its metre and tempo. The primary goal

for automatic AOD is to parse the note events and analyse their inherent patterns and

periodicities to extract more abstract representations such as tempo, timing and metrical

structure [GD05].

The establishment of a note onset requires the perception of sound event usually

with short intervals where the sound signal undergoes rapid changes, defined as tran-
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attack decay

transient

onset

Figure 2.5: A violin note onset. The red vertical line indicates onset location annotated
by listeners.

sients [SW70; Hon02]. The note onset in MIR research is commonly defined as the start

of a transient, which marks the time interval during which the amplitude envelope of the

signal increases. The detection of a note onset can hence be approached by pinpointing

the start of the transient.

A transient is normally defined as a high-amplitude, short-duration sound at the

beginning of a waveform [Cro98]. For many musical instruments, the transient is often

associated with a sudden increase of the signal energy after an external excitation, such

as a pluck on the string or a hammer strike on the membrane, is applied and then

damped, followed by a decay at the resonance frequencies of the body [Bel+05]. In

case of instruments with longer transient times and without sharp bursts of energy, the

interpretation of the typical ODF may become ambiguous. Based on this rationale,

music onsets can be categorised into hard and soft onsets. Figure 2.5 illustrates the

onset of a single note produced by a violin. The audio track and onset annotation are

provided in [Bel+05]. We will provide more details on how to create onset annotations

in Chapter 3. It can be observed that the appearance of an onset is accompanied by the

amplitude increase from a low level to a peak followed by a decay.

The automatic detection of note onsets is an essential part in many music and audio

signal analysis schemes. It has various applications in content-based music processing
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(a) Audio waveform

(b) Onset detection function

(c) Onsets

(d) Beats

(e) Bars

Time (s)
0                       1                       2                       3                       4                       5                       6                       7                       8

Figure 2.6: The waveform, onset detection function, estimated onsets, beats and bar
positions for an excerpt of Beatles song “Love me do”.

and is also considered as the first step of many other MIR tasks such as tempo tracking

and the extraction of beat and bar positions. Figure 2.6 shows the onset detection

function (ODF) and onset positions obtained using [Dux+03] as well as beat and bar

detected following [DP07; SDP09]. The local beat is estimated based on the periodicity

in the ODFs and the bar positions are derived from the downbeats given the music metre.

Both implementations are provided by Queen Mary Vamp Plugins [Plu06].

2.4.2 Related Work

Many methods for AOD have been presented in related works [Ros+99; Bel+05; Col05a;

Col05b; Dix06; Deg+09; Deg+10; Eyb+10; BKS12; Böc+12; BW13a; BW13b; HSL13;

HS08; Hol+10; Zha+13; Wan+06; TZW08; SP07; RRM12; SB13; Mar+14; LD04; LK06;
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LE06; Kla99; KP04]. Energy-based onset detection methods were primarily developed

to detect sudden changes or a burst of signal energy introduced by the emergence of

a new note. Common techniques include High frequency content (HFC) and Spectral

difference (SD) [Mas96].

However, one of the drawbacks of many energy-based methods is that they are less

effective in detecting soft onsets and partially masked onsets in complex mixtures of

musical sounds. To compensate for this, phase information can be incorporated into the

analysis, which relies on the fact that phase change is less predictable during transients

than steady-state. This leads to phase-based and complex-domain techniques introduces

in Duxbury et al. [Dux+03] with further improvements by Dixon [Dix06].

Pitch contours and harmonicity information can also be indicators for onset events.

Collins introduced the use of pitch change to detect note onsets [Col05b]. Heo et al.

introduced a method where the ODF is built using the summation of harmonic cepstral

coefficients with their “quefrency” indices derived from previous frames [HSL13]. These

methods show some advantages for detecting soft onsets. Stylistic musical elements

such as vibrato and tremolo can lead to the detection of onsets not corresponding to

actual notes, referred to as false positives. Techniques for vibrato suppression have

been presented in recent works. SuperFlux (SF) is introduced as a modified version of

the spectral difference method which reduces false positive detections considerably by

tracking spectral trajectories of partials [BW13b]. In the next section, we will review the

composition of an AOD system and introduce some popular onset detection algorithms.

2.4.3 Onset Detection System

An onset detection framework generally comprises three main components: pre-processing

of the input audio signal, calculation of the onset detection function and post-processing

and peak picking. The framework for onset detection provided by the Queen Mary Vamp

Plugins (QMVP) [Plu06] is illustrated in Figure 2.7. Although more advanced algorithm
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(i) pre-
processing

(ii) feature 
extraction

Adaptive whitening

Normalisation and scaling

Adaptive thresholding 
(median filtering)

Polynomial fitting 
and peak picking

(iii) post-
processing
and 
peak picking

Backtracking

Onset detection 
function calculation

Low-pass filtering

Audio signal

Onset locations

STFT

Figure 2.7: Flowchart of the onset detection framework.

have been presented in recent works, we take QMVP as a representative of the standard

spectral feature based onset detection workflow.

Pre-processing of Input Signal

Pre-processing concerns modifying the input audio signal, for instance using whitening

techniques, to facilitate the subsequent extraction of onset-related features. The spectra

of musical pieces exhibit significant temporal variability due to dynamics as well as

prominent variability across frequency bins. This may lead to over-emphasising note

onsets in the lower bands or other louder parts of an audio signal.

Adaptive whitening [SP07] is designed to mitigate these issues. It is implemented in

our system as a pre-processing step, where the magnitude of each STFT bin is normalised
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using the recent maxima. This will bring the magnitudes of different frequency bins to

similar dynamic ranges. The whitened magnitude spectrogram Xw(n, k) is expressed by

Equation 2.10 such that for the magnitude spectrogram X(n, k),

P (n, k) =

 max(|X(n, k)|, r,mfP (n− 1, k)), if n > 0

max(|X(n, k)|, r), if n = 0
(2.9)

and then,

Xw(n, k) =
X(n, k)

P (n, k)
, (2.10)

in which n ∈ [0 : N − 1] and k ∈ [0 : K − 1] where N is the number of frames and k

is the frequency index of the STFT of the input audio signal with a window length of

2K. mf is the memory coefficient allowing P (n, k) to decay over time exponentially such

that past peak values will be “forgotten” over time such that the whitening is applied

“adaptively”. To prevent P (n, k) from falling so low that noise gets overly amplified, r

is a parameter to set the floor condition.

Onset Detection Function

An onset detection algorithm concerns transforming the input audio signal into a dis-

crete time varying feature exhibiting the occurrence of transients indicating potential

onset locations. This feature is denoted onset detection function (ODF). This section

introduces a few well-established methods in the literature based on spectral information.

Five of these are outlined in Bello et al. including: High frequency content (HFC),

Spectral difference (SD) Complex domain (CD), Broadband energy rise (BER) and Phase

deviation (PD) [Bel+05]. These methods have been published as open source software

within the Queen Mary Vamp Plugins [Plu06]. Finally, the sixth method, SuperFlux (SF)

is also included in our study representing the more recent improvement on spectral-based

techniques [BW13a]. Although more recent methods have been presented [Eyb+10;

BW13a; BW13b; HSL13; Zha+13; RRM12; SB13; Mar+14], we introduce these methods



Chapter 2. Signal Analysis for Music Information Retrieval 32

here because they are commonly employed in related MIR tasks using onset detection

as the fundamental step such as beat and tempo tracking [GMK10; DP04; Tia+15].

In the spectral domain, energy increases related to transients tend to appear as wide-

band noise. This causes more energy to present in the higher frequency bands compared

to harmonic sounds. Measuring the High frequency content (HFC) [MB96] of a signal

is a commonly used method with the hypothesis that a note contains high frequency

energy at its onset times. Consider the magnitude spectrum Y (n, k) = |X(n, k)|. The

ODF is constructed from the weighted local energy:

HFC(n) =
1

K

K−1∑
k=1

k ∗ Y (n, k), (2.11)

This function has a few variations. For example, Jensen and Anderson rewrote it as

the sum of the amplitudes weighted by the square of the frequency value [JA04].

The Spectral difference (SD) method looks for sudden changes in the energy spectrum.

The ODF expresses the first-order difference between successive STFT frames, given by:

SD(n) =

K−1∑
k=0

|Y (n, k)− Y (n− 1, k)|. (2.12)

As opposed to instantaneous measures such as HFC, this method takes into consid-

eration the relative amount of energy changes between frames.

Various vector norms have been proposed in the literature to produce the distance

function, including the L2 norm (Euclidean distance) and the L1 norm (Manhattan

distance) [KK83]. HFC and SD are successful in detecting highly percussive onsets.

However, they tend to be less effective in detecting softer onsets such as those of bowed

string instruments, or in cases when the energy profiles of the weaker notes are masked

by those of stronger notes.
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SuperFlux (SF) is a modification of SD where spectral trajectory-tracking is applied

to suppress the effects of vibrato. The magnitude of the STFT is first processed through

a triangular filterbank and then converted to the logarithmic scale. This process is

described by the following formula:

Xlog,filt(n, q) = log10(|X(n, k)| ∗ F (k, q) + 1), (2.13)

where F (k, q) is the filterbank and q is the frequency bin index on the quarter-tone

frequency scale. The constant one is added to ensure the positivity of Xlog,filt(n, l). The

maximum filtered spectrogram with a size 2m is then given by:

Xmax
log,filt(n, q) = max(Xlog,filt(n, q −Wm : q +Wm)). (2.14)

SF is then defined as the spectral difference between the current frame of the

maximum-filtered spectrogram and another which is µ frames apart, as expressed in

Equation 2.15:

SF (n) =

K−1∑
k=0

H(Xlog,filt(n, k)−Xmax
log,filt(n− µ, k)), (2.15)

with H(x) = x+|x|
2 as the half wave rectification. In [BW13a], Wm and µ are set respec-

tively to 1 and 2 where the sample rate and the window size are 44.1 KHz and 5 ms.

To better characterise soft onsets exhibiting longer but less pronounced transients,

Duxbury et al. introduced the Phase deviation (PD) method based on quantifying

the phase deviation between the target and current frame regardless of their energy

intensity [Dux+03]. When ϕ(n, k) is the phase of X(n, k), the ODF is given by

PD(n) =
1

K

K−1∑
k=0

princarg(ϕ(n, k)− ϕ(n− 1, k))

−princarg(ϕ(n− 1, k)− ϕ(n− 2, k))|,

(2.16)
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where the princarg function maps the phase deviation to [−π, π] range. As a modifica-

tion, Dixon introduced a half-wave rectification to preserve only the increases of energy

in spectral bins to rule out the offsets from the onsets [Dix06].

An alternative approach is to combine phase and magnitude and to measure the

distance between a target and the current frame in the complex domain. The Complex

domain (CD) detection function is calculated by summing the measured stationarity

across all bins [Bel+04]:

CD(n) =

K−1∑
k=0

{X(n, k)−

|X(n− 1, k)|eϕ(n−1,k)+ϕ′(n−1,k)}2
, (2.17)

where ϕ′(n− 1, k) is the rate of phase change at the (n− 1)th frame.

As opposed to the above introduced methods, the Broadband energy rise (BER)

method [Bar+05] does not consider the total energy change in the signal. The aim is

to measure how broadband or percussive the onset is. This approach is successful in

detecting drum onsets which can be characterised by a rapid broadband rise in energy

followed by a fast decay. The ODF is obtained by summing the number of bins in which

the log difference between consecutive STFT frames exceeding a certain threshold θ, as

shown in:

diff(n, k) = 10log10
Y (n− 1, k)

Y (n, k)
, (2.18)

and

BER(n) =

K−1∑
k=0

 1 if diff(n, k) > θ

0 otherwise.
(2.19)
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Post-processing and Peak Picking

In an onset detection system, post-processing is an optional step applied to the ODF to

remove the non-onset related noises and increase the detectability of the transients thus

facilitating the subsequent peak picking.

Onset detection functions may exhibit a very large number of low magnitude peaks

due to small, non-onset related local variations in the audio signal, as can be seen in

Figure 2.6b. These would then be unnecessarily selected as peaks in the subsequent

stages. It is therefore beneficial to smooth the detection function and reduce the number

of peaks that are not related to onsets. A popular approach is to use the low-pass filter

to attenuate the high-frequency noises by passing the signals with a frequency lower

than a selected cut-off value. In this system, a zero-phase Butterworth low-pass filter

is applied for this purpose. Standard filters can introduce a time delay in the detected

peaks. This issue can be addressed by applying the same filter twice, once forwards and

once backwards. Therefore, the combined filter will have a zero phase.

For the purposes of peak picking from the ODF, choosing a fixed threshold leads

to difficulties as music signals exhibit a great extent of local dynamics and intensity

variations throughout a piece. To counter this, many works propose to use a median

filter to generate the threshold adaptively [Bel+05]. A median filter has the property

of preserving edges or stepwise discontinuities in the signal while eliminating small local

variations by replacing signal samples with the median values computed over short-

duration sliding windows [Vas08]. A median filter based adaptive thresholding process

is given in Equation 2.20,

thad(n) = δ + median(ODF [n− ψ], ...,

ODF [n], ..., ODF [n+ ψ + 1]),

(2.20)

where δ is a constant threshold and ψ is the median window length. The resulting signal

will then be used as the adaptive threshold to be subtracted from the ODF. Onsets can
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subsequently be identified by searching for local maxima that exceed a defined threshold.

This method is adopted by a majority of related works [Bel+05; BW13a].

Besides the median filter based adaptive thresholding which selects peaks with sub-

stantial magnitude, an alternative approach selects peaks by assessing their shapes. A

polynomial fitting based onset detection is used in the QM Vamp Plugin Onset Detec-

tors [Plu06] which fits each peak in the ODF into a quadratic function to represent its

property hence measuring its probability as a potential onset. First, initial onset candi-

dates are selected using the median filter based adaptive thresholding. In order to assess

both the spikiness and the amplitude of each peak, a second-degree polynomial is fitted

on samples around each peak. For each local maximum in the smoothed ODF, five dis-

crete samples centred around it from its neighbouring frames are used as the input for the

polynomial fitting implemented with the least squares method [Wil12]. This estimates

the coefficients of the second-degree quadratic function given in Equation 2.21,

y = ax2 + bx+ c, (2.21)

where coefficient a and c correspond respectively to the sharpness and the amplitude of

each peak.

A peak will only be accepted as an onset when the following conditions are satisfied:

a > tha and c > thc. The coefficient b is not assessed as the acceptance of a peak

depends on but the position but only the shape of the parabola. Lower tha and thc

indicate loose conditions a peak in the ODF can be selected as an onset, where tha and

thc are obtained from a single sensitivity parameter sens and two experimentally defined

values using tha = (100 − sens)/1000 and thc = (100 − sens)/1500. By feeding sens a

value within the range of [0, 100], tha and thc will fall into the range of [0, 1] and [0, 0.67]

respectively with experimentally defined floor values3. Hence the higher the sensitivity

is, the more onsets will be retrieved from the ODF.
3https://code.soundsoftware.ac.uk/hg/qm-dsp

https://code.soundsoftware.ac.uk/hg/qm-dsp
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However, in this system (see Figure 2.7) the option is given of using an alternative

simple peak picker using the same parameter sens. A unified peak picking threshold

thresh will be calculated for the post-processed ODF as shown in Equation 2.22. In the

case, the median filter is no longer used to provide the onset candidates, but to smooth

the ODF by removing the local medians.

thresh = min(ODF ) + sens ∗ (max(ODF )−min(ODF )), (2.22)

where max(ODF ) and min(ODF ) are the maximum and minimum value of the post-

processed ODF. A local maximum will be picked as a peak when its value exceeds thresh.

Backtracking for Onset Relocalisation

In case of many musical instruments such as the bowed string types, onsets have long

transients without a sharp burst of energy. This may cause detection functions to exhibit

peaks after the onset locations listeners perceive, as can be noticed from Figure 2.5.

The backtracking is applied to counter this effect [Tia+14a]. We trace the detected

onset locations from the peak position in the ODF to a hypothesised earlier “perceived”

location. The backtracking procedure is illustrated in Algorithm 1. In this expression,

bt is used as a stopping condition to measure the relative differences of adjacent samples

in the ODF. In this way, it monitors the steepness of a peak in the ODF hence controls

how “far” the onsets should be traced back from the initially detected location. A

experimentally defined value of 0.9 was used in Queen Mary Vamp Plugins [Plu06]. We

will investigate the effect of backtracking in Section 4.3.

2.4.4 Discussion

The techniques discussed so far rely on encoding some assumptions on the signal’s prop-

erties into the design of onset detection algorithms. Alternatively, methods using prob-
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Algorithm 1 Backtracking of onset locations.
Require: i: index of a peak location in the ODF, bt: threshold

1: procedure Backtracking(i, ODF )
2: ∆,Γ← 0
3: while i > 1 do
4: ∆← ODF [i]−ODF [i− 1]
5: if ∆ < Γ ∗ bt then
6: break
7: i← i− 1
8: Γ← ∆
9: return i

abilistic or machine learning models attempt to provide more generic solutions by allow-

ing these properties to be learnt from the signal itself. Up to date the state-of-the-art

methods are based on the neural networks (NNs) [Eyb+10; SB13; Mar+14]. Eyben et

al. adopted a bidirectional Long Short-Term Memory recurrent neural network (LSTM

RNN) trained on auditory spectral features and relative spectral differences [Eyb+10].

Schlüter and Böck trained a convolutional neural network (CNN) to find onsets in spec-

trogram excerpts [SB13]. The latter CNN-based method achieved comparable detection

rate with the RNNs [Eyb+10], but required less manual pre-processing despite with

higher computational costs. Marchi et al. revisited the LSTM RNN approach using the

wavelet coefficients and multi-resolution linear prediction errors combined with audi-

tory spectral features [Mar+14], which substantially improved the results of Eyben and

his colleagues [Eyb+10]. Due to the data-driven nature of these methods, however, a

computationally expensive training process is normally required.

Most existing methods are focused on characterising note onsets by capturing a sin-

gle physical property of the underlying audio signal. A viable and promising approach

for onset detection lies in the combination of various detection methods using fusion

techniques aiming at bringing together the strengths of individual methods and over-

coming their drawbacks [ZMZ08; Deg+09; Hol+10; Zha+13; Tia+14a]. Zhou et al.

proposed a system integrating two detection methods selected according to properties

of the target onsets [ZMZ08]. In Holzapfel et al. [Hol+10], pitch, energy and phase

information are considered in parallel for the detection of pitched onsets. Another fusion
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strategy is to combine peak candidates detected by different methods to form new onset

estimations [Deg+09; Zha+13]. Although the concept of fusion has been adopted in

related works, a thorough investigation of different fusion policies has not previously

been undertaken.

Several databases have been designed to evaluate audio onset detection works in

recent works [Bel+05; Hol+10; BKS12]. Most of the publically available ones are focused

on the Western instruments and music types [Bel+05; BKS12], leaving the non-Western

music relatively unexploited.

2.5 Music Structural Segmentation

2.5.1 Definition and Applications

In The Oxford Companion to Music, music structure is defined as “a series of strategies

designed to find a successful mean between the opposite extremes of unrelieved repetition

and unrelieved alteration” [SW70]. The main goal of music structural analysis (MSA)

is to generate high-level structural descriptions for music. MSA is one of the most

investigated topics in MIR. It has broad applications such as informed listening [Got03],

thumbnailing [LC00; LSC06] and audio tagging [LWW10].

Music structural segmentation (MSS) concerns dividing an input music signal into

various structural sections and deals with the structure of the entire music piece. The

definition for the MSS task then depends on the understanding we have of what defines

the structural sections of a music piece. Hence, a precise and consensual definition for

the section may be hard to apply to different music genres or for individual listeners.

However, what can be generally agreed on is that most musical compositions can be

divided into sectional units or elements whose combination and repetitions define the

global structure of the music piece. These elements may be chord progressions, melodic

phrases, rhythmic patterns, motifs or other musically discriminative entities at various
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hierarchical levels.

2.5.2 Audio Features for Music Structural Description

Bruderer showed that the strongest cues for the presence of sectional boundaries are har-

monic progression, rhythm changes, timbre changes, and tempo novelty [Bru08]. He also

suggests that the harmony or the timbre feature aspect alone carries all the information

needed for the structural segments to be discerned. However, the observations made are

mainly based on Western pop music and the evaluation corpora used are collected on

a basis of general structural coherence. We will investigate different audio features as

structural descriptors for different music genres in Chapter 5.

The most popular features for music structural analysis include chroma features and

MFCCs [PMK10]. Some works also combine the two to obtain a composite descrip-

tion [Ero07; LNS07]. Although rhythmic content is one of the most important factors to

influence human perception of the music structure [Coo63], features characterising this

aspect are much less employed for analysing music structure compared to timbre and

harmonic features and are hardly used alone. A few works however indicated the poten-

tial of rhythmic features in music segmentation such as the cyclic tempogram [GMK10]

and the beat spectrum [FU01].

Besides extracting features synchronised at a frame level, a popular approach is to

extract features at a scale divided based on tracked beat events, i.e., to beat-synchronise

the features extracted. This can be done by setting the hop size equal to the beat-

length of the music (typically 300 - 400 ms), or by synchronising the feature fragments

according to the beat position using statistical aggregation functions [LS08]. This is

enabled by a reliable beat tracking. Figure 2.8 shows the beat-synchronised chroma

feature for the song “Love me do” by The Beatles. The beat-tracking algorithm used is

presented by Ellis [Ell07]. Higher temporal coherence is presented as a result of frame-to-

beat aggregation, despite degradation in the resolution. For music with structured beat
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patterns, beat synchronisation allows for extracting the features at musically meaningful

scales and is proven generally beneficial for the quality of audio summarisation [Pee03].

Figure 2.8: Beat-synchronised chroma feature for audio example “Love me do”.

2.5.3 Methods for Music Segmentation

The extraction of relevant features underpins the structural information of the piece of

music. The analysis typically proceeds with the generation of a representation indicating

the structural characteristics more intuitively to enable the recognition of the sectional

units. In this section, we present a survey of MSS methods presented in recent works

with the evaluation methodologies introduced shortly in Section 2.8.

One common approach operates by measuring the similarity within vectors of the

feature matrix of a song, which compares all pairwise combinations of feature matrices

using a quantitative similarity measure. We note the ith vector of a D-dimensional

feature matrix vi, where i ∈ [1, 2, .., N ] denoting the index of the frame. The resulted

similarity data is embedded in anN×N square matrix S derived using a generic similarity

measure. The elements of S are:
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S(i, j) = 1− d(vi, vj), (2.23)

where i, j = 1, 2, ..., N and d(vi, vj) ∈ [0, 1].

Distance metrics d(vi, vj) commonly used include the Euclidean distance, cosine dis-

tance, and the exponential distance [FC03]. Different distance metrics also include the

squared Euclidean, Manhattan and correlation distance [KK83].
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Figure 2.9: Self-similarity matrix calculated for the Beatles song “Hello goodbye” using
the chromagram feature with the Euclidean distance. Black vertical lines indicate seg-
ment boundaries.

The output of this step is a symmetric matrix indicating the pairwise resemblance of

each entry of the feature matrices, denoted the self-similarity matrix (SSM) [Foo00]. Fig-

ure 2.9 shows the SSM computed for the Beatles song “Hello goodbye” (see Section 3.4.1

for dataset description) using the chromagram feature with the Euclidean distance. The

black vertical lines represent annotated segment boundaries. We can observe brighter

pixels indicating higher similarities aggregate into stripe and block patterns with their

borders coinciding with boundaries in the ground truth annotation. Such patterns exhib-

ited in the SSMs are typically used as indicators of the structure of the music in MSS

works.
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Alternatively, one can recognise the structural patterns from the feature representa-

tions directly using classification methods. For example, features can be represented by

statistical or probabilistic models, such as the hidden Markov models (HMMs), where

segment types are represented by HMM states [AS01]. In recent years, methods rely-

ing on supervised learning, particularly, convolutional neural networks (CNNs), have

been successfully applied and leading the state-of-the-art for MSS tasks [USG14; GS15a;

GS15b]. In the majority of these works, CNNs are trained using the logarithmic Mel spec-

trogram feature with manual annotations. The network output is typically an activation

curve indicating boundary probabilities, similarly to the novelty curves.

An overview of recent work for MSS is summarised in Table 2-A, where the segmen-

tation methods are categorised into three types: the novelty-based, homogeneity-based,

and the repetition-based. In the remainder of this section, we introduce a few popular

segmentation algorithms relying on these three strategies which will later be discussed

in this thesis.

Novelty-based Method

The novelty-based method employs the hypothesis that segment boundaries are charac-

terised by prominent changes in audio features. One classical example is introduced by

Foote [Foo00]. Firstly, a sliding Gaussian-tapered kernel is correlated along the main

diagonal of the SSM. A time-aligned signal indicating the “novelty” of the current frame

in its vicinity, denoted the novelty curve (NC), can subsequently be obtained by sum-

marising the element-wise multiplication of the kernel and the SSM diagonal stripe. In

this process, the size of the kernel kG directly affects the properties of NC. A small ker-

nel detects novelty on a finer time scale while a large one produces much smoother NC

hence detects longer temporal structure. Then, segment boundaries are extracted when

the local novelty scores exceed certain thresholds, typically the median-filter derived

adaptive thresholds (see Section 2.5.3). The segment boundaries can subsequently be

detected corresponding to peaks in the NC. Besides the Foote approach, many recently
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Name Features Principle
Foote [Foo00] MFCCs Novelty

Ong and Herrera
[OH05]

Combined features (MFCCs,
subband energy and spectral
features)

Novelty

Tian el al. [Tia+14a] Tempogram Novelty
Ullrich et al. [USG14] Log Mel spectrogram Novelty
Grill and
Shlüter [GS15a] Log Mel spectrogram Novelty

Grill and
Shlüter [GS15b]

Log Mel spectrogram, self-
similarity lag matrices Novelty

Aucouturier et al.
[APS05] Spectral envelope features Homogeneity

Barrington el al.
[BCL10] Chromagram and MFCCs Homogeneity

Levy and Sandler
[LS08] timbre features Homogeneity

Nieto and Jehan [NJ13] Chromagram Homogeneity
Peeters and
Rodet [Pee03] Dynamic features Homogeneity

Rhodes et el. [Rho+06] Constant-Q envelope features Homogeneity
Chai [Cha05] Chromagram Repetition
Mauch et al. [MND09] Chromagram Repetition
McFee and
Ellis [ME14b] Chromagram and MFCCs Repetition

McFee and
Ellis [ME14a]

Constant-Q with time delay
embeddings Repetition

Nieto and Bello [NB14] 2D-Fourier Magnitude Coeffi-
cients (2D-FMCs) Repetition

Ong et al. [OGS06] Pitch class distribution fea-
tures Repetition

Paulus and Klapuri
[PK06] Chromagram and MFCCs Repetition

Rhodes and Casey
[RC07] Timbral features Repetition

Shiu [SJK05] Chromagram Repetition
Paulus and Klapuri
[PK09]

Chromagram, MFCCs and
rhythmogram Combined

Serrà et al. [Ser+12] Structural features Combined
Xu et al. [XMK06] Cepstral and chroma features Combined

Table 2-A: A summary of music structural segmentation methods.

emerged CNN-based approaches can also be categorised to the novelty category [GS15a;

GS15b; USG14].
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However, one limitation of many novelty-based methods is that they can only locate

boundary positions of the underlying segments, leaving the types of these segments

undetermined. Many works then resort to a clustering algorithm to address the segment

type labelling [Foo00], or to use novelty-based methods as part of or as the first step of

more complex methods [Ser12b; PP13].

Homogeneity-based Method

The homogeneity-based approach, also referred to as the state approach, assumes station-

arity in local statistical properties of features in structural segments. It however can be

considered as the other side of the same coin as the novelty-based methods. The concept

of state is taken rather explicitly in methods employing HMMs for the analysis [AS01;

LS08]. Here, the basic assumption is that musical sections can be represented by different

HMM states which produce observations from the underlying probability distribution.

The states retrieved will then be classified or clustered into labelled structural sections.

One popular method is Constrained clustering (CC) which attempts to find structural

segments by clustering audio frames into different types of sections [LS08]. First, a hidden

Markov model (HMM) with a relatively large number of states is trained on an entire

track using timbre features, with one Gaussian output distribution for each state and

a single covariance matrix tied across all states. The features are then Viterbi-decoded

using trained models to yield state labels for each analysis frame representing section

types.

State labels within a fixed temporal window are then histogrammed where one his-

togram is considered as one sample of the observation. Subsequently, histograms of

neighbouring frames are clustered into Cc clusters, each denoting a segment type. In the

clustering process, “must-link” constraints modelled by the hidden Markov random field

are set to enforce the temporal continuity, i.e., observations within a regulated vicin-

ity must have come from the same section. The two main parameters involved in this
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process is the number of clusters Cc which will decide the number of section types and

the neighbourhood size Sn in frame to set the temporal constraints. Finally, segment

boundaries are detected by locating changes in the sequence of the cluster assignments.

Another popular approach is to deploy the Non-negative matrix factorisation (NMF)

algorithm [KS10; WB10; Gro+13; NJ13]. NMF has been successfully applied in various

MIR tasks for parts-based decomposition since first used by Smaragdis and Brown for

music transcription [SB03]. In the context of music segmentation, NMF decomposes the

non-negative input feature matrix or SSM and structural sections can be discriminated

over the dimensions of the decomposition matrices obtained.

Mathematically, NMF factorises a matrix V ∈ RN×P with non-negative entries into

two non-negative matrices W ∈ RN×R and H ∈ RR×P such that V ≈ WH, where R

is the rank of decomposition. With this decomposition, V can be approximated as the

product of two non-negative matrices W and H, where W contains the basis vectors,

and the R × P matrix H supplies in its columns the coefficients to approximate each

column of V as the linear combination of the columns of W . The activation functions

obtained can be used to estimate events corresponding to specific basis function.

Based on the standard NMF segmentation algorithms [KS10; Gro+13], Nieto and

Bello introduced a convex constraint toW such that it becomes the convex combinations

of V , expressed as W = V C (C ∈ RP×R). Here the feature matrix is used as the input

V . To ensure the convexity of the combination, all coefficients of C must be non-

negative and the sum of each column must be 1, i.e, cij ≥ 0,
∑

j cij = 1. The effect of

this operation is that observation frames of W become the weighted cluster centroids

representing potential sections of the music piece.

To detect segment boundaries from the decomposition matrices, a k-means clus-

tering [Mac03] is carried out with the number of clusters set to two where each class

represents respectively if there is a boundary or not. Finally, boundaries detected from

each decomposition matrix are grouped and those emerged within a tolerance window are
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merged into their average locations and accepted as the final boundaries. This method

is denoted Convex NMF (CNMF).

Repetition-based Method

In principle, repetition-based approaches make structural discoveries by finding the

temporally ordered repetitions which can typically be observed in the SSMs or state

sequences. Most algorithms in this category operates by searching for stripes or line

structures parallel to the main diagonal in an SSM (see Figure 2.9). Although normally

appear recognisable to humans, the automatic detection for such patterns faces much dif-

ficulty especially with the presence of various musical dynamics [PMK10]. Many works

have been presented to enhance the SSMs to make the repetitions more discernable, such

as to enhance the contrast of the stripes to the neighbourhood areas and to combat the

tempo variance which may lead a stripe to “bend” [Got03; Ong06; Pee07; Gro+13].

Mauch el al. presented a method, Segmentino, which finds structural segments relying

on the repetitive harmonic properties and heuristics of beat lengths [MND09]. As the first

step, a correlation matrix (CM) is calculated using the Pearson correlation score between

each pair of beat synchronised chromagram feature vectors of the whole song. Here a

CM is used as a replacement of an SSM. These two share the property in the sense that

when two sequences starting at i and j with the length l are exactly the same, then the

diagonals Diagi,j,l in both CM and SSM will be vectors of all ones. Next, an exhaustive

search is carried out along all diagonals of the CM to find all repeated chroma sequences

as segment candidates of reasonable beat length. A temporal constraint is introduced

based on musical heuristics that the sequence is assumed to be within 12 - 128 beat

length to be qualified as a potential segment.

Then, structural segments are retrieved from the candidate sequences using a greedy

algorithm based on a score indicating the possibilities that a given sequence can represent

a structural segment. Specifically, if we note Sl the length of a chord sequence which has
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repeated Sn times, the candidate which maximises the score Sr = Sl ∗ (Sn − 1) will be

selected to represent a segment type and any other sequence overlapping with the selected

one will be removed from the candidates set. If a top score is obtained by multiple chord

sequences, the one with the highest mean of the within-sequence correlation quartile is

chosen. This selection step is repeated for the remaining sequences of the song until none

is left in the set [Mau10]. Structural boundaries will then be detected where one type of

segment changes to another.

Combined Method

Instead of relying on a single strategy, an alternative approach is to focus on modelling

the properties of a good structural description, and in doing so, to combine different

segmentation principles. In Sargebt et al., the segmental Viterbi algorithm was for-

malised as a cost optimisation problem which combined the SSM-based approach and

the clustering-based approach [SBV11]. Peeters performed the SSM-based segmentation

as an initial step and then used the average feature value over each individual segment

as the initial cluster centroids in a k-means clustering to produce pruned segmenta-

tion [PLR02]. The obtained cluster centroids were then used to initialise the training of

an HMM to obtain the final clustering result as the segmentation outcome. In [PK09], a

cost function for structural descriptions of a piece that considers all the desired properties

is employed, the final structure decision is then made by minimising the cost function.

Serrà et al. presented an unsupervised segmentation algorithm based on a feature

called structure features (SF) [Ser+12]. SF is able to incorporate global properties to

account for structural information in the recent past. To start with, a multi-dimensional

time series is obtained by accumulating vectors of a standard chroma feature ranging

across a span with time embedding, i.e., the ith sample in a multi-dimensional series x̂i

is expressed as,



Chapter 2. Signal Analysis for Music Information Retrieval 49

x̂i =
[
xTi , x

T
i−ζ , . . . , x

T
i−(md−1)ζ

]T
, (2.24)

where ζ is the time delay and md is the embedding dimension. A recurrence plot RP is

then computed from the pairwise resemblance between vectors of time series. An element

RP (i, j) of the recurrence plot is set to 1 when two time series centred at time i and

j are sufficiently close and to 0 otherwise. It has to be noted that RP differs from an

self-similarity matrix (SSM) in the sense that RP (i, j) is calculated between elements

embedded with time-shifts, x̂i and x̂j , instead of static feature vectors xi and xj . The

homogeneous and periodic nature of the typology of a recurrence plot enables addressing

the local stationarity and the global repetition from the time series [EKR87].

Subsequently, RP is circularly shifted to derive the lag matrixRPL such thatRPL(i, j) =

RP (i, (i + j − 2)%N + 1) for i,∈= 1, 2, . . . , N where % stands for a modulo func-

tion. RPL is then multiplied with a bivariate rectangular Gaussian kernel, yielding

a kernel density Pk which can be seen as another multi-dimensional time series where

P = [p1, . . . , pk]
T . The structure features SF are then defined as the row vectors of P ,

namely SF (i) = Pi where i = 1, 2, . . . , N . Finally, a novelty curve is calculated from SF

from which segment boundaries are detected using a standard thresholding mechanism

following Foote [Foo00]. In this way, all the three segmentation mechanisms (novelty,

homogeneity and repetition) are combined in the segmentation process. This algorithm

is denoted SERRÀ and will be investigated later in this thesis.

The concept of fusion has also been employed in recent work to combine different seg-

mentation methods. While the CNN-based methods commonly find boundaries accord-

ing to the novelty cues exhibited from the trained networks hence can miss segment

boundaries defined by global repetitions [USG14], Grill and Shlüter fused self-similarity

lag matrices representing long-term properties with the log Mel spectrogram [USG14].

However, the authors noted that the network cannot retrieve the longer-term structural

information contained within the lag matrices, which provide only additional novelty

and homogeneity cues. One explanation of this observation is that not enough anno-
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tated boundaries characterising the repetitions emerge in the analysis frame to train the

network to develop the corresponding memory [GS15b]. Peeters and Bisot combined the

segmentation frameworks of Goto [Got03] and Serrà et al. [Ser+12], where the former

is used locally to derive the lag priors, the global structure feature is then calculated

following the latter on the lag dimension to derive the final novelty curve where segment

boundaries are located [PB14].

Wang and Mysore introduced an iterative boundary adjustment algorithm which

can be incorporated into other baseline segmentation algorithms to refine the bound-

ary decisions they have made [WM16]. This boundary adjustment algorithm operates

by maximising the Kullback-Leibler (KL) divergence of two adjacent detected segments

modelled by multinomial distributions. However, an improvement is hardly guaran-

teed by this boundary adjustment. For the two baseline methods tested in Wang and

Mysore [WM16], it brought marginal improvement to one and rather degraded the per-

formance of the other due to dubious boundary decisions newly introduced.

2.5.4 Discussion

To date, most MSS works are focused on Western pop music types, typically the Bea-

tles songs [Got06; PK06; Mau+09; Smi+11; MJG14]. Although the RWC dataset also

consists of also jazz and classical music, as well as a few pieces of world music, many of

them contain only the “chorus” part [Got06]. Smith studied several segmentation algo-

rithms and suggested that algorithms designed originally for the structural analysis of

Western popular music are widely applicable [Smi10]. Nonetheless, the corpora used in

Smith [Smi10] were still collected on the basis of general structural coherence. A result

of this fact could be that the selection of audio features and the design of segmentation

methods exhibit Western bias, i.e., musical knowledge observed for specific music types

is encoded into the design of a segmentation algorithm, making it less suitable for music

from different genres or with diverse properties.
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Another dataset is created to address this problem consisting a large diversity of

music genres and sources of recordings [Smi+11]. This dataset is then included in the

MIREX evaluation together with the pop music datasets. Except for the machine learn-

ing based methods which are predominantly data driven, a large discrepancy in terms of

segmentation performance can be found between the pop music datasets characterising

the chorus-verse structure (MIREX09 and RWC) and dataset with more genre diversities

(SALAMI) [MIR; MIR14; MIR15b]. This hence confirms the existence of the Western

pop bias in the current MSS paradigms.

While the neural network based methods effectively counter such limitations by

requiring few understandings and making few assumptions of the characteristics of the

music signals to design the segmentation algorithm, their success is highly dependent on

the training data supplied. The input feature is typically the Mel spectrogram and its

variants [GS15b; GS15a; USG14]. However, the focus of this thesis is to extract more

domain-specific audio features to summarise the music structure. By doing this, we are

aiming at an interpretable representation to model the underlying structural properties

of the investigated music types. Therefore, despite its recent popularity, we attempt lit-

tle investigation into the black-box approaches based on neural networks for the research

carried out in this thesis.

