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Abstract 
 
A major feature of intestinal macrophages in the normal gut is inflammatory anergy, 

a state of tolerance essential for intestinal homeostasis, changes in which lead to 

inflammatory bowel disease (IBD). 

Intestinal macrophages undergo a specific process of differentiation. Under 

homeostatic conditions, cytokines in the local environment drive functional 

differentiation of newly recruited monocytes into noninflammatory intestinal 

macrophage. This process is associated with downregulation of proinflammatory 

cytokines. 

Growing evidence supports the idea that epigenetic changes contribute to 

macrophage reprogramming, and lead to tailored gene expression in response to gut 

environmental factors. However, current knowledge on how chromatin modification 

drives genes expression in human intestinal macrophages is still limited. 

This project aimed to define the relationship between chromatin modification 

(histone methylation) and the repression of inflammatory genes in intestinal 

macrophages isolated from mucosa of control subjects and IBD patients. It was of 

particular interest to understand if the anergic state of macrophages in normal gut is 

associated with repressive marks. Also in IBD, if there are any differences in 

epigenetic modifications between resident and infiltrating macrophages. Finally, if 

by blocking histone methylation, it is possible to prevent/reduce TNFα production 

by macrophages from IBD mucosa.  

TNF-α is an inflammatory cytokine that plays a critical role in innate and adaptive 

immune responses and its dysregulation has been implicated in the pathology of 

IBD. Considering its central role in IBD pathology, the TNFA gene was selected and 

different repressive and permissive histone modifications were investigated. 
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Silencing marks H3K27me3, H3K9me3 and H3K9me1, as well as activating marks 

H3K4me3, H3K4me1 and also RNAPII were selected and analysed using chromatin 

immunoprecipitation (ChIP) assays. 

Based on data collected, it was speculated that a break of anergic phenotype in IBD 

macrophages might be associated with changes in level of silencing marks. 

Macrophages isolated from mucosa of CD patients showed decreased enrichment of 

H3K27me3 and H3K9me3, with H3K27me3 having the greatest reduction. 

Additional analysis of peripheral blood monocytes suggested that in healthy gut, the 

differentiation of blood monocytes into resident intestinal macrophages is associated 

with deposition of H3K27me3 and H3K9me3 silencing marks at the TNFA TSS, and 

that this process fails in IBD environment. 
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1. Introduction  

Through the means of innate and adaptive responses, the mammalian immune system 

has developed a complex of cellular and biochemical processes ensuring efficient 

detection and elimination of harmful agents from the body with the minimum 

damage to the host tissue.  

Innate immunity provides a prompt non-specific response, whereas the adaptive 

immune system responds in a delayed antigen-specific manner resulting in 

immunological memory that allows rapid and specific response upon future re-

exposure to the agents. The Innate and adaptive immunity work together in balance 

to provide an optimum protection against potential pathogens. 

The intestine represents the largest surface for colonisation or entry of pathogens to 

challenge the immune system. It is also the site at which the body is exposed to food 

antigens and the antigens of the microbiota. Yet the vast majority of individuals do 

not react inappropriately to foods or the microbiota. However it is known that failure 

to induce tolerance to food proteins results in food allergies including celiac disease 

(Meresse et al., 2009). Likewise, although the intestine is colonised by large numbers 

of bacteria, which are responsible for inducing the mucosal immune system, in most 

individuals the immune response to these microbes is controlled and does not lead to 

pathology. It appears therefore that the mucosal immune system in health is tolerant 

to the antigens of foods and microbes. While it is clear that barrier function and 

active immune suppression are important in maintaining homeostasis, despite intense 

investigation, the pathways, which break down and result in disease are still unclear. 
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1.1. The Intestinal Immune system 

The gastrointestinal tract provides the largest surface for microorganisms to 

challenge the immune system (Peterson and Artis, 2014). The gut also hosts a large 

diversity of commensal bacteria, many of which are mutualistic symbionts 

(Sonnenburg et al., 2004). Therefore, the intestinal immune system faces the 

challenge of responding to vast variety of pathogens while remaining relatively 

unresponsive to food antigens and commensal microbiota.  

 Moreover, continuous exposure to a variety of foreign antigens in the diet can also 

trigger inappropriate immune responses, such as coeliac disease or cows milk 

allergy. It is thought that unresponsiveness in the gut is due to the phenomenon of 

immune tolerance (Mowat, 2005).  

The intestinal immune system can be divided into inductive and effector sites. The 

inductive sites include GALT as well as local and regional draining lymph nodes 

(LNs), whereas the lamina propria and epithelium are the main effector sites 

(Brandtzaeg et al., 2008).  

 

1.1.1. The Intestine Epithelial Barrier 

The intestinal epithelium provides a physical and biochemical barrier to commensal 

and pathogenic microorganisms (Peterson and Artis, 2014). It comprises a single 

layer of cells organised into crypts and villi in the small intestine (Figure 1.1) 

(Peterson and Artis, 2014). The mucosal surface is covered by a hydrated gel formed 

by mucins, secreted by specialised epithelial cells, such as gastric foveolar mucous 

cells and intestinal goblet cells, and provides an extracellular barrier preventing large 

particles, including most bacteria, from directly contacting the epithelial cell layer 

(Turner, 2009). 
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B). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Anatomy of the intestinal immune system (Adapted from Abreu, 2010) 

 

In the small intestine the mucus layer is thin, but in the colon the mucus layer is 

thicker and essentially sterile above the epithelial microvilli (Figure 1.1). The outer 

mucus layer is colonised by bacteria which use mucus as a food source. 



 20	
  

An intact mucosal barrier depends on integrity of adjacent epithelial cells (the 

paracellular space). This function is mediated by the apical junctional complex, 

which is composed of tight junctions and subjacent adherens junctions. The adherens 

junctions are essential for the assembly of tight junctions (Figure 1.2) (Turner et al., 

2009; Marchiando et al., 2010). Both tight and adherens junctions are supported by a 

dense perijunctional ring of actin and myosin that regulate barrier function. The 

adherens junctions, along with desmosomes, provide the strong adhesive bonds that 

maintain cellular proximity and are also a site of intercellular communication 

(Marchiando et al., 2010). Loss of adherens junctions results in disruption of cell–

cell and cell–matrix contacts, ineffective epithelial cell polarisation and 

differentiation, and premature apoptosis (Hermiston and Gordon, 1995; Turner, 

2009). The adherens junctions are composed of cadherins (transmembrane proteins) 

that interact in a homotypic manner with cadherins on adjacent cells. The 

cytoplasmic tail of the epithelial cadherin, E-cadherin (cadherin-1) interacts directly 

with catenin δ1 (p120 catenin) and β-catenin. In turn, β-catenin binds to α-catenin 1, 

which regulates local actin assembly and contributes to development of the 

perijunctional ring of actin and myosin (Turner, 2009). 

Tight junctions are multi-protein complexes composed of transmembrane proteins, 

such as claudins and occludin, (Turner, 2009). Amongst peripheral membrane 

proteins, zonula occludens (Zo)1 and Zo2 are crucial for the assembly and 

maintenance of tight junctions, at least in part as they contain multiple domains for 

the interaction with claudins, occludin and actin (Turner, 2009). 

The gut epithelial barrier does not completely prevent luminal antigens from entering 

the tissue. Antigens can cross the epithelial surface through gaps in tight junctions, 
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possibly at the villus tips or through follicle-associated epithelium (FAE) that 

overlies lymphoid tissues of intestinal wall (Neutra et al., 2001). 

 

 

 

 

 

 

 

 

 

Figure 1.2: Anatomy of the mucosal barrier (Adapted from Turner, 2009) 

 

The intestinal epithelial cell (IEC) layer is composed of four cell types, absorptive 

enterocytes, mucus-producing goblet cells, hormone-producing enteroendocrine cells 

and Paneth cells, which produce antimicrobial peptides (AMPs) such as defensins, 

serine leukocyte protease inhibitor (Figure 1.2) (Ma et al., 2004; Abreu, 2010). The 

renowal of adult intestinal epithelial layer depends on resident specialised stem cells 

localised within crypts (Barker et al., 2010). The luminal secretion of mucus and 

antimicrobial proteins forms a biochemical and a physical barrier against microbial 

encroachment (Johansson et al., 2008; Gallo and Hooper, 2012). Mucin 2 (MUC2) 

plays an essential role in the organisation of the intestinal mucous layer of the colon 

(Johansson et al., 2008). MUC2-deficient mice develop a colitis and also 

inflammation-induced colorectal cancer (Velcich et al., 2002; Van der Sluis et al., 

2006). Goblet cells also produce other molecules, such as trefoil factor 3 (TFF3) and 
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resistin-like molecule-β (RELMβ). TFF3 acts as a signal to promote epithelial repair, 

increase IEC migration across damaged tissues and resistance to apoptosis (Dignass 

et al., 1994; Taupin et al., 2000; Aamann et al., 2014). In addition, RELMβ promotes 

MUC2 production (Peterson, 2014). The secretion of AMPs additionally reinforces 

the intestinal barrier. Paneth cells secrete antimicrobial components such as 

defensins, cathelicidins and lysozyme in the crypts of the small intestine (Bevins et 

al., 2011; Gallo et al., 2012). 

Moreover, IECs are also able to directly transport secretary immunoglobulins across 

the epithelial barrier (Peterson, 2014). Upon their production by plasma cells in the 

lamina propria, dimeric IgA complexes are bound by polymeric immunoglobulin 

receptor (pIgR) on the basolateral membrane of IECs and the complex is actively 

transported into intestinal lumen (Johanssen et al., 2011). 

In order to maintain homeostatic immune responses, IECs must appropriately 

respond to microbial stimuli and to integrate commensal bacteria-derived signals into 

antimicrobial and immunoregulatory responses. The IECs recognise microorganisms 

via pattern-recognition receptors (PRRs). The PRRs comprises of Toll-like receptors 

(TLRs), NOD-like receptors (NRs) and RIG-I-like receptors (RLRs) (Medzhitov et 

al., 1997; Hoshino et al., 1999; Akira et al., 2006). The IECs express a number of 

Toll-like receptors (Peterson, 2014). TLR3 expression is seen in a small intestine and 

colon, whereas TLR5 is expressed predominantly in the colon (Cario and Podolsky, 

2000). Other types of receptors such as TLR1, TLR3, TLR5 and 9 have also been 

found in IECs of the human small intestine (Otte et al., 2004). In the human small 

intestine, the expression of TLR3, TLR4 and TLR5 has been shown on the 

basolateral surfaces of villus enterocytes (Cario and Podolsky, 2000 Otte et al., 

2004). The Paneth cells were shown to express TLR4 and TLR9 (Otte et al., 2004). 
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In mice, the follicular-associated epithelial cells that neighbour microfold (M) cells 

express TLR2 and TLR9 on both, the apical and basolateral surfaces, and also TLR4 

and TLR5 only on the apical surfaces (Chabot et al., 2007). Enteroendocrine cells 

also express several TLRs, including TLR1, TLR2 and TLR4, but it is not clear 

whether they are present on apical or basolateral surfaces (Bogunovic et al., 2007).  

Under normal physiological conditions, TLR2 and TLR4 are expressed by IECs at 

low levels (Otte et al., 2004; Abreu et al., 2011). However, the expression of TLRs, 

particularly TLR4 is increased in IECs from patients with inflammatory bowel 

disease (Cario and Podolsky, 2000; Pedersen et al., 2005). Animal studies showed 

that inflammatory cytokines, especially IFN-γ and TNF promote the expression of 

TLR4 and its co-receptor MD-2, as opposed to IL-4 and IL-13 which decreases the 

responsiveness of IECs to TLR4 ligand (LPS) (Peterson, 2014). 

The epithelial layer also contains large numbers of cells called intraepithelial 

lymphocytes (IELs) that are very heterogeneous with regard to their function and 

phenotype. The IELs are unique subsets of intestinal T-cells located in the epithelial 

layer, physically separated from lamina propria lymphocytes (van Wijk and 

Cheroutre, 2009). Most IEL are CD8+ T cells, with large numbers of γδT cells 

(Spencer et al., 1991). Most IEL are enriched for CD8αα+ cells in comparison to 

other CD8+ T cells in the body, which are CD8αβ (Denning et al., 2007). IELs also 

have potent cytotoxic potential and help to clear infected or damaged IECs. TCRαβ+ 

IELs do not respond to conventional major histocompatibility complex (MHC)-

peptide ligands, but to ligands expressed on IECs (e.g. the thymus leukemia antigen 

ligand for CD8αα+ IELs) (Leishman et al., 2001). Additionally, IELs also function 

as regulatory cells by suppressing inflammation in animal models (Das et al., 2003). 
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TCRαβ+ IELs have been shown to produce AMPs (Ismail et al, 2011). The presence 

of commensal bacteria influences the development and function of these cells, since 

in germ-free mice TCRαβ+ IELs are almost absent (Kawaguchi-Miyashita et al., 

1996; Hendricks and Fink, 2009). 

1.1.2. The gut-associated lymphoid tissues (GALT) 

GALT is an inductive site for intestinal B cells responses (Macpherson et al., 2008). 

The GALT consists of Peyer’s patches (PPs), scattered along the anti-mesenteric site 

of the small intestine, the isolated lymphoid follicles (ILFs), the mesenteric lymph 

nodes (MLNs), and appendix (Brandtzaeg et al., 2008). 

1.1.2.1. Development of PPs, MLNs and ILFs 

The development of PPs and MLNs is initiated in fetal life and depends on 

interaction between mesenchymal organiser cells and hematopoietic inducer cells 

(Brandtzaeg and Johansen, 2005). This process involves lymphotoxins (LTs), 

members of the TNF superfamily (Eberl and Lochner, 2009). 

An important differentiating event in PP formation is membrane expression of 

LTα1β2 on IL-7Rα+ CD4+ lymphoid tissue inducer (LTi) cells (Yoshida et al., 2002). 

The expression of LTα1β2 occurs after stimulation of the receptor activator of nuclear 

factor (NF)-ΚB (RANK)-TNF-associated factor family 6 (TRAF6) pathway and also 

through IL-7R signalling (Yoshida et al., 2002). The development of PP takes 

through three stages (Yoshida et al., 1999). Step one is the induction of organising 

centres for PP, through the production of IL-7 or thymic stromal-derived 

lymphopoietin (IL-7Rα ligand). The local source of IL-7 remains undetermined 

(Eberl and Lochner, 2009) and it is speculated that an activation of LTi cells through 
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IL-7RA can occur in the blood (Luther et al., 2003), on the way from the liver, where 

these cells are generated (Yoshida et al., 2001; Mebius et al., 2001). The activation 

of LTi through IL-7Rα subsequently induces PP-organising centres. The PP 

organisers (lymphoid tissue organiser (LTo) cells) are of mesenchymal origins 

(Honda et al., 2001) and also express CXCL13 (Cyster et al., 2000, Peduto et al., 

2009). The CXCL13 is a ligand for CXCR5 receptor expressed by LTi, which 

additionally can promote the recruitment of these cells upon LTβR-mediated 

activation (Mebius et al., 2003). Additionally, CXCR5 regulates the activation of 

integrin α4β1

 

on LTi cells, and binding of integrin α4β1 to vascular cell adhesion 

molecule (VCAM)-1 allows the interaction of LTi cells with LTo cells and the 

subsequent activation of LTo cells (Eberl and Lochner, 2009). In step two, 

hematopoietic cells, including LTi cells, F4/80+ cells (in mice), and CD11c+ cells, 

accumulate in the organising centres, and high endothelial venules are formed. Final 

third step is characterised by B- and T-cell homing to the growing PP (Eberl and 

Lochner, 2009).  

This three-step model of PP development was supported by numerous murine 

models. It has been shown that mice deficient in lymphotoxin LTα (De Togni et al., 

1994) and LTβ (Koni et al., 1997), and mice treated with LTβR-Ig fusion protein 

(Rennert et al., 1996) all lack PPs. This suggests that membrane form of 

lymphotoxin, heterotrimer LTα1β2 and ligand of LTβR are critical for PP 

development (Eberl and Lochner, 2009). Adachi and colleagues (1998) have shown 

that IL-7Rα-deficient mice failed to develop PPs. Additinally, it has been shown that 

in the absence of IL-7Rα signalling, LTi cells fail to upregulate LTα1β2, thus cannot 

induce LTβR signalling and PP development (Luther et al., 2003). 



 26	
  

Additionally, the nuclear hormone receptor RORγ is also required for LNs and PPs 

development (Sun et al., 2000). It has been shown that the RORγt is expressed by 

LTi cells in the fetus (Eberl et al., 2004a), and that in the absence of RORγt, LTi 

cells are not generated and PPs do not develop (Eberl et al., 2004a).  

Although, the development of PPs and mLNs follows similar pattern, some distinct 

pathways between the two also exist. As described previously, the development of 

PPs and LNs depends on generation of LTi cells and the activation of LTβR-

mediated signalling in LTo cells. Mice deficient in RORγt (Eberl et al., 2004a), 

LTβR (Rennert et al., 1998) and NF-ΚB-inducing kinases (Miyawaki et al., 1994), 

all fail to develop LNs and PPs. However, lack of TNF-α and TNF receptor-I affects 

only PP development (Neumann et al., 1996; Korner et al., 1997). Additionally, most 

LNs, but not PPs, do not develop in the absence of the TNF superfamily member 

TRANCE, its receptor TRANCE-R, or its associated signalling molecule TRAF6 

(Kim et al., 2000). However, as shown by Yoshida et al. (2002), LN development 

can be rescued in TRAF6-deficient mice by the administration of IL-7. Therefore, it 

has been suggested that local activation of LTi involves local availability of IL-7 and 

TRANCE in PPs and LNs, respectively (Eberl and Lochner, 2009). 

In addition, mice deficient in IL-7R (Cao et al., 1995) or its associated signalling 

molecule JAK3 (Park et al., 1995), or LTβ (Koni et al., 1997), CXCR5 (Forster et 

al., 1996) and CXCL13 (Ansel et al., 2000) lack PPs and most LNs, whereas MLNs 

still develop. Through an inhibition of LTβR signalling with LTβR-Ig fusion protein, 

it has been shown that MLNs are among the first to initiate development (Rennert et 

al., 1998). 
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The development of ILFs also requires LTα1β2/LTβR interaction and TNFRI 

function (Lorenz et al, 2003; Yamamoto et al., 2004). However, in contrast to PPs, 

ILFs develop only post-natally in response to microbial stimulation (Hamada et al., 

2002). The role of microbiota in initiation and development of ILFs has been 

supported by number of studies in knockout or germ free mouse models (Lorenz et 

al., 2003; Bouskra et al, 2008; Knoop et al., 2011; Baptista et al., 2013).  

For example, it has been shown that germ-free (GF) mice have hypoplastic PPs and 

lack IFLs (MacDonald and Spencer, 1990; Bouskra et al., 2008). Additionally, in 

germ-free mice, ILFs with defined B follicle do not develop (Hamada et al., 2002; 

Lorenz et al., 2003; Pabst et al., 2006; Bouskra et al., 2008). Also, in mice deficient 

in RORt, LTi cells are absent from the intestine, and cryptopatches (CPs) and ILFs 

are not formed (Eberl and Littman, 2004). As proposed by Bouskra et al. (2008), 

gram-negative bacteria induce iILF development through the nucleotide-binding 

oligomerisation domain containing 1 (NOD1) receptor. The peptidoglycans released 

by bacteria are recognised by NOD1 innate receptor expressed in intestinal epithelial 

cells (Fritz et al., 2006), which consequently lead to the expression of CCL20 and β-

defensin (both CCR6 ligands) on these cells. The CCL20 and β-defensin activate LTi 

in CPs, engage LTo cells and recruit CCR6+ B cells to CPs (McDonald et al., 2007).  

1.1.2.2. Peyer’s patches 

Peyer’s patches are organised aggregates of lymphoid tissue scattered at intervals 

underneath the gut epithelium in the small intestine. The PPs are bound to the 

intestinal epithelium and connected to lymphatic system though efferent vessels. 

They collect antigens directly from the intestinal lumen though specialised epithelial 

cells called microfolds (M) cells (Eberl and Lochner, 2009) (function of M cells is 
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discussed later in this paragraph).The PPs consist of at least 5 aggregated lymphoid 

follicles, but can contain up to 200 such organised structures (Cornes, 1965; 

Brandtzaeg and Johansen, 2005). The number of PPs also increases from 

approximately 50 at the beginning of the last trimester to 100 at birth and 250 in the 

midteens, then diminishes to 100 at the age of 70 (Cornes, 1965; Brandtzaeg and 

Johansen, 2005). 

The PPs can be seperated into three main domains, namely the follicular area, the 

interfollicular area and the follicle-associated epithelium (Neutra et al., 2001). The 

follicular and interfollicular area consists of PP lymphoid follicles with prominent 

germinal centre (GC) containing proliferating B lymphocytes, DCs and macrophages 

(Boursier et al., 2005; Jung et al., 2010). The germinal centre forms the core of each 

follicle. The formation of germinal centre occurs after the exposure to antigen at 

birth and most of adaptive secretory IgA response is generated in PPs, the progeny 

migrating to the lamina propria (MacDonald, 2003). 

The follicle is surrounded by the corona, or subepithelial dome (SED) also 

containing populations of B and T cells, DCs and macrophages (Jung et al., 2010). In 

human PPs, T cells are present in high density in the area surrounding the high 

endothelial venules between follicles (Spencer et al., 1986), in areas surrounding the 

follicle but also in the mixed cell zone in the dome and in the lymphoepithelium 

(MacDonald et al., 2003). T cell zone also extends between the follicle centre and the 

muscularis mucosa, and occasionally T cells are present in the follicle centre 

(MacDonald, 2003). The majority of the T cells in PPs are CD4+ (MacDonald, 

2003). A single layer of epithelial cells known as follicle-associated epithelium 
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(FAE) seperates the PPs from the lumen. The FAE is also characterised by a large 

number of infiltrated B and T cells, macrophages and DCs (Jung et al., 2010). 

The FAE contains specialised enterocytes called microfold (M) cells (Neutra et al., 

2001). The M cells lack surface microvilli, and are not covered by a mucus layer. 

These cells function as antigen-transporting cells, providing the main way in which 

antigen can gain access to the PPs and be presented to professional APCs (e.g., DCs) 

in the epithelium or in the underlying SED (Brandtzaeg and Pabst, 2004). M cells do 

not express MHC class II molecules and do not process antigens, therefore they don’t 

function as antigen-presenting cells (Mantis et al., 2002). However, M cells express 

IgA receptors allowing the capture and uptake of IgA trapped bacteria (Mantis et al., 

2002). 

1.1.2.3. Isolated lymphoid follicles (ILFs) 

The ILFs are microscopic lymphoid aggregates localised along the small and large 

intestine, and they are developmentally independed of PPs (Lindner et al., 2012). 

Human intestinal mucosa harbours at least 30,000 ILFs that increases in density 

distally (Trepel, 1974), which correlated with increased bacterial load. 

Just like PPs, the ILFs also have FAE and M cells, but comprise of only 1 or 2 B cell 

follicles, surrounded by DCs (Eberl and Lochner, 2009). The ILFs contain relatively 

few T cells and no distinct T-cell zones. Upon activation, more B cells are recruited 

to ILF to form germinal centres (Glaysher and Mabbott, 2007). Therefore, although 

ILFs are smaller that PPs, they also represent an important source of follicle B cells. 

The ILFs also serve as an inductive site for IgA synthesis, and a maturation to large 
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B cell follicle occurs in part in response to changes in bacterial composition and 

dietary products (Lorenz et al., 2003; Hooper, 2011; Kiss and Diefenbach, 2012).  

1.1.2.4. Mesenteric lymph nodes 

In contrast to PPs, the mesenteric lymph nodes (MLNs) are considered the largest 

lymph nodes in the body (Mowat, 2003), and together with PPs are essential for the 

initiation of protective immune responses in the intestine against microbial antigen. 

The MLNs contain an abundance of B cells. However, as demostared by Worbs and 

colleagues (2006), MLNs also play a critical role in the induction of oral tolerance. 

This finding was additionally supported by Pabst et al. (2007), who showed that a 

transport of antigen from the lamina propria into the MLNs by CD103+ DCs is the 

key event for induction of oral tolerance. The migration of DCs into the draining 

LNs requires the expression of CCR7 (Forster et al., 2008), and as shown by Worbs 

et al. (2006), genetic CCR7 deficiency prevents the recognition of food antigen by T 

cells in the MLNs and impairs the induction of oral tolerance. Also, it was shown 

that oral tolerance can be abrogated in lymphotoxin α-deficient mice lacking all LNs 

and PPs, but can be consequently restored by selective rescue of MLN development 

(Spahn et al., 2002).  

1.1.3. Migration of lymphocytes into the GALT 

When released from the thymus, naïve lymphocytes express high levels of L-selectin 

(CD62L) and the chemokine receptor CCR7 (Butcher and Picker, 1996; Gunn et al., 

1999). The migration of naïve lymphocytes into the GALT is highly regulated and 

occurs via specialised high endothelial venules (HEVs). Mucosal addressin cell 

adhesion molecule (MAdCAM-1) is a key player in intestinal trafficking of both T 
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and B cells (Wagner et al., 1996; Brandtzaeg et al., 1999). In human GALT, 

MAdCAM-1 is highly expressed by HEVs of the MLN, PP and the venules of the 

small and large intestine (Leung et al., 1996; Shyjan et al., 1996; Brandtzaeg et al., 

1999a; 1999b). It is also displayed on follicular dendritic cells in PP at sites 

associated with microenvironmental homing decisions, and on follicular dendritic 

cells in peripheral lymph nodes after primary immunisation with antigen (Shabo et 

al., 1997). 

In murine models, naïve lymphocytes can enter PP through glycosylation of the 

mucin-like domains of MAdCAM-1, which promotes binding of CD62L (Berg et al., 

1993, Butcher et al., 1996). 

Additionally, naïve lymphocytes also express low to intermediate levels of α4β7-

integrin (the main receptor mediating interaction with MAdCAM-1). Interaction 

between CD62L and MAdCAM-1 provides initial tethering, however additional 

interaction between α4β7 and MAdCAM-1 is crucial for emigration of naïve 

lymphocytes into GALT (Berlin et al., 1993; Yong et al., 1995; Briskin et al., 1996). 

Additional interaction between CCL21 that is expressed on the luminal surface of the 

HEVs and CCR7-expressed by naïve lymphocytes promotes firm adhesion and 

lymphocytes arrest, which leads to cells extravasation into PPs and MLNs (Luster et 

al., 2005; Brandtzaeg and Johansen, 2005). CCL21-CCR7 interaction activates the 

integrin αLβ2 on naïve T cells, leading to interaction between integrin αLβ2 and 

ICAM-1 (Sigmundsdottir and Butcher, 2008). It has been shown that CCL21 also 

stimulates α4β7-mediated lymphocyte adhesion to MAdCAM-1 (Pachynski et al., 

1998).  
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1.1.4.  Lymphocyte activation in the GALT 

The DCs encountering antigen subsequently migrate into the T cell areas and B cell 

rich follicles of PPs or into MLN where they present antigen to naïve T and B 

lymphocytes (Newberry and Lorenz, 2005; Salzman et al., 2007). In PPs, DCs 

acquire antigen from M cells, whereas DCs that take up antigen directly from the 

lumen do not mediate antigen presentation in the lamina propria, but transfer antigen 

to DCs present in MLNs (Pabst et al., 2007; Pabst and Mowat, 2012) (Discussed 

more in section on DCs). The DCs can present antigen directly to naïve B cells 

driving their differentation into IgA+ B cells or present antigen to naïve T cells which 

leads to expression of antigen specific TCRs on T cells. Additionally, activated T 

cells also interact with B cells to drive their maturation into IgA plasma blast 

(Discussed more in section on IgA). Upon activation, B cells start to proliferate and 

generate germinal centres within PP or MLN, where they undergo affinity maturation 

and isotype switch from IgM to IgA (Pabst et al., 2004). Most of fully differentiated 

B cells and effector T cells exit PP and MLN and migrate via the lymphatics and the 

thoracic duct into the blood and consequently into the lamina propria. In the lamina 

propria, IgA+ B cells become fully developed IgA plasma cells (MacDonald et al., 

2011). 

1.1.5. Lymphocyte homing into the gut  

After encountering the antigen in the GALT, naïve lymphocytes undergo antigen-

driven priming/activation and polarise into effector cells, which consequently allows 

them to home to the target tissue in search for antigen. During this process, activated 

lymphocytes downregulate CD62L and CCR7 (Farstad et al., 1997) but enhance 
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expression of α4β7-integrin and chemokine receptor CCR9, the process that is driven 

by retinoic acid production by CD103+ CDs (also discussed in section 1.1.2.3).  

The interaction between integrin-α4β7 and MAdCAM-1, which is expressed on 

intestinal endothelial cells promote homing of lymphocytes into the lamina propria 

(Hamman et al., 1994). Additionally, the homing of lymphocytes specifically to the 

small intestine is enhanced by the expression of CCL25 by crypt and glandural 

epithelium, and its presence on small bowel venular endothelium (Kunkel et al., 

2000). In the small intestine, the majority of lymphocytes express integrin-α4β7 and 

CCR9 (Papadakis et al., 2001). Interaction between CCR9 and CCL25 triggers 

conformational changes in α4β7-integrin and a firm adhesion to MAdCAM-1 (Berlin 

et al., 1993). In contrary, lymphocytes that home to the colon express low levels of 

CCR9 but upregulate CCR10. The interaction between CCR10 and CCL28 that is 

expressed on colonic mucosal vessels and epithelial cells triggers homing of 

lymphocytes to the colonic lamina propria (Pan et al., 2000).  

1.1.6. Lamina propria 

The lamina propria is an area below an epithelial barrier, which as opposed to FAE is 

secured by tight junctions and covered by a layer of mucins (discussed in section 

1.1.1.). The lamina propria is considered as an effector site and consists of diffused 

connective tissue with a lymphoid constituent including cytokine producing T cells 

and IgA producing plasma cells, DCs, macrophages, eosinophils and mast cells. 

There are more lymphocytes in the mucosa than in any other part of the body 

(Farstad et al., 2000; Brandtzaeg et al., 2010; Spencer et al., 2012).  
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1.1.7. Mucosal T cells 

Lymphocytes are found in three distinct anatomical and functional compartments in 

the gut, the organised gut-associated lymphoid tissue (GALT), the lamina propria, 

and the surface epithelium (Brandtzaeg, 2008). In the normal gastrointestinal (GI) 

tract, T cells constitute one-third of the cells in the intestinal lamina propria 

(MacDonald et al., 2011). The balance between effector T cells and regulatory T 

cells in the gut mucosa is important for the maintenance of a healthy gut (MacDonald 

et al., 2011). The phenotypic distribution of CD4+ and CD8+ T cells in lamina 

propria is similar to that of peripheral blood lymphocytes, with a dominance of CD4+ 

T cells (Helgeland et al., 2000; MacDonald et al., 2011). 

The CD4+ T cells in the lamina propria are distributed more evenly throughout the 

villus-crypt unit. Phenotypically, most CD4
+ T lamina propria lymphocytes (LPLs) 

have an activated phenotype being L-selectinlo HLA-DR, α4β7+, CD62lo, CD25hi/lo 

and CD45RO
+ 

(MacDonald et al., 2011). The lamina propria CD4+ T cells derive 

from PP T cells blasts which have extravasated from thr blood via α4β7 

integrin/MAdCAM-1 interaction (Butcher et al., 1996). In the lamina propria, CD4+ 

TCRαβ T cells predominate (Brandtzaeg et al., 1989; MacDonald and Pender, 1998), 

however, a minority (~40%) of T cells in the lamina propria are also CD8+ 

(Lefrançois et al., 1999) and express the αEβ7 integrin, therefore are likely to be en 

route to the epithelium (Farstad et al., 1996). Some of these antigen-experienced 

lamina propria T cells may be true effector cells, and may help local B cells to 

produce IgA. The antigen-specific memory CD4+ and CD8+ T cells accumulate 

preferentially in non-lymphoid tissues, in particular in the intestinal mucosa (Sallusto 

et al., 1999; Reinhardt et al., 2001). The effector T cells that react to the microbial 
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flora or other GI antigens are kept in check by regulatory T cells (TReg) (Maloy et al., 

2003; MacDonald et al., 2011). Th17 cells are also important in mucosal immune 

responses. Th17 cells secrete IL-17 and also IL-22, and play an important role in 

protecting against bacterial and fungal infections (Sonnenberg et al., 2009). In mice, 

IL-22 appears to have anti-inflammatory effects, since it targets epithelial cells and 

induces secretion of defensins and mucus (Sugimoto et al., 2008). The Th17 and 

Treg are both dependent on TGF-β for their differentation, but are also defined by 

the expression of the lineage-specific transcription factors RORγt and Foxp3, 

respectively (Hori et al., 2003; Mangan et al., 2006; Manel et al., 2008). The 

composition of the intestinal microbiota influences the presence T cell population in 

the gut. As an example, in the colon, but not in the small intestine, the function of 

Foxp3+ TReg has been shown to be regulated by commensal bacteria (Clostridia 

clusters IV and XIVa) (Atarashi et al., 2011; Farache et al., 2013). In specific 

pathogen-free mice, Clostridia colonise preferentially the colon, occupying the 

mucus layer in close proximity to IECs. In humans, these bacteria are associated with 

IL-10 induction and protection from colitis (Sokol et al., 2008). In contrast, Th17 

cells in the small intestine lamina propria, accumulate in the presence of specific 

commensal microbiota, namely segmented filamentous bacteria (SFB) (Atarashi et 

al., 2011).  Most data on TReg cells and gut homeostasis has been collected from 

studies of cells that express FoxP3 (MacDonald et al., 2011). In mice, two types of 

Foxp3 expressing T cells have been identified. The first, so-called naturally 

occurring TReg cells were recognised as a subpopulation of CD4+ T cells that develop 

in the thymus during the first days of postnatal life and express high levels of the IL-

2 receptor α chain (Asano et al., 1996). The other group of regulatory T cells is 

represented by inducible TReg (iTReg) cells which also express FoxP3, but develop 
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from naïve CD4+ T cells in the presence of TGF-β1 (Fantini et al., 2006) and retinoic 

acid (Coombes et al., 2007). The TReg are present throughout the GI tract, but 

especially are enriched in the colon, where they provide immune suppression and 

downregulate excessive inflammatory responses. In the colon, TReg can account for 

40-50% of CD4+ T cells (Atarashi et al., 2011). 

