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Abstract

The numerical treatment of nonlocal problems, which taking into account material

microstructures, by means of meshless approaches is promising due to its efficiency

in addressing integropartial differential equations. This thesis focuses on the inves-

tigation of meshless methods to nonlocal elasticity.

Firstly, mathematical constructions of meshless shape functions are introduced

and their properties are discussed. Shape functions based upon different radial

basis function (RBF) approximations are implemented and solutions are compared.

Interpolation errors of different meshless shape functions are examined.

Secondly, the Point Collocation Method (PCM), which is a strong-form mesh-

less method, and the Local Integral Equation Method (LIEM) that bases on the

weak-form, are presented. RBF approximations are employed both in PCM and

LIEM. The influences of support domains, different kinds of RBFs and free param-

eters are studied in PCM. While in LIEM, analytical forms of integrals, which is

new in meshless method, is addressed. And, the number of straight lines that en-

close the local integral domain as well as the integral radius are analyzed. Several

examples are conducted to demonstrate the accuracy of PCM and LIEM. Besides,

comparisons are made with Abaqus solutions.

Then, PCM and LIEM are applied to nonlocal elastostatics based on the Erin-

gen’s model. Formulations of both methods are reported in the nonlocal frame.

Numerical examples are presented and comparisons between solutions obtained

from both methods are made, validating the accuracy and effectiveness of mesh-

less methods for solving static nonlocal problems. Simultaneously, the influence of

iv



characteristic length and portion factors are investigated.

Finally, LIEM is employed to solve nonlocal elastodynamic problems. The

Laplace transform method and the time-domain technique are implemented in LIEM

respectively as the time marching schemes. Numerical solutions of both approaches

are compared, showing reasonable agreements. The influence of characteristic

length and portion factors are investigated in nonlocal dynamic cases as well.
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CHAPTER 1
Introduction

1.1 Background and Motivation

Composites are being increasingly indispensable in comprehensive applications of

modern technology and arouse much compelling attention among scientific com-

munities because of their superior properties, e.g., chemical resistance, substantial

weight savings whereas significant improvements in strength over similar metal

parts, and, moreover, the ability to deform and recover to their original shape with-

out major damage. Besides, their unique thermal properties and low electronic con-

ductivity make them employed as a more satisfactory and cost effective solution for

various branches of engineering.

Vast research investigations have been devoted to the mechanical behaviour of

composites, which is of crucial importance in potential applications of compos-

ite technology to large variety of problems. However, experimental efforts with

composite materials are both prohibitively expensive and formidably difficult, since

the internal structure of composites, characterized by sophisticated microstructures,

can never be precisely described over the entire range of size scales. Consequently,

great endeavours concerning to develop appropriate models for composites are car-
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ried out in different approaches. In general, there are two classical methods to

model composite materials. The atomic or molecular modelling, based especially

on the atomic lattice theory, is the first one that should be referred to. In spite of its

applicability at micro scales, it is restricted to deal with limited numbers of atoms

and molecules. Otherwise, the foregoing models give rise to the same disadvan-

tages with experimental studies, namely, computationally costly and complicated.

The other alternative way is the continuum mechanics, e.g., the elasticity theory.

Due to its less lavish in computational expenditure and simpler in formula aspect,

continuum mechanics approach has been adopted to explore physical and mechan-

ical properties of composites such as wave propagation, bucking and free vibration

at microscopic levels.

Most continuum theories rely on the fundamental assumption of material ho-

mogeneity at any arbitrary size scales, which means the equilibrium equations can

be validated over each of infinitesimal volumes in the finite body as far as it is con-

cerned. And the standard constitutive models in classical theories describe stresses

at a material point of interest depending solely on the strain at that point only. How-

ever, it is known to all that the physical nature of a material is represented by a large

numbers of essential constituents such as atoms or molecules gathered together.