We also notice that fusing different feature aspects does guarantee stable improve-

ments over the baselines in some works [GS15b; WM16]. This can mainly be due to

the fact that segmentation algorithms used in these methods fail to recognise structural

patterns reflected in newly merged features, and that different audio features indicate

different boundaries hence cannot be simultaneously retrieved agreeably [Smi14]. To this

end, instead of fusing multiple features or boundary decisions from multiple methods, we

propose to develop new audio features to convey the structural information with genre-

invariance, as well as to investigate segmentation algorithms to interpret the encoded

structural patterns from feature descriptions.
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2.6 Vamp Environment for Semantic Audio Processing

Although various software packages developed for MIR exist, there are issues related

to the lack of standardisation of feature extraction components and input/output data

formats. This leads to problems hindering reproducibility, data exchange, the use of

multiple tools or scaling experiments to problems involving big data. A solution to these

problems is presented by the Vamp audio analysis framework [Can09], which provides

an application programming interface (API) for feature extractor plugins, as well as

file formats for algorithm configuration and output relying on Semantic Web technolo-

gies [BHL01].

Vamp is an audio processing plugin system capable of extracting various features

from audio data [Plu07]. A Vamp plugin is a binary module that can be loaded by a

host application to execute feature extraction tasks. The input to a Vamp plugin can

be audio data both in the frequency domain and the time domain. This simplifies the

plugins enabling a straightforward frequency-domain processing and permits the host to

cache frequency-domain data when necessary.

The host takes the responsibility for converting the input data using FFT of windowed

frames under user configuration. After initialisation, to supply audio data and run the

plugin, the host calls the plugin’s feature extraction function repeatedly. The plugin

then receives a set of input pointers and a timestamp. While Vamp plugins receive their

data block-by-block, they are not required to return output immediately on receiving

the input. They may store up data based on its input until the end of a processing run

and then return all results at once.

Vamp plugins can be executed using Sonic Annotator, a command line Vamp plugin

host capable of applying plugins to audio input and producing structured output4. Sonic

Annotator accepts plugin descriptors detailing the parameters of the algorithms, as well

as the transform descriptors which prescribe how the algorithms should be run. These
4Sonic Annotator: http://vamp-plugins.org/sonic-annotator/

http://vamp-plugins.org/sonic-annotator/
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descriptors are provided in N3 format [BC11], a specific syntax to encode data using

the Resource Descriptor Framework (RDF) [LS09]. Sonic Annotator supports audio files

with common formats including MP3, OGG, and a number of PCM formats such as

WAV and AIFF. It can process a list of audio files on the command line, making it a

useful tool for batch processing in audio feature extraction.

Unlike an audio effects plugin [Ste99a], a Vamp plugin generates not more audio, but

rather some symbolic information descriptive of certain information or pattern within

it, i.e., the audio features. Typical things that a Vamp plugin might calculate include

the locations of temporal instants such as note onsets, visualisable representations of

the audio such as spectrograms, or two-dimensional data with numeric feature value

and the timestamps such as fundamental frequency (F0). The description of output

feature values is provided by another ontology, the Audio Features Ontology [Rai07],

which conceptualises the common elements in different kinds of features of audio signals.

The Audio Features Ontology can be produced by RDF-capable vamp host such as Sonic

Annotator. In one word, one can monitor or launch the feature extraction through the

host in an offline mode, i.e., the Vamp Plugin Ontology describes and prepares what

the host will take as input for the actual feature extraction instances, and the Audio

Features ontology describes its output to format the results.

One primary advantage of using Vamp plugins is that it enables flexible handling

of the feature data and the feature extraction process within the context of Semantic

Web. This is supported by the Vamp Plugin Ontology, which conceptualises the feature

extraction process by encoding the complete configuration and execution information

into the metadata associated with the plugin [Onl09]. Using this metadata, one can set

up the feature extraction specifications without having to query the plugins themselves.

Another advantage the Vamp architecture may bring is that it facilitates the visu-

alisation of the feature extraction process. Apart from Sonic Annotator, another Vamp

host is Sonic Visualiser. It offers a graphical user interface (GUI) to visualise the audio

content and the extracted features for wide audiences beyond computer scientists such
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as musicologists and archivists. Vamp plugins will be used for feature extraction as will

be introduced in the remainder of this thesis.

2.7 Parameter Analysis for Music Information Retrieval

Systems

Parameter analysis and optimisation is an indispensable part for most music signal analy-

sis systems. Especially in methods involving data decomposition or factorisation [KS10;

SB03], metric learning [SWW08] or machine learning [Mar+14; Böc+12], parameter

optimisation can have a significant influence on the system performance. Noland and

Sandler investigated the low-level signal processing parameters for several tonality esti-

mation algorithms and concluded that these parameters have a significant effect on the

results [NS07]. Weihs and Ligges [WL06] compared different methods for automatic

singing transcription with the parameter optimisation carried out for each singer from

the database individually. The purpose of their work is to automate the transcription for

unknown songs by unknown singers. McKay and his colleagues presented a framework

for using and optimising a variety of classifiers implemented in the WEKA machine

learning toolbox [SF16] for music classification [McK+05]. This work highlighted the

limitations of traditional MIR pattern recognition tools in the sense that they are not

easily usable by users with a variety of skill levels or for different research tasks. We will

investigate the signal processing methods and the involved parameters in this thesis, and

by doing this, to assess the applicability of MIR tools.
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2.8 Evaluation of Music Information Retrieval Tasks

2.8.1 Evaluation Metrics

Audio-based MIR research is driven by various real-world applications. Core applications

include retrieval tasks such as music indexing and identification, audio alignment, as well

as many high-level or semantic tasks such as playlist generation, recommendation and

music mood estimation [Dow03a; Cas+08; SGU14]. The evaluation of an MIR system

is a complex task. MIR research is cross-disciplinary involving substantial physical and

perceptual aspects of music and is also related to information science. This property

may subject the evaluation of individual MIR tasks to multiple guidelines and criteria.

There has been a wealth of research investigating how to build and to improve the

evaluation frameworks, mainly focusing on the development of evaluation datasets, algo-

rithms and metrics [Dow03b; SGU14]. Many commonly investigated MIR tasks are eval-

uated in the annually held Music Information Retrieval Evaluation eXchange (MIREX),

an international community-based evaluation campaign for various MIR tasks held annu-

ally5. Byrd et al. pointed out that the standard evaluation models for information

retrieval systems might not be necessarily valid for music [BC02]. Therefore, evalua-

tion of MIR systems is normally specifically designed for the tasks being assessed and is

based on the test datasets [San10]. In this section, we provide a survey of the evaluation

methods used for AOD and MSS as will be investigated in this thesis. We first introduce

the metrics shared by these two tasks.

The quality of the onset detection or segment boundary retrieval can be assessed with

the universally used metrics for event retrieval in pattern recognition with binary classi-

fication: precision (P), recall (R) and F-measure (F) [BR99]. Given a set of estimations

E and a set of annotations A, the set of correct retrieval is indicated by their intersection

E ∩ A, denoted true positive (TP). The retrieval errors fall into two categories: type I
5http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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and type II errors. From a statistic perspective, these two types of errors correspond to

respectively the incorrect rejection of a true null hypothesis, called a false positive (FP),

and the failure to reject a false null hypothesis, called a false negative (FN). In the MIR

context, an FP typically refers to an estimation which is retrieved but does not belong

to the annotation set; an FN refers to a target which the retrieval system has failed to

detect that actually exists in the ground truth annotation set. Therefore, E and A can

be seen respectively as the collection of the TP set and the FP set, and the collection of

the TP set and the FN set. The precision and recall can be expressed by Equation 2.25

and 2.26,

P =
A ∩ E
A

=
TP

TP + FP
, (2.25)

and,

R =
A ∩ E
E

=
TP

TP + FN
, (2.26)

The F-measure is defined as the harmonic mean of the two,

F =
2PR

P +R
(2.27)

Each of the above three metrics takes a value between 0 and 1, with 1 representing

flawless result. To this end, an aspect that is crucial for the evaluation is, how to decide

whether an estimation is correct, i.e., a TP.

For onset detection, a correct match indicates that a detected onset is within a rea-

sonably small temporal window to the closest annotated onset. This window is typically

defined as 0.05 s (±0.025 s) [MIR15a]. For MSS, a detected boundary is accepted to

be correct if within 0.5 s (±0.25 s) [Tur+07] or 3 s (±1.5 s) [LS08] from an annotated

boundary in the ground truth [MIR15c]. The time proximity is introduced mainly to
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combat the limited precision in the human annotation. Smith and Chew however argue

that locating structural boundaries at 3 s and 0.5 s are two distinct tasks, suggested by

the weak correlations between the two [SC13b]

Besides the standard P, R and F, a specific set of metrics is also used for the eval-

uation of MSS tasks. Two median deviation measures between boundaries in the result

and ground truth are calculated. Median true-to-guess measures the median time from

boundaries in ground truth to the closest boundaries in the result, and the median guess-

to-true calculates the median time from boundaries in the result to the closest boundaries

in ground truth [Tur+07; MIR15c]. These metrics reflect how close the detected bound-

aries and the annotated boundaries actually are to each other.

The metrics discussed above handle the evaluation in real time. The evaluation of

the MSS boundary retrieval can also operate on a frame basis, i.e., both the result and

the ground truth are described and handled in short frames describing musical entities

(e.g., a beat) [LS08; MIR15c].

Additional evaluation methods for music structural segmentation have also been pro-

posed in recent works. Lukashevich proposed the over-segmentation and the under-

segmentation measure relying on the information-theoretic conditional entropies [Luk08].

The effectiveness of the F-measure has also been argued against in the scenario of evalu-

ation of segment boundary retrieval [Nie+14]. McFee et al. proposed metrics capable of

handling multiple annotations at musical hierarchies [MNB15]. However, the precision,

recall and F-measure are still the most popular evaluation metrics in this scenario.

2.8.2 Statistical Tests

Statistics are helpful in analysing most collections of data. A statistical test can be used

to assess the significance of experiment observations before any conclusion can be drawn.

The necessity of statistical evaluation of MIR experiments has been identified in several

surveys [Urb+12; Fle06].
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There exist different statistical tests, all of which are valid only under certain condi-

tions. These tests can be categorised as independent and dependent (also called paired

and correlated) based on whether the samples tested are independent and identically

distributed or not. For example, the Student’s t-test is a classical test used to determine

if two sets of data are significantly different from each other given a pre-selected signifi-

cance level. The independent and dependent Student’s t-test test are used respectively,

for example, when there are two samples independent from each other or when there is

only one population which has been tested twice.

Tests can also be divided into parametric and non-parametric. The first category has

stricter assumptions on the test data than the latter, for example, that it should be of

normal distribution. Most practical non-parametric statistical tests rely on a qualitative

rather than quantitative analysis. This is often achieved by ranking the data. That is,

we compare the ranks of observations, rather than the direct data distributions. The

Wilcoxon signed-rank test is a non-parametric alternative to the paired or dependent

t-test.

However, a limitation of the t-test and its variant methods is that they can only

assess the significance of varying at most two conditions or a single factor. The Analysis

of variance (ANOVA) test offers a solution to multiple comparison problems, with two

or more groups and one or more independent variables (factors) to test. There are a

number of different types of ANOVA. The simplest is the One-way ANOVA which is

the randomised experiment with one independent variable (a single factor) and three or

more samples (or groups) of measurements (or subjects). Repeated measures ANOVA

is used when the same subjects are used for each treatment, i.e. correlated samples.

We may also be interested in whether different independent variables interact with each

other. Factorial ANOVA is the most common way of analysing the results of a factorial

experiment.

Table 2-B lists the different types of statistical tests commonly used to evaluate the

results of scientific experiments. We will use them in the experiments carried out in this
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thesis.

Number of Parametric Non-parametric
Measurements Correlated Independent Correlated Independent

Two Paired t-test Independent
t-test

Wilcoxon
signed rank
test

Mann-
Whitney
U-test

Three or
more

Repeated
Measures
ANOVA

One-Way
ANOVA for
independent
samples

Friedman
test

Kruskal-
Wallis H-test

Table 2-B: Some popular statistical tests.

2.9 Summary

This chapter presented the essential background for this thesis with an emphasis on the

signal processing and feature extraction methods. It first introduced some commonly

used auditory scales associated with human perception and the time-frequency repre-

sentations for audio signals. A survey was then presented to introduce some popular

audio features used for MIR. Two MIR tasks investigated in thesis, audio onset detec-

tion and music structural segmentation, were introduced in detail. We summarised the

general background, the state-of-the-art methods and their applications. The Vamp

Plugin framework was introduced as a tool for audio processing and feature extraction

using Semantic Web technologies. This chapter is concluded by introducing the scientific

evaluation of MIR tasks including the metrics and statistical evaluation tests.



Chapter 3

Music Corpora

3.1 Introduction

This chapter is devoted to presenting the evaluation databases used in this thesis. We

will first introduce the musical background for Jingju as well as some related work from

the MIR perspective. Several datasets have been published to facilitate the evaluation of

audio onset detection (AOD) and music structural segmentation (MSS) tasks [Mau+09;

Smi+11; PK09; Got+02; BKS12; Bel+05]. However, the majority of them are Western-

centric consisting mainly of Western popular music [SGU14; Dow03b]. Hence they are

considered less comprehensive for the research purpose of this thesis. After a survey of

existing databases, this chapter proceeds to introduce the construction of two new Jingju

databases designed for the AOD and MSS research respectively.

In the annotation process of an AOD dataset, annotators are responsible to spot the

presence of any note onset, and to record the temporal location of its occurrence. The

annotation inaccuracy can be introduced mainly by the perception of onset positions

and manual labelling. For many other tasks that are considered as high-level such as

MSS, the annotation work may involve more empirical or cognitive decision making from

the annotators. For example, a segment boundary is not a physical entity that can be

60
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“heard” from the music itself. Instead, annotators need to search for “indicators” of

structural changes based on their own understanding of the music and the instructions

they are given. Under such circumstances, the rules defined to produce the ground

truths for a dataset can be highly influential for the evaluation result to be meaningfully

interpreted.

This chapter is organised as below. We introduce the music background for Jingju

as well as related work in MIR in Section 3.2. Section 3.3 discusses the audio onset

detection databases that will be used in this thesis, including two from the literature

and a new one comprising Jingju percussion music. Here we are concerned with the per-

cussion instruments because we intend to analyse the rhythmic aspect as the music, will

introduced shortly in the following chapters. Section 3.4 is devoted firstly to presenting

a survey of the publicly available datasets for music structural analysis with their indi-

vidual annotation principles, and then, to introducing a new dataset with Jingju songs.

Finally, we summarise this chapter in Section 3.5.

3.2 Aural Dimensions and Music Information Retrieval for

Jingju

3.2.1 Listening to Jingju

The musical system used in Jingju is known as pihuang (皮黄). The pihuang system is

characterised by three major elements: melodic-phrases1 (腔 “qiang”), metrical patterns

(板式 “banshi”) and modes (调式 “diaoshi”) and modal systems (声腔系统 “shengqiang

xitong”) [Sto99; Jid81; Jia95; Liu89; Wic91]. When composing a Jingju play, specific

modal systems and modes are firstly chosen to set the overall atmosphere of that play

and the fundamental psychology of its major characters [Wic91]. The metrical types and

melodic lines are then arranged accordingly to expressively interpret the content of each
1A melodic-phrase in Jingju differs from the Western understanding for a melodic phrase in the sense

that it means “the melodic progression for singing a single written character from the lyrics”.
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passage of lyrics.

Jingju employs very characteristic tuning system. In contrast to the Western tonal

music styles, the concept of “semitone” is missing in Jingju theory [Che13] (although it

is sometimes used in practice as noted recently [YTC15]). An anhemitonic pentatonic

scale is used for its main melody structure. The two additional notes do exist, they

however adopt a different tuning scale [Wic91; Che13]. In the numbered notation Jingju

uses, when C is the keynote, the seven notes 1, 2, 3, …, 7 correspond to C, D, E, …, B.

The five notes except for the 4th and 7th adopt an equal temperament. The 4th and

7th, however, use a different tuning scale and convey more musical expressiveness. These

two however are responsible for modulating between keys in Jingju performance hence

are indispensable for the analysis of its pitched content [Wic91].

Liu and his colleagues demonstrated that when mapped into a 12 dimensional chroma

scale, the energy distribution of a Chinese traditional music piece is much less dispersed

than that of a Western classical music, with around 90% of the total energies distributed

in frequency components correspond to the five notes (C, D, E, G, A) [Liu+09]. Chen

analysed the pitch histogram for a Jingju collection and confirmed the use of pentatoni-

cism with small energy distribution also presented for the 4th and the 7th degree [Che13].

The melodic lines or melodic phrases corresponding to a couplet are considered the

smallest meaningful musical units. A passage of melodic lines expressing specific music

ideas can be grouped into a melodic section (腔节 “qiangjie”) which can play a relatively

independent role in the overall musical form. The song lyrics are organised in a couplet

structure which lays the basis of its structural framework. A couplet is comprised of two

melodic phrases sung with tendencies toward certain melodic patterns, and are considered

the smallest meaningful musical units. Although following certain melodic, rhythmic

and instrumentation regularities, each pair of melodic couplets unfolds in a temporal

order and never repeats. The progression of melodic phrases can be grouped into a

melodic section (腔节 “qiangjie”) which can express specific music ideas and play a rather

integrate role in the overall musical form.
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The metrical pattern, meaning “accented beat style”, is the most expressive charac-

teristic element of Jingju [Wic91; Rep+14]. There are fixed number of metrical patterns,

each has predefined organisation of accented beats (板 “ban”) and unaccented beats (眼

“yan”). These metrical patterns are responsible for setting the arias and signalling the

structural points from the play to the aria levels [Rep+14]. There are fixed types of met-

rical patterns, each is associated with certain melodic tendencies and dramatic contexts.

Metrical patterns can be classified into two categories: metred metrical patterns (beat

styles that use accented beats) and free metrical patterns (beat styles free of accented

beats). While the former have specific tempi, the latter have no rhythmic regulation and

the duration of every pitched note is unfixed.

Mode and modal systems are the most encompassing elements of Jingju [Wic91].

There are two major modal systems: xipi (西皮) and erhuang (二黄)– hence the name of

the musical system “pihuang”– each has a principal mode under the same name of the

modal system. A principal mode can be identified by its unique modal identify: patterns

of its modal rhythm, lyric structure, melodic contours and key characteristics. When

creating a Jingju play, the mode and modal systems are the first to be chosen to settle

the overall musical atmosphere. Subsequently, melodic lines, metrical patterns and other

related musical elements are selectively set and organised.

Jingju songs also have instrumental connectives (过门 “guomen”, which literally

means “through the door”) with percussion ensembles. These connectives consist of

cymbals and gongs and rarely overlap with the sung part. Melodic passages of a song

are introduced by instrumental connectives which serve as preludes. Interlude instrumen-

tal connectives link melodic lines and clarify the structure of the song. By introducing,

bridging or finalising the melodic sections, instrumental connectives are integral to the

structure of Jingju songs.



Chapter 3. Music Corpora 64

3.2.2 Related Work in Music Information Retrieval

To date the majority of existing MIR research is focusing on Western music cate-

gories [SGU14; Ser12a]. Jingju is one of the most representative genres of Chinese tra-

ditional music [Onl16]. In modern times, the art form of Jingju has undergone changes

with newly introduced popular and regional characteristics. This thesis only investigates

the classical repertoire with traditional music pieces. It should be also noted that a

Jingju song has to be differentiated from the full Jingju play, where the former excludes

the theatre performance, mime, dance, and acrobatics aspects of the latter. Similar to

most works in the MIR context, this thesis only concerns the analysis of Jingju songs.

From an MIR perspective, Jingju music offers interesting research topics which can

challenge the current MIR tools and frameworks. Despite its rich musical heritage and

the sheer size of its audience, little work has been done to analyse the music content of

Jingju from an MIR perspective until very recently. It has been included as a target

in a few genre classification works [ZZ03] and the acoustical properties of its singing

has been studied [Sun+12]. Several works have been presented addressing its melody

and pitch analysis from an acoustic [ZB14; ZCS15] or linguistic [ZRS14] perspective.

Its singing performance has been studied in recent works [YTC15; Rep+15]. Black

et al. investigated the potential of some low-level features as emotion cues for Jingju

songs [BLT14]. These works mainly target the melodious content of the music. Featuring

vivid metrical and rhythmic patterns (see Section 3.2.1), Jingju has also appealed to

researchers to analyse its rhythm aspect focusing on the onset detection [Tia+14b] and

percussion transcription [Sri+14].

So far the research questions for Jingju in an MIR scenario are mainly targeting its

melodic and rhythmic discoveries [Rep+14]. A higher level analysis of its musical struc-

ture, however, is left largely unexploited. Jingju is initially improvised at its birth. An

analytical discovery of its structure will largely assist its standardisation and popularisa-

tion as well as subsequent applications in areas such as music production and education.
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In this thesis, we include this music genre in our study along with commonly studied

Western pop music, aiming to bridge the gap between different music cultures.

Despite of the existence of research work, only three Jingju corpora have been pre-

sented to the best of our knowledge. The first has been used to evaluate a mood estima-

tion study [BLT14] and a melody extraction research [ZB14]. The second has identified

the possibilities of the presented corpus for melody analysis [RS14]. The third one is

introduced for the recognition of percussion patterns in Jingju [Sri+14]. However, they

mainly feature the singing and percussion properties of Jingju hence are considered less

relevant to the research presented in this thesis.

3.3 Music Onset Detection Datasets

3.3.1 Existing Collections

Several databases have been presented to evaluate the AOD works. Two are included

in this thesis. The first one comes from Bello et al. [Bel+05] containing 23 audio tracks

with a total duration of 190 seconds and has 1058 onsets2. A small subsection of this

database is MIDI-generated which removes the error introduced by manual labelling.

The annotations for the rest of the database are created human labelling. We denote

this dataset JPB in this thesis.

The second dataset is composed of 30 samples3 of 10-second ballroom dance music,

containing 1559 onsets in total, presented by Böck et al. [BKS12]. Onsets were annotated

manually during slowed down playback. The annotators were given multi-resolution

spectrograms of the audio to obtain good resolutions both in time and frequency. The

annotations were then manually verified and corrected. All onsets within a 30-ms window
2A 7-onset discrepancy (1058 instead of 1065) from the reference paper is reported by the original

author due to revisions of annotations. See Appendix A for details.
3Only a subset of this dataset presented in the original paper is received from the author for the

evaluation in this thesis.
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were combined into a single one with its position taking the arithmetic mean of the

positions of the individual onsets. This dataset is denoted SB in this thesis.

Based on their instrumentation characteristics, samples in these two databases can

be divided into four groups: pitched non-percussive (PNP), e.g. bowed strings; pitched

percussive (PP), e.g. piano; non-pitched percussive (NPP), e.g. drums; and complex

mixtures (CM), e.g. ballroom dance music. Table 3-A lists number of onset of each

category for the two datasets JPB and SB. Audio samples in the JPB dataset are in

wav format while in SB they are in flac lossless format. Metadata for the tracks in these

datasets is given in Appendix A.

Dataset PP PNP NPP CM
JPB 482 93 212 271
SB 152 233 115 1059

Table 3-A: Number of onsets in each category in dataset JPB and SB.

3.3.2 Jingju Percussion Ensemble Corpus

As introduced in Section 3.2.1, Jingju is characterised by its vivid metrical patterns.

There are four major kinds of percussion instruments in Jingju as shown in Figure 3.1:

bangu (clapper drum), naobo (cymbal), daluo (big gong) and xiaoluo (small gong).

Examples of annotated audio examples of these instruments can be found online4.

Bangu is the composite form of two single instruments, a ban (a wooden clapper) and

a danpigu (a wooden drum struck by two wooden sticks). It is the principal instrument

in Jingju percussion and is played by the conductor to direct the whole orchestra. Danao

and qibo are two cymbals that are collectively called “naobo”. Daluo and xiaoluo are two

gong instruments with different shapes and pitch ranges. Daluo normally delivers a deep,

solemn sound. The sound is generated by hitting a wooden stick with its tip wrapped

in a piece of cotton cloth against the gong. Xiaoluo is higher in pitch and more refined

in timbre. It is played by hitting a slice-shaped stick made of bamboo or wood against
4http://compmusic.upf.edu/examples-percussion-bo

http://compmusic.upf.edu/examples-percussion-bo
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(c) Xiaoluo

(a) Bangu (b) Naobo

(d) Daluo

Figure 3.1: Jingju percussion instruments.

it. The Both daluo and xiaoluo carry specific connotations and are used for specific role

types. Since the sounds generated by ban and danpigu, and those of danao and qibo are

very similar to each other and always happen at the same time, for this thesis, we follow

the established practice to group ban and danpigu into a general class bangu, and group

danao and qibo into a general class naobo [LS99; Wic91].

This dataset consists of 10 30-second ensemble recordings of the four instruments

introduced above. Unlike pitched instruments, most idiophones cannot be tuned. These

percussion instruments are made from metal casting or wood carving therefore very

subtle differences might exist between the acoustical properties of individual instruments.

For each of the above kinds of instruments, we recorded audio samples with single strokes

with 2 - 4 individual instruments to widen the timbre coverage. The instruments were

played by a professional musician. Each instrument was played with different playing

styles commonly used in Jingju performances. This would enable us to obtain a large

diversity of playing techniques to approximate real Jingju music.

The recording was carried out in studio conditions at the Centre for Digital Music,
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Queen Mary University of London. The audio was recorded in monophonic using an

AKG C414 microphone with a sample rate of 44.1 KHz.

To generate the onset detection database with mixed instrument types, we manually

mixed the individually recorded instrument examples together using Audacity5 into 30-

second long tracks, with possibly simultaneous onsets to closely reproduce the real world

conditions having 732 onsets in total, all belong to the non-pitched percussive (NPP)

category.

Manual labelling of onset locations is tedious and time consuming, especially for

complex ensemble music consisting of instruments with diverse properties. The onset

ground truth was constructed by taking the average onset locations marked by three

participants without any Jingju background. Annotators were asked to mark the onset

locations in each recording using the audio analysis tool Sonic Visualiser [Can+06] dis-

playing the waveform and corresponding spectrogram with slow-down playback. This

dataset is denoted JP in this thesis.
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Figure 3.2: An audio example containing all four considered instruments.

Onsets generated by bangu have in general much lower amplitudes and shorter tran-
5http://audacity.sourceforge.net

http://audacity.sourceforge.net


Chapter 3. Music Corpora 69

sients and happen in higher densities than those generated by the cymbal instruments

in an ensemble. Therefore, bangu onsets can be easily masked by cymbals and gongs.

Figure 3.2 shows an audio example with all the four instruments. The top panel shows

the waveform and the bottom panel is the spectrogram, the x-axis for both panels is

time (in seconds). Note onsets are marked by the read vertical lines. The onsets are

labelled to indicate the specific instrument onset: bangu-1, daluo-2, naobo-3, xiaoluo-4.

We can see the amplitude dynamics and spectral shapes for each instrument. It can also

be noted how the bangu stroke is masked by an adjoining xiaoluo stroke (0 - 0.5 s in

Figure 3.2) [Tia+14b].

3.4 Music Structural Analysis Datasets

3.4.1 Existing Corpora

There are a few available collections for MSA research released over the last years.

The Beatles Dataset [Pol00; PK08], The Real World Computing (RWC) Popular Music

Database (PMD) [Got06], Structural Analysis of Large Amounts of Music Information

(SALAMI) Internet Archive (S-IA) [Smi+11] and the Isophonics music collection by

Queen Mary University of London (QMUL) [Mau+09] are among the most used ones in

related work. The first three are also used for the structural segmentation evaluation in

MIREX.

The Beatles set consists of 174 songs from The Beatles. It was manually annotated

first at Universitat Pompeu Fabra (UPF) and corrected at Tampere University of Tech-

nology (TUT). However, the original annotation data provided by TUT consists of 175

instead of 174 songs6. In this thesis, one song is removed from the database because we

have found its annotation by TUT to be dubious7.
6http://www.cs.tut.fi/sgn/arg/paulus/structure/dataset.html
7This song is “Helter Skelter” from the album “The Beatles (White Album)” (CD 2). Its annotation

by TUT has only one segment which starts at 0.00 s and ends at 0.11 s and labelled at “E”. Additionally,
this annotation file is in “.bak” format. We hence suspect that this file is a backup file and that the

http://www.cs.tut.fi/sgn/arg/paulus/structure/dataset.html
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We note this dataset BeatlesTUT in the remainder of this thesis. Due to the popu-

larity of The Beatles music, the availability of these annotations and its formed contem-

porary popular music structure, it has become one of the most widely used corpora for

the evaluation of structural analysis algorithms.

RWC is a large music database designed for research purpose [Got+02]. It is com-

posed approximately half of pop music, half of jazz and classical, with a few additional

pieces of world music, having 285 annotated pieces in total. However, many of the jazz

and the classical pieces included have only chorus parts. The PMD is a subset of the

RWC database commonly used for the evaluation of music structural analysis. RWC

PMD is comprised of 80 Japanese popular music pieces and 20 Western popular music

pieces. Its structural annotation is created by a graduate student majored in music.

The SALAMI Internet Archive (S-IA) is a publicly available subset of the full database

collected in the SALAMI project8 comprising 272 pieces. The main design consideration

of the SALAMI dataset is to cover a wide variety of musical genres, mainly including

Western classical music, popular music, jazz as well as world music. The SALAMI

dataset has an overlap with RWC PMD and BeatlesTUT and share with the latter two

97 and 35 recordings respectively. This dataset also features a diversity of audio qualities

by including a large set of live recordings. The metadata of this dataset is provided9

by Smith with information of the track IDs, names, artists and album. The annotation

data with the revision history is held on Github10.

Finally, the Isophonics dataset contains 300 Western popular music pieces [Mau+09].

Around half of them are from The Beatles, the rest are from Michael Jackson, Carole

King, Queen and Zweieck. It has to be noted that the annotation of The Beatles songs

from this dataset is independent from TUT and MTG, although the constituent record-

ings are shared and they are both based on the work of Pollack [Pol00].

actual annotation file has accidentally been replaced by it.
8http://ddmal.music.mcgill.ca/salami
9https://github.com/DDMAL/salami-data-public/blob/master/metadata/id_index_

internetarchive.csv
10https://github.com/DDMAL/salami-data-public

http://ddmal.music.mcgill.ca/salami
https://github.com/DDMAL/salami-data-public/blob/master/metadata/id_index_internetarchive.csv
https://github.com/DDMAL/salami-data-public/blob/master/metadata/id_index_internetarchive.csv
https://github.com/DDMAL/salami-data-public
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3.4.2 Annotation Principles

Different principles are employed to annotate the music structural segmentation databases

including the music similarity level, music function level and lead instrument level anno-

tations.

BeatlesTUT and Isophonics are annotated with section labels mainly including: “intro”,

“verse”, “chorus”, “bridge”, “refrain” and “outro” with their variations such as “verseA”

and “verseB”, as well as a few others such as “break” and “silence”. RWC PMD is anno-

tated with the same principle. However, vocabulary for the variations of the basic terms

and those belong to the “others” category are comparably more constrained, containing

a total of only 14 unique labels. The annotations for these three datasets are made

on a music function level, i.e., the music is segmented into structural parts expressing

specific musical functions or semantic meanings. Well recognised as this principle is,

it may introduce its own problems. The use of function labels conflate the notion of

musical similarity with musical function, which may cause uncertainties in annotation

decisions [PD09; Smi10]. Meanwhile, there constantly exists a dilemma between the

completion of section types and the maintaining of precision of section nomenclature.

As opposed to these three datasets which use single annotation principles, S-IA is

annotated on multiple scales incorporating the approach proposed in [PD09]. In the

lowest music similarity level, the segments are identified to address similarities in “music

ideas”. The function level annotation is rather identical to that of BeatlesTUT and RWC

but with more limited section types. Finally the highest lead instrument level defines

structural sections by searching for dominating instrumentation they consist, such as

“vocal” or “guitar”. Although it is beyond the scope of this thesis to analyse the labelled

section types (see Section 2.8), a brief overview of the vocabulary used for labelling may

give us an intuitive grasp of the underlying annotation ideas.

Figure 3.3 shows the annotations made on different levels for the song “Yellow sub-

marine” from the above two discussed datasets with individual cover versions. The two
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(d) Annotations from S-IA on the lead instrument level

(c)  Annotations from S-IA on the functional level

silence
no_function

verse verse chorus verse chorus bridge verse chorus outro no_function
silence

silence

(b)  Annotations from S-IA on the music similarity level

silencea a a a b b a a b b a a a a b b b b'

verse

(a) Annotations from BeatlesTUT on the functional level

verse
silence refrain verse refrain verseS verse refrainverse

Figure 3.3: Annotations with boundary locations and segment types for “Yellow subma-
rine” from Beatles S-IA and BeatlesTUT. Each pane from top to bottom shows respec-
tively the music function level annotation from BeatlesTUT, music similarity level, func-
tion level and lead instrument level annotations from S-IA.

audio samples have different lengths because while the first is the studio recoding from

the album of The Beatles, the second is the live recording which also contains sections

with non-music background sounds. While the lowest music similarity level annotation

(Figure 3.3b) can be seen as a subset of the function level annotation (Figure 3.3c) for

S-IA, the lead instrument level annotation (Figure 3.3d) appears to be more independent

from the two. Annotations at the same level from the BeatlesTUT (Figure 3.3a) and

S-IA (Figure 3.3c) share much similarity at the chorus (refrain) and verse sections. How-

ever, annotations for the non-functional parts such as “silence” show more dependency

on individual covers.

In our work, instead of investigating all the above datasets, we include only Beat-

lesTUT and S-IA with the lowest similarity-level annotation besides our own dataset

introduced shortly. This is partly for the interest of brevity and partly for experiment

design considerations. Note that although S-IA has an overlap with BeatlesTUT of 35

songs, the actual recording conditions and cover versions differ from the latter. Here we
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use only the similarity-level annotation for S-IA. This is because firstly, the functional

level annotations for the same songs from BeatlesTUT and S-IA differ from each other

hence may conflate the evaluation of segmentation algorithms, as can be seen from Fig-

ure 3.3a and Figure 3.3c. Secondly, the highest lead instrument level corresponds only

to the instrumentation variations therefore may provide limited perspectives when used

to evaluate different audio features.

These datasets cover two different segmentation principles hence can serve as a com-

prehensive testbed for the segmentation algorithms. Besides, each of them respectively

provides a textbook example of Western pop music and a large coverage of different

music styles. The inclusion of these two datasets will offer us meaningful reference for

the analysis of Jingju.

3.4.3 Dataset Collection

The Jingju corpus used in this thesis is composed of 30 excerpts from commercial

CDs [CMG10], sampled at 44.1 KHz and 16 bits per sample with a total length of

3.6 hours. The CDs were released in the past decade and are composed of recordings of

classical repertoires by the most renowned performers.

A full Jingju play can last several hours, comprising multiple acts. For the purpose

of this study, the excerpts consist of melodic passages taken from arias, with an average

length of 432 seconds. They were selected on the criteria of repertoire coverage, structural

diversity and audio quality. One prerequisite for an excerpt is that various structural

parts should be present characterising temporal progressions or changes of sectional units.

The selected samples in the collection cover the two main modes (xipi and erhuang) and

various metrical patterns. Half of them are performed by female singers and half by male

singers, covering different role types.
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3.4.4 Annotation Process

In this work, the structural annotations are created prior to the design of audio features

and segmentation algorithms. Annotations are arranged to describe the musical novelty

or similarity within a piece setting aside the musical functions of segments, similar to

the lowest level of the annotations for S-IA. This is mainly for two reasons. First,

functional or lead instrumentation annotations can be highly genre-dependent, meaning

that segmentation results of one dataset are not necessarily comparable to those of

another. However, low-level music similarity is a phenomenon that can be observed across

different genres [Deu12]. Assessing the structure on a music similarity level provides a

fair comparison between genres and datasets. Second, the melodic sections are never

repeated as the chorus and verse sections would do in Western pop music. There also

exists much expressiveness in the performance. This can necessitate the analysis of

the ornamentations in parallel to defining the functional structure, thus introducing

uncertainties in locating sectional boundaries. It is plausible to set a flexible and sufficient

range for the temporal location of a segment boundary, but this would raise the demand

for new evaluation metrics tailored for this music genre, which is outside the scope of

this study. Annotations created at such a fundamental level also allows for conveying

semantic or musicological meanings given further grouping.

Three listeners (“A1”, “A2” and “A3”) participated in annotating the music. Another

two engaged in verifying their annotations, one of which is the first author of this thesis

(noted “V1”) and is familiar with this music style as an amateur, the other is a Jingju

musician and musicologist (noted “V2”). All annotators are Chinese and were provided

with music scores and lyrics [chu92]. The software used for annotation is Sonic Visualiser

which displays the waveform and the corresponding spectrogram of the music11. The

metadata and additional annotation information for this dataset is published online12.

This dataset is denoted CJ in the remainder of this thesis.
11http://www.sonicvisualiser.org/
12http://isophonics.net/content/jingju-structural-segmentation-dataset

http://www.sonicvisualiser.org/
http://isophonics.net/content/jingju-structural-segmentation-dataset
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In this process, A1, A2 and A3 first worked independently, each producing annota-

tions on their own. They were instructed to assign each syllable they hear in the audio to

the (Chinese) character in the lyrics. They were asked to listen to prominent changes in

music phenomena such as rhythm, melody, harmony or timbre, and mark the boundaries

in places where the homogeneities break. Within a section, high similarity should present

with a single musical idea or subject expressed. We denote annotators “in agreement” if

they have independently identified the same segment boundary within a 1.0 s tolerance

window. An annotated boundary will be accepted if there are at least two annotators

“in agreement” with each other. The final position of this boundary will be the average

of the positions that the annotators who are in agreement noted individually.

For boundaries noted by only one of A1, A2 and A3, hence the existence of disagree-

ment, we proceed with further verifications from V1 and V2. Each would individually

examine such a boundary and then decide whether it should be discarded or accepted.

Should disagreement still exist for a boundary, V1 and V2 will have a discussion and

decide the acceptance of it as well as its position consciously.
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Figure 3.4: Two annotations with boundary locations and segment types for a 60-second
excerpt of the recording “Ba wang bie ji” from Dataset CJ. Panes from top to bottom
pane show respectively the lyrics of the singing (in Chinese), annotation from annotator
V1 and annotator V2 and the final annotation.
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Figure 3.4 shows respectively the annotations by V1 and V2 individually and the

final accepted annotation for an 60-second excerpt of the recording “Ba wang bie ji”

(meaning “Farewell my concubine”), with the corresponding lyrics shown on the top.

The phrase shown comprises half a couplet. We can notice that this phrase is sung at

a relatively slow tempo and that a single sung character may last several seconds. This

gives the performer lots of freedom in the singing, where each syllable can be sung with

ornamentations such as vibrato and even intermittence.