A role of T lymphocytes in intestinal homeostasis was also discussed in section 

1.3.5. 

1.1.8. Mucosal B cells 

The presence of a large quantitiy of IgA with a diverse antigen-binding repertoire is 

crucial for the maintenance of intestinal homeostasis (Brandtzaeg et al., 1999; Wei et 

al., 2011). The lamina propria contains large numbers of plasma cells located 

beneath the intestinal epithelium, which secrete dimeric IgA (mostly IgA2) and 

pentameric IgM (Johansen et al., 2000). The vast majority of lamina propria B cells 

are CD19+CD20-, which are the extravasated immunoblasts enroute to terminal 

differentation into plasma cells (Spencer et al., 2012). 

The functional significance of sIgA is highlighted by a fact that 80-90% of plasma 

cells produce IgA (Brandtzaeg et al., 1999b). T cells activated by microbial and other 

antigens in GALT, supported by cytokines such as transforming growth factor 

(TGF)-β and IL-10, induce the development of antigen-specific B cells to 

predominantly IgA-committed plasma blasts (Helgeland et al., 2000; Brandtzaeg and 

Finn-Erik Johansen, 2005), which proliferate and differentiate further on their route 

through mesenteric lymph nodes and thoracic duct into the blood stream. The IgA-

committed plasma blasts home preferentially to the intestinal mucosa, where they 
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complete their terminal differentiation to IgA-producing plasma cells, probably 

under continued influence of T cells and their cytokines in the lamina propria, and 

immunoregulatory factors from intraepithelial T cells (Macpherson et al., 2008; 

Spencer et al., 2009). The plasma cells destined for the colonic lamina propria 

express CCR10 and migrate towards CCL28, a chemokine secreted by colonic 

epithelial cells (Kunkel et al., 2000). However, plasma cells that are destined for the 

small intestine migrate via CCR9/CCL25 axis (Morteau et al., 2008). 

 Consequently, upon arrival to the lamina propria, IgA is carried through IECs into 

lumen as secretory IgA (SIgA), where it facilitates the clearance of bacteria in the 

lumen (Brandtzaeg, 2003). IgA production takes through T cell-dependent (Gardby 

et al., 2003) and T cell-independent pathways (Bergqvist et al., 2006; He et al., 2007; 

Cerutti and Rescigno, 2008). The T cell dependent class switch to IgA involves 

ligation of CD40 present on B cells and CD40L expressed by T cells and binding of 

TGF-β to its receptor on B cells (McIntyre at al., 1995; Zan et al., 1998; Spencer et 

al., 2012). The importance of T cell-independent pathway has been supported by the 

fact that patients with hyper-IgM syndrome, with a mutation in CD40 can still 

generate intestinal IgA responses despite the inability to recruit cognate T cell help 

via CD40/CD40L (Spencer et al., 2012). 

Also DCs, through the production of APRIL may support class switch to IgA in the 

absence of T cell derived CD40 ligation (Cerutti et al., 2008). It has been also shown 

that murine small intestine lamina propria CD103+CD11b+ DCs can induce the 

differentation of naïve B cells into IgA+ lamina plasma cells in vitro after CpG 

(ODN) stimulation through T cell-independent pathway (Fujimoto et al., 2011). The 
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ability of CD103+CD11b+ DCs to induce IgA class switcg may be related to 

secretion of RA by these cells (Fujimoto et al., 2011). 

Additionally, T cell-independent pathway of IgA production involves B-cell 

activating cytokines produced by IECs in response to commensal bacterial signals 

(Yanagibashi et al., 2013). However, not all commensal bacteria induce IgA 

production, and also the anatomical location influences the secretion of IgA 

(Yanagibashi et al., 2013). For example, introduction of Bacteroides acidifaciens in 

the colon, but not in the ileum of germ-free mice can induce IgA production 

(Yanagibashi et al., 2013). Based on mouse models, it has been suggested that T cell-

dependent IgA responses are initiated in PPs, whereas T cell-independent IgA 

induction mostly occurs in ILFs (Tsuji et al., 2008; Suzuki and Fagarasan, 2009). 

1.1.9. Mononuclear Phagocyte System  

Macrophages (Mφ) together with dendritic cells (DCs) and monocytes make up the 

mononuclear phagocyte system. Although deriving from a common bone marrow 

progenitor, Mφ and DCs follow separate developmental pathways deriving from 

distinct precursors (Liu et al., 2009). However, the use of overlapping markers has 

created much confusion in distinguishing between Mφ and DCs. It has also been 

suggested it may be better to classify mononuclear phagocytes based on function 

(Mosser and Edwards, 2009). For Mφ, three functional subsets have been proposed, 

namely host defence, wound healing and immune regulatory, suggesting that by 

classifying Mφ accordingly to function rather than phenotype, it is possible to 

capture traits shared by more than one population (Mosser and Edwards, 2009). 
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1.1.9.1. Macrophage Ontogeny and Development 

1.1.9.1.1.       Ontogeny of mouse intestinal macrophages 

In adult mice, progenitors of Mφ and DCs arise from haematopoietic stem cells 

(HSCs) through the series of intermediate stages in the bone marrow (Figure 1.5). 

Each stage is accompanied by a stepwise lineage commitment (Liu et al., 2009). The 

first stage gives rise to the common myeloid progenitor (CMP) and the common 

lymphoid progenitor (CLP) (Figure 1.5). The common myeloid progenitors have the 

potential to generate all myeloid cells, including Mφ, DCs, granulocytes, neutrophils 

and eosinophils (Akashi et al., 2000). The CMPs differentiate into Mφ/DC 

progenitors (MDPs) or granulocyte/Mφ progenitors (GMPs). The GMPs maintain the 

potential to generate DCs, but preferentially differentiate into granulocytes and 

monocytes/Mφs (Auffray et al., 2009). The MDPs have a potential to generate DCs 

and monocytes/Mφs only (Fogg et al., 2006). These cells express CSF1R (CD115) 

and two subsets can be identified on the basis of Ly6C expression (Geissman et al., 

2003).The MDPs generate either CD11b+ Ly6Chi monocytes or DC committed 

progenitors (CDPs) or preDCs (Geissmann et al., 2010). The Ly6hi monocytes are 

short-lived and can mature to Ly6Clo monocytes, which circulate in the blood or give 

rise to tissue resident Mφs (Bain et al., 2013).  

The Ly6C+ monocytes are continuously released into the circulation. They express 

the chemokine receptor CCR2 and emigrate out of the bone marrow in response to 

monocyte chemotactic protein-1 (MCP-1), the CCR2 ligand (CCL2) (Serbina and 

Pamer, 2006) produced by endothelial cells, fibroblasts, monocytes and Mφ. 

Subsequently, circulating Ly6C+CCR2+ monocytes migrate into the mucosa in 

CCR2-dependent manner (Zigmond et al., 2012).  
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The additional recruitment of Ly6C+ monocytes into lamina propria may be also 

induced by CCL1, which is produced by activated T cells, in the healthy mucosa 

(Zigmond and Jung, 2013). Circulating Ly6C+ monocytes give rise to several 

CX3CR1+ (CD103-) mucosal cell populations in the presence of local macrophage 

colony stimulating factor (M-CSF) (Varol et al., 2007; Bogunovic et al., 2009). The 

absence of CD103, a DC-specific marker, and limited ability of these cells to migrate 

to the mesenteric lymph nodes (MLNs) (Shulz et al., 2009) and present antigen to 

naïve T cells, indicates that CX3CR1+ (CD103-) are not DCs, as previously assumed 

(Bain and Mowat, 2014). Constitutive expression of CX3CL1 (fractalkine), the 

CX3CR1 ligand, by gut epithelium plays a central role in the recruitment of 

CX3CR1+ Mφ to the subepithelial space and the formation of transendothelial 

processes by which the cells sample gut antigen (Niess et al., 2005; Vallon-Eberhard 

et al., 2006). The profound reduction of lamina propria Mφ in CX3CR1 knock out 

mice emphasises the importance of the constitutive recruitment of Ly6C+CX3CR1+ 

macrophages to the mucosa (Medina-Contreras et al., 2011). 

Despite the fact that terminally differentiated cells typically show diminished 

proliferative potential, there is evidence suggesting that tissue macrophages can 

divide in the peritoneum and tissues in response to IL-4 and in Th2 type 

inflammation, however it is not known if this happens in the gut (Chorro et al., 2009, 

Jenkins et al. 2011).  

The Ly6C+ monocytes give rise to both anti-inflammatory and inflammatory Mφ. As 

shown by Rivollier et al. (2012), in the steady-state, mouse Ly6Chi monocytes are 

precursors of CX3CR1hi (CD11c+) Mφ, which are poor at antigen presentation, and 

constitutively release the anti-inflammatory cytokine IL-10 (Denning et al., 2007). 

CX3CR1hi cells display long-term persistence in intestinal tissue, do not migrate to 
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MLNs, either in the steady-state or during inflammation (Shulz et al., 2009). During 

inflammation Ly6Chi monocytes differentiate into CX3CR1int CD103- cells that 

secrete proinflammatory cytokines, including IL-12 and IL-23, and over time these 

cells differentiate into CX3CR1intLy6Clo with DCs features (Zigmond et al., 2012; 

Rivollier et al., 2012). The expression of CCR7 on CX3CR1intLy6Clo cells, but not 

on CX3CR1hi Mφ enables these cells to migrate to MLNs and prime naïve T cells 

(Zigmond et al., 2012). 

Recently the concept that tissue Mφ derive from circulating monocytes that originate 

in the bone marrow has been re-evaluated (Wynn et al., 2013). Recent findings 

suggest that the origin of Mφ in the steady state can vary between different tissues 

(Ginhoux et al., 2014), In some tissues such as the liver and the brain, Mφ arise from 

embryonic precursors and are independent of blood monocytes (Shulz et al., 2012; 

Hashimoto et al., 2013, Yona et al., 2013). The fate-mapping studies in mice indicate 

that yolk sac precursors are the source of Mφ in the liver and the brain (Ginhoux et 

al., 2010), where cells differentiate into long-lived Kuffer cells and microglia cells, 

respectively, with minimal replenishment from circulating monocytes. Other cells, 

such as Langerhans cells originate from both the yolk sac and the fetal liver 

(Guilliams et al., 2013). However, intestinal mucosa Mφ are exception. Although 

seeded early in life by embryonic precursors colonic Mφ become completely 

depended on constant replenishment by classical Ly6Chi monocytes (Bain and 

Mowat, 2014). The Csf1r- and Flt3-driven fate mapping confirmed the presence of 

yolk sac-derived Mφ in the intestine of neonatal mice, but they are completely absent 

from the mucosa of adult mice (Bain and Mowat et al., 2014). 
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Figure 1.3: Ontogeny of macrophages and dendritic cells (Adapted from Geissmann et 

al., 2010) 

Hematopoietic stem cells (HSCs) give rise to lymphoid (LP) and myeloid (MP) committed precursors. 

MPs can differentiate into monocytes, macrophage and DC precursors (MDPs). MDPs are 

proliferating cells of phenotypic characteristics of myeloid precursors. MDPs give rise to many 

macrophages and DC subsets, but not granulocytes. From MDPs, two subsets of monocytes can be 

generated, Ly6C– and Ly6C+. After leaving the bone marrow, these cells can enter blood stream. 

CDPs can also give rise to pre-classical DCs (pre-cDCs) and plasmocytoid DCs (PDCs). Pre-cDCs 

after circulating in blood can enter lymphoid tissue and differentiate to CD8α– and CD8α+ cDCs. Pre-

cDCs can also travel to non-lymphoid tissue and there differentiate into CD103+ lamina propria DCs 

(lpDCs). Under homeostatic conditions, Ly-6C+ monocytes can become CX3CR1+ lpDCs in 

nonlymphoid tissues. During inflammation, Ly-6C+ monocytes give rise to monocyte-derived DCs, 

for example, tumor necrosis factor (TNF) and inducible nitric oxide synthase (iNOS)–producing 

dendritic cells (TipDCs), inflammatory macrophages, and may contribute to myeloid-derived 

suppressor cells (MDSCs) associated with tumors. HSCs can also leave their bone marrow niche 

(dashed arrow) and enter peripheral tissues, where they differentiate to myeloid cells during 

inflammation. It is unclear at this time whether LPs contribute substantially to PDCs and cDCs  
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1.1.9.1.2. Ontogeny of human intestinal macrophages 

In humans, circulating CD14+ blood monocytes (equivalent of murine Ly6Chi 

monocytes) are also the likely source of human gut Mφ (Ziegler-Heitbrock et al., 

2010). In the steady state, the chemokines transforming growth factor-β (TGF-β) and 

IL-8 are constitutively produced by gut epithelial cells and mast cells and then bind 

to and are released from the lamina propria extracellular matrix (stroma), allowing 

both bound and released forms of chemokines to recruit circulating blood TGF-βR+ 

and IL-8R+ monocytes (Smythies et al., 2005; 2006). These factors induce 

phenotypic and functional differentiation of newly recruited monocytes into non-

inflammatory intestinal Mφ (Smith, 2005). 

The fact that intestinal Mφ do not proliferate (Smythies et al., 2006) highlights the 

importance of the recruited blood monocytes to replace senescent and apoptotic 

lamina propria macrophages. After recruitment, monocytes take up residency in the 

lamina propria stroma, where they survive for weeks or months (Friedmann et al., 

2007; Dale et al., 2008). The unique microenvironment of the lamina propria plays a 

fundamental role in the differentation of newly recruited CD14+ blood monocytes 

into CD14- Mφ (Smith et al., 2001; Smythies 2005; 2006). In humans, CD14+ blood 

monocytes enter the intestinal lamina propria using CCR2, and lose CD14 as a 

consequence of differentiation into gut resident macrophages (Platt et al., 2010; Bain 

et al., 2013). 

In mucosal inflammation, the potent chemotactic ligands MCP-1/CCL2 and 

macrophage inflammatory protein-1β/chemokine (C-C motif) ligand 4 (MIP-

1β/CCL4) are up regulated in the lamina propria (Smith et al., 2011). These 

molecules are produced mainly by activated monocytes and macrophages, but also 
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by endothelial and epithelial cells (Yoshimura et al., 1989), and contribute to the 

accelerated recruitment of blood monocytes to the mucosa. 

In humans, blood monocytes can also be separate in two groups: classical monocytes 

(CD14hiCD16-) and non-classical (CD14+CD16+) (Auffray et al., 2007). The 

CD14hiCD16- monocytes share a phenotype similar to mouse inflammatory 

monocytes (Table 1.1) and CD14+CD16+ resembling mouse resident monocytes 

(Geissman et al., 2003). 

 
Subset Markers Chemokine 

receptors 
 
 

Function 

Mouse     
LY6Chi CD11b+CD115+LY6Chi CCR2hiCXCR1low  

 
Proinflammatory, 
antimicrobial role 

LY6Clow CD11b+CD115+LY6Clow CXCR1hiCCR2low  
 

Patrolling, early responses, 
tissue repair 

Human     
Classical CD14++CD16– CCR2hiCXCR1low  

 
Resemble LY6Chi monocytes  

Intermediate CD14++CD16+ CXCR1hiCCR2low  
 

Proinflammatory roles 

Non-classical CD14+CD16++ CXCR1hiCCR2low  
 

Patrolling, antiviral roles 

Table 1.1: Mouse and human monocyte subsets (Adapted from Shi and Pamer, 2011) 

In humans, the majority of blood monocytes are CD14hiCD16-, whereas in mice, 

both are represented equally (Shi and Pamer, 2011).  

 

1.1.9.1.3. Phenotype of mouse intestinal macrophages 

Mouse resident intestinal macrophages were initially defined by the expression of the 

macrophage-specific F4/80 antigen (Hume 1983; Pavli et al., 1990).  

Mouse resident intestinal macrophages are most accurately defined as CD45+ 

MHCII+F4/80+CD11b+CD11c+/-CD103+CX3CR1+ and mouse intestinal DCs as 

CD45+MHCII+F4/80-CD11b+/-CD11c+CD103+CX3CR1- (Denning et al., 2011). 

Mouse intestinal macrophages have been further separated into these that express 

high levels of CD11c and are present in the lamina propria and these that express low 
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or intermediate levels of CD11c and probably are serosal macrophages (Bogunovic 

et al., 2009). 

Two additional surface antigens used to identify mouse intestinal macrophages are 

CD64 and Siglec F. The CD64 is a high-affinity IgG receptor (FcγRI), constitutively 

expressed by CX3CR1+ intestinal macrophages in mice and has been used to further 

distinguish intestinal macrophages from DCs (Gautier et al., 2012). Due to overlap in 

expression of CD11b and F4/80 by mouse intestinal macrophages and eosinophils 

(Gautier et al., 2012), additional markers are used to distinguish these cells. These 

markers include MHCII and Siglec F, a sialic acid-binding lectin.  

 

1.1.9.1.4. Phenotype of human intestinal macrophages 

Human intestinal macrophages, similarly to mouse, express CD45 and MHCII 

(HLA-DR). However, few, if any, of other cells surface markers present on mouse 

mucosal macrophages can be extrapolated to human (Bain and Mowat, 2014). The 

surface antigen F4/80 defines intestinal macrophages in mice but is not expressed by 

human lamina propria macrophages (Bain and Mowat, 2014). Also, CX3CR1, which 

is expressed by mouse macrophages is absent on humans (Bain and Mowat, 2014).  

In humans, the markers HLA-DR, CD13 and CD33 can be used to identify human 

intestinal macrophages (Smith et al., 1997; Smith et al., 2001; Smythies et al., 2006; 

2006; Kamada et al., 2008, Mowat and Bain, 2011). Human gut macrophages do not 

express the dendritic cell markers CD21, CD34, CD83, CD123 (Smith et al., 2001). 

Additionally, CD68, CD1 can be used to identify intestinal macrophages in situ 

(Smith et al., 2001; Weber et al., 2009). Importantly, isolated human intestinal 

macrophages do not express CD11a, CD11b, CD11c, CD14, CD18, CD89, FcγRI-III 
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(CD64, CD32, CD16), whereas these receptors are strongly expressed on human 

blood monocytes (Smith et al., 2001; 2011; Smythies et al., 2005).  

 

1.1.9.2. Function of intestinal macrophages 

The intestine contains the largest reservoir of macrophages in the body (Lee et al., 

1984; Smith et al., 2011) composed of terminally differentiated, non-migratory 

phagocytic cells (Mosser and Edwards, 2008). Intestinal macrophages play an active 

role in maintaining the integrity of the epithelial barrier through the production of 

prostaglandin E2 (PGE2), which promote the proliferation and survival of epithelial 

progenitors in intestinal crypts (Pull et al., 2005). 

Strategically positioned in the subepithelial lamina propria, these cells are the first 

phagocytic cells of the innate immune system to interact with microorganisms and 

microbial products that have breached the epithelium (Smith et al., 2011). 

Morphological analysis of intestinal macrophages showed that intestinal 

macrophages have pseudopod projections from the cell membrane; curved in-like 

nucleus, phagocytic vacuoles and secondary lysosomes (Smith et al., 2001). 

Under homeostatic conditions, mucosal macrophages are involved in recognition and 

the clearance of antigen, but they do so without triggering strong proinflammatory 

responses. Unlike macrophages from other tissues, resident mucosal macrophages in 

the normal colon are unable to mediate strong proinflammatory responses, and they 

do not respond to stimuli like TLR ligands by producing increased proinflammatory 

cytokines or chemokines such as TNF-α, IL-1, IL-6, IL-12, IL-23 and CXCL10 (IP-

10) (Mowat et al., 2011).  
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Intestinal macrophages also lack a number of cell surface costimulatory molecules 

such as CD40, CD80 and CD86 (Rogler et al., 1998; Carlsen et al., 2006; Smith et 

al., 2011) and lack the Fc receptors for immunoglobulin G (CD16, CD32, CD64) 

(Smith et al., 2001; 2011) and the complement receptors CD3 (CD11b/CD18) and 

CR4 (CD11c/CD18) (Sheikh and Plevy, 2010).  

Another specific characteristic of human intestinal macrophages is lack of responses 

through TLR stimulation, which is due to receptor downregulation (e.g., TLR2) or 

due to impaired receptor down stream signalling. This aspect of inflammatory anergy 

will be discussed in section 1.2. In contrast, TLR3 and TLR5-9 are retained by the 

macrophages, or are expressed at even higher levels than in blood monocytes 

(Smythies et al., 2010; Smith et al., 2011). 

Unresponsiveness to LPS activation is not due to TLR downregulation, since TLR4 

mRNA and protein can be detected in resident mucosal macrophages (Smith et al., 

2001). However, in the normal gut, intestinal macrophages lack CD14, a high 

affinity receptor for complexes of LPS and LPS-binding protein (Smith et al., 1997) 

or they do express CD14 but at very low level (Rogler et al., 1998; Smythies et al., 

2010). They also lack CD89, a transmembrane glycoprotein receptor for monomeric 

and polymeric IgA1 and IgA2 (FcαR) (Morton et al., 1996; Smith et al., 2001). The 

absence of CD89 on lamina propria macrophages, downregulates IgA-mediated 

phagocytosis which normally induce the release of proinflammatory mediators 

including reactive oxygen intermediates (Gorter et al., 1987; Smith et al., 2001). 

The inflammatory responses to microbial products are also amplified by a pathway 

mediated by triggering receptor expressed on myeloid cell (TREM)-1 (Bouchon et 

al., 2001; Colonna et al., 2003). Normally, TREM-1 is an activating receptor highly 

expressed on neutrophils and monocytes that infiltrate human tissue (Bouchon et al., 
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2001) and also on CD11b+ myeloid cells (Cheng et al., 2011). However, in the 

normal intestine, as oppose to their monocyte precursors, human macrophages down-

regulate TREM-1 (Schenk et al., 2005). Although the ligand is unknown, it has been 

shown that TREM-1 activates DAP12-signalling pathways, which amplify 

inflammatory responses (Lanier et al, 1998; Bouchon et al., 2000). Using murine 

models of sepsis, it was shown that the blockage of TREM-1 protects mice against 

LPS-activated shock and microbial sepsis caused by E.coli (Bouchon et al., 2001). 

 It is thought that the absence of these receptors and lack of proinflammatory 

mediator production contributes to intestinal immune homeostasis by preventing 

excessive responses to PAMPS of the microbial flora (Zhang and Mosser, 2008). 

Normally, a downstream signalling of TLRs stimulation activates the master 

transcription factor NF-κB, which is activated through phosphorylation and 

degradation of IκBα, therefore translocating NF-κBp65 subunit from the cytosol to 

the nucleus, where it activates the proinflammatory responses. However, in the 

steady state in intestinal macrophages, NF-κB remains in the cytosol, due to reduced 

ability to phosphorylate IκBα (Smythies et al., 2010). In contrast to macrophages in 

other tissue, human intestinal macrophages also downregulate the expression of 

adapter protein MyD88 and TRIF, which together mediate TLR MyD88-dependent 

and –independent NF-κB signalling, do not phosphorylate NF-κBp65 or Smad-

induced IκBα, and do not translocate NF-κB into nucleus (Smythies et al., 2010).  

Intestinal macrophages are highly phagocytic, and express the scavenger receptor 

CD36, which facilitates uptake of apoptotic cells (Smythies et al., 2005). 

Phagocytosis occurs independently of immune cell signalling, thus it results in little 

or no inflammatory response (Smythies et al., 2011). 
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Human gut macrophages are also highly bacteriocidal, suggesting that these cells are 

programmed to kill bacteria without a proinflammatory response (Smith et al., 2011).  

Table 1.2: represents the major phenotypic differences between intestinal 

macrophages intestine and their precursors, blood monocytes. 

Cell 
population 

HLA-DR 
CD13 

CD36 

TGFβRI/II CD14 

CD25 

CD89 
CD16 

CD80 

CD86 
CD40 

C5aR 
FMLPR 

TREM-1 CCR5; 
CXCR4 

Monocytes + + + + + + + + 
Intestinal 

Mo 
+ + - - - - - - 

Cell 
population 

Phagocytosis Killing Bacterial activity Co-
stimulat

ion 

Proinflammatory cytokines 

 

Monocytes + + + + + 
Intestinal 

Mo + + + - - 

 

Table 1.2: Phenotypic and functional differences between intestinal macrophages and 

blood monocytes (Adapted from Schenk et al., 2007) 

 

 High expression of MHCII on intestinal Mφ, suggests that these cells may also serve 

as antigen-presenting cells, however, as intestinal Mφ do not migrate to the MLNs 

(Schulz et al., 2009), and since the intestinal mucosa is free from naïve CD4+ T cells 

(MacDonald et al., 1998), it is unlikely that they are involved in the initial priming of 

naïve T cells (Bain and Mowat, 2014). However, intestinal Mφ could be involved in 

establishment of lymphocytes that have returned to the mucosa after being first 

primed in the GALT (Bain and Mowat, 2014). Hadis and colleagues (2011) showed 

that intestinal Mφ facilitate the secondary expansion and maintenance of antigen-

specific FoxP3+ Treg through IL-10 production. As shown in mice models of colitis 

(Murai et al., 2009), deletion of the IL-10R drives the loss of FoxP3 expression. The 

finding that intestinal Mφ may contribute to the generation of homeostatic Treg is 
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also supported by a fact that mice lacking TRAF6 expression in CD11c+ 

mononuclear phagocytes develop a spontaneous Th2 cell-mediated enteritis (Bain 

and Mowat, 2014). Intestinal Mφ may also maintain other T cell populations in the 

mucosa (Bain and Mowat, 2014), through the production of IL1β in response to TLR 

stimulation, which may be relatively preserved in intestinal Mφ and therefore 

supports the development of Th17 cells in the steady state (Shaw et al., 2012). 

Recent studies also proposed that mucosal Mφ indirectly contribute to T-cell priming 

through connexin-43-mediated transfer of soluble antigen obtained from the lumen to 

neighbouring CD103+ DCs (Mazzini et al., 2014). It still remains unknown how Mφ 

in the lamina propria acquire luminal antigen. It may happen through extension of 

transepithelial dendrites. Originally, this phenomenon was assigned to DCs on the 

basis of MHCII and CD11c expression (Niess et al., 2005; Chieppa et al., 2006). 

However, it is now known that transepithelial dendrites originate from CX3CR1+ 

Mφ. The transepithelial dendrites formation requires CX3CR1 expression, since it 

has been shown that induction of oral tolerance to protein antigen is impaired in 

CX3CR1 deficient mice (Hadis et al., 2011; Mazzini et al., 2014).  
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 Human Mouse 

	
   
Intestinal 

Macrophages 
Monocytes 

 
Intestinal 

Macrophages 
Monocytes 

 
 Markers      
CD13 +++ +++ ND ND 
HLA-DR +++ +++ +++ - 
CD11c - ++ ++ - 
CD11b - +++ +++ ++ 
CD14 - +++ + ++ 
CD16 - + -/+ -/+ 
CD32 - ++ -/+ -/+ 
CD64 + ++ ++ -/+ 
CXCR1 - -/+ +++ + 
TREM-1 - - - -/+ 
F4/80 - - +++ ++ 
Ly6C - - - -/+ 
TLR1 -/+ -/+ + + 
TLR2 - -/+ + + 
TLR4 -/+ + + + 
TLR3, 5-9 +++ ++ + + 
      

 
Table 1.3: Phenotype of normal human and mouse intestinal macrophages and 
blood monocytes  
 “-“ – Absent; “+/-“ – variable but low; “+” – positive but low; “++”– moderate; “+++”– 
high. Data obtained from Smythies et al., 2005; 2006; 2010; Smith et al., 2001; De Calisto et 
al., 2012; Mowat and Bain, 2011; Bain and Mowat, 2011; Varol et al., 2009; Weber et al., 
2009; Geissmann et al., 2003; Ancuta et al., 2003; Sunderkotter et al., 2004, Denning et al., 
2007. 
 

 

1.1.9.3. Function of Dendritic cells (DCs) 

Just like Mφ, DCs greatly contribute to homeostatic immune responses in the 

intestine. Depending on signals received from the local environment, DCs function is 

to ensure that pathological immune responses to harmless antigens do not develop. 

However, at the same time, DCs are involved in the initation of active immune 

responses in the steady state (Coombes and Powrie, 2008). Macrophages and DCs 

share many functional features (Bain and Mowat, 2014). However, there are certain 

functional aspects unique to DCs. 
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The DCs are important players in initiating and polarising intestinal adaptive 

immune responses (Farache et al., 2013). These cells are found deep inside the 

lamina propria, in association with villous epithelium, close to the lumen, or in the 

GALT (Kelsall, 2008; Rescigno and Di Sabatino, 2009).  

In mice, intestinal DCs are lineage negative and express the integrins CD11c (αX) 

and CD103 (αE), and have further been subdivided accordingly to expression of 

CDC11b (αM) (Jang et al., 2006; Schulz et al., 2009; Varol et al., 2009). In the 

colonic mucosa and the GALT, CD103+CD11b- DCs make up the majority of DCs 

(Denning et al., 2011; Cerovic et al., 2014). In the small intestine, a population of 

DCs expressing CD103+ and CD11b+ are present in the cores of the villi, deep in the 

lamina propria (Shultz et al., 2009; Farache et al., 2013). Other studies have also 

reported the presence of these cells in the intestinal epithelium (Edele et al., 2008). 

The epithelial location could explain why these cells express CD103, an αE integrin 

which functions as a receptor for epithelial E-cadherin, and is upregulated by TGF-β 

(Edele et al., 2008). Farache and colleagues (2013) have shown in mice that at steady 

state, a small population of CD103+ DCs migrate between the lamina propria and the 

intraepithelial compartment of the small intestine. Additionally, they showed that 

after entering the epithelium, CD103+CD11b+ DCs migrate above the basement 

membrane and extend thick finger-like projections (dendritis), which can capture 

luminal Salmonella. However, not all mucosal DCs express CD103 and bone fide 

CD103- DCs subset has recently been identified (Cerovic et al., 2013; Scott et al., 

2015). The CD103- DCs constitutively migrate to MLN, and are highly effcient at 

presenting antigen to naïve T cells and induce CCR9 expression on dividing T cells 

(Cerovic et al., 2013; Scott et al., 2015). Additionally, CD103- DCs were shown to 

express CCR2, constitutively express IL-12/Il-23p40 and are involved in priming 
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mucosal Th17 responses (Scott et al., 2015). After taking up antigens, DCs migrate 

to draining MLNs through CCR7/CCL21 interaction (Jang et al., 2006), to present 

antigen from the intestinal lumen on their surface via major histocompatibility 

complex molecules (MHC) to naïve T lymphocytes, hence driving their proliferation 

and polarisation into antigen specific effector or regulatory T cell (Bogunovic et al., 

2009; Schulz et al., 2009). 

The homeostatic state that limits proinflammatory potential of DCs is maintained by 

signals from the epithelium and stroma such as thymic stromal lymphopoietin 

(TSLP) and prostaglandin E2 (PGE2) (Hammerschmidt et al., 2008; Stock et al., 

2011). A particular property of DCs is their ability to induce Foxp3+ TReg cells, 

through production of TGF-β and retinoic acid (RA) (Coombes et al., 2007). Spadoni 

and colleagues (2012) have shown that intestinal CD103+ DCs can also produce 

TSLP, which limits Th17 responses and promotes TReg cells differentiation. 

Moreover, intestinal CD103+ DCs shape the homing potential of recently activated T 

and B cells by induction of molecules CCR9 and α4β7 integrin in a process also 

dependent on retinoic acid (RA) signalling (Stagg et al., 2002; Johansson-Lindbom 

et al., 2005; Hall et al., 2011). For example, T cells primed with antigen derived from 

MLNs or PP DCs, but not with DCs from the spleen or peritheral lymph nodes, 

express CCR9, the receptor for CCL25, a chemokine constitutively produced by 

epithelial cells of the small intestine (Johanssen-Lindbom et al., 2005). Additionally, 

these T cells also express high level of α4β7, the integrin that mediates localisation 

to the GI tract (DeNucci et al., 2010) and interacts with MAdCAM-1 (discussed 

more in section 1.1.5).  
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Many aspects of homeostatic potential of intestinal DCs, mentioned above is driven 

by the ability of these cells to produce retinoic acid (RA) via enhanced expression of 

retinal dehydrogenase aldh1a2 (Denning et al., 2007; Coombes et al., 2007; Sun et 

al., 2007; Hammerschmidt et al., 2011). The beneficial role of retinoic acid is 

supported by studies, where vitamin A deficiency shifts the balance between Th1 and 

Th2 responses in favour of Th1 (Stephenesen, 2001). Additionally, RA enhances the 

TGF-β-driven generation of Foxp3+ Treg (Denning et al., 2007; Sun et al., 2007; 

Mucida et al., 2007), as was demonstarted by retinoic acid receptor (RAR) antagonist 

studies (Sun et al., 2007; Mucida et al., 2007). It has also been shown that RA leads 

to a reduction in IFN-γ production by T cells (Annacker et al., 2005), hence may be 

implemented in establishing the balance between IFN-γ and TGF-β.  

Although, CD103+ DCs are tolerogenic under intestinal homeostatic conditions, they 

may switch to become potent activators of T cells in inflammatory setting. These 

cells also express higher levels of co-stimulatory molecules (e.g CD70, CD80, and 

CD86), produce higher amounts of tumor necrosis factor (TNF)–α, indicating their 

role in activation of effector T cells (Coombes et al., 2008; Rescigno and Sabatino, 

2009). The DCs are involved in T-helper (Th)1 and Th17 T cell induction via IL-

12/IL-23 production. CD103+ DCs with proinflammatory potential have been shown 

to accumulate in MLNs in experimental colitis (Laffont et al., 2010) and rather than 

inducing Foxp3+ TReg cells differentiation, they promote Th1 responses. 

1.2.  Endotoxin tolerance 

Activation of the TLR pathway in monocytes/macrophages drives strong 

inflammatory responses, hence the process needs to be tightly regulated, as 

uncontrolled inflammation will cause tissue damage. One mechanism for host 
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protection against uncontrolled immune responses is the phenomenon of endotoxin 

tolerance (Biswas et al, 2007). The establishment of endotoxin tolerance has been 

observed in vitro as well in vivo in animal models and in humans (Medvedev et al., 

2000; Dobrovolskaia et al., 2003; del Fresco et al., 2009). 

