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Abstract

Multidisciplinary design optimisation incorporates several disciplines in one integrated

optimisation problem. The benefit of considering all requirements at once rather than

in individual optimisations is that synergies between disciplines can be exploited to find

superior designs to what would otherwise be possible. The main obstacle for the use of

multidisciplinary design optimisation in an industrial setting is the related computational

cost which may become prohibitively large.

This work is focused on the development of a multidisciplinary design optimisation

framework that extends the existing trust-region based optimisation method known as

the mid-range approximation method.

The main novel contribution is an approach to solving multidisciplinary design

optimisation problems using metamodels built in sub-spaces of the design variable space.

Each metamodel is built in the sub-space relevant to the corresponding discipline while

the optimisation problem is solved in the full design variable space. Since the metamodels

are built in a space of reduced dimensionality, the computational budget for building

them can be reduced without compromising their quality.

Furthermore, a method for efficiently building kriging metamodels is proposed. This is

done by means of a two-step hyper parameter tuning strategy. The first step is a line

search where the set of tuning parameters is treated as a single variable. The solution of

the first step is used in the second step, a gradient based hyper parameter optimisation

where partial derivatives are obtained using the adjoint method.

The framework is demonstrated on two examples, a multidisciplinary design optimisation

iv



of a thin-walled beam section subject to static and impact requirements, and a

multidisciplinary design optimisation of an aircraft wing subject to static and bird

strike requirements. In both cases the developed technique demonstrates a reduced

computational effort compared to what would typically be achieved by existing methods.
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Chapter 1

Introduction

This chapter gives an overview to the research that is presented in this work. The chapter

commences by a motivation to the research in Section 1.1, followed by a definition of

research objectives in Section 1.2. The chapter concludes with an outline of the thesis

in Section 1.3.

1.1 Motivation of research

Multidisciplinary design optimisation (MDO) considers requirements from several

disciplines in one integrated optimisation problem. By including all disciplines in one

optimisation problem, synergies between disciplines can be exploited to find designs that

are superior to what could possibly be obtained if attempting separate optimisations for

each discipline.

One of the main challenges of MDO is the associated computational cost. In the last

couple of years there has been an explosion in computing power. It is now possible to have

thousands of cores in a high-performance computing facilities dedicated to numerical

2
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simulations. However, due to the ever increasing fidelity of the computational models

used in industry it is still very time consuming to carry out certain types of simulations.

As MDO requires multiple simulations across multiple disciplines, the computational

budget can easily become unaffordable.

Much research focus is devoted to efficiently obtaining accurate gradients of the

response functions with respect to the design variables. The adjoint method is

particularly efficient to use for obtaining gradients when the number of design variables is

large compared to the number of response functions. This is because the computational

cost is proportional to the number of response functions, as opposed to the number of

design variables as with direct differentiation. When used together with gradient based

optimisation algorithms, such as sequential quadratic programming, the optimisation

process can be made very efficient. For further information on obtaining gradients for

multidisciplinary systems the reader is referred to Martins and Hwang (2013).

For certain types of numerical simulations, e.g. structural crashworthiness or impact

simulations, it may not be possible to obtain gradients at an acceptable computational

cost, and even if the computational cost of obtaining the gradients was acceptable,

they may not be of practical use if the response functions are noisy. Examples of such

simulations can be found in both the automotive industry, e.g. crashworthiness analysis,

and the aerospace industry, e.g. bird strike simulation.

There are a number of options for optimisation without the use of gradients such as

methods inspired by biological processes or behaviour. Examples of such methods are

genetic algorithms (GA) that mimic natural selection and particle swarm optimisation

(PSO) that mimic social behaviour of animals in flock. Such algorithms are usually

popular for finding the best of several local optima of optimisation problems, however,

at a high computational cost.
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Another possibility is the use of metamodel-based optimisation which is one of the

main topics of this work. Metamodels can be used to replace expensive numerical

experiments with cheaper mathematical representations and many of them inherently, or

by simple modifications, smooths noisy responses. Gradients are not required, however,

if available, they can be used to enhance the quality of the approximations by simple

modifications to the metamodel. In order to construct metamodels, the function values

at a number of points within the design domain are needed. The number of required

simulations are dictated by the severity of the non-linearity of the response, the desired

accuracy of the metamodel, and the number of design variables. Unless the response

is linear with respect to the design variables, the required number of points increases

super-linearly with the number of design variables. This is commonly known as the curse

of dimensionality.

1.2 Research objectives

The objective of this thesis is to propose and develop a metamodel-based MDO

framework suitable for industrial MDO problems with a large number of design variables,

at least 100. The framework should be able to incorporate crash-worthiness or impact

responses, for which gradients may or may not be available. This objective is broken

down into the following tasks:

1. Identify existing techniques with promising attributes for metamodel-based MDO.

2. Identify bottlenecks of existing techniques and suggest improvements.

3. Develop a metamodel-based MDO framework.

4. Propose methods to reduce the computational cost for MDO problems with a large

number of design variables (>100).
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5. Demonstrate the applicability of the developed framework on problems including

impact or crashworthiness requirements.

1.3 Thesis outline

The following chapters are outlined as follows:

Chapter 2 presents an introduction to MDO and the terminology that will be used

throughout the thesis followed by a discussion on MDO architectures that leads to a

choice of a suitable architecture.

Chapter 3 introduces metamodel-based optimisation and presents information on

design of experiments, approximation techniques, and optimisation techniques used

throughout the work.

Chapter 4 outlines the details of a trust-region and metamodel-based optimisation

method, known as the mid-range approximation method, which has been used

throughout this work.

Chapter 5 presents a novel method for reducing the computational effort of the

parameter tuning related to building kriging metamodels.

Chapter 6 presents an MDO framework based on the mid-range approximation

method. Changes are made to individually handle disciplines within the framework

and take advantage of any disparities between disciplines. A method for reducing the

computational effort of solving MDO problems including disciplines with varying variable
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dependence is presented and demonstrated on a benchmark optimisation example of

a thin-walled beam structure and on an industry-related optimisation example of an

aircraft wing.

Chapter 7 concludes the thesis with a summary, conclusions, and suggestions for

future work.



Chapter 2

Multidisciplinary design

optimisation

This chapter discusses the choice of MDO architecture. For comprehensive reviews on

MDO architectures, see for instance Cramer et al. (1993), Sobieszczanski-Sobieski and

Haftka (1997), and most recently Martins and Lambe (2013). The chapter commences

with a short introduction outlining the terminology that will be used throughout the

work in Section 2.1. This is followed by a discussion of MDO architectures in Section

2.2 and finally concludes with a motivation and choice of architecture in Section 2.3.

2.1 Introduction and terminology

Multidisciplinary design optimisation includes several disciplines in one integrated

optimisation problem. This section provides definitions and terminology relating to

the definition of a discipline, interactions between disciplines, and their use in a

multidisciplinary design optimisation problem.

7
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2.1.1 Disciplines

It is common and intuitive to divide a problem into physical disciplines, e.g. structural

mechanics, fluid mechanics, electromagnetic, etc. In this work, however, the division is

related to the practicalities of analysing the computational models which are included

in the multidisciplinary design optimisation problem. A discipline is defined here as a

process, depicted in Figure 2.1, often a commercial finite element (FE) or computational

fluid dynamics (CFD) software product, which takes several input arguments xi ∈ Rni ,

and outputs a set of function values yi ∈ Rmi . ni is the number of design variables and

mi is the number of responses for discipline i. In certain situations the partial derivatives

of the response functions with respect to the design variables, hereafter referred to as

gradients, are available as output from the software product. However, it is assumed

here that gradient output is not available in the general case.

Figure 2.1: A discipline
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2.1.2 Multi-physics coupling

In order to capture some physical phenomena, e.g. fluid structure interaction (FSI), it is

required to share information between disciplines. There are two conceptually different

types of coupling, one or two way coupling, as shown in Figure 2.2. The input variables,

which can be overlapping between the disciplines, are denoted xd where d denotes the

discipline number. Similarly the output is denoted yd. The coupling vectors containing

the shared information are denoted as wd, where d denotes which discipline the shared

variable belongs to.

A common way of handling such physics coupling between multiple disciplines is

multidisciplinary analysis (MDA). For a one way coupled analysis MDA is carried out

by evaluating the first discipline followed by evaluation of the second discipline by using

intermediate information from the first discipline. For a two way coupling this becomes

more complicated. For a two way coupling MDA is commonly carried out by iteratively

(a) One way coupling (b) Two way coupling

Figure 2.2: Multidisciplinary analysis.
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evaluating the individual disciplines until multidisciplinary feasibility has been achieved,

usually meaning that the changes between two iterations in the result or intermediate

variables between two following iterations are below a certain threshold value (Martins

and Lambe, 2013).

An example where a two way coupling is required is aeroelastic analysis of an aircraft

wing. The fluid (air) flow leads to a loading and hence deformation of the structure

(wing) which in turns leads to changes in the fluid flow, and the circle is complete. As

such the fluid pressure from the flow analysis is shared with the structural analysis which

in term shares the computed displacement field with the flow analysis. This is repeated

until multidisciplinary feasibility has been achieved.

Although multi-physics simulation is not part of the scope of this work, it will be

part of the discussion in this chapter in order to accommodate future attempts to extend

this work to that area.

2.1.3 MDO terminology

An example of a five discipline MDO problem with two types of multidisciplinary

analyses is depicted in Figure 2.3. The design vector for the complete MDO problem

is denoted as x ∈ Rn where n is the number of design variables. In order to allow for

different parametrisation of disciplines the design vector related to a particular discipline

is defined as a projection of the design vector xd = Pdx, where P is the projection

Pd : Rn 7→ Rnd , n is the number of design variables for the MDO problem, and nd the

number of design variables for discipline i. The full set of response functions in the MDO

problem is defined as y = [y1, ...,yN ] where N is the number of disciplines.

The objective function and constraints are written as functions of the complete design

variable vector as fj(x) = fj(y1(x1)), ...,yN (xN )) where j = 1, ...,m. f0(x) denotes the
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Figure 2.3: MDO problem with five disciplines.

objective function and fj(x) for j = 1, ...,m denotes inequality constraint functions. In

reality they can be functions of one or several disciplines, however the given notation is

used for generality and brevity.

2.2 MDO architectures

MDO architectures can be divided into two groups, namely monolithic and distributed

architectures. Monolithic architectures pose a single optimisation problem while

distributed architectures decompose the optimisation problem to sub-problems with a

top level optimiser to enforce consistency constraints. Distributed architectures have

mainly been developed in order to fit organisational structures with teams of experts

in charge of their own disciplines. These disciplinary teams are meant to carry out

optimisation of their discipline separately whilst occasionally receiving information from

the others in order to enforce multidisciplinary feasibility. The penalty associated with
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the use of of distributed architectures is usually an increased computational cost (Martins

and Lambe, 2013), which is why this work will be focused on monolithic, rather than

distributed, architectures. In the following sections the three most common monolithic

MDO architectures will be presented and discussed.

2.2.1 Multidisciplinary feasible

The multidisciplinary feasible (MDF) architecture, first formulated by Cramer et al.

(1993), is the most common and intuitive way of formulating an MDO problem

for designers and engineers. It does not differ conceptually from a single discipline

optimisation problem, apart from the fact that response functions are evaluated from

several disciplines. Figure 2.4 shows the MDF architecture for the previously presented

five discipline MDO problem. In MDF the problem is treated as a problem with three

disciplines rather than five. Any disciplines which are connected through multi-physics

Figure 2.4: Multidisciplinary feasible (MDF) architecture
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coupling are grouped together as a super discipline and MDA is carried out internally

within the super discipline to guarantee the multidisciplinary feasibility in each iteration.

The optimisation problem for MDF can be written, analogous to a mono disciplinary

optimisation problem as

minimise
x

f0(x)

subject to fj(x) ≤ 1, j = 1, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

(2.1)

f0(x) = f0(y1(x1), ..,yN (xN )) is the objective function, fj(x) = fj(y1(x1), ..,yN (xN ))

is the j-th constraint, x is the vector of design variables and A and B are the upper

and lower bounds respectively on the design variables. As the optimisation problem

does not differ from a mono disciplinary optimisation problem, it is, theoretically,

trivial to implement within existing optimisation methods given that all disciplines and

multidisciplinary analysis schemes have been set up a priori.

2.2.2 Individual discipline feasible

Individual discipline feasible (IDF) also formulated by Cramer et al. (1993), enforces

multidisciplinary feasibility through explicit constraints in the optimisation problem

which eliminates the need for multidisciplinary analysis. A conceptual flowchart for

the three discipline discipline problem is shown in Figure 2.5.

In order to enforce multidisciplinary feasibility, copies, w+
d , of the coupling

variables, wd, where d denotes the discipline number, are created which are treated

as design variables in the optimisation problem and passed to the relevant disciplines.

Multidisciplinary feasibility is achieved by constraining the coupling variable copies to
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equal the coupling variables. The optimisation problem for IDF becomes

minimise
x,w+

f0(x)

subject to fj(x) ≤ 1, j = 1, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

cd = w+
d (xd)−wd(xd) = 0, d = 1, . . . , N

(2.2)

where cd denotes the consistency constraints for coupling variable copies w+
d

corresponding to coupling variables wd.

The benefit of IDF is that advantage can be taken of not requiring multidisciplinary

analysis at each design point and hence the computational budget can be decreased. It

also means that multidisciplinary feasibility is not ensured until convergence, something

that may be prohibitive for industrial use where the available time may not be enough for

a converged solution. Furthermore, the number of both design variables and constraints

increases by the number of coupling variables.(Martins and Lambe, 2013).

Figure 2.5: Individual discipline feasible (IDF) architecture
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2.2.3 Simultaneous analysis and design

Simultaneous analysis and design (SAND), presented by Haftka (1985), also known

as All at once (AAO) by Cramer et al. (1993), enforces multidisciplinary and

interdisciplinary feasibility by explicit constraints in the optimisation problem. In

other words, the discrete equations of the discipline analyses is included in the

optimisation problem as constraints and only residuals are computed by the discipline

simulations. Interdisciplinary feasibility is then enforced by equality constraints. Just

like IDF, multidisciplinary feasibility is handled with consistency constraints. The SAND

architecture is shown in Figure 2.6, and the optimisation problem is given as

minimise
x,u

f0(x)

subject to fj(x) ≤ 1, j = 1, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

cd = w+
d (xd)−wd(xd) = 0, d = 1, . . . , N

rd(ud) = 0, d = 1, . . . , N

(2.3)

where ri are the residuals of discipline i with state variables ui.

The motivation for SAND is that the computational budget can be further reduced

by including both multidisciplinary and interdisciplinary feasibility as optimisation

constraints. This however means that interdisciplinary and multidisciplinary feasibility

is not ensured until convergence, the number of variables in the optimisation problem

increases dramatically and it limits the use of software products to the ones which can

output residuals (Martins and Lambe, 2013).
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Figure 2.6: Simultaneous analysis and design (SAND) architecture

2.3 Choice of architecture and motivation

The SAND architecture is appealing as it, in the same way as MDO brings together

all disciplines in one optimisation problem, brings together all constraints into one

optimisation problem. However, most commercial software products would not have

the option to output residuals which are required for the use of SAND. Furthermore the

number of optimisation variables and responses would increase dramatically for large

problems which is a problem for optimisation techniques that do not require gradients.

It is therefore concluded that SAND is not a suitable architecture for the purpose of this

work.

In the current research multi-physics simulations are not considered, making the MFD

and IDF architectures equivalent as there are no coupling variables present. However,

the rationale for deciding which architecture to use is based on the possibility of solving

such problems within the planned framework.
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The IDF architecture is interesting for problems including multi-physics coupling as

it could potentially be made computationally efficient by not requiring multidisciplinary

feasibility in each iteration of the optimisation process. Unlike SAND it is possible to

use with commercial software as no residual output is needed. However, the number

of design variables increase with the number of introduced coupling variables. A large

number of coupling variables could therefore make the problem unaffordable if gradients

are not available.

Despite the penalty in computational cost compared to IDF and SAND the MDF

architecture is chosen for use throughout this work. The motivation is that the MDF

architecture requires none or very little change to an already existing process for

evaluation the requirements that will be used in the MDO, has already been set up.

Furthermore it keeps both interdisciplinary and multidisciplinary feasibility enforced

throughout the optimisation process which is advantageous for industrial use as time

constraints might force premature termination of the optimisation process. It is also the

author’s opinion that MDF is the most suitable architecture for the use of metamodels

as it keeps the number of variables to a minimum.

2.4 Summary

In multidisciplinary design optimisation several disciplines are included in one integrated

optimisation problem. This chapter served as an introduction to MDO and the related

terminology. Three monolithic architectures, multidisciplinary feasible, individual design

feasible, and simultaneous analysis and design, were introduced and described.

It was argued that monolithic architectures are more efficient in terms of

computational cost than distributed architectures, and therefore various monolithic

MDO architectures were covered and their potential impact on the planned framework
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discussed. The multidisciplinary feasible architecture was chosen as the most suitable

for the new MDO framework as it is compatible with existing commercial finite element

software, keeps interdisciplinary and multidisciplinary feasibility enforced throughout the

optimisation process. Furthermore, it is advantageous to use with metamodels because

it keeps the number of variables to a minimum.



Chapter 3

Metamodel-based optimisation

Metamodels are frequently used to replace computationally expensive simulations with

cheaper mathematical models. Metamodels are also commonly referred to as surrogate

models, response surfaces, or approximations. Using metamodels to replace response

functions in optimisation is called metamodel-based optimisation and will be discussed

in this chapter.

The chapter starts with an introduction to metamodel-based optimisation in Section

3.1 and Section 3.2 presents a short overview of design of experiments method. Section

3.3 outlines two approximation methods used throughout this work, namely the moving

least squares and kriging. Section 3.4 describes two gradient based optimisation

algorithms used in this work, the method of feasible directions and sequential quadratic

programming. The chapter concludes by describing a novel method of carrying out hyper

parameter tuning for kriging metamodels in Chapter 5.