Rather than adopting the common approach for grouping two sets of annotations by

averaging their positions, the final annotation decision is a result of conscious discussions

by V1 and V2 based on their individual work. The reason for this is that V1 and V2

each has noted different number of boundaries and there is not necessarily a match for

a boundary from one set in another. We however find that the discussion can produce

different boundaries, i.e., the final accepted boundary location may differ from the loca-

tions indicated individually by both V1 and V2, as shown in Figure 3.4. One main reason

for the uncertainties in deciding the exact temporal position of an underlying bound-

ary is that, the emergence of new sections may be accompanied by gradual changes of

acoustical properties, for example, the sustaining notes of gongs and cymbal and the

fade-out effect of the vocals. Such temporal disparities of an accepted boundary from

those indicated by V1 and V2 individually however barely lead to dubious evaluation

results given a sufficient acceptance window for the retrieved boundaries. In this work,

a detected segment boundary is accepted to be correct if within a 3-second tolerance

window from an annotated one in the ground truth (see Section 2.8.1).

3.4.5 Statistics of Dataset Annotations

From the variety of existing measures commonly used to compare multiple annota-

tions [Smi10], we now discuss the inter-annotator agreement between V1 and V2. This

means we analyse the accuracy first of V2 against V1, with the former playing the role

of “detection” and the latter the role of “ground truth”. Then their roles are reversed.
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Finally, averages are taken.

The analysed statistics include: F-measure retrieved at the tolerance of 0.5 s (F0.5)

and 3 s (F3), median of the distance between each annotated segment boundary to

its closest detected segment boundary (Mad) and that between each detected segment

boundary to its closest annotated segment boundary (Mda), standard deviation of the dis-

tance between each annotated segment boundary to its closest detected segment bound-

ary (Sad) and between each detected segment boundary to its closest annotated segment

boundary (Sda).

As shown in Table 3-B, the agreement between the annotators measured at 0.5 s

(F0.5 = 0.693) is reasonably close to that measured at 3.0 s (F3 = 0.743). This shows

that once V1 and V2 both indicate the acceptance of a boundary, they report relatively

close temporal locations of it. However, there exists a large discrepancy when comparing

the median or the standard deviation of the distances from one set of annotation to

another. This is mainly because the two annotators noted different numbers of segment

boundaries, as shown in Figure 3.4. This indicates that the structural annotations do

depend on the annotators’ individual understanding of the music as observed for Western

music [SSC14].

F0.5 F3 Mad Mda Sad Sda
0.693 0.743 11.88 0.27 74.31 0.97

Table 3-B: Average agreement between annotator V1 and V2 for recordings in dataset
CJ. F0.5 and F3: boundary retrieval F-measure obtained at a resolution of 0.5 s and 3.0
s; Mad and Mda: median of the distances between each annotated segment boundary to
its closest detected segment boundary (in second); Sad and Sda: standard deviation of
the distances between each annotated segment boundary to its closest detected segment
boundary (in second).

Here we discuss some statistics of the segmentation datasets used in this thesis,

including CJ, BeatlesTUT and S-IA. Table 3-C reports the number and average lengths

of songs in each dataset, as well as the average number of segments and segment lengths

of songs in a dataset. The distribution of segment lengths for each dataset is shown in

Figure 3.5. It can also be noticed that many annotated segments in S-IA are comparably
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Figure 3.5: Distributions of segment lengths for MSS datasets investigated in this thesis.

Dataset No. tracks Len. track No. segments Len. segment
BeatlesTUT 174 159.30 (50.08) 10.21 (2.32) 17.73 (5.45)

S-IA 258 333.09 (130.78) 56.26 (32.07) 7.69 (5.28)
CJ 30 421.38 (219.02) 44.37 (19.18) 9.56 (4.57)

Table 3-C: Statistics of datasets (standard deviations in parenthesis): number of samples
in the dataset, average length of each sample (in second), average number of segments
per sample, average length of each segment (in second).

short. One intuitive concern is, would including segments that are too short lead to

dubious evaluation results? For example, when a section is shorter than 3 seconds,

any boundary detected within this section would be applicable to both borders when the

evaluation window is set to 3s as the common practice in related work (see Section 2.8.1).

Although the evaluation algorithm will assign a detected boundary only to its closest

annotated boundary to avoid duplicated counting, it remains however unexplained which

border the segmentation algorithm has originally meant to detect.

In this thesis, we will use these three databases to evaluate investigated audio features

and segmentation algorithms in an MSS scenario.



Chapter 3. Music Corpora 79

3.5 Summary

This chapter presented the evaluation datasets for the investigated audio onset detec-

tion (AOD) and music structural segmentation (MSS) tasks. An overview of the related

MIR work for Jingju and its musical background were surveyed to start this chapter.

Besides introducing the existing datasets, this chapter was focused on presenting two

annotated datasets of Jingju music. The first one consists monophonic recordings of

Jingju percussion ensembles. This dataset is designed for the AOD and percussion

instrument recognition studies. The second contains 30 excerpts of Jingju songs from

commercial CDs with annotations made by expert listeners to evaluate the MSS exper-

iments. This chapter also analysed the inter-annotator agreements from the annotation

process. Finally, we discussed different characteristics in the statistics of MSS datasets

with different music types.



Chapter 4

Audio Onset Detection based on

Fusion

4.1 Introduction

As introduced in Chapter 1, music can be represented and perceived at different levels

of abstraction. In this chapter, we will investigate the audio onset detection (AOD) task

relying on information fusion and Semantic Web techniques.

The goals of this chapter can be summarised as follows: i) to compare different

methods for onset detection and fusion strategies in the context of different music types;

ii) to investigate the principles for effective fusion; iii) to study the effects of signal

processing methods as well as their parameters in the scenario of onset detection and v)

to discover potential interactions between the investigated signal processing methods.

This chapter is organised as below. In Section 4.2, we will investigate new onset

detection algorithms based on different fusion strategies. We introduce the experimental

platform and present the parameter optimisation experiment in Section 4.3. Section 4.4

will present the results with a detailed analysis of the effects of the investigated fusion

80
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techniques and signal processing methods. In Section 4.5 we draw conclusions for the

work presented in this chapter.

4.2 Fusion of Onset Detectors

Onset detectors may be combined at various levels using different fusion policies. Three

fusion strategies are investigated in this thesis including the fusion of onset features,

which essentially combines the underlying assumptions involved in the original ones

hence produces new algorithms; the fusion of different detection functions to create a

combined onset features and finally, the combination of onsets detected by different

methods leading to decision fusion using heuristics.

In this work, six relatively simple onset detectors were selected that use only spectral

information including: High frequency content (HFC), Spectral difference (SD) Com-

plex domain (CD), Broadband energy rise (BER), Phase deviation (PD) and SuperFlux

(SF) [Bel+05; BW13a]. See Section 2.4.3 for a review of these methods. We choose these

methods because they are commonly employed in related MIR tasks such as beat and

tempo tracking using onset detection as the fundamental step [DP04; GMK10; Tia+15].

The inclusion of SF also represents the more recent improvements. The improvement of

these methods can thus be expected to yield improvements in subsequent applications as

will be introduced in Section 5.4. Meanwhile, they rely on simple spectral information

hence can more straightforwardly reflect the effect of fusion than methods relying on

more advanced or black-box processes do.

The basic signal processing modules in our onset detection workflow, including the

pre- and post-processing and peak picking, follow the Queen Mary Vamp Plugins (QMVP)

[Plu06], as illustrated in Section 2.4.3. We have also re-implemented the entire system to

enable the fusion as well as to expose more user configurable parameters as will be intro-

duced in Section 4.3. Note that for SF, we only follow the original algorithm [BW13a]

for the calculation of the ODF but use the pre- and post-processing and peak picking
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methods from QM Onset Detection Vamp Plugins. We will compare our modified version

of SF and the original algorithm in Section 4.4.3.

Here we consider the pairwise fusion of baseline methods. The fusions apply at

different stages of the workflow involving the calculation of onset detection function

(ODF), peak picking (PP) and onset localisation, as summarised in Figure 4.1. Two

kinds of spectral descriptions M1 and M2 can be combined into a single onset feature

using early fusion; two onset detection functions ODF1 and ODF2 can be fused using

linear fusion; and finally, two sets of onsets represented by their time stamps TS1 and

TS2 detected by two algorithms can be combined using decision fusion. In the remainder

of this section, we will introduce all the investigated fusion algorithms.

M1

M2
Early fusion ODF

PP

Onsets

Linear fusion

Decision fusion

ODF1

ODF2

TS1

TS2

M1

M2

ODF1

ODF2

M1

M2

PP

PP

Figure 4.1: Fusion strategies investigated: early fusion, linear fusion and decision fusion.

4.2.1 Early Fusion

In case of early fusion, multiple algorithms are combined to derive fused features. The

hypothesis is that by combining different detection methods, different aspects of the

onset-related information may be captured at the same time. Assuming that different

detection methods are complementary, the fusion will thus improve the results. Practi-

cally, this may result in creating new algorithms which rely on the underlying hypotheses

of the original methods. Alternatively, we may use one feature, such as the presence of

broadband energy, as a condition for modifying the other detection function before the
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fused detection function is calculated.

However, not all algorithms can be meaningfully combined using early fusion. For

example, CD can be considered as an existing combination of SD and PD, therefore com-

bining CD with either of these methods using this approach is less sensible. Next, we

will briefly introduce the early fusion strategies presented in this study. In the remain-

der of this chapter, fusion algorithms are denoted by combining the acronyms of the

constituent methods.

Combinations of BER and Spectral Difference based Methods

We propose to combine BER with three other methods (SD, CD, SF) by calculating the

difference between adjacent frames in two different ways. In the first approach, BER

can be extended to take multiple frames into account using the spectral difference hence

characterise the rate of change of magnitude in each frequency bin:

D(n, k) = 20log10
|Y (n, k)− Y (n− 1, k)|
|Y (n− 1, k)− Y (n− 2, k)|

, (4.1)

where Y (n, k) is the magnitude spectrogram of the complex spectrogram X(n, k), n ∈

[0 : N − 1] is the frame index (n ≥ 2 in Equation 4.1), k ∈ [0 : K − 1] is the frequency

index of the magnitude spectrum. This quantity depends only on the rate of change and

it is positive when the local increase in magnitude with respect to time is above linear.

We can then define the ODF by counting the number of bins with accelerating rate of

magnitude changes:

ODF (n) =

K−1∑
k=0

 1 if D(n, k) > θ′

0 otherwise
(4.2)

where θ′ is a variable threshold parameter.

A similar implementation is applicable in the complex domain, resulting in the early
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fusion of CD and BER. The acronym of this fusion method ends with BER (e.g. SDBER)

in the remainder of the thesis.

The above approach is focused on enhanced percussive onsets detection, however, we

can also use BER to suppress the non-onset related local dynamics such as vibratos, in

cases when there is no evidence of broadband energy rise. To this end, we mask the

detection function Θ(n), standing for the ODF of either SD, CD, or SF, such that Θ(n)

is used directly when a sharp energy rise is indicated by BER, otherwise it is smoothed

by a median filter. This is described in Equation 4.3,

ODF (n) =

 Θ(n) if BER(n) > γ

λ ·median (Θ(n)) otherwise,
(4.3)

where γ is an experimentally defined threshold and λ is a weighting constant empirically

set to 0.9. The size of the median window is experimentally set to 3. The acronym of

this method begins with BER in the rest of the paper (e.g. BERSD).

Combination of High Frequency Content and Spectral Difference Methods

High frequency content (HFC) is one of the earliest methods introduced to detect tran-

sient events in audio signals [Mas96]. HFC is closely related to the perceptual brightness

(spectral centroid) of a sound, but it simply characterises how dominant the higher fre-

quency components are as opposed to measuring the central tendency. Various studies

define the calculation as the sum of frequency-weighted energy [Mas96] or magnitude

with linear or exponential weighting [Bel+05; JA03].

Changes corresponding to note onsets can be more prominent in higher frequencies

both in case of harmonic and percussive sounds. However, these changes may be masked

by energy concentrated in the lower frequency areas. For this reason, we propose an early

fusion method which combines high frequency weighting with other detection methods

including SD, CD, PD and BER to measure the spectral difference emphasising contents
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with higher frequencies. As an example, the ODF for the fusion of SD and HFC is given

in Equation 4.4:

ODF (n) =
K−1∑
k=0

ν(k)H (|Y (n, k)− Y (n− 1, k)|) , (4.4)

where n ≥ 1, ν(k) = 1 + k for k ∈ [0,K − 1] is a linear weight as a function of the

frequency index of the STFT bins, H(x) = x+|x|
2 is the half-wave rectification function.

Rectified Phase Deviation

For softer onsets which are always characterised by longer transients, the changes in

the ODF from frame-by-frame deviation tracking may be less prominent. A possible

improvement for detecting such onsets could lie in measuring the difference between

frames that are further apart. To this end, we propose the rectified phase deviation

(RPD) which calculates the phase deviation between complex spectra that are µ frames

apart as shown in Equation 4.5. This method is inspired by the calculation of SuperFlux

(SF) [BW13b].

RPD(n) =
1

K

K−1∑
k=1

|princarg(ϕ(n, k)− ϕ(n− 1, k))

−princarg(ϕ(n− µ, k)− ϕ(n− µ− 1, k))|,

(4.5)

where µ is set to 2 following the setting in SF [BW13b] and n ≥ µ, and the princarg

function maps the phase deviation to [−π, π] range (see Equation 2.16).

4.2.2 Linear Fusion

In linear combination, two temporally aligned ODFs, ODF1 and ODF2, are used and

their weighted linear combination is computed to form a combined detection function,
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ODFL. This process is shown in Equation 4.6,

ODFL(n) = lODF1(n) + (1− l)ODF2(n), (4.6)

where l is the combination weight (0 ≤ l ≤ 1). We will investigate the optimal value of

l in Section 4.3.

(a)  CDSF-L

(b)  Annotations

(c) CD

(d) SF

Time (s)
5.0           5.5           6.0           6.5           7.0           7.5           8.0           8.5           9.0           9.5

Figure 4.2: Onset detection result demonstrated using Sonic Visualiser. Panes from top
to bottom show respectively the waveform and the detection by CDSFL, the ground
truth annotations, the detection by CD and the detection by SF.

Figure 4.2 demonstrates the onset detection results using the detector CDSFL (l=0.3).

This is a method based on the linear fusion of Complex domain (CD) and SuperFlux

(SF) (see Section 4.2) on a 5-second excerpt of the ballroom dance music “sb_Albums-

Chrisanne3-02(12.0-22.0)” from our evaluation dataset SB (see Section 3.3). We can

notice that many spurious onsets detected by individual methods do not appear in the

detection by CDSFL. Additionally, when the two individual methods have indicated

slightly different locations for the same onset, the linear fusion has the effect of averaging

the two locations hence reducing the deviation in the two inferences.
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4.2.3 Decision Fusion

The third fusion policy studied is decision fusion, which operates at a later stage and

combines prior decisions of two detectors. In case of many onset detection methods we

experience a high rate of false positives when the sensitivity of the peak picking is high.

To counter this effect, we introduce a constraint that the detection must be reinforced by

two different detectors. To be precise, only when a peak is detected by multiple detectors

with locations presented in a short tolerance window, it will be accepted as an onset.

Let T S1 and T S2 be the lists of onset locations produced by two detectors, i and j

be indices of onsets in the candidate lists and τ the tolerance time window. The final

onset locations are obtained by taking the average onset times indicated by these two

detectors, as described by Algorithm 2.

Algorithm 2 Onset decision fusion.
1: procedure DecisionFusion(T S1, T S2, τ)
2: T S ← empty list
3: for all i ∈ {0, . . . , len(T S1)− 1} and j ∈ {0, . . . , len(T S2)− 1} do
4: if abs(T S1[i]− T S2[j]) < τ then
5: insert sorted: T S ← mean(T S1[i], T S2[j])
6: return T S

4.2.4 Fusion Detectors

The three fusion policies investigated are not applied to all combinations of baseline

methods. This is mainly due to considerations of how various baseline methods may

complement each other as well as the computational cost. Additionally, in some cases,

early fusion is not possible or not meaningful to carry out, since it involves modifying

the algorithms before the detection function is calculated. The second and third fusion

policy are applicable in all cases, but instead of combining all pairs of baseline methods

using the two fusion policies, we apply them to selected methods. We exclude some

pairs of methods where one technique is considered an existing refinement of another,

for instance, SD and PD with CD or SD with SF. The investigated onset detectors based
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on fusion are listed in Table 4-A.

In this work, we only consider pairwise fusion of detection methods. The primary

purpose of this chapter is to investigate the effect of different fusion strategies in the con-

text of audio onset detection. Including only pairwise fusion makes the experiment more

computationally feasible and the comparison of fusion strategies more straightforward.

With the 6 baseline methods, the above introduced fusions will give us 10 early

fusion, 13 linear fusion and 13 decision fusion methods. The set of fusions are given in

Table 4-A. The names of the fusion algorithms are derived from the abbreviations of

the constituent methods and the symbols “E”,“L” and “D” represent early fusion, linear

fusion and decision fusion of pairs of baselines respectively. The implementation of the

investigated algorithms as well as the onset detection system are available online1. These

42 detectors will be evaluated in Section 4.4.

method BER CD HFC PD SF SD
BER N/A E,L,D E,L,D L,D E,L,D E,L,D
CD E N/A E,L,D L,D L,D L,D
HFC N/A E,L,D L,D E,L,D
PD N/A E L,D
SF N/A
SD E N/A

Table 4-A: Onset detection methods with fusion investigated in this thesis.

4.3 Parameter Search

4.3.1 Parameter Specifications

To find the configurations yielding the best onset detection rates and fusion perfor-

mances in a general case, an exhaustive grid search is carried out for all major parameters

involved in the system, including: adaptive whitening (WT ), low-pass filtering (LP ) and

cutoff frequency (fc), median filtering (MF ) and its constant offset (δ) and the median
1https://code.soundsoftware.ac.uk/hg/unused_vampy

https://code.soundsoftware.ac.uk/hg/unused_vampy
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window length (ψ) in the adaptive thresholding, polynomial fitting (PF ), detection sensi-

tivity (sens), and backtracking threshold (bt), as well as the linear combination coefficient

(l) used in linear fusion and tolerance window length (τ) used in decision fusion. The

majority of these eleven parameters are shared by all investigated detectors except for l

or τ , which are used only when the detector involves linear or decision fusion.

Among the investigated parameters, LP , MF and PF are treated as binary param-

eters incorporated in the parameter space taking the values 0, 1. When a certain signal

processing block is disabled, indicated by the binary parameter taking the value 0, the

other parameters involved in that process will become ineffective hence are omitted from

the evaluation (for example LP and fc). When PF is disabled, a simpler peak picking

method is used which is controlled by the same sensitivity parameter sens (see Equa-

tion 2.22).

For each non-binary parameter p, we define a sensible range around experimentally

set default values and linearly subdivide this range to obtain a closed set of parameter

settings Sp, with Sp = {minp, . . . , defaultp, ...,maxp}. The number of subdivisions were

chosen to provide a balance between the granularity of the evaluation and the size of the

resulting parameter space. The Cartesian product of these sets yields an Ng-dimensional

parameter grid, where Ng = 11 as the number of parameters tested. The number of

elements in each dimension depends on the granularity of the investigated parameter.

Parameters investigated in this chapter are listed in Table 4-B.

Intuitively, parameter tuning for an algorithm or system can be done in a one-by-

one manner. When one parameter is under assessment, all the others involved in the

same system are fixed at experimentally defined values. After the optimal setting for this

parameter is found, it is fixed to this setting and this process is repeated for the remaining

parameters. However, the effects of two parameters in a system may depend on each

other. That is to say, interactions may exist among parameters of interest. Consequently,

it would be less informative to investigate these parameters individually than in an overall

and exhaustive manner with all possible combinations of the investigated parameters and
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Parameter Default Min Max Discrete
Points

Adaptive whitening (WT) 1 0 1 2
Low-pass filtering (LP) 1 0 1 2
Cutoff frequency (fc) 0.34 0.2 0.5 9
Median filtering (MF) 1 0 1 2
Constant offset (δ) 0.0 -1.0 1.0 9
Median window size (ψ) 7.0 5.0 9.0 5
Polynomial fitting (PF) 1 0 1 2
Detection sensitivity (sens) 70.0 10.0 100 10
Backtracking threshold (bt) 0.9 0.4 2.4 9
Linear combination coefficient (l) 0.5 0.0 1.0 11
Tolerance window length (τ) 0.03 0.01 0.05 9

Table 4-B: Parameters investigated in the onset detection system. Min, max, default
values and numbers of discrete points are listed.

their individual granularities provided. Additionally, manual parameter tuning can be a

tedious process for our experiments involving 42 onset detectors.

To this end, we propose to carry out an automatic parameter configuration and opti-

mise all involved parameters, where all combinations of all parameters with all of their

individual possible configurations will be tested. This would enable us to investigate

the effects of the signal processing techniques and their parameters on the system per-

formance in a statistical manner, as well as to discover the potential relations between

different parameters and consequently enable the selection of parameters suitable for

certain instrument or music types.

The 11-dimensional parameter space would generate a huge number of configurations

(57,736,800) with the 11 investigated parameters given their individual granularities

(see Table 4-B). This means that each of the 42 onset detection algorithms, with the

computation complexity of O(n), will be tested around 58 million times under different

configurations. The evaluation dataset consists of three individual databases including

two public available ones (JPB and SB) and a newly composed one with Jingju percussion

instruments (JP), having a total duration of 790 seconds (see Section 3.3). An initial

estimation for the execution time of the was over 40 weeks on a 2-Ghz four-core computer.
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This prohibiting computation cost is mainly introduced by the scale of the experiment.

The sheer size of this experiment implies that building a robust and manageable

experiment framework is necessary for the completion of this work. Therefore, we sep-

arate the experiment into two parts involving different stages from the onset detection

framework. The first part is focussing on parameters related to standard onset detection

processes and fusion, including adaptive whitening WT , linear combination coefficient

l, backtracking bt and detection sensitivity sens. The second is focussing on the post-

processing and peak picking process, including low-pass filtering LP , cutoff frequency fc,

median filter based adaptive thresholdingMF , constant offset for the adaptive threshold-

ing δ, median filter window size ψ, polynomial fitting PF and detection sensitivity sens.

The sensitivity threshold parameter sens is included in both sets of assessment because,

as introduced in Section 2.4.3, this parameter is related directly to the acquisition of

onsets hence is essential for the evaluation.

The two separate parts yield a five- and a seven-dimensional parameter space respec-

tively. The number of configurations is derived from the multiplication of the number

of constituent parameters and their granularities in a test. The first part has 180 config-

urations for each baseline method and early fusion detector, 1,980 for each linear fusion

and 1,620 for each decision fusion detector. The difference in numbers is resulted from

the different fusion operation involved. The second is a seven-dimensional parameter

space with 324,000 configurations for each onset detector uniformly. The total number

of configurations would be the sum of those the two parts yield, which is less than one

thousandth of that the original eleven-dimensional space would have yielded, namely,

the multiplication of those the two parts yield individually.

During the first part of the test, the peak picking parameters are kept at default

values following the settings of the Queen Mary Vamp Plugins [Plu06]. The optimal

settings derived would then be used to configure corresponding parameters in the second

test. To mitigate potential problems related to overfitting, we choose the optimal settings

obtained for the combined datasets instead of individual ones.
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4.3.2 Experiment Platform Using Vamp Plugin Ontology

Despite of the existence of numerous software packages for feature extraction, there

are issues related to the lack of standardisation of the communication format between

the input and output data, feature extraction components and parameter configuration

metadata. This might lead to problems hindering the data exchange within different

processes in a single experiment. To address these problems, we use the Vamp audio

analysis framework (see Section 2.6) to design the onset detection and parameter con-

figuration experiment. Specifically, we use the Vamp Plugin Ontology to conceptualise

the algorithm specifications and the parameter configurations.

An experiment platform is built to support parallel execution of the large number of

onset detectors on multicore servers, as illustrated in Figure 4.3. Rectangular boxes show

the four main components in our framework: the generation of the configuration speci-

fications as well as the transform files, the scheduling of the onset detection subprocess

on multicore servers and the evaluation of the result for knowledge generation.

Onset detection algorithms are implemented as Vamp plugins. Given a list of onset

detectors (see Table 4-A), the algorithms are grouped by parameters they share. The

grouping decision is made by the specification generator which send queries to the onset

detection plugin descriptors for their constituent parameters. The necessity of doing this

lies in the different numbers and types of parameters involved in these algorithms. For

instance, the tolerance threshold (τ) only applies to onset detectors involving decision

fusion. Therefore, separate specification files are generated for the execution of different

detectors.

The transform generator, fed with the parameter specifications, then produces a pool

of transform files which are essentially the metadata the Vamp host needs to launch

the feature extraction instances. These transform descriptions are encoded based on the

Vamp Plugin Ontology as introduced in Section 2.6.
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Figure 4.3: Onset detection, parameter optimisation and evaluation workflow using the
Vamp environment.

Due to the sheer size of the transform files which must cover all configurations to

be tested, the feature extraction tasks will be allocated to multiple subprocesses. The

transform files are processed by the multiprocessing scheduler, which provides dynamic

CPU allocation for the involved tasks. The scheduler is responsible for maintaining a

global transform queue, execution synchronisation, resource allocation as well as progress

and error reporting across several multicore servers, each has multiple Sonic Annotator

instances of feature extraction under execution. These instances are launched and moni-

tored by co-operative instances of the scheduler with each instance running on one server.
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The inter-process communication between components is implemented using standard

Unix pipes [Ste99b].

The outcome of each feature extraction instance is the onset detection result pointed

to the specific onset detector and parameter specification used. Detection results are then

collected and deposited into a single structured file system location, and finally, assessed

giving the ground truths (GT) on investigated datasets by the evaluator. We carry out

the onset detection experiment on three datasets, JPB, SB and JP, which consist of

Western instruments, ballroom dance music and Chinese percussion instruments (see

Section 3.3 for introductions). The evaluation will produce the standard precision, recall

and F-measure results. A correct match implies that the target and the detected onset

are within a 50-ms window (see Section 2.8.1).

All test audio samples are resampled at 44.1 KHz. We use a Hann window for the

FFT with the window size and step size set respectively to 46 ms and 23 ms. Here the

Hann window is chosen because it offers a good trade-off between the window width and

the sidelobe attenuation, providing a good frequency resolution and reduced spectral

leakage [Har78]. In the remainder of this thesis, the Hann window is used for Fourier

transform unless noted otherwise.

The computation cost of all individual onset detection algorithms is O(n). Two 32-

core machines with 3.47 GHz CPU and 96 GB RAM, one eight-core machine with 2.6

GHz CPU and 128 GB RAM and one 12-core machine with 2 GHz CPU and 128 GB

RAM were used for the implementation of this experiment. The overall execution took

approximately 12 weeks. The use of proposed experiment platform (see Figure 4.3)

had greatly reduced the computation time of having only one parameter set without

the partition (see Section 4.3.1). In the next section, we will present and analyse the

detection results.
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4.4 Results and Analysis

4.4.1 Performance of Fusion Detectors

We first investigate the overall performance of our onset detection system including

both the fusion and the baseline detectors. Table 4-C shows the detection results of

top ten performing detectors for each of the four onset categories, pitched percussive

(PP), pitched non-percussive (PNP), non-pitched percussive (NPP) and complex mixture

(CM), as well as the overall database with mixed onset types. We also report results of

the baseline methods in case they do not appear in the top-ten list. A full set of results

is given in Appendix C. Results are ranked using the average F-measures over audio

samples in individual datasets, given the best parameter settings for each onset type. A

detailed investigation of the employed signal processing components and the optimisation

of involved parameters will be presented in Section 4.4.3 and Section 4.4.4. Here we

discuss the results concerning the onset detection algorithms and fusion strategies.

While the rankings vary over onset types, some detectors work reliably well overall

such as CDSFL (i.e., the linear fusion of Complex domain and SuperFlux). Compared

to our previous study [Tia+14a], the results reported here are improved due to the fact

that more parameters were involved in the optimisation. When evaluated on the overall

datasets, nine out of the top ten detectors are fusion methods suggesting fusion as an

effective technique for designing onset detection algorithms. It can also be noticed that

linear fusion appears in the top-ten list more frequently than the other two alternatives.
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pitched percussive
(PP)

pitched non-
percussive (PNP)

non-pitched per-
cussive (NPP)

complex mixture
(CM)

Overall

Method P R F Method P R F Method P R F Method P R F Method P R F
CDSFL 0.981 0.954 0.968 CDSFL 0.749 0.808 0.777 CDSFL 0.963 0.925 0.946 BERSFL 0.904 0.818 0.859 CDSFL 0.895 0.841 0.867
SF 0.992 0.942 0.966 BERSFL 0.777 0.744 0.760 SF 0.955 0.936 0.943 SF 0.920 0.799 0.855 BERSFL 0.905 0.830 0.866
CDSFD 0.979 0.929 0.953 SF 0.787 0.732 0.758 BERSFE 0.948 0.924 0.936 CDSFL 0.893 0.815 0.852 SF 0.886 0.846 0.860
BERSFE 0.985 0.916 0.950 CDBERL 0.724 0.796 0.758 BERSFD 0.951 0.917 0.934 BERSFD 0.933 0.778 0.849 BERSFD 0.898 0.814 0.854
HFCCDL 0.985 0.910 0.946 BERSFE 0.729 0.789 0.758 BERSFL 0.936 0.906 0.921 BERSFE 0.879 0.809 0.843 BERSFE 0.898 0.811 0.852
BERSFL 0.967 0.923 0.944 BERSDL 0.718 0.764 0.740 CDSFD 0.979 0.926 0.917 CDBERL 0.862 0.813 0.837 CDBERL 0.870 0.831 0.850
BERSFD 0.982 0.903 0.941 CDSFD 0.728 0.751 0.739 BERSDE 0.945 0.874 0.908 BERSDL 0.907 0.773 0.835 CDSFD 0.875 0.819 0.846
CDPDL 0.963 0.918 0.940 BERCDE 0.718 0.741 0.730 BERSDL 0.909 0.905 0.907 PDBERL 0.900 0.778 0.834 BERSDL 0.880 0.765 0.840
CD 0.965 0.915 0.939 BERSFD 0.726 0.728 0.727 CDBERL 0.918 0.893 0.906 SDBERE 0.878 0.789 0.832 HFCCDL 0.871 0.802 0.835
CDSDL 0.961 0.910 0.935 CD 0.717 0.728 0.723 BERCDE 0.831 0.877 0.903 BER 0.845 0.804 0.824 CDSDL 0.862 0.792 0.826
SD 0.960 0.851 0.909 BER 0.770 0.633 0.695 CD 0.949 0.852 0.898 BER 0.900 0.778 0.834 CD 0.887 0.771 0.825
HFC 0.980 0.811 0.907 SD 0.673 0.597 0.658 BER 0.933 0.864 0.897 CD 0.833 0.770 0.801 BER 0.861 0.783 0.820
BER 0.937 0.684 0.885 HFC 0.604 0.706 0.651 SD 0.954 0.836 0.893 HFC 0.848 0.746 0.794 SD 0.865 0.753 0.805
PD 0.935 0.428 0.787 PD 0.655 0.498 0.636 HFC 0.966 0.824 0.889 SD 0.903 0.671 0.791 HFC 0.838 0.768 0.801
N/A N/A PD 0.589 0.566 0.577 PD 0.694 0.456 0.672 PD 0.655 0.726 0.689

Table 4-C: Precision, recall and F-measure for the ten best detectors and all rest baseline detectors under optimised configuration.
Results are evaluated on the four individual onset types as well as the overall compound dataset. The symbols “E”,“L” and “D”
represent early fusion, linear fusion and decision fusion of pairs of baselines respectively. We also report results of the baseline methods
in the case when they de not appear in the top ten list.
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Here we discuss the effect of fusion in the onset detection context regardless the

strategies it employs. We compare the detection F-measures of each pair of baselines

and their best performing fusion detectors for the mixed datasets with all onset types

(see Appendix C for a full list of evaluation results). Among all 13 groups of the two

baselines and their fusion detectors (see Table 4-A), seven have at least one fusion detec-

tor outperforming both their two baselines under their individual best configurations,

evaluated on the overall datasets. This shows that fusion can bring improvements to

baselines in a general onset detection scenario.

To verify this result, we measure the significance level of the differences among the

detection F-measures yielded by all parameter configurations for each pair of baselines

and their fusions. The statistical test used is the Kruskal-Wallis H test [McD09]. We

use this test because it is applicable for over two samples and does not require normal

distribution or equal sample sizes for tested groups, and that the subjects can be con-

sidered independent from each as we are comparing different onset detection algorithms

(see Section 2.8.2). High significance (p < 0.001) has been found for all tested groups for

the scenarios of all onset types. To find out which one of the detectors within individual

tested groups has introduced the actual difference, pairwise post-hoc comparison of the

F-measures of detectors in each group is carried out using the Tukey honestly significant

difference (HSD) test [AW10]. We found that, however, the HSD does not consistently

present in the pairwise comparisons. When one constituent baseline has already obtained

satisfactory results, the improvements provided by fusion can be less significant.

Although most fusion detectors perform better than their constituent baselines, an

exceptional case can be observed for SF, which yields consistently satisfactory detection

across all onset categories and renders better detection than many of its fusions. It

however has to be noted that SF implemented in our system is not identical to the

reference algorithm in [BW13a]. The calculation of the ODF follows [BW13a] (Step ii)

in Figure 2.7) while the pre- and post-processing and the peak picking processes uses

our framework as described in Section 2.4.3. We report significantly higher detection
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F-measures of this detector in our system than the reference implementation [BW13a]

for all investigated datasets and onset types (p < 0.0001, Wilcoxon signed rank test).

We will investigate the effects of the signal processing techniques and of the parameter

optimisation in Section 4.4.3 and Section 4.4.4.

4.4.2 Analysis of Fusion Policies

Here we want to find out which investigated fusion policy is the most effective in the

onset detection scenario. For the case of early fusion which involves the design of new

features, the consideration has to be made whether the two baseline strategies can be

meaningfully fused. For linear and decision fusion, the fusion can be applied to any pair

or group of baselines. However, the resulting performance is closely related to the setting

of the linear combination coefficient (l) and the tolerance window length (τ).

pitched per-
cussive (PP)

pitched non-
percussive
(PNP)

non-pitched
percussive
(NPP)

complex
mixture
(CM)

Overall

Early fusion 0.881 0.043 0.679 0.040 0.868 0.103 0.815 0.049 0.790 0.042
Linear fusion 0.921 0.026 0.708 0.041 0.904 0.014 0.816 0.024 0.827 0.023
Decision fusion 0.877 0.058 0.643 0.053 0.855 0.059 0.774 0.047 0.780 0.051

Table 4-D: Average detection F-measures and their standard deviations across audio
samples of each detector with specific fusion policy. Results reported are obtained under
the best configurations of individual onset detectors.

To compare the performances of the two constituent baselines and their fusions,

including early, linear and decision fusion, we note that the difference among their opti-

mal detections provided by the individual best configurations can be only marginal, as

can be seen from Table 4-C. However, they vary in terms of the extent of dependency on

parameter configurations as suggested by the sizes of their interquartile ranges (IQRs).

While linear and decision fusion generally maintain the dependency on configurations

of the baseline methods, early fusion makes the detector more dependent on system

settings.

In order to examine the general performance of the three fusion policies, detection
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results for each pair of baselines and all their available fusion detectors are compared,

reported in Table 4-D. Results are derived from the average F-measure of all audio

samples for individual onset types using the best performing configurations of these

detectors.

We can note that linear fusion yields the best performance overall for onset cate-

gories with consistently low standard deviation, signifying its stable performance. Both

linear fusion and decision fusion leave the original onset detection function of the two

baseline methods unchanged. When the evaluation is carried out on all audio samples

combining the three datasets, all the linear fusions outperform the decision fusions of the

corresponding pairs of baselines in terms of the average F-measure. Among all pairwise

fusions, however, few early fusion detectors obtain substantially superior detection than

its two baselines when evaluated on individual onset categories (see Appendix C). We

therefore conclude that the linear fusion is the most effective among the three fusion

policies, given an appropriately selected linear combination coefficient.

4.4.3 Performance of Parameter Sets

In order to investigate the overall effects of the parameter optimisation related to the

signal processing techniques as summarised in Table 4-B, we compare detection results

obtained using the default parameter settings in QM Vamp Plugins [Plu06] and the

SF algorithm by Böck and Widmer [BW13a] (denoted REF) to results obtained using

the optimised configurations in this thesis (denoted TIAN) for the six baseline onset

detectors, BER, CD, HFC, PD, SD and SF. The technical details of these onset detection

algorithms have been introduced in Section 2.4.3.

The average detection F-measures for the tested audio samples of these baseline

methods under different parameter configurations are summarised in Table 4-E. A four-

fold cross validation was carried out for all detectors, using 75% of the audio samples in

each fold as training data. The configuration yielding the optimal detection results for
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pitched percus-
sive (PP)

pitched non-
percussive
(PNP)

non-pitched
percussive
(NPP)

complex mix-
ture (CM)

method REF TIAN TIAN-
CV

REF TIAN TIAN-
CV

REF TIAN TIAN-
CV

REF TIAN TIAN-
CV

BER 0.725 0.978 0.885 0.578 0.856 0.695 0.848 0.897 1.000 0.815 0.834 0.978
CD 0.835 0.934 1.0 0.510 0.723 0.546 0.858 0.898 0.928 0.801 0.801 0.900
HFC 0.811 0.959 0.907 0.518 0.691 0.651 0.817 0.939 0.889 0.635 0.801 0.794
PD 0.787 0.787 0.896 0.183 0.577 0.501 0.726 0.636 0.577 0.369 0.672 0.648
SD 0.797 0.909 0.903 0.504 0.658 0.602 0.854 0.893 0.893 0.692 0.791 0.756
SF 0.623 0.966 0.894 0.468 0.713 0.603 0.403 0.947 0.887 0.625 0.848 0.772

Table 4-E: Detection F-measures of baseline detectors in the original systems (REF) and
our system (TIAN) after parameter optimisation as well as the cross validation results
(TIAN-CV).

the training data was then used to test the rest 25% of the audio samples. The results

are shown in Table 4-E denoted TIAN-CV. Detection results after the cross-validation

outperform the reference configuration REF consistently. We observe flawless detections

in some cases, for example, when using detector CD on the PP onset category. However,

this may partly be due to the small sample size of the test set. It can be noted that using

the entire database to find the best setting (TIAN) provides only marginal improvement

compared to the mean results of the folds (TIAN-CV). This hence justifies that parameter

optimisation can improve the performance of an onset detection algorithm on diverse

music types in a general case.