The lattice distance between individual atoms or molecules cannot afford to be ig-

nored when it becomes obviously comparable to external scales and the discrete

microstructure in composites can no longer be treated as homogeneous continuum

at small size. In other words, material behaviours are size independent in clas-

sical continuum theories and thus accurate prediction of mechanical properties of

composites cannot archive if the prominent size effect has not been taken into ac-

count. Therefore, nonlocal theories framed in the realm of continuum theories have

been initiated for which allowing the consideration of size effects in the study of

microstructures in composites.
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Another motivation of nonlocal theories grounds on the fact that classical con-

tinuum theories give rise to physically unrealistic results in the existence of sharp

geometrical singularities. A typical case is the singular stress predicted at the crack

front in the context of continuum fracture mechanics, which has become a topic

of major concern in the research community. This inability reveals the intrinsic

shortcoming of classical elasticity, that is, the lack of accommodating the internal

characteristic length of a material in the analysis.

Nonlocal theories provide a possible solution to deal with the embarrassment

embedded in classical continuum approaches by regarding the material microstruc-

ture and accounting for the internal characteristic length. Solutions for nonlocal

problems are nevertheless generally difficult to solve analytically and/or numer-

ically since the constitutive relations for which are of integropartial differential

equations and even the simplest one-dimensional problems are extraordinary com-

plex mathematically in analytical solutions. Consequently, to treat these problems

numerically may be the only solution that is effective as well as practicable.

Recently, the idea of ‘Meshless’ or ‘Meshfree’ , aimed at getting rid of at least

part of meshes or elements by constructing the interpolation or approximation en-

tirely in terms of nodes, turned to intrigue the interests of the academic and research

community. Although in some of the meshless methods, background grids are still

required, they reduce the time and cost spent on the mesh generation to a great ex-

tent and moving discontinuities can usually be treated without burdened remeshing

and hence eliminating the loss of accuracy. For these reasons, meshless methods

are possible to deal with large classes of problems which are very awkward with

mesh-based methods. On the aforementioned grounds and motivations, mesh re-

duction techniques are employed to solve nonlocal elasticity mechanical problems

in the presented thesis.

This introductory chapter is structured as follows. In the next section, an overview

3



1.2. Nonlocal Elasticity Theories

of the development of nonlocal elasticity theories will be given. And then a brief

review of meshless methods will be presented. Finally, the scope of this thesis will

close this chapter.

1.2 Nonlocal Elasticity Theories

Early investigation of nonlocal elasticity theories can be traced back nearly fifty

years ago when the description of range effects as well as the cohesive forces were

concerned in elastic materials [1]. Almost simultaneously, an approach based on the

crystal lattice theory considering elastic media with microstructures was proposed

and applied to the description of interactions between crystal defects and disloca-

tions [2]. And, moreover, Krumhansl [3] derived a continuum method on the basis

of atomic lattice theory. Later, Edelen and Eringen [4, 5] characterized the theories

of nonlocal elasticity by imposing a nonlocal character to fields such as mass, body

forces or internal energy.

Improvements have been made by the work of Polizzotto [6, 7] who took the

nonlocality residuals into account by means of thermodynamics and solved the

nonhomogeneous nonlocal elasticity problems. Contributions based on the energy

residuals in thermodynamic principles are from various aspects emerged, including

nonlocal damage [8], heat conduction [9], gradient plasticity [10], wave propaga-

tion [11], electronic analysis [12], fracture [13], and, nonlocal properties of cur-

rently prevalent materials such as nanostructures, functionally graded materials and

smart materials [14–16].

A leap has been provided in extending nonlocal elasticity theories to practical

problems since the simplified nonlocal elasticity theories were promising for linear

homogeneous isotropic media by the work of Eringen and co-workers [17, 18] in

which only the stress and strain relations are regarded as nonlocality and character-
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ized by an attenuation function. Recently, low-residual approximate solutions for

one- and two-dimensional nonlocal elasticity are obtained based on the Eringen’s

model and can be used as benchmarks for nonlocal elastic problems [19].