19
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3.1 Introduction to metamodel-based optimisation

Several review articles have been written on the subject of metamodel-based

optimisation, for instance, Barthelemy and Haftka (1993), Wang and Shan (2007),

Forrester and Keane (2009), and Viana et al. (2014, 2010). Barthelemy and Haftka (1993)

categorise approximations depending on their intended range of use within the design

space. Local approximations are valid in the immediate vicinity of a point. Examples of

local approximations are Taylor series expansions. Global approximations are intended

to be used throughout the entire design space, while mid-range approximations are

intended to be used in a sub-region of the design space. This section focuses on the two

latter categories as local approximations are not within the scope of the research. More

information on local approximations can be found in, for instance, Haftka and Gurdal

(1992).

The process of metamodel-based design optimisation is depicted in Figure 3.1. The

first step (a) is to decide the location of a set of training points, the i-th point is

denoted x(i) = (x
(i)
1 , ..., x

(i)
n ), where n denotes the number of design variables. This

is followed by (b) evaluation of the response at the training points f (i) = f(x(i)) and

(c) fitting a suitable model f̃(x) to the evaluated points. Once the metamodel has been

created it can be used to calculate an approximate response at new points at a much

reduced computational cost. For instance, optimisations (d) can be carried out using

the metamodel to find an approximate optimum f̃(x∗), which is verified by evaluating

the true function at the same point, i.e. f(x∗). It is common to return to adding

more training points and repeating the process if the metamodel has not reached desired

accuracy.
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x1 x2

f(x1,x2)

(c) Fit metamodel

f(x1,x2)
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f(x1,x2)
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~

f(x*)
~

(d) Optimisation on metamodel

f(x1,x2)

x1 x2

f(x1,x2) f(x*) - f(x*)
~

(e) Verify discrepancy of model and true function

Figure 3.1: The metamodel-based optimisation process.

3.2 Design of experiments

The task of determining the locations of the training points within the design space is

commonly known as Design of Experiments (DOE) and has its origin in the planning of

physical experiments, see for instance, Box and Draper (1987). For physical experiments,

classical methods were used with the emphasis on estimating the effects of variables and
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reducing the effect of noise due to uncontrollable factors (Grove and Davis, 1992). Several

classical methods exist, such as factorial designs (Fisher, 1960), central compsite designs

(Box and Wilson, 1951), Box-Behnken (Box and Behnken, 1960) and Plackett-Burman

(Plackett and Burman, 1946), to name a few.

For building response surfaces of deterministic computer simulations, DOE methods

with space-filling properties are preferred. A particular type of space filling design that

has a good distribution when projected onto any of the individual variable sub-spaces is

the Latin hypercube design (Audze and Eglajs, 1977; M. D. McKay, 1979). One of the

properties that are desired for computer experiments is a uniform distribution of points

throughout the design space. Therefore it is very common to use the so called uniform

latin hypercube design (ULH) proposed by Audze and Eglajs (1977), where optimisation

is used to generate uniform Latin hypercube designs according to an objective function

related to uniformity. This optimisation process has been made more efficient since by

using a permutation genetic algorithm (Bates et al., 2003). Further improvements to the

ULH were proposed by Kianifar et al. (2016) in order to sequentially add training and

validation points to the design space while keeping the combined set of points optimal.

This is a desirable feature as one seldom knows the number of required points to reach

desired accuracy beforehand.

Another set of space filling designs are based on quasi-random low discrepancy

sequences such as Halton (Halton, 1964), Sobol (Sobol’, 1967) and Hammersley

(Hammersley and Handscomb, 1964) sequences. In the present work a technique

developed within Altair HyperStudy (Altair Engineering, Inc., 2014a), called modified

extensible lattice sequences (MELS), is used. The technique is based on extensible lattice

sequences proposed by Hickernell et al. (2000) and allows for creating lattice sequences

that do not require knowing the number of points a priori. This makes the technique,

just like the ULH proposed by Kianifar et al. (2016), suitable for sequential use.
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3.3 Metamodel techniques

There is a large number of modern metamodel techniques ranging from polynomial

regression techniques such as the moving least squares method (Lancaster and

Salkauskas, 1981), interpolating techniques such as radial basis functions (Broomhead

and Lowe, 1988) and kriging (Sacks et al., 1989), to machine learning techniques such

as support vector regression (Vapnik and Vapnik, 1998) and artificial neural networks

(Rojas, 2013). In this section two metamodel techniques, used in this work, are

presented. The moving least squares method is based on regression around a point

(the evaluation point) and Kriging is an interpolating metamodel technique based on

spatial correlation.

3.3.1 Moving least squares method

The moving least squares method (MLSM) was initially proposed by Lancaster and

Salkauskas (1981) for smoothing and interpolation of scattered data and later used in

the mesh-free form of the Finite Element Method (Liszka, 1984). Choi et al. (2001) later

proposed the use of MLSM as a metamodelling technique. Just like simple polynomial

regression, the following model is used:

f(x(i)) = f̃(x(i)) + εi =
h∑
j=1

bj(x
(i))aj + εi, (i = 1, ..., p), (3.1)

where bj(x
(i)) is the j-th regressor, aj the corresponding regression coefficient, and εi

are assumed to be normally distributed independent errors, e.g. noise. In the case of a

linear basis polynomial the number of regressors is h = n+ 1, and a resulting vector of
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regressors can be written as

b(x(i)) =

[
1 x

(i)
1 . . . x

(i)
n

]
, (i = 1, ..., p). (3.2)

Higher order polynomial basis functions can be used by adding additional terms.

However, a quadratic polynomial basis requires h = (n + 1)(n + 2)/2, which may be

difficult to obtain for problems with a large number of design variables and expensive

function evaluations. The regression coefficients are obtained by means of a weighted

least squares problem defined as

minimise
a

G(a) ≡
p∑
i=1

{
wi(x

(i),x(e))
[
f̃(x(i),a)− f(x(i)))

]2}
, (3.3)

where the weight wi depends on both the associated training point x(i) and the evaluation

point x(e) according to a weight decay formula, discussed in Section 3.3.1.2. The

stationary point of (3.3) can be found through the system of normal equations written

in matrix form as

BTWBa = BTWf, (3.4)

where B contains the polynomial terms for each training point according to

B =


b1(x

(1)) . . . bh(x(1))

...
. . .

...

b1(x
(p)) . . . bh(x(p))

 . (3.5)

W is a diagonal matrix with the weights between each training point and the evaluation

point

W = diag

[
w1(x

(1),x(e)) . . . wp(x
(p),x(e))

]
, (3.6)
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and f contains the function values at each of the training points

f =

[
f(x(1)) . . . f(x(p))

]T
. (3.7)

Solving the system of equations (3.4) for the coefficients in a yields the moving least

squares approximation at a point xe as

f̃(x(e)) = b(x(e))Ta. (3.8)

It is worth noting that as the weights matrix (3.6) is a function of the evaluation point,

the system of equations needs to be resolved for every evaluation point.

3.3.1.1 Gradient-enhanced moving least squares method

In order to utilise available partial derivatives, gradients, with respect to the design

variables one can make use of the gradient enhanced moving least squares method (GE-

MLSM) described by Choi et al. (2001).

The least squares problem (3.3) is modified to contain not only the function values

but also the derivatives as

minimise
a

G(a) ≡
p∑
i=1

{
wi(x

(i),x(e))
[
f̃(x(i),a)− f(x(i)))

]2
+

n∑
j=1

wji

[
∂f̃(x(i),a)

∂xj
− ∂f(x(i))

∂xj

]2 .

(3.9)

The weights for the derivative terms wji are the weights for the corresponding funcion

value multiplied by a factor according to

wji = δwi, 0 < δ ≤ 1. (3.10)
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δ is a user defined value indicating how much importance is given to the derivative terms

relative to the function values. Just like the non-derivative case, the stationary point is

found by solving the system (3.4), where the matrix B now not only contains the basis

polynomial for each training point but also the derivatives with respect to the design

variables as

B =



b1(x
(1)) . . . bh(x(1))

∂1b1(x
(1)) . . . ∂1bh(x(1))

...
. . .

...

∂nb1(x
(1)) . . . ∂nbh(x(1))

...
. . .

...

b1(x
(p)) . . . bh(x(p))

∂1b1(x
(p)) . . . ∂1bh(x(p))

...
. . .

...

∂nb1(x
(p)) . . . ∂nbh(x(p))



. (3.11)

∂k denotes the partial derivative with respect to the k-th design variable. W is updated

to contain the weights for the derivative terms according to

W = diag

[
w1(x

(1),x(e)) . . . wp(x
(p),x(e))

]
, (3.12)

where

wi(x
(i),x(e)) = diag

[
w1
i (x

(i),x(e)) . . . wn
i (x(i),x(e))

]
, (3.13)

and the vector f now contains the function values and gradients at each of the training

points.
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f =



f(x(1))

∂1f(x(1))

...

∂nf(x(1))

...

f(xp)

∂1f(x(p))

...

∂nf(x(p))



. (3.14)

Solving the system of equations (3.4) for the coefficients in a yields the gradient-enhanced

moving least squares approximation at a point xe according to (3.8).

3.3.1.2 Weight decay function

The weights, appearing in (3.6) and (3.13), are calculated according to a weight decay

function. Points that are close to the evaluation point are given high weighting while

points far away are given low weighting. A popular choice for the weight decay function

is the Gaussian function

wi(x
(i),x(e)) = e−θ||x

(i)−x(e)||2 . (3.15)

|| · || denotes the Euclidean norm. θ is commonly referred to as the closeness of fit

parameter and controls the rate by which the weight decays in the Gaussian function.

A low value of the closeness of fit parameter will assign high weights across all training

points, resulting in a loose fit, whilst a high value will lead to a rapid weight decay and

a close fit. Figure 3.3.2.1 shows the Gaussian weight decay function for four different
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values of θ. It is important to carefully choose the value of θ as an underestimated value

may result in a very loose fit that does not represent the general trend of the function

well and an overestimation may result in over-fitting. This is illustrated in Figure 3.3

where three MLSM fits using different values of the closeness of fit parameter are shown.

Figure 3.2: Gaussian weight decay function with varying closeness of fit parameter.

Figure 3.3: Three MLSM fits with different closeness of fit parameter values.
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3.3.1.3 Closeness of fit parameter tuning

In order to determine the closeness of fit parameter in a systematic way, cross-validation

can be used. Cross validation is a way of estimating the quality of the approximation

and it is usually implemented by evaluating a set of points that are not included in the

set of training points used to build the approximation. The drawback of this procedure

is that additional evaluations are needed and hence will add to the cost of building the

approximation.

As demonstrated by Tu and Jones (2003), a Leave-One-Out Cross-Validation

(LOOCV) methodology can be used to estimate the error of the metamodel without the

need for additional training points. This is done by successively leaving one point out of

the training set, constructing the surrogate model on the remaining set and evaluating

the approximate function value, at the point left out. The discrepancy between the

approximate function value f̃p−1(θ,x
(i)), and the true function value, f(x(i)), is evaluated

as an estimated approximation error at that point. This is done for all of the points

in the set and used to calculate a Root Mean Square Error (RMSE) for the current

closeness of fit parameter value, as:

RMSE(θ) =

√√√√∑p
i=1

[
f(x(i))− f̃p−1(θ,x(i))

]2
p

. (3.16)

Any one dimensional optimisation technique can then be used in order to find the value

that minimises RMSE(θ). Figure 3.4 illustrates a typical function RMSE(θ) and the

corresponding location of the minimum.
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Figure 3.4: RMSE as a function of the closeness of fit parameter.

3.3.1.4 Variable ranking

Another application of the Cross-Validated Moving Least Squares Method is design

variable ranking. A backwards elimination ranking proposed by Tu and Jones (2003) is

carried out by calculating an impact factor for each design variable based on successively

leaving out each variable. An impact factor for a particular variable, xj , can be

calculated by building an approximation that ignores the effect of xj . The RMSE of

this approximation is then compared to the error of an approximation built with the full

set of variables as

Ij =
RMSEj −RMSE

RMSE
, (3.17)

where RMSEj denotes the RMSE for an approximation built without the variable xj ,

and RMSE is the error for an approximation built on the full set of variables. If the

impact factor is a measure of the importance of each variable on the response, a small

or negative value for a variable indicates that the variable is a candidate for elimination.

The main benefit of this design variable ranking technique is that, unlike methods such

analysis of variance (ANOVA), it can account for coupling effects between variables.
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3.3.2 Kriging

Kriging is an interpolating metamodel technique based on spatial correlation that was

first proposed by Krige (1951) and later implemented by Matheron (1963) for use within

the mining industry. The use of kriging for approximation of expensive computational

models was shown by Sacks et al. (1989).

Following the notation of Jones (2001), kriging is derived from the assumption that

computer simulations are entirely deterministic and any error in the fit of a metamodel

is entirely down to missing terms in the model. Hence, the error term in (3.1) can be

written as a function of x(i) and becomes

f(x(i)) =

h∑
j=1

bj(x
(i))aj + ε(x(i)), (i = 1, ..., p). (3.18)

Furthermore it is assumed that the error, εi(x
(i)), is continuous for any continuous

function f(x(i)), and that the error at two points x(i) and x(j) are correlated with their

distance according to a model ψ(xi,xj). As the error is modelled explicitly in kriging,

the model will exactly interpolate the training points.

The first part of the model (3.18), the polynomial regression, can be of arbitrary

order. However, the order of the regression model will dictate the number of required

points which must be at least as many as the number of regressors. Kriging with zero-th

order polynomials is usually referred to as ”ordinary” kriging while using first order or

higher order polynomials are termed ”universal” kriging. Ordinary kriging tends to be

the most popular method as trends are not usually known beforehand (Forrester and

Keane, 2009) and hence this will be the focus of this section. For ordinary kriging the
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model can be written as

f(x(i)) = µ̂+ εi(x
(i)), (i = 1, ..., p), (3.19)

where the estimated mean µ̂ is determined by solving the weighted least squares problem

µ̂ =
(
BTR−1B

)−1
BTR−1f, (3.20)

and the matrix of regressors, representing a zero-th order basis function in ordinary

kriging, is reduced to a vector of ones according to

B = 1 = [1, ..., 1︸ ︷︷ ︸
p

]T . (3.21)

The matrix R is discussed shortly. The error, treated as a stochastic process, is modelled

as

ε(x(i)) = wT r(x(i),x(e)), (3.22)

where r contains basis functions depending on some specified spatial correlation between

the evaluation point and the training points

r =
[
ψ(x(e),x(1)), ..., ψ(x(e),x(p))

]T
. (3.23)

This is commonly modelled as a Gaussian function according to

ψ(x(i),x(j)) = exp

[
n∑
k=1

−θk(x
(i)
k − x

(j)
k )2

]
, (3.24)

where θk, k = 1, ..., n are tuning parameters, often denoted hyper parameters that needs

to be determined through optimisation in order to produce a good quality metamodel.

This is further discussed in Chapter 5.
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The weights are calculated as:

w = R−1 (f−Bµ̂) , (3.25)

where R contains the estimated spatial correlation between all the training points,

including between themselves on the diagonal,

R =


ψ(x(1),x(1)) . . . ψ(x(1),x(p))

...
. . .

...

ψ(x(p),x(1)) . . . ψ(x(p),x(p))

 , (3.26)

and f contains the function values at the training points,

f =
[
f(x(i)), ..., f(x(p))

]T
. (3.27)

The estimated system variance is calculated as

σ̂2 =
1

p
(f−Bµ)T R−1 (f−Bµ) , (3.28)

the final predicted kriging estimation at a point x(e)) is given by

f̃(x(e)) = µ̂+ wT r(x(i),x(e)), (3.29)

and a predicted mean squared error of the predictor is

s2(x(e)) = σ̂2
[
1− rTR−1r +

(1−BTR−1r)2

BTR−1B

]
. (3.30)
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3.3.2.1 Gradient-enhanced kriging

If, in addition to the function values, gradients are available, they may be used to

improve the accuracy of the kriging metamodel. The method of incorporating gradients

in kriging is called gradient enhanced kriging (GEK) and is described in this section.

Figure 3.5 shows a one-dimensional example with a kriging and gradient enhanced kriging

fit respectively. It is clear that the gradient enhanced fit is of superior quality. The

presented implementation is as described in Han et al. (2013) to which the reader is

referred for further information.

In order to create a gradient enhanced kriging fit the correlation matrix needs to be

extended to include derivative terms according to

R =

 Q1,1 Q1,2

(Q1,2)T Q2,2

 , (3.31)
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Figure 3.5: An illustrative Comparison between kriging and GEK metamodel in one
dimension.
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where Q1,1 is the same as the correlation matrix used in the non-gradient case

Q1,1 =


ψ(x(1),x(1)) . . . ψ(x(1),x(p))

...
. . .

...

ψ(x(p),x(1)) . . . ψ(x(p),x(p))

 . (3.32)

Q1,2 contains the first derivatives of R according to

Q1,2 =


∂ψ(x(1),x(1))

∂x(1) . . . ∂ψ(x(1),x(p))

∂x(p)

...
. . .

...

∂ψ(x(p),x(1))

∂x(1) . . . ∂ψ(x(p)x(p))

∂x(p)

 , (3.33)

where

∂ψ(x(i),x(j))

∂x(j)
=

[
∂ψ(x(i),x(i))

∂x
(j)
1

. . . ∂ψ(x
(i),x(i))

∂x
(j)
n

]
. (3.34)

and, using the Gaussian function (3.24), leads to

∂ψ(x(i),x(j))

∂x
(j)
k

= 2θk

(
x
(i)
k − x

(j)
k

)
ψ(x

(i)
k ,x

(j)
k ). (3.35)

The sub-matrix Q2,2 contains the second derivatives

Q2,2 =


∂2ψ(x(1),x(1))

∂x(1)∂x(1) . . . ∂2ψ(x(1),x(p))

∂x(1)dx(p)

...
. . .

...

∂2ψ(x(p),x(1))

∂x(p)∂x(1) . . . ∂2ψ(x(p)x(p))

∂x(p)∂x(p)

 , (3.36)

where

∂2ψ(x(i),x(j))

∂x(i)∂x(j)
=


∂2ψ(x(i),x(j))

∂x
(i)
1 ∂x

(j)
1

. . . ∂2ψ(x(i),x(j))

∂x
(i)
n ∂x

(j)
1

...
. . .