It can be observed that the parameter tuning yields better performance with very

notable differences in general. The most substantial improvement is achieved in case of

SF and PD. However, the comparison for SF reflects rather the improvement brought

by using different signal processing methods to process the ODF and to extract the

onsets. This is because in our system, only the calculation of the ODF follows Böck and

Widmer [BW13a].

We observe that the original SF algorithm (REF) obtains very low detection F-

measure on the NPP onset type consisting the Chinese NPP onsets from Dataset JP

and the NPP onsets from the two Western datasets SB and JPB (see Section 3.3). This

contradicts with the results found previously in Table 4-A. We divided the NPP onset
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category into the Chinese and Western one and found while SF (REF) yield reliable

detection on the latter with an F-measure averaged on all constituent audio samples of

0.679, it almost failed on the Chinese subset with consistently large numbers of false

positives hence a low detection precision rate. This method is designed especially for

pitched non-percussive music to combat the interference of vibratos. As can be noticed

from Table C.2, SF and its fusion detectors also require a relatively low sensitivity

to yield effective detection in our system, which already employs a more aggressive

thresholding strategy using the polynomial fitting (see Section 2.4.3) compared to Böck

and Widmer [BW13a].

For PD, as it turns, some of the post-processing steps applied by default in QM Vamp

Plugins that all other methods benefit from are not useful. In particular, the optimal

choice for this detector is not to use polynomial fitting (PF = 0) when evaluated on both

individual onset types and datasets (see Section C.2 and Section C.4). The polynomial

fitting based peak picking is designed to detect onsets with sharp peaks to compensate

for lower amplitudes. However, in the case of PD the peak picking algorithm working in

a more aggressive way with a high threshold to combat noise turns out more preferable

for an effective detection. Despite being noisier overall, PD produces peaks that are

spikier and exhibits less magnitude variation in the ODF. This can be explained by the

fact that, as introduced in Section 2.4.3, this method does not rely on energy changes to

form the onset detection function (ODF). It is hence less subject to the energy intensity

variation in the audio signal as do energy-based methods. The ODF of this method

however is noisy overall due to the potential phase distortion from low-quality audio

recordings (such as dataset SB) and phase variations of the low-energy noises in the

music.

As a conclusion, besides the development of the core onset detection function, the

signal processing techniques used for noise reduction, pre- and post-processing and peak

picking can also be of significant importance for a successful detection. Fine tuning the

parameter configurations can greatly influence the performance of the onset detection
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system. Different configurations are needed for different music genres and onset types.

The extent of the benefit, however, varies across detectors. Additionally, the signal

processing components involved pose diverse effects on different detectors. Next, we will

investigate the individual effects of the major signal processing methods involved in our

system in the context of different onset types and detection methods.

4.4.4 Analysis of Signal Processing Methods

We first discuss the parameters involved in the first part of the test (see 4.3.1). Adaptive

whiteningWT has to be deactivated for the majority of detectors to obtain their optimal

performances on all datasets. For most cases, applying the adaptive whitening leads

to higher false negatives hence degraded F-measures overall. This indicates that the

method does not improve onset detection performance in general, although it is used by

default in the QM Vamp Plugins [Plu06].

The optimal setting for the linear combination weight l varies for each pair of base-

line detectors. The parameter is then set accordingly in the second part of the test (see

Section 4.3.1). The best setting of the tolerance window τ is consistently 0.05 s for all

pairs of late fusion on all datasets, suggesting that the temporal precision of the different

detectors varies notably, which requires a fairly wide decision horizon for a successful

combination. The parameters in the second set relate to the detection of changepoints

from one-dimensional features in general and will be used for music structural segmen-

tation as introduced shortly in Chapter 5.

As introduced in Section 2.4.3, backtracking is introduced to combat the effect of long

attacks, in which case the perceived onset locations may proceed the peak locations in

the ODF. The backtracking threshold bt is set to 0.9 in the QM Vamp Plugins [Plu06].

For most detectors, applying backtracking has yielded improved detection. This hence

justifies the hypothesis that the peak locations in the ODF tend to lag behind when a

note onset can be perceived. The best bt turns out to be unanimously at a high value
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PP F-
measure

LP fc MF ψ δ PF sens

mean 0.895 0.976 0.39 0.976 7.651 0.064 0.619 0.895
std 0.052 0.152 0.074 0.152 1.379 0.575 0.486 20.933
mode count - - 1 41 0.350 11 1 41 9 25 0.500 9 1 26 80 9
PNP F-

measure
LP fc MF ψ δ PF sens

mean 0.680 1 0.273 0.907 7.385 0.106 0.833 51.146
std 0.051 0.00 0.060 0.294 1.168 0.430 0.373 28.880
mode count - - 1 42 0.238 17 1 38 6 10 0.000 14 1 35 40 6
NPP F-

measure
LP fc MF ψ δ PF sens

mean 0.867 0.952 0.433 0.976 7.500 0.237 0.643 74.50
std 0.089 0.213 0.092 0.152 1.396 0.393 0.479 24.365
mode count - - 1 40 0.500 16 1 41 9 13 0.250 14 1 27 80 15
CM F-

measure
LP fc MF ψ δ PF sens

mean 0.795 1 0.392 0.952 7.225 0.217 0.833 56.93
std 0.049 0 0.086 0.213 1.351 0.335 0.373 32.250
mode count - - 1 42 0.500 9 1 40 6 13 0.250 13 1 35 20 7

Table 4-F: Statistical summary of configurations of peak picking parameters for all inves-
tigated detectors: mean, std, mode and count of the occurrence of the mode out of 42.
PP, PNP, NPP and CM stand for the onset types: pitched percussive, pitched non-
percussive, non-pitched percussive and complex mixture.

for all datasets. For a large number of detectors, the optimal bt has reached the highest

boundary 2.4 set in the experiment. This suggests that in many cases, although back-

tracking is proven beneficial, the tracking breaks very soon after the tracking iteration

starts (see Algorithm 1), meaning that the final onset locations can be very close to the

actual peaks in the ODF. An interesting future direction for this finding could be, to

investigate human perception of the presence of note onsets for specific music types.

Table 4-F shows the statistics of optimal settings for the peak picking parameters

(see Section 4.3.2) for each detectors on the four onset types. The table reports the

mean, standard deviation (std), mode and how many times the mode has appeared out

of the 42 detectors. These figures were extracted from the configuration pool when the

onset detectors yield the highest detection F-measures in the evaluation. A complete set

of configuration results is given in Appendix C. Optimal parameter settings vary across

onset types, suggesting that the configuration of parameters for an onset detection system
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is target specific. In the remainder of this section, we discuss these signal processing

methods and parameters individually.

Low-pass filtering (LP) appears to be beneficial for the overwhelming majority of

the cases. With high frequencies in the input signal attenuated, the detection function

exhibits much less non-onset related variations. The only exceptions were encountered

by detector HFCCDE (the early fusion of HFC and CD) for the PP onset category and

CDSFL and BERSFL (linear fusion of CD and SF, and of BER and SF) for the NPP

onset category. For percussion onsets, peaks in the ODF tend to correspond to note

onsets well. Therefore, it is less crucial that a smoothing operation should be applied.

In this case, applying the low-pass filter may result in higher rates of false negatives, i.e.,

more missed onsets, and sometimes a degraded detection F-measure.

The constituent parameter of the low-pass filter is the cutoff frequency (fc). A mod-

erate value around 0.4 times the Nyquist frequency (22.05 KHz in this experiment) yields

the best performance for most detectors. When summarised by onset type, varying fc

leads to more varied detection results for percussive instruments. For the detection of

percussive onsets, too strong a smoothing processing can lead to adverse effects with

increasing false negatives. For an effective detection, a more aggressive smoothing oper-

ation is required for non-percussive onsets or onsets of mixed types of instruments to

suppress false positives. However, percussive onsets are detected more successfully using

a higher fc. Overall, for a realistic corpus consisting diverse onset types or music genres,

low-pass filtering is proved to be a highly beneficial technique for an effective detec-

tion. Whereas for music where note onsets are accompanied by short transients with

prominent energy burst, less smoothing is required to avoid a counter effect.

The second procedure applied in the peak picking processing is median filtering based

adaptive thresholding (MF). Applying MF is beneficial for the majority of investigated

detectors with the evaluation carried out on all onset categories. This is especially notable

when evaluating the detection on a composite dataset without differentiating onset types

(see Table C.4) or for the complex mixture (CM) onset type with mixed note categories
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(see Table C.2). Under such cases, larger diversity is presented in the music making it

less reliable to detect individual onsets with a globally defined threshold. To conclude,

the median filtering based adaptive thresholding strategy is also generally beneficial in

the onset detection system.

The rest a few exceptions mainly include the method PD and its fusion detectors, as

can be noticed from the Table C.2. The fundamental concept of the median filter is to

run through the signal entry by entry such that each entry is replaced by the median of

neighbouring entries within a window, leading to a “flattened” signal. Despite the noise

removal property, the median filtering would also lead the peaks to appear less spiky.

For example, PD may fail to present onset-related peaks in the ODF easily discernable

from those related to noise due to similar amplitudes and peak spreads. Applying the

median removal hence may have limited effectiveness in reducing noise while preserving

the actual onsets.

The two parameters involved in the median filtering process, as shown in Equa-

tion 2.20, are the median window size ψ and the constant offset δ. Most detectors

benefit from a moderate ψ ranging from 7 to 9 in our work, i.e., around 0.2 seconds,

when evaluated on the combined dataset with different onset categories and music types.

When investigating the four onset types individually, CM and PNP benefit from slightly

lower ψ than PP and NPP. This is because peaks in the raw ODF corresponding to

the note onsets are generally of lower magnitudes for the two non-percussive onset types

than for the two percussive ones. The constant offset provided by δ does not have a

noticeable effect. Although there is a large diversity of the best setting of this parameter

for individual detectors and onset types or datasets, differences in detection F-measures

under different δ settings are mostly marginal.

The influence of polynomial fitting (PF) on the results appears to be more varied

compared to low-pass filtering and adaptive thresholding. Its advantage is more promi-

nent in case of non-percussive onsets and complex mixtures. This is indicated by the

fact that it is applied for more detectors to yield their individual optimal performances
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Figure 4.4: Detection true positive (TP) rate and false positive (FP) rate of CDSFL

under different detection sensitivity (sens) settings (labelled on each curve) for the four
onset types (annotated in the side box). PP, PNP, NPP and CM stand for the onset
types: pitched percussive, pitched non-percussive, non-pitched percussive and complex
mixture.

when the evaluation is carried out on the onset type PNP and CM than on PP and NPP,

as shown in Table 4-F. More detectors achieve their individual best detection rates with

PF applied when evaluated on each dataset (see Table C.4) than on each onset type (see

Table C.2). This suggests that the more complex the corpus is, the more advantageous

PF is for an effective peak picking.

To conclude, polynomial fitting based peak picking is more effective for the detec-

tion of non-percussive and complex onset mixtures than the percussive categories. As

for methods that do not rely on the actual spectral energy to calculate the detection

function, they are less subject to the dynamics or amplitude variations in the music sig-

nal. Consequently, the polynomial fitting based peak picking mechanism turns out less

advantageous. Despite these exceptions, polynomial fitting introduces improvements to

the majority of the detectors. This is supported also by the fact that the majority of

the top-performing detectors have it applied when achieving their best results for each

onset category or dataset as illustrated in Table C.2 and Table C.4.
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The parameter involved in the peak picking process is detection sensitivity (sens). To

demonstrate the detection result associated with different sens settings, Figure 4.4 shows

the detection rates for CDSFL, i.e., the linear fusion of the detection method Complex

domain and SuperFlux (see Section 2.4.3), under different choices for sens with all the

other parameters fixed at their optimal values. The figure illustrates the true positive

rate (i.e., correct detections relative to the number of target onsets) and false positive rate

(i.e., false detections relative to the number of detected onsets). Better performance is

indicated by higher TP and lower FP rate. Significantly different results can be observed

for percussive onsets compared to the other categories. It is notable that the optimal

performance is obtained using a higher sensitivity setting for percussive onsets, while

for the non-percussive onset categories lower sensitivity is needed to avoid accumulating

false positives although this is at the expense of losing some actual onsets.

In a more general case in our experiment, when PF is applied, the sens parameter

controls the assessment of the polynomial coefficients to make the final onset decisions.

When PF is excluded such that peak picking is realised using a simpler mechanism,

sens is responsible for generating a uniform threshold for the ODF after an adaptive

median removal as described in Equation 2.22. Higher sens (i.e., lower threshold for

peak picking) is generally needed when using the latter peak picking approach than the

former for each detector or onset type.

Albeit the average detection sensitivity sens is close to the centre of the evaluated

value range ([0, 100]) except in case of NPP which constantly requires a high detec-

tion sensitivity, the standard deviations measured across different detectors are rela-

tively high. Also, near extreme values commonly occur as the optimal setting for this

parameter. To investigate how varying the setting of this parameter varies the detection

performance, we compare the detection F-measures under different sens settings with

the remaining parameters unfixed taking all available configurations on all the four onset

types. For all the detectors investigated, highly significant difference is shown (p < 0.001,

Repeated measures ANOVA test) for all onset types. We can conclude that this parame-
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Figure 4.5: Performance of detector CDSFL under different filter settings. Results are
evaluated for each onset type and across all configurations. All other parameters are
kept at optimised values.

ter has significant effect on the detection whether it is used in a polynomial fitting based

or adaptive thresholding based peak picking (see Section 2.4.3). However, pairwise sig-

nificance among all granularities tested using a post-hoc Tukey HSD test [AW10] is not

always present. This is partly due to the fine granularity of the configuration settings.

Besides investigating the components individually, we also want to understand their

effects when used jointly in the peak picking framework. The overall effects of the low-

pass filtering (LP), adaptive thresholding (MF) and polynomial fitting (PF) is illustrated

in Figure 4.5 for a single detector CDSFL. For the interest of demonstration, we compare

the effects of these blocks for one individual detector. This is sensible as most signal

processing components exhibit consistent effects on the investigated detectors especially

the best performing ones, as shown in Table 4-F. The figure demonstrates the detection

F-measures obtained when fixing the investigated parameter fixed to the setting 1 (on)

or 0 (off) while leaving all the rest of the parameters to vary. The upper bound of the

whiskers, the upper bound of the boxes, the horizontal bar in the boxes, the lower bound

of the boxes and the lower bound of the whiskers represent correspondingly the highest,

the third quartile, the median, the first quartile and the lowest F-measure rate under
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diverse configurations.

Applying all the three techniques leads to better detection results, indicated by the

boxes shifting upward in general as well as higher medians. The advantage of each lies

also in reducing the dependency on parameter settings even if applying these methods

involves using more parameters (for example, only when MF is on, the ψ parameter is

used). This is supported by the fact that the majority of other configurations benefit

from applying each of these three techniques, presenting smaller interquartile ranges

(IQRs). It has to be noted that using MF causes greater variability and larger IQR in

general, since enabling the technique implies involving two additional parameters δ and

ψ. Another intuitive interpretation of this figure is that the use of one component in

this process may influence the behaviour of another.

4.4.5 Analysis of Parameter Interactions

Our results so far suggest that the simultaneous influence of two or more parameters on

the results may not simply be additive, in other words, interactions exist between the

signal processing methods as well as their respective adjustable parameters. Under such

situation, the effect of one parameter is dependent on the variation of another.

Figure 4.6 demonstrates an example where the variables cutoff frequency (fc) and

detection sensitivity (sens) both interact, with respect to the detection F-measure, with

the binary factor adaptive thresholding based on median filtering (MF ), whose values

correspond to turning the adaptive thresholding technique on or off. When MF is

applied, higher fc and higher sens lead to improved results. The trend reverses however

when MF is deactivated. This means that there is a complementary effect between MF

and sens and between MF and fc. This type of interaction is considered qualitative.

Here we refer to “qualitative” as the case of interaction where both the magnitude and

direction of the effect of each variable interact with the magnitude of the other [UC08].

This indicates that the investigated signal processing techniques mutually interact.
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Figure 4.6: Detection F-measure of the linear fusion of Complex domain and SuperFlux
CDSFL under different settings for detection sensitivity (sens) and cutoff frequency (fc)
for all onset types with median filtering (MF) on/off.

While in Figure 4.6 we observe a complementary effect, Figure 4.7a and Figure 4.7b

demonstrate respectively the cancellation interaction between δ and PF and the case

between fc and sens where no interaction exists for the same detector [OG91]. When PF

is applied, higher δ is preferable for the detection. Since δ introduces a constant offset into

the ODF, it influences the comparison of coefficient c in the quadratic function 2.21 with

the sensitivity parameter. This trend is reversed when PF is excluded, i.e., the median

filter based adaptive thresholding is used, to maintain larger differences between the

maximum and minimum value in the ODF after median removal hence higher thresholds

(see Equation 2.22). However, the F-measures are lower in general than when PF is

applied due to substantially larger number of false positives. As for sens and fc, on the

contrary, the change of the former does not alter the direction of the latter. This hence

reinforces our motivation of carrying out the parameter optimisation en masse.

Table 4-G shows the pairwise interactions between parameters for the example detec-

tor CDSFL on the combined dataset. We observe the same pattern of interactions for
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(a) Cancellation effect between polynomial fitting (PF) and constant offset (δ) in the median
filtering process.
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(b) No interaction is found between detection sensitivity (sens) and cutoff frequency (fc) in the
median filtering process.

Figure 4.7: Interactions between investigated parameters illustrated by the detection
F-measure for the combined dataset using the detector CDSFL. All other parameters
are kept at optimised values.

all detectors hence illustrate only one as an example. Interactions of their adjustable

parameters detailed in Section 4.3 are tested, excluding the combinations of binary fac-

tors and the parameters directly controlling the same processing block, indicated by

N/A in the table. For instance, since fc controls the cutoff frequency of the low-pass
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filter, when LP is off, fc becomes deactivated hence should be excluded from the eval-

uation. Interactions were examined by comparing the average F-measures obtained on

the combined dataset. All parameters except for the two under investigation are fixed

at their optimal settings. This test can therefore reflect the influence of two indepen-

dent categorical variables on one continuous dependent variable (detection F-measure in

our case) [Sel11]. Statistical significance has been confirmed whenever interactions are

present using the 2-way ANOVA test. Similar patterns can be observed for all inves-

tigated detectors. Even if two parameters may vary in individual effects on detectors,

their relative pairwise interactions remain consistent for all detectors (2-way ANOVA

test, p < 0.05).

Highly significant interactions are observed between several pairs of parameters pro-

viding insight into how the peak picking components work together. We first discuss

the interactions of three main components of our peak picking algorithm including low-

pass filtering (LP), adaptive thresholding (MF) and polynomial fitting (PF). As also

shown in Figure 4.5, the use of each can reduce the dependency of another on system

configurations, indicated by higher mean F-measures. When used in combination, LP

complements both MF and PF, but using the latter two together does not have a mul-

tiplicative effect, as shown in Table 4-G. Increasing the sensitivity parameter (sens)

improves the results more notably when adaptive thresholding is applied (MF=1). This

is mainly because the adaptive thresholding facilitates the use of higher sensitivity with-

out introducing too many false positives. Since δ introduces a constant offset into the

ODF after the median removal (see Equation 2.20), its interaction with the polynomial

fitting (PF ) and median filtering (MF ) can reasonably be expected. The effect of using

higher fc for a smoother ODF is proved beneficial when used together with adaptive

thresholding. This trend reverses with PF, because peaks in the smoothed ODF become

less sharp with higher fc which affects the selection of coefficient a in the quadratic

function (Equation 2.21).

Lessons learned so far includes that interactions do exist between signal processing
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sens δ fc LP PF MF ψ

sens N/A × × × N/A +∗ ×
δ N/A × +∗ ∗ ∗ -∗ ∗ ∗ N/A ×
fc N/A N/A -∗ ∗ ∗ +∗ ∗ ∗ ×
LP N/A +∗ ∗ ∗ +∗ ∗ ∗ ×
PF N/A × ×
MF N/A N/A
ψ N/A

Table 4-G: F-measures obtained for detector CDSFL under varying parameter settings
evaluated on the combined dataset. When two parameters are assessed, all the other
parameters are fixed at the optimal settings. ×, + and − represent no interaction,
complementary interaction and cancellation interaction. The ratings ∗, ∗∗, ∗ ∗ ∗ denote
the presence of significance at the level of 0.05, 0.01, 0.001 in the interaction using the
2-way ANOVA test.

parameters in our system. This again justifies our motivation of performing the param-

eter configuration in an en masse manner. In future, a Multivariate analysis of variance

(MANOVA) can be carried out to uncover the relations among all investigated parame-

ters.

4.4.6 Onset Detection and Music Genres

Considering the fact that the three investigated datasets cover different music types

and audio qualities, it is also sensible to assess the performance of our algorithms on a

per-dataset basis. Our method CDSFL obtains F-measures of 0.949, 0.822 and 0.949 on

Dataset JPB, SB and JP respectively when using the best configurations for each dataset.

However, when using the universally optimised configuration for the mixed datasets, the

F-measure results are respectively 0.934, 0.819 and 0.931. Significant difference has been

confirmed for Dataset JPB and JP under these configurations by the Wilcoxon signed-

rank test (p < 0.01). As a conclusion, contextual knowledge about the music type can

be used to assist an effective onset detection.

Most onset detection studies report better detection for NPP compared to other

onset types. In our evaluation, however, detection results yielded for PP consistently

outperform those for other onset types. Here we report results for NPP including the
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Chinese instruments. Further analysis into the Chinese NPP onsets (see Section 3.3.2 for

details) and the NPP onsets from the two Western datasets shows that detection rates

on the former is poorer. The average detection F-measure of all investigated detectors on

Chinese NPP onsets is 0.882 and that on the Western ones is 0.890 (p < 0.01, Wilcoxon

signed-rank test).

As introduced in Section 3.3.2, the cymbal and gong instruments have sustaining

notes with temporally varying frequency characteristics. This can also explain the fact

that this onset type can be well captured by algorithms that are designed for soft onsets,

such as SF and its fusion methods, as illustrated in Table 4-C. However, compared to

SF in our system, the algorithm from the original implementation with different post-

processing and peak picking methods [BW13a] yielded much worse results as discussed

in Section 4.4.3. This again justifies our motivation of carrying out the analysis into

the effects of individual signal processing parameters as well as their optimisation in the

context of different music types.

4.5 Summary

In this chapter, we investigated the audio onset detection research using fusion and

RDF/ontology techniques. The evaluation of the 42 detectors was carried out on both

the commonly used Western datasets and the newly presented Chinese percussion dataset

with less studied musical characteristics as introduced in the previous chapter.

In the fusion experiment, new onset detection methods were presented based on

existing algorithms using three fusion policies, including early fusion applied at a feature

level, linear fusion which combines multiple onset detection functions and decision fusion

which combines onset decisions from different detectors. We demonstrate significantly

improved results for many fusion detectors over the baseline methods. Results show that

in general, fusion detectors work better than their constituent baselines. However, the

improvement is not necessarily significant if a constituent is already performing well.
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Linear fusion turns out to be the most effective out of all fusion policies tested, with

CDSFL, the linear fusion of Complex domain and SuperFlux, yielding the best results

overall. This onset detector will be used for rhythmic feature extraction presented in

the following chapters. The development of new onset detection methods specific to

non-Western instruments also constituents our future work.

With respect to specific signal processing methods and parameters, we found that

firstly, effective signal processing techniques used for signal enhancement, noise reduc-

tion and peak picking greatly assist the onset detection function to achieve an effective

detection. Secondly, parameter configuration can be a significant factor to improve the

performance of the signal processing methods in an onset detection system. Cross valida-

tion results also confirmed that improvements can be expected with diverse instrument

types.

Regarding specific components of the peak picking process, the low-pass filter and

the adaptive thresholding using a median filter were found to be generally advantageous.

The analysis of polynomial fitting yielded more mixed results. Among the investigated

parameters, detection sensitivity has the most pronounced effect. We also found there

exist significant interactions between different signal processing parameters. Low-pass

filtering and adaptive thresholding have a multiplicative effect, i.e., the gain in the onset

detection results from using both is higher than the sum of gains provided by each

method individually. Another conclusion from this work is that the configuration of an

algorithm or a system is genre and instrumentation specific. Different configurations are

needed for the investigated algorithms to work effectively on different music genres or

onset types.

The overall onset detection, parameter optimisation and the evaluation workflow was

implemented in a Vamp Plugin environment based on the Audio Features Ontology

and the Vamp Plugin Ontology in an RDF context. With this work, we demonstrated

that semantic web tools are highly useful in designing automated MIR experiments and

producing reproducible results.
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Onset detection is an intermediate stage for many tempo tracking and rhythmic

feature extraction processes which will be discussed in the remainder this thesis. In the

next chapter, we will investigate novel audio features to retrieve the music structure.

The rhythmic features will be based on the onset detection methods presented in this

chapter. We will also introduce a music structural segmentation algorithm relying on

the signal processing techniques investigated in this chapter.



Chapter 5

Feature Extraction for Music

Structural Segmentation

5.1 Introduction

As introduced Section 2.5.2, various types of audio features have been proposed to

describe the music structure capturing the timbral, harmonic or rhythmic aspects of

the input signal and to derive the music similarity. Among these, MFCCs and chroma-

gram are the most popular ones while the rhythmic features are less frequently used.

The selection of audio features for music structural description is mainly based on the

heuristics we have for the structure of the Western music. With Jingju newly introduced

into the analysis framework, this chapter investigates novel features to summarise the

music structure.

Chromagram is originally developed for Western pop music to measure the relative

intensity of the 12 pitch classes in an equal-tempered scale (see Section 2.3.2). In this

chapter, we will investigate how it may interpret the structural characteristics for Jingju

revisiting its bins per octave (BPO) settings.

117



Chapter 5. Feature Extraction for Music Structural Segmentation 118

Rhythmic information may identify music structure beyond timbral or harmonic vari-

ations. As introduced in Section 3.2.1, Jingju is characterised by vivid metrical patterns.

As the second type of features investigated, this chapter presents novel features derived

from the tempo spectra of the music. The extraction of relevant features will partly be

based on the findings from the onset detection presented in the last chapter.

The application of the Gammatone function for the modelling of human auditory filter

response has been studied in previous works (see Section 2.2.2) [GM90; HR88]. Shao

and his colleagues applied an auditory-based feature derived from the cepstral analysis

of Gammatone filterbank outputs for speech recognition. This feature outperforms the

MFCCs and perceptual linear prediction (PLP) features in the evaluation [Sha+09].

Valero and Aliás [VA12] and McKinney and Breebaart [MB03] witnessed improvements

of features from auditory perceptual features over standard features when applying to

audio and music classification. Although the analysis of music structure can be rather

subjective involving human perception and cognition of the music content, little work has

investigated feature descriptors based on auditory scales other than Mel in this scenario.

In this chapter, we also investigate new psychoacoustics-inspired features derived from

the Gammatone filters.

The success of an audio-based music structural segmentation (MSS) system largely

depends on the signal processing methods employed. These can be involved in the pro-

cess of feature extraction, the calculation of the similarity and distance measures, as well

as the retrieval of segment boundaries. Harmonic-percussive source separation (HPSS) is

a well-studied task concerning separating the input audio signal into harmonic and per-

cussive components [Fit10]. The separation or suppression of the harmonic/percussive

source can facilitate the extraction of the percussive/harmonic source for specific MIR

tasks. In [ZG13], Zapata and Gómez introduced improvements to beat tracking algo-

rithms by vocal suppression. However, the investigation into its effects for music struc-

tural analysis is lacking from the literature. MFCCs have been reported having problems

expressing both harmonic and percussive contents when present at the same time in a
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music genre classification study [Rum+10]. Furthermore, the heavy use of cymbal and

gong instruments in Jingju music has imposed certain amount of masking on the rest

of the instrumentation components whose timbral characteristics may hold more deli-

cacy [Tia+14b]. In this chapter, we investigate HPSS as a pre-processing technique for

feature extraction in an MSS scenario.

This primary motivation of this chapter is to investigate how different audio features,

both existing and new ones, apply to different music genres. This chapter is organised as

follows. Section 5.2 introduces a Harmonic-percussive source separation algorithm as a

feature enhancement technique. The chroma feature is revisited for Jingju in Section 5.3.

The design of novel rhythmic features and the extraction of auditory features from the

Gammatonegram are presented respectively in Section 5.4 and Section 5.5. We will

introduce the segmentation experiment in Section 5.6. Investigated audio features are

evaluated and analysed in Section 5.7. Finally, we summarise this chapter in Section 5.8.

5.2 Harmonic-percussive Source Separation

This section investigates harmonic-percussive source separation (HPSS) as a pre-processing

step to extract investigated audio features from the spectrogram. Given the complex

spectrogram X of the input audio signal, HPSS separates it into its harmonic compo-

nent Xh and percussive component Xp. We note Y the magnitude spectrogram where

Y = |X|. The separation can be realised by applying a median filter to Y once in the

horizontal direction and once in the vertical direction to derive respectively the harmonic

and the percussive spectrogram. This method is presented by Driedger et al. based on

FitzGerald [Fit10] with improved separation results [DMD14].

However, this process may be interfered by the existence of vibrato introduced by

the singing voice and the bowed string instruments in Jingju, which may yield frequency

oscillation over a small time period [YTC15]. A possible solution is to consider widened

frequency bins in the neighbourhood when generating the vertical mask. For the sup-
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pression of the percussive component, we also propose to widen the masking trajectory

across neighbouring time instants in case the transient energies are swaying.

A maximum filter has the capacity of broadening the spectral trajectory to enhance

specified components. However, a side effect the maximum filter may introduce is a larger

portion of residues mixed in the separated source due to widened trajectories. Instead of

targeting a rigorous source separation, this work proposes to use HPSS to generate the

spectral basis to extract relevant features carrying the underlying information to describe

music structure. We hence argue that preserving certain amount of residues may not

be harmful for the subsequent structural analysis. To this end, we propose to use a

maximum filter to Y and apply it before the median filter taking its opposite direction.

In this way, the harmonic and percussive slices can be individually strengthened before

the separation, leading to a highlighting effect of the corresponding sources to combat

the possible interference of vibratos or energy sways.

As a modification to Driedger et al. [DMD14], we apply a one-dimensional maximum

filter processing to derive the masks before the median filter is applied. The maximum

filters are applied vertically and horizontally when the targeting component to separate

is respectively the harmonic and percussive source. The median filters are applied subse-

quently taking the opposite directions of the maximum filters to generate the masks. The

whole process is described as follows. First, a maximum filter is applied to strengthen

the corresponding slices:

Yh
m(n, k) = max(Y (n, k −mh : k +mh)), (5.1a)

Yp
m(n, k) = max(Y (n−mp : n+mp, k)). (5.1b)

A median filter is then applied to both Y and the maximum filtered magnitude
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spectrogram Yh
m(n, k) and Ypm(n, k):

Ỹh(n, k) = median(Y (n− lh : n+ lh, k)), (5.2a)

Ỹp(n, k) = median(Y (n, k − lp : k + lp)). (5.2b)

Ỹh
m
(n, k) = median(Yhm(n− lh : n+ lh, k)), (5.3a)

Ỹp
m
(n, k) = median(Ypm(n, k − lp : k + lp)). (5.3b)

Next, Ỹh
m
(n, k) and Ỹp

m
(n, k) are used to mask X to derive correspondingly the

individual source Xh and Xp:

Xh(n, k) = X(n, k) ·
(
Ỹh

m
(n, k)/(Ỹp(n, k) + ϵ) > β

)
, (5.4a)

Xp(n, k) = X(n, k) ·
(
Ỹp

m
(n, k)/(Ỹh(n, k) + ϵ) > β

)
, (5.4b)

where for lh, lp, mh, mp ∈ N, 2lh + 1, 2lp + 1, 2mh + 1 and 2mp + 1 are respectively the

sizes of the maximum and median filters. ϵ is a small constant to avoid zero division and

β is the separation factor to control the ratio of specific component to separate.

Figure 5.1 demonstrates the effects of HPSS showing the harmonic and percussive

spectrograms after the source separation. The separation ratio β is set to 0.8 and the

maximum filter size is set to 3 samples, i.e., lh = 1, lp = 1. The sample rate fs, STFT

window size and step size are respectively 44.1 KHz, 46 ms and 23 ms. We can notice

a more notable horizontal and vertical continuity in the harmonic (Figure 5.1d) and the

percussive spectrogram (Figure 5.1e) after the maximum filtering. Additionally, the slow-

decaying high frequency components introduced mainly by the percussion instruments

are also suppressed in Xh after the maximum filtering, as can be seen when comparing
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Figure 5.1: Spectrograms derived after Harmonic-percussive source separation (HPSS)
of a 10-second excerpt of song “Hideout” from dataset S-IA.

Figure 5.1b to Figure 5.1d. We will discuss the effect of this HPSS technique including

the involved parameters in Section 5.7.3.

5.3 Bins per Octave in Chroma for Jingju

As introduced in Section 3.2.1, Jingju uses an anhemitonic pentatonic scale for its main

melody structure. The five main notes are built on an equal temperament scale. Two

additional notes, which are the 4th and the 7th in its numbered notation system, are

also integral in the overall pitched content of Jingju functioning to deliver the musi-
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(a) 7 bins per octave
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(b) 12 bins per octave
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Figure 5.2: Chromagrams with 7, 12 and 36 bins per octave for music “Jin yu nu”.

cal expressiveness [Che13; Wic91]. They however use a different tuning system and

contribute little to the energy of the entire pitched classes.

Although chroma features are originally designed for chord recognition for Western

music, they measure the relative intensity of each pitch class of an equal-tempered scale

in a tuning independent way [Fuj99]. Although the 4th and 7th notes do not follow an

equal temperament, they are of much lower intensities compared to the other five (see

Section 3.2.1). We hereby propose to use chroma features for Jingju music which uses

equal temperament except for its 4th and 7th degrees.

Besides the standard BPO = 12 setting, some works also use 24 or 36-bin semitone

quantisation for fine tuning for Western pop music [HSG06; Lee06] as introduced in

Section 2.3.2. Figure 5.2 shows the 7-, 12- and 36-BPO chromagram for a 10-second

excerpt of Jingju song “Jin yu nu” from dataset CJ comprising a sung phrase. It can be

noticed that when BPO is set to 12, the energies of a major pitch class and its sharp pitch
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(for example C and C#) have similar distributions. The one-third semitone resolution

is able to capture the pulsating pitch drifts within a sung tone resulted from vibratos,

which can span over a few frequency bins, as can be seen in Figure 5.2c. This frequency

drifting effect becomes less notable in the 7-BPO chroma, shown in Figure 5.2a, where

energies are aggregated into wider bins corresponding only to the major notes indicating

the anharmonic nature of Jingju [Liu+09; Che13; Wic91]. Using wider bins may also

reduce the interference introduced by fast-decaying high-frequency transients. In this

chapter we investigate the 7-BPO chromagram for Jingju and assess its effects in music

structural analysis.

5.4 Tempogram Features

5.4.1 Tempogram Revisited

A mid-level rhythmic descriptor, tempogram, is introduced in Section 2.3.3. As shown

in Figure 2.4, the tempograms for the Beatles song and the Jingju song reflect different

tempo tendencies. The Beatles song shown in Figure 2.4a is a representative example of

the Western popular music style, which is commonly characterised by a steady tempo

across the whole piece. This property is exactly what defines it to be popular music, as

explained by Regev [Reg13]. Frith also notes that the steady tempo and structured beat

patterns are necessary to engage the listeners [Fri96]. The tempo of the Jingju music

song, on the contrary, is subject to more variations. The tempo at any given time is

controlled by the percussion in the music. The structural progressions are often associ-

ated with gradual acceleration or deceleration of tempi, as can be seen from Figure 2.4b.

Despite less employed than timbral or harmonic features for the music structural anal-

ysis, new audio features that are tempo and rhythm descriptive may be discriminative

for music structure.

The tempogram is built by using the local periodicity of the onset detection function
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(ODF), which identifies the amplitude, phase or other changes in the spectral informa-

tion of an input audio signal corresponding to the presence of musical notes. As musical

notes comprise the most basic hierarchy of a music piece, the tempogram may contain

sufficient information of the music structure. Instead of targeting a rigorous tempo or

beat tracking, we are interested in the semantic information incorporated in the tem-

pogram with potentials to interpret the music structure. In a recent work, Grosche and

Müller extracted the Predominant local pulse (PLP) feature from the cyclic tempogram

for beat tracking [GM11a] (see Section 2.3.3). However, a single function such as the

PLP curve may contain limited information for the structural description. Therefore, we

propose to extract new features from the tempogram to reflect the underlying structural

patterns of a music signal.

As the calculation of a tempogram relies on the calculation of the ODF, we assume

that the accuracy of a tempogram can be improved by using enhanced onset detection

techniques. To this end, we adopt a method using the linearly weighted fusion of two

algorithms Complex domain (CD) and SuperFlux (SF) [BW13b], which is presented in

the last chapter denoted CDSFL. This method shows improvements over all other onset

detectors tested in a large-scale evaluation (see Section 4.4). We note the ODF of CD and

SF respectively CD(n) and SF (n), the calculation of the ODF of CDSFL is recapped

in Equation 5.5,

CDSFL(n) = l · CD(n) + (1− l) · SF (n), (5.5)

where n denotes the time index and l is the linear combination coefficient set to 0.3

following the parameter optimisation presented in Section 4.4.

As introduced in Section 2.3.3, the two different methods to derive a tempogram

are based on the Fourier transform (FT) and the autocorrelation function (ACF) and

characterise respectively the harmonics and the subharmonics of the music content. In

this thesis, we are interested in the variation in long-term temporal structure, therefore
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we use the ACF-based tempogram, as it emphasises the subharmonics in the tempo

spectra corresponding to lower metrical levels. In the remainder of this section, we

introduce the extraction of rhythmic features from the ACF-based tempogram.
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(b) Tempogram calculated using CDSF-L onset detection function

(a) Tempogram calculated using SD onset detection function

Figure 5.3: Tempogram calculated using the Spectral difference (SD) onset detection
function and the linear fusion of Complex domain and SuperFlux (CDSFL) onset detec-
tion function.

Figure 5.3 shows the ACF-based tempogram calculated for a piece of Beatles song

“Help” from dataset BeatlesTUT (see 3.4.1). Figure 5.3a and Figure 5.3b show respec-

tively the tempogram using ODF derived from the Spectral difference (SD) as the refer-

ence approach [GMK10; DP04; Ell07; GM09] and from the proposed CDSFL method.

The ODFs are calculated from the original spectrogram X without HPSS. The sample

rate, STFT window size and step size are respectively 44.1 KHz, 46 ms and 23 ms. The

tempogram time window used is 6 seconds. We can observe that in the tempogram

calculated using CDSFL, lots of local false positives are suppressed. This could have

the effect of emphasising the most salient rhythmic component.