Stress singularities predicted at a sharp crack front is a typical awkward issue

in continuum fracture mechanics needed to be resolved since the classical theories

have no association with material internal characteristic length as pointed out by

Eringen [20] and consequently limiting their applications only to macrostructures.

Nonlocal elasticity theories provide the feasibility to defeat the inherent shortcom-

ing of classical elasticity theories at the existence of a shape crack tip and relevant

literatures are extensively traceable. For instance, crack problems in functionally

graded materials and piezoelectric materials were investigated [21, 22], Stamoulis

[23] studied the crack growth influenced by size effects under bending, Allegri [24]

derived stresses at the crack-tip in orthotropic bodies, Mousavi [25] modeled cracks

by continuous distributed straight dislocations and obtained no singularities at the

crack tip.

Recently, various industries express a keen interest in composite materials and

reopen the discussion of size effects. Nonlocal elasticity theories, based on contin-

uum approaches, are widely employed to adequately descript the physical nature of

material microstructures, and to capture the material behaviour taking place at mi-

crostructure, or, even, at atomic or molecular scales. A list of references related to

the hottest composites are also extensive, starting with the work of Peddieson [26]

who showed the potentiality of nonlocal theories to nanomaterial. Wang et al [27]

analyzed the elastic buckling of nanotubes taking size effects into account by use

of the nonlocal elasticity theory. Pradhan et al [28] obtained analytical solutions

for vibration of nanoplates. Murmur et al [29] investigated the vibration response

a double-nanoplate-system assumed to be bonded by an enclosing elastic medium

under biaxial compression. More recent vibration investigations of nanoplates can
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be found in [30, 31], which concerned the free vibration and the nonlinear vibra-

tion of piezoelectric nanoplates. Besides, bending, buckling and free vibration of

nanobeams were investigated, see [32, 33]. Static and stability study of function-

ally graded nanobeams and their nonlinear free vibration was recently presented in

[34, 35]. Moreover, an overview of the application of nonlocal elastic models to

simulate carbon nanotubes and graphene can be seen in [36]. Their progresses on

carbon nanotubes and graphene are far to be exhaustive and just to refer some latest

ones [37, 38].

The aforementioned advances are mainly focusing on the constitutive relations

of nonlocal elastic models, another parallel contribution to nonlocal elasticity theo-

ries is related to boundary value problems. Investigations related to questions such

as the conditions for the existence of fundamental solutions as well as the existence

and uniqueness of solutions were addressed by Rogula [39] and Altan [40, 41], re-

spectively. To this concern, related variational principles were developed by Poliz-

zotto [6].

Although a comprehensive review of nonlocal models and theories applied in

plasticity and damage can be found in [42], we mainly focus on nonlocal elasticity

theories in the presented thesis and a historical overview of which can be found in

[43].

1.3 Meshless Methods

There is no denying that the Finite Element Method (FEM) proposed in the 1950s is

one of the milestones in the fields of both academic and industries. It has been suc-

cessfully applied to most engineering branches including not only linear problems

but also nonlinear cases because in which complicated structures can be resolved

flexibly in terms of information provided by elements or meshes. The availability
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of well-developed commercial FEM packages is another stimulating factor that lead

to its prevalent for solving practical issues related to solids and structures.

Although FEM is thoroughly developed, it is not without limitations. For in-

stance, the accuracy of solutions cannot guarantee when distorted or low quality

meshes are created, and that is the price to pay in mesh-reliant methods. In ad-

dition, FEM struggle inevitably against problems with discontinuities that deviate

from original element edges. Hence, the most feasible strategy to deal with moving

discontinuities is to remesh in each step hereby insuring element edges remain align

with the discontinuities. Unfortunately, such remeshing is evidently time consum-

ing as well as high price in human interaction since the projection of field variables

between meshes is required in successive stages and then subsequently resulting

in a degradation of accuracy in FEM solutions. In order to describe the discon-

tinuities in the realm of mesh-based approach, an alternative way aimed at easy

re-constructing the mesh, named extended finite element method (XFEM), was pro-

posed by Belytschko et al [44]. Some recent progresses of XFEM are cited to reflect

that it still be an active topic in the research community [45, 46].