Endotoxin tolerance is a state whereby pre-exposure to a low concentration of LPS 

induces a state of hyporesponsiveness to subsequent LPS stimulation (Biswas et al., 

2009). The establishment of the tolerance is a result of a complex interplay at the 

level of TLR signal transduction and also involves changes in transcriptional targets 

of two distinct pathways involving Myd88 and Trif adapter proteins (Akida and 

Takeda, 2004). 

1.2.1.  TLR4 signalling pathway in recognition of microbial components 

Toll- like receptors (TLRs) play a central role in the recognition of and response to 

microbial pathogens in the hosts (Akira and Takeda, 2004). Ten functional TLRs 

have been identified in humans and twelve in mice, with TLR1-9 being conserved in 

both species (Figure 1.8) (Shinya et al., 2012). 
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Figure 1.4: Schematic diagram of TLR4 signalling and ligand specificities of TLRs 

(Adapted from Silverman and Fitzgerald, 2004). 

 

Toll- like receptor 4 (TLR4) is the major PRR involved in the detection of Gram-

negative bacteria by recognising LPS (Biswas et al., 2009). LPS recognition by 

TLR4 requires the adaptor proteins MD-2 and CD14. LPS first binds to serum LPS-

binding protein, and the complex is next recognised by CD14/TLR4. Activation of 

the downstream signalling pathway of TLR4 results in production of 

cytokines/chemokines and type I interferon through two independent signalling 

pathways: MyD88-dependent and MyD88-independent, respectively (Figure 1.5) 

(Akira et al., 2006). Upon a ligand binding, the cytoplasmic domain of TLR4 

associates with four toll-interleukin 1 receptor (IL-1R) domain (TIR domain)-

containing adaptor proteins: MyD88, Mal (TIRAP), TIR-domain-containing adapter-

inducing interferon-β (Trif) (TICAM-1) and TRIF-related adaptor molecule (TRAM) 

(Vogel et al., 2003). MyD88 and MAL are needed for the initial rapid activation of 
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transcription factor activation after LPS binding, whereas Trif and TRAM activate a 

second alternative pathway with much slower kinetics (Silverman and Fitzgerald, 

2004). Additionally, Trif-TRAM is required for activation of IRF3 (a transcription 

factor essential for type I interferon induction). Both pathways lead to TRAF6 

activation, with MyD88-MAL acting via IRAK kinases, and Trif-TRAM activation 

receptor-interacting protein 1 (RIP1) (Meylan et al., 2005). Subsequent activation of 

TRAF6 mediates the recruitment of TAK1, which additionally interacts with TAB2 

and TAB3. It is known that TAK1-TAB complex associates with ubiquinated 

TRAF6 to activate TAK1 kinase, which next activates IKK complex and JNK kinase 

(MKKs) (Sun and Chen, 2004). 

Consequently, a downstream signalling of TLRs stimulation activates the master 

transcription factor NF-κB, which is activated through phosphorylation and 

degradation of IκBα, therefore translocating NF-κB from the cytosol to the nucleus, 

where it activates the proinflammatory responses.  
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Figure 1.5: Negative regulation of TLR4 signalling pathways 

The negative regulators of TLR4 signalling include IRAK-M that inhibits dissociation of IRAK-

1/IRAK-4 complex from the receptor. MyD88s blocks association of IRAK-4 with MyD88. SOCS1 is 

associated with IRAK-1 and inhibits its activity. TRIAD3A induces ubiquitination-mediated 

degradation of TLR4. TIR domain-containing receptors, SIGIRR and T1/ST2 were shown to have a 

negative modulation on TLR signalling. 

 

During the establishment of endotoxin tolerance, there is reduced surface expression 

of TLR4 and MD2 (Li et al., 2000; Siedlar et al., 2004). Additionally, TLR signalling 

pathways are negatively regulated by inhibitory molecules, for example IRAK-M (a 

member of IRAK family of serine/theonine kinases) (Figure 1.5) (Kabayashi et al., 

2002). Based on studies, in mice it is known that IRAK-M prevents dissociation of 

IRAK-1 and IRAK-4 (positive regulators of TLR signalling) from MyD88 and 

formation of IRAK-TRAF6 complexes (Figure 1.5) (Kabayashi et al., 2002; Burns et 

al., 2003). The negative regulation of TLR signalling pathway also involves 
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overexpression of MyD88s, a spliced variant of MyD88 (Burns et al., 2003). 

MyD88s is induced after LPS stimulation, impairing LPS-induced NF-κβ activation 

by inhibiting IRAK-4- mediated IRAK-1 phosphorylation (Burns et al., 2003). 

Other molecules, such as SOCS1, SIGIRR and T1/ST2 have also been shown to be 

negative regulators of TLR activation. SOCS1-deficient mice also showed defective 

induction of LPS tolerance (Nakawaga et al., 2002; Liew et al., 2005). Membrane-

bound proteins harbouring the TIR domain, such as SIGRR (single immunoglobulin 

IL-1 receptor-related molecule) and T1/ST2, have also been shown to be involved in 

negative regulation, since SIGRR- and T1/ST2-deficient mice have been reported to 

have elevated LPS-induced inflammatory responses (Wald et al., 2003; Brint et al., 

2004). Toll-interacting protein (Tollip) represents another adaptor protein, which 

maintains immune cells in an inactive state in the absence of infection. Tollip was 

found to associate with the cytoplasmic TIR domain of IL-1 receptors (IL-1Rs) after 

IL-1 stimulation. Within resting cells, Tollip forms a complex with IRAK and 

inhibits IL-1-induced signalling by blocking IRAK phosphorylation (Burns et al., 

2000). Due to the significant homology in the intracellular portion of TLRs, IL-1R, 

and IL-18R, Tollip might also inhibit TLR-mediated signalling by interacting with 

TLRs through the TIR domain (Zhang and Mosser, 2008). 

 

1.3. Pathogenesis of Inflammatory Bowel disease (IBD) 

1.3.1. General information about IBD 

Inflammatory bowel disease (IBD) is a polygenic disease involving complex 

interactions between genes and the environment. IBD is chronic, relapsing and 

remitting inflammation of gastrointestinal tract (Sheikh and Plevy, 2010; Khor et al., 

2011; Lees et al., 2011), also associated with increased risk of intestinal cancer. IBD 
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is most commonly diagnosed between the third and fourth decades of life, can occur 

at any age, but often begins in younger people aged 10-40.  

Approximately 20% of all patients with IBD develop symptoms during childhood 

(Rogers, Clark, Kirsner, 1971; Kelsen and Baldassano, 2008), with about 5% being 

diagnosed before 10 years of age (Mir-Madjlessi et al., 1986). In addition to the 

common GI symptoms, children with IBD often experience growth failure, 

malnutrition, puberty delay and bone demineralisation (Lahad and Weiss, 2015). 

There are two main types of IBD, namely Crohn’s disease (CD) and ulcerative colitis 

(UC). Both diseases are characterised by damage to the epithelium and mucosa due 

to an imbalance between pro- and anti-inflammatory processes (Reinecker et al., 

1993; Reimund et al., 1996). 

Crohn’s disease is characterised by a mononuclear cell infiltrate, granulomas, 

thickened submucosa, patchy, transmural inflammation (Khor et al., 2011) that can 

occur anywhere in the digestive tract, however it usually affects terminal ileum and 

the beginning of the colon (Podolsky et al., 2002; Abraham et al., 2009).  

The symptoms of CD include recurrent abdominal pain and diarrhea. The majority of 

patients with CD will develop complications including strictures, penetration of the 

bowel wall with obstruction, fistulas and abscess (Louis et al., 2001; Cosnes et al., 

2002). 

In contrast, UC is characterised by superficial inflammation of mucosa and 

submucosa, affecting only colon, usually around rectum. In UC, the infiltrate is 

dominated by neutrophils with crypt abscesses, loss of goblet cells and epithelial 

damage (Abraham et al., 2009). 

Systemic symptoms are also common in IBD and include weight loss, vomiting and 

nausea, fever and sweats.  
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The prevalence of IBD is around 1 in 1000 in Europe, with higher prevalence and 

incidence rate observed in westernised countries (Loftus, 2004). In the last 50 years, 

the prevalence of IBD, particularly Crohn’s disease, has increased dramatically, 

especially in children and adolescents, indicating that environmental factors play an 

important role (Xavier et al., 2007).  

A substantial amount of research has identified the genetic and environmental 

factors, which may predispose and contribute to the onset of IBD. Appendectomy 

before the age of 20, and smoking strongly protect against UC (Calkins, 1989), 

whereas smoking is a risk factor for CD (Odes et al., 2001). The reasons for these 

powerful effects are unknown (MacDonald et al., 2011). 

The etiology of IBD is unknown, however it is believed that IBD is caused by an 

abnormal immune response against the intestine microflora, in genetically 

susceptible individuals. Both, dysregulated innate and adaptive immune pathways 

contribute to the uncontrolled inflammatory responses in IBD (Geremia et al., 2014). 

 

1.3.2. Genetics and IBD 

Genetics is a strong factor in IBD. Within the relatives of patients with CD or UC, 

the odds ratio to develop IBD is in the range of 15-42 over the normal population for 

CD, and 7-17 for UC (Spehlmann et al., 2008). It has been shown that monozygotic 

twins exhibit phenotypic concordance in 50-70% of CD patients, and in 10-20% of 

UC (Halme et al., 2006). Additionally, the relative risk factor of developing CD is 

800-fold greater than in the general population (Halme et al., 2006). The 

epidemiologic studies of twin pairs allow the evaluation of heritable factors to IBD, 

discriminating between the genetic and environmental factors to phenotype variance 

(Thompson et al., 1996; Orholm et al., 2000; Halfvarson et al., 2003; Spehlmann et 



 62	
  

al., 2008). Based on these data, a stronger genetic influence was proposed in CD than 

in UC (Spehlmann et al., 2008), additionally emphasising the role of environmental 

trigger factors in UC than in CD (Khor et al., 2011). 

Large number of IBD risk alleles is associated with either mucosal barrier function 

or innate and adaptive responses to microbial organisms, highlighting the fact that 

mucosal immune responses to commensal gut bacteria underlie the IBD pathogenesis 

(Khor et al., 2011; Jostins et al., 2012).  

The majority (110 IBD loci) of susceptibility genes are associated with both, Crohn’s 

disease and ulcerative colitis, indicating that pathogenesis of IBD derives from 

shared genetic mechanisms. Of the remaining loci, 30 are classified as Crohn’s-

disease-specific and 23 as ulcerative-colitis-specific (Jostins et al., 2012). 

GWAS studies enabled the identification of pathways previously known through 

immunologic studies (e.g., IL-23 and T helper (Th) 17 cells) (Duerr et al., 2006; 

Kaser et al., 2010), but have also discovered completely new pathways such as 

autophagy (Hampe et al., 2007). The magnitude of risk associated with each 

polymorphism is very small, but provides a potential insight into the particular 

pathways that may be involved in the pathogenesis of IBD. 

Early studies identified mutations in nucleotide oligomerisation domain-2 (NOD2), 

also designated as CARD15, as the first strong genetic association between an 

individual gene and Crohn’s disease, but not UC (Ogura et al., 2001; Hampe et al., 

2001). Three known NOD2 mutations are associated with susceptibility to ileal 

location and structuring disease (Economou et al., 2004) with an odds ratio of 2.4 

and 17 in heterozygotes and homozygotes, respectively, representing the strongest 

link to IBD to date (Economou et al., 2004). Additionally, these three risk alleles 

have demonstrated a remarkable amount of heterogeneity across ethnicities and 
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geographic localisation. As an example, NOD2 risk factors are more commonly 

associated with individuals of European ancestors, while in African Americans are 

less common (Shivananda et al., 1996; Kugathasan et al., 2005). Although, it still 

remains to be determined, most probably NOD2 risk alleles confer loss of function 

mutation (Abraham and Cho, 2006). 

NOD2 is expressed in myeloid cells, IECs, Paneth cells and also T cells and act as a 

receptor for muramyl dipeptide (MDP), a component of peptidoglycan leading to 

NF-ΚB activation and consequent production of proinflammatory cytokines 

(Gutierrez et al., 2002; Hisamatsu et al., 2003; Shaw et al., 2009). The Nod2 

mutation in immune cells, such as dendritic cells, macrophages results in impaired 

ability to process bacterial antigen and to present bacteria-derived peptides (Conney 

et al., 2010). Additionally, murine model studies have shown that Nod2-/- mice 

exhibit decreased α-defensin expression in Paneth cells and increased overall 

bacterial load in the intestinal lumen (Petnicki-Ocwieja et al., 2009). 

Another gene that has been strongly associated with CD is ATG16L1, which encodes 

the protein component of the autophagy complex (Levine and Deretic, 2007). 

A process of autophagy is a lysosomal degradation pathway of cell components for 

subsequent turnover, and by which, internalised bacteria are degraded (Levine and 

Kroemer, 2008). Variants in ATG16L1 are implicated in CD via dysregulation of 

Paneth cell function, as with impaired autophagy the degradation of accumulated 

long-lived proteins is also altered (Cadwell et al., 2008). This may lead to increased 

bacterial translocation due to reduced production of anti-microbial peptides. 

Moreover, it has been shown that activation of NOD2 recruits ATG16L1 protein to 

the cell membrane to facilitate the internalisation of bacteria (Travassos et al., 2010). 

Stimulation of Atg16l-/- macrophages with LPS results in high production of IL-1β 
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and IL-18 via TRIF dependent activation of caspase-1, showing that ATG16L1 

regulate LPS-induced proinflammatory cytokine production (Saitoh et al., 2008).  

Interestingly, NOD2 is also involved in the autophagic responses against invading 

bacteria, as it induces the recruitment of ATG16L1 protein to the entry site of 

bacteria at the plasma membrane (Travassos et al., 2009). Thus, these two genetic 

risk factors seem to function in a common pathway regulating inflammatory 

responses in epithelium and myeloid cells. 

A 20-kb deletion polymorphism upstream of IRGM has also been identified as CD 

risk variant involved in autophagy (Parkes et al., 2007; McCarroll et al., 2008). The 

IRGM is a member of IFN-γ-induced p47 immunity-related GTPase family (Feng et 

al., 2009). The murine model studies on its mouse homolog, LRG-47 revealed that 

IRGM controls pathogen invasion via a process of autophagy, since Irgm1-/- mice 

showed higher sensibility to Toxoplasma gondii, Listeria monocytogenes and 

Mycobacterium tuberclosis infection due to decreased bacterial killing in Irgm1-/- 

macrophages (MacMicking et al., 2003). 

In contrast, UC-specific genes link to intestinal epithelial cell (IEC) function, where 

two genes in particular are strongly predisposing factors in UC, namely ECM1 

(Fisher et al., 2008) and variants in the region encoding HNF4A (Barrett et al., 2008).  

The ECM1 is thought to be involved in the maintenance of the epithelial barrier of 

the gut, through the interaction with matrix metalloproteinase 9 (known as MMP9) 

(Chan et al., 2007), which is known to remodel extracellular matrix and tight 

junctions in response to injury, and immunologically by modulating Th2 cells 

migration (Li et al., 2011). The HNF4A encodes the transcription factor called 

hepatocytes nuclear factor 4, which regulates the expression of tight junction proteins 

in the intestinal epithelium (Battle et al., 2006). 
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GWASs have identified several IBD susceptibility loci that contain genes encoding 

proteins involved in cytokine and chemokine receptor signalling, and T helper (TH) 

responses Anderson et al., 2009), for example signal transducer and activator of 

transcription 1 (STAT1), STAT3, STAT4, CC-chemokine receptor 6 (CCR6), CC-

chemokine ligand 2 (CCL2), CCL13, IL-12 receptor (IL-12R), IL-23R and Janus 

kinase 2 (JAK2) (Neurath et al., 2014). Further studies have identified IBD risk loci 

that contain genes that encode cytokines (for example, IL-2, IL-21, interferon-γ 

(IFN-γ), IL-10 and IL-27)), hence highlighting a potentially major role for these 

cytokines in disease pathogenesis (Jostins et al., 2012). In particular, it has been 

suggested that loss of function mutations in the genes encoding IL10 and IL10R are 

associated with a very early onset form of IBD (Kotlarz et al., 2012). All together, 

these observations confirmed that cytokines have a fundamental role in controlling 

mucosal inflammation in IBD. Studies in mouse models of IBD have shown that the 

modulation of cytokine function can be used for therapy and have identified new 

cytokines as potential therapeutic targets. 

IBD risk loci vary remarkably between different populations (Kaser et al., 2010). For 

example, NOD2 and other autophagy genes are the major risk loci in the Caucasian 

population, but do not represent susceptibility factors in the Asian population (Ng et 

al., 2012). Hence, despite common genetic basis between CD and UC, substantial 

genetic heterogeneity exists within and between populations (Zhernakova et al., 

2009). 

Overall, variants of genes associated with innate immunity (e.g. NOD2, NCX5, 

IRGM, ATG16L1) are seen in Crohn’s disease, suggesting that defects in the ability 

to handle gut bacterial products are integral to the development of this disease (Khor 

et al., 2011).  
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However, despite a huge amount of investment it is clear that the genetic variants 

only account for approximately 14 % of CD and 8 % of UC cases, respectively 

(Jostins et al., 2012). 

 

1.3.3. Intestinal Macrophages in Inflammation  

The phenotype and consequently the behaviour of intestinal macrophages change 

dramatically during intestinal inflammation. As opposed to the homeostatic state, in 

IBD, increased influx of CD14+ monocytes is observed (Bain et al., 2013). During 

the state of inflammation, CD14+ blood monocytes rather than differentiating into 

resident anti-inflammatory macrophages, are a source of macrophages with pro-

inflammatory potential (Kamada et al., 2008). The inflammatory state of the 

intestinal mucosa defines, if CD14+ blood monocytes will become anti- or pro-

inflammatory macrophages (Rivollier et al., 2012). This is supported by a fact that 

increased proportion of intestinal macrophages expressing CD14 is detected in IBD 

mucosa (Kamada et al., 2008; Thiesen et al., 2014). 

As opposed to normal gut macrophages, IBD macrophages express T cell co-

stimulatory molecules, such as CD40, CD80, CD86, but also Toll-like receptors 

TLR2, TLR4, and CD89 or TREM-1 (Schenk et al., 2007; Smith et al., 2011). 

Therefore, CD14+ macrophages infiltrating the mucosa during IBD, upon activation 

with commensal bacteria, secrete large amount of proinflammatory mediators such 

as IL-1β, IL-6, Il-8, TNFα, IL-12/IL-23p40, nitric oxide, reactive oxygen 

intermediates, metalloproteases but also monocytes chemotactic protein-1 (MCP-1), 

which additionally facilitates the recruitment of CD14+ monocytes to the inflamed 

mucosa (Mahida et al., 1989; Rugtveit et al., 1995; 1997; Rogler et al., 1998; 

Kamada et al., 2008; Ogino et al., 2013). Monocytes additionally recruit other innate 
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effector cells, such as CCR3+ eosinophils, through the production of CCL11 

(eotaxin-1) (Wadell et al., 2011; Lampinen et al., 2013). Furthermore, since intestinal 

macrophages have enhanced expression of CD40 (Carlsen et al., 2006), they are fully 

capable of interacting with effector T cells, therefore initiating adaptive immune 

responses. As shown by Kamada et al. (2008), in Crohn’s disease, apart from TNF-

α, CD14+ intestinal macrophages are the main source of IL-23, which additionally 

induces IFN-γ immune responses by lamina propria CD4+ T cells. Therefore the 

importance of intestinal macrophages in IBD pathogenesis is mirrored by the 

importance of IL-23, as a key cytokine linking innate and adaptive immunity 

(Discussed in Section 1.3.5.). 

The important role of macrophages in IBD is also supported by studies using 

neutralising anti-CCR2 antibody or CCR2-deficient mice models (Platt et al., 2010; 

Zimond et al., 2012). Is has been shown that blocking CCR2 can prevent 

differentation of macrophages into proinflammatory phenotype, and result in less 

severe colitis in mice (Zimond et al., 2012). 

Also genome wide association studies in IBD identified risk alleles associated with 

intestinal macrophage dysfunction. For example, NOD2, which is expressed in 

intestinal macrophages to facilitate the recognition of bacterial wall compartment 

muramyl dipeptide. Approximately, 30% of CD patients have no-functional mutation 

in NOD2 gene (Cho and Weaver, 2007). Additionally, a number of identified 

autophagy genes mutations in CD, like ATG16L and IRGM (Stappenbeck et al., 

2011) also point out on important position of intestinal macrophages in IBD 

pathogenesis. The importance of intestinal macrophages in CD pathogenesis is also 

supported by the presence of granulomas, typical characteristics of CD patients. 

Macrophage activation is therefore a central feature of IBD, and the activated state of 
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these cells plays a central role in Th1 or Th1/Th17-skewed intestinal inflammation in 

CD. Therefore, targeting pathways that are regulated by a function of intestinal 

macrophages represents an attractive therapeutic target. 

 

1.3.4. Cytokines in IBD 

Activation of T cell responses plays a fundamental role in immunopathology of IBD, 

as indicated by a fact that CD has been considered as Th1-driven immune responses, 

whereas UC as non-conventional Th2 (Fuss et al., 1996). Additionally, a role of 

other subsets of T cell, namely Th17 has emerged as an important player (Geremia et 

al., 2012). Based on the levels of T cell-derived cytokines, CD and UC are 

characterised by different proinflammatory immune profile. 

Immunologically, CD is characterised by a predominant Th1/Th17 mucosal cytokine 

profile with elevated levels of IFN-γ, IL-17, TNF-α, IL-12/23 and IL-2 (Gordon et 

al., 2005; MacDonald, 2011).  

In CD, an abnormal Th1 immune responses are triggered by increased mucosal 

levels of IL-18 and IL-12 (Monteleone et al., 1997; Podolsky, 2002). Macrophage 

and DC-derived IL-12 is crutial in induction of Th1 immune resposnes, as shown by 

numerous reports (Monteleone et al., 1997; Gordon et al., , 2005). As a consequence 

of this activation, Th1 cells produce increased levels of IFN-γ (Fuss et al., 1996). A 

number of studies reported increased IFN-γ production in CD mucosa, as oppose to 

UC and control T cells (Camoglio et al., 1998; Heller et al., 2005). The recognision 

of IFN-γ, as an important player in CD, led to the development of antibodies 

blocking IFN-γ or IL-12/p40. However, the results of three clinical studies testing the 

effect of anti-IFN-γ antibody (fontalizumab) showed no beneficial effect in active 

CD (Hommes et al., 2006; Reinisch et al., 2006; 2010), even though neutralising 
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IFN-γ was effective in mouse models of colitis (Powrie et al., 1994). Also 

neutralisation of IL-12 with monoclonal anti-IL-12p40 antibodies turned out to be 

weakly superior to placebo (Mannon et al., 2004; Sandborn et al., 2008). 

The role of Th17 cells in IBD immunopathogenesis has also been recognised, as 

increased IL-17A levels have been detected in both CD and UC lamina propria 

(Monteleone et al., 2005; Rovedatti et al., 2009; MacDonald et al., 2011). Th17 cells 

are important source of IL-21 (Monteleone et al., 2005; Sarra et al., 2010). The IL-21 

protein levels are increased in the inflamed intestine in patients with CD compared to 

UC or controls (Fantini et al., 2008). The IL-21 may also synergise with IL-6 and 

TGF-β to induce a differentation of Th17 cells in mouse models (Zhou et al., 2007). 

The role of IL-21 in IBD pathogenesis was supported by murine models of colitis, 

showing that IL-21-deficient mice are resistant to Th1/Th17-cell-driven colitis and 

that IL-21 blocking with an IL-21 receptor fusion protein inhibits experimental 

colitis in mice (Fina et al., 2008). However, despite the potential of Th1 and Th17 

cytokines to trigger and amplify immune responses in the gut, anti-IL17A treatment 

with blocking antibody secukinumab was deleterious in patients with CD (Huebert et 

al., 2012). 

One theory for the deveopment of IBD is a failure of regulatory T cells to dampen 

immune responses to the microbiota. TRegs play a major protective role by secreting 

antiinflammatory cytokines, such as IL-10 and transforming growth factor-β (TGF-

β) (Powrie et al., 1996; Asseman et al., 1999; Huber et al., 2011). These findings 

were supported by studies in mice model with T cell-specific inactivation of genes 

encoding IL-10 and TGF-β. In these mice, TRegs were functionally inactive, failed to 

suppress proinflammatory cytokines produced by APCs and effector T cells, and 
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spontaneously developed chromic intestinal inflammation (Davidson et al., 1996; 

Marie et al., 2006). Moreover, TRegs are also targets of IL-10, and additional studies 

have revealed that mucosal TReg cells express the key transcription factor forkhead 

box P3 (FOXP3) (Maynard et al., 2007). Interestingly, Tregs are increased in IBD 

mucosa, and their function is normal, as was demonstrated by a potential of these 

cells to dampen the proliferation of effector T cells (Maul et al., 2005; Eastaff-Leung 

et al., 2010). However, effector T cells from patients with IBD have been shown to 

overexpress SMAD7, which inhibits TGFβ signalling, hence resulting in resistant to 

TGFβ-mediated suppression (Monteleone et al., 2001). The functional relevance of 

this finding was shown by studies of mice in which transgenic overexpression of 

Smad7 resulted in the resistance of T cells to TReg cell-mediated suppression. Based 

on this concept, SMAD7 antisense oligonucleotides have been tested as a new 

therapy in patients with Crohn’s disease and have shown promising effects 

(Monteleone et al., 2015). 

Many proinflammatory cytokines are overexpressed in IBD mucosa. However the 

most important of these is TNF-alpha. TNF-α is a master proinflammatory cytokine 

present in elevated quantities in the inflamed mucosa of CD and UC patient 

(MacDonald et al., 1990; Breese et al., 1994). Macrophages and T cells are the main 

source of TNF-α (Reinecker et al., 1993). Subepithelial macrophages are the main 

source of TNF-α in UC, however in CD, TNF producting cells are evently scattered 

within lamina propria, extending into the submucosa (Murch et al., 1993). 

The key role of cytokines, as a therapeutic target for IBD, is supported by great 

efficacy of the neutralising monoclonal antibodies targeting TNF-α (infliximab and 

adalimumab), at inducing clinical remission in patients with active CD (Colombel et 
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al., 2010). However, etanercept turned out to be ineffective in the treatment of CD 

(Sandborn et al., 2001). Both, etanercept and infliximab neutralise TNF-α, however 

only the latter is able to bind surface TNF-α on activated T cells (Scallon et al., 

1995; Van Den Brande et al., 2003). A recent study from Biancheri et al. ( 2015) 

however showed that etanercept loses its ability to neutralise TNF when exposed to 

the proteases in inflamed gut, so the failure of the drug to work in the clinic could be 

due to its degradation in inflamed mucosa. Neutralisation of TNF-α by infliximab 

induces apoptosis of blood monocytes (Lugering et al., 2001) and lamina propria T 

cells (ten Hove et al., 2002). Additionally, it was also shown that infliximab caused 

monocytes to increase their release of soluble TNFR2, which serves to neutralise 

TNF-α, hence amplify action of infliximab (Ebert, 2009). Infliximab also enhances 

production of IL-10, thereby promoting an anti-inflamamtory microenvironment 

(Ebert, 2009). The IL-23 is a key cytokine linking innate and adaptive immunity, and 

plays a central role in driving early responses to microbes (Geremia et al., 2011). It 

has been shown that, unconventional, innate-like T cell populations, which are 

particularly present at mucosa, such as γδT cells, invariant natural killer T (iNKT) 

cells and mucosa-associated invariant T cells, respond to IL-23 stimulation by 

production of Th17-associated cytokines (Cua and Tato, 2010). Additionally, IL-23 

also induces Th17 cytokine production by innate lymphoid cells (ILCs) (Takatori et 

al., 2009; Cella et al., 2009).  

The functional role of IL-23 has also been supported by GWAS study, as Il23R 

polymorphisms are associated with both, CD and UC (Duerr et al., 2006). 

Additionally, IL-23 belongs to IL-12 cytokine family (Goriely et al., 2008). The IL-

12p35/p40 produced by CD8α dendritic cells or macrophages is a pivotal cytokine 

that controls Th1 cell differentation that also involves activation of STAT4 (Magram 
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et al., 1996, Moser and Murphy, 2000), and consequently upregulation of INF-γ, as 

already mentioned in this section. 

Several studies have also reported that IL-27 may drive proinflammatory responses 

leading to chronic intestinal inflammation. It has been reported that IL10-deficient 

animals that normally develop spontaneous colitis, with IL27R deficiency in T cells 

showed reduced colitis activity (Villarino et al., 2008). In another study, it has been 

reported that IL27R deficient T cells failed to induce disease in T cell transfer model 

of colitis due to impaired TH1-type cytokine production and the expansion of Treg cell 

populations, and p28-deficient mice did not develop colitis upon transfer of T cells 

due to the reduced production of IL-1 and IL-6 by APCs (Cox et al., 2011; Visperas 

et al., 2014). However, other investigators have found that IL-27 has an anti-

inflammatory effect (Troy et al., 2009; Wirtz et al., 2011; Hanson et al., 2014). For 

instance, IL-27 was not required for the development of spontaneous colitis in mice 

with a myeloid-specific deletion of STAT3 (Wirtz et al., 2011), which suggests that 

the functions of this cytokine are dependent on the model that is used. 

The IL-6 is also overexpressed and although clinical efficacy of an anti-IL-6R 

antibody was shown over 10 years ago, there have been no further studies (Heinrich 

et al., 1990). The IL-6 production by lamina propria macrophages and CD4
+ T cells 

is increased in experimental colitis and in patients with IBD (Atreya et al., 2000; Kai 

et al., 2005). In particular, CD14+CD33+CD68+CD163
lo myeloid cells that express 

some macrophage-associated and DC-associated markers were found to produce 

high amounts of IL-6 (Kamada et al., 2008). The IL-6 binds to the soluble IL-6R 

(sIL-6R), and the IL-6–sIL-6R complex then activates intestinal target cells by 

binding to the gp130 surface molecule (also known as IL-6R subunit-β). Therefore, 
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IL-6 can exert proinflammatory functions by activating multiple target cells, 

including APCs and T cells. IL-6–sIL-6R complex prevents programmed cell death 

(apoptosis) of mucosal T cells and activates proinflammatory cytokine production by 

these cells (Atreya et al., 2000). However, IL-6 may also have important homeostatic 

functions by stimulating the proliferation and expansion of intestinal epithelial cells 

(IECs). Interestingly, blockade of IL-6 signalling with monoclonal antibodies was 

effective in suppressing chronic intestinal inflammation in mouse models 

(Yamamoto et al., 2000; Kamada et al., 2008). 

As mentioned, UC is more Th-2 like driven disease, with a predominant, signature 

synthesis of IL-4, IL-5, IL-13 by non-conventional NKT cells (Fuss et al., 1996). The 

UC-related inflammation is also driven by the excessive production of Th17 

cytokines and macrophage-derived cytokines (IL-6, IL-1, TNF) (Fuss et al., 1996; 

Heller et al., 2005), and transcription factor GATA-binding protein 3 (GATA3) 

(Neurath et al., 2002). However, in UC, T cells do not display a full classical TH2 

profile, as low level of IL-4 is produced (Fuss et al., 1996).  

Initially IL-13 was identified as a key cytokine driving the pathogenesis of UC. 

Based on results from oxazolone-induced models of colitis, it was observed that IL-

13, produced by CD1-reactive natural T (NKT) cells, is a key cytokine involved in 

UC pathogenesis (Heller et al., 2002; Fuss et al., 2008). Moreover, through 

experimental settings, it was shown that elimination of NKT cells or neutralisation of 

IL-13 dampens the development of colitis (Fuss et al., 2008). The fact that the 

treatment with IFN-β is associated with a reduction of IL-13 production (Mannon et 

al., 2011) additionally supported the fact that IL-13 may be an important therapeutic 

target in UC. 
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Additional functional studies have shown that IL-13 promotes fibrosis and disturbs a 

function of tight junctions, hence driving mucosal ulceration (Heller et al., 2005). 

The therapeutic potential of anti-IL-13 antibodies was tested, first in models of 

colitis and eventually in clinical trials. However, recently reported two clinical trials 

with anrukinzumab and tralokinumab showed no efficacy for anti-IL-13 blockage as 

a therapeutic strategy in UC (Reinisch et al., 2015; Danese et al., 2015).  

The role of IL-13, as a key cytokine in UC was also challenged by Biancheri and 

colleagues (2014), who were unable to show increased secretion of IL-5 or IL-13 by 

UC mucosal biopsies ex vivo or anti-CD3/CD28 activation of LPMCs. Therefore, 

further investigation is required to understand the role of IL-13 in UC 

immunopathology.  

Another cytokine that might play an important role in UC is IL-9 (Gerlach et al., 

2014), however its role in IBD pathogenesis is unknown. Recently, increased 

expression of IL9 was reported in patients with active UC (Gerlach et al., 2014). The 

same authors also demonstated that IL-9-producing cells in these patients are CD4+ T 

cells. These results were also additionally supported by murine models of colitis, 

where colitis was reduced in both cases by blocking IL-9 with neutralising antibody 

or using IL9-deficient mouse (Gerlach et al., 2014). 