...

∂2ψ(x(i),x(j))

∂x
(i)
1 ∂x

(j)
n

. . . ∂2ψ(x(i),x(j))

∂x
(i)
n ∂x

(j)
n

 , (3.37)
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and, using the Gaussian function (3.24), leads to

∂2ψ(x(i),x(j))

∂x
(i)
l ∂x

(j)
k

=


2θk

[
−2θk

(
x
(i)
k − x

(j)
k

)2
+ 1

]
ψ(x(i),x(j)) , k = l

−4θkθl

[(
x
(i)
k − x

(j)
k

)(
x
(i)
l − x

(j)
l

)]
ψ(x(i),x(j)) , k 6= l

. (3.38)

The vector of spatial correlations between the evaluation points and the training points

is extended in the same manner to

r =



ψ(x(e),x(1))

...

ψ(x(e),x(p))

∂ψ(x(e),x(p))

∂x(1)

...

∂ψ(x(e),x(p))

∂x(p)


, (3.39)

using the expression in (3.34) and (3.35). The vector of function values is extended to

include gradients as well as the function values

f =



f(x(1))

...

f(x(p))

∂f(x(1))
∂x

...

∂f(x(p))
∂x


, (3.40)

where

∂f(x(i))

∂x
=


∂f(x(i))
∂x1
...

∂f(x(i))
∂xn

 . (3.41)
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Similarly, the basis polynomial is also extended to include a vector of zeros of length

equal to the number of derivative terms

B = [1 0] = [1, ..., 1︸ ︷︷ ︸
p

, 0, ..., 0︸ ︷︷ ︸
pn

]T , (3.42)

recalling that n is the number of design variables and p is the number of training points.

The predicted mean is now calculated as

µ̂ =
(
BTR−1B

)−1
BTR−1f, (3.43)

the predicted system variance is calculated as

σ̂2 =
1

n(1 + p)
(f−Bµ)T R−1 (f−Bµ) , (3.44)

and the weights vector takes the form

w = R−1 (f−Bµ̂) . (3.45)

The final predicted kriging estimate at a point x(e) is calculated as

f̃(x(e)) = µ̂+ wT r(x(i),x(e)), (3.46)

and a predicted mean squared error of the kriging prediction is given by

s2(x) = σ̂2
[
1− rTR−1r +

(1−BTR−1r)2

BTR−1B

]
. (3.47)
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3.3.2.2 Noise regularisation

Although kriging is an interpolation technique, it is possible to create a regression-

like metamodel through regularisation as suggested by Forrester et al. (2006). This

is performed by adding another tuning parameter, commonly denoted regularisation

parameter, λ to the diagonal elements of the correlation matrix as

R = R + λI. (3.48)

This parameter, like the hyper parameters in (3.24), is to be determined through

optimisation to produce a good quality fit. This is further discussed in Chapter 5.

Figure 3.6 demonstrates a one-dimensional fit of a noisy function with and without

regularisation. It can be seen that the regularisation allows the metamodel to deviate

from the training points in order to follow the underlying trend.

For the gradient-enhanced case there is a possibility of noise in both the function

values and the gradients values. As such it is beneficial to have two regularisation

parameters, one relating to the function values and one for the gradients, as proposed
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Figure 3.6: One-dimensional fit of a noisy function.
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by Lukaczyk et al. (2013). This leads to an augmentation of the correlation matrix

according to

R =

 Q1,1 Q1,2

(Q1,2)T Q2,2

+

 Iλ1 0

0 Iλ2

 . (3.49)

By having two regularisation parameters, the regularisation of noisy function values

and gradients can be addressed separately. Figure 3.7 shows a one-dimensional fit of data

containing noisy gradients, with and without regularisation. As with the non-gradient

case, the regularisation parameters are determined through optimisation which is further

discussed in Chapter 5.
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Figure 3.7: One-dimensional fit of a function with noisy gradients.

3.4 Optimisation techniques

Once metamodels have been created, the optimisation problem can be solved

approximately. As the optimisation is carried out using metamodels rather than

expensive function evaluations, the optimisation problem can be solved much more
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quickly. However, as the function evaluations are not free, particularly for the MLSM

which requires a matrix decomposition for every evaluation, the choice of optimisation

algorithm is still an important consideration.

This section discusses two gradient based optimisation algorithms, the method of

feasible directions and sequential quadratic programming, which are both used in this

work. Even though both are gradient based optimisation algorithms they have individual

properties which makes them attractive for the tasks that they have been assigned to.

For problems with several local minima, it is common to either use global algorithms

such as the genetic algorithm, or to use multiple start points of gradient based methods.

The latter option has been used in this work.

3.4.1 The Karush-Kuhn-Tucker conditions

Before discussing the optimisation algorithms, the Karush-Kuhn-Tucker (KKT)

conditions are presented as outlined in Haftka and Gurdal (1992). Consider a general

constrained optimisation problem in the form

minimise
x

f0(x)

subject to fj(x) ≤ 0, j = 1, . . . ,m

(3.50)

where f0 is the objective function to be minimised, and fj is the j-th inequality constraint.

Even though only upper bound constraints are present, this formulation allows lower

bound constraints by a simple sign switch and equality constraints by a pair of inequality

constraints. The Lagrangian function for an equality constrained optimisation problem

can be written as

L(x,λ) = f0(x) +

m∑
j=1

λjhj(x), (3.51)
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where hj are equality constraints and λj are Lagrangian multipliers. The inequality

constraints in (3.50) are transformed to equality constraints as

hj(x) = fj(x)− v2j , j = 1, . . . ,m. (3.52)

where vj are so called slack variables that define how close the constraint functions are

to becoming critical. The Lagrangian function becomes

L(x,λ) = f0(x) +
m∑
j=1

λj(fj(x)− v2j ). (3.53)

Differentiation with respect to x, λ, and v yields the necessary conditions for a stationary

point

∂L
∂xi

=
∂f0
∂xi
−

m∑
j=1

λj
∂fj
∂xi

= 0, i = 1, . . . , n

∂L
∂λj

= fj − v2j = 0, j = 1, . . . ,m

∂L
∂vj

= 2λjvj = 0, j = 1, . . . ,m

(3.54)

which leads to the conclusion that the Lagrange multipliers are zero when their

corresponding slack variables are non-zero, i.e. when the constraint is not critical.

Finally, the KKT conditions as proposed by Karush (1939) and Kuhn and Tucker

(1951) state that x is a local minima if

− ∂f0
∂xi

= −
m∑
j=1

λj
∂fj
∂xi

, λj > 0, (3.55)

i.e. if the gradient of the objective function can be expressed as a linear combination

of the gradients of the active, non-degenerate, constraints with λj > 0 as geometrically

illustrated in Figure 3.8.
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Figure 3.8: Geometrical representation of the KKT conditions.

3.4.2 Method of feasible directions

The method of feasible directions (MFD) solution proposed by Zoutendijk (1960) is

presented here as described in Haftka and Gurdal (1992). The FORTRAN program

known as CONMIN, developed by Vanderplaats (1973), is used in the research.

Let x(k) denote the starting point for iteration k. The next point x(k+1) is to be

found by determining a search direction s and a step length α according to

xk+1 = xk + αs. (3.56)

In the MFD the search direction s is to be determined as a feasible direction

sT∇fj(xk) ≤ 0, j = 1, . . . ,m, (3.57)
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and a direction in which the objection function descends

sT∇f0(xk) ≤ 0 . (3.58)

In practise this is achieved by solving a linear optimisation problem defined as

minimise
β,s

β

subject to sT∇f0(xk) ≤ β

sT∇fj(xk) ≤ θjβ, j = 1, . . . ,m

− 1 ≤ si ≤ 1, i = 1, . . . , n

(3.59)

where θ are so called push-off factors which determine the angle between the tangent

of the constraint boundary and the search direction. If the resulting objective function

is zero, β = 0, then the KKT conditions (3.55) are met. If β ≤ 0 then s is a descending

feasible direction. Once the search direction has been established, the step length is to

be obtained by solving the line search

minimise
α

f0(x
k + αs)

subject to fj(x
k + αs) ≤ 0, j = 1, . . . ,m

. (3.60)

One of the main benefits of MFD is that it stays feasible throughout the optimisation.

3.4.3 Sequential quadratic programming

The sequential quadratic programming (SQP) solution procedure proposed by Powell

(1978) is presented here as shown by Haftka and Gurdal (1992). The FORTRAN

program known as MINCF, developed by Madsen et al. (2002), based on the work

of Powell (1978).
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In the SQP solution procedure, the search direction s is obtained by solving the

quadratic sub-problem defined as

minimise
s

sT∇f0(xk) +
1

2
sT H̃s

subject to fj(xk) + sT∇fj(xk) ≥ 0, j = 1, . . . ,m

(3.61)

where H̃ is an approximation of the Hessian of the Lagrangian function, which in the

first iteration is initialised as the identify matrix and from then on is updated using the

BFGS update (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)

H̃k+1 = H̃k −
H̃k∆x∆xT H̃k

∆xT H̃k∆x
+

∆l∆lT

∆xT∇x
, (3.62)

where

∆x = xk+1 − xk , (3.63)

and

∆l = ∇L(xk+1,λk)−∇L(xk,λk). (3.64)

If the condition

∆xT∆l ≤ 0.2∆xT H̃k∆l, (3.65)

is met ∆l is replaced by the following expression to ensure that the approximation of

the Hessian is positive definite

∆l′ = θ∆l + (1− θ)H̃k∆x, (3.66)

where

θ =
0.8∆xT H̃k∆x

∆xT H̃k∆x−∆xT∆l
. (3.67)

Once the search direction has been established, the step length is to be calculated
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using the line search

minimize
α

f0(xk + αs) +
m∑
j=1

µj |min(0, fj(xk + αs)| , (3.68)

where

µj = max

[
|λj | ,

1

2

(
µi−1j +

∣∣∣λi−1j

∣∣∣)] . (3.69)

The process is repeated until the KKT conditions (3.55) are met.

The advantage of the SQP method is that it is associated with faster convergence

than other gradient based optimisation methods Haftka and Gurdal (1992). However,

unlike the MFD, it does not necessarily generate a sequence of feasible points throughout

the optimisation.

3.5 Summary

Metamodels are used to replace computationally expensive simulations with

mathematical models. Once the metamodels are built, they can be used to approximate

the response of the expensive simulations to a very low computational cost. In order

to use metamodels in optimisation, three things are needed: design of experiments, a

metamodel technique and an optimiser, all of which are introduced in this chapter.

The choice of the DOE technique was chosen as modified extensible lattice sequences

(MELS) which is an infinite quasi-random low discrepancy sequence. The method

produces an infinitely extensible sequence of points. This is a desired feature for

metamodel based optimisation since one seldom know the number of required points

for desired metamodel accuracy a priori.

Two metamodel techniques, the moving least squares method and Kriging, were
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introduced as they are used throughout this work. The moving least squares method

is based on weighted regression, where the weights are (descending) functions of the

distance from the evaluation point to the training points. Kriging is an interpolation

technique based on spatial correlation of metamodel errors according to some continuous

model, but can easily be allowed to deviate from the training points in order to smooth

noisy functions. Both techniques can be modified to accommodate partial derivatives

of the response functions with respect to the design variables in order to enhance the

quality of the metamodels.

Two optimisation techniques, method of feasible directions and sequential quadratic

programming, were covered in this chapter and are used throughout the research.

Sequential quadratic programming is associated with faster convergence than other

gradient based optimisation methods. However, the method of feasible directions is

more likely to generate a sequence of feasible points throughout the optimisation.



Chapter 4

Mid-range approximation method

This chapter discusses the metamodel-based optimisation framework known as the mid-

range approximation method (MAM). The MAM is an iterative optimization technique

based on approximations built in trust regions. A trust region is a sub-domain of

the design space in which a set of design points, treated as a small-scale DOE, are

evaluated. These and a subset of previously evaluated design points are used to build

approximations of the objective and constraint functions that are considered to be valid

in the current trust region. The trust region will then translate and change size as the

optimization progresses.

The chapter begins with an overview of the mid-range approximation method in

Section 4.1. The following sections describe each part of the framework in more detail.

Section 4.2 describes how DOE points are generated within the trust regions which

are then used in Section 4.3 to construct metamodels. This is followed by Section 4.4

which presents the use of optimisation to obtain the current best point in each iteration.

Section 4.5 outlines the trust-region strategy which represents the decision making part

of the process. The chapter concludes with a summary in Section 4.6.

47
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4.1 Introduction

The mid-range approximation method (Toropov, 1989, 1992; Toropov et al., 1993),

also known as the multi-point approximation method, solves a typical constrained

optimisation problem in the form:

minimize
x

f0(x)

subject to fj(x) ≤ 1, j = 1, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

(4.1)

where f0(x) is the objective function, fj(x) is the j-th constraint, x is the vector of

design variables and Ai and Bi are the lower and upper bounds respectively for the design

variable xi. The optimisation problem (4.1) is replaced by a sequence of approximate

sub-problems defined as

minimize
x

f̃0
k
(x)

subject to f̃j
k
(x) ≤ 1, j = 1, . . . ,m

Aki ≤ xi ≤ Bk
i

Aki ≥ Ai

Bk
i ≤ Bi


i = 1, . . . , n

. (4.2)

k denotes the current iteration number, f̃j
k
(x) is a metamodel of fkj (x), and Aki and

Bk
i are the bounds of the current trust region where the sub-problem (4.2) is solved for

the current iteration. The solution procedure for each sub-problem consists of sampling,

creating metamodels, solving the optimisation problem and determining a new location

and size of the trust region for the next iteration. The trust region will move and change

size after each iteration, as illustrated in Figure 4.1, until the termination criteria are
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Figure 4.1: Typical history of the trust regions.

reached. The trust region strategy has gone through several developments to account

for the presence of numerical noise in the response function values (van Keulen et al.,

1996; Toropov et al., 1996) and occasional simulation failures (Toropov et al., 1999).The

flowchart in Figure 4.2 outlines the major steps of the optimisation process, some of

which deserve extra attention and will be covered in the following sections.

4.2 DOE points

At the beginning of each iteration a small-scale design of experiments (DOE) is carried

out. The DOE points are to be used as training points for building metamodels which

are valid only in the current trust region and should therefore be placed in its vicinity.

A flowchart of the process of obtaining the training points, and a table of corresponding

parameters, are shown in Figure 4.3 and Table 4.1. The number of desired training

points popt in each iteration is set by the user. However, the value cannot be less than

the minimum number of training points required to build metamodels, pmin.
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Figure 4.2: Flowchart of the MAM optimisation process.
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Table 4.1: Settings of the MAM relating to design of experiments and corresponding
default values.

Description Variable Default value

Ratio doe-region to trust-region bs 1.2
Ratio recycle-region to trust-region br 1.9
Desired number of points per iteration popt 1.5n
Minimum number of points per iteration pmin 1.9n
Number of available processes Nap popt

Figure 4.3: Flowchart of process for generation of DOE points.
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4.2.1 Existing points

The process begins by checking if any existing points, evaluated in previous iterations,

can be used in the current iteration. Points located outside the trust region may be

used, however, points that are far away from the trust region may spoil the metamodel

and are not considered. The region in which points are considered is referred to as the

recycle region, shown in Figure 4.4, and is defined as an enlargement of the trust region

by a factor br as

B̄k
i − Āki = br ·

(
Bk
i −Aki

)
, br ≥ 1, (4.3)

where B̄k
i and Āki denotes the upper and lower bounds, respectively, of the recycle region.

4.2.2 Supplementary points

If there are not enough existing points to build metamodels, new points are generated

such that the total number of existing and new points is equal to the number of desired

points popt. The new points are positioned using one of the available sampling techniques

discussed in Section 3.2.

In order to fully utilise parallel hardware Korolev et al. (2015) introduced a number

of available processes, Nap, set by the user such that the number of DOE points will be

forced to a multiple of the chosen value. It is desired to allow points to be located slightly

outside the trust region in order to promote interpolation rather than extrapolation, but

not as far outside as the bounds of the recycle region. Therefore another region, denoted

as the DOE region, shown in Figure 4.4, is introduced as an enlargement of the trust

region by a factor bs as

B̃k
i − Ãki = bs ·

(
Bk
i −Aki

)
, bs ≥ 1, (4.4)
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Figure 4.4: Geometrical representation of the trust, DOE, and recycle regions.

where B̃k
i and Ãki denotes the upper and lower bounds, respectively, of the DOE region.

None of the regions are allowed outside the design variable upper and lower bounds Bi

and Ai.

After sampling, the DOE points are evaluated. DOE points that lead to simulation

failure are identified and removed as introduced by Toropov et al. (1999). If there is not

a sufficient number of remaining DOE points to build metamodels, i.e. less than pmin,

the process of adding points is repeated until at least pmin successful points have been

obtained

4.3 Metamodels

Once a sufficient number of DOE points have been successfully evaluated metamodels

are created for each response. Available metamodel techniques include metamodel
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assemblies by Polynkin and Toropov (2012), where intrinsically linear and rational

functions are assembled into a single metamodel using linear regression, the moving

least squares method as outlined in Section 3.3.1, and kriging as described in Section

3.3.2. Gradient enhanced versions of all metamodel techniques are available.

4.4 Candidate points

The next step is to obtain candidate points that potentially can become the current

best point. The process of obtaining candidate points is outlined in Figure 4.5 and

the corresponding parameters are presented in Table 4.2. The number of candidate

points to be obtained in each iteration is user defined and denoted by pcand. To fully

utilise available parallel hardware the number of candidate points will be set to Nap or

a multiple of the same.

The primary way of obtaining candidate points is by solving the approximate sub-

problem (4.2) by using the SQP optimisation procedure, as outlined in Section 3.4.3.