Tempograms calculated using the percussive spectrogram Xp calculated after the
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(b) Tempogram calculated using CDSF-L onset detection function

(a) Tempogram calculated using SD onset detection function

Figure 5.4: Tempogram calculated using the Spectral difference (SD) onset detection
function and the linear fusion of Complex domain and SuperFlux (CDSFL) onset detec-
tion function after harmonic-percussive source separation (HPSS).

HPSS (introduced in Section 5.7.3, β = 0.5, lp = 10, mp = 10) are shown in Fig-

ure 5.4. They match closely to the results calculated without HPSS. However, after

HPSS, the strength of local pulse appears more steady, especially when accompanied by

the accelerando or deccelerando in tempo. The improved tempo salience also indicates

the potential advantage of using enhanced onset detection methods in other rhythmic

analysis such as beat and tempo tracking.

5.4.2 Dimensionality Reduction based Features

Feature extraction starts from an initial set of measured data and attempts from which

to derive more abstract and conceptual representations. The feature extraction process is

closely related to dimensionality reduction [Sam06]. An essential nature of the extracted

features, compared to the raw data, is a downsized data redundancy. As the first feature
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extraction strategy, we apply dimensionality reduction operations to the tempogram.

Principal component analysis (PCA) is a multivariate data analysis technique that

aims to minimise the correlation between variables. It provides a linear orthogonal

transformation into a new coordinate system such that after the projection the majority

of the variance lies in the first few dimensions and the variables become uncorrelated.

The values in the remaining dimensions, therefore, tend to hold small variance and can

be discarded with minimal loss of information. This technique is commonly used for

the analysis of high-dimensional features. To this end, we subject the tempogram to

a PCA and keep the first a few dimensions as the first dimensionality reduction based

feature investigated in this work, denoted Tempogram principal coefficients (TPCs). A

20-coefficient TPCs is used in this thesis [Tia+15].

The discrete cosine transform (DCT) can also be used as a dimensionality reduction

technique given its property to concentrate high energy components in the lower coef-

ficients. While PCA provides basis functions for the projection ordered by the data,

DCT uses a data-independent orthogonal sinusoidal basis. DCT is widely used in the

extraction of audio features. For example, it is adopted as the last step in the calculation

of the MFCCs which have been proved highly successful in describing the timbral aspect

of sound [AP02; DM80; Log00] (see Section 2.3.1).

Inspired by the MFCCs, we introduce a feature called Tempogram cepstral coefficients

(TCCs). For each tempogram frame we take the logarithm of the energy to emphasise

the underlying periodicity in the autocorrelation of the ODF, then apply a DCT to

obtain a compressed representation of the rhythmic content of the audio signal. There

are different variations of DCTs. In this thesis, we use the most popular one, the type-II

DCT, which is commonly simply referred to as “the DCT” [NP78]. The algorithm is

illustrated in Equation 5.6.

TCCs(n) =

N−1∑
Λ=0

log (A(n,Λ)) cos

(
π

N
(Λ +

1

2
)i

)
, (5.6)
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where i = 0, . . . , N − 1.

Although the DCT is an orthogonal transform, we apply it to the log-compressed

tempogram hence to enable a reduced representation focusing on the overall pulse reg-

ularity and helps to suppress noise. A 20-dimensional TCCs is used in this work (C0

included). The number of coefficients is defined experimentally, where it is observed

that any value moderately higher than 13 provides similar segmentation results.

5.4.3 Band-wise Processing

The dimensionality reduction techniques such as the DCT and PCA transform reshuf-

fle the tempo spectra such that the majority of the information is expressed in the

low dimensions. However, they hardly provide any separation of the underlying classes

directly. To this end, we extract additional features with more explicit domain knowledge

to characterise the rhythmic patterns encoded in a tempogram.

For most music genres various instruments in a piece play diverse roles in producing

the overall rhythmic structure, thus each instrument can be prominent at different met-

rical level [Par94]. Dawe and his colleagues indicate that if two phenomenal events differ

in their perceptual salience, the more prominent event would define the phrase bound-

ary hence the perceived rhythm pattern [DPR93]. Therefore, we propose to describe

the rhythmic structure depending on the identification of the perceptually salient events

upon which more complex rhythmic patterns may be built.

Perceptually informed audio features are proved very effective in summarising music

similarities [Pee04]. The perceptual loudness pattern introduced by Moore and his col-

leagues [MGB97] has inspired the design of several related audio features. Among these

is the specific loudness, which approximates Moore’s loudness expression by compress-

ing energy components active in specific areas in a relative scale while neglecting the

rest [Rod01]. The calculation of this feature is given in Equation 5.7:
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N ′(z) = E(z)0.23, (5.7)

where E(z) represents the energy in the zth band. Zwicker also notes the total loudness

as the sum of bandwise specific loudness as:

N =

Z∑
z=1

N ′(z), (5.8)

where Z is the total number of the bands [Zwi90].

To this end, we introduce new features incorporating tempo perception cues inspired

by Moore’s acoustical perception experiments [MGB97]. Previous works indicate that

tempo perception occurs in a logarithmically-like space just like pitch and loudness [Sap05].

Studies have also shown that rhythm perception is categorical [Cla87]. To characterise

specific tempo strength, we first group the tempogram bins (in lag Λ) into L quasi-

logarithmic spaced bands corresponding with the following L+1 boundaries in BPM τt:

{440, 240, 170, 130, 110, 90, 80, 65, 55, 40} where τt = 60/(sr ·Λ) and L = 9. The grouping

decision is mainly made from the observations of stable presence of subharmonics in the

tempogram [Tia+15].

The first feature Tempo intensity (TI) is designed to capture the strength of rhythmic

components at different metrical levels. In each frame when the tempo tτ falls into

the zth band (z ∈ [0, L − 1]), we sum the tempogram magnitude to T (z). Tempo

components which drop out of this range will be discarded as they are considered to

have less contribution to the overall music structure. Inspired by the specific loudness

feature [Rod01], we compress the bandwise intensity values using:

TI(z) = T (z)ϱ, (5.9)

where the exponent ϱ (ϱ ≤ 0.5) applies a fractional root function to T (z). Manual

parameter tuning finds that setting it to 0.4 would yield the optimal segmentation per-
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Figure 5.5: Features extracted from the tempogram for audio example “Help” by The
Beatles from dataset BeatlesTUT. Panes from top to bottom show respectively the tem-
pogram, Tempogram principal components (TPCs), Tempogram cepstral coefficients
(TCCs), Tempo intensity (TI), Tempo intensity ratio (TIR) and the ground truth anno-
tations.
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formance [Tia+15].

The second feature, Tempo intensity ratio (TIR), describes the perceived relative

salience of individual rhythmic components by calculating the intensity ratio of each

band as defined above. The formula is given in Equation 5.10:

TIR(l) =
T (z)∑L−1
z=0 T (z)

. (5.10)

In Figure 5.5, the above introduced features for a popular song “Help” from our

dataset BeatlesTUT (see Section 3.4.1) are demonstrated together with the ground truth

annotation. Compared to TPCs, TCCs exhibit more visual variations between sections.

It can be observed that TI and TIR present patterns correlating to the structural seg-

ments without further processing. For these two features, components of higher orders

(corresponding to slower tempi) show higher relevance to the sectional characteristics of

the music piece. This hence suggests that the slowly-evolving rhythmic components can

be more prominent in the perception of segment boundaries. The presented tempogram

features will be evaluated in Section 5.6.

5.5 Gammatone Features

5.5.1 Gammatone Approximation based on Fast Fourier Transform

An efficient implementation of the Gammatone filters is provided by Slaney [Sla93] as

introduced in Section 2.2.2. However, to process a signal with a bank of M Gammatone

filters can still be computationally expensive. Ellis introduced an alternative method

using a fast Fourier transform (FFT)-based approximation [Ell09]. In this approach, a

conventional spectrogram with fixed bandwidth is first calculated whose frequency bins

are then aggregated into coarser resolutions via a weighting function approximating the

Gammatone responses.
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Figure 5.6: Gammatone filters frequency responses using the accurate method (blue)
and the fast method (red).

Figure 5.6 illustrates the frequency responses for each filter using the FFT-based

approximation by Ellis [Ell09] (shown by the red curves) and the actual Gammatone

filters from Malcolm’s Auditory Toolbox [Sla93] (shown by the blue curves) with 20, 32

and 64 filterbanks. The input is an impulse signal with a length of 1000. A 3-dB offset
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is introduced to separate the two for visualisation purposes. When the magnitude drops

below -100 dB, the approximation becomes less accurate with lots of wiggles mainly

resulted from truncating the impulse response at 1000 samples [Ell09]. A better match

is obtained with larger M such that the weighting is carried out for narrower bins. As

introduced in Section 2.2.2, 32- to 64-channel Gammatone representations are considered

appropriate in music and audio processing studies [VA12; HWW14; Qi+13; Sch+07]. In

this thesis, we use the 64-channel Gammatone filters for feature extraction. The lower

and upper frequency bound are set to 50 Hz and 22.05 KHz (half the sample rate).
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20 40 60 80 100 120
Time (s) / 0.0232

287  

795  

1801 

3796 

7751 

15593

Fr
eq

 (H
z)

-90

-80

-70

-60

-50

-40

-30

Gammatonegram - accurate method

20 40 60 80 100 120
Time (s) / 0.0232

287  

795  

1801 

3796 

7751 

15593

Fr
eq

 (H
z)

-90

-80

-70

-60

-50

-40

-30

Figure 5.7: Gammatonegrams calculated using the accurate method and the fast method
for Jingju song “Jin yu nu” from dataset CJ.

Figure 5.7 demonstrates the 64-channel Gammatonegrams derived using the two

methods for a 10-second excerpt of Jingju music “Jin yu nu” from dataset CJ. Although

not identical, the fast and the accurate method match well. The main differences noticed

include that the fast method accumulates more energy in the highest frequency channels

while reduces the time smearing in the lower frequency channels introduced by dispersion

of energies [Lyo96], and that it presents smoother frequency responses between channels

compared to the accurate one. This is mainly due to the fact that the phase of each
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frequency channel is ignored in the summation. The fast method assumes additive coher-

ence in amplitude from different channels, whereas the actual subband energies depend

also on how the different frequencies combine [Ell09].

While the accurate Gammatone filter method keeps the original temporal resolution,

using the fast method would result in a loss of temporal resolution due to the Fourier

transform applied. However, the former will then be subject to temporal summation to

derive the Gammatonegram as the time-frequency representation for subsequent feature

extraction. Patterson also pointed out in a psychoacoustic experiment on timbre that

the phase lag in the low-frequency channels in an auditory system does not affect the

perception of a sound [Pat87]. We therefore hypothesise the fast method which relies on

the FT and neglects the phase of each frequency channel may lead to trivial influence

as compared to the accurate method in the scenario of music structural description. In

Section 5.7.4, we will investigate the two methods of Gammatonegram calculation by

investigating the features derived, as introduced shortly.

5.5.2 Gammatonegram Feature Extraction

Gammatone Cepstral Coefficients

Note that the dimension of a 64-channel Gammatonegram vector can still be much larger

that of a feature commonly used for music structural analysis. Meanwhile, due to the

overlap among neighbouring filter channels, the Gammatone filtering outputs are largely

correlated with each other. To this end, we introduce a feature called Gammatone

cepstral coefficients (GCCs) with dimensionality reduction techniques following Shao et

al. [Sha+09]. Specifically, a DCT is applied to the Gammatonegram G(n) in order to

de-correlate its components:

GCCs(n) =

M−1∑
m=0

G(n)cos

(
π

M
(m+

1

2
)i

)
(5.11)
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Figure 5.8: Gammatone cepstral coefficients (GCCs) calculated from the accurate Gam-
matonegram and the FFT-based approximation on a Jingju song “Jin yu nu” from
dataset CJ. The segmentation annotation is shown in the bottom pane.

where i = 0, ...,M − 1 and M is the number of filters.

However, a log operation is excluded as in common cepstral analysis since initial

investigation shows degraded segmentation results due to an over-emphasis of the lower

frequency components [TS16a]. A 20-dimensional GCCs is used in this thesis.

Figure 5.8 shows the GCCs calculated from the two Gammatonegrams, the accurate

one by Slaney (Figure 5.8a) and the fast one by Ellis (Figure 5.8b), MFCCs and the

structural annotation for Jingju song “Jin yu nu” from dataset CJ (see Section 3.4.3).

We include the MFCCs in the figure as another cepstral feature as a comparison. All

features are visualised on a logarithmic scale. The two GCCs match very closely although
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the one calculated from the accurate Gammatone method (Figure 5.8a) presents slightly

sharper contrast between feature vectors. Both exhibit visible patterns correlating with

the annotated segments, which are missing from MFCCs (Figure 5.8c).

Gammatone Contrast

Similar to MFCCs, GCCs describe the average energy distribution of each subband in

a compact form. Here we are also interested in the extents of flux within the spectra

indicating the level of harmonicities at different frequency ranges. To this end, we present

a novel feature, Gammatone contrast (GC). The extraction of this feature is inspired by

the spectral contrast (SC) feature which is based on the octave-scale filters and is very

popular in music genre classification studies [Jia+02].

The calculation of GC is as follows. As the first step, the Gammatone filterbank

indices [0, ...,M−1] are grouped into C subbands with linearly equal subdivisions andNF

filterbanks divided into each subband. Note that since the spectrum is originally laid out

on a non-linear ERB scale, the frequency non-linearity is still reserved in the subbands.

We use C=6 similar to Jia et al. [Jia+02] in this study yielding a subband frequency

division of [50, 363.198, 1028.195, 2440.148, 5438.074, 11803.409, 22050] (Hz). This choice

is based on music observations. With such grouping, the vocals will mainly be active

in the second band, the first and the second band may note the presence of the main

pitched instruments and the forth and fifth band can discriminate the presence of drums

and cymbals [TS16a].

We note VG the Gammatonegram vector of the zth subband

[Gz,0(n), Gz,1(n), . . . , Gz,NF−1(n)]
T where z ∈ [0, C−1]. V′

G =
[
G′

z,0, G
′
z,1, . . . , G

′
z,NF−1

]T
is VG sorted in an ascending order such that G′

z,0(n) < G′
z,1(n) < . . . < G′

z,NF−1(n).

We calculate the difference between the strength of the energy peak and valley for each

subband to derive the C-dimensional GC feature:
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Figure 5.9: Gammatone contrast (GC) calculated from the accurate Gammatonegram
and the FFT-based approximation on a Jingju song “Jin yu nu” from dataset CJ. The
segmentation annotation is shown in the bottom pane.

GCz(n) = log(G′
z,NF−1(n)−G′

z,0(n)), (5.12)

Figure 5.9 demonstrates the GC calculated from the accurate Gammatonegram and

the FFT-based Gammatonegram on a Jingju song “Jin yu nu” from dataset CJ (see

Section 3.4.3). The bottom pane in the figure shows the ground truth annotations.

It can be noticed that the majority of the variance is presented in the second to the

fourth band, capturing mainly the dynamics in the singing voice and other pitched

instruments. GC extracted from both Gammatonegrams match closely to each other

in terms of their temporal shapes in the central bands, similarly to the observations

for GCCs (Figure 5.8). However, fewer dynamics are presented in the highest band

calculated from the fast Gammatone method. This is because as shown in Figure 5.7,

the fast Gammatone method accumulates more evenly distributed energies, especially

in the high-frequency channels, hence less contrast. Also, a sharper contrast is shown
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in the accurate method both frame- and band-wise. We will investigate the presented

features GCCs and GC in the next section.

5.6 Segmentation Experiment

5.6.1 Feature Extraction
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Figure 5.10: Feature extraction workflow.

This section is devoted to evaluate the presented features in an MSS scenario. The

feature extraction framework is shown in Figure 5.10. Two existing features, MFCCs and

chromagram, are also included to provide a comparison to the new features. Based on

the chromagram feature, we will analyse the effect of bins per octave for Jingju. Features

investigated are implemented as Vamp plugins (see Section 2.6).
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MFCCs and chromagram are extracted on the Queen Mary Vamp Plugins (QMVP) [Plu06].

We modified the implementation to enable HPSS in this process, such that the two fea-

tures are extracted from the harmonic spectrogram Xh. MFCCs are extracted using 40

Mel filters. We use 13-dimensional MFCCs (including C0) for subsequent processing.

Although different variants of the chroma feature exist (see Section 2.3.2), the majority

of these variants have hardcoded observations for Western music, for example, use pre-

defined BPO settings [MND09; ME10b]. In this thesis we use the standard chromagram

feature based on the constant-Q transform as illustrated in Figure 2.3.

The main parameters involved in the tempogram feature extraction process are the

size of the time window Wa used in the autocorrelation. Wa is conventionally set to 6

s [Pee05; GM11b]. In this work, we assess different settings of 3, 5, 6 and 8 s by investi-

gating the segmentation performance of derived features. We will also look for the best

usage of the presented tempogram features in the scenario of structural segmentation.

The effect of HPSS will be evaluated using MFCCs, chromagram and the investigated

tempogram features. MFCCs and chromagram will be extracted with the harmonic

source and the tempogram features will be extracted from the percussive source. Our

recent study has shown that when located in a moderate range, the sizes of the median

and maximum filters (see Section 5.2) do not introduce significant difference to the

segmentation results [TS16b]. In this work, the sizes of the median and maximum filters

are experimentally set to 0.23 s, 350 Hz, 0.07 s and 70 Hz, horizontally and vertically. The

separation factor β is the most important parameter among the set [DMD14]. We test

values ranging from 0.3 to 3, in steps of 0.1 when β ranges from 0.3 to 1 and of 0.5 from

1 to 3. We also aim to test the effect of the maximum filters as our modification based

on Driedger et al. [DMD14]. We extract three variants for a feature investigated: the

original feature extracted from the magnitude spectrogram without HPSS; the variant

extracted from the separated source after HPSS where the maximum filter is not applied;

the variant extracted from the separated source after HPSS with the maximum filter

applied.
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For the evaluation of investigated Gammatone features, we first analyse the same fea-

tures extracted from the Gammatonegram derived using the accurate method GA(n, t)

and the that using the FFT-based approximation GF (n, t) (see Section 5.5.1). For the

calculation of the latter, we use the original spectrogram without HPSS to avoid intro-

ducing possible interference in the approximation.

The sample rate fs, window size WN and hop size WH for feature extraction are

respectively 44.1 KHz, 46.4 ms and 23.2 ms. All features are further resampled to obtain

a uniform frame rate of 0.2 s. The use of a relatively large window would assist forming

the structural description on a musically meaningful scale (see Section 2.5.2). We will

situate the evaluation of all the presented features in the scenario of music structural

segmentation as introduced shortly.

5.6.2 Music Structural Segmentation

Three evaluation datasets are used in this experiment as introduced in Section 3.4.

The first two, BeatlesTUT and S-IA, are publicly available datasets comprising mainly

Western music commonly used to evaluate MSS tasks. The third one is presented in this

thesis consisting 30 excerpts of Jingju songs with an overall length of 3.6 hour. Due to

the relatively small size of the evaluation datasets, we propose a signal processing based

segmentation algorithm which does not rely on machine learning.

A novelty-based (for details see Section 2.5.3) segmentation method is used in the

experiment. Although different segment strategies exist, the novelty-based approach

attempts to detect segment boundaries by locating prominent change points in the fea-

ture representations and encodes few heuristics of the music signal itself into the design

of the segmentation algorithm. Therefore, assessing the segmentation performances with

such methods can provide a straightforward assessment the audio features used.

We first compute the self-similarity matrix (SSM) using the pairwise Euclidean dis-

tance of the feature matrix (see Section 2.5.3). A kG × kG Gaussian-tapered “checker-
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board” kernel is correlated along the main diagonal of the SSM yielding a novelty

curve NC(i) where i = 1, 2, · · · , N following Foote [Foo00]. In this process, the size

of the Gaussian kernel kG decides the size of the vicinity that the local frame is com-

pared against to derive the associated novelty score. An experimentally defined value

of kG = 80 is used in the evaluation. We will discuss the effect of this parameter in

Section 6.3.2.

The derived novelty curve is essentially a one-dimensional feature indicating candi-

date boundaries with peaks. In many novelty-based segmentation algorithms, segment

boundaries are typically detected from the NC based on an adaptive thresholding mech-

anism using median filters, i.e., a boundary will be identified when the novelty score

exceeds a local threshold. However, the moving medians may form a “plateau” shape

in the presence of a peak in the NC. Therefore, multiple samples around a peak may

have magnitudes exceeding the thresholds set by the medians, leading to multiple detec-

tions in the vicinity. Additionally, this peak picking method may neglect peaks with

small amplitudes overlooking its spikiness especially when peaks with higher amplitudes

present in the neighbourhood.

In this work, we propose a new boundary retrieval algorithm using a polynomial

fitting mechanism inspired by the onset detection algorithm introduced in Section 2.4.3.

The main difference between the two is that the backtracking process is excluded here.

To be more precise, normalisation is firstly applied to the raw NC. The rescaled NC

is then passed through a low-pass filter which is used for noise removal. Subsequently,

adaptive thresholds are generated from the smoothed NC using a median filter. Finally,

we fit a second-degree polynomial on the smoothed novelty curve centred around each

local maximum obtained from the adaptive thresholding using an experimentally defined

window of 5 frames. A candidate will be accepted as a segment boundary when both

the amplitude and the sharpness of the parabola meet set conditions controlled by a

single sensitivity parameter sens where sens ∈ [0, 100]. A low sens of 20 is used in this

experiment. This boundary retrieval algorithm is denoted Quadratic novelty (QN) in
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this thesis.
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Figure 5.11: Segmentation process on Jingju music excerpt “Hong niang” using the
MFCCs feature (extracted after HPSS with the maximum filter applied) by algorithm
QN. The black vertical lines, green triangles and red crosses represent respectively the
annotations, detected boundaries and those would also have been retrieved without the
polynomial fitting (using adaptive thresholding).

Figure 5.11 shows the segmentation process of a 60-second excerpt Jingju song “Hong

niang” (meaning “The red maid”) using feature hMFCCsm (MFCCs extracted after

HPSS with the maximum filter applied) with β = 0.5, lp = 10, mp = 10. We can

see that the novelty scores associated with the annotated segment boundaries in the

raw novelty curve can be relatively subtle. The novelties are brought more prominent

after the adaptive median removal. Compared to a standard adaptive thesholding based

boundary retrieval, polynomial fitting appears effective in deselecting many peaks in the

smoothed novelty curve and reducing false positives.

5.7 Results and Analysis

This section is devoted to evaluate the investigated audio features in a music structural

segmentation experiment in the contexts of different music genres. Features are evaluated
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using the segmentation boundary retrieval precision (P), recall (R) and F-measure (F)

measured at a 3-second tolerance (see Section 2.8.1). We first assess the presented

features individually in an attempt to find out their optimal use cases and parameter

settings then analyse the effect of HPSS on the investigated features.

5.7.1 Chroma Features for Jingju

BPO = 12 BPO = 7
P R F P R F

0.387 0.674 0.454 0.416 0.761† 0.503*

Table 5-A: Segmentation precision (P), recall (R) and F-measure (F) using the chroma-
gram feature with 7 and 12 bins-per-octave on dataset CJ. *, † and ‡ denote the presence
of significant improvement over the standard versions at the level of 0.05, 0.01 and 0.001
using the Wilcoxon signed-rank test.

Table 5-A shows the segmentation precision (P), recall (R) and F-measure (F) using

the chromagram feature with 12 and 7 bins per octave (BPO) on dataset CJ. Significant

higher recall and the F-measure are obtained when BPO = 7. As introduced in Sec-

tion 5.3, a 7-BPO chromagram sets the chromatic energy distribution in an anhemitonic

scale which is used by Jingju (see Section 3.2.1). We observe notably higher novelty

scores at boundary locations in the novelty curve calculated from the 7-BPO chroma-

gram than that from the 12-BPO chromagram, leading to fewer false natives in the

boundary retrieval. Meanwhile, using fewer bins hence coarser resolutions can combat

the interference from the short-term frequency oscillation as well as the fast-decaying

high-frequency transients, as shown in Figure 5.2. This leads to a reduction of noise in

the feature representation and therefore less false positives in the segmentation. In the

remainder of this thesis, we use the 7-BPO chromagram for Jingju, i.e., for dataset CJ,

unless noted otherwise.

However, it is commonly noticed that chromagram does not form stripes in the sub-

diagonals in the SSM, contradicting the observations for Western pop music, with one

example shown in Figure 5.12. Features used are the 7- and 12-BPO chromagram for the
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Figure 5.12: SSMs calculated using 7-BPO chromagram for a Jingju song “Tian nu san
hua” and 12-BPO chromagram for a Beatles song “Dig a pony”. Black vertical lines
indicate segment boundaries.

Chinese and Western song respectively with HPSS applied. Although different patterns

emerge from the two SSMs, both correlate with individual sectional characteristics. This

indicates the potential of chroma features as structural descriptors for genres with an

absence of chord repetitions. It is also suggested that different segmentation algorithms

may be needed to interpret the structural patterns encoded in the chroma feature for

different music styles.

5.7.2 Segmentation with Tempogram Features

Wa = 3 s Wa = 5 s Wa = 6 s Wa = 8 s
P R F P R F P R F P R F

BeatlesTUT 0.395 0.585 0.446 0.419 0.670 0.464 0.425 0.619 0.501‡ 0.478 0.588 0.474
CJ 0.414 0.650 0.456 0.438 0.632 0.460 0.471 0.614 0.484 0.433 0.549 0.451
S-IA 0.404 0.721 0.501 0.468 0.679 0.513 0.495 0.618 0.520 0.501 0.513 0.497

Table 5-B: Segmentation precision (P), recall (R) and F-measure (F) with tempogram
features under different time window settings. *, † and ‡ denote the presence of significant
difference in F-measure comparing the best performing Wa setting to the second best for
each dataset at the level of 0.05, 0.01 and 0.001 using the Wilcoxon signed-rank test.

To obtain the optimal performance for the investigated tempogram features, we first
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analyse the effect of the size of the time window Wa, the main parameter involved in the

tempogram calculation process (see Section 5.4.1). Segmentation results under different

Wa settings are reported in Table 5-B.Wa = 6 s achieves the optimal segmentation results

for all investigated datasets, which is in agreement with previous studies on Western pop

music [Pee05; GM11b]. The difference between the best and the second best performing

Wa setting is the most notable for dataset BeatlesTUT while the least for CJ. However,

we can observe that when the time window is set to 5 s or 6 s, lower precision is obtained

compared to 3 s or 8 s, with the longest window yielding the highest precision. One

explanation is that spurious peaks are suppressed due to longer window, though this

is accompanied by a drop of recall due to coarser temporal resolution in the feature

representation.

From Table 5-B we can observe a significantly higher recall than precision rate, i.e., an

over-segmentation, on all investigated datasets when Wa is set to 3, 4 or 5 seconds. This

phenomenon is consistent under different sensitivity settings for the boundary detection.

This suggests that the tempogram features are relatively robust in detecting true segment

boundaries. However, rhythmic variations do not necessarily indicate emergence of new

sections. The high false positive rate can also be due to the noise-incurring nature of

novelty-based segmentation methods. This is also reflected in Figure 5.11, where we

observe the case when there is no annotated boundary whereas it is characterised by a

notable peak in the novelty curve. We will investigate different segmentation algorithms

in the next chapter.

The calculation of the tempogram is based on the local periodicity of the onset detec-

tion function, which identifies the amplitude, phase or other changes in the spectrogram

of the input audio signal. Therefore, spectral information is not disregarded; rather, it

is presented in an abstracted manner with rhythmic cues emphasised. The fact that the

features are tested on a collection of pop music instead of hand selected pieces with well

defined rhythmic patterns indicates their general applicability to music content descrip-

tion.
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P R F dAD dDA

TCCs 0.407 0.612 0.498 0.76 2.03
TPCs 0.402 0.606 0.483 0.85 2.11
TI 0.431 0.527 0.476 0.81 2.15
TIR 0.446 0.551 0.502 0.88 2.08

Table 5-C: Segmentation precision (P), recall (R) and F-measure (F) on S-IA dataset
using TCCs, TPCs, TI and TIR measured at 3 seconds (time window size Wa = 6 s).
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Figure 5.13: Segmentation F-measures of the top five tempogram feature combinations.
Boxes contain segmentation F-measures for all samples in the dataset S-IA measured at
3 s. The min, first and third quartile and max value of the data are represented by the
bottom bar of the whiskers, bottom and upper borders of the boxes and upper bar of
the whiskers respectively. Medians are shown by the red line.

To compare the performance of each feature, we repeat the experiments by using

each feature individually under the same experimental conditions on the S-IA dataset.

The time window is set to 6 s. Results are given by Table 5-C. All features have similar

segmentation rates with an average F-measure of 0.480 when the boundary recovery is

measured at 3 s. As pointed out by Smith and Chew [SC13a], retrieving segment bound-

aries to within 3 s and to within 0.5 s can be two distinct tasks. It is therefore sensible to

identify the suitable features for these two tasks individually. When measured at a finer

scale (0.5 s), a notable drop of performance of the investigated tempogram features can

be observed. This difference is due to the fact that the tempogram calculation employs

large window sizes leading to degraded temporal resolutions. We however also identify

from this observation that tempogram features may qualify to be used in other MIR task
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operated at a track level, for example, music genre classification. No significant differ-

ence (Kruskal-Wallis test) can be found among the performances of the four features. A

Spearman rank-order correlation test also confirms correlation between the features.

To find out the best usage of the four features, we use all possible combinations of

them, i.e., the power set of the set of the four features (excluding the empty set), for

segmentation under the same experiment conditions for dataset S-IA. Vectors of features

to be combined are concatenated. The concatenated feature is subject to PCA where

only the lowest 6 dimensions are used. The best five performing feature combinations in

terms of segmentation F-measures are shown in Figure 5.13. The concatenation of TCCs

and TIR surpasses all the combinations obtaining the highest segmentation F-measure.

However, a statistical significance is lacking from different feature combinations.

TCCs and TIR characterise different aspects of the tempogram. While TCCs offer

a compact representation of the energy distribution of the tempogram with the cepstral

analysis applied, TIR measures the level of tempo intensity from a more musically mean-

ingful perspective. The combination of these two features hence fuses the two aspects,

yielding an effective feature descriptor. In the remainder of this thesis, we use the vector-

wise concatenation of TCCs and TIR as the tempogram feature set and denote it RT.

5.7.3 Effects of Harmonic Percussive Source Separation

We use MFCCs, chromagram (BPO=7 for CJ and 12 for S-IA and BeatlesTUT) and

RT to evaluate the effect of the investigated HPSS technique for music segmentation.

Results are given in Table 5-D comparing segmentation precision (P), recall (R) and F-

measure (F) measured at 3 seconds. Results are yielded by the original features (Table 5-

Da) and the features extracted after the harmonic-percussive source separation (HPSS)

with/without the maximum filtering (Table 5-Db/Table 5-Dc). The significance level of

the differences in segmentation F-measures between a feature with and without HPSS

obtained for each audio sample in a dataset is measured using Wilcoxon signed-rank test.
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Chromagram MFCCs RT
P R F P R F P R F

BeatlesTUT 0.367 0.715 0.462 0.346 0.691 0.451 0.383 0.684 0.441
CJ 0.388 0.767 0.448 0.406 0.763 0.490 0.415 0.716 0.467
S-IA 0.417 0.788 0.472 0.478 0.661 0.501 0.465 0.684 0.498

(a) Segmentation results using features extracted without HPSS.
Chromagram MFCCs RT

P R F P R F P R F

BeatlesTUT 0.403† 0.723 0.483 0.365 0.732 0.468 0.395 0.689 0.464
CJ 0.412 0.758 0.462 0.417 0.785 0.491 0.425 0.723 0.480
S-IA 0.454 0.801 0.496 0.499 0.649 0.506 0.469 0.624 0.503

(b) Segmentation results using features extracted with HPSS (maximum filter excluded).
Chromagram MFCCs RT

P R F P R F P R F

BeatlesTUT 0.405† 0.746 0.504* 0.395 0.745 0.476 0.407 0.683 0.471*
CJ 0.418 0.775 0.491* 0.422 0.791 0.513 0.432 0.743 0.495
S-IA 0.521 0.753 0.517* 0.507 0.624 0.516 0.471 0.581 0.501

(c) Segmentation results using features extracted with HPSS (maximum filter applied).

Table 5-D: Segmentation precision (P), recall (R) and F-measure (F) measured at 3 sec-
onds using selected features on BeatlesTUT, CJ and S-IA dataset. Highest F-measure
for each feature is shown in bold. *, † and ‡ denote the presence of significant improve-
ment over the standard versions at the level of 0.05, 0.01 and 0.001 using the Wilcoxon
signed-rank test.

The most notable improvements are observed for chromagram, with p < 0.001 in

cases both with and without the maximum filtering in the HPSS, second to which are

MFCCs, with p < 0.05 in and only in the maximum filtered case. Although HPSS has

improved the segmentation when using MFCCs and chromagram features in general, its

actual effects for each lies in improving respectively the precision and the recall. This

is mainly because a novelty-based segmentation algorithm may have limited efficacy

in discerning the false positives in low-level timbre similarities introduced by MFCCs,

and can overlook the longer term repetition structures presented by chroma features,

incurring limited precision and recall rate in the first place.

The effect of HPSS is altered by different configurations of its parameters. The most

influential parameter in our case is the separation factor β. Driedger et al. report

that when β = 1, the residual is roughly equally distributed in both Xh and Xp while
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Figure 5.14: Average segmentation F-measures using features extracted with different β
settings in the harmonic-percussive source separation (HPSS).

when β = 3 only clearly horizontal and vertical structures are preserved in the spectro-

gram [DMD14]. Applying the maximum filter in the separation also has the tendency of

leaving residual components in the resulted harmonic and percussion source. As can be

seen from Figure 5.14, a β ranging from 0.4 to 0.5 is optimal for all investigated features

and datasets (results in Table 5-D are obtained with β = 0.5). RT requires lower β for

an optimal segmentation performance compared to the other two, with the F-measure

starts to drop sharply from β = 0.6. Unlike the chroma descriptions that rely on only

the harmonic source, rhythmic information can be expressed also by the pitched com-

ponents. Removing the harmonic source from the tempo tracking may lead to a loss of

subsidiary rhythmic information in the derived features. When β exceeds 0.8, all features

yield worse segmentation results than when HPSS is not applied. This shows that in
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the case of music structural analysis, it is not desirable to have the opposite source and

the residuals tightly removed, given each source may contain complementary structural

information.

5.7.4 Segmentation with Gammatone Features

GCCs (fast) GCCs (accurate) GC (fast) GC (accurate)
P R F P R F P R F P R F

BeatlesTUT 0.433 0.617 0.502 0.425 0.632 0.503 0.412 0.546 0.434 0.425 0.561 0.451
CJ 0.445 0.785 0.543 0.438 0.726 0.520 0.449 0.634 0.489 0.425 0.624 0.463
S-IA 0.437 0.769 0.511 0.441 0.776 0.515 0.402 0.668 0.445 0.389 0.662 0.441

Table 5-E: Segmentation precision (P), recall (R) and F-measure (F) measured at 3
seconds with Gammatone features extracted from the accurate Gammatone calculation
and the FFT-based fast approximation.

As introduced in Section 5.5, the FFT-based Gammatone approximation provides a

close match to the accurate Gammatone filtering process. In this section, we evaluate

the presented Gammatone features in a segmentation scenario.

Segmentation results using features extracted from both the fast and the accurate

Gammatonegrams are shown in Table 5-E. GCCs derived from the two Gammatone-

grams give close results on all datasets. As introduced in Section 5.5.1, the fast method

assumes coherence of addition of amplitude from neighbouring channels and neglects

the variations in phrase, hence yields smoother transitions between bins than the actual

Gammatone filters do. The DCT operation, however, re-projects the original spectra

for an energy compaction and has the tendency to erase such discrepancies. This would

lead to similar representations of GCCs from both methods as also noted in Figure 5.8.

For the Gammatone contrast (GC), higher F-measures are obtained when using the

fast Gammatonegram on CJ and S-IA mainly because of improved precisions. As shown

in Figure 5.9, using the fast method can reduce the time smearing effect in the lower

frequency channels. This can improve the salience of the corresponding boundaries in

the feature representations especially when with active presence of vocals. However, bet-

ter segmentation is obtained when using the accurate Gammatonegram for BeatlesTUT.



Chapter 5. Feature Extraction for Music Structural Segmentation 152

One explanation is that the energy additions between channels in the fast Gammatone-

gram can have a prohibitive effect in discriminating the instruments which could set the

structural sections apart.

In general, however, the two sets of features yield very similar segmentation results

with no statistical significance presented between each pair when evaluated on all the

three datasets. Although using the Fourier transform would lead to a loss of temporal

resolution, the difference becomes less remarkable after the actual Gammatone filter

outputs have been aggregated into fixed temporal windows to derive the time-frequency

representation. As a conclusion, using the fast method for feature extraction is proved

at least not harmful compared to the accurate method in our case, especially with sup-

pressed time smearing effects. In the remainder of this thesis, we will use features derived

from the fast method for a reduced computation cost.

Configuration BeatlesTUT CJ S-IA
P R F P R F P R F

GCCs Global 0.388 0.762 0.488 0.458 0.781 0.531 0.453 0.669 0.511
Individual 0.393 0.766 0.493 0.461 0.791 0.549 0.460 0.787 0.522

GCCs+GC Global 0.397 0.776 0.495 0.467 0.796 0.558* 0.425 0.697 0.522
Individual 0.407 0.787 0.505 0.470 0.797 0.584 0.451 0.693 0.535

MFCCs Global 0.395 0.745 0.476 0.422 0.791 0.513 0.507 0.624 0.516
Individual 0.401 0.761 0.489 0.430 0.797 0.521 0.512 0.640 0.524

Chromagram Global 0.405 0.746 0.504 0.418 0.775 0.491 0.521 0.753 0.517
Individual 0.408 0.766 0.506 0.425 0.774 0.509 0.524 0.764 0.522

Table 5-F: Segmentation precision (P), recall (R) and F-measure (F) measured at 3
seconds with the Gammatone features, MFCCs and the chromagram. *, † and ‡ denote
the presence of significant improvement from the best performing feature over the second
best performing feature on individual datasets at the level of 0.05, 0.01 and 0.001 using
the Wilcoxon signed-rank test.

Here we compare the Gammatone features extracted from the FFT-based Gamma-

tonegram with chromagram and MFCCs as structural descriptors. The latter features

are extracted after harmonic-percussive source separation with maximum filtering (see

Section 5.7.3). Individual features are evaluated on each dataset, as shown in Table 5-F.