Innate lymphoid cells (ILCs) are seen to be important in intestinal mucosa immunity 

(Artis and Spits, 2015). These cells might perform protective role, but also contribute 

to chronic intestinal inflammation (Satoh-Takayama et al., 2008; Sonnenberg et al., 

2011). The ILCs are also considered as an important source of IFN-γ and IL-23-

inducible proinflammatory cytokines, such as IL-17A and IL-17F, which mediate 

experimental innate immune-mediated colitis (Buonocore et al., 2010). In human 
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IBD, an expansion of IL-17-producing ILCs was noted in the inflamed mucosa of 

patients with Crohn’s disease but not in patients with ulcerative colitis (Geremia et 

al., 2011). Other studies have also reported that upon IL-12 and IL-15 stimulation, 

the expansion of a human IFN-γ producing intraepithelial ILC1 was observed in 

patients with Crohn’s disease (Bernink et al., 2013). Additional functional studies in 

a model of innate colitis that is induced by CD40-specific antibodies have revealed 

that ILC1s that express T-bet contribute to pathology, and thus might be a new 

therapeutic target (Fuchs et al., 2013). Given that immunopathology of IBD includes 

dysregulation of a rather complex cytokine profile, it might be that simultaneous 

inhibition of multiple cytokines provides more efficient clinical outcome 

(Monteleone et al., 2014). This is supported by a recent clinical outcome of 

tofacitinib in treatment of active UC (Sandborn et al., 2012), which was shown to 

inhibit the activity of Janus kinases (JAK) 1, 2, 3, tyrosine kinases that mediate 

signal-transduction activity involving the common chain of the surface receptors for 

multiple cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 (Furumoto and 

Gadina, 2013). In vitro, tofacitinib inhibits IL-2-dependent differentation of type 2 

and type 17 helper T cells, and also LPS-induced innate immune responses 

(Ghoreschi et al., 2011). The inhibitory effect on JAK1 also fine-tunes the signalling 

by proinflammatory cytokines, including IL-6 and IFN-γ (Meyer et al., 2010). 

Effectively, by blocking these signalling pathways, a suppression of both T and B 

cells is achieved with a concurrent maintenance of regulatory T cells (Changelian et 

al., 2008; Sewgobind et al., 2010; Ghoreschi et al., 2011). 

In IBD, the increased recruitment of inflammatory cells (T cells, 

monocytes/macrophages, neutrophils) into the gut tissue is enhanced by production 

of chemoattractants within the inflammatory environment. One such chemoattractant 
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is the chemokine ligand 25 (CCL25), of which increased production is detected in 

the inflamed epithelium of CD patients and is known to promote homing of CC 

chemokine receptor 9 (CCR9)-expressing T cells to the small intestine (Nishimura et 

al., 2009). The biological implication of CCR9 blockage was demonstrated in 

SAMP1/YitFc mice, a spontaneous model of CD (Rivera-Nieves et al., 2006). 

Additionally, some benefit of CCR9 inhibition was also observed in patients with 

active CD (Eksteen et al., 2010). 

Additionally, the trafficking of lymphocytes from the circulation into the gut tissue is 

also mediated by adhesive interactions between the lymphocytes and endothelial 

cells (Van Assche and Rutgeerts, 2005). 

Among all adhesive molecules, integrins, especially α4β7 have a key role in T-cell 

trafficking into the inflamed gut. The integrin α4β7 binds to mucosal addressin-cell 

adhesion molecule 1 (MAdCAM-1) (Sandborn and Yednock, 2003). MAdCAM-1 is 

typically linked with gut-associated lymphoid tissue (Briskin et al., 1997), and 

increased expression of MAdCAM-1 is detected in inflamed IBD mucosa (Souza et 

al., 1999). Additionally, it has been shown that blocking of either the integrin β7 or 

MAdCAM-1 inhibits the homing of intestinal seeking lymphocytes (Hamann et al., 

1994). Monoclonal antibodies directed against α4 (natalizumab) and β7 

(vedolizumab) integrins were also tested in IBD patients with beneficial outcome 

(Gordon et al., 2001; Sandborn et al., 2005). 

1.4.  Epigenetics 

Epigenetic regulation of gene expression has emerged as a potentially important 

determinant in the development of many diseases, including IBD (Scarpa et al., 

2012). Epigenetics refers to modifications in gene expression that are controlled by 

heritable, but potentially reversible changes in DNA methylation and chromatin 



 77	
  

structure (histone modifications, chromatin remodelling) without altering DNA 

sequence (Herman et al., 2003; Natoli, 2010). Phenotypic differences are likely to be 

initiated by dynamic epigenetic modifications of the genome, thus the epigenetic 

status can have a crucial effect on the tissue-specific phenotype of a cell (Huang et 

al., 2012). The stability of epigenetic regulation provides a new opportunity for the 

explanation of a number of features in complex diseases that traditional DNA 

sequence-based genetics could not (Tan et al., 2011). 

Epigenetic modifications can be driven by DNA methylation, histone modification 

and chromatin remodelling (Jin et al., 2011). In this respect, only histone modifying 

changes will be discussed in detail with the emphasis on histone methylation. 

 

1.4.1. Chromatin structure 

1.4.1.1.  Nucleosome 

Chromatin comprises of polymers of nucleosomes (Figure 1.6). The nucleosome 

consists of 146 basepair (bp) DNA wrapped around building blocks composed of a 

histone octamer made of two heterodimers of the core histones H2A, H2B and a 

tetramer of the core histones H3, H4 (Luger et al., 1997; D’Arcy et al., 2013). 

Chromatin provides a structural skeleton allowing compression of DNA within the 

nucleus (Cloos et al., 208). Its structure is highly dynamic, which consequently 

allows the regulation of biological processes essential for correct cellular function 

such as transcription, DNA replication and repair. Depending on the degree of 

condensation, chromatin can be present in inactive (heterochromatin) or active 

(euchromatin) form (Naughton et al., 2010). 
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 (http://dehistology.blogspot.co.uk/2011/06/chromatin.html). 

 
Figure 1.6: Schematic representation of nucleosome 
The basic structural unit of chromatin is the nucleosome, which consists of a core of four types of histones: two 
copies each of histones H2A, H2B, H3, and H4, around which are wrapped 146 DNA base pairs. An additional 
48-base pair segment forms a link between adjacent nucleosomes, and another type of histone (H1 or H5) is 
bound to this DNA. 

 

 
1.4.2. Histone modifications and their functional role in establishing  

chromatin environment 
 

Histones can be modified at many sites, and hundreds of enzymes are involved in 

establishing the epigenetic state (Sterner and Berger, 2000; Zhang and Reinberg, 

2006; Kouzarides, 2007; Cloos et al., 2008). 

The posttranslational modification of histones affects biological processes either by 

making changes to chromatin structure (loosing or tightening the DNA-histone 

interaction) or by contributing to the recruitment of additional regulatory elements 

(Cloos et al., 2008). As oppose to DNA modification, which is associated only with 

methylation, histones can be affected by methylation, acetylation, phosphorylation, 

biotylation, ubiquitination, sumoylation and ADP-ribosylation (Kouzarides, 2007).  

Histone modifications affect higher order chromatin structure by influencing the 

contact between different histones in nearby nucleosomes or histones and DNA 

interactions, thus establishing a global chromatin environment and DNA-based 

biological processes (Kouzarides, 2007). These modifications enable partition of the 
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genome into individual areas where DNA is either accessible or blocked for 

transcription (Lubelsky et al., 2014). 

Histone acetylation and methylation represent the most common modifications, and 

result in different nucleasome–DNA interactions (Cloos et al., 2008). These changes 

occur at the final 15-38 amino acids of the histone tails (Choi and Friso, 2010). 

Lysine residues in the histone tail can be either methylated (tri-, di-, mono) or 

acetylated, whereas arginine can undergo only methylation. Histone acetylation 

deposits a negative charge on a modified histone residue, hence decreasing 

interaction between the histone and DNA, influencing inter-nucleosomal contacts 

and destabilising higher order chromatin structure, and is associated with active 

transcription (Kouzarides, 2007; Cloos et al., 2008). In contrast, methylation does not 

influence the net charge, and hence has no effect on DNA-histone interaction. 

Histone methylation acts as a recognition template for effector proteins, which can 

modify chromatin and lead to repression or activation of transcription depending on 

the effector protein being recruited (Cloos et al., 2008; Estarás et al., 2013).  

Different enzymes, termed writers, readers and erasers also can modulate the level of 

histone modification (Tarakovsky, 2010). Acetylation can be influenced by histone 

acetylases (HAT) and deacetylases (HDAC), whereas methylation is maintained by 

methyltransferases (HMTs) and demethylases (HDMs) ((Däbritz et al., 2014). 

Individual as well as the combination of DNA and histone modifications can 

establish the dynamics of epigenetic changes affecting the chromatin status. 

For example, DNA methylation is strongly linked with the methylation levels at 

histone H3 lysine 4 (H3K4) and histone H3 lysine 9 (H3K9), which have reciprocal 

effects on gene expression. The H3K4 methylation (active methyl mark) usually 

increases the gene expression and H3K9 (repressive methyl mark) is associated with 
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repression (El Gazzar et al., 2008). Enzymatic and structural studies suggest that 

Jumonji demethylases, which demethylase H3K4 or H3K9, H3K27 and histone 

methyltransferases are also important players in reciprocal methylation of these 

marks (Cheng and Blumenthal, 2010). 

 

1.4.2.1. Histone acetylation 

 

Acetylation is one of the most studied forms of histone modification (Däbritz et al., 

2014). Changes of N-terminal lysine residues at position 9, 14, 18 and 23 of histone 

H3, as well as 5, 8, 12 and 16 of histone 4 mediate decondensation of the 

nucleosome structure, hence altering histone and DNA interaction, facilitating access 

of transcription factors. An increased histone acetylation at H4K5 or H4K8 is found 

in euchromatin regions where transcription is potentially active, whereas acetylation 

of H4K12 is increased in heterochromatin regions, indicating a potentially 

transcriptionally inactive state. Additionally, modifications associated with 

acetylation status are not only restricted to histone proteins, since for example 

HDAC3 has been shown to enhance STAT3 phosphorylation (Togi et al., 2009). 

Several studies have shown that HDACs have a role in autoimmune disease (Bhavsar 

et al., 2008) and in inflammatory regulation (Blanchard and Chipoy, 2005). 

Supporting this concept, a number of inhibitors have emerged as a therapy for 

autoimmune disease (Mishra et al., 2001; Pankaj et al., 2008) and regulation of 

immune tolerance (Tao and Hancock, 2007). It is known that the role of HDACs in 

immune cells involves complex regulatory mechanisms that are dependent on a stage 

of cellular differentation or the enzyme’s tissue expression (Glozak et al., 2005). For 

instance, HDAC6 is a key regulator of the cytoskeleton, cell migration and cell-cell 

interactions (Valenzuela-Fernandez et al., 2008). However, HDAC6 is also known to 
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be involved in a formation of antigen presenting cells (APCs) and T cell synapse 

(Serrador et al., 2004).  

A number of studies show that histone acetylation is highly associated with 

inflammation. The involvements of HDACs in cytokine regulation is not restricted to 

any specific class of cytokines, and HDACs play an essential role in transcription of 

pro- and anti-inflammatory cytokines (Villagra et al., 2009). The HDACs regulate 

proinflammatory genes (e.g. Il1, Il5, Il8, Il12) and anti-inflammatory genes such as 

Il10 (Villagra et al., 2010) as well as NF-κB binding and NF-κB-mediated 

transcriptional activation. It has been shown that a number of HDACs have anti-

inflammatory effects, for example Sirt1 was shown to have an anti-inflammatory 

effect in mouse colitis, potentially by inhibiting iNOS, COX-2, NF-κB (Cui et al., 

2010). HDAC11 has been shown to function as a transcriptional repressor of Il10 

gene expression in APCs (Villagra et al., 2009). It has also been documented that 

transcriptional activation of Il8 involves promoter acetylation by p300, a process 

facilitated by a transient decrease in HDAC1 and HDAC5 within promoter region 

(Schmeck et al., 2008). However, at a certain point HDAC1 and HDAC5 are 

recruited back to Il8 promoter in order to terminate transcription (Schmeck et al., 

2008). Another cytokine whose expression is regulated via HDAC1 is IL-12, where 

promoter modification also involves histone acetylation by p300, but in contrast to 

IL8, at the IL12 promoter HDAC1 represses transcription (Lu et al., 2005). 

Histone deacetylases have also been reported to modulate IL-2, a key cytokine 

involved in differentation and homeostasis of T cells, which expression is inhibited 

by HDAC1 (Wang et al., 2009). Additionally, FOXP3 is an additional repressor of 

IL2 expression that directly associates with acetyltransferase protein TIP60 (Tat-

interacting protein), HDAC7 and HDAC9 (Li et al., 2007). 
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Without doubt, histone modifications provide a means for regulation of gene 

expression associated with either inflammatory responses or cell differentation, 

which leads to an establishment of immune homeostasis.  

 

1.4.2.2. Histone methylation and a role of JMJD3-H3K27me3 

                        demethylase in gene expression 
 
In contrast to other histone modifications such as acetylation and phosphorylation, 

methylation (particularly trimethylation) was initially considered to be an irreversible 

change, until the discovery of enzymes, which regulate the methylation of histones 

(Shi et al., 2004; Allis et al., 2007; Cloos et al., 2008). Now, it is known that histone 

methylation on specific lysine residues is controlled by the opposite forces of lysine 

methyltransferases (KTMs; e.g. polycomb group proteins) and demethylases (histone 

lysine demethylases (KDMs), e.g., lysine-specific histone demethylase 1 (LSD1) or 

the family of Jumonji (Jmj) C domain-containing enzymes) (Pereira et al., 2011). 

The methylated amino residues of histone tails constitute regulatory marks that 

define transcriptionally active and inactive chromatin. 

Multiple lysine residues (e.g. H3K4, H3K27, H3K36, H3K79) are methylated and 

demethylated by histone methyltransferases and demethylases, respectively (Chen et 

al., 2012). As an example; tri-, di-methylation of Lys 9 on histone H3 (H3K9me3; 

me2) or trimethylation of Lys 27 (H3K27me3) mark a silent state, whereas tri-, 

demethylated Lys 4 or Lys 36 on the same histone (H3) is connected with active 

transcription (Cloos et al., 2008; Ishii et al., 2009). The co-occupancy of these marks 

additionally states the silent/active transcription profile. The methylation of Lys 27 

of histone H3 (H3K27me3) is considered a key epigenetic regulator of cell 

homeostasis and development (Margueron et al., 2011). The methylation patterns of 
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H3K4 and H3K27 have been shown to affect the function of effector CD4+ helper T 

cell subsets (Mucasa et al., 2010). This evidence strongly supports a key role for 

histone demethylases and methyltransferases in gene transcription and chromatin-

depended processes. In particular, the importance of Jumonji C proteins, and their 

role in chromatin regulation, cellular differentation, and involvement in human 

diseases (Cloos et al., 2008; Estarás et al., 2013).  

The discovery of group of enzymes; the amide oxidase LSD1 (KDM1) and enzymes 

with Jumonji C (JmjC)- catalytic domain, acting as a histone demethylase defined a 

new thinking on how methyl state can be reverted (Yamane et al., 2006; Tsukada et 

al., 2006). The majority of JmjC enzymes are capable of demethylating mono-, 

demethylated lysine, particularly favouring trimethyl state, and they show specific 

substrate affinity (Bannister et al., 2002; Tsucada et al., 2006). Additionally, some 

histone demethylases can also act as dual enzymes, acting on different lysine 

residues (e.g. KDM7A for H3K9 and H3K27) (Tsucada et al., 2010). 

Methylation on lysine residues of histone 3 lysine 27 (H3K27me) driven by EZH1/2 

plays important role in regulating gene activity, since it acts as a silencing mark 

through the polycomb-repressive complex 2 (PRC2) (Schuettengruber and Cavalli, 

2009; Simon et al., 2009). The core PRC2 complex itself consists of several 

components: histone-lysine N-methyltransferase (EZH1/2), SUZ12 polycomb 

repressive complex 2 subunit (SUZ12), embryonic ectoderm development (EED) and 

RbAp46/48 (RBBP7/4) and the recently identified AEBP2, PCLs and Jumonji/ARID 

Domain-Containing Protein 2 (JARID2). Additionally other elements can transiently 

bind to the complex (e.g. DNA methyltransferase (DNMTs), histone deacetylases 1 

(HDAC1) and sirtuin 1 (SIRT1) (Margueron and Reinberg, 2011). The PRC2-EZH2 

drives H3K27me2/3 state via its EZH2-mediated methyltransferases activity, 
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whereas PRC2-EZH1 restores the silencing mark (Margueron and Reinberg, 2011). 

The EZH1 and EZH2 target the same group of genes, participating in common 

silencing pathway. The EZH1 is present in dividing as well as differentiated cells, 

whereas EZH2 is found only in actively dividing cells (Margueron and Reinberg, 

2011). 

Lysine residues can be mono-, di- or trimethylated, with each methylation state being 

functionally different and complementary, hence providing new means for kinetics. 

The methylated H3K27 is very abundant, for example, nearly 50% of all H3 histone 

are being dimethylated, 15% trimethylated and 15% monomethylated in embryonic 

stem (ES) cells (Peters et al., 2003). 

The H3K27me2 is responsible for indirect gene repression, since it is important 

intermediary PRC2 product and consequently a substrate for a subsequent 

H3K27me3 formation (Tie et al., 2009). Additionally, H3K27me2 prevents 

H3K27me3 from being acetylated, since the acetylated state of H3K27 functions as 

antagonist to PcG mediated silencing (Margueron and Reinberg, 2011). 

The deposition of H3K27me1 in actively transcribed genes is driven by enzymatic 

activity other than PRC2, such as UTX or JMJD3 that demethylase H3K27me2 to 

monomethyl state (Aggar et al., 2007; Swigut et al., 2007; De Santa et al., 2007). 

The H3K27me3 occupancy potentially prevents transcriptional factors from binding 

to chromatin; hence enrichment of this mark correlates with a silent state of the gene 

(Mikkelsen et al., 2007). The trimethyl K27 modification is essential in transmitting 

epigenetic information during development (Jepsen et al., 2007). 

Among the histone modifying enzymes, histone demethylase; JmjD3 and its 

homologue UTX (belonging to the KDM group) play important role in cellular 

differentiation and development, since many key developmental promoters are often 
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marked by H3K27me3 in combination with H3K4me3 (Boyer et al., 2006; Pan et al., 

2007; Chen et al., 2012). It has been shown that H3K27me3 may coexist with the 

activating mark H3K4me3 to form a bivalent state (at high occupancy of H3K4me3 

and H3K27me3) of the gene, resulting in poised transcription (Huang et al., 2012). 

The bivalent state may be established by JMJD3 and KDM7A (a novel histone 

demethylase specific for H3K9/H3K27) (Bernstain et al., 2006). Additionally, JmjD3 

and KDM7A are upregulated in differentiating cells and can bind directly to a target 

gene acting in both a demethylases-dependent and-independent fashion (Huang et al., 

2010; Chen et al., 2012). The interaction between JMJD3 and KDM7A provides a 

dynamic and robust mechanism for rapid conversion of H3K27me3 to H3K27me0 

(Chen et al., 2012). 

Agger et al. (2009) showed that upon cell differentiation, JmJD3 is recruited at the 

promoter, transcription start sites (TSS) for the activation of target gene. Hence the 

removal of H3K27me3 mark is proposed to be an important step in the resolution of 

the bivalent domains (Kim et al., 2011). 

Although the importance of H3K27me3 and JMJD3 has been broadly stressed, the 

molecular mechanism by which the enzymes function remains incomplete. The 

JMJD3 regulates a subset of its target genes by demethylating H3K27me3. It has 

been noted that although JMJD3 and KDM7A have different substrate preferences 

H3K27me3/H3K27me2 and H3K27me2/H3K27me1, respectively, both enzymes 

show the same binding affinity to H3K4me3 (Chen et al., 2012). The JMJD3 is 

involved in the inflammatory responses (De Santa et al., 2007; 2009). However, it 

still remains unknown if transcriptional regulation is driven via demethylation of 

H3K27me3 at the gene promoter alone. 
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The JMJD3 has also been shown to regulate proinflammatory gene expression in 

activated macrophages. De Santa and colleagues (2009) have shown that upon LPS 

stimulation, JMJD3 is recruited to the gene promoter through NF-κB activation. 

Additionally, Ishii and colleagues (2009) have showed that acquisition of M2 

macrophage phenotype is epigenetically regulated by reciprocal changes in H3K4 

and H3K27 methylation, and that the latter methyl mark is removed by JMJD3. They 

also reported that increased Jmjd3 expression was IL-4 dependent and STAT6 

mediated. Moreover, JMJD3 is involved in retinoic acid-induced cell differentiation, 

since JMJD3, together with UTX (JMJD3 homologue) have been shown to be a 

direct retinoic-acid-receptor target in neural differentiation (Jespen et al., 2007). 

Of interest, JMJD3 was shown to bind not only to promoters but also to the coding 

regions of the gene (De Santa et al., 2009; Hawkins et al., 2010). Estarás and 

colleagues (2013) have shown that JMJD3 associates with the 90% of methylated 

genes, suggesting that H3K27 demethylase is recruited to methylated regions upon 

signal activation, hence resolving the H3K27me3 repressed state and consequently 

contributing to RNA elongation. Since JMJD3 has been shown to interact with 

RNAPII-S2p, as opposed to unphosphorylated RNAPII, it may form an element of 

elongating complex, allowing the progression of RNAPII through gene bodies 

(Estarás et al., 2013). It is possible that JMJD3 drives elongation by changing the 

chromatin state at the region being transcribed by interacting with e.g., Brg1, which 

is a transcription activator belonging to SWI/SNF family (Estarás et al., 2013). 
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1.4.3. Epigenetics in IBD 

Epigenetics has emerged as an important aspect of IBD etiology (Jenke and Zilbauer, 

2012; Kellermayer, 2013; Low et al., 2013).  

The preliminary knowledge on IBD epigenetics was restricted to information on 

epigenome-wide DNA methylation analysis, with a focus on predisposition to cancer 

in IBD (Ventham et al., 2013). For example, it has been shown that methylation of a 

CpG island in the androgen receptor (AR) gene was increased with age in 

nonneoplastic colorectal epithelium, and was also highly methylated in colorectal 

epithelium from UC (Issa et al., 2001). The DNA methylation of IBD susceptibility 

genes (e.g., gene-specific methylation of mutator L homolog 1 (MLH1) and 

hyperplastic polyposis 1 (HPP1) was also linked to colon cancer and IBD (Chan et 

al., 2006). Additionally, study by Nimmo et al. (2012) showed different pattern of 

DNA methylation in genes involved in immune system activation (e.g., MAPK, 

RPIK3, IL21R) between IBD patients and controls. Several key epigenetic regulatory 

enzymes, such as DNA methyltransferases (DNMT) 3a and 3b were also linked to 

CD susceptibility genes (Franke et al., 2010; Jostins et al., 2012). These findings are 

additionally supported by a recent study. Adams and colleagues (2014) provided 

evidence of DNA hypermethylation at different sites across genome, including HLA 

region and MIR21 among children with recently diagnosed Crohn’s disease, 

therefore providing a new insight into gene-environmental interactions at the early 

onset of disease. 

Epigenetic aspect of IBD pathogenesis links to interaction between commensal 

microbiota and chromatin architecture of intestinal immune responses. For instance, 

the expression of TLR2 and TLR4 on IEC, in a large but not in a small intestine, is 
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regulated by DNA methylation and histone deacetylation, which in turn depends on 

the presence of commensal gut microbiota. 

Many recent reviews additionally cover the aspect of epigenetic regulation of 

intestinal immune responses (Scarpa et al., 2012; Däbritz et al., 2014). Alterations in 

chromatin environment are potentially important by fine-tuning of the inflammatory 

responses, through regulation of inflammation-induced transcription, tolerance and 

T-cell lineage commitment as well (Scarpa et al., 2012). Recently, Schmolka and 

colleagues (2013) have described the epigenetic landscape of Th1 and Th17-related 

loci in mouse γδ T cells. By performing genome-wide analysis of methylation pattern 

of histone H3, they showed that dual ability of γδ T cells to produce IL-17 and IFN-γ 

is regulated by H3K4me2 and H3K4me3 methylation at the loci encoding both 

cytokines and their regulatory transcription factors.    

 

1.4.4.      Epigenetic modifications in macrophages 

The process of monocytes differentation into macrophages involves morphological, 

functional changes taking place without actual cell proliferation. Moreover, the 

process of differentiation involves regulation at the level of transcription factor and 

the relevant epigenetic marks (deposition or removal of e.g. histone methylation, 

acetylation, DNA methylation) (Shi, 2007; Ivashkiv, 2013).  

Cytokine signals and other microenvironmental factors, through epigenetic 

modifications can influence phenotype and consequently a function of immune cells. 

The interplay between signalling pathways and therefore its effect on chromatin state 

regulates the transcription of specific genes, hence defining cellular identity (Esterás 

et al., 2013). In vitro and in vivo studies in mice and humans have demonstrated that 
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IFN-γ can resolve macrophages anergy and restore the inflammatory cytokine 

production (Bundschuh, 1997; Randow et al., 1997; Medzhitov et al., 2009). 

The molecular understanding of INF-γ-driven reversal of macrophage tolerance, 

although still remain to be elucidated is believed to be driven by promoting 

recruitment of transcription factors; e.g., NF-κB, CCAAT/enhancer-binding protein 

β (C/EBPβ) and RNA polymerase II (Pol II) to gene promoter, without altering 

upstream TLR pathway signalling (Chen, Ivashkiv, 2010). Additionally, increased 

expression of secondary responses genes, such as IL-6 upon pretreatment with IFN-γ, 

was associated with a synthesis of new proteins and recruitment of nucleosome 

remodelling complexes, such as Brahma-related gene 1 (Brg1)-containing 

switch/sucrose nonfermenting (SWI/SNF) complex (Chen, Ivashkiv, 2010). All these 

changes are known to increase chromatin accessibility to transcription factors 

(Ramirez-Carrozzi et al., 2009). Interestingly, no changes in H3 and H4 acetylation 

and H3K4 trimethylation at the IL-6 promoter were observed upon LPS stimulation 

and tolerisation. 

Chen et al. (2010) also showed that studied cytokines had different kinetics for IFN-γ 

response, showing that TNF-α was more resistant to inhibition by IFN-γ at higher 

LPS doses. More recent data also suggest gene-specific TLR-induced regulations in 

tolerant macrophages, as some set of genes (e.g. antimicrobial effectors) is highly 

expressed after a second stimulation with inflammatory stimuli (Medzhitov et al., 

2009; Foster et al., 2010). An anergic state has been shown to be facilitated by TLR-

induced chromatin remodelling, consequently allowing the “shutting down” of the 

expression of proinflammatory genes (Foster et al., 2007). Presumably, gene 

silencing in anergic intestinal macrophages is associated with acquisition of 

nonpermissive histone modifications and reduction of activating marks present at 
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gene promoter, consequently blocking TLR-induced nucleosome remodelling and 

resulting in decreased accessibility of gene loci to transcription factors (El Gazzar et 

al., 2007; Foster et al., 2010). Foster and colleagues have proposed a system where 

they explained how genes of opposing functions could be regulated upon the same 

stimuli (e.g., LPS). They have proposed that upon LPS stimulation of naïve 

macrophages transcription factors are recruited to both, proinflammatory and 

antimicrobial class of genes. These genes also show increased histone acetylation, 

H3K4 trimethylation and chromatin remodelling. In tolerant macrophages, H3K4 

trimethylation is elevated at both classes of genes, and histone acetylation is only 

increased in a group of antimicrobial genes. Following stimulation with LPS, 

proinflammatory genes promoter remains deacetylated and inaccessible, whereas 

antimicrobial genes become even more acetylated with even greater kinetics. Thus 

TLR4 stimulation leads to induction of negative and positive factors that lead to 

silencing of one group of genes and activation of others (Foster et al., 2007).  

Additionally to T cells, upon activation, monocytes and macrophages are the main 

source of TNF-α (MacDonald et al., 1993; 2011). 

The TNF promoter and its regulatory DNA elements (not discussed in this work), 

such as enhancer, silencers have been shown to control transcriptional activation in 

response to the stimuli (Gross and Garrard, 1988; Falvo et al., 2010). The TNFA is an 

immediate early response gene, and is transcribed within minutes after stimulation 

(Goldfeld et al., 1993; Falvo et al., 2013). 

In numerous studies it was shown that the activation of TNF transcription is 

associated with multiple HATs such as CBP/p300 co-activators (Tsai et al., 2000; 

Brthel et al., 2003). The activating transcription factor-2 (ATF-2) was the first 

sequence-specific DNA-binding transcription factor (TF) to be identified as a HAT 
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(Kawasaki et al., 2000). The ATF-2 was shown to bind a conserved variant cyclic 

AMP response element (CRE) in the TNF proximal promoter, which activates the 

TNF gene expression in many cell types in response to multiple stimuli (Barthel et 

al., 2003).  

Additionally, HDAC1 and HDAC3, and also HDAC-recruiting co-repressors NCoR 

and CoREST associate with the TNF promoter in unstimulated immune cells (as 

shown in BMDMs), however this association is reduced upon LPS stimulation 

(Hargreaves et al., 2009). Histone acetylation therefore was linked to activated 

transcription in many genes, including the TNF promoter. For example, in Jurkat T 

cells, it was shown that PHA/PMA stimulation leads to induced histone H3 

acetylation but not H4 (Ranjbar et al., 2006). Furthermore, in murine primary CD4+ 

T cells, anti-CD3/CD28 stimulation increases acetylation of histone H3 and H4 at the 

TNF promoter (Tsytsykova et al., 2007). 

Additional studies supported the observation that increased H3 and H4 acetylation at 

the TNF promoter also correlates with LPS-induced TNF transcription in primary 

human monocytes and TH-1 cells (Sullivan et al., 2007; Garret et al., 2008), and is 

linked to maturation of monocytes into macrophages (Lee et al., 2003). Moreover, 

IFN- priming of primary human monocytes leads to persistent histone H4 acetylation 

and recruitment of ATF-2 and RNAPII at the TNF promoter, which consequently 

leads to even more enhanced H3/H4 acetylation in response to LPS stimulation 

(Garrett et al., 2008). 

DNA methylation at the TNF gene also regulates its transcription and correlates with 

cellular differentation. A number of studies indicate that DNA methylation within 

TNF regions, including the promoter, is associated with transcriptional repression 

(Falvo et al., 2013). It has been reported that TNF promoter and first exon are 
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demethylated in primary monocytes and macrophages, where the gene is expressed 

(Sullivan et al., 2007). DNA methylation profile at the TNF gene undergoes 

modification during myeloid commitment, leading to elevated methylation at CpG 

sites flanking the TNF promoter as a differentation process is initiated (Falvo et al., 

2013). 

Histone methylations are also involved in regulation of the TNF transcription. The 

histone marks, such as H3K4me3, -me2, -me1 were shown to be highly enriched at 

the TNF promoter following LPS or TNF stimulation and PMA/ionomycin activation 

of TH-1 cells or Jurkat cells, respectively (Taylor et al., 2008). By contrast, in LPS-

tolerant TH-1 cells, LPS stimulation fails to induce H3K4 methylation and H3K9 

demethylation at the TNF promoter, as it happens in LPS-responsive cells (El Gazzar 

et al., 2008). 

As an immediate early response gene, the TNF gene is set at poised state, ready for 

immediate activation if needed. This is supported by the observation that in 

unstimulated murine bone marrow derived macrophages (BMDMs), high levels of 

H3K4me3 and H3ac together with RNAPII, CBP/p300, are present at the TNF 

promoter (Hargreaves at al., 2009; Falvo et al., 2013). The poised state of the gene is 

also established by a bivalent, high enrichment of H3K4me3 and H3K27me3 (Lesch 

et al., 2013). As shown by Kruidenier and colleagues (2012), in primary human 

macrophages, LPS stimulation activates TNFA transcription, which is associated 

with reduced binding of H3K27me3 to the gene promoter (discussed more in section 

1.4.2.2). 

In summary, much of the work on epigenetic regulation of immune responses comes 

from work on mice models or human cell lines. Although the data provide a valuable 
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platform of information, it may not be possible to extrapolate these findings to 

human studies of relevant disease. 

1.5.  PhD hypothesis and Aims 

Under homeostatic conditions intestinal macrophages undergo a unique process of 

differentation. This process is associated with the establishment of anergic phenotype 

also known as hyporesponsivness. The state of anergy is driven by down-regulating 

TLR4 signalling pathway through recruitment of inhibitory molecules, for example 

IRAK-M or MyD88s (discussed in Section 1.2). However, growing evidence 

supports the idea that also epigenetic changes contribute to macrophage 

reprogramming and the establishment of anergic phenotype. Current knowledge on 

how chromatin modification drives genes expression in human intestinal 

macrophages is still very limited. Intestinal macropahges are an important players in 

driving homeostatic immune response. However, these cells represent a small 

component of immune cell population in normal and inflamed gut and no previous 

studies have looked into how their phenotype might be established through 

epigenetic modifications.  

 The major goal of this thesis project was to look at the relationship between histone 

methylation and repression of proinflammatory gene expression. We have 

hypothesised that the suppressed gene expression in human intestinal macrophages 

under homeostatic condition is associated with abundant occupancy of repressive 

histone marks. We have also hypothesised that the lost of anergy, as seen in intestinal 

macrophages of patients with inflammatory bowel disease (IBD) is associated with 

loss of silencing marks and possibly associated with increased occupancy of 

activating marks. The intestinal macrophages are highly plastic cells and therefore 

their phenotypic characterisation is not straightforward. Hence, the first aim of this 
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project was to optimise a method for isolation of sufficient number of intestinal 

macrophages. Only then it was possible to focus on epigenetic studies. 

The next aim of this project was to investigate, if the anergic state of macrophages in 

normal gut associated with repressive marks.  The third aim was to test, if in IBD, 

are there differences in epigenetic modifications between resident and infiltrating 

macrophages. The fourth aim was to test, if macrophages from normal and inflamed 

mucosa have different transcroption profile. Finally it was of interest to invstigate, if 

it is possible to prevent/reduce TNF-α production in IBD macrophages by blocking 

histone methylation at the gene promoter. 
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2. Materials and Methods 

2.1. Materials 

Antibodies against specific modifications of histone 3 (H3), transcription factors and 

controls used for ChIP assays and flow cytometry analyses are listed in Table 2.1 and 

2.2. 