The SQP is started from several starting points in order to increase the chance of finding

a good solution for problems with several local optima. The number of starting points

is user-defined and denoted psqp. The SQP solutions are ranked and duplicate solution

points are removed such that only punique unique points are left. The pcand best ones are

used as candidate points. If punique is less than pcand, the remaining desired candidates

are found using the chosen DOE technique. All candidate points are evaluated in parallel

and any failed candidates are removed, but not replaced by new points. The best

candidate point is compared to the current best point and, if superior, replaces the

current best point.
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Table 4.2: Settings of the MAM relating to design of experiments and corresponding
default values.

Description Variable Default value

Number of SQP start points psqp 20
Number of desired candidate points pcand Nap

Figure 4.5: Flowchart outlining process of obtaining candidate points.
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4.5 Trust region strategy

The trust region strategy defines the decision making process of the MAM. The

convergence criteria are checked and adjustments are made to the trust region. The

centre of the trust region will always be taken as the current best point x∗k, however,

the size of the trust region will be decided based on the trust region strategy outlined

in Figure 4.6 and parameters presented in Table 4.3.

Table 4.3: Settings of the MAM relating to design of experiments and corresponding
default values.

Description Variable Default value

Max. approximation error for sufficient quality εgood 5%
Max. approximation error for excellent quality εverygood 0.5%
Sufficiently small trust region size rsuff 5%
Minimum trust region size rmin 1%
Indicator for move angle (oscillations) Θmin 0
Indicator for move angle (same direction) Θmax 0.8
No. iterations considered for Θmax l 3
Trust region reduction factor β1 1/1.5
Trust region reduction factor β2 1/4.0
Trust region reduction factor β3 1/2.0
Trust region reduction factor β4 1/1.5
Trust region enlargement factor β5 1.25
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Figure 4.6: Flowchart describing the trust region strategy. The trust region strategy determines whether the process should
terminate or continue, the size and location of the next trust region, and whether metmodels should be re-used or not. This
is done based on the approximation error, location of current best point, move angles, and the size of the current trust region.
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4.5.1 Metamodel quality

The discrepancy between the approximated function values and the function values of the

candidate points are used to evaluate the metamodel quality for the current iteration.

The metamodel error is calculated for each response as the root mean squared error

(RMSE)

εjk =

√√√√ 1

nk

nk∑
i=1

[
f̃j
k
(xi)− fkj (xi)

]2
, j = 0, ..,m. (4.5)

In order to partially satisfy the convergence criterion the metamodel error of any

response may not exceed εgood. If it does then the trust region strategy will commence

to decrease the size of the trust region by a factor β1 until the criterion is met. If

the trust region size falls below rmin without passing the metamodel error criteria,

the optimisation is terminated (exit point 1 in Figure 4.6) without convergence. This

situation is extremely rare and typically indicates deficiency in the problem formulation.

4.5.2 Location of the current best point

If the metamodel quality criterion is satisfied, the location of the current best point x∗k

relative to the trust region is checked. If it is on a boundary of the trust region, it is

an indication that the solution might be outside the trust region. The search is then

continued by moving the trust region. In this situation it is necessary to check whether

the solution is oscillating as this can result in endlessly moving between similar solutions

without getting much closer to the stationary point. This is evaluated by calculating

the angle between the last two move vectors, described by van Keulen et al. (1996), as

Θk = cos(αk) =
(x∗k − x∗k−1)
||x∗k − x∗k−1||

·
(x∗k−1 − x∗k−2)
||x∗k−1 − x∗k−2||

. (4.6)
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If Θk is positive, the angle αk shown in Figure 4.7 is acute, indicating that the

optimisation is progressing somewhat in the same direction. If Θk is negative it may be

an indication of oscillations.

If oscillations are identified, by Θk being less than the user defined parameter Θmin,

the trust region size is reduced by a factor β2 and the process continues. If oscillations

are not present and the metamodel quality is deemed very good, i.e. the metamodel

error, calculated in (4.5), does not exceed the user defined value εv.good for any of the

responses, the metamodels will be reused in the next iteration (exit point 3 in Figure

4.6), thus eliminating the need for additional simulations to be carried out. Otherwise

the trust region size will be kept and the process continued as normal (exit point 2

in Figure 4.6). If, in addition to a very good metamodel quality, the optimisation has

progressed in almost the same direction for the last l iterations, i.e.

Θi ≥ Θmax, i = k + 1− l, k, (4.7)

the trust region is enlarged to promote faster convergence, otherwise the size of the trust

region will be kept the same.

x(k-2)*

x(k-1)*

x(k)*

α
k

Figure 4.7: The angle between move vectors for iterations k-2, k-1 and k.
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4.5.3 Trust region size

If, in addition to satisfying the two previous partial convergence criteria, the trust region

size does not exceed rsuff , then the optimisation converges and terminates (exit point

1 in Figure 4.6). Otherwise the trust region size will be reduced. If the current best

point is near a boundary,’the trust region will be reduced by the factor β4, otherwise β3

is used.

4.6 Summary

The MAM is an iterative optimization technique based on mid-range approximations

built in trust regions. A trust region is a sub-domain of the design space in which a

set of design points, treated as a small-scale DOE, are evaluated. These and a subset

of previously evaluated design points are used to build approximations of the objective

and constraint functions that are considered to be valid in the current trust region. The

trust region will then translate and change size according to a trust region strategy

as the optimization progresses. The trust region strategy has gone through several

developments to account for the presence of numerical noise in the response function

values, occasional simulation failures and, most recently, developments for deployment

within high performance computing facilities.

In this work the mid-range approximations used in the trust regions are either the

the moving least squares method as outlined in Section 3.3.1 or kriging as described

in Section 3.3.2. The approximated optimisation problem is solved using the SQP

optimisation procedure, as outlined in Section 3.4.3.



Chapter 5

Parameter tuning for well

conditioned kriging metamodels

This chapter discusses the efficiency of building of kriging metamodels, as introduced in

Section 3.3.2. One of the main challenges of kriging, and gradient enhanced kriging in

particular, is the computational cost associated with the parameter tuning, necessary for

building the metamodel. In this chapter a novel method for efficient parameter tuning

is presented.

5.1 Introduction

In kriging, parameter tuning requires optimisation of a condensed log likelihood function

with respect to a set of hyper parameters, one for each design variable. Every evaluation

of the condensed log likelihood function requires decomposition of a square correlation

matrix, R ∈ Rd×d. For kriging d = p, where p is the number of training points, and for

gradient enhanced kriging d = p × (n + 1) where n is the number of design variables.

61
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For problems with a small number of design variables, gradient based algorithms such as

sequential quadratic programming have shown good performance (Zimmermann, 2013;

Lockwood and Anitescu, 2010). To increase the probability of finding a better solution

for problems with several optima, multiple start-points have also been proposed, with

as few as five points (Lockwood and Anitescu, 2010) or as many ten times the number

of hyper parameters (Liu and Batill, 2002). For larger problems the optimisation is

often carried out using global algorithms such as simulated annealing (Xiong et al.,

2007) and genetic algorithm (Forrester et al., 2008). Toal et al. (2011) proposed a

Hybrid optimisation scheme where promising points from a particle swarm optimisation

were used as starting points for gradient based optimisations using sequential quadratic

programming. In the same paper it was also shown how the adjoint method can be

used to obtain partial derivatives of the condensed log likelihood function with respect

to the correlation matrix, which greatly reduces the computational effort required when

compared to finite differences and the direct method.

Ill-conditioning of the correlation matrix can become an issue when building

metamodels where training points are located near each other (Haaland et al., 2011),

especially for Gaussian correlation matrices (Zimmermann, 2015). Attempts have been

made to reduce ill conditioning by, for instance, using uniform subsets of the training

points Rennen (2008), adding regularisation terms along the diagonal of the correlation

matrix which makes the kriging metamodel approximate rather than interpolate the

data, and constraining the condition number explicitly during optimisation Dalbey

(2013).

In this work partial derivatives of the condition number of the correlation matrix

with respect to the hyper parameters are obtained, making it possible to constrain

the condition number directly in a gradient based optimisation approach. A two-step

approach is suggested for optimisation of the hyper parameters. In the first step,
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the optimisation problem is considered as a single variable problem by treating all

hyper parameters as one variable. The solution to this problem is then used as a

starting point for a gradient based optimisation algorithm. In both cases an upper

bound constraint is enforced on the condition number of the correlation matrix. The

approach is tested on several analytical examples using two types of gradient based

optimisation algorithms, the sequential quadratic programming and the method of

feasible directions. The approach is compared to gradient based optimisations starting

from random points, multiple starting points and, a genetic algorithm followed by

gradient based optimisations. Finally a case study is presented where the responses

of an aircraft wing-box with 126 design variables is approximated using the suggested

approach and compared to a selection of optimisation methods.

5.2 Parameter tuning

To obtain a good kriging fit it is important to determine suitable values of the hyper

parameters, θ, and regularisation parameters, λ, as introduced in Section 3.3.2. Failing

to do so may result in a sub-standard fit. Figure 5.1 shows an example of (a) an

overestimated hyper parameter and (b) an optimised hyper parameter.

MLE would accomplish this by taking the mean and variance as parameters and

finding particular parametric values that make the observed results the most probable

given the model.

The hyper parameters and regularisation parameters are determined such that they

make the observed results, the response values at the training points, the most probable

for the model. This is usually referred to as a maximum likelihood estimator (MLE).

The MLE for kriging given a Gaussian distribution is determined through maximisation
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of the condensed log likelihood function (Jones, 2001).

φ(θ,λ) = −p
2

ln(σ̂2 (θ,λ))− 1

2
ln(|R(θ,λ)|), (5.1)

and for the gradient enhanced case (Han et al., 2013)

φ(θ,λ) = −p(n+ 1)

2
ln(σ̂2 (θ,λ))− 1

2
ln(|R(θ,λ)|), (5.2)

where |R(θ,λ)| denotes the determinant of the correlation matrix. To prevent ill

conditioning of the correlation matrix the condition number is constrained to be lower

than some threshold during optimisation. The condition number is obtained as

k(R) = ‖R−1‖‖R‖, (5.3)

where ‖R‖ denotes the norm of the correlation matrix which is here calculated as the

Frobenius norm

‖R‖ = ‖R‖F =

√∑
i

∑
j

R2
i,j , (5.4)
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(a) Overestimated hyper parameter θ
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(b) Optimised hyper parameter θ

Figure 5.1: Importance of parameter optimisation.
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and ‖R−1‖ denotes the norm of the inverse correlation matrix which is calculated using

the matrix inversion (DPOTRI ) routine from the Intel Math Kernel Library 11.2 (Intel,

2015) using the matrix decomposition previously obtained for Kriging. Formally, the

tuning parameter optimisation problem takes the form

maximise
θ,λ

φ(θ,λ)

subject to κ(θ,λ) ≤ κmax
(5.5)

where κmax is the upper bound constraint on the condition number. Here, κmax = 107

is used.

Because of the computational expense related to tuning parameter optimisation this

work is concerned with developing a hyper parameter optimisation approach which is

efficient in terms of computational performance. This is done using gradient based

optimisation techniques. In the following section it is shown how to obtain the gradients

of the condensed log likelihood function and of the condition number with respect to

the hyper parameters and regularisation parameters. These are then used for a hyper

parameter optimisation approach outlined in the subsequent section.

5.3 Obtaining gradients

This section describes how the gradients of the condensed log likelihood function and the

condition number with respect to the hyper and regularisation parameters are obtained in

a computationally efficient manner. These can be obtained using different methods, with

varying associated computational cost, depending on the problem at hand. For a large

number of design variables, it may be prohibitively expensive to use finite differences

or the direct method as the cost is proportional to the number of design variables.



Chapter 5. Parameter tuning for well conditioned kriging metamodels 66

The computational cost of the adjoint method is proportional to the number of response

functions, which in this case are two; the condensed likelihood function and the condition

number.

Using the chain rule the gradients of the condensed likelihood function with respect

to the hyper parameters can be written as

∂φ

∂θ
=

p∑
i=1

p∑
j=1

∂φ

∂Rij

∂Rij
∂θ

, (5.6)

and with respect to the regularisation parameters

∂φ

∂λ
=

p∑
i=1

p∑
j=1

∂φ

∂Rij

∂Rij
∂λ

. (5.7)

Similarly the gradients of the condition number with respect to the hyper parameters

can be written as
∂κ

∂θ
=

p∑
i=1

p∑
j=1

∂κ

∂Rij

∂Rij
∂θ

, (5.8)

and with respect to the regularisation parameters

∂κ

∂λ
=

p∑
i=1

p∑
j=1

∂κ

∂Rij

∂Rij
∂λ

. (5.9)

In total there are four types of derivatives to establish. The gradients of the condensed

likelihood function with respect to the correlation matrix, the gradients of the condition

number with respect to the correlation matrix, and the gradients of the correlation

matrix with respect to the hyper parameters and regularisation parameters. These are

discussed in the following sections.
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5.3.1 Gradients of the condensed likelihood function w.r.t. the

correlation matrix

The partial derivatives of the condensed likelihood function with respect to the

correlation matrix can be obtained using the adjoint method as shown by Toal et al.

(2011) according to

∂φ

∂R
= R̄ =

1

2σ̂2
R−T (y− Fµ̂) (y− Fµ̂)T R−T − 1

2
R−T , (5.10)

where R̄ is the adjoint of the correlation matrix. This is applicable to both the non-

gradient and gradient-enhanced case.

5.3.2 Gradients of the condition number w.r.t. the correlation matrix

The adjoint method can also be used for obtaining gradients of the condition number

with respect to the correlation matrix as described in Ollar et al. (2016b). Using the

chain rule and recalling (5.3) the derivatives of the condition number with respect to the

correlation matrix can be written as

∂κ

∂R
=
∂‖R−1‖‖R‖

∂R
=
∂‖R‖
∂R

‖R−1‖+
∂‖R−1‖
∂R

‖R‖. (5.11)

With this result the intermediate variables for reversed differentiation of the condition

number with respect to the correlation matrix can be determined. The intermediate

variable for the first term can, given that the intermediate variable for the condition



Chapter 5. Parameter tuning for well conditioned kriging metamodels 68

number itself has been initialised to κ̄ = 1, be written as

‖R‖ = κ̄‖R−1‖ = ‖R−1‖. (5.12)

Using the results presented by Giles (2008) which are based on the work of Dwyer and

MacPhail (1948) the adjoint of the Frobenius norm can be determined according to

R = ‖R‖ 1

‖R‖
R, (5.13)

which together with (5.12) leads to the adjoint of the correlation matrix for the first

term in (5.11)

R1 =
‖R−1‖
‖R‖

R. (5.14)

In the second term the intermediate variable from the product rule can be obtained as

‖R−1‖ = κ̄‖R‖ = ‖R‖. (5.15)

Again, using the adjoint of the Frobenius norm leads to

R−1 = ‖R−1‖ 1

‖R−1‖
R−1. (5.16)

Giles (2008) also presents the adjoint of the inverse as

R = −R−TR−1R−T , (5.17)

which together with (5.16) and (5.15) leads to the adjoint of the correlation matrix for

the second term in (5.11)

R2 = −R−T
‖R‖
‖R−1‖

R−1R−T . (5.18)
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Adding (5.14) and (5.18) yields the gradients of the condition number with respect to

the hyper parameters as

∂κ

∂R
= R1 + R2 =

‖R−1‖
‖R‖

R− |R‖
‖R−1‖

(
R−T R−1R−T

)
, (5.19)

which is applicable both for the non-gradient and gradient-enhanced case.

5.3.3 Gradients of the correlation matrix w.r.t. regularisation

parameters

The gradients of the correlation matrix with respect to the regularisation parameters

can easily be obtained from (3.48) for the non-gradient case as

∂R

∂λ
= Ip, (5.20)

where Ip ∈ Rp×p, is the identity matrix with the number of diagonal elements of p. For

the gradient-enhanced case from (3.49), for the first regularisation parameter as

∂R

∂λ1
=

 Ip 0

0 0

 , (5.21)

and for the second regularisation parameter as

∂R

∂λ2
=

 0 0

0 Id

 , (5.22)

where d = p× n.
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5.3.4 Gradients of the correlation matrix w.r.t. the hyper parameters

For the non-gradient case, the partial derivatives of the correlation matrix with respect

to the hyper parameters can be calculated as

∂Ri,j
∂θm

= −(xmi − xmj )2Ri,j . (5.23)

For the gradient enhanced case they can be calculated as

∂R

∂θm
=

 ∂Q1,1

∂θm
∂Q1,2

∂θm

∂(Q1,2)T

∂θm
∂Q2,2

∂θm

, (5.24)

where the first quadrant can be calculated according to (5.23) as

∂Q1,1

∂θm
= −(xmi − xmj )2Ri,j , (5.25)

and, through the derivation shown in Appendix A, to the following expression for the

upper right quadrant

∂Q1,2
i,jk

∂θm
=


[

1

θm
− (xmi − xmj )2

]
Q2,1
i,jk ,m = k

−(xmi − xmj )2Q1,2
i,jk ,m 6= k

, (5.26)
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and the lower right quadrant

∂Q2,2
il,jk

∂θm
=

−(xmi − xmj )2Q2,2
il,jk ,m 6= k,m 6= l[

1

θk
− (xmi − xmj )2

]
Q2,2
il,jk ,m = k,m 6= l[

1

θl
− (xmi − xmj )2

]
Q2,2
il,jk ,m 6= k,m = l

[
2− 8θk(x

m
i − xmj )2

]
Ri,j − (xmi − xmj )2Q2,2

il,jk ,m = k,m = l

, (5.27)

for i = 1, ..., p, j = 1, ..., p, k = 1, ..., n and l = 1, ..., n.