Results are obtained with system configurations parameterised both globally and on each

dataset individually. By doing this, we are aiming to investigate how dependent each

algorithm is on parameter configurations in the context of specific music types. To avoid
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the potential overfitting, we use the global configuration for the Gammatone feature set

unless noted otherwise in the remainder of this thesis.
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(a) Gammatone (FFT-based) spectrogram for song for song “Ba wang bie ji”.
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(b) Mel spectrogram for song “Ba wang bie ji”.
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(c) Gammatone (FFT-based) spectrogram for song “Hideout”.
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(d) Mel spectrogram for song “Hideout”.

Figure 5.15: Gammatonegram and Mel spectrogram for Jingju song “Ba wang bie ji”
from CJ and a rock song “Hideout” (0 - 60 s) from S-IA visualised on a log scale.

Here we compare GCCs to MFCCs, both are based on cepstral analysis of the spectra

and related to the music timbre, on individual datasets. The segmentation method used

is Quadratic Novelty (QN). For BeatlesTUT and S-IA, GCCs obtain higher recall than
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MFCCs. However, there is a significant drop of precision on S-IA (p < 0.05., Wilcoxon

signed-rank test). We find that more boundaries have been retrieved, a large portion of

which, however, are false positives.

Figure 5.15 shows the Gammatonegram and the Mel-scaled spectrogram for a Jingju

song “Ba wang bie ji” from CJ and a rock song “Hideout” from S-IA visualised on a log

scale. 64 Mel filters are used with the upper and lower bound set to 50 Hz and half the

sample rate, same as the settings for the Gammatone filters. For both songs, only the

first 60 seconds are shown in the plot for visualisation purposes. From Figure 5.15c and

Figure 5.15d we can notice a rather remarkable difference between the Gammatonegram

and the Mel-spectrogram in terms of the level of contrast among vectors and frequency

bins. This would lead to larger variations in the derived features hence sharper local

peaks in the corresponding novelty curves. For music types with relatively subtle sec-

tional acoustical variations such as the “through-composed” music, this may assist the

derived feature representations to become more discriminative against structural seg-

ments. However, for music types with distinctive sectional timbral variations, it may be

less advantageous for novelty-based segmentation methods to discriminate the false pos-

itives from local peaks in the novelty curve. In future work, we propose to use different

segmentation methods relying long-term homogeneity or repetition structure principles

to better employ this feature.

On CJ, GCCs retrieve less spurious boundaries than MFCCs do, leading to higher

precision hence an improved F-measure overall. As introduced in Section 2.2.2, ERB

filters yield smoother frequency responses in the low-frequency areas than Mel. This is

advantageous for many vocal-driven music works, such as opera, where the singing voice

is an important discriminator of the music structure with its salient presence in the

overall instrumentation. As can be seen from the Gammatonegram for the Jingju song

shown in Figure 5.15a, the dynamics introduced by the singing voice mainly present

in the lower-middle frequency bands of the spectra, which can be better captured by

the ERB scale than Mel. Meanwhile, by emphasising the lower sound levels, the ERB
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warping can be more robust against the high-frequency transients which could interfere

with the analysis. Figure 5.16 shows the self-similarity matrices (SSMs) derived from the

MFCCs and GCCs on a Jingju song “Ba wang bie ji” from CJ (only the first 60 seconds

are shown). It can also be noticed from the SSMs that GCCs yield more distinguished

sectional variations than MFCCs.
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Figure 5.16: SSMs computed using MFCCs and GCCs on the first 60 seconds excerpt of
“Ba wang bie ji” from CJ. Vertical lines indicate segment boundaries.

Although GC gives somehow mediocre segmentation rates when used alone (see

Table 5-E), combining it with GCCs has introduced improvements over both baselines

for most cases on the investigated datasets, as shown in Table 5-F. However, a statistical

significance is only present for dataset CJ. The main effect of using this feature by con-

catenating it to the feature matrix of GCCs is a more pronounced within-SSM variance.

This has led to the retrieval of more boundaries as indicated by a higher recall rate in a

general case yet sometimes a degrading precision.

In this experiment, GCCs surpass MFCCs notably on the Jingju dataset comprising

vocal-driven music. The fact that the Gammatone features also obtain comparable

segmentation performance to MFCCs and chromagram on BeatlesTUT and S-IA indicate

them as effective alternatives to existing audio features for music structural analysis. In

the remainder of this thesis, we use the vector-wise concatenation of GCCs and GC as

the Gammatone feature for the analysis of relevant scenarios. We denote this feature set
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GF.

5.7.5 Audio Features and Music Genres

Investigated features perform differently on Western and Jingju music. Chromagram

and MFCCs work reliably for Western music as shown in Table 5-D and Table 5-F, con-

firming previous conclusions [PMK10]. For Jingju, timbre features capture its structural

characteristics better than the chroma feature, with the auditory-inspired Gammatone

features outperforming MFCCs. Structural patterns of different genres may be conveyed

differently by individual features, as can be seen in Figure 5.12, suggesting that segmen-

tation algorithms should incorporate different principles to interpret such patterns.

It can be noticed from Table 5-F that chromagram presents lower F-measures than

all the timbral features tested, despite that chroma features are well recognised to model

the structure of Western pop music [PMK10]. This may partly be due to that QN as

a novelty-based segmentation algorithm is less effective to capture the global harmonic

structures that chroma features are depicting. It is also observed that algorithms are

more dependent on parameter configurations when evaluated on CJ than on S-IA and

BeatlesTUT, reflected by the more substantial degradation in segmentation F-measures

observed when changing the parameter configuration tuned for the individual dataset to

the global setting (see Table 5-F). This implies the need for designing new segmentation

methods to bridge the gaps between genres. It also implies that musical knowledge, such

as the genre and the hierarchy of music structure to analyse, can assist a segmentation

system to obtain better performance. In the next chapter, we will analyse different

segmentation methods for specific audio features and music types.

5.7.6 Future Applications of Presented Features

Whilst features presented in thesis chapter are evaluated in an MSS scenario, we also

intend to identify their potentials in other applications. Firstly, we propose to apply
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the tempogram features to describe the music content on the piece-level for applications

such as music classification and genre recognition. In this way, the degraded temporal

resolution would become less a limitation for the performance of the features. As shown

in Figure 2.4, very distinct temporally evolving patterns emerge in the tempograms

for the Jingju and the Beatles song. A recent study [CSC10] shows that the rhythmic

aspects of songs, especially the beat intensities and instrument distributions, turn out

to be very effective when used for genre recognition. It also shows that such features

might be an even better tool to estimate music preferences of humans than the current

automatic genre classifiers. We hence are also curious in applying these features for

music recommendation.

The sound sources in Jingju, especially the singing voice and the major melody instru-

ment jinghu (a bowed-string fiddle), often overlap. This may lead to many pitch tracking

algorithms to fail. The Gammatone features have surpassed MFCCs in the structural

segmentation for Jingju due to their descriptive capacity for vocals. Applications of this

feature set hence lie in the music summarisation as a replacement of the common timbre

or spectral features. We also propose to design timbre-invariant chroma features using

templates calculated from Gammatone features.

5.8 Summary

This chapter presented novel audio features for music structural segmentation (MSS) in

the scenario of both Jingju and Western music. To begin with, although chroma features

are originally developed to describe the harmonic properties for Western music with 12

pitch classes, we analysed the bins per octave (BPO) setting in chroma for Jingju and

justified the use of the 7-BPO chromagram.

Despite identified as one of the most important indicators of the structure changes,

rhythmic features are not as commonly used as harmonic or timbral features. As the

second contribution, a set of rhythmic features was presented incorporating perceptual
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considerations. Unlike standard rhythmic features from literature which employ only the

tempo information, features were extracted from the mid-level tempogram representation

consisting complementary spectral information with the rhythmic cues emphasised. The

fact that the features are tested on a collection of pop music instead of hand-selected

pieces with well defined rhythmic patterns indicates their general applicability to music

content description. We also identified that rhythmic components with slower tempo

have stronger boundary salience as structure indicators.

Although music structural analysis is considered a high-level task involving human

perception, auditory cues are barely incorporated in the commonly used audio features.

This chapter presented novel timbre features using the Gammatone filters better mod-

elling the human auditory TF resolutions to describe the music structure. The presented

Gammatone features work effectively as an alternative to MFCCs and chromagram on

all the investigated datasets with Western and Jingju music, and surpass them on the

Jingju dataset with salient presence of vocals.

Besides presenting new features, this chapter also introduced a harmonic-percussive

source separation (HPSS) algorithm as a pre-processing step for feature extraction. The

separation is applied to different features and evaluated on different datasets in an MSS

experiment, bringing significant improvements to the segmentation for the investigated

music categories. A low separation factor yields the best segmentation for all features

investigated, even for chroma feature which is built only on the harmonic content. This

indicates that although applying HPSS in the feature extraction is beneficial, all sound

sources contribute to the overall music structure hence cannot be excluded from the

structural description.

The tempogram features developed are based on the onset detection methods pre-

sented in the previous chapter. The segmentation algorithm in this chapter is also

adapted from the peak picking algorithm from the onset detection system investigated.

We hereby justified that thorough investigations into MIR algorithms and signal process-

ing methods can shed invaluable perspectives for new applications in a music analysis
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system.

In this chapter, we used a single segmentation method to evaluate the investigated

features. By doing this, we want to assess the strengths of the features themselves and to

derive a fair comparison of them. However, using single segmentation method may not

guarantee the optimal performance of all investigated features. This is also supported by

the observation that the self-similarity matrices of the chroma feature present different

patterns for different music types, as discussed in Section 5.7.1. We also noticed from

Figure 5.11 that peaks in the novelty curve do not always reliably indicate the presence

of segment boundaries. How do different segmentation methods incorporating different

structural principles work when different audio features are used or in the scenario of

different music types? We aim to answer this question with the project undertaken in

the next chapter.



Chapter 6

Methods for Music Structural

Segmentation

6.1 Introduction

The previous chapter presented novel audio features which were evaluated in a music

structural segmentation (MSS) experiment using a novelty-based method. The eval-

uation results also indicate that the same audio features may exhibit the structure of

different music types in different manners. Therefore, specific algorithms may be required

to interpret the encoded patterns from feature descriptors or similarity representations.

As introduced in Section 2.5.3, techniques for MSS mainly fall into three cate-

gories relying respectively on the novelty, homogeneity and repetition principles (see

Section 2.5.3). To investigate how the three principles interpret the music structure for

different genres, this chapter will investigate several popular segmentation algorithms

relying on these principles for three datasets consisting both Chinese and Western music.

We will also use different segmentation methods to analyse audio features presented in

the last chapter.

160
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With the research carried out in this chapter, we aim to analyse how the choice of

audio features, segmentation algorithms, music genres and annotation principles interact

in an integrated segmentation system. Does one set of annotations provide consistently

reliable reference for the evaluation of an MSS system? What is the pathway towards

an automatic MSS system across different music styles? This chapter is organised as

follows. Section 6.2 introduces the music segmentation system. Section 6.3 is devoted to

evaluate the segmentation results and finally, we conclude this chapter in Section 6.4.

6.2 Segmentation Experiments

Different segmentation methods have been proposed as summarised in Table 2.9. Four

recently published ones are investigated in this chapter including FOOTE [Foo00], Con-

strained clustering (CC) [LS08], Convex NMF (CNMF) [NJ13] and SERRÀ [Ser+12].

These methods have been introduced in Section 2.5.3. We also include Quadratic novelty

(QN) as presented in Section 5.6.2. Altogether, these five methods cover the novelty,

homogeneity and repetition structural hypotheses (for introductions see Section 2.5.3).

There are several reasons why these algorithms are chosen. First, they are among

the state-of-the-art algorithms from recent works relying on signal processing tech-

niques [PMK10]. Although some recent works using convolutional neural networks

(CNNs) have achieved better segmentation results [GS15a; USG14], they are beyond

the scope of this thesis. This is because these neural network (NN) based methods use

the spectrogram as input to the NNs whereas this thesis is focused on the analysis of more

specialised audio features to interpret the music structure. Second, these methods make

relatively few assumptions on the music genres with the boundary detection approaches

designed to be generic. Therefore, they are considered applicable to all investigated

music corpora. Finally, the inclusion of different segmentation methods will enable us

to investigate the three underlying structural principles. The only method incorporat-

ing the repetition principle investigated in this chapter is SERRÀ where it is combined
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with the novelty and the homogeneity principle. Methods based solely on the repetition

principle are however excluded from the investigation in this chapter due to the fact that

they make structural discoveries by looking for global repetitions which can be lacking

in Jingju. We will however discuss the effect of the repetition structural principle in the

scenario of Jingju in Section 6.3.3.

The investigated algorithms are evaluated in an MSS context using Music Structure

Analysis Framework (MSAF) [NB15] comprising a few recently published segmentation

algorithms, including FOOTE, CC, CNMF and SERRÀ which are of interest of our

research. These methods are introduced in Section 2.5.3. We also include QN into the

MSAF framework to obtain a uniform processing environment.

Although the investigated algorithms use specific features in the original implementa-

tions, different features characterising different aspect of the music content are assessed

in our evaluation including chromagram, MFCCs and the Gammatonegram features GF,

as presented in Section 5.7.4. By doing this, we want to illustrate the relations between

the performance of different segmentation algorithms and the selection of audio features.

The feature extraction framework used in MSAF is LibROSA, an open source python

library for music and audio analysis [McF+15]. This library provides feature extraction

functions for chromagram and MFCCs. We also include the Gammatone feature extrac-

tion module as introduced in Section 5.5.2 into this library. Note that for the case of

CNMF, we require MFCCs to be rescaled and standardised to ensure non-negativity

when used as the input feature.

The segmentation workflow is shown in Figure 6.1. A Hann window is used for the

FFT with the sample rate fs, window size WN and hop size WH being respectively 44.1

KHz, 46.4 ms and 23.2 ms.

Harmonic-percussive source separation (HPSS) is applied as for feature enhancement.

The HPSS implementation provided by LibROSA however differs from our method which

applies additionally a maximum filter (see Section 5.2), although both use the median
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Figure 6.1: Feature extraction and segmentation framework.

filter based approach following FitzGerald [Fit10]. As discussed in Section 5.7.3, the

maximum filter has introduced significant improvements in the segmentation compared

to features extracted both without HPSS and with HPSS but without the maximum

filter following [DMD14]. Therefore, we replace the HPSS implementation in LibROSA

with our modified version as introduced in Section 5.2.

MFCCs and chromagram are then extracted from the harmonic spectrogram after the



Chapter 6. Methods for Music Structural Segmentation 164

source separation. The Gammatonegram is calculated using the FFT-based approxima-

tion approach (see Section 5.5) where the feature GF is derived. The HPSS is however

excluded from this process to obtain a matched approximation. The extracted MFCCs,

chromagram and GF are respectively 13, 12 or 7 (BPO = 12 for S-IA and BeatlesTUT

and BPO = 7 for CJ as introduced in Section 5.3) and 19-dimensional features.

The separated percussive source Xp is used for beat tracking following Ellis [Ell07]

which employs a dynamic programming approach to search for the optimal beat sequence

from the global tempo estimation. Extracted features are then beat-synchronised such

that the analysis frames are aggregated onto a beat-level [Ell07]. Features are then used

to segment the music on our three evaluation datasets as summarised in Table 3-C using

the investigated algorithms. Segmentation results will be presented in the next section.

6.3 Results and Discussion

6.3.1 Segmentation Results

Table 6-A shows the segmentation precision (P), recall (R) and F-measure (F) measured

at 3 seconds with investigated methods. While SERRÀ (see Section 2.5.3) performs

consistently on the investigated datasets, the other algorithms have varied performances

across datasets. QN significantly outperforms all other algorithms on dataset CJ, with

p = 0.023 (Wilcoxon signed-rank test) between the F-measures by QN and SERRÀ as

the second best performing algorithm. SERRÀ surpasses all the other investigated algo-

rithms on BeatlesTUT, with comparable results using the three different features. On S-

IA, the novelty- or homogeneity-based methods present superior results than repetition-

based ones and the timbre features tend to outperform the chroma feature, with signif-

icant differences for most cases. We will analyse the segmentation performance given

specific system configurations, feature types and music genres in the remainder of this

chapter.
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GF MFCCs Chromagram
P R F P R F P R F

BeatlesTUT 0.661 0.543 0.587 0.658 0.534 0.581 0.612 0.514 0.549
CJ 0.754 0.358 0.475 0.708 0.338 0.449 0.659 0.319 0.421
S-IA 0.562 0.522 0.520 0.556 0.545 0.529 0.516 0.547 0.525

(a) FOOTE.
GF MFCCs Chromagram

P R F P R F P R F
BeatlesTUT 0.523 0.710 0.587 0.584 0.635 0.580 0.435 0.726 0.530
CJ 0.673 0.521 0.574 0.706 0.439 0.521 0.587 0.604 0.574
S-IA 0.438 0.666 0.508 0.478 0.610 0.513 0.394 0.704 0.480

(b) Quadratic novelty (QN).
GF MFCCs Chromagram

P R F P R F P R F
BeatlesTUT 0.555 0.708 0.612 0.568 0.706 0.618 0.527 0.668 0.579
CJ 0.688 0.436 0.522 0.689 0.441 0.525 0.662 0.453 0.524
S-IA 0.514 0.586 0.533 0.517 0.565 0.526 0.558 0.544 0.535

(c) Constrained clustering (CC)
GF MFCCs Chromagram

P R F P R F P R F
BeatlesTUT 0.563 0.597 0.594 0.540 0.559 0.537 0.491 0.652 0.537
CJ 0.688 0.413 0.492 0.630 0.380 0.463 0.557 0.404 0.450
S-IA 0.528 0.464 0.478 0.502 0.438 0.448 0.472 0.526 0.477

(d) Convex non-negative factorisation (CNMF).
GF MFCCs Chromagram

P R F P R F P R F
BeatlesTUT 0.603 0.761 0.663 0.621 0.772 0.671 0.612 0.777 0.679
CJ 0.664 0.471 0.540 0.676 0.482 0.551 0.674 0.445 0.525
S-IA 0.433 0.635 0.493 0.443 0.635 0.497 0.438 0.630 0.500

(e) SERRÀ

Table 6-A: Segmentation precision (P), recall (R) and F-measure (F) measured at 3
seconds with individual features using investigated methods. The highest F-measure for
each dataset is shown in bold.

FOOTE QN CC CNMF SERRÀ
BeatlesTUT 0.463 0.588 4.448 1.661 0.754

CJ 1.766 2.438 21.534 22.073 3.632
S-IA 2.136 1.883 15.228 9.270 2.609

Table 6-B: Average computation time (in second) for each sample in a dataset with
investigated algorithms. The feature used is chromagram.
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These methods are associated with different computation complexities [AB07]. Table 6-

B lists the average computation time of each method for each track in a dataset using

the chromagram feature. The computation statistics are obtained using a two-core Mac-

intosh machine with 3.2 GHz CPU and 12 GB RAM.

Compared to the novelty-based approaches, the homogeneity- and repetition-based

methods tend to be of higher computational cost with their analyses taking a top-down or

global approach. While FOOTE, QN and SERRÀ have their computation time correlate

quasi-linearly with the length of the track, the computation time of CC and CNMF

depends also on the complexity of the feature representations to be encoded or factorised

and the pre-defined classification rules. For practical reasons, for an integrated MSS

system whose analysis can involve large corpora or playlists, the computation complexity

becomes another important factor in the selection of segmentation algorithms. Under

these conditions, the relatively low-cost methods may become more advantageous despite

of the possible limitations in the segmentation performance.

6.3.2 Algorithms and Parameter Configurations

FOOTE QN CC CNMF SERRÀ
kG kG sens Cc R md Sn

Tian 66 100 80 8 6 3 0.04
MSAF [NB15] 96 - - 8 3 3 0.04

Table 6-C: Parameter configurations used to derive the results in Table 6-A.

Results reported in Table 6-A are derived using system configurations differ from the

original implementation by Nieto and Bello [NB15], as summarised in Table 6-C. A few

additional parameters are left out from the table as they are considered less influential

to the segmentation results.

The parameter Gaussian kernel size (kG) is used in both FOOTE and QN. The

effect of this parameter for boundary retrieval has been discussed in Foote [Foo00]. We

however notice different settings of this parameter for both algorithms resulted from
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Figure 6.2: Segmentation F-measures measured at 3 seconds using individual features
with method QN under different settings of Gaussian kernel size (kG).

different boundary retrieval methods.

Here we analyse the effect of kG in the scenario of algorithm QN. Figure 6.2 shows

the average segmentation F-measures by algorithm QN under different kG settings using

the three features on each dataset. The rest of the parameters are fixed to the optimal

settings. Lower kG is needed for CJ, with the optimal value ranging from 60 - 80,

than S-IA and BeatlesTUT whose optimal kG is around 120 to 130. For BeatlesTUT

which is annotated at a music function level (see Section 3.4.1), a reasonably high kG

is needed to screen out the false positives associated with the local novelties. Although

CJ and S-IA are annotated on the same similarity level and that the average segment

length of S-IA is shorter than that of CJ (see Table 3-C), smaller kernels are proven

beneficial for the latter because of the relatively lower boundary salience reflected by the
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consistently lower novelty scores in the novelty curve, which also tends to be noisier (see

Figure 5.11). This suggests that the boundary salience of acoustical novelty is correlated

with the characteristics of specific music genres, as has also been noted for Western

music [Smi14].

Another important parameter of QN is the boundary retrieval sensitivity sens. This

parameter is also involved in the onset detection algorithms as analysed in Chapter 4,

where the appropriate sens setting differs across different onset types (see Section 4.4.4

for details). In this work, a uniformly high sens of around 80 - 90 (out of 100) is required

for all datasets. This somehow differs from the findings reported in the last chapter that,

when using the frame-synchronised features a low sens of around 20-30 is needed to avoid

retrieving a large number of false positives.

In FOOTE, boundaries are detected using an adaptive threshold generated by a

median filter. The optimal window length of the median filter however varies significantly

across the investigated datasets. The boundary retrieval mechanism of QN is to assess

not only the amplitude but also the spikiness of a peak in the novelty curve as a boundary

candidate. The fact that roughly the same sens value yields the optimal segmentation

F-measures for all evaluation datasets suggests that this algorithm is less dependent on

system configurations. Nevertheless, a novelty-based method alone may not be sufficient

enough to prune the false positives introduced by local novelties, as indicated by the

lower precision than recall in a common case.

In a standard NMF decomposition, the decomposition rank R is normally chosen

such that (N +P )R < NP for the input matrix V ∈ RN×P . Kaiser and Sikora reported

a maximum of sectional separability with a rank of 9 for the NMF decomposition where

the input matrix V is the SSM of the audio features for the Beatles dataset [KS10]. In

this work, the effect of R is illustrated in Figure 6.3 by the segmentation F-measures.

Similar trends emerge from different features where results reported in Figure 6.3 are

derived using the Gammatone features GF. The system performance on BeatlesTUT is

less dependent on the setting of R compared to the other two datasets. When within
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Figure 6.3: Segmentation F-measures measured at 3 seconds with method CNMF under
different settings of rank of decomposition using the feature GF.

a moderate range of 4 to 7, no significant difference in boundary retrieval is observed.

The main disparity however is that retrieved segment are clustered into different types of

sections and labelled differently. For S-IA and CJ, on the contrary, the algorithm shows

higher dependency on the configuration of this parameter with the optimal setting being

around 6 - 7. Under the optimised condition, the segment types are characterised mainly

by the leading instrumentations (vocal, harmonic instruments, etc.).

However, when a large R is used exceeding the optimal range, this algorithm works

differently on BeatlesTUT as on CJ and S-IA. For BeatlesTUT, the change of using

larger R is mainly a subdivision of the segments retrieved by a smaller R. For CJ and

S-IA, however, the most direct outcome of using larger decomposition rank is redefined

clusters. That is to say, new segments are retrieved which differ from those formed

with a smaller decomposition rank. The new clusters can be rather chaotic with large

within-cluster variance. This also indicates that the success of NMF-based segmentation

algorithms is dependent on the predefined number of sections, with high homogeneity

present in each cluster. Therefore, such segmentation methods can be more effective

when the sections are described at a reasonably high hierarchy, describing phenomena

such as the musical functions or the lead instruments.

There are three main parameters involved in the segmentation process of CC: the
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number of HMMs (Ch), the number of clusters (Cc) and the neighbourhood size (Sn)

for the temporal constraints. A relatively large Ch (60 - 90) appears beneficial for all

investigated datasets as observed by Levy and Sandler [LS08], due to the fact that

segment types can not be comprehensively captured by individual HMM states. We use

Ch = 80 in this thesis following Levy and Sandler [LS08] and discuss the effect of the

other two parameters.

Figure 6.4 demonstrates the segmentation F-measures using CC with different Sn and

Ch settings on investigated datasets. The three features, MFCCs, GF (see Section 5.7.4)

and chromagram, show similar patterns and here we use GF as an example. In Levy

and Sandler [LS08], Sn is set to 16 encoding the musical knowledge observed for Western

pop music that a standard phrase length of is 16 beats. This is confirmed by our results

that for BeatlesTUT, setting Sn to 16 or 8 which is an integer factor of 16, achieves

the highest segmentation F-measures. A moderate Cc ranging from 6 - 8 appears the

most beneficial. However, no significant difference is found between pairs of F-measures

obtained by different settings of this parameter.

For S-IA, using a moderate Cc and a large Sn yields the optimal segmentation results.

For datasets such as S-IA with relatively large within-dataset acoustical variations, con-

straining the clustering algorithm to operate on a large time scale can effectively reduce

the number of false positives. For CJ, larger Cc and lower Sn are beneficial for an

effective segmentation with the highest F-measure obtained under the extreme settings

(Cc = 20, Sn = 8). No significant difference in segmentation F-measure is observed

when Sn is the range of 1 (i.e., no time constraint is encoded) to 8. To keep increasing it

however leads to a steady degradation of F-measure due to the substantially increasing

false negatives. This shows that the time constraint does not introduce any solid benefit

to the clustering for Jingju where there is no established beat-bar-phrase structure as

observed for Western pop music [VF15].

We can also notice from Figure 6.4 that, compared to Cc, Sn has a more profound

effect on the segmentation. However, only Cc is made as a user-configurable parameter
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(a) Dataset BeatlesTUT.

(b) Dataset CJ.

(c) Dataset S-IA.

Figure 6.4: Surface plot of the segmentation F-measures measured at 3 seconds using
feature GF with Constrained Clustering (CC) under different settings of number of
clusters (Cc) and neighbourhood size (Sn) on the three datasets.
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in the software1 published by Levy [LS08] while Sn is not.

The parameters employed in SERRÀ are mainly involved in two processes: the cal-

culation of the structure features (SF) and the detection of segment boundaries from

the feature representations. We found that the setting of parameters involved in the

former. i.e., the embedding dimension used for emulating recent past and the number of

nearest neighbours used for building the recurrence plot RP , do not vary across datasets

significantly. The optimal settings reported in by Serrà et al. are proved appropriate

for all investigated datasets [Ser+12], indicating that the recurrence plot approach can

be relatively invariant to different musical genres.

We observe different optimal parameterisations for the segmentation system for dif-

ferent evaluation datasets. An intuitive application of the knowledge acquired is to build

a database holding the metadata for the music signals and parameter configurations such

that the user or the segmentation system can query to find the optimal parameterisation

for specific algorithms.

6.3.3 Repetition-based Segmentation Methods and Jingju

Repetition-based methods are developed to capture the chordal repetitions which are

observed as important indicators as segment boundaries for Western pop music. Although

the methods relying only on the repetition principle are excluded from the evaluation,

we are interested in how they perform in the scenario of Jingju. Even for “through-

composed” music, it is only the outline of the song which is the “through-composed”;

there always exist repetitions with subtle changes of tonality and of theme [SW70].

To this end, we test a few recently published repetition-based methods [MND09;

ME14b; WB10] on the CJ dataset. The first method finds repeated chroma sequences

in a song, from which the structural segments are identified using a greedy algorithm

introduced by Mauch and his colleagues [MND09]. As the second method, McFee and
1http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
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Ellis propose to detect segment boundaries by applying a spectral decomposition of the

Laplacian of the recurrence plot of the chroma features [ME14b]. The third method uses

a variant of the sparse convolutive NMF decomposition where the sparsity constraints are

introduced to automatically identify the number of segment types and section lengths,

presented by Weiss and Bello [WB10]. While these methods generally produce reason-

ably high precision rates, the average recall rate yielded by each under the optimised

configuration is below 0.3 due to a large number of false negatives.

(a) Chroma feature and the annotated segments.

(b) Segmentation with method Mauch.

(c) Segmentation with method McFee.

(d) Segmentation with method Weiss.

Figure 6.5: Segmentation using chromagram with three repetition-based methods
Mauch [MND09], McFee [ME14b] and Weiss [WB10] on Jingju song “Jin yu nu”. The top
pane shows the annotations (shown by black vertical lines) and the 7-BPO chromagram
feature.

Figure 6.5 shows the segmentation results on a Jingju song “Jin yu nu” using the

chromagram feature (BPO=7) with the three segmentation algorithms. Although har-

monic patterns do present correlating with the annotated segments, such patterns hardly

reflect any chordal repetition. The boundaries do get detected, however, pinpoint large

melodic passages or arias that superimpose the similarity-level structural segments rel-

atively accurately (see Section 3.4.2 for a survey of the different levels that structural

segments are annotated on as well as their underlying principles). Therefore, we propose

to use the repetition-based methods to detect the lead-instrument level music structure

based on timbre variations. Besides reflecting the lack of chord structures in Jingju,

this also demonstrates the inherent ambiguity of common segmentation algorithms in



Chapter 6. Methods for Music Structural Segmentation 174

identifying short-term patterns with regard to long-term musical structure. Several ways

to address this limitation include to set temporal constraints to the algorithm to avoid

it from converging only to large-scale units, or to combine multiple features in the seg-

mentation to increase the variance in the feature representations.

6.3.4 Audio Features and Segmentation Methods

So far we have identified that segmentation algorithms perform differently and require

different parameterisations for datasets consisting different music genres. Another ques-

tion hereby arises: how do we effectively select audio features that can be interpreted by

certain algorithms in the scenario of specific music genres?

Previous work has found that the best segmentation methods when using the chroma

feature are repetition-based ones [PMK10]. However, this observation is made mainly

for Western pop music. As shown in Table 6-A, the novelty-based methods turn out to

be the most effective for the Jingju dataset regardless of the feature used. The average

segmentation F-measure obtained using QN significantly surpasses that obtained using

the second best performing method, both using the chromagram feature. With the

absence of chord structure in Jingju, the chroma feature functions mainly to capture its

low-level homogeneity in the vicinity, as illustrated in Figure 5.12.

The chroma feature and MFCCs work reliably for the investigated Western music

datasets, confirming conclusions of previous studies [BMK06; PMK10]. Among the

new features presented in this thesis, Gammatone features are designed to describe the

music timbre as a replacement to MFCCs. The features were evaluated using one single

segmentation method QN in Section 5.7.4 and showed improvements against MFCCs on

the Jingju dataset CJ. This is also confirmed by different segmentation algorithms, as

shown in Table 6-A.

SERRÀ obtains the highest segmentation F-measure for BeatlesTUT when the chroma

feature is used, surpassing any other method using any feature significantly, confirmed
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Figure 6.6: Segmentation process using method SERRÀ on Beatles song “Help” (left)
and Jingju song “Jin yu nu” (right). The upper pane shows the recurrence plot. The
bottom pane shows the novelty curve with the black solid line and red dashed line
indicating estimated segment boundaries and annotations.

by the Wilcoxon signed-rank test. However, SERRÀ yields lower F-measure than any

other algorithms tested on CJ, with significant difference observed when compared to

the second worst performing algorithm for all the three features.

The first step of calculating the Structure features (SF) is to embed time delays in

the feature vectors to account for the recent past. This however tends to introduce much

chaotic behaviour into the feature representation for Jingju. Figure 6.6 shows the recur-

rence plot (RP), the derived novelty curve (NC) and the detected segment boundaries

on a Beatles and a Jingju song using gammatone features GF (see Section 5.7.4). Here

GF is used to replace chromagram because the latter appears to form even more chaos

and sparsity in the RP for Jingju music. In contrast to the Beatles song, very little

stripe structure is shown in the RP for the Jingju song. Peaks in the NC correspond
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mainly to the few blocks in the RP. Although this algorithm is designed to be generic

for boundary retrieval tasks [Ser+12], its advantage is more pronounced for music with

discernible repetitions [TS16b]. When the music is less repetitive, it may produce low

recall rate regardless of the feature used.

The best segmentation rates for S-IA are obtained by CC with the two novelty-based

methods performing reasonably well. When annotations are made on a music similarity

level, using repetition-based methods tend to lead to an under-segmentation with a large

number of false negatives. This suggests that an effective evaluation of segmentation

methods and features also relies on the reference annotations as the source knowledge

fed into an MSS system.

6.3.5 Music Knowledge for Segmentation

For the structural analysis of Western pop music, the contextual knowledge is encoded

in the process of feature extraction and SSM enhancement. A straightforward example

is the synchronisation of the feature window into a beat-level under the condition of a

reliable beat tracking. In Levy and Sandler [LS08], the neighbourhood size for clustering

is set to 16 to approximate the standard musical phrase-length of 16 beats. This approach

is originally introduced for Western pop music. However, in Jingju, the beat positions are

more flexible and tend to be weakly correlated with the positions of segment boundaries,

especially on a music similarity of novelty level (see Section 3.4.2). Meanwhile, accented

beats may occasionally be lacking as introduced in Section 3.2.1 which can cause beat

tracking algorithms to fail, hence leading to dubious window division for the feature

extraction. The experiments carried out in this chapter and the previous chapter used

features aggregated to respectively a beat level and a fixed window size (0.2 second). To

understand the effect of the beat synchronisation operation on different music styles, we

compare the pairwise segmentation F-measures using the same feature each time with

the two aggregation approaches on the investigated datasets using the QN algorithm

(Table 6-Ab and Table 5-F). While the beat synchronisation operation improves the
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Figure 6.7: Melodic contours and tempogram for Jingju song “Ba wang bie ji”. Structural
annotations and boundaries detected with the MFCCs feature using method QN are
shown respectively in the red solid lines and blue dotted lines in the lower pane.

segmentation significantly for BeatlesTUT using each investigated feature (p < 0.01,

Wilcoxon signed-rank test), it shows no improvement when evaluated on CJ and S-IA.

The variety of music styles in S-IA also invalidates the beat grouping rule occasionally.

One solution to this could be to de-activate the beat synchronisation in the absence of

accented or salient beat sequences when the confidence of the beat tracking or the frame

energy drops below certain thresholds.

Figure 6.7 shows the tempogram calculated using the method described in Sec-

tion 5.4.1 and the predominant melody [SG12] for a 60-second excerpt of Jingju music

introduced in Figure 3.4. Both the melodic contour and the predominant pulses have the

tendency to remain stable or to show steadily evolving patterns within a structural seg-

ment, whose sudden break can indicate emergence of new sections. It is also noticeable

that a peak in the novelty curve calculated using the timbre feature not accompanied

by prominent rhythmic or melodic changes is less likely to coincide a structural bound-

ary. This indicates that fusing multiple musical aspects including timbre, rhythm and

melody may lead to effective structural descriptions for Jingju, as also found by musi-

cologists [Deu12]. Features of linguistic contours of the lyrics and the singing voice can
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also be important factors to shape the structure of singing-driven music [ZRS14].

Instead of targeting a lyric-based segmentation for Jing music exclusively, this thesis

is focused on understanding the music structure of different genres from an acoustic per-

spective using the generally applicable audio features. In future wok, we propose to use

the low-level timbre features to derive intermediate structural descriptions and mean-

while, to rely on rhythmic and melodic modelling for verified segmentation in the sce-

nario of Jingju. To summarise, the design of audio features and segmentation methods,

the considerations of the underlying annotation principles and the context information

related to the music genre should be accounted for together in an effective segmentation

system.

6.4 Summary

This chapter investigated various segmentation algorithms covering the novelty, homo-

geneity and repetition structural hypotheses. By doing so, this chapter was devoted to

present a critical evaluation of the audio features presented in the previous chapter and

the state-of-the-art segmentation algorithms, as well as to discover the underlying rela-

tions between music types, audio features and segmentation algorithms in a music seg-

mentation system. We analysed the effects of the signal processing parameters involved

in the investigated algorithms with regard to individual music genres. The purposes of

doing this include to identify the properties of the underlying music types as well as to

derive general guidelines to devise a music structural analysis system.

The performances of specific segmentation algorithms are highly dependent on the

features and the musical properties of the evaluation dataset. Although repetition-based

segmentation methods are widely applied for Western pop music obtaining state-of-

the-art results, they are proved less effective for Jingju music with its lack of chordal

repetitions at a segment-level. We found that these methods are able to detect boundaries

corresponding to large melodic passages. We therefore propose to use them to analyse
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music structure at a higher level, such as the lead instrument level, to characterise the

large-scale timbre or melodic variations. Homogeneity-based methods using unsupervised

classification approaches work consistently well for all investigated datasets. Novelty-

based methods effectively retrieve segment boundaries which repetition-based methods

tend to overlook but are however sensitive to noise. This is supported by the fact that the

algorithm Quadratic Novelty works well for the investigated Jingju dataset and S-IA but

incurs a large number of false positives for BeatlesTUT whose annotation is charactering

repetitions and music functions.

Using beat-synchronised features is very effective for the retrieval of segment bound-

aries for Western pop music whose musical phrases generally comprise fixed number of

beats. Its advantage is however not notable for different music styles. Standard beat

tracking algorithms may fail for Jingju due to its occasional lack of accented beats. For

the structural analysis of Jingju, we propose to use novelty- or homogeneity-based seg-

mentation methods to derive the basic structural description, and rely on higher-level

melodic or rhythmic modelling for further pruning.

We found that different parameterisations for the segmentation algorithms are needed

for different evaluation datasets or when different features are used. An intuitive appli-

cation of the outcomes of this chapter is to build a knowledge-based segmentation system

where the selection of the features, algorithms and their parameter configurations can

be carried out automatically based on the source knowledge of the music signals.



Chapter 7

Conclusion

7.1 Summary

By investigating different audio features and algorithms in the scenario of different genres,

this thesis presented an in-depth analysis into the extraction of note onsets and the song

structure. We emphasised the use of audio features to convey semantic meanings to

address the given tasks. The major contributions of this thesis can be summarised in

three aspects: i) new research corpora are introduced to combat the Western bias in the

existing MIR systems; ii) comprehensive onset features and algorithms are designed by

fusing different knowledge sources; iii) novel audio features for structural description are

presented and the underlying relations between features, segmentation algorithms and

music genres are investigated; and iv) a critical evaluation is carried out for the signal

processing methods and parameters used in our systems, where we identified their effects

in the scenario of different music types.
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7.1.1 Music Information Retrieval for Jingju

The majority of the existing datasets used to evaluate MIR tools consist of mainly

Western pop music. As introduced in Section 3.2, Jingju is a music genre introduced to

the MIR research corpora very recently. The Jingju system consists of very characteristic

instrumentations, rhythmic and melodic patterns that collectively distinct it from the

Western practice.