Table 2.1: Antibodies used for chromatin immunoprecipitation (ChIP) assays   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Description Antibody Cat. No: Company 
Anti-RNA polymerase II, CTD, 
cl8WG16 

05-952 Millipore Ltd. 
Watford, UK 
 

Anti-RNA polymerase II CTD repeat 
YSPTSPS (phosphoS2) 

ab5095 Abcam Ltd. 
Cambridge, UK 

Anti-RNA polymerase II CTD repeat 
YSPTSPS (phosphoS5) 

ab5131 Abcam Ltd. 
Cambridge, UK 

Rabbit IgG – ChIP Grade ab37415 Abcam Ltd. 
Cambridge, UK 

Rabbit polyclonal to Histone3 – 
ChIP Grade 

ab1791 Abcam Ltd. 
Cambridge, UK 

Anti-H3K27me3 07-449 Millipore Ltd. 
Watford, UK 

JMJD3 ab85392 Abcam Ltd. 
Cambridge, UK 

Anti-H3K4me3 07-473 Millipore Ltd. 
Watford, UK 

Anti-H3K4me2 07-030 Millipore Ltd. 
Watford, UK 

Anti-H3K4me1 ab8895 Abcam Ltd. 
Cambridge, UK 

Anti-H3K9me3 07-442 Millipore Ltd. 
Watford, UK 

Anti-H3K9me1 07-450 Millipore Ltd. 
Watford, UK 
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Table 2.2: Antibodies and Isotype controls used for flow cytometry analysis 
 
Description Clone Isotype Cat. No. flourochrome Company 
CD45 
 

HI30 
 

Mouse IgG1, κ 
 

555485 
 

APC 
 

Biosciences 
Cambridge, UK 
 

CD45 HI30 Mouse IgG1, κ 304021 Pacific Blue™ Biolegend 
Cambridge, 
UK 

CD33 
 

#6C5/2 
 

Mouse IgG1   
 

FAB1137
A-025 

APC 
 

R&D Systems 
Europe Ltd. 
Abingdon, UK 
 

CD14 
 

M5E2 
 

Mouse IgG2a, 
κ 
 

301816 Pacific Blue™ 
 

Biolegend 
Cambridge, UK 
 

 
CD68 

 
Y1/82A 

 
Mouse IgG2b, 
κ 

333813 PerCP-Cy5.5 Biolegend 
Cambridge, UK 
 

CD3 
 

HIT3a 
 

Mouse IgG2a, 
κ 
 

300307 PE 
 

Biolegend 
Cambridge, UK 
 

TNF-α MAb11 Mouse IgG1, κ 502930 PE-Cy7 eBioscience, 
Cambridge, UK 

Anti-Histone 
H3 (tri 
methyl 
K27), 
unconjugate
d 

mAbca
m 6147 

Mouse IgG1, κ 
 

ab6147 N/A Abcam Ltd. 
Cambridge, UK 
 

Secondary 
Ab to 
H3K27me3 

N/A Goat anti-
mouse IgG 

ab96879 DyLight488 Abcam Ltd. 
Cambridge, UK 
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2.1.1. Reagents 

Reagents used in this study are listed in Tables 2.3 unless stated elsewhere. 

 
Table 2.3: An index of Reagents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 

 

 

 

 

Product Cat. No. Company 
Hank’s Balanced Salt Solution 
(HBSS) (w/o Ca2+, Mg2) 

14175 Life Technologies Ltd. 
Paisley, UK 

Collagenase Ia C2674 Sigma-Aldrich Co Ltd. 
Poole, UK 

DNase I D4263 Sigma-Aldrich Co Ltd. 
Poole, UK 

RPMI1640 medium [+] L-Glutamine 31870-025 Life Technologies Ltd. 
Paisley, UK 

HL-1 medium, completely defined 
Serum Free w/o L-Glutamine 

BE 344017 LONZA, Cambridge 
BioSciecne, UK 

Penicillin 15140-122 Life Technologies Ltd. 
Paisley, UK 

Gentamicin solution (10mg/ml) G1272-
100ML 

Sigma-Aldrich Co Ltd. 
Poole, UK 

hrGM-CSF 215-GM-010 R&D Systems Europe 
Ltd., Abington, UK 

LPS from E. coli (O111:B4) L4391-1MG Sigma-Aldrich Co Ltd. 
Poole, UK 

GSKJ4 compound 4594 R&D Systems Europe 
Ltd., Abington, UK 

Ficoll-Paque Premium 17-5442-02 GE Healthcare Life 
Sciences 

Phosphate buffered saline (PBS) 
(w/o Ca2+, Mg2+) 

14190-094 Life Technologies Ltd. 
Paisley, UK 

CD33  MicroBeads 130-045-501 Miltenyi Biotec 
Bisley, UK 

CD14  MicroBeads 130-050-201 Miltenyi Biotec 
Bisley, UK 

0.5M EDTA E7889-
100ML 

Sigma-Aldrich Co Ltd., 
Poole, UK 

Tris-EDTA buffer x 100 T9285 Sigma-Aldrich Co Ltd., 
Poole, UK 

Formaldehyde Solution (37%) F1635 Sigma-Aldrich Co Ltd., 
Poole, UK 

Glycine G8898 Sigma-Aldrich Co Ltd., 
Poole, UK 

Protein A-coated paramagnetic beads 
(Dynabeads ProteinA) (30 mg/ml) 

100-01D Life Technologies Ltd., 
Paisley, UK 

ChIP DNA Clean and Concentrator D5201 ZymoResearch, 
Cambridge Bioscience, 
UK 
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2.1.2. Patients and Samples 

All human tissues were obtained during routine surgery or endoscopy at Barts Health 

NHS Trust with appropriate ethical approval from the local research ethics 

committee and consent given by the patient in all cases. The surgical specimens were 

collected from patients undergoing intestinal resection for colorectal cancer and were 

used as controls or from macroscopically and microscopically inflamed or 

sporadically uninflamed area of intestine of patients with either Crohn’s disease 

(CD) or ulcerative colitis (UC). The surgical specimens from cancer patients were 

collected from a distal part of the bowel away from cancer. 

Additionally, colonic biopsies were also collected from patients undergoing 

colonoscopy due to either abnormal bowel habits or from patients diagnosed with 

IBD. The biopsies or small mucosal fragment cuts from resected tissue were used for 

ex vivo organ culture. The tissue resection samples were also used to isolate lamina 

propria mononuclear cells (LPMCs) and used for ChIP assays and array studies. The 

blood samples were also collected and used for isolation of peripheral blood 

mononuclear cells (PBMCs) for ChIP analysis. Detailed clinical features of IBD 

patients are presented in Figure 2.4.  

Trizol Reagent 15596026 Life Technologies 
Ltd., Paisley, UK 

Chloroform 2432 Sigma-Aldrich Co 
Ltd., Poole, UK 

RNase-Free DNase Set (rxn 50) 79254 Qiagen Ltd., 
Crawley, UK 

Superscript III First-Strand synthesis 
Supermix 

11752-050 Life Technologies 
Ltd., Paisley, UK 

hTNF-alpha DuoSet ELISA kit DY210 R&D Systems 
Europe Ltd., 
Abington, UK 



 100	
  

Table 2.4: Clinical features of patients with IBD (Crohn’s disease; n= 38 and Ulcerative 

colitis; n= 37). The table shows the patients records diagnosed with IBD and the location of 

the tissue material taken during endoscopy or surgical resections. 

IFX- Infliximab; AZA-Azathioprine; ADA-Adolimumab; 6-MP-Mercaptopurine; 5-ASA- 

Mesalamine. 

 

2.2. Methods 

2.2.1. Isolation of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) were obtained from heparinized blood 

by density gradient centrifugation using Ficoll-Paque Premium. Briefly, the blood 

was diluted 1:1 in phosphate buffered saline (PBS) (w/o Ca2+, Mg2+) and 25 ml of 

the blood was layered over Ficoll in 50 ml Falcon tubes in 1:1 ratio. Next, tubes were 

centrifuged for 30 minutes at ∼ 450x g at 20°C. The buffy coat formed at the 
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interface was collected into a 50 ml tube and washed twice in PBS (w/o Ca2+, Mg2+, 

5 minutes at ∼ 450 xg). Finally, the pellet was resuspended in 1 ml PBS (w/o Ca2+, 

Mg2+) and cells were counted using haemocytometer. 

 

2.2.2. Isolation of monocytes from PBMCs and differentation into human 

            primary macrophages  

CD14+ human monocytes were purified from PBMCs by positive selection using 

anti-CD14 magnetic beads following the manufacturer’s instructions (Miltenyi 

Biotec Ltd., Surrey, UK). Next, monocytes were cultured in macrophage media 

(RPMI1640, 10% heat-inactivated fetal bovine serum (FBS), 2mM L-glutamate, 

100units/ml penicillin/100µg/ml streptomycin) supplemented with 5ng/mL human 

macrophage granulocyte colony-stimulating factor (hrGM-CSF) (R&D Systems 

Europe Ltd, Abingdon, UK) for M1 macrophage differentiation. Monocytes at 

1x106/ml/well were seeded into 24-well plates and incubated at 37°C in a humidified 

atmosphere with 5% CO2 for 5 days. Finally, cells were harvested by scraping and 

used for chromatin immunoprecipitation assay and mRNA analysis. 

Additionally, monocytes were also isolated from blood (10 ml) of IBD patients 

following the same protocol. Freshly isolated cells were immediately prepared for 

chromatin immunoprecipitation assay as described in section 2.2.3.1. 

 

2.2.3. Isolation of lamina propria mononuclear cells (LPMCs) from resected 

            human gut 

The mucosa layer was removed from surgical specimens and cut into 3-4 mm size 

fragments. Next, the tissue was washed 3 times (for 10 minutes each time) with 

Hank’s balanced salt solution (HBSS) (Life Technologies Ltd., Paisley, UK) 

supplemented with 1 mM EDTA and penicillin/streptomycin/gentamycin at 37°C, 
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5% CO2 to remove the epithelial layer. The tissue was then mechanically fragmented 

using scalpels and incubated in medium (RPMI1640, 10% FBS, 100units/ml 

penicillin/100µg/ml streptomycin) containing 1mg/ml collagenase Ia (Sigma-

Aldrich, Co Ltd., Poole, UK), 10U/ml DNase I (Sigma-Aldrich, Co Ltd., Poole, 

UK)) with agitation for 1 h at 37°C. After incubation, the tissue fragments and 

isolated cells were washed once with medium, resuspended in 25 ml of medium and 

finally layered over 20 ml of Ficoll. The LPMCs were isolated by density gradient 

centrifugation, as described in section 2.2.1. Finally, gut macrophages were isolated 

from LPMCs by positive selection using anti-CD33 magnetic beads following the 

manufacture’s instructions (Miltenyi Biotec Ltd., Bisley, UK). Additionally, tissue 

resident monocytes were isolated using anti-CD14 magnetic beads (Miltenyi Biotec 

Ltd., Bisley, UK). 

 

2.2.4. Flow Cytometry 

2.2.4.1. Cell Surface Staining 

Freshly isolated cells (1x106) were transferred into 5 ml polystyrene FACS tube, 

washed twice in a cold FACS buffer (PBS w/o Ca2+, Mg2+, 2% FBS, 2mM EDTA) 

and finally resuspended in 100 µl of cold FACS buffer. To prevent non-specific 

binding of antibodies, Fc receptor was blocked using Hu FcR binding inhibitor (Cat 

no: 14-9161-73, eBioscience, Hatfield, UK) for 15 mins at 4°C prior to extracellular 

staining. Next, cells were incubated with required primary antibody or isotype 

controls (Table 2.2) at the dilution specified by manufacturer at 4°C for 30-40 mins 

in the dark. After incubation, cells were washed twice in cold FACS buffer. Just 

before analysis, 3 µl of 7-aminoactinomycin D (7-AAD, BD Bioscience) was added 
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into each sample to identify dead cells. Cells were analysed on a BD LSRII and data 

was analysed using FlowJo software (Tree Star Inc, Oregon, USA). 

 

2.2.4.2. Intracellular Staining 

The protocol was modified for a simultaneous analysis of surface molecules and 

intracellular antigens. The staining protocol was amended using a fixable dead cell 

exclusion dye (Zombie Aqua TM Dye, Biolegend, Cambridge, UK). Following the 

extracellular staining (as described in section 2.2.4.1), cells were washed in cold 

FACS buffer and then fixed and permeabilised using intracellular (IC) fixation and 

permeabilisation buffers, respectively (eBioscience Ltd., Hatfield, UK) following the 

manufacture’s instruction. Subsequently, cells were incubated with the relevant 

antibodies in permeabilisation buffer for 30 mins at 4°C in the dark. After 

incubation, cells were washed in permeabilisation buffer and finally resuspended in 

permeabilisation buffer and analysed by flow cytometry. 

 

2.2.4.2.1. H3K27me3 Staining 

Cells were first fixed and then permeabilised for 30 mins at 4°C in the dark using a 

Foxp3 fixation/permeabilisation Set (cat no. 900-552, eBioscience Ltd., Hatfield, 

UK,). After indicated times, cells were washed in permeabilisation buffer 

(eBioscience, cat no. 00-8333) and incubated with primary, unconjugated 

H3K25me3 antibody for 1 h at 4°C in a dark. Subsequently, cells were washed in 

permeabilisation buffer and stained for 1 h at 4°C in a dark with secondary antibody, 

together with other intracellular antibodies, or isotype controls. Finally, cells washed 

in permeabilisation buffer, resuspended in FACS buffer and analysed by flow 

cytometry as described previously. 



 104	
  

2.2.5.     Chromatin Immunoprecipitation Assay (ChIP assay) 

 
Chromatin immunoprecipitation assay is described in three sections: 2.2.5.1-3. 

Antibodies used for ChIP Assays were listed in section 2.1. (Table 2.1). 

 

2.2.5.1. Chromatin preparation  
 

All reagents used for chromatin preparation are listed in Table 2.5. 
 
 
Table 2.5: Buffers and reagents used for chromatin preparation and 
immunoprecipitation 

 
Briefly, 0.1–0.25 x 106 cells were used per immunoprecipitation (IP) under cross-

linking conditions. Cells were cross-linked with 1% formaldehyde for 10 minutes at 

room temperature on a shaker. Following quenching with 125 mM glycine, cells 

were harvested by scraping and washed once with cold PBS (w/o Ca2+, Mg2+). Next, 

the cells were resuspended in nuclei preparation buffer and incubated on ice for 10 

minutes. After incubation, samples were vortex vigorously for 10 seconds and 

centrifuged for 10 minutes at ~ 180x g. Finally, the nuclear pellet was resuspended in 

shearing buffer supplemented with proteinase inhibitor cocktail (PIC, Roche 

Diagnostics Ltd., cat no: 11836170001) and incubated on ice for 10 minutes, 

vortexing occasionally. Next, samples were sonicated with an Ultrasonics Sonicator 

for 20 cycles (10 seconds/cycle) to obtain the chromatin length of approximately 

1000 base pair (bp). After sonication, samples were centrifuged for 10 minutes at 

Buffer Composition 
Nuclei Preparation 
Buffer 

50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS 

Shearing Buffer 0.1% SDS, 3% NaCl, 1% Triton X-100, 2% Tris-EDTA  
Dilution Buffer 0.102% Tris, 0.51% NaCl, 0.102% Tris HCl, 0.018% EDTA 
RIPA Buffer 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-

100, 0.1% SDS, 0.1% Na-deoxycholate, 140 mM NaCl                                                                                                                                                                                                                                                                                                       
Elusion Buffer 20 mM Tris-HCl, pH 7.5, 5 mM EDTA, 50 mM NaCl, 1% SDS, 

50 µg/ml proteinase K                                                                              
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13300x g and supernatant was collected, diluted 1:1 with dilution buffer and used for 

subsequent ChIP assays or stored at – 70 °C. 

 

2.2.5.2.  Preparation of antibody–Protein A magnetic beads complex and 

 chromatin immunoprecipitation 

 
The required amount of Protein A-coated paramagnetic beads (0.3 mg/0.1x106 cells) 

were washed twice in cold RIPA buffer and finally resuspended to desired 

concentration. The beads were then incubated with the specific antibody (2.5 µg) for 

at least 4 hours at 4°C on a rotator. After incubation, the RIPA buffer was aspirated, 

100 µl of chromatin was added to the beads-antibody complex and all samples were 

further incubated overnight. 

 

2.2.5.3. DNA elution, cross-link reversal and proteinase K digestion 
 

The elution of the DNA from IP complex (chromatin/antibody/ Protein A beads), 

reversal of the DNA-protein cross-link, and digestion of the proteins were combined 

into a single 2 h step. 

Briefly, after overnight incubation of chromatin with the antibody/Protein A bead 

complex, the chromatin was aspirated and the beads were washed 4 times with cold 

RIPA buffer and once with cold TE buffer. Next, 50 µg/ml proteinase K (Life 

Technology, cat no: AM2546) was added to elution buffer and beads were incubated 

for 2 h at 68°C on a shaker at 1300 rpm using Thermomixer. After incubation, the 

eluate was collected into eppendorfs and precipitated DNA fragments were isolated 

using ChIP DNA Clean and Concentrator (ZymoResearch, Cambridge bioscience, 

UK).  
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2.2.5.4. Genomic DNA quantification 

The precipitated DNA material was analysed by Taqman quantitative real time 

(qRT)-PCR using a set of primers and a probe designed for TNFA transcription start 

site (TNFA TSS) with forward: GGGACATATAAAGGCAGTTGTTGG and 

reverse: TCCCTCTTAGCTGGTCCTCTGC primers in a combination with a probe: 

AGCCAGCAGACGCTCCCTCAGCAAG. The quantification performed in 

duplicate on an ABI PRISM 7900HT Sequence Detection System for absolute 

quantification of the amount of a specific histone modification or transcription factor 

associated with the transcription start side of TNFA gene. The plate was run using the 

following thermal conditions: stage I: 50°C for 2 minutes; stage II: 95°C for 10 

minutes, stage III: 95°C for 15 seconds, 60°C for 1 minute for 40 PCR cycles. 

The results obtained from Taqman qPCR were expressed as quantity mean (Qty 

mean) values. The Qty mean values were used to calculate percentage Input 

according to the formula: 

Percent Input = Qty mean of IP sample/Qty mean of total chromatin sample * 100 

IP – immunoprecipitation 

The percent input value was calculated for each histone mark analysed including 

total chromatin sample and also IgG sample. Finally each histone mark sample was 

additionally normalised to IgG. 

2.2.6. RNA extraction 
 

RNA was extracted using trizol-chloroform. Cells were lysed by adding 200 µl of 

trizol per 106 cells. If tissue material was used for RNA extraction, 400 µl of trizol 

was used per biopsy. The lysates were stored at -70°C for subsequent RNA 

extraction or used immediately The RNA extraction was performed using the Qiagen 

RNeasy kit (cat no: 74104, Qiagen Ltd., Crawley, UK,). First, the trizol lysates were 



 107	
  

mixed with 1/5th volume of chloroform and incubated for 5 minutes on a shaker at 

room temperature and centrifuged at 16,000xg for 3 minutes. The clear aqueous 

phase was transferred to a clean eppendorf and an equal volume of 70% ethanol was 

added to each sample. The samples were applied to a Qiagen RNeasy mini-column 

and centrifuged for 30 seconds at 9,000xg and washed two times with RW1 buffer 

(provided in the kit). Additionally, DNase digestion was included for more complete 

DNA removal using Qiagen RNase-free DNase Set. The DNase-1 stock was initially 

prepared following the manufacturer’s instruction and 10 µl of DNase-1 stock 

solution was dissolved in 70 µl of RDD buffer (provided in the kit) and 80 µl of final 

volume was applied onto each column and incubated for maximum 15 minutes at 

room temperature. Next, the columns were washed twice with RPE buffer (provided 

in the kit) and eventually columns were transferred to fresh eppendorfs and RNA 

was eluted using RNase-free water, also provided in the kit. RNA was quantified 

using a Nanodrop spectrophotometer (Thermo) according to the manufacturer’s 

instruction. Samples were stored at -70°C. 

2.2.7.  Reverse Transcription PCR (RT-PCR) 

 

Reverse transcription was performed with SuperScript® III First-Strand Synthesis 

SuperMix following manufacturer’s instructions (cat no: 11752250, Invitrogen Ltd., 

Paisley, UK). Each reaction was set up for no more than 1000 ng of RNA/sample. 

The RT-PCR cycles were set as follows: Stage 1: 10 minutes at 25°C, 30 minutes at 

50°C, 5 minutes at 85°C, forever at 1°C. After adding E.coli RNaseH, all samples 

were additionally run through stage 2: 20 minutes at 37°C, forever at 1°C. All cDNA 

samples were stored at -20°C for future work. 
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2.2.8.  Quantitative real-time PCR (qRT-PCR) 

The RNA was extracted using the method described in section 2.2.6 and reverse 

transcribed with SuperScript® III First-Strand Synthesis SuperMix (Invitrogen 

Cat#11752250) as described in section 2.2.7. Quantitative real time RT-PCR was 

performed in duplicate on an ABI PRISM 7900HT Sequence Detection System, 

using primers and probes as listed in Table 2.6. The plate was run at the following 

thermal conditions: stage I: 50°C for 2 minutes; stage II: 95°C for 10 minutes, stage 

III: 95°C for 15 seconds, 60°C for 1 minute for 40 PCR cycles. Results were 

normalized to the abundance of B-Actin, GAPDH, UBB and RPL13A.  

 

Table 2.6: Primers and probes used for analysis of RNA expression level 

 
 

2.2.9.  Reverse Transcription and RT2 Profiler Array PCR 

 

Prior RT2 Profiler Array PCR, reverse transcription was performed with the RT2 

First Strand Kit (Qiagen, cat no: 330401) with 340 ng of RNA per sample 

accordingly to manufacturer’s instructions in a maximum volume of 8 µl. A 

preliminary genomic elimination step was performed by adding 2 µl of GE 

buffer/sample (included in the kit). Samples were incubated at 42°C for 5 minutes. 

Next, to set up the reverse transcription 4 µl of 5XBC3 buffer, 1 µl of P2 buffer, 2 µl 

RE3 buffer and 3 µl of RNase-free water were added to each RNA sample (all 

buffers were included in a kit). Prepared samples were incubated at 42°C for 15 

Gene of 
interest ID 

Forward primer Reverse primer Probe 

TNFα 3px TCCTCTCTGCCATCAAGAGCC GTCGGTCACCCTTCTCCAGC TGGAAGACCCCTCCCAGATAGATGGGC 

Housekeeping 
genes ID 

Forward primer Reverse primer Probe 

ACTB GCTGTCCACCTTCCAGCAGA CGCCTAGAAGCATTTGCGGT AGCAAGCAGGAGTATGACGAGTCCGGC 

GAPDH CAAGGTCATCCATGACAACTTTG GGGCCATCCACAGTCTTCTG ACCACAGTCCATGCCATCACTGCCAT 

UBB CGGCAAGACCATCACTCTGG AAAGAGTGCGGCCATCTTCC TGGAGCCCAGTGACACCATCGAAAATG 

RPL13A GGGACTGCAGGTGGTGAC GGCCTCAGATGGTAGTGCAT AGTTTCCCGACCATGAGATG 
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minutes and then 95°C for 5 minutes on the thermal cycle. After incubation, samples 

were cooled on ice for 1 minute and 91 µl of RNase-free water was added to sample 

and gently mixed. Next, 102 µl of cDNA material was added to PCR premix (448 µl 

of RNase-free water mixed with 550 µl of RT2 Syber Green ROX qPCR Mastermix 

(cat no: 330401, Qiagen Ltd., Crawley, UK). Finally, the master mix (10 µl/well) 

was loaded onto Human Common Cytokine RT2 Profiler PCR Array plate (PAHS-

021E-4, Qiagen Ltd., Crawley, UK). The plate was centrifuges for 5 minutes at 

524xg and run on ABI7900HT (Applied Biosystems) with cycling conditions: 1 hot 

start cycle at 95°C for 10 minutes; 40 PCR cycles of 95°C for 15 seconds, and 60°C 

for 1 minute, then thermal denaturation cycle of 95°C for 15 seconds (ramp rate 

100%), 60°C for 15 minutes (ramp rate 100%), and 95°C for 15 seconds (ramp rate 

2%). The raw Ct values were normalised to GAPDH and converted to copy numbers. 

Undetected genes were eliminated from further analysis. Fold changes and P-values 

were obtained by fitting a linear model to the normalised copy number for each gene. 

Table 2.7 represents the set of all 84 genes included in RT-PCR Assay. 

Table 2.7: Index of 84 genes panel for Human Common Cytokine RT2 Profiler PCR 

Array plate (Qiagen, PAHS-021E-4) 
BMP
1	
  

BMP2	
   BMP3	
   BMP4	
   BMP5	
   BMP6	
   BMP7	
   BMP8B	
   CSF1	
   CSF2	
   FAM3
B	
  

FASLG	
  

FIGF	
   GDF1
0	
  

GDF11	
   GDF2	
   GDF3	
   GDF5	
   MSTN	
   GDF9	
   IFNA1	
   IFNA2	
   IFNA4	
   IFNA5	
  

IFNA
8	
  

IFNB1	
   IFNG	
   IFNK	
   IL10	
   IL11	
   IL12A	
   IL12B	
   IL13	
   TXLNA	
   IL15	
   IL16	
  

IL17A	
   IL17B	
   IL17C	
   IL25	
   IL18	
   IL19	
   IL1A	
   IL1B	
   IL1F10	
   IL1F5	
   IL1F6	
   IL1F7	
  

IL1F8	
   IL1F9	
   IL2	
   IL20	
   IL21	
   IL22	
   IL24	
   IL3	
   IL4	
   IL5	
   IL6	
   IL7	
  

IL8	
   IL9	
   INHA	
   INHBA	
   LEFTY2	
   LTA	
   LTB	
   NODAL	
   PDGFA	
   TGFA	
   TGFB1	
   TGFB2	
  

TGFB
3	
  

TNF	
   TNFRSF11
B	
  

TNFSF1
0	
  

TNFSF1
1	
  

TNFSF1
2	
  

TNFSF1
3	
  

TNFSF13
B	
  

TNFSF1
4	
  

TNFSF
4	
  

CD70	
   TNFSF
8	
  

B2M	
   HPRT
1	
  

RPL13A	
   GAPDH	
   ACTB	
   HGDC	
   RTC	
   RTC	
   RTC	
   PPC	
   PPC	
   PPC	
  

Fields in gray and green represent housekeepers and controls, respectively. The reaction was set for 
340 ng per sample/gene panel 
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2.2.10.     JMJD3 inhibition 
 

 
2.2.10.1. Cell culture with GSK-J4 compound 
 

Human blood-derived primary macrophages (M1) (methods 2.2.1.) and intestinal 

macrophages (method 2.2.2.) were cultured with H3K27me3 histone demethylase 

inhibitor at a concentration of 30 µM with or without E. coli LPS (100 ng/ml) for 1 

h. The experimental set up is shown in Figure 2.1. 

 

2.2.10.2. Organ culture with GSK-J4 compound 

If mucosal resection tissue was used, small biopsy sized fragments were obtained 

using fine scissors. Next, biopsies or biopsy size fragments were placed in 300 µl 

serum-free HL-1 medium (supplemented with 100 U/ml penicillin and 100 µg/ml 

streptomycin) with or without the compound (30 µM) in 24-well plate format. All 

samples were cultured for 12h or 24 h at 37°C, 5% CO2. Supernatants were collected 

and stored at -70°C for future analysis. Additionally, the tissues were stored in Trizol 

at - 70°C. 

2.2.11.    Cytokine Assay 
 
Human recombinant TNF-alpha, IL-6, IL8, IL-24 DuoSet ELISA kit (R&D Systems) 

were used accordingly to the manufacture‘s instruction.  

 
2.2.12.     Statistical analysis 

Except for common human cytokine profiler RT2 PCR Array, Graph Pad Prism 4.03 

version was used. Data analysed using Student t-test. Gene microarray analysis was 

performed by collaborators at GSK using one-way ANOVA analysis. 
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Figure 2.1: The study of JMJD3 inhibitor experiment set up. 
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Chapter 3 

 
Identification of phenotypic markers of intestinal macrophages for 

chromatin immunoprecipitation (ChIP) assay 
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3.1. Introduction 

Intestinal macrophages (IMACs) are essential players in the innate immune system 

of the gut. However, the fact that they are largely anergic to activation with pro-

inflammatory cytokines and PAMPS is a unique feature. The molecular basis for 

intestinal macrophage anergy is not known.  

In recent years, it has become clear that chromatin accessibility plays an important 

role in gene expression. Epigenetic regulatory mechanisms involve complex 

crosstalk between different regulatory elements, and those processes can be gene- or 

inducer-specific. Hence, there is great interest in understanding how chromatin 

remodelling regulates gene activation/repression. Much of the work on epigenetic 

regulation of immune responses comes from the work on mouse models or human 

cell lines. However epigenetic regulation of gene expression has emerged as a 

potentially important determinant in the development of many diseases, including 

inflammatory bowel disease (IBD) (Scarpa et al., 2012). Chromatin 

Immunoprecipitation (ChIP) is the most widely used procedure to examine histone 

modification and DNA/protein interaction. 

Standard ChIP assay requires a large number of cells (106/107) per 

immunoprecipitation (IP) and is time consuming. Intestinal macrophages are only a 

small component of mononuclear cells in normal and inflamed gut and no previous 

studies have looked at their epigenetic modifications. Therefore the first studies 

involved optimising the method of intestinal macrophages isolation. This work was 

done in collaboration with Francesca Ammoscato.  
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3.2. CD33 marker as an alternative to CD68 for functional studies 

Intestinal macrophages comprise only around 5% of total immune cells in lamina 

propria. The differentiation of monocytes into intestinal macrophages progresses 

through stages associated with acquisition or loss of certain markers (e.g., CD14) 

(Smith et al., 2011). The gold standard macrophage marker CD68 has been used to 

identify macrophages in various tissue types (Smythies et al., 2005). CD68 is a 

heavily glycosylated protein localised in the lysosomal membranes of macrophages 

(Smythies et al., 2005), and it functions as a scavenger receptor for oxidised low 

density lipoproteins (Ramprasad et al., 1996; Song et al., 2011). Even though 

separation of cells using CD68 is potentially the best way to isolate intestinal 

macrophages it is an intracellular marker and cells have to be permeabilised to allow 

the antibody to enter the cells. This makes CD68 a rather poor marker for any 

functional studies. Hence, the first part of this project aimed to identify other 

marker(s), which would allow recovery of sufficient cells for functional studies.  

We chose to investigate the potential of CD33 marker, a member of the Ig 

superfamily. In many publications CD33 has been broadly referred as a marker for 

macrophages co-expressed with CD68 (Rogler et al., 1998; Kamada et al., 2008). 

CD33 belongs to the sialoadhesin family of sialic acid-dependent cell adhesion 

molecules (Munday et al., 1999; Lajaunias et al., 2005). To date, sialic acid (α2,3- 

linkage) is the only known cell surface ligand (Crocker and Varki, 2001). CD33 

expression is largely restricted to the myeloid lineage (Crocker and Varki, 2001). 

Thus, it is highly expressed on myeloid committed cells in the bone marrow and 

circulating monocytes (Hernandez-Caselles et al., 2006). Some other data also 

suggest that CD33 can be expressed on activated CD4+ T cells, NKT and B cells 

(Hermandez-Caselles et al., 2006). However, lymphoid specific CD33 was shown to 
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display lower molecular weight than myeloid CD33 (Hernandez-Caselles et al., 

2006). 

By performing flow cytometry analysis we were able to show that about 15% of 

CD45+ LPMCs were CD33+ and this level remained constant across control subjects 

and patients with IBD (Figure 3.1), although with considerable inter-individual 

variation. 

Since CD68 is the gold standard marker for macrophages, we next performed double 

staining of CD33 and CD68. The analysis revealed that the majority of LPMCs also 

expressed macrophage marker CD68+ (Figure 3.2A). Moreover, CD68 expression 

was significantly (p<0.05) increased in patients with IBD, again with donor 

variability between analysed groups (Figure 3.2B).   

It was previously shown that human intestinal macrophages do not express innate 

response receptors (Smith et al., 2001). Although, many previous studies have 

indicted that CD14 is downregulated in intestinal macrophages (Smith et al., 2001; 

Smythies et al., 2005), a small number of CD14+ intestinal macrophages were also 

reported in normal human intestine (Kamada et al., 2008). Therefore, CD14 marker 

was also analysed on LPMCs. 

In the normal human intestine, the majority of CD33+ LPMCs were CD14- and there 

was no significant difference between normal and inflamed and uninflamed IBD 

mucosa (Figure 3.3B). However, a small population (∼2%) of CD14+CD33+ cells 

was present in normal human intestine (Figure 3.3C), and these cells were 

significantly increased in inflamed IBD mucosa. The highest increase of CD14+ 

intestinal macrophages was observed in inflamed UC mucosa samples (p< 0.01). 

There were no significant differences in the number of CD14+CD33+ cells between 

healthy and uninflamed IBD mucosa (Figure 3.3C). 
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Finally, we also studied the CD68 co-expression together with CD33 and CD14 

markers. As shown in Figure 3.4, in CD33+CD14- LPMCs, the majority of cells were 

also CD68+ (80% for HC, 97% and 86% for CD and UC) (Figure 3.4B). A similar 

proportion was also observed in CD33+CD14+ LPMCs (70% for HC and 90% for 

IBD)  (Figure 3.3A). In both cases, there was no significant difference between 

controls and IBD patients. 

Finally, knowing that lymphocytes also co-express CD33 (Hernandez-Casselles et 

al., 2006), although of lower molecular weight, we also checked the co-expression of 

CD33 and CD3 (Figure 3.5). We could not detect CD33 expression on CD3+ 

LPMCs, however only mucosa of healthy control subjects was analysed. 