5.4 Computational performance

In order to get an idea of the computational cost of obtaining the function values and the

partial derivatives of the parameter tuning problem a benchmark example was carried

out. The benchmark was carried out using a 76 design variable analytical function with

100 training points. The computational cost of the various routines for the gradient

enhanced case are outlined in Table 5.1. It is shown that the cost of calculating the

condensed log likelihood function value and the condition number of the correlation

matrix adds up to 4.8 seconds while their partial derivatives with respect to the hyper

parameters and regularisation parameters takes 45 seconds. This means that for this

particular case the cost of the partial derivatives are 9.4 times more expensive than the

function values themselves. This is of course less costly than obtaining the gradients

through the direct method or finite differences which would incurr a computational cost

of around 76 (the number of design variables) times the cost of performing a function

evaluation.
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Table 5.1: Computational cost for evaluation of the various variables in kriging for a
test problem with 76 design variables and 100 training points.1

Variables Description Time [s]

R,B,f Pre-processing 0.3

LLT Cholesky decomposition 1.7
|R| Determinant <0.1
µ̂ System mean <0.1
σ̂2 System variance <0.1
φ Condensed likelihood function <0.1
R−1 Inverse of R 4.7
κ Condition number of R 0.1

4.8

∂φ/∂R Partial derivatives of φ w.r.t. R 0.7
∂κ/∂R Partial derivatives of κ w.r.t. R 20.8
∂R/∂θ Partial derivatives of R w.r.t. θ 23.9
∂R/∂λ Partial derivatives of R w.r.t. λ <0.1

45.3

1The study was carried out on a computer with the following
specifications: Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz,
and using Intel Math Kernel Library 11.2 (Intel, 2015) for
matrix multiplication (DGEMM, DSYRK, DSYMM), Cholesky
decomposition (DPOTRF) and backsubstitution (DPOTRS), matrix
inverse (DPOTRI), norm (DLANGE) and vector multiplications
(DGEMV).

5.5 Proposed optimisation approach

In the proposed approach the aim is to use the gradients of the log likelihood function

and the condition number with respect to the tuning parameters in gradient based

tuning parameter optimisation. In this section a two step approach to tuning parameter

optimisation is presented. The first step is finding a suitable starting point for the

gradient based optimisation using a simplification of the optimisation problem to a one

dimensional problem, and the second step is the gradient based optimisation.
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5.5.1 Finding a suitable starting point

As seen in, for instance, (Chung and Alonso, 2002) it is possible to reduce the complexity

of the parameter optimisation problem by considering the set of hyper parameters as a

single variable according to

θ = [θ1, ..., θn] = γ [1, ..., 1] , (5.28)

where γ is the single considered variable. This is more commonly known as a radial

basis function (RBF). The resulting, reduced, optimisation problem can be solved using

a one dimensional line search, in this case a golden search (GS). This greatly reduces

the computational cost of the optimisation problem but also limits the optimisation to

find a solution on the hyper-diagonal of the design space. Here, instead of accepting

the resulting point as the final solution, it is used as a starting point for optimisation

in full space. Any regularisation parameters are set to zero during this stage of the

optimisation approach. The reduced optimisation problem is defined as

maximise
γ

φ(θ,λ)

subject to κ(θ,λ) ≤ κmax

θ = γ [1, ..., 1]

0 < γ ≤ γmax

λ = 0

(5.29)

where κmax is the upper bound constraint on the condition number, chosen as a user

input, and γmax is the upper bound of the single hyper parameter, chosen such that all

off diagonal elements of the correlation matrix can become sufficiently small, i.e. such

that min(Rij) = Rmin, i 6= j, where Rmin is a user input. In this work Rmin = 10−6.
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5.5.2 Gradient based optimisation

After a starting point has been found through the golden search a gradient based method

is to be used in order to explore the full hyper parameter and regularisation parameter

space. Two gradient based optimisation methods are considered, the method of feasible

directions (MFD) developed by Vanderplaats (1973) based on the work of Zoutendijk

(1960) and sequential quadratic programming (SQP) developed by Madsen et al. (2002)

based on the work of Powell (1978).

To ensure a well conditioned correlation matrix at the solution, the condition number

is constrained throughout the optimisation. This is enabled through using the gradients

of the condition number with respect to the hyper and regularisation parameters as

outlined in Section 5.3.

5.6 Comparative study of optimisation approaches

The proposed approach is here compared to a selection of optimisation approaches, listed

in Table 5.2. These approaches include sequential quadratic programming (SQP) and

Table 5.2: Considered optimisation methods and corresponding abbreviations

Abbreviation Optimisation method

GS Golden search
R-MFD Random start MFD
R-SQP Random start SQP
GS-MFD MFD starting from GS result
GS-SQP SQP starting from GS result
M-MFD Multi-start MFD
M-SQP Multi-start SQP
GA Genetic algorithm
GA-MFD MFD starting from GA result
GA-SQP SQP starting from GA result
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method of feasible directions (MFD) from one random (R-) start point, 10 multi start-

points (M-) and the proposed method whereby the start-point is found by a golden

search (GS-). Furthermore a genetic algorithm (GA) with 5000 evaluations and MDF

and SQP starting from the resulting GA solution is included in the study. The study

consists of two parts. The first one is carried out on two dimensional functions and the

second on a dimensionally scalable problem.

5.6.1 Two dimensional benchmark study

This study compares the performance of the optimisation approaches on a suite of two

dimensional analytical functions. The functions used in the case study, selected from

those presented in Jamil and Yang (2013), are presented in Table 5.3. In order to reduce

the risk of sporadic solutions 50 design of experiments (DOEs) were generated using

different seed. Each of these were used in the optimisation of the tuning parameters for

the metamodel.

Table 5.3: Two dimensional benchmark functions

Function name Equation

Six-hump f(x) = (4− 2.1x21 +
x41
3 )x21 + x1x2 + (4x22 − 4)x22

Branin-Hoo f(x) = (x2 −
5.1x21
4π2 + 5x1

π − 6)2 + 10(1− 1
8π )cos(x1) + 10

Himmelblau f(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

Ursem f(x) = −sin(2x1 − 0.5π)− 3cos(x2)− 0.5x1

Adjiman f(x) = cos(x1)sin(x2)− x1
x22+1

Keane f(x) = sin2(x1−x2)sin2(x1+x2)√
x21+x

2
2



Chapter 5. Parameter tuning for well conditioned kriging metamodels 76

The mean time spent, the mean resulting condensed log likelihood and generalisation

error of the metamodels, for each of the optimisation approaches, is shown in Table

5.4. The GA, GA-MFD and GA-SQP provide the highest condensed log likelihood

values. However, these methods take the longest of the tested methods as the number of

evaluations carried out by GA within the 2D design variable space is exhaustive. The GS,

R-MFD and R-SQP provide the worst results. It is possible to increase the likelihood

Table 5.4: Condensed log likelihood of gradient enhanced kriging metamodel built using
12 training points averaged over 50 training DoEs.

Six Hump Branin Hoo Himmelblau

Time Mean RMSE Time Mean RMSE Time Mean RMSE
(ms) φ % (ms) φ % (ms) φ %

GS 4.8 -41.05 12.89% 6.2 -33.21 12.78% 3.8 -27.29 3.69%
R-MFD 3.5 -35.20 10.90% 3.7 -25.13 10.46% 3.6 -29.68 5.23%
R-SQP 34.2 -34.49 10.78% 28.6 -25.18 10.37% 20.2 -32.38 6.26%
GS-MFD 7.5 -33.04 9.86% 9.9 -23.39 9.57% 7.8 -26.86 3.72%
GS-SQP 12.1 -33.38 10.07% 12.4 -23.56 9.67% 8.6 -26.86 3.71%
M-MFD 19.7 -33.27 9.81% 15.5 -23.36 9.69% 15.4 -25.88 2.94%
M-SQP 373.8 -33.04 9.91% 253.9 -23.24 9.64% 156.6 -26.48 3.10%
GA 376.4 -33.04 9.92% 376.3 -23.24 9.64% 376.2 -25.42 2.50%
GA-MFD 379.9 -33.03 9.92% 380.0 -23.24 9.64% 379.1 -25.39 2.49%
GA-SQP 383.3 -33.03 9.92% 382.6 -23.24 9.64% 382.2 -25.39 2.49%

Ursem Adjiman Keane

Time Mean RMSE Time Mean RMSE Time Mean RMSE
(ms) φ % (ms) φ % (ms) φ %

GS 4.6 -2.26 1.71% 4.3 51.20 0.19% 4.9 -31.25 10.10%
R-MFD 4.6 8.70 4.29% 4.1 12.86 5.49% 3.5 -31.11 10.18%
R-SQP 20.6 17.27 1.60% 12.2 34.68 2.56% 16.5 -32.65 11.44%
GS-MFD 8.8 23.19 0.68% 7.1 51.97 0.19% 6.5 -31.11 10.17%
GS-SQP 10.4 22.28 0.70% 9.4 52.02 0.18% 7.7 -31.11 10.17%
M-MFD 16.5 23.19 0.68% 20.7 47.86 0.47% 15.3 -31.09 9.77%
M-SQP 160.6 23.19 0.68% 113.7 52.04 0.19% 137.3 -31.11 10.17%
GA 373.9 23.19 0.68% 374.5 52.02 0.19% 378.4 -31.11 10.17%
GA-MFD 377.3 23.19 0.68% 377.7 52.04 0.19% 381.9 -31.11 10.17%
GA-SQP 378.9 23.19 0.68% 379.9 52.03 0.19% 385.2 -31.11 10.17%
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that a good value is found by the MFD and SQP by using a multi-start strategy as

shown. However, this increases the amount of time required to build the metamodel. The

GS-MFD and GS-SQP provide similar resulting values of the condensed log likelihood

function to the GA-MFD and GA-SQP results at a far lower computation cost. In this

case the M-MFD is also finding high values of the condensed log likelihood function to

a relatively low computational cost, albeit higher than the GS-MFD and GS-SQP. It is

worth noting that for these functions there seems to be a good correlation between a

high log likelihood and a low generalisation error.

5.6.2 Dimensionally scalable benchmark study

This study aims to benchmark the optimisation techniques for functions with higher

dimensionality. This was done using the following dimensionally scalable polynomial

function where n is the total number of design variables, chosen as 10, 40 and 60

respectively in this benchmark study.

f(x) =
i

n

∑
i

c1x
3
i + c2x

2
i + c3xi + c4 + c5sin(xi)

c1 = 0.5

c2 = −2.02(i− n

2
)

c3 = 7.0(i− n

2
)

c4 = 1.0

c5 = 35.0

(5.30)

The function has varying degrees of non-linearity between the different design variables

and is evaluated in the range 0 to 5. As with the 2D function 50 different training

DOEs were evaluated for each of the three cases in order to reduce the risk of sporadic

solutions.
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Tables 5.5, 5.6 and 5.7 show the results of the parameter tuning for the dimensionally

scalable polynomial in the cases of 10, 40 and 60 design variables respectively. For the 10

design variable case, Table 5.5, it can be seen that the GS-MFD and GS-SQP perform

Table 5.5: Scalable polynomial 10 design variables

10 Training Points 20 Training Points 50 Training Points

Time Mean RMSE Time Mean RMSE Time Mean RMSE
(hh : mm : ss) φ % (hh : mm : ss) φ % (hh : mm : ss) φ %

GS <00:00:01 39.12 16.32% <00:00:01 107.50 14.93% <00:00:01 428.49 10.76%
R-MFD <00:00:01 66.90 16.44% 00:00:02 182.21 12.73% 00:00:10 618.52 9.77%
R-SQP <00:00:01 54.22 16.05% <00:00:01 142.08 15.17% 00:00:03 548.38 12.61%
GS-MFD <00:00:01 76.97 13.88% 00:00:01 202.91 10.66% 00:00:04 729.28 8.40%
GS-SQP <00:00:01 77.19 13.59% <00:00:01 197.48 10.99% 00:00:03 729.72 8.39%
M-MFD 00:00:01 71.72 15.57% 00:00:11 193.84 11.28% 00:01:13 671.56 8.86%
M-SQP <00:00:01 74.74 13.96% 00:00:01 171.87 13.62% 00:00:31 718.10 8.58%
GA 00:00:03 74.19 14.47% 00:00:13 183.26 12.07% 00:01:06 656.52 8.84%
GA-MFD 00:00:03 74.74 14.37% 00:00:14 199.83 10.85% 00:01:10 728.86 8.39%
GA-SQP 00:00:03 77.81 13.44% 00:00:13 193.35 11.39% 00:01:08 729.68 8.39%

Table 5.6: Scalable polynomial 40 design variables

10 Training Points 20 Training Points 50 Training Points

Time Mean RMSE Time Mean RMSE Time Mean RMSE
(hh : mm : ss) φ % (hh : mm : ss) φ % (hh : mm : ss) φ %

GS <00:00:01 519.24 15.67% 00:00:01 1153.24 14.60% 00:00:11 3190.31 13.85%
R-MFD 00:00:05 610.67 17.44% 00:00:23 1328.32 17.19% 00:03:07 3647.07 16.38%
R-SQP 00:00:01 566.24 17.51% 00:00:12 1329.35 17.22% 00:03:01 3937.76 12.99%
GS-MFD 00:00:06 664.50 15.54% 00:00:25 1435.77 14.31% 00:03:10 3945.74 12.87%
GS-SQP 00:00:03 669.91 15.98% 00:00:12 1437.64 14.51% 00:01:18 3946.86 12.92%
M-MFD 00:00:49 632.29 17.38% 00:03:43 1350.05 17.14% 00:29:34 3697.19 14.91%
M-SQP 00:00:13 603.41 17.40% 00:02:10 1355.04 16.83% 00:30:59 3946.38 12.92%
GA 00:00:41 622.84 17.48% 00:03:00 1321.30 17.26% 00:20:47 3564.98 17.01%
GA-MFD 00:00:43 633.20 17.41% 00:03:14 1347.24 17.18% 00:23:43 3696.73 14.97%
GA-SQP 00:00:44 659.21 16.42% 00:03:04 1352.33 16.84% 00:22:39 3933.32 13.07%

Table 5.7: Scalable polynomial 60 design variables

Optimisation 10 Training Points 20 Training Points 50 Training Points

method Time Mean RMSE Time Mean RMSE Time Mean RMSE
(hh : mm : ss) φ % (hh : mm : ss) φ % (hh : mm : ss) φ %

GS <00:00:01 926.49 15.03% 00:00:03 2048.53 14.13% 00:00:26 5487.08 13.58%
R-MFD 00:00:12 1040.72 16.91% 00:01:03 2291.84 16.66% 00:07:54 6133.60 16.20%
R-SQP 00:00:07 1041.60 16.88% 00:00:43 2329.69 16.59% 00:10:27 6562.21 13.00%
GS-MFD 00:00:12 1137.31 14.98% 00:01:07 2463.50 14.05% 00:08:04 6559.71 12.92%
GS-SQP 00:00:09 1156.69 16.00% 00:00:36 2471.26 14.38% 00:04:13 6563.42 13.00%
M-MFD 00:02:12 1082.86 16.87% 00:10:42 2332.23 16.63% 01:21:39 6167.31 15.79%
M-SQP 00:01:16 1101.63 16.62% 00:07:33 2376.14 15.71% 01:45:10 6563.21 13.00%
GA 00:01:30 1050.56 16.95% 00:07:09 2241.87 16.70% 00:54:27 5898.04 16.56%
GA-MFD 00:01:40 1080.82 16.92% 00:09:47 2320.88 16.67% 01:03:26 6126.89 16.27%
GA-SQP 00:01:36 1093.91 16.59% 00:08:55 2309.32 16.68% 01:02:19 6562.34 13.00%
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very well in comparison to the other algorithms, providing the highest log likelihood

together with the hybrid GAs. In this case the remaining algorithms do not perform

as well. The GS-MFD and GS-SQP provide the lowest generalised error over the 50

validation DoEs, followed by the GA-MFD and GA-SQP.

When increasing dimensionality of the scalable polynomial function to 40 design

variables the benefit of the proposed approach becomes more apparent. The proposed

approach delivers a solution with high mean condensed log likelihood value for a low

computational effort when compared to the other evaluated methods. The GS-SQP

provides the highest mean condensed log likelihood value for all numbers of training

points. The GS-MFD provides the second highest mean log likelihood over all of the

number of training points, followed by the GA-SQP. In the 50 training point case, the M-

SQP provides the second highest mean condensed log likelihood, however for the 10 and

20 training point cases does not perform as well. For the 10 and 20 training point cases

the GS-MFD and GS-SQP take slightly longer to build than the R-MFD and R-SQP.

However, for the 50 training point case the GS-SQP takes less than half the time taken

to build the R-SQP. The lowest generalisation error is provided by the GS, GS-MFD and

GS-SQP. As more training points are used the GS-MFD and GS-SQP provide a better

generalisation error.

In the final case with 60 design variables the GS-MFD and GS-SQP also perform

very well. For 10 and 20 training points they provide the highest mean log likelihood

values. For 50 training points the GS-SQP provides the highest mean condensed log

likelihood followed closely by the M-SQP, then the GA-SQP and R-SQP, at 25, 15 and

2.5 times the computational effort respectively.

Of the proposed methods the GS-MFD and GS-SQP provide the best results for

the time required to build the metamodels. They consistently outperform the random

start point, GA-MFD and GA-SQP methods. As the dimensionality of the scalable
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polynomial function increases, the benefit of using the solution of the GS as a starting

point for the MFD or SQP increases. Overall the GS-SQP provides the best mean log

likelihood for the time required to build the metamodel, as such it will be used in Section

5.7 for an industrial sized test case.

5.7 Case Study: Aircraft wing example

This section presents a study where gradient enhanced kriging metamodels are created

for a finite element model of an aircraft wing. The GS-MFD and GS-SQP methods are

compared to the GS, R-MFD and R-SQP methods. The multi-start and GA start point

methods are not included as the computational effort would be too great. The study was

first shown using an early implementation in Mortished et al. (2016) and later shown

with the current implementation in Ollar et al. (2016b).

5.7.1 The wing model

The wing model consists of 126 aluminium sheet panels with designable thickness; as

shown in Figure 5.2. Each of the design variables are aluminium sheets which are

modelled with shell elements with a mesh size of 18 mm. The allowable thickness range

is from 0.5-5 mm with a nominal thickness of 2.5 mm.

The wing is fully constrained on the wider end to represent attachment to the fuselage.

Forces and moments are applied to nodes located at the centroid of each rib, as shown

in Figure 5.3a and 5.3b, and using one dimensional (RBE3) elements equally distributed

to the edges of the rib. An example of the deformation due to the loading is shown in

Figure 5.4. Two responses are considered: vertical deflection and rotation of the wing

tip. Both are measured at the horizontal centre and vertical top of the wing tip.
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Figure 5.2: Wing panel design variables.