In Chapter 2, we presented two Jingju dataset. The first is designed for the audio

onset detection (AOD) task and the percussion instrument recognition task consisting

ensembles of Jingju percussion instruments. The second is a music structural segmenta-

tion (MSS) dataset with audio samples collected from commercial CDs and annotated by

professional listeners. The inclusion of these two datasets largely facilitated the research

carried out in this thesis combating the cultural bias. However, the relatively small

dataset sizes may still confront us with limitations to apply them to evaluate different

algorithms and applications in future work.

In the annotation of the MSS dataset, an analysis of the inter-annotator agreement

(IAA) was carried out. We however realised that the discussion by the two annota-

tors can produce different boundary decisions to those indicated by both individually.

One main reason for the uncertainties in deciding the exact temporal position of an

underlying boundary is that, the emergence of new sections may be accompanied by

slowly-evolving changes of acoustical properties, for example, the sustaining decaying

of cymbal instruments and the fade-out effect of singing. The effect of such temporal

proximity of an annotated boundary indicated by different annotators however can be

cancelled out in the evaluation of boundary retrieval results given a sufficient acceptance

window (3 seconds in this thesis).
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7.1.2 Audio Onset Detection with Fusion

Chapter 4 investigated the AOD task relying different fusion strategies with new onset

detection features and methods. We demonstrated that fusion of existing onset detection

algorithms can introduce significantly improvement over the constituent baselines. Three

fusion strategies including early fusion, linear fusion and decision fusion, were tested,

among which we found the linear fusion is the most effective, which operates at a mid-

level of the knowledge representation. The linear fusion of the Complex domain (CD)

and SuperFlux (SF) onset detection methods, denoted CDSFL in this thesis, yielded

the best detection results overall in a large-scale evaluation. The improvement of this

method over its two baseline methods is however not always significant. This method

was then used for the extraction of the tempogram and related rhythmic features in this

thesis.

The onset detection algorithms were implemented as Vamp plugins and the parameter

optimisation was carried out relying on the Vamp Plugin Ontology. By this work, we

also highlighted the advantage of semantic web tools in the scenario of audio analysis.

We also investigated the signal processing methods used in the detection process and

their involved parameters. We found that parameter optimisation reliably improves the

performance of existing MIR systems and that parameter configuration can be a critical

factor for the success of an onset detection system.

7.1.3 Audio Features for Music Structural Segmentation

Chapter 5 presented novel audio features for music structural description. This chapter

also introduced a harmonic-percussive source separation (HPSS) algorithm to facilitate

feature extraction for the subsequent structural analysis.

The chroma features are originally developed for Western music with 12 pitch classes.

In Section 5.3 we justified the use of 7-BPO chroma feature for Jingju. We also found
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that with the absence of chord structure in Jingju, the chroma feature mainly captures

its melodic homogeneity in the vicinity.

Rhythmic features are less commonly used for the music structural description than

the timbre and chroma features. Section 5.4 presented novel high-level and mid-level

rhythmic features extracted from the tempogram. Unlike standard rhythmic features

that capture exclusively the rhythm or tempo information, the presented features incor-

porate also perceptual cues based on the musical observation that rhythmic components

of different tempo salience can help setting structural sections apart. This feature set

was proved to be an effective alternative to the commonly used MFCCs and chroma

features in the evaluation.

HPSS introduced significant improvements to the segmentation for all investigated

music categories and feature types. The maximum filter has introduced additional bene-

fits with widened spectral trajectories combating the possible interference from vibratos

or energy sways. In this process, the separation factor β is the most influential param-

eter. Higher β is needed for chromagram and MFCCs than the rhythmic feature RT

to obtain their individual best performance. Because for the latter, complementary

rhythmic information can be provided also by the harmonic instruments.

Features extracted from the Gammatonegram were applied effectively for MSS. In

Section 5.5, we compared features extracted from the actual Gammatone filters and

those extracted from the fast Gammatone method by weighting a standard STFT. No

notable difference exists between the two sets of features in terms of segmentation rates.

Using the fast method for feature extraction is proved at least not harmful compared

to the accurate method in the segmentation context. The Gammatone featureset has

proved itself an effective alternative to the commonly used MFCCs and chroma feature

for music structural analysis, with its advantages more notable on vocal-driven music.

In Chapter 6 we evaluated several segmentation algorithms based on different struc-

tural principles: novelty, homogeneity and repetition. The chroma feature forms mainly
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block structures in the self-similarity matrices for Jingju instead of the stripes as com-

monly observed for Western pop music. While previous work found that the most effec-

tive segmentation methods when using the chroma feature are repetition-based ones, the

novelty and homogeneity-based methods turn out more effective for the Jingju dataset

regardless of the feature used. The repetition-based methods typically detect bound-

aries corresponding to large sung passages. We hence propose to use them to retrieve

the music structure at a higher-level such as the lead-instrumentation level. The inves-

tigated Gammatone features perform consistently when different segmentation methods

are used.

7.1.4 A Critical Evaluation of Signal Processing Methods

The success of an MIR system largely depends on the success of the signal processing

methods involved. This thesis carried out critical analyses for the signal processing

methods used in the investigated AOD and MSS system.

In the evaluation of the onset detection algorithms using the two Western datasets

and the Jingju percussion dataset JP, we found that the selection of onset detection algo-

rithms and the configuration of the system parameters are music type specific. Configura-

tions derived for Western music can be less effective for Jingju music. Despite categorised

as a percussion dataset, the Jingju percussion dataset consists of cymbal and gong instru-

ments with slow-evolving time-frequency characteristics. Therefore, when evaluated on

this dataset, algorithms designed originally for soft onsets tend to be more effective than

those designed for drum sounds. The low-pass filter and the median removal designed for

noise reduction are proved generally beneficial for all music types and onset categories.

The peak picking method relying on polynomial fitting is more effective for complex

note types (percussive and non-percussive, pitched and non-pitched). This is because

such onsets may be characterised by peaks with different shapes in the onset detection

function hence can be captured by a peak picking method which assesses not only the

amplitudes but also the shapes of the peaks. We also found that significant interactions
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exist between different parameters.

A novelty-based structural segmentation algorithm was presented in Chapter 5 based

on the peak picking mechanism used for onset detection investigated in Chapter 4. We

hence highlighted that investigations into signal processing methods for music content

analysis can be of general importance in the scenario of different MIR applications. We

evaluated different MSS algorithms and their involved signal processing parameters. The

analysis of the parameter configurations for different datasets also reflects the underlying

genre-invariance of the algorithms. While the performance of some algorithms, such as

the NMF-based ones, show high dependence on system configurations, the unsupervised

methods and the novelty-based methods such as SERRÀ and Quadratic Novelty are

proved more genre-invariant (see Section 6.3.2).

7.2 Future Perspectives

7.2.1 New Features for Jingju Content Description

By combining multiple feature descriptors or knowledge sources, features presented in

thesis were characterising the property of genre-invariance. Investigated features are

applied to detect the note onsets and the song structure of music signals of different gen-

res. An intuitive future direction is, to develop new audio features to better characterise

the musical properties for Jingju.

In Section 6.3.5, we discussed that the predominant melodies and the rhythmic pat-

terns may effectively model the sectional transitions for Jingju songs. However, due to

the heterophonic nature of this music style and the fact that the vocals and the back-

ground instruments always have overlapping frequency ranges, standard pitch tracking

and melody tracking methods tend to fail. The occasional lack of metred beats in Jingju

also sets pitfalls for common beat and tempo tracking algorithms, as discussed in Sec-

tion 6.3.5. In future work, we propose to design melodic features for Jingju as well as to
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further investigate into the presented tempogram features for a better content descrip-

tion for Jingju. We also intend to combine these aspects with timbre features to model

the music structure.

7.2.2 Hierarchical Structure Analysis for Different Music Styles

This thesis presented an audio-based analysis of music structure for different genres fea-

turing the note-level and the song-level. These two hierarchies were chosen because they

are shared by the investigated genres. Therefore, they can provide a common ground

for the evaluation of the investigated features and algorithms hence kick-start a cross-

cultural analysis of the proposed topics. However, the beat-bar-phrase structure for West-

ern pop music [Mad+04] and the melodic couplet structure for Jingju (see Section 3.2.1)

are also indispensable for a comprehensive structural description for the individual music

types. In future work, we intend to investigate the melodic couplet structure for Jingju

and extend the level of abstractions of music structure in the analysis.

7.2.3 A Knowledge-based Music Structure Analysis System

Black-box 
structural analysis 

engine
User query

Music 
dataset

Structural 
information

Feature 
learning 

Algorithm 
selection

System 
configuration

Knoweledge 
database ...

Figure 7.1: Framework of a knowledge-based system for music structural analysis.
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This thesis has created a clear pathway towards an automatic analysis of music struc-

ture. One future direction is a knowledge-based system for music structural analysis.

Figure 7.1 illustrates a proposed system which makes structural discoveries given user

queries. There are two inputs for this system: the music database and the user queries.

Users will be guided by the front-end interface of the system to indicate what music they

want to analyse, for example which song or which playlist, and which hierarchy of the

structural information they want to retrieve.

The queries will then be sent to the main analysis system to be reasoned. The results

of such reasoning, is the semantic meanings or keywords of the queries which will then be

passed to the black-box analysis engine. This semantic information will provide essential

knowledge regarding the input source and the type of the output. Using these semantic

keywords obtained, the analysis engine can query the knowledge database for relevant

information to configure the analysis. The knowledge database holds contextual meta-

data related to the music signals, such as the type of the music, audio quality, algorithm

specifications and system configurations. Therefore, this knowledge database will pro-

vide information to supervise the operation of the system, including the appropriate

features and algorithms with optimised settings to select, for a given task.

Subsequently, the information obtained will be fed back to the main analysis engine

to make informed structural discoveries. A handy way of realising the communications

between different blocks within the system is to ontologise the underlying audio features,

algorithms and parameter configurations, as did in our onset detection experiment with

the exhausted parameter optimisation using the Vamp Plugin Ontology and Audio Fea-

tures Ontology (see Section 4.3.2).

Compared to the music dataset which is exposed to the users, the knowledge source

in the proposed system will be integrated rather passively, used by the main analysis

stream only when a certain task has been invoked. In this thesis, the role of such

knowledge source was played by the author, who explicitly extracted specific features

and used specific algorithms incorporating domain knowledge. By doing this, we aim
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to automate the analysis workflow therefore to provide a user-friendly and interactive

package to present the research carried out in this thesis.



Appendix A

Onset Detection Databases Used

in this Thesis

Three databases are used for the evaluation of onset detection algorithms presented in

Chapter 4. These databases are denoted JPB, SB and JP, introduced in Section 3.3.

Details of the individual tracks in these three datasets are given in the tables below.

The acronyms PP, NPP, PNP and CM stand respectively for pitched percussive, non-

pitched percussive, pitched non-percussive and complex mixture. It has to be noted that

there is a 7-onset discrepancy (1058 instead of 1065) between the annotation used in this

thesis and that in [Bel+05]. This difference is reported by the author of the dataset due

to revisions of the annotations. These 7 onsets belong to the pitched-percussive (PP)

class (482 instead of 489).

189
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Track name format Length (s) Onset type Number of
Onsets

arab60s wav 60 PP 386
dido wav 12 CM 71
fiona wav 9 CM 45
Jaillet15 wav 5 PP 4
Jaillet17 wav 3 PP 9
Jaillet21 wav 8 PP 75
Jaillet27 wav 6 PP 10
Jaillet29 wav 3 PP 7
Jaillet34 wav 6 PP 18
Jaillet64 wav 2 NPP 31
Jaillet65 wav 3 CM 15
Jaillet66 wav 5 NPP 55
Jaillet67 wav 4 PP 18
Jaillet70 wav 4 CM 28
Jaillet73 wav 3 PP 10
Jaillet74 wav 1 PP 6
Jaillet75 wav 2 NPP 12
jaxx wav 7 CM 51
metheny wav 7 CM 44
PianoDebussy wav 5 PP 27
violin wav 13 PNP 97
wilco wav 15 CM 89
tabla wav 7 NPP 43

Table 1-A: Dataset JPB

Track name Format Length (s) Onset type Number of
Onsets

JP001 wav 30 NPP 143
JP002 wav 30 NPP 71
JP003 wav 30 NPP 69
JP004 wav 30 NPP 78
JP005 wav 30 NPP 81
JP006 wav 30 NPP 81
JP007 wav 30 NPP 67
JP008 wav 30 NPP 63
JP009 wav 30 NPP 36
JP0010 wav 30 NPP 43

Table 1-B: Dataset JP
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Track name format Length
(s)

Onset
type

Number
of
Onsets

sb_Albums−Ballroom_Magic− 04(6.0−
16.0)

flac 30 PNP 21

sb_Albums − Cafe_Paradiso − 05(4.3 −
14.3)

flac 30 CM 54

sb_Albums−Chrisanne2− 01(16.0− 26.0) flac 30 CM 28
sb_Media− 103416(12.0− 22.0) flac 30 NPP 59
sb_Media− 106003(0.2− 10.2) flac 30 CM 73
sb_Albums− Chrisanne3− 07(3.0− 13.0) flac 30 PP 70
sb_Albums−Chrisanne3− 02(12.0− 22.0) flac 30 PP 36
sb_Media− 103302(15.0− 25.0) flac 30 PP 46
sb_Media− 105215(12.0− 22.0) flac 30 NPP 59
sb_Media− 105407(6.0− 16.0) flac 30 CM 60
sb_Media− 105907(0.0− 10.0) flac 30 CM 58
sb_Media− 105801(11.0− 21.0) flac 30 CM 43
sb_Media− 103307(4.0− 14.0) flac 30 CM 79
sb_Media− 104210(2.0− 12.0) flac 30 PNP 44
sb_Media− 106103(4.0− 14.0) flac 30 CM 79
sb_Albums− Fire− 13(15.0− 25.0) flac 30 CM 28
sb_Media− 105810(5.0− 15.0) flac 30 CM 64
sb_Media− 104111(5.0− 15.0) flac 30 CM 64
sb_Albums− Chrisanne1− 08(9.0− 19.0) flac 30 CM 62
sb_Albums− I_Like_It2− 01(13.1− 23.1) flac 30 CM 77
sb_Albums− Latin_Jam− 13(6.0− 16.0) flac 30 NPP 56
sb_Albums − Cafe_Paradiso − 07(13.1 −
23.1)

flac 30 CM 65

sb_Albums−Step_By_Step−09(2.0−12.0) flac 30 PNP 49
sb_Media− 106117(7.0− 17.0) flac 30 CM 65
sb_Albums − Ballroom_Classics4 −
01(3.0− 13.0)

flac 30 PNP 28

sb_Albums− Chrisanne1− 01(3.0− 13.0) flac 30 PNP 43
sb_Media− 100608(3.0− 13.0) flac 30 CM 50
sb_Albums−Ballroom_Magic− 09(4.0−
14.0)

flac 30 PNP 48

sb_Albums−Latin_Jam3− 02(3.0− 13.0) flac 30 CM 69
sb_Albums − Ballroom_Classics4 −
11(7.0− 17.0)

flac 30 CM 40

Table 1-C: Dataset SB
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Annotators’ Guide

B.1 Jingju Music – What You Will be Annotating

We first provide a brief introduction to the music culture. Jingju, also called Peking

Opera or Beijing Opera, is a major branch of Chinese traditional music combining

singing, dance and theatre art. Despite its rich musical heritage and the size of audience,

little work has been done to analyse its music content from an MIR perspective.

The Jingju music system is characterised by three major elements: melodic phrases

(“qiang”), metrical patterns (“banshi”), and modes (“diaoshi”) and modal systems (“shengqiang

xitong”). They are hierarchically related and collectively shape the music structure.

When composing a Jingju play, modal systems and modes are firstly chosen to set the

overall atmosphere. The metrical patterns and melodic phrases are then accordingly

arranged to elaborate specific content of each passage of lyrics. The song lyrics are

organised in a couplet structure which lays the basis of the music structural framework.

A couplet is comprised of two melodic phrases, which are sung phrases with tenden-

cies toward certain melodic patterns and are considered the smallest meaningful musical

units. A passage of melodic phrases expressing specific music ideas or motifs can be

grouped into a melodic section (“qiangjie”) which can play a rather integrate role in the
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overall musical form. The metrical pattern is the most expressive characteristic element

of Jingju. The transitions of alternating metric patterns in a Jingju song may indicate

boundaries between sectional units. There are fixed types of metrical patterns, each is

associated with certain melodic tendencies and dramatic contexts. Metrical patterns can

be classified into the metred and free categories based on whether their beat styles have

accented beats or are free of them. While the first have specific tempi, the latter have

no rhythmic regulation. Jingju songs also have instrumental connectives (“Guo men”,

meaning “through the door”) to bridge the sung parts in the arias. Such connectives can

serve as preludes to introduce melodic passages and as interludes to tie together succes-

sive melodic couplets, hence are integral to Jingju structure. The identification of the

music structure will be centred around the identification of these events in a temporally

ordered pattern.

B.2 How to Annalyse the Music

The term musical form (or musical architecture) refers to the overall structure or plan

of a piece of music and it describes the layout of a composition as divided into sections.

Your task will be to divide the music you hear into segments by giving it boundaries.

Analysing the structure of a piece of music is no easy task. There might not be a

“correct” answer to the questions such as what structure does this piece of music hold

or is there a new structural segment arising. It might also be difficult to ping down an

exact timestamp as a structural change point. Maybe you familiar with the “chorus-

verse” or “ABBA” structure in Western pop music. You may have already had a basic

understanding of music background of Jingju. However, you are not required to be able

to identify all the musical elements or functions in a song, although your familiarity of it

will be recorded in a post-annotation questionnaire. In Section B.1, you have read some

introductions of how its structure is formed. By giving you this description, we expect

you to have a basic understanding of the fact that the music structure in Chinese Jingju
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music is by no means the same with the Western pop music. Don’t panic if you have no

idea what those melodic phrases or instrumental connectives sound like. What you are

invited to do, basically, is to partition each piece into several segments fulfilling different

music roles on a music similarity level as perceived. You will be paying attention to

the prominent changes in music elements such as rhythm, melody, harmony or timbre or

sudden similarity breakdowns of these musical phenomena. You will be locating them

by assigning boundaries at such locations.

You are asked firstly to listen to each piece from start to end. This will give you a

general idea of how the music is like, how “steady” or “fluctuant” it can be throughout

the piece. Then you can start annotating the music, following instructions given soon

in Section B.3. Feel free to pause and navigate through the music and even to speed up

and down the playing anytime. When you finish annotating the whole piece and have

created some annotations this time, please listen to the music at least one more times.

When you finish the work, save and export your annotation files. We will give some

instructions on how you can check your annotations by listening to the songs repeatedly.

You are asked to be CONSISTENT with the same idea of what defines a structural

segments and how prominent the changes should be to make the changing point a segment

boundary. You will need to listen to each piece multiple times such that each time you

can verify your previous annotation decisions and introduce changes whenever applicable.

We expect this to help you fix inconsistent decisions you may have made each time. Each

time you make some changes to the annotations you have made in the last time, i.e., to

delete a boundary or to add a new one, or to change the position of a marked boundary

to somewhere over 0.5s away, you are asked to listen to the whole piece again. In other

words, the last time you listen to it, before save your annotations and proceed to the

next piece, you don’t feel dubious of the any boundary you indicated and nothing has

changed from the last round of listening and annotating. However, if it reaches the 5th

time you listen to the whole song for annotation check purpose and you haven’t made

substantial changes, please stop it there and save your work without listening to it over
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and over again. But if do feel that you are still uncertain with many boundary decisions

you have made up until now, let the instructors know. You will need to inform us how

many times you have listened to each piece for the annotation. In the next section, we

will provide you some instructions regarding the software you will use for the task and

involved operations.

B.3 Annotation Procedure

The software used for annotation is Sonic Visualiser: http://sonicvisualiser.org.

You have already received some instructions on how to use the software from us. You

can also open the “Help” tab in the GUI. After finding yourself familiar with the software,

you can follow the following steps to start your work.

1. Load the song into Sonic Visualiser, listen to it from start to end. You can press

the “space” key or click the play/pause button on the GUI to play or to pause.

2. Go back to the beginning and play the music again to start your annotation. Try

to anticipate where boundaries are so that you can press the key exactly when they

occur; if you know you missed it by a small amount, pause the song and adjust the

boundary.

3. Check your work and verify the boundaries you have indicated for a few times

following the instructions given in Section B.2. Here the basic idea is that you

should be consistence with the annotation decisions throughout the piece. You can

add new boundaries or erase or change the positions of previously noted boundaries

by click on the “eraser” button then click on the boundary you want to remove.

4. When you finish your work for a song, select “Export annotation layer” from the

“File” tab in the menu and save your work in “.csv” format. You can proceed to

the next song and repeat these steps for the annotation.

http://sonicvisualiser.org
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OK that’s almost everything you need to know. Now you can grab your headphone

and get started!
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Method F-
measure

sens bt WT l τ

BERSF-L 0.8495 10.0000 2.4000 off 0.3000 n/a
CDSF-L 0.8454 30.0000 2.4000 off 0.0000 n/a
BERSF-D 0.8448 40.0000 2.1500 off n/a 0.0500
BERSF-E 0.8406 20.0000 2.4000 off n/a n/a
CDSF-D 0.8168 60.0000 0.9000 off n/a 0.0500
SF 0.7913 40.0000 2.4000 on n/a n/a
CDBER-L 0.7877 10.0000 2.4000 on 0.5000 n/a
BERSD-L 0.7873 10.0000 2.4000 on 0.5000 n/a
SDBER-E 0.7752 10.0000 2.4000 off n/a n/a
PDBER-L 0.7734 10.0000 2.4000 off 0.9000 n/a
HFCBER-E 0.7721 10.0000 2.4000 on n/a n/a
BER 0.7721 10.0000 2.4000 on n/a n/a
BERSD-E 0.7707 40.0000 2.4000 on n/a n/a
HFCCD-D 0.7701 70.0000 1.4000 on n/a 0.0300
BERCD-E 0.7683 40.0000 2.4000 off n/a n/a
CDBER-E 0.7679 10.0000 2.4000 off n/a n/a
HFCSD-L 0.7658 50.0000 1.1500 on 0.7000 n/a
HFCBER-L 0.7657 30.0000 1.6500 off 0.6000 n/a
CDSD-L 0.7649 30.0000 1.4000 on 0.3000 n/a
SDPD-L 0.7647 50.0000 1.9000 on 0.9000 n/a
SD 0.7640 40.0000 1.1500 on n/a n/a
HFCCD-L 0.7613 50.0000 1.1500 on 0.9000 n/a
HFC 0.7610 50.0000 1.4000 on n/a n/a
CDSD-D 0.7610 70.0000 0.9000 on n/a 0.0450
CDPD-L 0.7609 30.0000 2.4000 on 0.9000 n/a
HFCSD-E 0.7605 40.0000 1.4000 on n/a n/a
BERSD-D 0.7605 40.0000 1.4000 on n/a 0.0500
HFCSD-D 0.7595 60.0000 0.9000 on n/a 0.0500
CDBER-D 0.7587 60.0000 1.6500 on n/a 0.0500
CD 0.7566 50.0000 2.4000 on n/a n/a
HFCBER-D 0.7526 50.0000 1.9000 on n/a 0.0500
HFCCD-E 0.7513 50.0000 2.4000 on n/a n/a
HFCPD-L 0.7438 50.0000 0.9000 on 0.9000 n/a
SDPD-D 0.6940 80.0000 2.1500 on n/a 0.0500
CDPD-D 0.6907 80.0000 0.9000 on n/a 0.0500
HFCPD-D 0.6805 80.0000 2.1500 on n/a 0.0500
PD 0.6212 80.0000 1.6500 on n/a n/a
HFCPD-E 0.6212 80.0000 1.6500 on n/a n/a
RPD 0.6080 80.0000 1.9000 on n/a n/a
PDBER-D 0.5239 90.0000 2.4000 off n/a 0.0500

Table 3-A: Segmentation F-measures of investigated detectors for onset type complex
mixture (CM)
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Method F-
measure

sens bt WT l τ

CDSF-L 0.9414 30.0000 2.4000 off 0.2000 n/a
SF 0.9412 20.0000 2.4000 off n/a n/a
BERSF-L 0.9412 20.0000 2.4000 off 0.0000 n/a
CDSF-D 0.9377 50.0000 2.1500 off n/a 0.0500
BERSF-E 0.9308 30.0000 2.4000 off n/a n/a
HFCCD-L 0.9307 50.0000 2.4000 off 0.3000 n/a
CDBER-L 0.9279 10.0000 2.4000 off 0.2000 n/a
BERSF-D 0.9244 50.0000 2.4000 off n/a 0.0500
CDSD-L 0.9243 30.0000 2.4000 off 0.8000 n/a
CD 0.9209 10.0000 2.4000 off n/a n/a
CDPD-L 0.9201 10.0000 2.4000 off 1.0000 n/a
HFCSD-L 0.9152 40.0000 1.1500 off 0.5000 n/a
CDSD-D 0.9128 50.0000 1.1500 off n/a 0.0500
BERSD-L 0.9117 20.0000 2.4000 off 0.2000 n/a
CDBER-D 0.9100 50.0000 1.4000 off n/a 0.0500
HFCCD-D 0.9084 70.0000 1.1500 off n/a 0.0500
HFCPD-L 0.9073 40.0000 2.4000 on 0.9000 n/a
SDPD-L 0.9049 10.0000 2.4000 off 0.9000 n/a
SD 0.9018 10.0000 1.4000 off n/a n/a
HFCSD-E 0.8996 40.0000 2.4000 off n/a n/a
HFCCD-E 0.8987 40.0000 1.1500 off n/a n/a
HFC 0.8980 40.0000 2.4000 off n/a n/a
HFCBER-L 0.8973 50.0000 2.4000 off 0.9000 n/a
BERSD-D 0.8929 60.0000 1.1500 off n/a 0.0500
HFCSD-D 0.8885 60.0000 2.4000 off n/a 0.0500
HFCBER-D 0.8729 40.0000 0.9000 off n/a 0.0500
CDBER-E 0.8666 10.0000 2.4000 off n/a n/a
HFCBER-E 0.8617 10.0000 2.4000 off n/a n/a
BER 0.8617 10.0000 2.4000 off n/a n/a
BERCD-E 0.8607 50.0000 1.9000 off n/a n/a
PDBER-L 0.8576 10.0000 2.4000 off 1.0000 n/a
BERSD-E 0.8538 50.0000 2.4000 off n/a n/a
SDBER-E 0.8486 10.0000 2.4000 off n/a n/a
SDPD-D 0.8449 80.0000 1.4000 on n/a 0.0500
CDPD-D 0.8370 80.0000 2.1500 off n/a 0.0500
HFCPD-D 0.8309 80.0000 1.6500 on n/a 0.0500
RPD 0.7709 70.0000 2.4000 on n/a n/a
PD 0.7431 70.0000 2.4000 on n/a n/a
HFCPD-E 0.7431 70.0000 2.4000 on n/a n/a
PDBER-D 0.5682 90.0000 2.4000 off n/a 0.0500

Table 3-B: Segmentation F-measures of investigated detectors for onset type pitched
percussive (PP)
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Method F-
measure

sens bt WT l τ

CDSF-L 0.7604 10.0000 2.4000 off 0.2000 n/a
CDBER-L 0.7418 10.0000 1.6500 off 0.3000 n/a
CDSF-D 0.7359 10.0000 2.4000 off n/a 0.0500
BERSF-L 0.7319 10.0000 1.6500 off 0.1000 n/a
SF 0.7296 10.0000 1.6500 off n/a n/a
BERSF-D 0.7190 20.0000 2.4000 off n/a 0.0450
HFCCD-L 0.7180 40.0000 1.4000 off 0.6000 n/a
BERSF-E 0.7173 10.0000 1.6500 off n/a n/a
CD 0.7154 10.0000 2.4000 off n/a n/a
BERSD-L 0.7084 10.0000 1.9000 off 0.6000 n/a
CDBER-D 0.7077 50.0000 1.1500 off n/a 0.0500
CDSD-L 0.7071 10.0000 1.4000 off 0.8000 n/a
CDPD-L 0.7036 10.0000 2.4000 off 1.0000 n/a
HFCSD-L 0.6844 60.0000 1.6500 off 0.4000 n/a
CDSD-D 0.6775 60.0000 2.4000 off n/a 0.0500
PDBER-L 0.6717 10.0000 2.4000 off 1.0000 n/a
HFCBER-E 0.6717 10.0000 2.4000 off n/a n/a
BER 0.6717 10.0000 2.4000 off n/a n/a
HFCBER-L 0.6567 30.0000 2.4000 on 0.5000 n/a
SDPD-L 0.6543 20.0000 1.4000 off 0.9000 n/a
HFCPD-L 0.6477 70.0000 0.9000 on 0.9000 n/a
SD 0.6474 40.0000 1.9000 off n/a n/a
HFC 0.6432 60.0000 0.6500 off n/a n/a
HFCCD-D 0.6421 60.0000 1.6500 off n/a 0.0500
HFCCD-E 0.6418 70.0000 2.4000 off n/a n/a
CDPD-D 0.6402 80.0000 2.4000 off n/a 0.0500
BERSD-D 0.6396 60.0000 2.1500 off n/a 0.0500
HFCSD-E 0.6348 70.0000 1.1500 off n/a n/a
SDBER-E 0.6282 30.0000 2.1500 off n/a n/a
SDPD-D 0.6248 80.0000 2.4000 off n/a 0.0500
HFCSD-D 0.6246 80.0000 1.1500 off n/a 0.0500
BERCD-E 0.6176 40.0000 2.4000 off n/a n/a
CDBER-E 0.6151 10.0000 2.1500 on n/a n/a
BERSD-E 0.6126 40.0000 2.4000 off n/a n/a
HFCBER-D 0.6052 80.0000 1.9000 on n/a 0.0500
PD 0.5975 80.0000 2.4000 on n/a n/a
HFCPD-E 0.5975 80.0000 2.4000 on n/a n/a
HFCPD-D 0.5973 90.0000 2.4000 on n/a 0.0500
RPD 0.5730 70.0000 2.4000 on n/a n/a
PDBER-D 0.4915 90.0000 2.1500 off n/a 0.0500

Table 3-C: Segmentation F-measures of investigated detectors for onset type pitched
non-percussive (PNP)
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Method F-
measure

sens bt WT l τ

CDSF-L 0.9264 50.0000 2.4000 off 0.2000 n/a
SF 0.9245 50.0000 2.4000 off n/a n/a
BERSF-L 0.9245 50.0000 2.4000 off 0.0000 n/a
BERSF-D 0.9194 40.0000 2.4000 off n/a 0.0500
BERSF-E 0.9174 50.0000 2.4000 off n/a n/a
CDSF-D 0.9023 70.0000 2.4000 off n/a 0.0500
CDBER-L 0.8967 30.0000 2.4000 off 0.2000 n/a
BERSD-L 0.8937 30.0000 2.1500 off 0.2000 n/a
HFCBER-L 0.8906 20.0000 1.9000 off 0.8000 n/a
BERCD-E 0.8885 20.0000 2.4000 on n/a n/a
BERSD-E 0.8884 40.0000 2.4000 off n/a n/a
CDPD-L 0.8864 50.0000 2.4000 off 0.9000 n/a
CDBER-D 0.8863 60.0000 1.1500 off n/a 0.0500
SDPD-L 0.8848 20.0000 1.9000 off 0.8000 n/a
CDSD-L 0.8848 40.0000 2.4000 off 0.9000 n/a
HFCCD-L 0.8839 40.0000 2.4000 off 0.1000 n/a
BERSD-D 0.8827 60.0000 1.1500 off n/a 0.0500
CD 0.8821 40.0000 2.4000 off n/a n/a
HFCSD-L 0.8809 50.0000 2.1500 off 0.7000 n/a
CDSD-D 0.8799 40.0000 0.9000 off n/a 0.0500
CDBER-E 0.8794 10.0000 2.4000 off n/a n/a
HFCCD-E 0.8793 30.0000 2.1500 off n/a n/a
HFCPD-L 0.8789 40.0000 2.4000 on 0.9000 n/a
HFCBER-D 0.8764 60.0000 1.1500 off n/a 0.0500
HFCSD-E 0.8758 40.0000 1.6500 off n/a n/a
SD 0.8752 40.0000 1.9000 off n/a n/a
HFCCD-D 0.8739 50.0000 2.4000 off n/a 0.0300
HFC 0.8735 40.0000 1.4000 off n/a n/a
HFCSD-D 0.8677 50.0000 1.4000 off n/a 0.0500
PDBER-L 0.8598 10.0000 2.4000 on 0.9000 n/a
HFCBER-E 0.8560 10.0000 2.4000 off n/a n/a
BER 0.8560 10.0000 2.4000 off n/a n/a
SDBER-E 0.8557 10.0000 2.4000 off n/a n/a
SDPD-D 0.7696 90.0000 1.1500 on n/a 0.0500
CDPD-D 0.7665 90.0000 1.6500 on n/a 0.0500
HFCPD-D 0.7410 80.0000 2.4000 on n/a 0.0500
RPD 0.5675 60.0000 0.9000 on n/a n/a
PD 0.5228 70.0000 1.1500 on n/a n/a
HFCPD-E 0.5228 70.0000 1.1500 on n/a n/a
PDBER-D 0.4042 90.0000 0.6500 on n/a 0.0500

Table 3-D: Segmentation F-measures of investigated detectors for onset type non-pitched
percussive (NPP)
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C.2 Best Performing Configurations Grouped by Onset Type

(Part II)

Method F-
measure

sens δ fc LP PF MF ψ

BERSF-L 0.8589 40.0000 0.5000 0.5000 on on on 8.0000
SF 0.8553 40.0000 0.5000 0.5000 on on on 9.0000
CDSF-L 0.8524 20.0000 0.2500 0.5000 on on on 7.0000
BERSF-D 0.8487 60.0000 0.2500 0.3500 on on on 8.0000
BERSF-E 0.8425 20.0000 0.0000 0.3875 on on on 9.0000
CDBER-L 0.8366 70.0000 0.5000 0.4250 on on on 7.0000
BERSD-L 0.8346 60.0000 0.5000 0.3875 on on on 6.0000
PDBER-L 0.8344 10.0000 0.2500 0.3500 on on on 9.0000
HFCBER-E 0.8344 10.0000 0.2500 0.3500 on on on 9.0000
BER 0.8344 10.0000 0.2500 0.3500 on on on 9.0000
SDBER-E 0.8316 30.0000 0.5000 0.5000 on on on 7.0000
CDSF-D 0.8239 50.0000 0.0000 0.4625 on on on 5.0000
CDBER-E 0.8203 20.0000 0.0000 0.3125 on on on 9.0000
BERSD-E 0.8151 40.0000 0.0000 0.3500 on on on 5.0000
BERCD-E 0.8149 40.0000 0.2500 0.3875 on on on 6.0000
HFCBER-L 0.8136 80.0000 0.5000 0.4250 on on on 6.0000
HFCCD-L 0.8074 60.0000 0.5000 0.5000 on on on 7.0000
CDSD-D 0.8051 10.0000 -E.2500 0.3875 on on on 8.0000
CDSD-L 0.8050 10.0000 0.0000 0.4250 on on on 7.0000
HFCSD-L 0.8049 70.0000 0.5000 0.5000 on on on 6.0000
BERSD-D 0.8035 90.0000 0.2500 0.4250 on on on 6.0000
CDBER-D 0.8018 20.0000 0.0000 0.4625 on on on 6.0000
CD 0.8007 10.0000 0.0000 0.5000 on on on 6.0000
HFCPD-L 0.7997 80.0000 0.2500 0.4625 on on on 6.0000
CDPD-L 0.7995 50.0000 0.2500 0.5000 on on on 6.0000
HFCSD-D 0.7950 90.0000 0.2500 0.3500 on on on 9.0000
HFCSD-E 0.7938 80.0000 0.2500 0.4625 on on on 7.0000
HFC 0.7937 100.0000 0.5000 0.5000 on on on 6.0000
HFCCD-D 0.7921 70.0000 0.0000 0.3125 on on on 7.0000
SDPD-L 0.7916 20.0000 0.0000 0.3500 on on on 8.0000
SD 0.7913 70.0000 0.5000 0.3875 on on on 9.0000
HFCCD-E 0.7886 90.0000 0.2500 0.2750 on on on 8.0000
HFCBER-D 0.7885 20.0000 -E.2500 0.3875 on on on 5.0000
CDPD-D 0.7417 90.0000 -E.2500 0.2750 on off on 6.0000
SDPD-D 0.7408 90.0000 -E.2500 0.3125 on off on 6.0000
HFCPD-D 0.7265 90.0000 -E.7500 0.3125 on off on 8.0000
RPD 0.6836 90.0000 0.0000 0.2375 on off on 9.0000
PDBER-D 0.6737 80.0000 -E.2500 0.4250 on off on 6.0000
PD 0.6723 80.0000 1.0000 0.2000 on off off 9.0000
HFCPD-E 0.6723 80.0000 1.0000 0.2000 on off off 9.0000