 

3.3. Optimising cell yields and speed of isolation by FACS and MACS  

The first approach was to sort the intestinal macrophages with anti-CD33 antibodies 

using fluorescence activated cell sorting (FACS). By FACS it was possible to obtain 

∼15% of CD33+ LPMCs (Figure 3.1). Unfortunately, the method turned out to be 

time-consuming and expensive. We then moved to the magnetic cell sorting (MACS) 

method, which enabled us to isolate around 5-6% of CD33+ cells from the total 

numbers of LPMCs (Table 3.1). In terms of actual numbers, by using CD33 positive 

magnetic beads sorting method, it was possible to obtain around 2-3 million cells for 

subsequent experiments. The isolated cells population had also a high purity and 

importantly the procedure was much faster (~ 1.5 h). Table 3.1 shows the overall 

numbers of cells isolated for functional studies.  
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3.4.  Optimisation of Chromatin Immunoprecipitation (ChIP) method 

When these experiments were commenced, a standard ChIP assay required ∼1x106 

million of cells per immunoprecipitation (IP). For the purpose of this project, fewer 

cells per IP would greatly enhance the numbers of experiments that could be done 

with the limited number of CD33+ cells we could isolate from the gut. Optimisation 

of ChIP protocol was therefore performed using GM-CSF differentiated human 

primary macrophages. The ChIP method that was used involved the formaldehyde 

cross-linking in cell culture medium, thus providing a rapid fixation of the chromatin 

structure, and also eliminating the additional loss of cells. Crosslinking with 

formaldehyde requires subsequent chromatin shearing by sonication. As tested on 

1.2% agarose electrophoresis (Figure 3.6A) the sonication regime 20 x 0.10 minute 

impulse on (amplitude 10) using SonicPrep 150 sonicator provided the chromatin 

fragment of between 200-400 bp. 

For ChIP assay, antibodies are the most important factor for obtaining a good level 

of precipitation. In all cases we have decided to work with ChIP grade, polyclonal 

antibodies rather than monoclonal antibodies, since the polyclonal recognises larger 

numbers of epitopes on the target. To optimise ChIP protocol, two negative controls 

were used; rabbit IgG antibody and also ‘no antibody-beads only’ control sample. 

First, two concentrations of antibody against chosen target of interest (e.g., RNAPII 

and H3K27me3) were tested. As shown in Figure 3.6B, at the lowest concentration 

of antibody (2.5 µg) only a strong signal for RNAPII was detected (∼ 22% input). 

The H3K27me3 pull down was at the same level as for IgG and “beads only” 

negative controls (∼ 2% input). However two-fold increase of H3K27me3 signal (∼ 

10% input) was obtained at the higher antibody concentration (5 µg) (Figure 3.6C). 
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Additional increase in the number of washes even further improved the signal by 

reducing the background noise (Figure 3.6C-D).  

 

3.5. Discussion  

Given their crucial role in driving the innate and adaptive immune responses, for a 

long time now many studies have focused on accurate identification and 

classification of intestinal mucosa macrophages. It is truly difficult task considering 

that macrophages are highly plastic cells and that an environmental milieu greatly 

influences their phenotype and function. This is especially true in human, unlike the 

mouse where lineage tracers can be used. Additionally, macrophages and DC 

phenotypic profile also overlaps complicating their identification even more 

(Kamada et al., 2009; Bain et al., 2014). 

At the time when I started my PhD, to my knowledge, it was a first attempt made to 

investigate how gut macrophages regulate inflammatory responses through 

epigenetic modification. In this chapter I set out a task to optimise two methods 

essential to the project. Firstly, it was necessary to develop a method for isolation of 

intestinal macrophages from collected tissue material. Next to optimise a technique 

to study the chromatin architecture of these cells. 

Primarily, it was shown that CD33+ cells constituted about 15% of total LPMCs, and 

that this level remained constant in healthy and IBD mucosa as assessed by FACS. 

Moreover, it was possible to obtain a sufficient number of CD33+ intestinal 

macrophages for consequent functional analysis. Using MACS sorting method, on 

average about 2-4 million of CD33+ macrophages were isolated, which constitute 5-

6% of total LPMCs (Table 3.1).  
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The potential of CD33 was evaluated in combination with CD68; a well defined 

marker of tissue macrophages. By exploiting this, we have shown that CD33 marker 

highly co-expressed with CD68 (Figure 3.4). 

We also investigated co-expression of CD33 with CD14 marker (Figure 3.3). Under 

normal homeostatic conditions, the majority of CD33+ LPMCs did not express 

CD14. However, a small subset of CD14+ intestinal macrophages was also detected 

and this population increased significantly in inflamed IBD mucosa. Those findings 

were consistent with previous reports (Smith et al., 2001; Kamada et al., 2008, 2009; 

Lampinen et al., 2013). 

Although we have not performed additional studies of CD33+CD14+ cells, analysis 

of these cells by Grimm et al., (1995) and Kamada et al., (2008) suggested that 

CD14+ intestinal macrophages in the inflamed intestinal mucosa were newly 

recruited proinflammatory blood monocytes (Grimm et al., 1995) and that this subset 

of macrophages was a source of pro-inflammatory cytokines (e.g., IL-23, TNF-α) 

(Kamada et al., 2008, 2009). The accelerated recruitment of monocytes to the 

intestinal mucosa was observed in response to bacterial and viral infections 

(Orenstein et al., 1997; Hale-Donze et al., 2002; Smith et al., 2011). Therefore, it is 

likely that CD14+ intestinal macrophages represent monocyte-derived macrophages 

that have left the circulation at the site of infection and this pro-inflammatory 

cytokine/chemokine profile was dysregulated by the environmental factors 

(Greenwell-Wild et al., 2002; Vazquez et al., 2006; Smith et al., 2011). Indeed, 

additional FACS analysis revealed that these two subsets of intestinal macrophages; 

CD33+CD14- and CD33+CD14+ cells also co-expressed macrophage marker CD68 

(Figure 3.4) at a constant and comparable level, which was consistent with previous 

reports (Kamada et al., 2008). Hence, these results suggest that CD14+ cells denote a 
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new subset of intestinal macrophages present in inflamed mucosa, rather than freshly 

recruited blood monocytes. Interestingly, Kamada et al. (2008) also showed that the 

distinct differences between healthy and IBD CD14+ intestinal macrophages also 

exist.  

In conclusion, it was determined that CD33 is a good alternative to CD68 and could 

be used for intestinal macrophage isolation for this project. However, since other 

cells of myeloid lineage (e.g., monocytes, DCs) (Kamada et al., 2008), and also 

activated T cells, NKT and B cells express this molecule, we would expect to have 

some level of contamination coming from these cells in our isolated population. 

However, the level of this contamination could reach no more than 10-15% of total 

CD33+ LPMCs (Figure 3.4). Therefore, it was concluded that at this point, using 

CD33 was the only way of macrophage isolation. 

 These experiments allowed us to establish a technique for isolation of intestinal 

macrophages, for consequent functional studies involving a use of chromatin 

immunoprecipitation method. Subsequent optimisation of ChIP method allowed 

reducing the number of cells to 0.25x106 per IP, which was sufficient for the project. 

In the next chapter, I set out to implement these methods to investigate chromatin 

architecture of intestinal macrophages and its involvement in inflammatory 

responses. 
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Figure 3.1: The analysis of CD33 expression on LPMCs 

LPMCs were isolated from colonic tissue resection from IBD patients and controls using collagenase-

Ficoll method as described in Chapter 2. A). Representative dot plots of CD33 expression by CD45-

gated LPMCs. B). The mean proportion of CD33+ cells within each population. About 15% of CD45+ 

LPMCs were CD33+, and this level remained constant across control and patients with IBD, although 

with considerable inter-individual variation. No significant difference was observed between analysed 

individuals (HC n=27, CD n=15 and UC n=20).  
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Figure 3.2: The expression of CD33 and CD68 on CD45-gated LPMCs isolated from 
HC and IBD mucosa 
 
LPMCs isolated from normal mucosa specimens and of IBD patients were analysed by FACS for 

CD68 and CD33 expression. (A). Representative dot plots showing CD68 and CD33 expression by 

CD45-gated LPMCs. (B). CD33+CD68+ expression among groups: HC (n=9) CD (n=10) and UC 

(n=12). Two-fold increase in CD33+CD68+ proportion was observed in IBD mucosa (*) p<0.05.  
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A). 

 
B). C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The expression of CD33 and CD14 markers on LPMCs  
A). Representative dot plots showing the expression of CD33 and CD14 markers by CD45-gated 

LPMCs using flow cytometry analysis. (B) The graph showing the expression of CD33+CD14- by 

LPMCs between control subjects and inflamed and uninflamed IBD samples. The percentage of 

CD33+CD14- LPMCs was not significantly different between HC, CD and UC individuals. (C). The 

graph showing the expression of CD33+CD14+ by LPMCs between control subjects and inflamed and 

uninflamed Crohn’s and ucelerative colitis samples. The proportion of recruited CD33+CD14+ LPMCs 

increased significantly in inflamed IBD. There was no significant difference between controls and 

uninflamed IBD mucosa. Data is a representative of HC (n= 18), uninf. CD (n=4), inf. CD (n=17), 

uninf. UC (n=5), inf. UC (n=8), (*)p< 0.05, (**)p<0.05.  
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A).                                                                                                  B). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The expression of CD68 marker by recruited (A) and resident (B) intestinal 

macrophages 

Representative dot plots showing the expression of CD68 marker by (A) CD33+CD14+ and (B) 

CD33+CD14- intestinal macrophages isolated from IBD patients and controls as assessed by flow 

cytometry analysis. Both subsets of intestinal macrophages expressed comparable level of CD68 

marker across different tissue type (IBD vs. control). In both cases, there was no significant difference 

between controls and IBD patients. 
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Figure 3.5: The CD33 and CD3 co-expression in LPMCs isolated from normal mucosa 

LPMCs pooled from 3 HC patients were analysed for the expression of CD33 and CD3 by FACS. 

Representative dot plot of CD33 and CD3 expression by live-gated cells is shown. 
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Table 3.1: The total number of CD33+ LPMCs isolated from collected intestinal mucosa 

using MACS method 

Using MACS sorting method, it was possible to isolate about 4-5 million of CD33+ cells, which 

constitute 5-6% of total LPMCs. 
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Figure  
 
 
3.6: Optimisation of chromatin immunoprecipitation protocol 
 

A). Agarose (1.2%) gel electrophoresis of DNA isolated from cell lysate.  Samples prepared with 

sonication regime: 20x0.10 minute impulse on/(amplitude 10). The sonication was optimised using 

GM-CSF differentiated human primary macrophages (2x106). The chromatin length between 200-

400bp was recovered. Line1: 10 µl of cell lysate was loaded to assess the chromatin length. Line 2: 

100 bp ladder. B-E). ChIP protocol was optimised for antibody concentration using GM-CSF 

differentiated human primary macrophages (0.25x106 per IP). Antibody concentrations used; B). 

2.5µg, (n=1) C). 5.0µg, (n=1) D/E). 5.0µg with increased number of washes to eliminate a 

background noise (n=2).  
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                             Chapter 4 

 

Characterisation of chromatin architecture at the TNFA promoter 

in human intestinal macrophages 
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4.1. Introduction 

Intestinal macrophages undergo a specific process of differentiation, which is 

believed to be essential for their function in the innate immune system of the gut. 

Under homeostatic conditions cytokines in the local environment, such as TGF-β 

made by stromal cells and epithelial cells, induce phenotypic and consequently 

functional differentiation of newly recruited monocytes into non-inflammatory 

intestinal macrophages (Smith et al., 2005). Macrophages isolated from mucosa of 

healthy gut show tissue-specific features associated with downregulation of 

proinflammatory cytokines (Smythies et al., 2005). For example, most lack CD14 

needed for responses to LPS through TLR4.  

A state of anergy or transient hyporesponsiveness can be achieved through repeated 

or prolonged stimulation of monocytes or primary macrophages with inflammatory 

stimuli (e.g., LPS). Consequently, this leads to downregulation of acute 

proinflammatory genes, such as TNFA. The drive of the tolerant state is thought to 

prevent excessive tissue damage. In the context of the gut, where there is stimulation 

by bacterial PAMPs from the lumen, this anergy prevents cytokine production, but 

the cells remain highly phagocytic and with the capacity to kill invading 

microorganisms. Notably, IFN-γ priming has been shown to abrogate endotoxin 

tolerance, thus restoring responses to LPS stimulation (Chen et al., 2010). 

The proximal region of TNFA promoter (spanning -200 bp upstream of the TSS) 

mediates initiation of TNF transcription in response to a wide range of stimuli 

(Tsytsykova and Goldfeld, 2002). To understand the epigenetic architecture of 

intestinal macrophages in health and disease, TNF-α was selected due to its crucial 

role in driving pathology in the gut.  
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4.2. Sustained silencing of acute proinflammatory genes (e.g. TNFA) is 

            regulated by chromatin alteration 

To investigate the epigenetic state of the TNFA gene in intestinal macrophages, 

CD33+ LPMCs were isolated from mucosa of 13 IBD patients and 10 control 

subjects and RNA was analysed for TNFA transcripts. As shown in Figure 4.1A, only 

intestinal macrophages isolated from CD patients showed increased TNFA mRNA 

levels. A significant (p=0.05) 3-fold increase in the TNFA expression was observed 

in CD macrophages when compared with controls or even UC samples (Figure 

4.1A). Additionally, intestinal macrophages were also compared with blood 

monocytes and GM-CSF derived primary human macrophages. Monocytes and GM-

CSF derived macrophages were activated with LPS (100ng/ml) for 1h. As shown in 

Figure 4.1B-C and Figure 4.2A, LPS stimulation significantly increased TNF 

transcript levels in each cell type. However, intestinal macrophages isolated from 

healthy mucosa did not respond to activation with LPS (Figure 4.2B). 

Next, to investigate whether histone modifications contribute to the TNFA silencing 

state, macrophages from intestinal mucosa of controls were isolated and chromatin 

immunoprecipitation (ChIP) assay was performed. Since a small proportion of 

intestinal macrophages also express CD14, some of the cells were stimulated with 

LPS (100ng/ml/2h). Genomic DNA was analysed by Taqman qPCR for epigenetic 

changes of interest around the transcription start site (TSS) region of the TNFA gene. 

Since H3K27me3 is a silencing mark associated with the gene promoter, it was of 

interest to study this particular histone mark. Additionally, RNAPII, and its 

phosphorylated forms RNAPII-pS5 and RNAPII-pS2 as well as total H3 (tH3) were 

analysed. The ChIP assay revealed high prevalence (50% input) of H3K27me3 at the 

TNFA TSS (Figure 4.3A). Additional LPS activation did not alter H3K27me3 



 131	
  

enrichment at this region (Figure 4.3A). The same was true for tH3 (Figure 4.3B). 

Also, RNAPII level did not change upon LPS stimulation and remained at relatively 

low levels (2.5−3.0% input, Figure 4.4A). The LPS treatment also did not influence 

the phosphorylation level at serine-5 and -2 of RNAPII, indicating that neither 

initiation of transcription nor elongation occurred (Figure 4.4B-C). The RNAPII-pS5 

showed the highest enrichment at the TNFA TSS (40% input) when compared with –

pS2 (∼ 20% input) or RNAPII (3.0%). Together these data show a silent state of the 

TNFA promoter of intestinal macrophages isolated from control individuals and that 

LPS stimulation does not prime the gene for active transcription. Unfortunately, it 

proved impossible to isolate sufficient number of CD14+CD33+ macrophages from 

normal gut to carry out additional ChIP analysis to determine if this minor subset 

was LPS responsive. 

 

4.3. In macrophages isolated from IBD patients there are changes in a 

      chromatin architecture of the TNFA promoter 

Next, to investigate if increased the TNFA mRNA expression level correlated with 

epigenetic changes, ChIP assay was performed on macrophages isolated from 

intestinal mucosa of 11 IBD patients and 7 control subjects. A number of repressive 

and permissive histone modifications were investigated which are known to be 

associated with a gene promoter. Silencing marks such as H3K27me3, H3K9me3 

and H3K9me1, as well as activating marks such as H3K4me3, H3K4me1 and also 

RNAPII were selected. Results of analysis are presented in Figure 4.5A-G. The 

increased levels of the TNFA transcripts in Crohn’s disease might be associated with 

a removal of silencing marks from the TNFA TSS region. Among all silencing 

modifications assessed in normal intestinal macrophages, H3K27me3 showed the 
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highest occupancy at the TNFA TSS (~ 40% input) (Figure 4.5A) as oppose to 

methylation at H3K9 (~ 20% input for H3K9me3 and H3K9me1) (Figure 4.5B-C). 

Moreover, in macrophages isolated from mucosa of patients with CD but not UC, 

H3K27me3 mark showed a significant 2.5-fold reduction (from 40 to 15% input) 

compared to macrophages from normal gut. 

In CD, an active transcription could also be a result of reduced binding of other 

silencing marks such as H3K9me3 and –me1, however these changes were not 

significant (Figure 4.5B-C). Other histone methylations were also analysed, such as 

H3K4me3 and –me1 (Figure 4.5D-E). In IMACs isolated from control mucosa, the 

highest binding level was observed for H3K4me1 (~70% input). The occupancy of 

H3K4me3 was about ~40% input (Figure 4.5D-E). The reduced binding of 

H3K4me1 (50% input) was observed in both CD and UC macrophages (Figure 

4.5E), however the difference was not signifcant when compated with controls. 

H3K4me3 also was reduced, but only in macropahges isolated from CD mucosa 

(Figure 4.5D). The chromatin state was also assessed by looking at total H3 (tH3) 

(Figure 4.5F). The 2-fold reduction (from 30% to 15% input) in tH3 was observed in 

CD macrophages but not from UC or control samples. 

Interestingly, no change in binding was observed for RNAPII, which remained at 

very low and constant level in all cells (~1% input) (Figure 4.5G). Unfortunately due 

to insufficient DNA we did not have a chance to investigate the state of RNAPII 

phosphorylated forms to fully understand the level of active transcription. 

 We also compared the chromatin architecture of intestinal macrophages with GM-

CSF derived primary human macrophages. The GM-CSF macrophages were 

activated with LPS (100ng/ml/1h). The comparison between these groups revealed 

that macrophages isolated from mucosa of control subjects resemble the naïve GM-
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CSF macrophage profile (Figure 4.6). High enrichment of H3K27me3 was detected 

in naïve GM-CSF macrophages (~25% input), and in intestinal macrophages isolated 

from control samples (~ 40% input) and UC mucosa (~ 20% input) (Figure 4.6A). 

The LPS activation (100ng/ml/1h) drove a reduction of H3K27me3 at the TNFA TSS 

to the same level as seen in macrophages isolated from CD mucosa (Figure 4.6A). 

Interestingly, the same trend was observed for H3K4me3 mark (Figure 4.6B). 

However, LPS stimulation did not affect H3K4me1 binding in GM-CSF 

macrophages (50% input) (Figure 4.6C). 

We also analysed the recruitment of RNAPII to the TNFA TSS upon LPS activation. 

The LPS stimulation activated RNAPII recruitment to the TNFA TSS, since a 2-fold 

increase in binding was detected (from 20% to 40% input) (Figure 4.6E). Additional 

analysis of RNAPII at TNFA TSS revealed that intestinal macrophages, whether 

isolated from control or IBD mucosa, are rather unique, since RNAPII level was at 

surprising low level (1% input) (Figure 4.6E). 

The removal of the methyl mark from H3K27me3 is facilitated by JmjD3 

demethylase upon inflammatory stimuli. Jumonji D3 (JmjD3) and its paralog, UTX 

are two related histone demethylases specific to H3K27me3 which regulate 

inflammatory responses in the context of LPS macrophage activation (Agger et al., 

2007; De Santa et al., 2007, Kruidenier et al., 2012). JmjD3 is preferentially 

recruited to the transcription start sites of activated genes (De Santa et al., 2009), 

hence it was of interest to investigate, if increased mRNA levels of JMJD3/UTX are 

seen in intestinal macrophages from IBD patients. JMJD3 and UTX expression was 

observed in normal and IBD macrophages (Figure 4.7). Increased JMJD3 and 

decreased UTX transcript level were detected in intestinal macrophages isolated from 

Crohn’s disease patients, although the difference was not significant (Figure 4.7). 
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Moreover, UTX expression was significantly higher than JMJD3 in all tissue types 

(Figure 4.7). 

 

4.4 .     Differentiation of blood monocytes into resident gut macrophages in the 

      healthy intestine is associated with the acquisition of repressive histone 

      marks 

The precursors of intestinal macrophages are blood monocytes, which are attracted to 

the lamina propria upon exposure to the endogenous chemoattractants in the non-

inflamed mucosa or by inflammatory chemokines during inflammation (Bain and 

Mowat, 2014). 

Since we observed that increased TNFA transcript level in CD intestinal 

macrophages was associated with a removal of repressive marks, it was of interest to 

investigate, if the establishment of repressive chromatin architecture is set during 

blood monocytes differentiation into resident intestine macrophages. To do so, we 

compared histone modification profile between blood monocytes and intestinal 

macrophages.  

As shown in Figure 4.8A, in healthy gut, the differentiation of blood monocytes into 

resident intestinal macrophages is associated with deposition of H3K27me3 and 

H3K9me3 silencing marks at the TNFA TSS.  

In monocytes isolated from blood of control individuals and patients with CD, 

H3K27me3 prevalence was at the same level (~10% input). Blood monocytes 

isolated from UC patients showed higher (2-fold) enrichment of this mark (~30% 

input) (Figure 4.8A). However, the difference between groups did not reach a 

significant difference. 
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The increased binding (from 2% to 20% input, p = 0.06) of H3K9me3 was also more 

profound in macrophages isolated from normal mucosa than in macrophages isolated 

from IBD mucosa when compared with blood monocytes (Figure 4.8C). 

Additionally, H3K9me3 could be hardly detected in blood monocytes isolated from 

control and IBD samples (Figure 4.8C). Also, there were no differences between 

blood monoctyes and intestinal macrophages in H3K9me1 binding as the occupancy 

of this mark was within range of 10-20% input (Figure 4.8D). 

We speculated that a recruitment of silencing marks seems to be tissue specific, since 

there was no difference in H3K27me3 and H3K9me3 binding between controls and 

IBD blood monocytes, and also IBD mucosa macrophages (Figure 4.8). Only blood 

monocytes undergoing differentiation into intestinal resident macrophages (control 

macrophages), under homeostatic conditions acquired H3K27me3 and H3K9me3 

repressive marks. Interestingly, no differences were observed in H3K4me3 and 

H3K9me1 binding between blood monocytes and IBD intestinal macrophages 

(Figure 4.9B-D). The enrichment of those marks remained constant across all 

analysed cell types. However, changes in H3K4me1 were detected between healthy 

control and UC monocytes and intestinal macrophages (Figure 4.9). We have also 

observed that in healthy individuals, the differentiation was associated with 

significant (p≤ 0.05) increase in H3K4me1 binding (from 40% to 80% input) (Figure 

4.9A). In CD, H3K4me1 remained constant at 40% input in blood monocytes and 

also intestinal macrophages. Whereas, in UC, macrophages lost H3K4me1, since a 

significant (p≤0.001) 3-fold reduction of this mark was detected. 

Additionally, we have also analysed the enrichment of RNAPII and its 

phosphorylated forms, as well as JMD3 direct binding to the TNFA TSS. The data 

suggests that increased JMJD3 binding to the TNFA promoter can occur in IBD 
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environment (Figure 4.9C). However, this is only preliminary conclusion. The same 

can be speculated for RNAPII, since increased enrichment of RNAPII, -pS5 and -

pS2 was detected in blood monocytes of IBD patients (Figure 4.10). 

 

4.5. Discussion 

Chromatin modification plays an important role in macrophage polarisation and 

function, although a current knowledge in this field is still limited (Ivashkiv et al., 

2013). Growing evidence supports the idea that epigenetic changes contribute to 

macrophage reprogramming and lead to tailored gene expression in response to gut 

environmental factors. There is still ongoing search to identify epigenetic mechanism 

regulating macrophage tolerisation (Ivashkiv et al., 2013). It has been recognised that 

a better understanding of IBD epigenetics, especially mechanisms that mediate 

repression of inflammatory cytokine gene expression in macrophages in human 

disease setting, represents an important aspect of search for new therapeutic targets. 

The TNFA gene was selected since it is the master regulator of innate and adaptive 

immune responses. It was demonstrated that the TNFA is an immediate early 

response gene and is transcribed within minutes after stimulation (Goldfeld et al., 

1993; Falvo et al., 2013). Depending on cell type and triggering stimuli, a range of 

transcription factors and co-activators are recruited to the proximal TNF promoter, 

which drive transcription of the gene (Falvo et al., 2008). This cell type- and stimuli-

specific activation of the TNF gene transcription is a key element of epigenetic 

regulation of the gene (Biglione et al., 2011). 

The main phenotypic characterisation of intestinal macrophages is their unique 

anergic potential. Under homeostatic conditions, intestinal macrophages undergo a 

specific process of differentation associated with down regulation of 
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proinflammatory cytokines (Smythies et al., 2005). These cells also become 

hyporesponsive to continuous LPS stimulation, a state known as endotoxin tolerance. 

It is known that this stage of transient non-responsiveness is driven by stimuli- and 

gene-specific regulatory mechanisms. These mechanisms involve alterations in TLR-

signal induction pathways, but also change in chromatin environment, as was shown 

here. 

The aim of this part of the project was to study the chromatin architecture of 

intestinal macrophages isolated from mucosa of control subjects and IBD patients. 

We wanted to understand how the disease environment influences chromatin state 

and transcription profile of these cells. 

To do so, we first looked into the TNFA mRNA level in the gut macrophages. 

Among all samples recruited for this study, only macrophages isolated from colonic 

mucosa of patients with Crohn’s disease showed increased TNFA transcription. 

Interestingly, macrophages isolated from ulcerative colitis patients and control 

subjects had the same TNFA transcript level. In 8 out of 10 control subjects, the 

TNFA mRNA level was lower than in representative Crohn’s mucosa, but not in 

ulcerative colitis. Among all UC patients recruited in this study, only 2 out of 8 had 

2-fold increase in the TNFA level. However, the same was observed in control 

donors. 

The general opinion is that in IBD, TNF-α production is increased at mRNA and 

protein level and that excessive TNF production correlates with the severity of the 

disease (Olsen et al., 2007; Yarur et al., 2015). However no increase in TNF mRNA 

production was detected in ulcerative colitis samples used in this study.  

In UC, the role of TNF has been less characterised, although a TNFA gene 

polymorphism was linked with susceptibility to UC. For example, the frequency of 
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carriers for polymorphism (-308A and -238G) is significantly increased in Japanese 

UC patients (Wilson et al., 1993), but only weakly associated among Chinese UC 

patients (Cao et al., 2006) compared with controls (Levin and Shibolet, 2008). In 

contrast, in Dutch UC patients, the frequency of the same polymorphism site was 

reduced (Bouma et al., 1996; Levin and Shibolet, 2008). Additionally, increased 

prevalence of TNF-α polymorphism site (-857C) was linked with ulcerative colitis 

among UK Caucasian patients (van Heel et al., 2002), while homozygosity for a 

TNF-α haplotype (TNF-α, -1031T, -8363C, -857C, 380G, -308G, -238G) was linked 

to low TNF-α production (Ahmad et al., 2003; Levin and Shibolet, 2008). A number 

of studies have also shown significant increase in TNF-α levels in colonic mucosa of 

UC patients (Breese et al., 1994, MacDonald et al., 1990), but also that the increased 

TNF-α production is more apparent in inflamed but not in noninflamed sites (van 

Heel et al., 2002). The above examples highlight the fact of great heterogeneity of 

TNF-α production in UC patients. In fact, additional single sample analysis of 

samples that were used in this study revealed that increased TNFA mRNA level was 

also associated with the disease activity. The lack of evidence in increased averaged 

TNF-α transcript can be due to the fact that most of UC samples for tis sudy were 

collected from nonactive sites.   

Next, it was speculated that a break of anergic phenotype in IBD macrophages might 

be associated with changes in a level of silencing marks. By assessing the TNFA TSS 

we noted that macrophages isolated from mucosa of CD patients showed decreased 

enrichment of H3K27me3, H3K9me3 and –me1, with H3K27me3 having the 

greatest significant reduction. Also, some level of reduction was observed for 

H3K4me1 in both, CD and UC macrophages and H3K4me3 but only in CD 

macrophages. However, these changes did not reach significant values. Nevertheless, 
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this finding suggests that loss of tolerance might be associated with reduced 

occupancy of H3K27me3 silencing mark. 

The phenomenon of endotoxin tolerance has been extensively studied using various 

in vitro models (Foster et al., 2007; De Santa et al., 2009; Chen and Ivashkiv, 2010). 

Along the process of tolerisation, cells become transiently hyporesponsive upon 

repeated or prolonged exposure to LPS. Based on these data, it is known that 

chromatin remodelling plays an important part (El Gazzar et al., 2007). In respect to 

immune cell activation that involves increased TNF production, histone marks such 

as H3K4me3, -me2, -me1 were shown to be highly enriched at the TNF promoter 

following LPS or TNF stimulation and PMA/ionomycin activation of TH-1 cells or 

Jurkat cells, respectively (Taylor et al., 2008). However, Sullivan et al. (2007) 

showed that LPS activation of TH-1 cells results in loss of H3K4me2 and in 

increased H3K4me3 (Sullivan et al., 2007). In unstimulated murine bone marrow 

derived macrophages (BMDMs), high levels of H3K4me3 and H3ac (but not H4ac) 

together with RNAPII, CBP/p300, are present at the TNFA promoter, consistent with 

a primary response gene poised for transcription (Hargreaves at al., 2009; Falvo et 

al., 2013). By contrast, in LPS-tolerant TH-1 cells, LPS stimulation fails to induce 

H3K4 methylation and H3K9 demethylation at the TNF promoter, as it happens in 

LPS-responsive cells (El Gazzar et al., 2008). 

In reference to histone methylation, none of the mentioned examples included the 

H3K27me3 silencing mark in their study, therefore we decided to investigate the role 

of this mark in the process of tolerisation using human primary macrophages (GM-

CSF). Our preliminary experiment suggests that LPS stimulation of naïve 

macrophages results in enrichment of activating mark H3K4me3 and that this failed 

to happen in LPS-tolerant cells (Foster et al., 2007; El Gazzar et al., 2008) (Figure 
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Appendix 0.1C). LPS activation of naïve macrophages also triggered the recruitment 

of RNAPII to the TNFA TSS and a decrease in silencing mark; H3K27me3. Of note, 

LPS stimulation of tolerant macrophages did not influence the RNAPII level. 

Moreover, an enrichment of RNAPII remained constant and comparable to the level 

of LPS stimulated naïve cells (Figure Appendix 0.1A). Interestingly, it was possible 

to detect even higher enrichment of H3K27me3 in tolerant cells stimulated with LPS, 

suggesting that indeed H3K27me3 contributes to the gene tolerisation (Figure 

Appendix 0.1AB). 

The reduced H3K27me3 signal after LPS stimulation may reflect enzymatic 

demethylation, histone exchange or nucleosome loss (De Santa et al., 2009). Indeed, 

H3K27me3 reduced occupancy mirrored the decrease in the total H3 (tH3) level. 

This suggests that nucleasome loss rather than enzymatic demethylation may be the 

mechanism underlying the observed reduction of H3K27me3. As reported by others, 

nucleosome depletion at inducible genes is a common phenomenon in LPS-

stimulated macrophages, possibly because of the nucleosome displacement linked to 

Poll II elongation (De Santa et al., 2009). It should be remembered that what we see 

here is just a piece of the puzzle and that epigenetic modifications also involve 

dynamic changes involving protein complexes. 

It may be speculated that in resident gut macrophages, the enrichment of silencing 

marks at the TNFA TSS is driven by environmental factors within the gut. The main 

source of gut macrophages is peripheral blood monocytes, which are attracted to 

lamina propria during inflammation (Bain et al., 2014). However, inflammatory 

environment, the one seen in IBD, drives these cells to gain pro-inflammatory 

phenotype. 
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 In fact, it has been shown that IFN-γ abrogates endotoxin tolerance by chromatin 

remodelling in in vitro model (Chen et al., 2010). The increased IFN-γ level is a 

characteristic feature of Crohn’s disease lamina propria, hence the above scenario 

can most likely happen. 

The results presented in section 4.4 also suggest that the homeostatic environment of 

lamina propria drives the enrichment of silencing marks to the TNFA TSS along the 

process of cell differentation. Peripheral blood monocytes from controls and IBD 

patients displayed similar levels of H3K27me3 mark. However, only control 

macrophages eventually acquired H3K27me3 at the TNFA TSS together with 

H3K9me3. Additionally, no difference in H3K4me3 was observed between blood 

monocytes and intestinal macrophages from control and IBD patients, although 

higher binding of this mark was detected in monocytes and intestinal marophages 

isolated from UC patients that in other groups. 

It is possible that during the process of cell differentiation, the bivalent state of the 

TNFA promoter is being established through interplay between H3K27me3 and 

H3K4me3 in healthy gut macrophages and this is disturbed in IBD environment. 

This additionally supports the role of these silencing marks, H3K27me3 especially, 

as important in establishment of anergic phenotype. Therefore, an acquisition of 

repressive mark by anergic resident intestinal macrophages is most likely a tissue-

type specific process. However, the results presented here are still preliminary as 

statements made can not be supported by a significant outcome.  

Possibly future work will establish the exact role and dynamics between histone 

methylation marks, especially H3K27me3 in driving the endotoxin tolerance in IBD 

intestinal macrophages. 
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Additionally, JmjD3 was also studied. As the only known substrate of JmjD3 is 

H3K27me3 (De Santa et al., 2007; 2009), therefore it was of interest to explore 

JmjD3 in IBD.  The JmjD3 is an enzyme belonging to histone demethylase group 

involved in a control of gene expression in LPS-activated macrophages (De Santa et 

al., 2009). The exact functions of JmjD3 and its paralog UTX are unclear. Elevated 

transcripts of JMJD3 were detected in CD macrophages, however without a 

significant difference. Interestingly, UTX expression was at much higher significant 

level than JMJD3, which came as surprise, considering that in previous studies, UTX 

level was detected at lower and constant levels that JMJD3 (De Santa et al., 2007). It 

has been shown that in Drosophila melanogaster, UTX colocalises with the 

elongation form of RNAPII, thus suggesting an active role in ongoing transcription 

(Smith et al., 2008).  

Noting that JMJD3 transcript level was increased in CD macrophages, we also 

looked into its direct binding to the TNF gene. Based on genomic studies of JMJD3 

distribution, it was shown that the enzyme preferentially occupies TSS±0.5kbp (De 

Santa et al., 2009). Analysis of JmjD3 occupancy at the TNF TSS using ChIP data 

generated from blood monocytes and intestinal macrophages from control and IBD 

samples showed increased prevalence of JmjD3 in IBD monocytes and UC 

macrophages. Although, these data are preliminary, it may be possible that increased 

JmjD3 binding associates with pro-inflammatory profile of cells.  