(a) Applied forces. (b) Applied moments.

Figure 5.3: Wing loading.

Figure 5.4: Magnified deformation due to loading.
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The model is analysed using OptiStruct v13.0.210 (Altair Engineering, Inc., 2014b).

OptiStruct provides analytical gradients via either the direct or the adjoint method

depending on which is the more efficient choice for the case. In this case the adjoint

method is used as the number of design variables is far greater than the number of

responses; evaluating the gradients took roughly the same time as evaluating the function

values, doubling the total analysis time.

5.7.2 Study setup

The study was performed by building the metamodels with 5 points at first, followed by

10, 20, 50 points. For this purpose, sampling was performed using MELS. One benefit of

MELS is that any subset of the DoE in sequence from the first point is suitably spaced.

This allows the user to assess the approximation quality interactively allowing for a far

more flexible approach than would be possible with other space filling techniques such

as the Optimal Latin Hypercube (Audze and Eglajs, 1977). To leverage this feature a

single DoE was created. 50 points were reserved for training the metamodels and 500

points were reserved for validation.

5.7.3 Results

Table 5.8 and 5.9 show the performance of the GS-MFD and GS-SQP is compared with

that of the GS, R-MFD and R-SQP. In Table 5.8a the condensed log likelihood obtained

by the different optimisation methods is shown for the wing tip displacement. It can be

seen that the GS-SQP outperforms the other methods, closely followed by the GS-MFD

which are second best in all cases apart from in the 10 point case where R-SQP provides

a slightly better solution.

In Table 5.8b the generalisation error obtained for the different optimisation methods
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Table 5.8: Results for wing tip displacement.

No. GS R-MFD R-SQP GS-MFD GS-SQP
points

a) Condensed log likelihood (φ)
5 732 798 1082 1731 1780

10 2197 2173 4069 3915 4241
20 5406 5113 6434 8275 8725
50 14696 13912 17415 21737 21853

b) Generalisation error (RMSE)
5 14.77% 14.78% 14.78% 13.27% 10.69%

10 6.56% 12.57% 10.84% 5.17% 7.66%
20 6.34% 12.64% 12.59% 5.01% 6.66%
50 5.82% 12.37% 12.32% 6.33% 7.26%

is shown. It can be seen that GS, GS-MFD and GS-SQP provide solutions which

outperform R-MFD and R-SQP. It can also be seen that even though GS-MFD and

GS-SQP provide condensed log likelihood values which are higher than the one for GS,

the generalisation error is not necessarily improved.

Table 5.9a shows that, for wing tip rotation, the GS-MFD and GS-SQP outperform

the other evaluated methods, which is reflected in the generalisation error, Table 5.9b.

Similarly to the wing tip displacement, the golden search optimisation method shows

lower resulting generalisation error than the R-MFD and R-SQP.
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Table 5.9: Results for wing tip rotation.

No. GS R-MFD R-SQP GS-MFD GS-SQP
points

a) Condensed log likelihood (φ)
5 1360 1384 1500 2091 2157

10 2768 2621 3682 3949 3910
20 5982 5293 6371 7824 7916
50 15998 13494 16003 19123 19236

b) Generalisation error (RMSE)
5 10.10% 8.16% 8.16% 9.07% 9.06%

10 4.50% 7.80% 7.64% 4.81% 6.32%
20 4.55% 7.62% 7.60% 3.91% 4.16%
50 4.07% 7.18% 7.18% 3.49% 3.68%

5.8 Summary

One of the main challenges of kriging, and gradient enhanced kriging in particular, is

the computational cost associated with the tuning parameter optimisation necessary

for building the metamodel. In this chapter an approach was suggested for efficient

tuning parameter optimisation for building well conditioned gradient-enhanced kriging

metamodels. The approach consists of two steps, namely a one-dimensional line search

where all hyper parameters are treated as one variable, and a gradient based optimisation

starting from the solution of the initial line search.

In order to ensure a suitable condition number of the correlation matrix, an upper

bound constraint was enforced. Partial derivatives of the condition number with respect

to the correlation matrix were derived in order to use this constraint in the gradient

based optimisation approach. Both the method of feasible directions and sequential

quadratic programming were evaluated within the approach.

The approach was compared to random start point gradient based algorithms,

multiple start point gradient based algorithms and a genetic algorithm followed by
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gradient based algorithms from promising points. It was shown that the approach

outperforms random start-point and multi-start gradient based algorithms in terms of

both computational performance and quality of solutions. The comparative study shows

the SQP to be the better choice of algorithm within the approach as it provides slightly

higher condensed log likelihood values than the MFD for a similar time to build.

The proposed approach, using both the SQP and MFD, was compared to a selection

of the other optimisation approaches using an aircraft wing model comprising of 126

thickness design variables. The GS-SQP consistently provides the highest condensed log

likelihood value closely followed by the GS-MFD.

In some case it was shown that a big improvement in log likelihood did not

necessarily translate to an improvement in generalisation error. This was particularly

apparent for the wing tip displacement metamodels where the GS-SQP provided a higher

condensed log likelihood than the GS case but the generalisation error was of comparable

magnitude.



Chapter 6

An MDO framework for problems

with discipline disparities

This chapter presents an MDO framework based on the mid-range metamodel method

as outlined in Chapter 4. Section 6.1 discusses the use of existing metamodel-based

optimisation techniques, such as the MAM for MDO. It is suggested to introduce the

concept of disciplines within the optimisation framework to take advantage of disparities

between the disciplines. Section 6.2 outlines a method for reducing the computational

effort related to solving MDO problems with disparate design variable dependences of the

disciplines. The chapter concludes with two case studies. The first case study is an MDO

benchmark example of a thin-walled beam in Section 6.4 and the second is an MDO of

an aircraft wing subject to stength and stiffness as well as bird strike requirements in

Section 6.3.

86
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6.1 Separation of disciplines

It would be straightforward to use metamodel based optimisation algorithms for MDO

by simply treating the responses of all disciplines as if they were produced by a single

discipline. Figure 6.1 shows how a metamodel-based optimisation algorithm such as

the MAM could be used to solve MDO problems without any modifications. The

optimisation algorithm would simply produce a set of DOE points for which response

function values are to be returned. Whether they are evaluated from a single discipline

Figure 6.1: MDO using single-disciplinary approach.
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or several would not be relevant to the optimisation algorithm. Once the points are

evaluated metamodels are created for each response, which are then used to find an

approximate optimum using an optimisation algorithm. Finally, termination criteria are

checked. If the termination criteria are met the process ends, otherwise a new iteration

is started at the point of creating DOE points. Note that, as mentioned in Chapter 2,

any disciplines including multi-physics coupling are handled with MDAs and labelled as

a single discipline.

In this section it is argued that the framework can be made more computationally

efficient if advantage is taken of disparities in the disciplinary attributes. This is made

possible by separately considering the disciplines within the optimisation framework and,

in particular, creating individual DOEs for each discipline as shown in Figure 6.2.

6.1.1 Advantages of separation

There are several advantages to using individual DOEs for each of the disciplines. This

section outlines the ones that have been taken advantage of in the current framework.

Required number of points

As the functions belonging to different disciplines can be arbitrarily complex there might

be a discrepancy across disciplines in terms of how many points are needed to obtain

metamodels of required accuracy. With individual DOEs for each discipline the number

of points can be independently controlled. Furthermore, once the metamodels for a

particular discipline reaches required accuracy, computational resources could be saved

or used to improve accuracy of the disciplines that have not yet met their required

accuracy.
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Figure 6.2: MDO using individual DOE’s for each discipline.

Available gradients

As previously mentioned, gradients may not be available for some of the disciplines.

However, for the disciplines which do have available gradients, it is desired to take

advantage of this when building (gradient-enhanced) metamodels. As gradients improve

the quality of the metamodels for a given computational budget, this allows reduction

of the computational budget in each iteration.
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Simulation failures

It is not uncommon for simulation failures to occur due to numerical, software, hardware

or network issues. In the event of failure of numerical simulations, using the single

discipline approach it is common to discard the failed point for all responses to keep a

consistent set of points across all responses. However when using individual DOEs the

failed point will only have to be discarded for the affected discipline.

Disparate variable dependence

There are cases where the full set of design variables are not present in all the models.

In such situations it is beneficial to create DOEs and build metamodels in the space

of the variables related to the individual disciplines rather than in full design variable

space as the number of design variables influences the metamodel quality as discussed in

Section 1.1. This can be taken further to include only variables that have influence on

the responses of individual disciplines and is the main idea behind the research presented

in Section 6.2.

6.1.2 Disadvantages of separation

The disadvantage of the proposed separation is that a consistent set of points will not

be evaluated across all disciplines. With a consistent set of points across all disciplines

it is straightforward to assess all points against the posed optimisation problem. Points

from the set of training points that are superior to points found by the optimiser could

therefore be chosen by the algorithm as the current best point. However, finding such

a point would be purely chance and for problems with a large number of variables is is

very unlikely.
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6.2 Metamodels in sub-spaces

This section describes a technique for reducing the computational budget related to

solving multidisciplinary design optimisation problems with disparate design variable

dependences of the disciplines.

Suppose that the responses belonging to a discipline in the MDO problem only depend

on a subset of the full set of design variables, i.e. a set of the variables has none or very

little influence on the responses of the particular discipline. An example of this from the

automotive industry can be seen in Figure 6.3 which shows a front crash simulation of an

automotive structure. As can be expected, it can be concluded that the internal energy is

concentrated in the front of the vehicle. It can be assumed that variables in the rear, e.g.

the thickness of the rear bumper, will have very little effect on related responses. With

such information for the responses of all disciplines, a partitioning of design variables,

such as the one in Figure 6.4, can be created. Instead of building metamodels in the

space of the full set of design variables, the response belonging to each discipline is built

in the space of its related subset of variables. The resulting metamodels will be built in a

space of reduced dimensionality and hence will require a reduced computational budget.

There are several examples of the use of this approach, e.g. by Sobieszczanski-

Sobieski et al. (2001), Kodiyalam et al. (2004), Ollar et al. (2014) and Ryberg et al.

(2015). The benefit is that sampling and metamodel building can be carried out in a

space of reduced dimensionality which allows for a reduction in computational budget

for obtaining an metamodel of sufficient quality. However, poor assumptions made when

identifying significant variables can lead to metamodel errors that cannot be reduced by

additional sampling. As will be described in Section 6.2.2 this can be remedied with a

recovery mechanism by taking advantage of the iterative range reduction in the trust

region strategy of the MAM.
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(a) Top view

(b) Side view

Figure 6.3: Automotive model subject to front crash load case. Each element is colored
according to its level of internal energy.1

NVH

Front crash

Side crash

Rear crash

Figure 6.4: Conceptual partitioning of design variables for an automotive model into
significant design variable sets related to each of the disciplines: Front Crash, Side
Crash, Rear Crash and Noise Vibration and Harshness (NVH)

1The model was developed by the National Crash Analysis Center (NCAC), The George Washington
University, Washington, USA.
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6.2.1 Formulation of sub-space metamodels

Here a mathematical formulation for introducing sub-space metamodels in metamodel

assisted MDO is given. Unlike previous work (Sobieszczanski-Sobieski et al., 2001;

Kodiyalam et al., 2004; Ollar et al., 2014; Ryberg et al., 2015), all response functions

are assumed to be defined in the full variable space of the optimisation problem in

order to control insignificant variables. It will be shown that when used within a trust

region framework, this formulation becomes necessary to account for possible errors in

assumptions on partitioning.

Consider solving the optimisation problem (4.1) using metamodels. The optimisation

problem becomes

minimize
x

f̃0 (x)

subject to f̃j (x) ≤ 1, j = 1, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

(6.1)

where f̃0(x) is an metamodel of the objective function and f̃j(x) is an metamodel of the

j-th constraint function. Given that the design variables in the optimisation problem can

be categorised either as significant or insignificant for each related response, a projection

can be defined for each response j from the design variable space onto the space of the

significant variables for that particular response. This is denoted as

ξj = P ξj x

P ξj : Rn 7→ Rsj

 , j = 0, ...,m, (6.2)

where n is the number of design variables in the optimisation problem and sj is the

number of significant variables for the response j. A projection onto the space of the
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insignificant variables is defined in the same manner as

ψj = Pψj x

Pψj : Rn 7→ Rn−sj

 , j = 0, ...,m. (6.3)

From here on the projections are described according to the following convention

x =

ξj
ψj

 , j = 0, ...,m, (6.4)

noting that the components of ξj and ψj are present in x in arbitrary order. The

responses in the optimisation problem can then be described as

fj(x) = fj


ξj
ψj


 , j = 0, ...,m, (6.5)

where the values of ψj can be chosen arbitrarily since they are deemed to be insignificant

to the response. The metamodels of the responses, therefore, may now be defined in

the space of only the significant variables which allows a re-writing of the approximate

optimisation problem as

minimize
x

f̃0 (ξ0)

subject to f̃j (ξj) ≤ 1, j = 1, . . . ,m

ξj = P ξj x, j = 0, . . . ,m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

(6.6)

where each response is defined only in the space of variables that are significant to the

response. The optimisation problem, however, is defined in the full design variable space.

This has the benefit that as each metamodel is defined only in the space of the significant
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variables, the sampling of training points only needs to be carried out in that space and

projected onto the full space as demonstrated by Figure 6.5. Hence if the number of

significant variables is small compared to the number of design variables, the density of

the training points will increase leading to a better quality metamodel as compared to

what would have been achieved otherwise. Note that even though there is one projection

per response, practicalities may require groups of responses to use the same projection,

e.g. due to several responses being evaluated from the same discipline.

ξ

ψ
n

ψ  = c
n

Figure 6.5: Sub-space sampling shown in two dimensions. Vertical axis corresponds to
the significant variable ξm and horizontal axis to the insignificant variable ψn. Sampling
is carried out in the space of the significant variable while the insignificant variable is
kept at a constant value, c.
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6.2.2 Integration in trust region framework

In this section an approach to building sub-space metamodels within the MAM is

proposed. A recovery mechanism for erroneous assumptions for sub-space partitioning

is also suggested. Sub-space metamodels can be introduced in the MAM framework by

re-writing the sequence of optimisation problems (4.2) as:

minimize
x

f̃0
k

(ξ0)

subject to f̃j
k

(ξj) ≤ 1, j = 1, . . . ,m

ξj = P ξj x, j = 0, . . . ,m

Aki ≤ xi ≤ Bk
i

Aki ≥ Ai

Bk
i ≤ Bi


i = 1, . . . , n

(6.7)

Note that the mid-range metamodels created here in each iteration are functions of the

significant variables only. The significant variables for each discipline are identified by

the designer. Such judgement may be based on, for instance, engineering experience

or design variable ranking studies. In the techniques presented by by Sobieszczanski-

Sobieski et al. (2001), Kodiyalam et al. (2004), Ollar et al. (2014) and Ryberg et al. (2015)

deficiencies in sub-space partitioning, i.e. by failing to identify a significant variable, can

result in metamodel errors that cannot be resolved by additional sampling.

Regardless of how carefully the partitioning of variables is made, there is always a

risk that significant variables will be incorrectly identified as insignificant. Therefore

a recovery mechanism for such errors is needed. This can be implemented in the trust

region strategy by making sure that the vector of insignificant variables for each response

is updated at the end of the iterations depending on the current best point as proposed

by Ollar et al. (2015, 2016c).
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Let x∗k−1 denote the solution vector to the previous iteration (k − 1) for the

optimisation problem (6.11). For each response this can be written in accordance to

(6.5) as

x∗k−1 =

ξ∗k−1
ψ∗k−1

 , (6.8)

where ξ∗k−1 denotes the projection of the solution vector onto the space of the significant

variables and ψ∗k−1 onto the space of insignificant variables. The subscript j, denoting

the response number of the projections, has been omitted for brevity.

The values of ψ∗k−1 are then used as the constant values for the insignificant variables

for sampling in the current iteration, k, according to

ψk = ψ∗k−1 , (6.9)

where ψk denotes the values of the insignificant variables for sampling. Figure 6.6

demonstrates how the value of ψn changes from the previous iteration to the current

for the two dimensional case. The change is due to updating the value according to

the current best solution. As the metamodels for the new iteration are built using

the sampling including this update, any changes in response values due to changes in

insignificant variables from the previous iteration, will be accounted for in the new

iteration.

With the possibility of significant variables being identified as insignificant, there is

a possibility that existing points located within the recycle region but far away from

the current value of the insignificant variables may spoil the resulting metamodel. The

recycle-region size is therefore multiplied by a reduction factor bs, for the insignificant

variables, as shown in Figure 6.7.
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Figure 6.6: The values of the insignificant variables in the solution of iteration k − 1
differ from the same values in the sampling of iteration k-1. Potential changes in the
function values as a consequence of this is taken into account in iteration k by updating
the values of the insignificant variables for sampling according to the solution of iteration
k − 1.
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Figure 6.7: Reduction of recycle region (see Figure 4.4) for insignificant variables by
multiplication by a factor bs.
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6.2.3 Automatic variable selection

Although made more robust by the recovery mechanism, the approach relies on the user

to make the assumption of which variables are significant for each discipline. This section

explores the idea of automatically determining the set of significant and insignificant

variables based on design variable ranking at the start of each iteration during the

optimisation rather than by the user before starting the optimisation.

Not only would this eliminate human error in determining the variable dependence

but it would also allow for a different variable dependence to be identified for each

iteration. This could be beneficial as one can easily imagine that different regions of the

design space can have different variable dependence.

In Section 3.3.1.4 it was described how the cross-validated moving least squares

method could be used to carry out a backwards elimination ranking, proposed by Tu

and Jones (2003). This is carried out by calculating an impact factor for each design

variable based on successively leaving out each variable. An impact factor for a particular

variable, xj , can be calculated by building an approximation that ignores the effect of

xj . The RMSE of the leave one out cross validation error, outlined in Section 3.3.1.3,

of this approximation is then compared to the error of an approximation built with the

full set of variables as

Ij =
RMSEj −RMSE

RMSE
, (6.10)

where RMSEj denotes the RMSE for an approximation built without the variable xj ,

and RMSE is the error for an approximation built on the full set of variables. If the

impact factor is a measure of the importance of each variable on the response, a small

or negative value for a variable indicates that the variable is a candidate for elimination.