Table 3-E: Segmentation F-measures of investigated detectors for onset type complex
mixture (CM)
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Method F-
measure

sens δ fc LP PF MF ψ

CDSF-L 0.9676 70.0000 0.5000 0.5000 on on on 8.0000
SF 0.9664 60.0000 0.5000 0.5000 on on on 8.0000
CDSF-D 0.9531 100.0000 0.5000 0.4625 on on on 5.0000
BERSF-E 0.9495 40.0000 0.2500 0.5000 on on on 7.0000
HFCCD-L 0.9462 90.0000 0.7500 0.5000 on on on 6.0000
BERSF-L 0.9439 30.0000 0.5000 0.5000 on on on 7.0000
BERSF-D 0.9405 90.0000 -L.0000 0.3875 on off on 8.0000
CDPD-L 0.9400 50.0000 0.5000 0.5000 on on on 5.0000
CD 0.9391 50.0000 0.5000 0.5000 on on on 5.0000
CDSD-L 0.9351 100.0000 1.0000 0.5000 on on on 6.0000
CDBER-L 0.9335 80.0000 -L.0000 0.4250 on off on 8.0000
CDBER-D 0.9277 90.0000 -E.2500 0.4250 on off on 9.0000
HFCSD-L 0.9206 70.0000 0.2500 0.3500 on on on 9.0000
CDSD-D 0.9193 90.0000 0.2500 0.3500 on on on 9.0000
HFCCD-D 0.9167 60.0000 0.0000 0.4250 on on on 8.0000
HFCPD-L 0.9145 90.0000 0.5000 0.4250 on on on 7.0000
SDPD-L 0.9129 10.0000 0.2500 0.4625 on on on 6.0000
HFCSD-E 0.9121 70.0000 0.5000 0.4250 on on on 9.0000
BERSD-L 0.9106 30.0000 0.5000 0.4250 on on on 9.0000
HFCCD-E 0.9103 80.0000 1.0000 0.5000 off on on 5.0000
SD 0.9089 60.0000 0.2500 0.3500 on on on 9.0000
HFC 0.9067 70.0000 0.2500 0.4250 on on on 8.0000
HFCBER-L 0.8931 80.0000 0.2500 0.3500 on on on 8.0000
BERSD-D 0.8880 60.0000 0.0000 0.3875 on on on 9.0000
BERCD-E 0.8880 100.0000 0.7500 0.3500 on on on 7.0000
HFCBER-E 0.8849 70.0000 -L.0000 0.3500 on off on 9.0000
BER 0.8849 70.0000 -L.0000 0.3500 on off on 9.0000
PDBER-L 0.8831 80.0000 -E.2500 0.3125 on off on 7.0000
CDBER-E 0.8792 70.0000 1.0000 0.2375 on off off 9.0000
HFCBER-D 0.8785 80.0000 0.2500 0.3875 on on on 8.0000
HFCSD-D 0.8755 90.0000 -E.5000 0.3875 on off on 9.0000
BERSD-E 0.8598 50.0000 0.0000 0.2750 on on on 5.0000
SDBER-E 0.8580 20.0000 0.0000 0.2750 on on on 9.0000
SDPD-D 0.8475 50.0000 -E.2500 0.2750 on on on 9.0000
HFCPD-D 0.8449 90.0000 -E.2500 0.3875 on off on 7.0000
CDPD-D 0.8411 90.0000 -E.2500 0.2750 on off on 5.0000
RPD 0.8024 80.0000 -E.2500 0.2750 on off on 9.0000
PD 0.7867 60.0000 -L.0000 0.3500 on off on 8.0000
HFCPD-E 0.7867 60.0000 -L.0000 0.3500 on off on 8.0000
PDBER-D 0.7246 80.0000 -E.2500 0.3500 on off on 8.0000

Table 3-F: Segmentation F-measures of investigated detectors for onset type pitched
percussive (PP)
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Method F-
measure

sens δ fc LP PF MF ψ

CDSF-L 0.7773 90.0000 0.2500 0.2000 on on on 8.0000
BERSF-L 0.7602 10.0000 0.0000 0.2375 on on on 6.0000
SF 0.7583 100.0000 0.5000 0.2000 on on on 7.0000
CDBER-L 0.7580 40.0000 0.0000 0.2375 on on on 9.0000
BERSF-E 0.7577 30.0000 0.0000 0.2375 on on on 5.0000
BERSD-L 0.7399 10.0000 -E.2500 0.2375 on on on 9.0000
CDSF-D 0.7390 20.0000 -E.2500 0.2750 on on on 6.0000
BERCD-E 0.7296 100.0000 0.7500 0.3125 on on on 9.0000
BERSF-D 0.7273 40.0000 0.0000 0.2750 on on on 8.0000
CD 0.7227 80.0000 0.5000 0.3125 on on on 9.0000
HFCCD-L 0.7225 60.0000 0.0000 0.2375 on on on 6.0000
CDPD-L 0.7220 10.0000 0.2500 0.3125 on on on 9.0000
CDBER-D 0.7128 40.0000 0.0000 0.4250 on on on 8.0000
CDSD-L 0.7099 40.0000 0.0000 0.2375 on on on 7.0000
PDBER-L 0.6947 50.0000 0.2500 0.2375 on on on 6.0000
HFCBER-E 0.6947 50.0000 0.2500 0.2375 on on on 6.0000
BER 0.6947 50.0000 0.2500 0.2375 on on on 6.0000
HFCCD-E 0.6816 80.0000 0.0000 0.2375 on on on 8.0000
HFCSD-L 0.6797 20.0000 -E.2500 0.3500 on on on 7.0000
CDSD-D 0.6778 90.0000 0.2500 0.2750 on on on 8.0000
BERSD-E 0.6760 100.0000 0.5000 0.3125 on on on 6.0000
HFCPD-L 0.6657 70.0000 0.0000 0.2750 on on on 7.0000
SDPD-L 0.6646 80.0000 -L.0000 0.2000 on off on 7.0000
HFCBER-L 0.6587 90.0000 0.2500 0.3125 on on on 7.0000
SD 0.6584 40.0000 0.2500 0.5000 on on on 6.0000
HFC 0.6510 80.0000 0.0000 0.2375 on on on 7.0000
HFCSD-E 0.6487 10.0000 -E.5000 0.2750 on on on 7.0000
HFCCD-D 0.6477 40.0000 -E.2500 0.2375 on on on 7.0000
SDBER-E 0.6471 30.0000 0.0000 0.2750 on on on 6.0000
CDBER-E 0.6399 10.0000 -E.2500 0.2375 on on on 8.0000
PD 0.6360 50.0000 1.0000 0.2375 on off off 9.0000
HFCPD-E 0.6360 50.0000 1.0000 0.2375 on off off 9.0000
RPD 0.6304 70.0000 1.0000 0.2000 on off off 9.0000
CDPD-D 0.6218 90.0000 0.0000 0.3125 on on on 7.0000
HFCBER-D 0.6205 80.0000 0.0000 0.2375 on on on 6.0000
HFCSD-D 0.6184 90.0000 0.0000 0.3500 on on on 7.0000
BERSD-D 0.6143 60.0000 1.0000 0.2375 on on off 9.0000
SDPD-D 0.6049 20.0000 -E.5000 0.2750 on on on 8.0000
HFCPD-D 0.5981 50.0000 -E.2500 0.2750 on on on 8.0000
PDBER-D 0.5581 80.0000 -E.5000 0.3500 on off on 8.0000

Table 3-G: Segmentation F-measures of investigated detectors for onset type pitched
non-percussive (PNP)



Appendix C. Full list of Onset Detection Results and Parameter Configurations 205

Method F-
measure

sens δ fc LP PF MF ψ

SF 0.9456 80.0000 0.2500 0.5000 on on on 6.0000
CDSF-L 0.9433 90.0000 0.7500 0.5000 off on on 5.0000
BERSF-E 0.9358 80.0000 0.2500 0.5000 on on on 7.0000
BERSF-D 0.9337 80.0000 0.2500 0.5000 on on on 6.0000
BERSF-L 0.9207 50.0000 1.0000 0.5000 off on on 5.0000
CDSF-D 0.9167 90.0000 0.2500 0.5000 on on on 7.0000
BERSD-E 0.9085 20.0000 1.0000 0.5000 on on off 9.0000
BERSD-L 0.9066 60.0000 1.0000 0.5000 on on on 7.0000
CDBER-L 0.9056 60.0000 1.0000 0.5000 on on on 6.0000
BERCD-E 0.9029 20.0000 -E.2500 0.4250 on on on 5.0000
CDBER-E 0.9025 60.0000 1.0000 0.5000 on on on 8.0000
SDBER-E 0.9020 80.0000 0.2500 0.5000 on off on 5.0000
CDSD-D 0.9009 80.0000 0.2500 0.4625 on on on 9.0000
CDBER-D 0.9004 10.0000 -E.2500 0.4625 on on on 8.0000
SDPD-L 0.8999 100.0000 0.5000 0.4250 on on on 9.0000
HFCBER-L 0.8984 90.0000 0.0000 0.4625 on off on 9.0000
CDPD-L 0.8983 80.0000 0.2500 0.4250 on on on 8.0000
HFCPD-L 0.8981 90.0000 0.5000 0.5000 on on on 6.0000
CDSD-L 0.8981 80.0000 0.2500 0.4250 on on on 8.0000
HFCSD-L 0.8979 80.0000 0.2500 0.4625 on on on 9.0000
CD 0.8977 80.0000 0.2500 0.4250 on on on 8.0000
HFCCD-L 0.8972 70.0000 0.2500 0.5000 on on on 9.0000
PDBER-L 0.8969 70.0000 -E.2500 0.4625 on off on 7.0000
HFCBER-E 0.8969 70.0000 -E.2500 0.4625 on off on 7.0000
BER 0.8969 70.0000 -E.2500 0.4625 on off on 7.0000
HFCCD-E 0.8946 100.0000 0.5000 0.5000 on off on 8.0000
SD 0.8931 80.0000 0.2500 0.3875 on on on 9.0000
HFC 0.8892 90.0000 0.5000 0.5000 on on on 8.0000
HFCSD-E 0.8890 70.0000 0.2500 0.4625 on on on 9.0000
HFCCD-D 0.8882 80.0000 0.2500 0.4625 on on on 8.0000
BERSD-D 0.8861 50.0000 0.0000 0.5000 on on on 9.0000
HFCSD-D 0.8824 90.0000 0.2500 0.5000 on on on 9.0000
HFCBER-D 0.8818 100.0000 0.5000 0.4625 on on on 8.0000
SDPD-D 0.8026 90.0000 -E.2500 0.3125 on off on 6.0000
CDPD-D 0.7995 90.0000 -E.2500 0.2750 on off on 5.0000
HFCPD-D 0.7993 90.0000 -E.2500 0.3125 on off on 8.0000
PDBER-D 0.7333 70.0000 -E.2500 0.4625 on off on 6.0000
RPD 0.6372 80.0000 0.0000 0.2000 on off on 9.0000
PD 0.5773 80.0000 0.0000 0.2000 on off on 9.0000
HFCPD-E 0.5773 80.0000 0.0000 0.2000 on off on 9.0000

Table 3-H: Segmentation F-measures of investigated detectors for onset type non-pitched
percussive (NPP)
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C.3 Best Performing Configurations Grouped by Dataset

(Part I)

Method F-
measure

sens bt WT l τ

CDSF-L 0.8580 10.0000 2.1500 off 0.2000 n/a
BERSF-L 0.8559 10.0000 2.4000 off 0.3000 n/a
BERSF-D 0.8528 40.0000 2.1500 off n/a 0.0500
BERSF-E 0.8451 30.0000 2.4000 off n/a n/a
CDSF-D 0.8392 50.0000 2.4000 off n/a 0.0500
SF 0.8274 20.0000 2.4000 off n/a n/a
CDBER-L 0.8145 10.0000 2.4000 off 0.5000 n/a
BERCD-L 0.8144 10.0000 2.4000 off 0.5000 n/a
SDBER-L 0.8073 10.0000 2.4000 off 0.6000 n/a
BERSD-L 0.8073 10.0000 2.4000 off 0.6000 n/a
HFCCD-L 0.8032 20.0000 1.1500 off 0.5000 n/a
CDBER-D 0.7967 50.0000 1.1500 off n/a 0.0500
CD 0.7966 10.0000 2.4000 off n/a n/a
CDSD-L 0.7957 20.0000 2.4000 off 0.5000 n/a
BERCD-D 0.7949 50.0000 1.1500 off n/a 0.0500
CDPD-L 0.7929 10.0000 2.4000 off 1.0000 n/a
CDSD-D 0.7912 50.0000 1.1500 off n/a 0.0500
HFCSD-L 0.7895 40.0000 1.4000 off 0.4000 n/a
HFCBER-L 0.7892 40.0000 1.9000 off 0.7000 n/a
HFCBER-E 0.7883 10.0000 2.4000 off n/a n/a
BER 0.7883 10.0000 2.4000 off n/a n/a
PDBER-L 0.7870 10.0000 2.4000 off 1.0000 n/a
CDBER-E 0.7819 10.0000 2.4000 off n/a n/a
SDPD-L 0.7818 20.0000 2.4000 off 0.9000 n/a
SDBER-E 0.7801 10.0000 2.4000 off n/a n/a
HFCCD-D 0.7798 60.0000 1.1500 off n/a 0.0500
HFCPD-L 0.7798 50.0000 0.9000 on 0.9000 n/a
SD 0.7795 20.0000 2.4000 off n/a n/a
SDBER-D 0.7784 70.0000 2.1500 on n/a 0.0500
BERSD-D 0.7784 70.0000 2.1500 on n/a 0.0500
HFCSD-E 0.7768 50.0000 1.1500 off n/a n/a
HFCCD-E 0.7751 40.0000 1.4000 off n/a n/a
BERCD-E 0.7744 40.0000 2.4000 off n/a n/a
BERSD-E 0.7739 40.0000 2.4000 off n/a n/a
HFC 0.7712 50.0000 0.9000 off n/a n/a
HFCBER-D 0.7696 60.0000 1.9000 off n/a 0.0500
HFCSD-D 0.7649 70.0000 1.9000 on n/a 0.0500
lpcPD-L 0.7594 60.0000 0.9000 on 0.8000 n/a
lpc 0.7496 50.0000 0.9000 on n/a n/a
SDPD-D 0.7262 80.0000 1.6500 on n/a 0.0500
CDPD-D 0.7205 80.0000 0.9000 on n/a 0.0500
HFCPD-D 0.7158 80.0000 1.6500 on n/a 0.0500
lpcPD-D 0.6976 80.0000 2.4000 on n/a 0.0500
PD 0.6537 80.0000 2.1500 on n/a n/a
HFCPD-E 0.6537 80.0000 2.1500 on n/a n/a
RPD 0.6476 80.0000 2.4000 on n/a n/a
PDBER-D 0.5303 90.0000 2.4000 off n/a 0.0500

Table 3-I: Segmentation F-measures of investigated detectors for the overall datasets
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Method F-
measure

sens bt WT l τ

CDSF-L 0.8194 10.0000 2.1500 off 0.2000 n/a
SF 0.8126 20.0000 2.4000 off n/a n/a
BERSF-L 0.8126 20.0000 2.4000 off 0.0000 n/a
BERSF-D 0.8089 20.0000 2.1500 off n/a 0.0500
BERSF-E 0.8025 10.0000 2.4000 off n/a n/a
CDSF-D 0.7892 50.0000 2.4000 off n/a 0.0500
CDBER-L 0.7877 10.0000 2.4000 off 0.5000 n/a
BERCD-L 0.7877 10.0000 2.4000 off 0.5000 n/a
SDBER-L 0.7843 10.0000 2.4000 off 0.6000 n/a
BERSD-L 0.7843 10.0000 2.4000 off 0.6000 n/a
HFCCD-L 0.7802 30.0000 1.1500 off 0.6000 n/a
CDSD-D 0.7728 50.0000 2.4000 off n/a 0.0200
HFCBER-L 0.7720 30.0000 1.9000 off 0.6000 n/a
CDSD-L 0.7715 10.0000 2.4000 off 0.4000 n/a
CD 0.7692 10.0000 2.4000 off n/a n/a
PDBER-L 0.7665 10.0000 2.4000 off 0.9000 n/a
HFCSD-L 0.7660 20.0000 1.6500 off 0.4000 n/a
CDPD-L 0.7629 10.0000 2.4000 off 1.0000 n/a
HFCBER-E 0.7626 10.0000 2.4000 off n/a n/a
BER 0.7626 10.0000 2.4000 off n/a n/a
CDBER-D 0.7605 50.0000 1.1500 off n/a 0.0500
BERCD-D 0.7605 50.0000 1.1500 off n/a 0.0500
SD 0.7604 20.0000 2.1500 off n/a n/a
BERSD-E 0.7595 40.0000 2.4000 off n/a n/a
BERCD-E 0.7587 40.0000 2.4000 on n/a n/a
SDPD-L 0.7585 20.0000 2.1500 off 1.0000 n/a
SDBER-E 0.7552 10.0000 2.4000 off n/a n/a
HFCPD-L 0.7506 50.0000 1.1500 on 0.9000 n/a
HFCCD-D 0.7505 60.0000 1.1500 off n/a 0.0500
SDBER-D 0.7477 40.0000 2.1500 off n/a 0.0500
BERSD-D 0.7477 40.0000 2.1500 off n/a 0.0500
HFCSD-E 0.7443 50.0000 1.4000 off n/a n/a
CDBER-E 0.7439 10.0000 2.4000 off n/a n/a
HFCSD-D 0.7435 70.0000 1.9000 on n/a 0.0450
HFC 0.7411 50.0000 1.1500 off n/a n/a
HFCBER-D 0.7344 40.0000 1.1500 off n/a 0.0500
HFCCD-E 0.7324 40.0000 1.1500 off n/a n/a
SDPD-D 0.6840 80.0000 1.9000 on n/a 0.0500
CDPD-D 0.6809 90.0000 0.9000 on n/a 0.0500
HFCPD-D 0.6799 80.0000 2.1500 on n/a 0.0500
RPD 0.6145 80.0000 2.4000 on n/a n/a
PD 0.6144 80.0000 1.6500 on n/a n/a
HFCPD-E 0.6144 80.0000 1.6500 on n/a n/a
PDBER-D 0.5224 100.0000 1.9000 off n/a 0.0450

Table 3-J: Segmentation F-measures of investigated detectors for dataset SB
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Method F-
measure

sens bt WT l τ

CDSF-L 0.9286 50.0000 2.4000 off 0.2000 n/a
BERSF-L 0.9283 40.0000 2.4000 off 0.1000 n/a
BERSF-D 0.9230 60.0000 2.4000 off n/a 0.0500
BERSF-E 0.9175 40.0000 2.4000 off n/a n/a
CDSF-D 0.9165 70.0000 2.4000 off n/a 0.0500
CDBER-L 0.8560 20.0000 2.4000 off 0.3000 n/a
BERCD-L 0.8547 20.0000 2.4000 off 0.3000 n/a
CDBER-D 0.8498 50.0000 1.9000 off n/a 0.0500
SF 0.8488 40.0000 2.4000 off n/a n/a
BERCD-D 0.8458 50.0000 1.9000 off n/a 0.0500
SDBER-L 0.8420 20.0000 1.9000 off 0.7000 n/a
BERSD-L 0.8420 20.0000 1.9000 off 0.7000 n/a
HFCCD-L 0.8416 50.0000 2.4000 off 0.3000 n/a
CDPD-L 0.8356 10.0000 2.4000 off 0.9000 n/a
CDSD-L 0.8341 30.0000 2.4000 off 0.7000 n/a
CDBER-E 0.8327 10.0000 2.4000 off n/a n/a
HFCCD-E 0.8326 40.0000 1.4000 off n/a n/a
CD 0.8320 10.0000 2.4000 off n/a n/a
HFCSD-L 0.8262 40.0000 1.6500 off 0.6000 n/a
SDPD-L 0.8261 60.0000 1.9000 on 0.9000 n/a
HFCBER-E 0.8254 20.0000 2.4000 off n/a n/a
BER 0.8254 20.0000 2.4000 off n/a n/a
CDSD-D 0.8226 70.0000 2.4000 on n/a 0.0450
HFCBER-L 0.8226 40.0000 0.9000 off 0.7000 n/a
PDBER-L 0.8226 20.0000 2.4000 off 1.0000 n/a
SDBER-D 0.8217 70.0000 2.4000 on n/a 0.0500
BERSD-D 0.8217 70.0000 2.4000 on n/a 0.0500
HFCSD-E 0.8216 40.0000 1.1500 off n/a n/a
SD 0.8210 70.0000 1.6500 on n/a n/a
HFCCD-D 0.8200 70.0000 0.9000 off n/a 0.0500
HFCPD-L 0.8197 40.0000 0.9000 on 0.9000 n/a
HFCBER-D 0.8183 60.0000 1.9000 off n/a 0.0500
HFC 0.8159 60.0000 1.6500 off n/a n/a
SDBER-E 0.8132 10.0000 2.4000 off n/a n/a
HFCSD-D 0.8069 70.0000 0.9000 off n/a 0.0500
BERCD-E 0.8067 50.0000 2.4000 off n/a n/a
BERSD-E 0.8016 50.0000 2.4000 on n/a n/a
CDPD-D 0.7875 80.0000 1.6500 on n/a 0.0500
SDPD-D 0.7827 80.0000 1.6500 on n/a 0.0500
HFCPD-D 0.7667 80.0000 1.4000 on n/a 0.0500
PD 0.7114 80.0000 2.4000 on n/a n/a
HFCPD-E 0.7114 80.0000 2.4000 on n/a n/a
RPD 0.6958 70.0000 1.9000 on n/a n/a
PDBER-D 0.5507 90.0000 2.4000 off n/a 0.0500

Table 3-K: Segmentation F-measures of investigated detectors for dataset JPB
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Method F-
measure

sens bt WT l τ

CDSF-L 0.9368 40.0000 2.4000 off 0.3000 n/a
SF 0.9350 40.0000 2.4000 off n/a n/a
BERSF-L 0.9350 40.0000 2.4000 off 0.0000 n/a
BERSF-E 0.9307 20.0000 2.4000 off n/a n/a
BERSF-D 0.9300 40.0000 2.4000 off n/a 0.0500
CDSF-D 0.9146 70.0000 1.4000 off n/a 0.0500
CDBER-L 0.9081 30.0000 0.9000 off 0.1000 n/a
BERCD-L 0.9081 30.0000 0.9000 off 0.1000 n/a
SDBER-L 0.9074 30.0000 0.6500 on 0.2000 n/a
BERSD-L 0.9074 30.0000 0.6500 on 0.2000 n/a
SDPD-L 0.9071 20.0000 1.1500 off 0.8000 n/a
HFCBER-L 0.9037 10.0000 2.4000 on 0.8000 n/a
BERCD-E 0.9017 20.0000 2.4000 off n/a n/a
CDPD-L 0.9010 30.0000 2.4000 off 0.9000 n/a
BERSD-E 0.9007 30.0000 2.4000 off n/a n/a
CDBER-D 0.8998 60.0000 1.1500 off n/a 0.0500
BERCD-D 0.8998 60.0000 1.1500 off n/a 0.0500
CDSD-L 0.8985 40.0000 0.4000 off 0.9000 n/a
SDBER-D 0.8978 60.0000 0.9000 off n/a 0.0500
BERSD-D 0.8978 60.0000 0.9000 off n/a 0.0500
HFCCD-L 0.8963 30.0000 0.9000 off 0.0000 n/a
CD 0.8963 30.0000 0.9000 off n/a n/a
SD 0.8956 20.0000 0.6500 off n/a n/a
HFCSD-L 0.8956 20.0000 0.6500 off 0.0000 n/a
CDSD-D 0.8956 40.0000 0.9000 off n/a 0.0500
HFCPD-L 0.8932 10.0000 2.4000 on 0.8000 n/a
HFCBER-D 0.8905 30.0000 0.9000 on n/a 0.0500
HFCCD-D 0.8896 50.0000 1.4000 off n/a 0.0200
HFCCD-E 0.8896 30.0000 2.1500 off n/a n/a
HFCSD-D 0.8893 20.0000 2.4000 on n/a 0.0500
HFCSD-E 0.8882 10.0000 2.4000 on n/a n/a
HFC 0.8878 30.0000 2.4000 on n/a n/a
CDBER-E 0.8856 10.0000 2.4000 off n/a n/a
PDBER-L 0.8763 10.0000 2.4000 on 0.9000 n/a
HFCBER-E 0.8731 10.0000 2.4000 on n/a n/a
BER 0.8731 10.0000 2.4000 on n/a n/a
SDBER-E 0.8691 10.0000 2.4000 off n/a n/a
SDPD-D 0.7634 90.0000 0.9000 on n/a 0.0500
CDPD-D 0.7610 80.0000 2.4000 on n/a 0.0500
HFCPD-D 0.7332 80.0000 1.1500 on n/a 0.0500
RPD 0.5609 60.0000 0.9000 on n/a n/a
PD 0.5042 70.0000 0.4000 on n/a n/a
HFCPD-E 0.5042 70.0000 0.4000 on n/a n/a
PDBER-D 0.3799 80.0000 1.9000 off n/a 0.0500

Table 3-L: Segmentation F-measures of investigated detectors for dataset CP
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C.4 Best Performing Configurations Grouped by Dataset

(Part II)

Method F-
measure

sens δ fc LP PF MF ψ

CDSF-L 0.8669 40.0000 0.5000 0.5000 on on on 7.0000
SF 0.8668 10.0000 0.2500 0.5000 on on on 8.0000
BERSF-L 0.8656 20.0000 0.5000 0.5000 on on on 7.0000
BERSF-D 0.8541 50.0000 0.2500 0.4250 on on on 8.0000
BERSF-E 0.8522 40.0000 0.5000 0.5000 on on on 8.0000
CDBER-L 0.8501 70.0000 0.5000 0.3875 on on on 8.0000
CDSF-D 0.8457 60.0000 0.2500 0.5000 on on on 6.0000
BERSD-L 0.8398 60.0000 0.5000 0.3875 on on on 8.0000
HFCCD-L 0.8346 80.0000 0.5000 0.4625 on on on 7.0000
CDSD-L 0.8256 90.0000 0.7500 0.4625 on on on 7.0000
CD 0.8247 70.0000 0.5000 0.3875 on on on 8.0000
CDBER-D 0.8220 40.0000 0.0000 0.4250 on on on 8.0000
CDPD-L 0.8219 70.0000 0.5000 0.3875 on on on 8.0000
CDSD-D 0.8208 70.0000 0.2500 0.4250 on on on 8.0000
HFCBER-E 0.8202 20.0000 0.2500 0.3500 on on on 9.0000
BER 0.8202 20.0000 0.2500 0.3500 on on on 9.0000
HFCSD-L 0.8201 70.0000 0.5000 0.5000 on on on 6.0000
PDBER-L 0.8182 20.0000 0.2500 0.3500 on on on 9.0000
HFCBER-L 0.8123 30.0000 0.0000 0.3500 on on on 7.0000
CDBER-E 0.8116 10.0000 0.0000 0.3125 on on on 8.0000
SDBER-E 0.8100 30.0000 0.5000 0.5000 on on on 7.0000
HFCPD-L 0.8090 100.0000 0.5000 0.4625 on on on 6.0000
HFCCD-D 0.8068 50.0000 0.0000 0.3875 on on on 7.0000
SDPD-L 0.8066 80.0000 0.5000 0.3875 on on on 7.0000
HFCSD-E 0.8059 90.0000 0.2500 0.3125 on on on 8.0000
SD 0.8054 80.0000 0.5000 0.3875 on on on 8.0000
HFCCD-E 0.8046 70.0000 0.2500 0.4625 on on on 7.0000
HFC 0.8014 90.0000 0.2500 0.3500 on on on 9.0000
BERCD-E 0.7993 40.0000 1.0000 0.2750 on on off 9.0000
BERSD-D 0.7981 30.0000 -E.2500 0.3500 on on on 8.0000
BERSD-E 0.7979 40.0000 -E.2500 0.3500 on on on 6.0000
HFCBER-D 0.7865 20.0000 -E.2500 0.3500 on on on 6.0000
HFCSD-D 0.7829 70.0000 0.0000 0.3500 on on on 8.0000
lpcPD-L 0.7817 20.0000 -E.2500 0.3500 on on on 7.0000
lpc 0.7723 80.0000 0.2500 0.3875 on on on 9.0000
SDPD-D 0.7450 50.0000 -E.2500 0.3125 on on on 7.0000
lpcPD-D 0.7405 40.0000 1.0000 0.2000 on on off 9.0000
CDPD-D 0.7402 50.0000 -E.2500 0.3125 on on on 7.0000
HFCPD-D 0.7342 60.0000 1.0000 0.2375 on on off 9.0000
RPD 0.7036 90.0000 0.0000 0.2375 on off on 9.0000
PD 0.6887 90.0000 0.0000 0.2000 on off on 6.0000
HFCPD-E 0.6887 90.0000 0.0000 0.2000 on off on 6.0000
PDBER-D 0.6650 80.0000 -E.2500 0.3500 on off on 8.0000

Table 3-M: Segmentation F-measures of investigated detectors for the overall datasets
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Method F-
measure

sens δ fc LP PF MF ψ

CDSF-L 0.8217 40.0000 0.5000 0.4625 on on on 7.0000
BERSF-L 0.8207 40.0000 0.5000 0.3875 on on on 8.0000
SF 0.8193 20.0000 0.5000 0.5000 on on on 8.0000
BERSF-D 0.8145 40.0000 0.0000 0.2750 on on on 8.0000
BERSF-E 0.8117 20.0000 0.5000 0.5000 on on on 9.0000
CDBER-L 0.7997 40.0000 0.2500 0.3125 on on on 9.0000
CDSF-D 0.7970 20.0000 0.0000 0.4625 on on on 6.0000
BERSD-L 0.7970 30.0000 0.2500 0.2750 on on on 8.0000
PDBER-L 0.7827 10.0000 0.2500 0.3125 on on on 8.0000
HFCBER-E 0.7827 10.0000 0.2500 0.3125 on on on 8.0000
BER 0.7827 10.0000 0.2500 0.3125 on on on 8.0000
HFCCD-L 0.7812 70.0000 0.5000 0.3875 on on on 7.0000
SDBER-E 0.7752 30.0000 0.2500 0.3125 on on on 8.0000
CDSD-D 0.7730 10.0000 -E.2500 0.3875 on on on 7.0000
CD 0.7725 80.0000 0.2500 0.2375 on on on 9.0000
CDSD-L 0.7724 10.0000 0.0000 0.4250 on on on 7.0000
HFCSD-L 0.7696 60.0000 0.2500 0.3875 on on on 6.0000
HFCBER-L 0.7689 30.0000 0.0000 0.3500 on on on 7.0000
CDPD-L 0.7689 50.0000 0.0000 0.2375 on on on 7.0000
CDBER-D 0.7656 60.0000 0.2500 0.4625 on on on 6.0000
SD 0.7617 20.0000 0.0000 0.3500 on on on 7.0000
SDPD-L 0.7596 20.0000 0.0000 0.3125 on on on 7.0000
BERCD-E 0.7574 40.0000 0.2500 0.3875 on on on 6.0000
BERSD-E 0.7572 40.0000 0.0000 0.3500 on on on 5.0000
HFCPD-L 0.7560 60.0000 0.0000 0.2750 on on on 8.0000
CDBER-E 0.7533 10.0000 0.0000 0.3125 on on on 8.0000
HFCCD-D 0.7532 100.0000 0.2500 0.3125 on off on 7.0000
HFCSD-E 0.7512 20.0000 -E.2500 0.2750 on on on 9.0000
BERSD-D 0.7479 50.0000 0.0000 0.4250 on on on 9.0000
HFC 0.7470 20.0000 -E.2500 0.3125 on on on 9.0000
HFCSD-D 0.7464 100.0000 0.2500 0.3125 on off on 9.0000
HFCCD-E 0.7421 60.0000 0.0000 0.2375 on on on 9.0000
HFCBER-D 0.7386 70.0000 0.0000 0.2750 on on on 9.0000
lpcPD-L 0.7343 20.0000 -E.2500 0.3125 on on on 9.0000
lpc 0.7295 60.0000 0.0000 0.2375 on on on 9.0000
lpcPD-D 0.7008 40.0000 1.0000 0.2000 on on off 9.0000
SDPD-D 0.6985 90.0000 -E.2500 0.3125 on off on 7.0000
CDPD-D 0.6978 90.0000 -E.2500 0.3125 on off on 7.0000
HFCPD-D 0.6828 90.0000 -E.2500 0.3125 on off on 9.0000
RPD 0.6549 90.0000 0.0000 0.2000 on off on 9.0000
PD 0.6325 90.0000 0.0000 0.2000 on off on 6.0000
HFCPD-E 0.6325 90.0000 0.0000 0.2000 on off on 6.0000
PDBER-D 0.6325 80.0000 -E.5000 0.3500 on off on 8.0000

Table 3-N: Segmentation F-measures of investigated detectors for dataset SB
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Method F-
measure

sens δ fc LP PF MF ψ

CDSF-L 0.9485 100.0000 0.5000 0.5000 on on on 6.0000
SF 0.9448 60.0000 0.2500 0.5000 on on on 7.0000
BERSF-L 0.9407 10.0000 0.0000 0.5000 on on on 7.0000
BERSF-E 0.9311 100.0000 0.5000 0.5000 on on on 6.0000
BERSF-D 0.9286 40.0000 0.0000 0.4250 on on on 8.0000
CDSF-D 0.9275 50.0000 0.0000 0.5000 on on on 5.0000
HFCCD-L 0.9269 80.0000 0.5000 0.5000 on on on 6.0000
CDBER-L 0.9259 60.0000 0.5000 0.5000 on on on 7.0000
HFCCD-E 0.9181 90.0000 0.5000 0.4625 on on on 5.0000
CDPD-L 0.9115 60.0000 0.2500 0.5000 on on on 6.0000
BERSD-L 0.9104 20.0000 0.2500 0.4625 on on on 7.0000
CD 0.9094 70.0000 0.7500 0.5000 on on on 7.0000
CDBER-D 0.9072 10.0000 -E.2500 0.4625 on on on 8.0000
CDSD-L 0.9055 80.0000 0.2500 0.4250 on on on 7.0000
HFCPD-L 0.9001 100.0000 0.5000 0.5000 on on on 6.0000
HFCCD-D 0.8991 70.0000 0.0000 0.4250 on on on 7.0000
HFCSD-L 0.8981 80.0000 0.5000 0.4625 on on on 6.0000
CDBER-E 0.8967 60.0000 0.5000 0.4625 on on on 7.0000
HFCSD-E 0.8957 80.0000 0.5000 0.5000 on on on 7.0000
CDSD-D 0.8899 80.0000 0.2500 0.3875 on on on 9.0000
HFC 0.8891 50.0000 0.0000 0.4250 on on on 7.0000
HFCBER-L 0.8843 80.0000 0.2500 0.3500 on on on 8.0000
SDPD-L 0.8835 80.0000 0.5000 0.4250 on on on 7.0000
HFCBER-E 0.8826 40.0000 0.2500 0.3500 on on on 9.0000
BER 0.8826 40.0000 0.2500 0.3500 on on on 9.0000
PDBER-L 0.8806 10.0000 0.2500 0.4250 on on on 7.0000
SD 0.8769 80.0000 0.2500 0.3875 on on on 8.0000
SDBER-E 0.8714 30.0000 0.2500 0.3875 on on on 8.0000
BERSD-D 0.8712 90.0000 0.2500 0.4625 on on on 7.0000
BERCD-E 0.8705 50.0000 1.0000 0.2375 on on off 9.0000
HFCBER-D 0.8680 60.0000 0.0000 0.3875 on on on 7.0000
BERSD-E 0.8657 50.0000 1.0000 0.2750 on on off 9.0000
HFCSD-D 0.8536 90.0000 -E.5000 0.4250 on off on 5.0000
CDPD-D 0.8328 10.0000 -E.5000 0.3500 on on on 8.0000
SDPD-D 0.8297 10.0000 1.0000 0.2375 on on off 9.0000
HFCPD-D 0.8164 40.0000 -E.2500 0.4250 on on on 7.0000
RPD 0.7949 80.0000 -E.2500 0.2750 on off on 9.0000
PD 0.7801 90.0000 0.0000 0.2375 on off on 7.0000
HFCPD-E 0.7801 90.0000 0.0000 0.2375 on off on 7.0000
PDBER-D 0.7175 80.0000 -E.2500 0.4250 on off on 9.0000

Table 3-O: Segmentation F-measures of investigated detectors for dataset JPB
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Method F-
measure

sens δ fc LP PF MF ψ

SF 0.9486 80.0000 0.2500 0.5000 on on on 6.0000
CDSF-L 0.9455 100.0000 0.5000 0.5000 on on on 6.0000
BERSF-E 0.9440 20.0000 0.0000 0.5000 on on on 9.0000
BERSF-D 0.9396 10.0000 -E.2500 0.5000 on on on 5.0000
BERSF-L 0.9232 90.0000 -L.0000 0.3875 on off on 5.0000
CDSF-D 0.9224 70.0000 0.0000 0.3875 on on on 8.0000
BERSD-E 0.9134 10.0000 -E.2500 0.4625 on on on 7.0000
BERSD-L 0.9120 40.0000 1.0000 0.4250 on on on 6.0000
CDBER-D 0.9115 20.0000 -E.2500 0.4625 on on on 9.0000
CDBER-L 0.9103 40.0000 0.7500 0.3500 on on on 9.0000
SDPD-L 0.9103 60.0000 0.2500 0.3875 on on on 9.0000
BERCD-E 0.9102 10.0000 -E.2500 0.4625 on on on 7.0000
PDBER-L 0.9087 70.0000 -E.7500 0.4250 on off on 5.0000
HFCBER-E 0.9087 70.0000 -E.7500 0.4250 on off on 5.0000
BER 0.9087 70.0000 -E.7500 0.4250 on off on 5.0000
CDBER-E 0.9084 20.0000 1.0000 0.3500 on on on 9.0000
HFCBER-L 0.9075 80.0000 -L.0000 0.3125 on off on 9.0000
CDPD-L 0.9068 40.0000 0.0000 0.3875 on on on 9.0000
CD 0.9068 40.0000 0.0000 0.3875 on on on 9.0000
SDBER-E 0.9064 80.0000 0.2500 0.5000 on off on 5.0000
CDSD-D 0.9050 80.0000 0.2500 0.3500 on on on 9.0000
HFCSD-L 0.9041 40.0000 0.0000 0.3500 on on on 9.0000
CDSD-L 0.9039 40.0000 0.0000 0.2750 on on on 8.0000
SD 0.9013 100.0000 0.5000 0.3500 on on on 9.0000
HFCPD-L 0.8991 10.0000 0.0000 0.5000 on on on 8.0000
HFCCD-L 0.8974 30.0000 0.0000 0.4250 on on on 9.0000
HFCCD-D 0.8956 40.0000 0.0000 0.4250 on on on 9.0000
HFCCD-E 0.8953 90.0000 -E.2500 0.4625 on off on 9.0000
HFC 0.8944 90.0000 0.0000 0.4625 on off on 8.0000
BERSD-D 0.8932 60.0000 0.2500 0.4250 on on on 9.0000
HFCSD-E 0.8930 40.0000 0.0000 0.3875 on on on 9.0000
HFCBER-D 0.8927 100.0000 0.5000 0.3875 on on on 9.0000
HFCSD-D 0.8918 100.0000 0.5000 0.3125 on on on 9.0000
CDPD-D 0.8261 80.0000 -L.0000 0.2375 on off on 6.0000
SDPD-D 0.8239 80.0000 -L.0000 0.2375 on off on 7.0000
HFCPD-D 0.8203 80.0000 -E.7500 0.2750 on off on 6.0000
PDBER-D 0.7639 80.0000 -E.5000 0.2750 on off on 6.0000
RPD 0.6305 80.0000 0.0000 0.2000 on off on 9.0000
PD 0.5776 60.0000 -E.2500 0.2000 on off on 9.0000
HFCPD-E 0.5776 60.0000 -E.2500 0.2000 on off on 9.0000

Table 3-P: Segmentation F-measures of investigated detectors for dataset CP
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