The JmjD3 involvement in tuning the transcription output of LPS-stimulated 

macrophages was investigated by De Santa et al. (2009). Considering the high 

substrate specificity and the fact that JmjD3 is recruited to the gene promoter upon 

LPS stimulation, it is believed that JmjD3 functions to reduce H3K27me3 occupancy 

and enhance transcriptional activity (De Santa et al., 2009).  
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However, De Santa and collegues (2009) also showed that JmjD3 recruitment to a 

target gene does not rely on pre-existing H3K27me3 and at most recruitment sites, 

JmjD3 will not encounter H3K27me3. They showed that some of the genes showing 

the highest level of JmjD3 recruitment were these undergoing massive H3K4me3 

increase after stimulation. 

In summary, in this chapter, we set out to characterise the chromatin architecture at a 

selected proinflammatory cytokine gene in the intestinal macrophages. We have 

decided to study a number of repressive and permissive histone modifications 

associated with the gene promoter (TSS) and which have been described to be 

important in regulating gene expression. 

We first looked at the chromatin state of resident ’anergic’ intestinal macrophages 

isolated from a mucosa of control subjects. It allowed us to understand that 

chromatin architecture in a normal intestinal macrophages is such that active TNFA 

transcription can not be initiated and possibly this is due to a high occupancy of 

silencing marks, especially H3K27me3. Additionally, we have also speculated that 

under homeostatic conditions, the TNFA gene is set at a bivalent state, since we have 

observed a concurrent high binding of H3K27me3 and H3K4me3 at the gene 

transcription start site. Next, we went on to investigate what is a chromatin state of 

the TNFA TSS in IBD intestinal macrophages. We have observed that CD 

macrophages displayed significantly lower binding of the silencing mark H3K27me3 

to the TNFA TSS than controls and even UC macrophages. Moreover, activated state 

of the TNFA promoter in CD macrophages was additionally associated with 

decreased binding of other repressive marks H3K9me3 and –me1, although with no 

significant difference. 
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In conclusion, these results suggest that the establishment of tolerogenic phenotype 

of the intestinal macrophages as seen through down-regulation of proinflammatory 

cytokine gene expression is driven by epigenetic modifications associated with an 

establishment of different repressive histone 3 (H3) environment. Potentially, a 

silencing mark H3K27me3 may play an important role in driving this phenotype, 

along with other repressive marks, such as H3K9me3. We have also documented that 

acquisition of repressive mark by anergic resident intestinal macrophages is most 

likely a tissue specific process and that this process is disturbed in IBD.  

Unfortunately, the results presented here in many aspects could not reach a statistical 

significance due to sample’s variability and low number of patients recruited. Hence, 

future work is required to further confirm these preliminarly data. 
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Figure 4.1: Characterisation of anergic phenotype of resident intestinal macrophages 

based on potential to express TNFA 
A). TNFA expression level in intestinal macrophages (CD33+LPMCs) isolated from control subjects 

and IBD patients HC n = 10; UC n = 8; CD n = 5 B). TNFA expression level as in Figure 4.1A in 

comparison with GM-CSF derived primary human macrophages (n=3) and peripheral blood 

monocytes from control subjects (n=1). Cells stimulated with LPS (100ng/ml/1h). C). The TNFA 

expression level as in Figure 4.1B, excluding control peripheral blood monocytes. Increased TNFA 

transcript level (3-fold) was detected in intestinal macrophages isolated from Crohn’s patients, but not 

ulcerative colitis or control subjects. TNFA relative expression level was normalised to GAPDH, 

ACTB, UBB and RPL13A as housekeepers. Data are shown as mean ± SEM from independent 

experiments (*) p≤ 0.05. 
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Figure 4.2: Characterisation of anergic phenotype of resident intestinal macrophages 

based on potential to express TNFA 

TNF-α production by (A) human blood monocytes (n=4) and (B) CD33+ LPMCs isolated from 

mucosa of control subjects (n=2). Cells were analysed by flow cytometry. Cells were additionally 

stimulated with LPS (100ng/ml/1h) (*) p≤ 0.05. 
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Figure 4.3: H3K27me3 and tH3 occupancy at the TNFA TSS 
ChIP assay performed on intestinal macrophages isolated from control subjects. Since a small fraction 

of resident macrophages also express CD14, a half of cells were stimulated with LPS (100ng/ml) for 

2h in 24 well-plate format. Data are presented as mean ± SEM of 5 independent experiments. Data are 

presented as % input normalised to IgG signal. Additional LPS stimulation did not influence the 

binding of H3K27me3 or did not change the chromatin state. 
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Figure 4.4: RNAPII and phosphorylated –S5 and –S2 level at the TNFA transcription 

start site (TSS) 
ChIP assay performed on intestinal macrophages isolated from control subjects. Experimental setting 

were as in Figure 4.3. Data are presented as mean ± SEM of 5 independent experiments. Data are 

presented as % input normalised to IgG signal. Additional LPS stimulation did not influence the 

binding of RNAPII forms. 
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Figure 4.5: The assessment of repressive and permissive histone modifications, tH3 and 
RNAPII levels at TNFA TSS between IMACs isolated from IBD patients and control 
subjects 
ChIP assay performed on intestinal macrophages isolated from control subjects (HC), Crohn’s (CD) 

and Ulcerative colitis (UC) patients. LPMCs were sorted using CD33+MACS method. Cells were 

fixed with 1% formaldehyde and sonicated to shear a chromatin. Data are presented as mean ± SEM 

of independent experiments. Data are presented as % input normalised to IgG signal (*) p≤ 0.05. 
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Figure 4.6: The assessment of repressive and permissive modifications histone 
modification, tH3 and RNAPII levels at the TNFA TSS between IMACs isolated from 
IBD patients, control subjects and GM-CSF macrophages 
ChIP Assay performed on IMACs isolated from control subjects (HC), Crohn’s disease (CD) and 

Ulcerative colitis (UC) patients as stated in Figure 4.5 and GM-CSF derived human macrophages 

(n=3). Data are presented as mean ± SEM of independent experiments. Data are presented as % input 

normalised to IgG signal (*) p≤ 0.05. 
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Figure 4.7: The JMJD3 and UTX mRNA expression level in intestinal macrophages 

(CD33+ LPMCs) isolated from control subjects (HC) and IBD patients 

The JMD3 and UTX absolute mRNA expression level was normalised to ACTB and UBB as 

housekeepers. Data are presented as copies number/50 ng. Data are shown as mean ± SEM from HC 

n=13; UC n=6; CD n=8 (*) p≤ 0.05, (***) p≤ 0.001. 
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Figure 4.8: The assessment of repressive modifications; H3K27me3, H3K9me3 and 

H3K9me1 and permissive histone modification; H3K4me3 at the TNFA TSS between 

IMACs isolated from IBD patients, control subjects (as in Figure 4.5) and blood 

monocytes from IBD patients and control subjects (*) p≤  0.05. 
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Figure 4.9: The assessment of histone methylation marks H3K4me1 and histone 3 (tH3) 

and JMJD3 direct binding at the TNFA TSS.  
ChIP assay was performed on blood monocytes from IBD patients, control subjects and intestinal 

macrophages (IMACS) from IBD patients (CD and UC) and controls (*) p≤ 0.05, (**) p≤ 0.01. 
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Figure 4.10: The assessment of RNAPII and its phosphorylated forms RNAPII-

phosphoS5 and RNAPII-phosphoS2 at the TNFA TSS 
As in Figure 4.9, ChIP assay was performed on blood monocytes from IBD patients and control 

patients as well as from intestinal macrophages (IMACS) from IBD patients (CD and UC) and control 

subjects to assess RNAPII and its phosphorylated forms. 
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               Chapter 5 
 

Investigating the inhibitory effect of GSKJ4 (a JMJD3 

inhibitor) on human primary GM-CSF macrophages 

and intestinal macrophages in IBD 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 156	
  

5.1. Introduction 
 

The methylation of H3K27me3 is thought to be a key epigenetic regulator of cell 

homeostasis and development (Margueron et al., 2011). Among all histone 

demethylases, the enzymes involved in an establishment or resolution of the 

H3K27me3 state play an important role in cellular differentation. As described in 

Chapter 1, JMJD3 (H3K27me3 demethylase) has been shown to function in 

regulation of LPS-inducible gene expression as well as in establishment of the M2 

macrophage phenotype (Satoh et al., 2010). De Santa and colleagues (2009) have 

shown that JMJD3 is induced by the transcription factor NF-κΒ in response to 

microbial stimuli upon which H3K27me3, a histone mark associated with 

transcriptional repression is removed. They also showed that 70% of 

lipopolysaccharide (LPS)-inducible genes are indeed JMJD3 targets (De Santa et al., 

2009). Moreover, Chen and colleagues (2012) showed that JMJD3 activates bivalent 

gene transcription. JMJD3 is also essential for RNAPII elongation, as proposed by 

Estaras and colleagues (2013), since colocalisation of JMJD3 with RNAPII-S2p 

stimulates gene transcription. 

In Chapter 4, it was shown that the process of differentation from blood monocytes 

into anergic resident intestinal macrophages is associated with acquisition of the 

H3K27me3 repressive mark at the TNFA TSS (Chapter 4, Figure 4.8A). It was also 

shown that in patients with Crohn’s disease, intestinal macrophages failed to 

establish H3K27me3 at the TNFA promoter. Therefore, H3K27me3 might play an 

essential role in driving the anergic phenotype. Since, the removal of the silencing 

mark H3K27me3 is associated with increased TNFA transcripts it was interesting to 

determine, if targeting the enzyme responsible for elimination of this silencing mark 
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could restore the silent state of the TNFA. The recent development of a selective 

JMJD3 inhibitor; GSK-J4 enabled to investigate this hypothesis. 

 

5.2. Inhibiting JMJD3 results in the restoration of silencing mark H3K27me3 

at the TNFA transcription start site (TSS) in human primary 

macrophages 

The efficacy of GSK-J4 at inhibiting the TNFA production was first tested at the 

transcript level using GM-CSF human primary macrophages. First, human blood 

monocytes were induced to differentiate into M1 macrophages using GM-CSF 

(5ng/ml). On day 6, macrophages were stimulated with LPS (100 ng/ml) for 1 h. To 

test the effect of GSK-J4 some cells were also treated with the compound (30µM) 15 

min before LPS stimulation. 

Administration of GSK-J4 (JMJD3 inhibitor) decreased the expression of the TNFA 

transcripts after LPS activation, but the reduction was not significant (Figure 5.1). 

Next, ChIP analysis was performed to understand the epigenetic modulation 

associated with changes in the TNFA expression. As shown in Figure 5.2A, 

pretreatment with GSK-J4 preserved H3K27me3 binding to the TNFA TSS upon 

LPS stimulation. 

Two other histone marks, H3K4me3 and H3K4me1 were also analysed, as well as 

binding of JMJD3 and RNAPII to the TNF TSS. Upon LPS activation, reduced 

binding of H3K4me3 to the TNF TSS was observed, which was maintained by pre-

incubation with GSK-J4 (Figure 5.2D). The stimulation with LPS led to 2-fold 

reduction (from 20% to 10%) of H3K4me3 binding, however again this was not 

significant. In contrast, H3K4me1 occupancy at the TNFA TSS remained unchanged 

upon LPS stimulation and GSK-J4 pre-treatment (∼50% input) (Figure 5.3A).  
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Therefore it was concluded that in addition to H3K27me3, GSK-J4 also might have 

an effect on H3K4me3 but not on H3K4me1 (Figure 5.2D and 5.3A, respectively). 

To understand the dynamics of epigenetic changes, the level of total histone 3 (tH3) 

was also measured (Figure 5.2B). The activation of M1 macrophages with LPS or 

the pre-treatment with JMJD3 inhibitor (GSK-J4) did not influenced the tH3 level 

(∼40% input) at the TNF TSS region. Moreover, the GSK-J4 compound did not seem 

to affect the recruitment of JMJD3 to the TNFA TSS, (10% input) (Figure 5.2C). 

Additionally, the RNAPII recruitment to the TNF TSS was also studied. The 2-fold 

increase in RNAPII recruitment to the TNF TSS was observed after LPS stimulation 

from 20% to 40% input (Figure 5.3B). Conversely, pre-treatment with GSK-J4 

decreased recruitment of RNAPII to the TNF TSS, however this change was not as 

profound (Figure 5.3B). Although it was possible to detect a trend in modulatory 

effect of LPS stimulation or pre-treatment with GSK-J4 on RNAPII recruitment, 

these changes were not significant. Nevertheless, the trend seen in this study is in an 

agreement with Kruidenier et al. 2012, where GSK-J4 was also tested in human 

primary macrophages. 

Lastly, the effect of GSK-J4 on human primary macrophages was examined by flow 

cytometry. It was possible to confirm ChIP analysis for H3K27me3 by showing that 

GSK-J4 also targets global H3K27me3 demethylation (Figure 5.4). Using flow 

cytometry analysis, a 3-fold decrease (from 6.5% of total cells population to 2%) in 

proportion of macrophages stained for H3K27me3 was seen upon LPS activation 

(Figure 5.4). The pre-treatment with GSK-J4 restored the H3K27me3 level to even 

higher than an initial level (from 2% to 11%), however the difference was not 

significant (Figure 5.6). 
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The TNF-α expression was also analysed (Figure 5.5). The activation of human 

primary macrophages with LPS caused a 3-fold increase in proportion of cells 

expressing TNF-α (from ∼24% to 76%) (Figure 5.5). Additionally, a significant 30% 

reduction (from ∼76% to 53%) in TNF-α levels was also seen in macrophages 

pretreated with the compound upon subsequent LPS activation, however not to the 

level seen before LPS stimulation (Figure 5.5).    

 

5.3. Assessing the effect of the JMJD3 inhibitor in intestinal macrophages 

isolated from Crohn’s disease mucosa and in IBD mucosa in ex vivo 

organ culture  

Having established the epigenetic effects of GSK-J4 in human primary macrophage 

setting, GSK-J4 was investigated on intestinal macrophages isolated from Crohn’s 

disease mucosa. First, intestinal macrophages were cultured with or without GSK-J4 

(30µM) for 1h and analysed using ChIP assay. Again, H3K27me3, H3K4me3, tH3, 

JMJD3 were analysed. No effect of GSK-J4 was seen on any of assessed epigenetic 

marks (Figure 5.6-7). 

The occupancy of H3K27me3 was established at the highest level of 40% input, 

comparing to H3K4me3, which was approximately 20% input (Figure 5.6). 

Unfortunately, due to limited amounts of DNA only two other histone 3 (H3) 

modifications were analysed. The H3 (tH3) level was found to be at 40% input as 

well. Interestingly, the direct binding of JMJD3 to the TNF TSS in intestinal 

macrophages isolated from Crohn’s mucosa was 5 times lower that seen in GM-CSF 

differentiated macrophages (2% and 10%, respectively) (Figure 5.6D and Figure 

5.2D). Finally, RNAPII and also, RNAPII-pS5 and RNAPII-pS2 were assessed 

(Figure 5.7). Interestingly, the level of RNAPII was surprisingly low at 2% input 

level (Figure 5.7A). Between the two RNAPII phosphorylated forms, pS5 showed 
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the highest binding to the TNF TSS (∼15% input), whereas, pS2 was only 4% input 

(Figure 5.7B-C). 

Next, the effect of GSK-J4 was also assessed on TNF protein production in IBD 

biopsies. Biopsies were incubated for 24 hours in serum-free media and supernatants 

analysed for TNF production (Figure 5.8A-B). In both, CD and UC biopsies the level 

of TNF-α was measured at around 100 pg/ml. Although, some level of cytokines 

reduction was seen in individuals patients, the overall group analysis showed no 

significant reduction (Figure 5.8). 

Additionally, the effect of GSK-J4 was also tested on IL-6 and IL-8 production 

(Figure 5.9). The highest IL-6 and IL-8 production was observed in UC samples 

when compared with CD (7500 pg/ml and 50 000 pg/ml, respectively). In UC, IL-6 

level was 3 times higher and IL-8 production 2 times higher than in CD (Figure 5.9). 

However, incubation of IBD biopsies samples with GSK-J4 compound did not affect 

cytokine production (Figure 5.9). Some level of reduction in IL-6 protein level was 

observed in UC samples, however the different was not significant (Figure 5.8A). In 

CD biopsies no reduction was observed.  

 

5.4.  Discussion 

Since the removal of silencing marks could be associated with increased TNF 

transcripts in intestinal macrophages isolated from patients with Crohn’s disease it 

was interesting to investigate, if by targeting these marks it was possible to restore 

the silent state of the gene.  

In this chapter JMJD3 inhibitor, GSK-J4 was examined. GSK-J4 is known to be a 

selective Jumonji H3K27me3 demethylase inhibitor. Initially, the effect of the 

compound was tested on human primary macrophages (GM-CSF). By doing so, it 
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was speculated that GSK-J4 could modulate the proinflammatory macrophage 

responses, as also shown by Kruidenier et al. (2012) Indeed, pretreatment with the 

JMJD3 inhibitor prevented increased TNF transcript levels seen upon subsequent 

LPS stimulation. This was associated with an epigenetic modulatory effect, as seen 

by GSK-J4-preserved H3K27me3 enrichment upon LPS activation. 

Moreover, in this study two additional histone marks; H3K4me3, H3K4me1 and also 

JMJD3 were investigated to fully understand the effect of the inhibitor. It was 

speculated that in addition to H3K27me3, GSK-J4 compound also showed an effect 

on H3K4me3 level but not on H3K4me1. A recent paper by Heinemann et al. (2014) 

confirmed this finding by showing that the compound is a potent inhibitor of Jumonji 

proteins with activity towards H3K27me3/me2 (KDM6) and also H3K4me3/me2 

(KDM5) in vitro. 

Additionally, since no differences were seen in the level of JMJD3 at the TNF TSS 

after LPS activation or GSK-J4 treatment, it was speculated that GSK-J4 did not 

affect the recruitment of JMJD3 to the TNFA TSS. It was concluded that the 

compound influenced demethylase properties of JMJD3 rather than its direct binding 

to the gene. Kruidenier et al. (2012) showed that the compound binds endogenous 

JMJD3, therefore H3K27me3 reduction is a result of enzymatic demethylation, also 

because no decrease of total H3 (tH3) was detected.  

Having established that the compound could exert its effect in human primary 

macrophages, the next step was to study intestinal macrophages isolated from 

Crohn’s disease tissue resections. Analysis of GSK-J4 on intestinal macrophages 

isolated from mucosa of Crohn’s patients showed no effect of JMJD3 inhibitor, as 

analysed by ChIP assay and on transcript level. The compound was also tested in ex-
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vivo organ culture and supernatants were collected for proinflammatory cytokines 

production (TNF, IL-6, IL-8). However no effect was detected. 

At this stage it is hard to speculate on possible reasons of why GSK-J4 did not exert 

its effect on CD intestinal macrophages or did not influence the cytokine production 

on a protein level. The study by Kruidenier et al. (2012) and the results of this study, 

although with insignificant outcome showed that indeed GSK-J4 has a modulatory 

potential at least in GM-CSF differentiated macrophages.  

GSK-J4 is delivered to the target cell in a form of pro-drug, which upon uptake by 

macrophages is converted into an active form through macrophage esterase activity 

(Kruidenier et al., 2012). Since, the activity of GSK-J4 was initially only tested on 

GM-CSF differentiated macrophages, it was unknown how intestinal macrophages 

would respond to the drug treatment. Due to lack of DNA it was impossible to 

extend the experimental setting of this study to fully understand the effect of the 

treatment. Also due to lack of samples it was problematic to investigate the effect of 

GSK-J4 on intestinal macrophages isolated from ulcerative colitis patients. 

Also, no effect of GSK-J4 was seen in ex-vivo organ culture. This was a first attempt 

to investigate the effect of the GSK-J4 on IBD mucosa samples in ex-vivo organ 

culture. Since the GSK-J4 activity depends on macrophage esterase action, it might 

be that the concentration of the enzyme was not sufficient to convert the GSK-J4 

pro-drug into an active form. Among all samples collected in this study, some level 

of cytokine reduction was only observed for IL-6 in UC samples. 

In summary, despite the initial data on GSK-J4 on GM-CSF differentiated 

macrophages, it was impossible to show the treatment effect on IBD intestinal 

macrophages. 
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                                            LPS stimulation               GSK-J4 

                                                       Fold Change                 Fold Change              Fold Reduction             
                         
Donor 1 38               10                     4 
Donor 2 391               52                     8 
Donor 3 384               78                     5 

 

 

 

 

 

Figure 5.1: Pretreatment of macrophages with GSK-J4 prevents increased TNFA 

transcripts upon subsequent LPS activation 
Macrophages were differentiated from human blood monocytes in a presence of GM-CSF (5ng/ml). 

On day 6, cells were stimulated with LPS (100ng/ml) for 1h with or without GSK-J4 (JMJD3 

inhibitor) (30µM). GSK-J4 compound was added 15 min before LPS stimulation. Data represent 

TNFA absolute expression from 3 independent experiments. The expression level was normalised to 

GAPDH and ACTB housekeepers. Although considerable increase in the TNFA transcript level was 

observed upon LPS stimulation and reduction was detected after GSK-J4 administration (average 6-

fold reduction), the data analysis using Mann-Whitney two-tailed test showed no significant 

difference between medians. 
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Figure 5.2: The assessment of direct binding of H3K27me3, H3K4me3 and JMJD3 to 

TNFA TSS after a treatment with GSK-J4 compound in human primary macrophages 
ChIP assays were performed on human primary macrophages (GM-CSF). Macrophages were 

differentiated as in Figure 5.1. For H3K27me3 and tH3 data are presented as mean ± SEM of 3 

experiments. For H3K4me3 and JMJD3 data are presented as mean ± SEM of 2 experiments. All data 

are presented as % input normalised to IgG. Data analysis showed no significant difference between 

groups. However, LPS stimulation and pre-treatment with GSK-J4 showed a modulatory effect on 

H3K27me3 and H3K4me3. 
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Figure 5.3: The assessment of direct binding of H3K4me1 and RNAPII to TNFA TSS 

after a treatment with GSK-J4 compound in human primary macrophages  
ChIP assay performed on human primary macrophages (GM-CSF). Macrophages were differentiated 

as in Figure 5.1-2. For RNAPII data are presented as mean ± SEM of 3 experiments. For H3K4me1 

data are presented as mean ± SEM of 2 experiments. All data are presented as % input normalised to 

IgG. Data analysis showed no significant difference between groups. LPS stimulation and pre-

treatment with GSK-J4 showed a modulatory effect on RNAPII recruitment but not on H3K4me1. 
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Figure 5.4: The assessment of global H3K27me3 level after a treatment with GSK-J4 

compound in human primary macrophages (GM-CSF) 
Flow cytometry analysis was used to assess H3K27me3 level. Macrophages were differentiated from 

human blood monocytes in a presence of GM-CSF (5ng/ml) as stated previously. A). Representative 

dot plot of H3K27me3 staining on human primary macrophages. B). The mean proportion of 

macrophages stained for H3K27me3. Data are presented as mean ± SEM of 3 donors. Data analysis 

showed no significant difference between groups. 
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Figure 5.5: The assessment of TNF-α  level after a treatment with GSK-J4 compound in 

human blood-derived (GM-CSF) macrophages 

Flow cytometry analysis was used to assess TNF-α level. M1 macrophages were differentiated from 

human blood monocytes in a presence of GM-CSF (5ng/ml) as described previously. Data are 

presented as mean ± s.e.m. of 3 donors. A). Representative graph of TNF-α on GM-CSF 

macrophages. B). A graph showing a percentage of cells expressing TNF-α, (*) p≤ 0.05, (***) p≤ 

0.001. 
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Figure 5.6: The assessment of H3K27me3, H3K4me3 and JMJD3 direct binding to 

TNFA TSS after a treatment with GSK-J4 compound in intestinal macrophages 

isolated from Crohn’s patients 
ChIP assay performed on intestinal macrophages isolated from Crohn’s disease patients (n=3) treated 

with JMJD3 inhibitor. CD33+MACS sorted LPMCs were incubated with JMJD3 inhibitor (30 µM) for 

1h in 24 well plate format. Data are representative of 3 independent experiments (mean ± s.e.m.). Data 

are expressed as % input normalised to IgG. P value calculated using paired two-tailed Student’s t-

test. 
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Figure 5.7: The assessment of RNAPII, RNAPII-phosphoS5 and RNAPII-phosphoS2 

recruitment to TNFA TSS after a treatment with GSK-J4 compound in intestinal 

macrophages isolated from Crohn’s patients 
ChIP assay performed on intestinal macrophages isolated from Crohn’s disease patients (n=3) treated 

with JMJD3 inhibitor. CD33+MACS sorted LPMCs were incubated with JMJD3 inhibitor (30 µM) for 

1h in 24 well plate format. Data are representative of 3 independent experiments (mean ± s.e.m.). Data 

are presented as % input normalised to IgG. P value calculated using paired two-tailed Student’s t-

test. 
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Figure 5.8: TNFA protein levels measured in Crohn’s biopsies and ucelerative colitis 
after incubation with GSK-J4 compound for 24h 
TNF-α protein level was measured using ELISA assay. Data are representative of independent 
experiments (mean ± s.e.m.). Data analysed using paired two-tailed Student’s t-test. No significant 
difference was observed between treated and untreated groups. 
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Figure 5.9: IL-6 and IL-8 protein levels measured in Crohn’s disease and ucelerative 

colitis biopsies after incubation with GSK-J4 compound for 24h 

Data are representative of independent experiments (mean ± s.e.m.). Data analysed using paired two-
tailed Student’s t-test. No significant difference was observed between treated and untreated groups. 
However, some degree of IL-6 reduction was observed for UC biopsy samples only. 
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Chapter 6 
 

Characterisation of the gene expression pattern in intestinal 

macrophages isolated from the mucosa of patients with 

inflammatory bowel disease 
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6.1. Introduction 

In the healthy gut, under homeostatic conditions, macrophages acquire their tissue-

specific anergic phenotype as a consequence of downregulation of proinflammatory 

response cytokines, such as TNF-α, IL-6, IL-8, IL-1β (Sheikh and Plevy, 2010), and 

upregulation of antimicrobial properties. However, in an inflammatory surrounding, 

these cells remain activated, and therefore contribute to IBD pathogenesis, resulting 

in elevated level of proinflammatory mediators. In Chapter 1, the aspect of immune 

anergy was discussed in detail. 

Physiologically, the state of anergy, also known as endotoxin tolerance, is considered 

to be a negative feedback response that protects against uncontrolled inflammatory 

responses, as observed in septic patients or during severe tissue injuries. In vitro 

studies have shown that it is possible to induce endotoxin tolerance in human 

monocytes and macrophages with prolonged or repeated LPS stimulation.  

In previous chapters work has focused primarily on the TNF, however it is likely that 

there are many different changes in gene expression between normal gut 

macrophages and those in patients with IBD. Some of these molecules could be 

potential targets for therapy. Therefore we undertook a microarray analysis of gene 

expression in macrophages from normal and inflamed human gut.  

 
 
6.2. A specific subset of pro-inflammatory genes fails to undergo 

      tolerisation in intestinal macrophages from IBD patients 

The genes expression pattern in intestinal macrophages (CD33+ LPMCs) was 

assessed using human common cytokine profiler array (84 genes). The study used 

gut macrophages (CD33+ LPMCs) isolated from the colonic mucosa of 11 IBD 

patients (CD, n=4 and UC, n=7) and from the colon of 10 control subjects. 
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Initial data analysis aimed to group all genes into three categories; genes up- or 

down-regulated or those showing no change.  

In total, 23 genes were downregulated and 36 were upregulated in UC and CD 

samples when compared with control subjects (Figure 6.1). 

Among all genes analysed, Il21, Il24, TNFSF8 were significantly (p≤ 0.05) 

upregulated in IBD patients (Table 6.1; Figure 6.2-3). The TNFSF8 transcript levels 

increased by 9- and 13-fold, respectively in UC and CD macrophages. The Il24 

transcripts showed on average 5-fold increase in expression level and Il21 transcripts 

showed a 52-fold change in expression compared to the control group. Additionally, 

Il8, Il10, Il13, INHBA were increased in IBD, however only in ulcerative colitis 

macrophages were the fold changes in expression levels significant (Table 6.1). Il13 

and INHBA showed the highest increase in expression (17-fold and 22-fold change in 

UC) comparing to controls (Table 6.1; Figure 6.3). The expression level of Il8 and 

Il10 increased at similar level (4- and 5-fold change in UC) (Figure 6.3). Also LTB 

was upregulated in IBD macrophages (9- and 17-fold changes in UC and CD, 

respectively), but only in CD was the fold change significant (Figure 6.1; Table 6.1). 

Respectively, a significant (p≤ 0.05) 3- and 4-fold decrease in BMP2 transcript levels 

was detected in both ulcerative colitis and Crohn’s disease macrophages (Figure 6.2-

3). Furthermore, GDF5 and Il1F5 were significantly upregulated (7- and 4-fold 

change) and BMP5 and Il1F7 were significantly downregulated (6- and 11-fold 

change) only in ulcerative colitis (Table 6.1; Figure 6.3). In contrast, Il15 was only 

upregulated in CD (3-fold change) (Table 6.1, Figure 6.2-3). 

Finally, all genes that were upregulated in IBD were also additionally analysed for 

their potential to undergo tolerisation and are highlighted in red font (Figure 6.5).  
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The gene expression pattern was also assessed in reference to in vitro tolerised GM-

CSF differentiated human primary macrophages, which following repeated LPS 

stimulation show downregulation of number of proinflammatory cytokine genes. 

Colleagues at EpiNova, at GSK in Stevenage performed the study on tolerogenic 

human primary macrophages and the data was kindly provided for this analysis 

(Appendix 0.3). 

For that purpose, genes which were downregulated in IBD, were excluded from 

analysis. It was observed that only some of upregulated genes such as TNFA, LTA, 

TNFSF8, IL10, IL1β, IL1F5, IL24, INHBA which are LPS-tolerised in human 

primary macrophages (GM-CSF-differentiated) failed to become tolerised in 

intestinal macrophages from IBD patients (Figure 6.5). 

 

6.3. A role for IL-24 in proinflammatory responses in IBD 

Performing gene array analysis on intestinal macrophages enabled to identify IL24 

(belonging to IL-10 cytokine family) as a candidate gene potentially involved in the 

pathophysiology of IBD. A significant 4-fold increase in IL24 mRNA levels was 

observed in macrophages isolated from IBD mucosa when compared with controls 

(Table 6.1). Therefore, additional analysis of IL24 was performed on protein level. A 

significant increase in IL-24 protein was detected in both inflamed (p≤ 0.001) and 

uninflamed (p≤ 0.05) CD biopsies, and also in inflamed (p≤ 0.05) UC biopsies 

(Figure 6.6).  

To investigate a proinflammatory potential of IL-24, IBD biopsies were stimulated 

with recombinant human (rh)IL-24 (100ng/ml). After 24h stimulation, supernatants 

were collected and analysed for TNF-α, IL-6, IL-8 levels. Stimulation with (rh)IL-24 
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triggered increased (p≤ 0.05) production of TNF-α only in CD ex-vivo organ culture 

(Figure 6.7). No change in other cytokines (IL-6, IL-8) was detected. 

 

6.4. Discussion 

Mucosal immune cells respond to microbial products or antigens by producing 

cytokines that promote inflammatory reaction in the gastrointestinal tract. These 

inflammatory responses need to be tightly regulated to prevent any uncontrolled 

reaction and subsequent tissue destruction. The causative molecular aspect of IBD 

pathogenesis still remains poorly understood. Increased knowledge on IBD suggests 

that number of effector molecules are involved in maintaining the homeostatic 

intestinal immunity. However, dysregulated production of these molecules leads to 

abnormal immune responses towards intestinal flora (Jump et al., 2004). Hence, 

cytokine production underlies IBD pathogenesis and targeting these molecules has 

successfully led to a reduced disease activity (MacDonald et al., 2011).  

Macrophages play a fundamental role in regulating controlled gut immunity. 

However, activated macrophages are thought to be the major contributor to a 

production of proinflammatory cytokines in the gut, which consequently drives the 

differentation of many subsets of T cells and activates the adaptive immune 

responses. Under homeostatic conditions, macrophages acquire a rather unique 

phenotype, as they become hyporesponsive to activation. This state is known as 

endotoxin tolerance. The concept of endotoxin tolerance in reference to unique 

phenotype of intestinal macrophages was already discussed. 

To investigate novel aspects of IBD pathogenesis, gene microarray analysis was 

performed to determine changes in gene expression in macrophages isolated from 

mucosa of Crohn’s and ulcerative colitis patients. To provide more comprehensive 
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data on the aspect of endotoxin tolerance, gene expression profile of human intestinal 

macrophages was analysed with reference to LPS-tolerised human primary 

macrophages. It allowed studying the level and the pattern of expression of a large 

number of genes simultaneously. The cDNA microarray representing 84 genes was 

used to compare gene pattern of intestinal macrophages (IMACs) from 11 IBD 

patients (CD= 4; UC= 7) and 10 control individuals. In total, 59 genes were 

identified to have different expression pattern between disease and control groups. 

Among all, the majority (n= 36) of assessed genes were up regulated in IBD samples. 

Additionally, some genes showed opposing expression pattern between CD and UC 

and were categorised as UC- or CD-specific genes (for UC, genes such as GDF5, 

Il1F5, BMP5, Il1F7 and for CD, Il15) (Figure 6.4). 

The gene expression profile was also classified accordingly to gene function or based 

on different family group (Table 6.1). A large number of these genes have been 

shown to function in proliferation and differentation pathways. 

Among genes belonging to TGF-β family, all analysed BMPs were downregulated in 

IBD macrophages except BMP7, with BMP5 showing UC-specific expression 

pattern, and BMP2 characteristic for IBD (Table 6.1). 