In this approach, the described design variable ranking is carried out at the start
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of each iteration using the information contained within the trust-region from previous

iterations. Using this information a set of significant variables with impact factor greater

than a perscribed value, ξkj (Ij ≥ Isj ), and a set of insignificant variables, ψkj (Ij < Isj ),

for the current iterations, are obtained.

Points are then added for the current iteration, in the plane of significant variables,

and within the trust-region. However, in order to prepare for the design variable ranking

in the next iteration, variation of the insignificant variables needs to be introduced in the

DOE. This is done by sampling in full design variable space but with reduced bounds

of the trust-region for the insignificant variables by a factor ba, similar (or equal) to the

recycle region reduction factor bs, shown in Figure 6.7.

After sampling, approximations are created in the space of the significant variables

and the optimisation problem is carried out in full space as

minimize
x

f̃0
k
(
ξk0

)
subject to f̃j

k
(
ξkj

)
≤ 1, j = 1, . . . ,m

ξkj = P ξ,kj x, j = 0, . . . ,m

Aki ≤ xi ≤ Bk
i

Aki ≥ Ai

Bk
i ≤ Bi


i = 1, . . . , n

(6.11)

Initial attempts on a simple model by Ollar et al. (2015), showed promising results

using the described approach. However, further testing indicated that for more

complicated problems there was no computational benefit of this approach. This is

believed to be because in each iteration, enough information needs to be present in

order to carry out variable ranking in full design space. As a minimum, this method
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requires enough points in each iteration to carry out linear regression in full space plus

two points. In other words, the number of points needs to be at least the number of

design variables plus two points. This increased computational budget diminishes the

computational gain from using sub-space approximations.

Many attempts of varying the parameters Isj and ba were carried out without finding

a combination that would show a consistent computational reduction. Therefore this

approach is not used throughout the rest of this thesis, but the author remains hopeful

that future research will see this implementation improved to the point where this

automatic approach will show consistent computational gains.

6.3 MDO of a thin-walled beam section

This case study presents a multidisciplinary design optimisation benchmark example of

a thin-walled beam structure subject to both a strength and stiffness load case as well as

impact load cases. Advantage is taken of the local nature of the impact load cases with

the use of sub-space metamodels as outlined in Section 6.2. This enables the study to

be performed at a much reduced computational cost than would otherwise be possible.

Furthermore the recovery mechanism for deficiencies in sub-space partitioning outlined

in Section 6.2.2 is demonstrated.

6.3.1 Beam model

The dimensions of the beam are L = 1200mm, W = 153mm, H = 78mm, and is made of

two thin-walled hat sections spot-welded together along two flanges as shown in Figure

6.8. It is modelled using shell elements with an average mesh size of 10 mm. The welds

are modelled using single hexahedron elements connected to the shell elements using a
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tied contact formulation. The structure is divided into 26 components, shown in Figure

6.9, with individual thickness values which are to be determined. The starting thickness

is 3 mm for each component and the allowable thickness range is 1-5 mm.

6.3.2 Load cases

The beam is subjected to one static load case and three dynamic load cases as outlined

below and shown in Figure 6.10.

Welds along flanges

Top part of structure detached

1200

(a) 3D view.

78

153

(b) Section perpendicular to longitudinal direction.

Figure 6.8: The thin-walled beam consisting of two hat sections spot-welded together
along the flanges. Top part of structure has been detached at two locations.

Figure 6.9: Exploded view of the 26 panels included in the MDO. Every panel has
designable thickness range between 1-5 mm.
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(a) Torsional stiffness

A free node on the left of the beam is constrained in all translational degrees

of freedom as well as from rotation around the longitudinal axis of the beam.

The node is connected to the edges of component c25 (see Figure 6.9) using one

dimensional elements (RBE3) that distributes forces from the free node to the

structure. At the right part of the beam a force is applied to a lever arm, connected

to the beam with the same type of connection, resulting in a moment around the

longitudinal axis of the beam.

The response is the resulting rotation at the point where the moment is applied.

The mass of the structure is also used as a response and is extracted from this

load case. The load case which is a static implicit load case is analysed using

Altair OptiStruct (Altair Engineering, Inc., 2014b).

(a) Torsional stiffness (b) Cylinder impact left

(c) Cylinder impact center (d) Cylinder impact right

Figure 6.10: Load cases included in the MDO.
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(b) Cylinder impact left (CL)

A heavy cylinder with an imposed velocity impacts the left section of the beam in

vertical direction. The beam is supported in vertical direction by a rigid plane. At

impact the beam is compressed by the heavy cylinder. The response is measured

as the vertical deformation of the top part of the beam, caused by the cylinder

impact. The load case, which is a dynamic explicit load case, is analysed using

Altair RADIOSS (Altair Engineering, Inc., 2014c).

(c) Cylinder impact center (CM)

The load case definition is the same as for (b) except for the impact position of

the cylinder which is now at the centre of the beam.

(d) Cylinder impact right (CR)

The load case definition is the same as for (b) and (c) except for the impact

position of the cylinder which is now at the right section of the beam.

6.3.3 Optimisation problem setup

The objective of this MDO problem is to minimise the mass of the beam subject to

sufficient torsional stiffness and not exceeding maximum intrusion from the cylinder

impact. The target values are summarised in Table 6.1 together with initial values

for each response. The mass and torsion response, evaluated using OptiStruct, have

available gradients which are used during the optimisation to build gradient-enhanced

approximations. As the mass response is linear in the space of the design variables a

simple linear regression using the least squares method (LSM) is used to approximate

this response. The remaining responses are approximated using the moving least squares

method (MLSM).
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Four types of optimisations were carried out as outlined below. All optimisations were

carried out using the MAM with 10 candidate points in each iteration. The number of

significant variables identified for each discipline and the corresponding number of points

per iteration is presented in Table 6.2 for each optimisation. The convergence criteria

was set such that the approximation quality must be below 5% and the trust region size

must be smaller than 10% of the design region. The DOE method used for sampling of

training points and start points for the SQP is based on a random number generator

and will hence produce a different set of points depending on the initially chosen seed.

In order to account for this uncertainty 50 optimisations with varying seeds were carried

out for each of the optimisation types described below.

Table 6.1: Responses included in the optimisation problem and corresponding initial and
target value, whether gradients are available, and the choice of approximation technique.

Response Initial Target Gradients Approximations

Mass 1.00 min Yes LSM
Torsion 0.98 ≤ 1.00 Yes MLSM
CL 1.18 ≤ 1.00 No MLSM
CM 1.18 ≤ 1.00 No MLSM
CR 1.17 ≤ 1.00 No MLSM

Table 6.2: Number of significant variables identified for each discipline and corresponding
number of points per iteration.

Opt. 1 2 3 4
ns np ns np ns np ns np

Torsion 26 39 26 39 26 39 26 39
CL 26 39 7 39 7 10 7 10
CM 26 39 12 39 12 18 11 18
CR 26 39 7 39 7 10 7 10

ns - number of significant variables
np - number of points per iteration
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Optimisation 1 - Full space approximations

The first optimisation is set up as a benchmark using the MAM without sub-space

approximations. The number of points evaluated per iteration is chosen as np = 1.5×n =

39 per load case, leading to a total of 156 points per iteration.

Optimisation 2 - Same budget

In the second optimisation sub-space approximations with the proposed recovery

mechanism is used within the MAM. Partitioning of the beam model is shown in Figure

6.11, where insignificant variables are shown transparent. The optimisation is carried

out with the same computational budget per iteration as Optimisation 1 in an attempt

to increase the quality of the approximations in each iteration. This will hopefully lead

to fewer required iterations for convergence

(a) Torsional stiffness (b) Cylinder impact left

(c) Cylinder impact center (d) Cylinder impact right

Figure 6.11: Sub-space partitioning for the beam structure. Insignificant variables are
showed as transparent.
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Optimisation 3 - Decreased budget

In the second optimisation sub-space approximations with the proposed recovery

mechanism is used within the MAM. The partitioning of variables is the same as in

the second optimisation. Here the number of points are determined individually for

each discipline as ns = 1.5× ns, where ns is the number of significant variables for the

discipline. The aim of the optimisation is to keep the number of required evaluations

per iteration to a minimum.

Optimisation 4 - Erroneous partitioning

In the final optimisation sub-space approximations with the proposed recovery

mechanism is used within the MAM. The partitioning of variables is the same as in

the second and third optimisation with one exception. Variable c7, shown in Figure

6.12, which is significant to discipline CM, is deliberately identified as insignificant in

order to test the proposed recovery mechanism outlined in Section 6.2.2.

Figure 6.12: Significant variable erroneously identified as insignificant.
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6.3.4 Results

The results of the study are presented in Figure 6.13. For each optimisation the

median, upper and lower quartiles, and the minimum and maximum value are shown

for the number of iterations, the number of evaluations, the objective function, and the

maximum constraint violation.

Optimisation 1 - Full space approximations

The first optimisation which was used as a comparison for the other three optimisations

finished on average in 10.5 iterations, having required 1407 evaluations, and with an

average reduction in objective function of 13.2%.

Optimisation 2 - Same budget

The second optimisation, which was using sub-space approximations with the same

number of evaluations per iteration as the first optimisation, finished on average in 8.5

iterations, 2 iterations less than the first, having spent 1242 evaluations, 165 less than

the first optimisation, and with an average reduction in the objective function of 13.5%,

0.3% more than the first optimisation.

Optimisation 3 - Decreased budget

The third optimisation, which was carried out using sub-space approximations with

individual allocation of the number of points per iteration for each discipline, finished

on average in 11 iterations, 0.5 iterations more than the first optimisation, and 2.5

more than the second. However, having spent 986 evaluations, 421 less than the first
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optimisation and 256 less than the second. The average reduction in objective function

was 13.2%, just like in the first optimisation.

Optimisation 4 - Erroneous partitioning

The fourth optimisation, where a significant variable was deliberately identified as

insignificant, finished on average after 10.5 iterations, having spent 1052 evaluations,

with an objective reduction of 12.6%, 1% less than the first optimisation, but with

equally low constraint violations as the first three optimisations.
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Figure 6.13: Statistical results from 50 runs with varying seed of each optimisation type,
1-4. OPT 1: Full space approximations, OPT 2: Sub space approx with full budget, OPT
3: Sub space approx with decreased budget, OPT 4: Sub space approx with erroneous
partitioning.
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6.3.5 Conclusions

It can be concluded from this test problem that, by using sub-space approximations for

the presented example, it is possible to reduce the number of required iterations and/or

the number of evaluations for carrying out the optimisation without compromising the

results. By maintaining the number of points that are needed for full space optimisation

when using sub-space approximations, as in optimisation 2, the number of iterations can

be reduced. If instead the number of evaluations per iteration is individually allocated

for each discipline, as in optimisation 3, a reduction in the number of evaluations can

be achieved. It can also be concluded from the fourth optimisation that the proposed

recovery mechanism makes sure that erroneous identification of significant variables does

not lead to constraint violations, but is instead recovered to a cost for the objective

function.

6.4 MDO of an aircraft wing subject to bird strike

requirements

This case study, presented in Ollar et al. (2016a), outlines a multidisciplinary design

optimisation of a wing structure subject to both strength and stiffness as well as bird

strike requirements. In order to account for all critical locations of bird impact, 10

separate bird strike simulations are considered. Advantage is taken of the local nature

of the bird impact with the use of sub-space metamodels. This enables the study to be

performed at a much reduced computational cost than would otherwise be possible
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6.4.1 Wing structure

The considered wing is a 3 m long aluminium structure with a root chord of 830 mm and

tip chord of 670 mm. It has two longitudinal spars and 11 ribs as shown in Figure 6.14.

The material is precipitation-hardened aluminium (6061-T6) with properties outlined in

Table 6.3.

6.4.1.1 Strength and stiffness

The strength and stiffness requirements are evaluated using a linear static finite element

model. The loading consist of forces and moments applied to a single point per rib, which

is then distributed to the edges of the rib using one dimensional distributing elements as

(a) Complete structure. (b) Internal structure.

Figure 6.14: The wing model.

Table 6.3: Material characteristics for aluminium (6061-T6).

Property Constant Value Unit

Material density ρ 2.8 g/cm3

Young’s modulus E 68.3 GPa
Poisson’s ratio E 0.33 −
Yield strength σy 241.1 MPa
Ultimate tensile strength σu 279.0 MPa
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shown in Figure 6.15a. The wing is rigidly constrained at the fuselage end of the wing

in degrees of freedom 1-3 of the nodes around the edges of the rib as shown in Figure

6.15b.

Two load cases, shown in Figure 6.16, are considered. In the first one the wing is

bent upwards by applying forces at each of the previously discussed rib loading points.

The displacement at the tip of the wing due to the loading is used as a response. In

the second case the wing is twisted by applying moments at the rib loading points. The

twist of the wing at the tip, due to the loading, is used as a response.

The analysis is carried out using Altair OptiStruct (Altair Engineering, Inc., 2014b)

with the assumption of infinitesimal strain theory and an isotropic linear-elastic material

model. Analytical gradients can be efficiently obtained using the adjoint method.

6.4.1.2 Bird Strike

Bird strikes are high speed impact events and are thus evaluated using an explicit time-

stepping scheme. In this work Altair RADIOSS (Altair Engineering, Inc., 2014c), an

explicit finite element analysis software, is used.

(a) Forces/moments distributed using 1-D
elements.

(b) Boundary conditions

Figure 6.15: Details on load application and boundary conditions.
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(a) Wing bend loading (b) Wing twist loading

(c) Wing bend results (d) Wing twist results

Figure 6.16: Loading and results for the wing bend and twist cases.

Constitutive model

As the structure is expected to both yield and fail in certain areas, a suitable material

model need to be used. The constitutive model used, shown in Figure 6.17, with

parameters shown in Table 6.4, is elasto-plastic with isotropic hardening and failure

known as /MAT/PLAS TAB (Altair Engineering, Inc., 2014c). The work-hardening

part of the curve is defined using tabular data of plastic strain versus stress shown in

Table 6.5, and the failure criterion is defined as a constant rate decrease of stress from

the point of maximum tensile failure strain, εu, until reaching zero stress at the point of

maximum tensile failure damage, εm. The elements are deleted as they reach the tensile

strain for element deletion, εd.
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Table 6.4: Parameters of consitutive model for aluminium (6061-T6).

Property Constant Value Unit

Material density ρ 2.8 g/cm3

Young’s modulus E 68.3 GPa
Max tensile failure strain εu 0.08 −
Max tensile failure damage εm 0.12 −
Tensile strain for element deletion εd 0.13 −

Table 6.5: Tabular data for isotropic hardening of aluminium (6061-T6).

Plastic strain εpl Stress σ
− MPa

0.000 241.067
0.005 248.598
0.010 252.232
0.016 255.548
0.021 258.840
0.026 262.079
0.031 265.241
0.036 268.267
0.041 271.155
0.046 273.887
0.051 276.404
0.056 278.565
0.080 279.000

σ

σ
u

ε ε
u

ε ε

Figure 6.17: Elasto-plastic constitutive model with isotropic hardening and failure.
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Bird model

The bird strike requirement is for a 4lb, or 1.81kg, bird impacting the leading edge of the

wing at a speed of 150 m/s. The bird is modelled using smooth particle hydrodynamics

(SPH) which is a meshless Lagrangian method based on interpolation theory. SPH

is commonly used to model fluid structure interaction problems where the arbitrary

Lagrangian Eulerian (ALE) formulation is expected to fail because of excessive mesh

distortion. A bird exhibits fluid like behaviour at high impact speeds and can therefore

be modelled realistically using the SPH formulation (Heimbs, 2011).

The bird model, developed by Altair RADIOSS (Altair Engineering, Inc., 2014c),

has the shape of a cylinder with hemispherical ends as shown in Figure 6.18. The radius

R is 57 mm which leads to a total volume of 1939 cm3. The model contains 41544 cells

weighing approximately 0.0437 g each, adding up to a total mass of 1.81 kg and an

initial density of 0.935 g/cm3. The average distance between neighbouring particles is

4.03 mm. The constitutive model is a polynomial equation of state (EOS), known as

representing a hydrodynamic viscous fluid material defined as

P = C1 ·
(
ρ

ρ0
− 1

)
. (6.12)

P is the pressure, C1 = 2.106 GPa a material constant (the bulk modulus), and ρ and

Figure 6.18: SPH bird model.
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ρ0 represents the current and initial density respectively. The properties for the SPH

model are summarised in Table 6.6.

Load cases

As the impact location of the bird along the leading edge is arbitrary, several simulations

need to be performed altering the impact location. To reduce the number of simulations

needed, it is assumed that the critical location for bird impact is at the centre of each

wing section, between the ribs. This means that in total 10 simulations, with varying

start points of the bird, as shown in Figure 6.19, are to be carried out to assess the

requirements for bird strike.

A bird strike simulation with start position 6 is shown in Figure 6.20. It shows that

the bird impacts the leading edge skin which provides the initial energy absorption. The

Table 6.6: Parameters of consitutive model for SPH model.

Property Constant Value Unit

Material density ρ 0.935 g/cm3

Bulk modulus C1 2.106 GPa
Particle mass mp 43.67 mg
Particle distance hp 4.03 mm
Number of particles np 41544 -

Figure 6.19: Critical impact locations along the leading edge.
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(a) t=0.0ms - Simulation start

(b) t=0.6ms - Leading edge skin deformed

(c) t=0.9ms - Leading edge skin rupturing

(d) t=1.3ms - Leading edge skin contacts leading edge spar

(e) t=1.8ms - Maximum deformation leading edge spar

Figure 6.20: History of the bird strike simulation with starting position 6. Left side
shows top view of the impact and right side shows a section at the point of impact.
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leading edge skin ruptures and makes contact with the leading edge spar which deforms

as a consequence. The requirements for the impact is that the structural integrity of

the wing is not to be compromised. This is interpreted such that the leading edge skin

is allowed to fail, however the leading edge spar must remain intact. In this study the

magnitude of intrusion into the wing, measured at the location of impact as shown in

Figure 6.21 are used as constraints for simplicity. Of course any type of response, suitable

for optimisation, could be used.

6.4.2 Optimisation problem

The design variables are the thicknesses of the 100 components shown in Figure 6.22.

The starting thickness for all components are 3 mm with a lower bound of 2 mm and

upper bound of 5 mm. Note that the leftmost rib is not designable as in this study it is

constrained by boundary conditions. The objective of the optimisation is to minimise the

weight of the structure subject to the structural requirements outlined in the previous

section and summarised in Table 6.7.

6.4.3 Optimisation procedure

The minimum number of points required by the MAM per iteration is set to the number

of points needed for linear regression, n + 1, recalling that n is the number of design

variables. It is set to this value regardless of how many points are needed by the chosen

Figure 6.21: Maximum intrusion response.
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(a) Leading edge and upper skins (b) Spars

(c) Lower skins (d) Ribs

Figure 6.22: Sizing design variables.

Table 6.7: Initial constraint violations, normalised to percentage exceeding target value.

Response Init. constr. viol.

wing bend 11.9%
wing twist 0.5%
Intrusion 1 3.9%
Intrusion 2 3.9%
Intrusion 3 4.0%
Intrusion 4 4.0%
Intrusion 5 3.9%
Intrusion 6 4.1%
Intrusion 7 3.8%
Intrusion 8 4.2%
Intrusion 9 3.9%
Intrusion 10 4.1%
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metamodel technique, in this case Kriging. It is useful to increase the number of points

per iteration slightly in order to obtain better metamodels. The number of desired points

per iteration is therefore chosen as 1.5n. As the stiffness simulations have available

gradients, gradient-enhanced metamodel building is used. This allows the number of

points per iteration to be significantly reduced. Here the number of points required for

simulations that have available gradients is chosen as 1.5n/
√
n, resulting in 15 points per

iteration. For the bird strike simulations no gradients are available which means that, for

100 design variables, the minimum number of points required is 101 while the desired

number is 152. The total number of desired points for the 10 bird strike simulations

would hence be 1520 points per iteration, a prohibitively large number.

In this problem sub-space metamodels can be used since the bird strike simulations

have local design variable dependence. For each simulation, an assumption is made on

which variables are significant to the response using engineering judgement. For each

impact location of the bird, eight design variables, shown in Figure 6.23 are assumed to

have most of the influence on the response. Other variables may have a slight influence,

and could have been considered, but for the price of an increase in computational

cost. Instead, any influence from other variables will be taken care of by the recovery

Figure 6.23: Assumed significant variables for bird at position 6.
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mechanism outlined in Section 6.2.2. This leads to a minimum number of 9 points and

a desired number of points of 12 points per simulation and iteration. For the load case

where the bird impacts the leading edge skin adjacent to the rigidly constrained rib,

there are only 6 significant variables which leads to a minimum of 7 points and a desired

number of 9 points. In total, a minimum of 78 and a desired number of 117 bird strike

simulations per iteration.

The number of variables, together with the corresponding minimum number of points

and desired number of points is shown in Table 6.8. The minimum number of points

are calculated as nsgft + 1 and the number of desired points as 1.5nsgft. This leads to a

minimum number of 9 points and a desired number of points of 12 points per simulation

and iteration, except for the load case where only 6 design variables are considered,

leading to a minimum of 7 points and a desired number of 9 points. In total 117 points

for the bird strike requirements. However, as specified before a few extra points are

added per iteration to improve accuracy and account for simulation failures.

Table 6.8: Number of points per iteration for each load case based on the number of
signifiant variables.

# Load case nsgft pmin popt

1 Strength and stiffness 100 1 15
2 Bird strike 1 8 9 12
3 Bird strike 2 8 9 12
4 Bird strike 3 8 9 12
5 Bird strike 4 8 9 12
6 Bird strike 5 8 9 12
7 Bird strike 6 8 9 12
8 Bird strike 7 8 9 12
9 Bird strike 8 8 9 12
10 Bird strike 9 8 9 12
11 Bird strike 10 6 7 9
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6.4.4 Results

The history of the objective function and constraints during the optimisation is shown in

shown in Figure 6.24. The optimisation required 8 iterations, 139 stiffness simulations,

and 1276 bird strike simulations, in total for the 10 bird locations, less than would

be required per iteration had sub-space metamodels not been used. The final mass is

4.7% less than the initial design and all constraint violations were reduced to less than

1%. The initial and final response values are shown in Table 6.9 and the final thickness

distribution is shown in Figure 6.25. From the result it can be noted that none of the

panels have gone to the upper thickness of 5 mm, but some to the lower one of 2 mm.

Many of the ribs have a resulting thickness which is in the thinner part of the thickness

range. This is most likely because of the very simplistic set of static requirement used for

the optimisation. As can be expected, all leading edge skins have high thickness whilst

leading edge ribs are thinner. This is most likely because the leading edge skin is more

likely to rupture if the leading edge rib is less compliant.

Table 6.9: Results of the optimisations. Objective function is normalised to initial value
and constraints are normalised to percentage exceeding target.

# Response Initial design Final iteration

1 Mass −4.7%
2 Wing bend 11.9% 0.1%
3 Wing twist 0.5% 0.0%
4 Intrusion 1 3.9% 0.6%
5 Intrusion 2 3.9% 0.7%
6 Intrusion 3 4.0% 0.4%
7 Intrusion 4 4.0% 0.0%
8 Intrusion 5 3.9% 0.6%
9 Intrusion 6 4.1% 0.0%
10 Intrusion 7 3.8% 0.5%
11 Intrusion 8 4.2% 0.2%
12 Intrusion 9 3.9% 0.3%
13 Intrusion 10 4.1% 0.3%
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Figure 6.24: Optimisation history.
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Figure 6.25: Final thickness for each of the considered components.

6.4.5 Conclusions

A multidisciplinary design optimisation of a wing structure was carried out. The

considered load cases was static bending and twisting stiffness as well as bird strike

requirement for impact at 10 locations. The computational cost of evaluation of the bird

strike requirements is many times larger than the one of the static requirements. The

optimisation was carried out using an approach previously proposed by the authors for

solving MDO problems using metamodels built in individual sub-spaces of the design

variable space. The approach uses existing knowledge of design variable dependence

for each of the disciplines to decrease the number of required evaluations, and hence

the related computational budget, in each iteration of a tust-region based optimisation

procedure. The optimisation finished in 8 iterations having evaluated 139 stiffness

simulations and 1276 bird strike simulations in total, less than would be required per

iteration had sub-space metamodels not been used. The final result is a mass save of

4.7% and a reduction of all previously violated constraints to less than 1%.
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6.5 Summary

An approach to carrying out multidisciplinary design optimisation using sub-space

approximations has been proposed. Sub-space approximations are built in individual

sub-spaces for each discipline while carrying out the optimisation in the full variable

space has been proposed. The sub-spaces in which the approximations are built are

defined by the sets of significant variables for the individual disciplines. The main benefit

of the technique is the dimensionality reduction of the approximations and sampling.

This enables reducing the computational budget required to obtain approximations of

sufficient quality.

The method relies on the designer to make assumptions on which variables are

significant for each response. If such assumptions are deficient, approximation errors

can occur that cannot be reduced by additional sampling. Therefore a technique was

proposed that can recover from such errors within a trust region based optimisation

framework. By updating the values of the variables identified as insignificant, but

remain present in full space, according to the best current solution in each iteration,

the technique can recover from such errors.

The approach was demonstrated on two finite element examples. The first was an

MDO of a thin-walled beam where a reduction in the computational budget was shown

for optimisations carried out using the sub-space approximation approach compared

to conventional optimisations. In addition, a test where a significant variable was

deliberately identified as insignificant was carried out and showed the validity of the

developed recovery mechanism.

The second example was an MDO of an aircraft wing subjected to bird strike at

several locations along the leading edge as well as static stiffness requirements. By using

sub-space approximations it was shown that less evaluations were required for the entire
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optimisation than what would be required per iteration had sub-space metamodels not

been used.

An automatic approach in which the sub-space partitioning is automatically

determined at the start of each iteration using a design variable ranking algorithm has

also been implemented and tested, however without showing a consistent computational

gain.



Chapter 7

Summary, conclusions and

recommendations for future work

This chapter concludes this work by summarising and discussing the achievements in

Section 7.1 followed by suggestions on future work in Section 7.2.

7.1 Summary

The objective of this work was to propose and develop a metamodel-based

multidisciplinary design optimisation framework suitable for incorporation of crash-

worthiness or impact simulations, of which gradients may not be available. This objective

was broken down into the following tasks:

1. Identify existing techniques with promising attributes for metamodel-based MDO.

2. Identify bottlenecks of existing techniques and suggest improvements.

127
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3. Develop a metamodel-based MDO framework.

4. Propose methods to reduce the computational cost for MDO problems with a large

number of design variables (>100).

5. Demonstrate the applicability of the developed framework on problems including

impact or crashworthiness requirements.

This section outlines conclusions and discussions related to each fo the tasks.

Identify existing techniques with promising attributes for metamodel-based

MDO

It was decided that the multidisciplinary feasible MDO architecture was to be used

because it keeps the problem size to a minimum which is important for metamodel-based

frameworks. Furthermore it ensures both multidisciplinary as well as interdisciplinary

feasibility at each design point which is attractive for computationally expensive

industrial applications, where the interest might be in design improvement within a

reasonable time frame rather than a fully converged solution.

With the target of being able to handle problems with hundreds of variables without

necessarily having access to analytical gradients meant that the choice of optimisation

framework would have to fall on a local optimisation methods rather than design

exploration approaches. The mid-range approximation method, which is a trust region-

based framework, was chosen as a suitable framework as a starting point for the research.

A design of experiments technique known as modified extensible lattice sequences was

chosen because of its ability to generate good quality space filling design of experiments

while taking into account existing points. The moving least squares method was used

for metamodelling in the initial stages of the research and was later replaced by kriging.

Both techniques have the ability to use available gradients for building the metamodels
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with the aim of increasing the quality of the fit for a given budget. In order to solve

optimisation problems using the metamodels, the sequential quadratic programming

method was used.

Identify bottlenecks of existing techniques and suggest improvements

Building kriging metamodels can be very costly because of the need to carry out an

optimisation of a set of tuning parameters. A method for efficiently carrying out the

required optimisation by using a two step approach consisting of a line search followed by

a gradient based optimisation was suggested. Partial derivatives was efficiently obtained

using the adjoint method. The approach was tested on several analytical examples and

on a industry size test problem.

Develop a metamodel-based MDO framework

As a starting point for the MDO framework, the modified extensible lattice sequences

method and kriging was added to the mid-range approximation method framework which

already had an implementation of the moving least squares method.

It was suggested that the new MDO framework should handle each discipline

individually and take advantage of any disparities in attributes of the disciplines. As a

consequence individual design of experiments for each discipline was introduced which

allows for different number of points required per iteration for the individual disciplines.

It allows exploiting gradients if available for individual disciplines. Finally, simulation

failure would previously lead to discarding a sample point across all disciplines to keep

a consistent set of points. With individual sampling it would only have to be discarded

from the related discipline.
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Propose methods to reduce the computational cost for MDO problems with

a large number of design variables (>100)

The main research effort was spent on a method for efficiently incorporating crash-

worthiness or impact requirements in the multidisciplinary design optimisation process

using the MDO framework. It was identified that many crashworthiness and impact

requirements are somewhat local in terms of the design variable dependence and that it

can be used to an advantage.

The computational cost of building a metamodel is directly related to dimensionality

of the design variable space in which the metamodel is built. Hence if one can reduce the

number of design variables the computational cost can be reduced. By identifying the

design variables which has most of the influence on each discipline, so called sub-space

metamodels, can be built in the space of only those variables, hence saving computational

budget. However, if the design variable dependence is misjudged and significant variables

are not identified, this results in metamodel errors that cannot be resolved by additional

sampling.

In this work sub-space metamodels was introduced within the mid-range

approximation method, together with a mechanism that recovers from such

metamodelling errors. This is done at the end of each iteration by updating the values of

the insignificant variables such that the starting point for the next iteration will include

any changes in the response function that cannot be taken into account by the sub-space

metamodels. This results in a robust technique that allows reduction in computational

cost of multidisciplinary design optimisation problems with disparate design variable

dependence of the individual disciplines.
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Demonstrate the applicability of the developed framework on problems

including impact or crashworthiness requirements

The proposed techniques were demonstrated on a multidisciplinary design optimisation

benchmark example of a thin-walled beam structure and on an optimisation example

of an aircraft wing subject to bird strike as well as strength and stiffness requirements.

It was shown that by using sub-space metamodels the computational budget of the

optimisation problem could be greatly reduced. The results presented indicates that

the use of sub-space metamodels is advantageous for industr y size multidisciplinary

design optimisation problems with disparate design variable dependence, such as in the

example.

7.2 Recommendations for future work

As the current work is concluded there are many potential paths for further research

that would be interesting to pursue. The first is further testing of the framework by

adding additional disciplines, such as fluid dynamics and electromagnetics and to test the

framework on industrial applications in the automotive and aerospace industry. Further

more, it would be interesting to investigate the applicability to other industries.

In terms of further development of the framework there are several potential

areas of future research. Development of an extension to the current sub-space

metamodels framework that can automatically determine design variable dependence of

each discipline during optimisation would be interesting. Such a technique would need

to efficiently estimate the set of significant design variables of each discipline without

consuming the reduction in computational effort from building sub-space metamodels.

It was briefly tested during the research but without observing a reduction in overall

computational effort of the optimisation problem.
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The framework would benefit from being tested on disciplines that includes

multidisciplinary analysis, also known as multi-physics simulations. How to efficiently

handle multidisciplinary analysis within the framework could be an area of future

research. It may be of interest to revisit architectures such as IDF to research the

applicability of sub-space metamodels.

Furthermore, an interesting area of research is multi-fidelity optimisation, which

would fit well within the optimisation framework and could be researched in terms of

synergies with the sub-space metamodels.



Appendix A

Partial derivatives of the

correlation matrix for gradient

enhanced kriging

This section explains the derivation of the derivatives of the covariance matrix with

respect to the hyper parameters for the quadrants containing information relating to the

design sensitivities.

Quadrant Q1,2 and Q2,1

The derivation for the derivatives of quadrant Q1,2 that contains the covariance between

the design sensitivities and the design function evaluations are shown below:

∂Q1,2
i,j×k
∂θm

=
∂(2θk(x

k
i − xkj )ψ(xi,xj))

∂θm
(A.1)
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• For the case k = m:

∂(2θm · (xmi − xmj ) · ψ(xi,xj))

∂θm

= 2(xmi − xmj ) · ψ(xi,xj) + 2θm · (xmi − xmj ) · (−(xmi − xmj )2) · ψ(xi,xj)

= 2θm(xmi − xmj ) · ψ(xi,xj)︸ ︷︷ ︸
Q1,2

i,j·k

[
1

θm
− (xmi − xmj )2

]

=

[
1

θm
− (xmi − xmj )2

]
·Q1,2

i,j·k

(A.2)

• For the case k 6= m:

∂(2θk · (xki − xkj ) · ψ(xi,xj))

∂θm

= 2θk · (xki − xkj ) · (−(xmi − xmj )2) · ψ(xi,xj)

= 2θk(x
k
i − xkj ) · ψ(xi,xj)︸ ︷︷ ︸

Q1,2
i,j·k

[
−(xmi − xmj )2

]

=
[
−(xmi − xmj )2

]
·Q1,2

i,j·k

(A.3)
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Quadrant Q2,2

The derivation of the derivatives of quadrant Q2,2 that contains the covariance between

the design sensitivities are shown below.

∂Q2,2
i·l,j·k
∂θm

=
∂(2θk(−2θk · (xki − xkj )2 + 1) · ψ(xi,xj))

∂θm
, k = l

∂(−4θkθl

[
(xki − xkj )(xli − xlj)

]
ψ(xi,xj)

∂θm
, k 6= l

(A.4)

• For the case k = l = m

∂(2θm(−2θm · (xmi − xmj )2 + 1) · ψ(xi,xj))

∂θm

= (4θ2m(xmi − xmj )4 − 10θm(xmi − xmj )2 + 2) · ψ(xi,xj)

= (xmi − xmj )2 (−2θm(2θm(xmi − xmj )2 − 1)) · ψ(xi,xj)︸ ︷︷ ︸
Q2,2

i·l,j·k

+ (−8θm(xmi − xmj )2 + 2)ψ(xi,xj)︸ ︷︷ ︸
Ri,j

=
[
2− 8θk(x

m
i − xmj )2

]
·Ri,j − (xmi − xmj )2 ·Q2,2

i·l,j·k

(A.5)
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• For the case k 6= m, l 6= m:

∂(−4θkθl

[
(xki − xkj )(xli − xlj)

]
ψ(xi,xj)

∂θm

= (xmi − xmj )2 (4θkθl

[
(xki − xkj )(xli − xlj)

]
ψ(xi,xj))︸ ︷︷ ︸

−Q2,2
i·l,j·k

= −(xmi − xmj )2 ·Q2,2
i·l,j·k

(A.6)

• For the case k = m, l 6= m:

∂(−4θkθl

[
(xki − xkj )(xli − xlj)

]
ψ(xi,xj)

∂θm

=

 1

θk
(−4θkθl

(
(xki − xkj )(xli − xlj)

)
︸ ︷︷ ︸

Q2,2
i·l,j·k/ψ(xi,xj)

+(xmi − xmj )2 4θkθl

(
(xki − xkj )(xli − xlj)

)
︸ ︷︷ ︸

−Q2,2
i·l,j·k/ψ(xi,xj)

ψ(xi,xj)

=

[
1

θk
− (xmi − xmj )2

]
·Q2,2

i·l,j·k

(A.7)

• The case k 6= m, l = m may be derived in the same manner as the previous case,

leading to:

∂(−4θkθl

[
(xki − xkj )(xli − xlj)

]
ψ(xi,xj)

∂θm

=

[
1

θl
− (xmi − xmj )2

]
·Q2,2

i·l,j·k

(A.8)
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