The role of BMPs in the gut is just beginning to be elucidated. The BMPs are 

important morthogens crucial in developmental processes that regulate the 

maintenance of adult tissue homeostasis (Wang et al., 2014). It is known that many 

processes in early development are dependent on BMP signalling, including cell 

growth, apoptosis and differentation (Kishigami and Mishina, 2005; Lowery and de 

Caestecker, 2010). The BMP signalling involves JAK/STAT and Notch pathways 

(Guo et al., 2009). 
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The BMPs are important in normal cell development in the intestine (Batts et al., 

2006), as a possible malfunction of how BMPs exert its function may result in the 

development of cancerous tissue (Hardwick et al., 2008; Wang et al., 2014). For 

example, BMP2 has a crucial role during the embryonic development of digestive 

organs (Yuvaraj et al., 2012). Also the colon is characterised by high expression of 

BMP2 (Hardwick et al., 2004; Kosinski et al., 2007) and genetic loss of BMP2 

signalling is associated with the development of sporadic cancer (Kodach et al., 

2008). It has been shown that BMP2 is an important and powerful tumor suppressor 

in the colon (Batts et al., 2006). Batts and colleagues (2006) demonstrated that BMP2 

transcripts are present in epithelial cells at the villus tips and in the surface 

epithelium of the large intestine. They also showed that inhibiting BMP signalling 

leads to abnormal villus morphogenesis, stromal and epithelial hyperplasia. 

Additionally, mesenchynal loss of BMP signalling has been implemented in 

colorectal carcinogenesis (Hardwick et al., 2008). 

However, BMP2 expression is not only restricted to epithelial cells. A recent paper 

by Muller (2014) highlights an interesting concept of interplay between BMP2 

signalling and a distinct population of macrophages distributed in the intestinal 

muscularis externa. They showed that, in the steady state, these macrophages 

regulate peristaltic activity of the colon by secreting BMP2, which activates BMP2 

receptor by enteric neurons. Additionally, they also showed that microbial 

commensals regulate BMP2 expression by macrophages (Muller et al., 2014). The 

muscularis macrophages (MMs) population resembles the CD103-CD11b+CX3CR1+ 

macrophages, which are present in the intestinal lamina propria (Bugonovic et al., 

2009). However, the function of MMs is less characterised compared to mucosal 

counterparts (Muller et al., 2014). 
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Changes in the cytokine profile, between CD and UC were also detected for BMP5, 

GDF5 and INHBA. The expression level of all three genes was significantly different 

in UC, but not in CD macrophages (Figure 6.2-3). The role of BMP5 is less known. 

The GDF5 and INHBA are also members of TGF-β superfamily and are closely 

related to BMPs (Miyamoto et al., 2007). The GDF5 was shown to be a part of LPS 

receptor cluster, functioning as a signal transducer and that GDF5 blocking may limit 

the response to LPS affecting immune responses and macrophage functions (Daans 

at al., 2009; Triantafilou et al., 2001; 2002). The INHBA was linked with the 

autoimmune disease, such as rheumatoid arthritis (Dong et al., 2014). Also, INHBA 

over-expressed transcript was reported to be associated with different cancers 

including colorectal cancer (Okano et al., 2013) and gastric cancer (Wang et al., 

2012). 

The INHBA gene encodes for Activin A that is produced upon macrophage activation 

and is involved in the early phases of inflammatory responses (Dong et al., 2014). 

Activin A also promotes the acquisition of GM-CSF-dependent macrophage 

polarisation markers (Escribese et al., 2012) and was shown to regulate macrophage 

polarisation. 

Additionally, the array analysis showed an increase in expression of both LTA and 

LTB (lymphotoxin, type II membrane protein of the TNF family), together with TNF 

genes, but only LTB was significantly upregulated in CD. The TNF locus encodes 

factors that are the key components of the immediate innate immune responses, and 

LTA and LTB constitute TNF locus. The transcriptional orientation of LTB is 

opposite to that of TNF and LTA (Appendix 0.2) (Cross et al., 2005; Deakin et al., 

2006). Of interest, among all three genes, TNF and LTA were shown to become 

tolerised in human primary macrophages (data provided by Epinova, GSK). This 
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finding suggests potentially another mechanism of TNF transcription involved in 

IBD. 

Interestingly, among all genes belonging to TNF superfamily, TNFSF8 was also 

highly upregulated (p≤0.05) in both CD (13 fold increase) and UC (9-fold increase) 

intestinal macrophages (Table 6.1, Figure 6.2-3). The TNFSF8 gene encodes a ligand 

(CD30L) for TNFRSF8 (CD30) receptor (Sun et al., 2013). The CD30-CD30L 

pathway tightly controls immune responses by providing positive signals that 

promote activation and proliferation of B and T cells (especially an activation of 

interleukin 17A (IL-17A) producing γδ T cells)) (Sun et al., 2013). Whereas, CD30 

and CD30L are both present on activated B and T cells, CD30L is also expressed on 

mature dendritic cells and macrophages (Foks et al., 2012). Also recently, TNFSF8 

was identified as a novel risk factor for Crohn’s disease (Hong et al., 2015). 

The IL-2 family of cytokines plays an important role in T cell function. There are 6 

cytokines belonging to this family and include IL-2, IL-4, IL-7, IL-9 IL-15 and IL-

21. Each IL-2 family cytokine has unique functions, and due to differences in the 

expression patterns of each cytokine and their receptors, different family members 

regulate the T cell physiology at different maturation stages (Marrack et al., 2000; 

Kelly et al., 2002). Cytokines belonging to IL-2 family play a major role in 

regulating development, survival, proliferation and differentation (Malek et al., 

2010). For example, IL-7 is required to maintain an optimum number of immature T 

cells (Grabstein et al., 1993; Ku et al., 2000), but also just like IL-4 is involved in 

regulating the number of naïve T cells (Kelly et al., 2002). 

In this study, cytokines of IL-2 family also differed in their expression pattern. 

Among all IL-2 family cytokines, IL-7 was not expressed in both UC and CD 

intestinal macrophages, as is expressed by epithelial cells in thymus and bone 
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marrow (Schluns and Lefrancois, 2003; Fry and Mackall, 2005). Also Il4 was not up-

regulated in UC and down regulated in CD (15-fold change), however not 

significantly. Additionally, I15 showed CD-specific expression pattern, as 3-fold 

increase (p≤ 0.05) in expression was only observed in these cells only. In UC, the 

expression level of Il15 was the same as in control group. Several studies have 

demonstrated that IL-7 and IL-15 are essential in maintaining memory T cells (Kim 

et al., 2007) and it was shown that animals genetically lacking IL-15 or its receptor 

do not have memory phenotype CD8+ T cells (Kennedy et al., 2000; Kim et al., 

2007). IL-15 is secreted mainly by APCs (DCs and macrophages) and monocytes 

and it is involved in promoting cytotoxicity and maintenance of memory CD8+ T 

cells and also proliferation and differentation of NK and NK T cells (Waldmann et 

al., 2006; Kim et al., 2007). 

The position of IL-21 in the pathogenesis of IBD has long been recognised 

(MacDonald et al., 2011). IL-21 is increased in biopsies from patients with IBD. 

Recent Genome-Wide Association studies have shown an association between the 

locus containing IL-2/IL-21 and IBD (Jostins et al., 2012; Neurath, 2014). 

In the study presented here, IL-21 had the highest increase in expression (50-fold 

change) (p≤ 0.05) in both, UC and CD (Table 6.1). IL-21 is a pleiotropic cytokine 

that has both proinflammatory (Fantini et al., 2008) and anti-inflammatory activities 

(Spolski et al., 2009). IL-21 is a cytokine with close structural similarities to IL-15, 

IL-2 and IL-4 (Parrish-Novak et al., 2000; Ruckert et al., 2007). IL-21 binds to a 

heterodimeric receptor composed of a high-affinity α-chain and the common γ-chain 

which is shared by all IL-2 cytokine family (Brandt et al., 2007). The expression of 

complete IL-21 receptor was reported in dendritic cells (DCs) and in synovial 

macrophages (Jungel et al., 2004). IL-21Rα was also found in bone marrow (BM) 
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cells and it has been shown that IL-21 modulates the differentation of murine 

myeloid DCs. IL-21 might also be involved in the interaction of antigen presenting 

cells (APCs), like macrophages with T cells at inflammatory site (Ruckert et al., 

2007). Additionally, IL-21 is involved in the cytokine-driven proliferation of CD4+ 

helper T cells synergically with IL-7 and IL15 (Onoda et al., 2007), and that the 

cytokine induces apoptosis of antigen-specific CD8+ T cell (Barker et al., 2007). 

Among genes encoding cytokines belonging to IL-10 cytokine family, Il10 was 

increased in UC (5-fold change) and CD (4-fold change) groups, but only in UC with 

a significant difference (p≤ 0.05) (Table 6.1). Additionally, a significant 4- and 5-

fold increase in expression level of Il24 was observed in intestinal macrophages 

isolated from mucosa of UC and CD patients, respectively. 

Gene array analysis on intestinal macrophages enabled to identify Il24 as a candidate 

gene involved in the pathophysiology of IBD, which was additionally supported by 

functional studies on protein level. The role of IL-24 in driving immune responses 

has already been reported in number of studies (Poindexter et al., 2005; Andoh et al., 

2009; Sahoo et al., 2011). IL-24 expression has been identified in dermal 

keratinocytes, LPS-stimulated monocytes and macrophages or Th2-polarised T cells 

(Wolk et al., 2002; Poindexter et al., 2005; Kunz et al., 2006).     

IL-24 is a member of IL-10 family of cytokines, together with IL-10, IL-19, IL-20, 

IL-22, IL-26, IL-28, IL-29 (Jiang et al., 1996; Langer et al., 2004). IL-24 has been 

shown to bind two different heterodimeric receptor complexes, IL-20R1/IL-20R2 

and IL-22R1/IL20R2, which activates STAT3 (Wang et al., 2005). As oppose to 

non-immune tissues, immune cells do not express IL-24 receptors, suggesting that 

IL-24 cannot stimulate the acquired immune responses (Nagalakshmi et al., 2004; 

Wang et al., 2005; Kunz et al., 2006). The biological function of IL-24 is still poorly 
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understood, but IL-24 can function as an intracellular cell death-inducing factor or as 

a classical cytokine through cell surface receptor (Andoh et al., 2013). Through 

receptor binding, IL-24 has been reported to induce expression of proinflammatory 

cytokines from monocytes, such as TNF-α and IL-6 (Caudell et al., 2002). Just 

recently, Andoh and collegues (2013) have reported increased IL-24 expression level 

in the inflamed mucosa of patients with inflammatory bowel disease. Our 

preliminary data on IL-24 have confirmed these findings. Andoh and collegues 

(2013) have also identified that colonic subepithelial myofibroblasts (SEMFs) were a 

major source of lL24 in the mucosa. Interestingly they have also demonstrated that 

IL-24 was expressed in infiltrating immune cells (Andoh et al., 2013). 
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Figure 6.1: Heat map representation of cytokine gene expression pattern by intestinal 

macrophages isolated from mucosa of IBD patients 
The study included human gut macrophages (CD33+ LPMCs) isolated from the colonic mucosa of 11 

IBD patients (CD, n=4 and UC, n=7) and from colon of 10 control subjects. A). Gene expression was 

assessed using human common cytokine profiler array (84 genes). B). Heat map representing only 

genes with significant difference. Data are represented as fold change in reference to control samples 

(red: high expression; blue: low expression). Data analysed using two-way ANOVA of variance. 
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        Ulcerative colitis                            Crohn’s disease 

                            Fold Change          P-value           Fold Change           P-value 
TGF-β Family: 
BMP2 -3 0.0291 -4 0.0221 
BMP3 -268 0.2496 -274 0.3328 
BMP4 -2 0.243 -2 0.2588 
BMP5 -6 0.0061 -2 0.3694 
BMP6 -10 0.176 -8 0.3059 
BMP7 1 0.7213 1 0.8585 
BMP8B -3 0.1357 -3 0.2667 
GDF3 -1 0.824 -5 0.5224 
GDF5 7 0.0518 1 0.7841 
GDF9 -3 0.1091 -2 0.3807 
GDF10 -5 0.2627 3 0.4829 
GDF11 1 0.803 -1 0.8811 
TGFA -2 0.3243 -3 0.1418 
TGFB1 2 0.0871 2 0.2473 
TGFB2 2 0.3585 2 0.2864 
TGFB3 -1 0.7887 -2 0.3097 
MSTN -45 0.0835 -138 0.0644 
NODAL -2 0.0905 -1 0.4407 
INHA -1 0.7178 -1 0.7729 
INHBA 22 0.0553 24 0.099 
Metalloproteases: 
BMP1 1 0.5547 -2 0.1276 
Growth factors/Cytokines: 
CSF1 3 0.1042 2 0.3197 
CSF2 28 0.1022 13 0.2871 
FAM3B -6 0.5619 -6 0.6155 
LEFTY2 -4 0.1149 -2 0.4837 
IL3 3 0.1286 1 0.7778 
IL5 2 0.3301 1 0.665 
 
PGDF/VEGF family: 

PDGFA -3 0.0422 -3 0.0849 
FIGF 1 0.6658 3.5 0.1574 
Interferons: 
IFNA1 2 0.5552 7 0.0945 
IFNA2 3 0.2489 3 0.4174 
IFNA4 -4 0.0752 -4 0.1531 
IFNA5 -5 0.4877 -14 0.373 
IFNA8 2 0.4136 3 0.1253 
IFNB1 4 0.2683 18 0.0643 
IFNG -3 0.2202 -2 0.547 
IFK 16 0.4926 36 0.4625 
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continued 
                                        Ulcerative colitis                          Crohn’s disease 

                                 Fold Change          P-value             Fold Change         P-value 
TNF Superfamily: 
TNF 4 0.1847 8 0.0935 
LTA 10 0.0862 12 0.116 
LTB 9 0.0661 17 0.0534 
TNFSF4 4 0.1125 4 0.1721 
TNFSF8 9 0.0461 13 0.0497 
TNFSF10 -1 0.3731 -1 0.803 
TNFRSF11B 4 0.1956 3 0.4646 
TNFSF11 12 0.2494 18 0.2538 
TNFSF12 2 0.148 2 0.2751 
TNFSF13 -1 0.7888 -2 0.119 
TNFSF13B 3 0.1007 4 0.0797 
TNFSF14 4 0.0605 4 0.153 
CD70 7 0.0912 4 0.3124 
FASLG -1 0.9311 -1 0.9368 
IL-1 cytokine family: 
IL1A 4 0.1289 5 0.1746 
IL1B 9 0.0611 9 0.1228 
IL1F8 8 0.3989 194 0.0785 
IL1F5 4 0.037 2 0.247 
IL1F7 -11 0.0352 1 0.9714 
IL1F9 1 0.9712 -1 0.8978 
IL-2 cytokine family: 
IL2 -3 0.2272 3 0.3391 
IL4 1 0.9349 -15 0.4073 
IL7 1 0.2846 -1 0.8762 
IL9 -4 0.4718 -4 0.5997 
IL15 1 0.5405 3 0.0486 
IL21 52 0.0216 52 0.0498 
IL-10 cytokine family: 
IL10 5 0.0307 4 0.1107 
IL19 17 0.3481 8 0.5722 
IL20 -3 0.5413 -14 0.2517 
IL22 16 0.1087 50 0.0634 
IL24 4 0.0194 5 0.0227 
IL-17 cytokine family: 
IL17A -3 0.6126 -4 0.5794 
IL17B 7 0.1969 4 0.4065 
IL17C -2 0.369 -3 0.3479 
IL25 -1 0.6445 -1 0.4799 
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continued 
                                        Ulcerative colitis                           Crohn’s disease 

                                      Fold Change     P-value           Fold Change           P-value 
Other interleukins: 
IL6 14 0.1249 12 0.2239 
IL8 4 0.0415 3 0.1622 
IL11 3 0.2226 2 0.4866 
IL12A -2 0.1933 -1 0.7163 
IL12B -5 0.5537 -4 0.6909 
IL13 17 0.0393 6 0.2392 
TXLNA (IL14) -1 0.38 -2 0.0792 
IL16 1 0.594 1 0.6663 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1: Data represents gene microarray analysis as in Figure 6.1. Annotated genes 

were classified accordingly to cytokine family 
 

The study included human gut macrophages (CD33+ LPMCs) isolated from the colonic mucosa of 11 

IBD patients (CD, n=4 and UC, n=7) and from colon of 10 control subjects. Data are represented as 

Log2-fold change in gene expression in reference to control samples. Genes with significant 

difference are highlighted in red. Data analysed using one-way ANOVA of variance. 
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Figure 6.2: Volcano plot showing a summary of qRT-PCR array (Table 6.1) performed 

on human intestinal macrophages (CD33+ LPMCs) isolated from patients with Crohn’s 

disease (CD) and control subjects 
The gut macrophages were isolated from the colonic mucosa of 4 CD and from colon of 10 control 

subjects. Expression level was normalised to RPL13A housekeeper gene. Data are presented as log2 

fold change vs. –log10 p-value. Red dots above dashed horizontal line highlight genes with significant 

values (p≤0.05= -log10≥1.2). Assessed genes were grouped into two categories; genes up- or down-

regulated (marked by a vertical dashed red line).  
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Figure 6.3: Volcano plot showing a summary of qRT-PCR array (Table 6.1) performed 

on human intestinal macrophages (CD33+ LPMCs) isolated from patients with 

ulcerative colitis (UC) and control subjects 
The gut macrophages were isolated from the colonic mucosa of 7 UC and from colon of 10 control 

subjects. As in Figure 6.2 expression level was normalised to RPL13A housekeeper gene. Data are 

presented as log2 fold change vs. –log10 p-value. Red dots above dashed horizontal line highlight 

genes with significant values (p≤0.05= -log10≥1.2). Assessed genes were grouped into two categories; 

genes up- or down-regulated (marked by a vertical dashed red line).  
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Figure 6.4: A summary of qRT-PCR array (Table 6.1) performed on intestinal 

macrophages (CD33+ LPMCs) isolated from IBD patients and control subjects 
 
Assessed genes were grouped into 5 subcategories; 1: ( ) upregulated CD-specific genes, 2: ( ) 

upregulated UC-specific genes, 3: ( ) downregulated CD-specific genes, 4: ( ) downregulated UC-

specific genes, 5: ( ) genes with reversed expression in CD and UC. Expression level was 

normalised to RPL13A housekeeper gene. Data are presented as fold change in reference to control 

group. Red font highlights genes with significant values (p≤0.05). 
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Figure 6.5: Musocal expression of genes, which are tolerised in human primary 

macrophages fail to be down regulated in IBD vs. control intestinal macrophages 

(CD33+ LPMCs) 
Genes highlighted in red are tolerised in in vitro model and failed to undergo tolerisation in IBD 

samples. 
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Figure 6.6: IL-24 protein level measured in IBD and control subjects, in ex-vivo organ 

culture 
IBD (CD inflamed, n= 4; CD uninflamed, n= 7; UC inflamed, n= 4; UC uninflamed, n= 3) and control 

(n= 11) biopsies were incubated for 24h in 24-well plate format. Next, supernatants were collected 

and used for ELISA analysis to detect IL-24 protein level. A significant increase in IL-24 protein level 

was detected in both inflamed (p≤ 0.001) and uninflamed (p≤ 0.05) CD biopsies, and also in inflamed 

(p≤ 0.05) UC biopsies. 
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Figure 6.7: The effect of (rh)IL-24 stimulation on pro-inflammatory cytokine 

production 

TNFα, IL-6 and IL-8 protein level was measured in IBD ex-vivo organ culture (CD, n= 5; UC, n= 6). 

Biopsies were incubated with (rh)IL-24 (100 ng/ml) for 24h in 24-well plate format and supernatant 

was collected for ELISA analysis. Significant increase of TNF protein level was detected in CD 

biopsies only. No change of IL-6, IL-8 was detected. 
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Chapter 7 
 
 

General Discussion and Future work 
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In recent years, it has become clear that epigenetic regulation of gene expression is 

an important determinant in the development of many diseases, including 

inflammatory bowel disease (IBD) (Scarpa et al., 2012). 

In general there is a great interest in understanding how chromatin remodelling 

regulates gene activation/repression. Much of the work on epigenetic regulation of 

immune responses comes from the work on mouse models or human cell lines. 

The work presented in this thesis aimed to investigate the relationship between 

chromatin modification (histone methylation) and the repression of inflammatory 

genes in human intestinal macrophages. It was of particular interest to understand, if 

the anergic state of macrophages in normal gut is associated with repressive marks. 

Also, if in IBD there are any differences in epigenetic modifications between 

resident and infiltrating macrophages. Finally, if by blocking histone methylation it 

is possible to prevent/reduce TNFα production by macrophages from IBD mucosa.  

Although, the intestine represents the largest reservoir of macrophages in the body, 

these cells are only a small component of mononuclear cells in normal and inflamed 

gut and no previous studies have looked at their epigenetic modifications.  

Hence, it became apparent that the availability of sufficient cells for ChIP assay 

analysis might be a limiting factor for this study. Therefore the first part of the 

project involved optimising the method for the isolation of intestinal macrophages to 

obtain sufficient numbers of cells for functional analysis. 

The gold standard macrophage marker, CD68 has been used to identify macrophages 

in various tissue types including human intestine (Smythies et al., 2005). However, 

as discussed in Chapter 3, due to its intracellular localisation, it was impossible to 

use CD68 for macrophage isolation. Therefore there was a need to identify other 

marker(s), which would allow recovery of sufficient number of cells. 
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By performing flow cytometry analysis it was determined that about 15% of CD45+ 

LPMCs were CD33+ and that this level remained constant across control subjects and 

patients with IBD.  CD33 has been widely used as a marker for macrophages and is 

largely co-expressed with CD68 (Rogler et al., 1998; Kamada et al., 2008). 

In this work it was confirmed that the majority of CD33+ cells isolated from normal 

and inflamed mucosa co-expressed CD68.  

The co-expression of CD33 with another macrophage marker, CD14 was also 

analysed. In uninflamed gut the majority of CD33+ LPMCs did not express CD14. A 

small subset of  CD33+ cells however co-expressed CD14+ (∼ 2%)  in healthy gut and 

this population increased significantly in IBD mucosa. Additional FACS analysis 

revealed that two subsets of intestinal macrophages, namely CD33+CD14- and 

CD33+CD14+ cells also co-expressed CD68. It is highly likely that the CD33+CD14+ 

cells in healthy gut are recently recruited from blood, although there is the possibility 

that they represent a stable resident population. It is also likely that the increase in 

CD14+ cells seen in IBD mucosa is due to recruitment from blood. 

As CD33 is also expressed by other cells of myeloid lineage such monocytes, DCs 

and activated T cells, the use of CD33 as a marker may not yield a pure population of 

macrophages. However in the accompanying thesis of Francesca Ammoscato it was 

shown that CD33+ cells were CD3- and CD64-. By MACS sorting it was possible to 

isolate about 2-4 million CD33+ cells for subsequent functional analysis using ChIP. 

Additional optimisation of ChIP allowed a reduction in the number of cells used per 

immunoprecipitation from 1x106 to 0.25x106. 

. 
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To define the relationship between chromatin modification (histone methylation) and 

the repression of inflammatory genes in intestinal macrophages, the TNFA gene was 

selected. 

Different repressive and permissive histone modifications were investigated. 

Silencing marks H3K27me3, H3K9me3 and H3K9me1, as well as activating marks 

H3K4me3, H3K4me1 and also tH3 and RNAPII were selected and analysed by ChIP 

assay. The first major observation was that the silencing marks H3K9me3 and 

H3K27me3 were abundant at the TNFA TSS in macrophages isolated from normal 

gut. This agrees well with previous studies that normal intestinal macrophages do not 

produce pro-inflammatory cytokines (Smythies et al., 2005). However, macrophages 

isolated from mucosa of IBD patients showed decreased levels of H3K27me3, 

H3K9me3, with H3K27me3 having the greatest significant reduction. Interestingly, 

there was no difference in RNAPII enrichment at the TNFA TSS between normal and 

IBD intestinal macrophages. However, additional work would be needed to 

investigate, if the same applies for RNAPII phosphorylated forms, as due to cells 

limitation RNAPIIpS5 and RNAPIIpS2 occupancy was not studied in this project. 

The enrichment of silencing marks at the TNF TSS seen in resident macrophages 

isolated from normal colon could be driven by environmental factors within the gut. 

The main source of gut macrophages is peripheral blood monocytes, which are 

attracted to lamina propria during inflammation (Bain et al., 2014). The homeostatic 

environment of lamina propria drives the enrichment of silencing marks to the TNF 

TSS along the process of cell differentation. Results obtained in this study suggest 

that peripheral blood monocytes from controls and IBD patients displayed similar 

levels of H3K27me3 and H3K9me3 marks. However, only macrophages in the 

normal gut eventually acquired both H3K27me3 and H3K9me3 at the TNFA TSS. 
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Interestingly, no change in H3K4me3 was shown between blood monocytes and 

intestinal macrophages. It is possible that during the process of cell differentiation 

the bivalent state of the TNFA promoter is being established through interplay 

between H3K27me3 and H3K4me3 in healthy gut macrophages and this is disturbed 

in IBD environment. Of note, the change in H3K4me1 enrichment was observed 

between blood monocytes and intestinal macrophages isolated from UC mucosa. 

Nevertheless, the results presented in this thesis represent the preliminary outcome of 

how potentially chromatin state can regulate the gene expression and the 

establishment of endotoxin tolerance in human intestinal macrophages. The future 

work should be carried out to further investigate the epigenetic regulation in these 

cells. The more comprehensive data generated on donor-matched monocytes and 

intestinal macrophages would validate these preliminary results. 

The phenomenon of endotoxin tolerance has been extensively studied using various 

in vitro models (Foster et al., 2007; De Santa et al., 2009; Chen and Ivashkiv, 2010). 

The state of tolerance is associated with hyporesponsivness upon repeated or 

prolonged exposure to LPS and chromatin remodelling plays an important part in this 

phenomenon (El Gazzar et al., 2007). Using the model of LPS-induced endotoxin 

tolerance in human primary macrophages (GM-CSF) I showed that LPS stimulation 

of naïve macrophages results in enrichment of activating mark H3K4me3 and that 

this does not happen in LPS-tolerant cells. The LPS activation of naïve macrophages 

also triggered the recruitment of RNAPII to the TNFA TSS and decreased silencing 

mark H3K27me3. However activation of tolerant macrophages with LPS did not 

influence the recruitment of RNAPII. Moreover, an enrichment of RNAPII remained 

constant and comparable to the level of LPS stimulated naïve cells. Interestingly, it 

was possible to detect even higher enrichment of H3K27me3 in tolerant cells 
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stimulated with LPS, suggesting that indeed H3K27me3 may contribute to endotoxin 

tolerance. However, these results are very preliminary and more experiments are 

needed to validate this outcome. 

The removal of methyl group from H3K27 is driven by the H3K27me3 demethylase 

JmjD3 (De Santa et al., 2007; 2009). Analysis of JmjD3 occupancy at the TNFA TSS 

generated from blood monocytes and intestinal macrophages from control and IBD 

samples showed unexpectedly the increased abundance of JmjD3 in IBD blood 

monocytes and UC intestinal macrophages. Unfortunately due to material limitation 

it was impossible to investigate JMJD3 binding in CD macrophages. Although, these 

data are preliminary, it may be possible that increased JmjD3 binding associates with 

proinflammatory profile of cells. This was additionally supported by detection of 

elevated transcripts for Jmjd3 in CD macrophages. 

In summary, results obtained here suggest that chromatin architecture in normal 

intestinal macrophages is such that active TNFA transcription cannot be initiated, 

possibly this is due to a high occupancy of silencing marks, especially H3K27me3. 

Additionally, under homeostatic conditions, the TNFA gene is set at a bivalent state, 

since concurrent high binding of H3K27me3 and H3K4me3 at the gene transcription 

start site was observed and that this process is disturbed in IBD. 

Due to tissue limitation and consequently lack of sufficient number of isolated 

macrophages, it was impossible to expend this study to the CD33+CD14- and 

CD33+CD14+ subsets of intestinal macrophages. Analysis of these cells would 

provide more in depth understanding of how the process of macrophage 

differentiation occurs in homeostatic and inflammatory milieu in terms of chromatin 

remodelling. 
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The methylation of H3K27me3 is thought to be a key epigenetic regulator of cell 

homeostasis and development (Margueron et al., 2011). Also JMJD3 has been shown 

to function in regulation of LPS-inducible gene expression (Satoh et al., 2010). 

Since, the removal of the silencing mark H3K27me3 was associated with increased 

TNFA transcripts it was interesting to determine, if targeting the enzyme responsible 

for elimination of this silencing mark could restore the silent state of the TNFA. 

The efficacy of JMJD3 inhibitor (GSK-J4) was first tested using GM-CSF 

differentiated human primary macrophages. Administration of GSK-J4 resulted in 

decreased expression of the TNFA transcripts after LPS activation and this was 

associated with preserved H3K27me3 binding to the TNFA TSS upon LPS 

stimulation. These findings were in agreement with previously published data by 

Kruidenier and colleagues (2012) where GSK-J4 was also tested in human primary 

macrophages. Interestingly, results presented in this study additionally suggest that 

GSK-J4 may exert its effect on H3K4me3 but not on H3K4me1.  

Subsequent analysis of GSK-J4 on intestinal macrophages isolated from mucosa of 

Crohn’s patients, showed no effect on JMJD3 inhibition. It is difficult to speculate on 

possible reasons why the inhibitor did not exert its effect, despite positive results on 

GM-CSF macrophages. Since the GSK-J4 activity depends on macrophage esterase 

action, it might be that the concentration of the enzyme was not sufficient to convert 

the GSK-J4 pro-drug form into an active form. 

Figure 7.1 represents a proposed model of chromatin remodelling at the TNFA 

promoter in human intestinal macrophages. 
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To investigate novel aspects of IBD pathogenesis, gene microarray analysis was 

performed to determine changes in gene expression in intestinal macrophages 

isolated from mucosa of Crohn’s and ulcerative colitis patients compared to cells 

isolated from normal gut. To provide more comprehensive data on the aspect of 

endotoxin tolerance, gene expression profile of human intestinal macrophages was 

also analysed with reference to LPS-tolerised human primary macrophages. 

The majority of assessed genes were up regulated in IBD samples. The gene 

expression profile was also classified accordingly to gene function or based on 

different family group. A large number of upregulated genes was associated with 

proinflammatory responses and have been shown to function in cell proliferation and 

differentation pathways, such as Il1β, Il1F5, TNFSF8, TNFA, LTA, GDF5, Il8, Il13, 

Il15, INHBA and Il24.  

Some genes showed opposing expression pattern between ulcerative colitis and 

Crohn’s disease, such as GDF5, Il1F5, BMP5, Il1F7 and Il15, respectively. 

The gene array analysis identified IL24 as being particularly increased. IL-24 protein 

level was also increased in both inflamed and uninflamed CD biopsies and also in 

inflamed UC biopsies. Additionally, it was also shown that IL-24 stimulation 

increases TNF-α production in Crohn’s disease ex-vivo organ culture. 

The role of IL-24 in driving immune responses has been reported in number of 

studies (Poindexter et al., 2005; Andoh et al., 2009; Sahoo et al., 2011) and its 

expression has been identified in LPS-stimulated monocytes and macrophages or 

Th2-polarised T cells (Wolk et al., 2002; Poindexter et al., 2005; Kunz et al., 2006). 
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The function of IL-24 is still poorly understood, but IL-24 can function as an 

intracellular cell death-inducing factor, or as a classical cytokine through cell surface 

receptor (Andoh et al., 2013). 

Thus preliminary analysis of gene expression pattern presented in this thesis 

identified IL-24 as a new proinflammatory cytokine potentially involved in IBD. 

Further investigation of IL-24 could be a very exiting project for the future. 

In summary, epigenetics has emerged as a promising area of research, especially in 

reference to understanding a very complex and multifactorial diseases like IBD. 

Much of work on epigenetics and its involvement in regulating immune responses 

comes from the work on mouse models or human cell lines. Although providing 

valuable information, these studies not always can be extrapolated into human 

disease setting. Therefore, the main focus of this project was to investigate the 

epigenetic regulation of pro-inflammatory immune responses in human intestinal 

macrophages. The results presented here, although preliminary, provide a valuable 

insight into how the anergic phenotype is being established in human intestinal 

macropahges. These results could form a platform for any future study in this area of 

research. 
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Supplemental Figure for Chapter 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.01: ChIP assay analysis on tolerised human primary macrophages 
(GM-CSF - M1) 
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Supplemental figure for Chapter 6 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.02: TNF/LT locus 
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Supplemental table for Chapter 6 
 
 
 
                                                  GM-CSF macrophages                M-CSF macrophages 

                                                                       Tolerised/Non-tolerised 
                      Gene: 

BMP1 YES YES 
BMP2 YES YES 
BMP6 YES NO 

BMPR2 YES YES 
CD70 NO YES 
CSF1 YES NO 
CSF2 YES YES 
IFNB1 YES YES 
IL10 YES YES 
IL1A YES YES 
IL1B YES NO 
IL1F5 YES YES 
IL24 YES YES 
IL8 NO NO 

IL8RB NO NO 
IL6 YES YES 

IL6R YES YES 
IL7 YES YES 

IL7R YES NO 
INHBA YES YES 

LTB NO NO 
LTBR NO NO 
LTA YES YES 
TNF YES YES 

TNFSF8 YES YES 
 
 
 
 
 
Table A.0.3. Gene expression pattern of in vitro tolerised GM-CSF/M-CSF 
differentiated human primary macrophages 
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continued 
 
 
                                                  GM-CSF macrophages             M-CSF macrophages 

                                                                       Tolerised/Non-tolerised 
                      Gene: 

BMP2K NO NO 
BMP8A NO NO 
BMP8B NO NO 
BMR1A NO NO 
CSF1R NO NO 

CSF2RA NO NO 
CSF2RB NO NO 
IL10RA NO NO 
IL10RB NO NO 

IL16 NO NO 
IL21R NO NO 
IL3RA NO NO 
SIRT1 NO NO 
SIRT2 NO NO 
TGFB1 NO NO 
TGFB2 NO NO 

TGFBR1 NO NO 
TNFSF4 NO NO 
TNFSF12 NO NO 
TNFSF13 NO NO 

TNFSF13B NO NO 
TNFSF14 NO NO 
TXLNA NO NO 

 
 
 
 
 
 
Table A.0.3. Gene expression pattern of in vitro tolerised GM-CSF/M-CSF 
differentiated human primary macrophages 
 
 
 