Specifically, in simulations of problems involved in extremely large deforma-

tions such as metal extrusion and molding, high-speed impact and coupled fluid-

solid, considerable loss of accuracy in FEM solutions arise from the element distor-

tions. And, for crack propagation cases with complex and arbitrary paths, additional

computation cannot be avoided duo to the remeshing. Moreover, FEM is based on

continuum theories, it is hard to model the failure process of a material consisted

of a large number of small particles. Serious errors occur when non-linear or path-

dependent problems are analyzed.

Taking advantages of predefined elements or meshes information in FEM for-

mulations is the fundamental reason for the above-mentioned drawbacks. The most

immediate idea to overcome the disadvantages is to get rid of the elements and
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meshes in the numerical analysis. Therefore, the concepts of meshless or mesh-

free methods came into being. Briefly speaking, a meshless or meshfree method

depends on the interpolation or approximation over a set of randomly distributed

nodes in the problem domain rather than a predefined mesh, and hence it has a

promising applications to various aspects.

The numerical treatment of nonlocal elastic problems, characterized by a stress

and strain relationship of convolutive type, by means of meshless methods was de-

veloped due to its efficiency in dealing with integropartial differential equations.

More than ten years ago, a meshless method was applied to solve dynamic crack

problems nonlocally [47]. Sladek [48] proposed the nonlocal boundary integral

formulation for softening damage. More lately, meshless collocation techniques

on the basis of RBFs was employed to address nonlocal problems of Timoshenko

nanobeams related to bending, bucking and free vibration [49] and to solve a non-

local boundary value problem [50]. Among others, the potentialities of meshless

methods within nonlocal solid mechanical problems were presented by the work of

Wen and Huang [51–53].

An intensive discussion of historical developments and basic solution proce-

dures of meshless methods will be given in Chapter 2.

1.4 Scope of the Present Thesis

Remaining chapters of this thesis are outlined as follows:

Chapter 2 begins with an overview of meshless methods. Different kinds of

mesh reduction methods are reviewed. Then, the general solution procedures of

meshfree methods as well as their future developments are introduced.

Chapter 3 presents the interpolation and/or approximation scheme for mesh-

less methods. Shape function constructions especially by means of Point Interpola-
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tion Method (PIM), Radial Basis Functions (RBFs) and Radial Point Interpolation

Method (RPIM) are systemically discussed. RPIM shape functions based on differ-

ent RBFs approximations are implemented in 1D and 2D domain. And interpolation

errors of meshless shape functions based on different RBFs are examined.

Chapter 4 introduces the meshless Point Collocation Method (PCM) for 1D

and 2D isotropic solids. Several numerical examples are carried out by both the

PCM code and ABAQUS simulations. The influence of different types of RBFs,

support domains as well as free parameters are examined. Comparisons between

results are conducted, showing great agreement when appropriate approximation

schemes and parameters are selected.

Chapter 5 presents the formulations of meshless Local Integral Equation Method

(LIEM) for the 2D isotropic medium in great details. Analytical solutions for do-

main integrals are derived by taking advantage of the unit test function and the

Multiquadric (MQ) RBF. Besides, the convergence of LIEM is investigated. Nu-

merical solutions of three examples are compared with ABAQUS and PCM results,

which indicate the accuracy of LIEM.

Chapter 6 discusses the application of PCM and LIEM to nonlocal elastostatics

based on the Eringen’s model. Formulations of both methods are presented in the

nonlocal frame and then employed to solve nonlocal elastic problems numerically.

Comparisons between solutions derived from both methods confirm the accuracy

and effectiveness of meshless methods in dealing with nonlocal elastostatic prob-

lems. Simultaneously, free parameters in Eringen’s model are examined as well.

Chapter 7 derives the formulation of LIEM for nonlocal elastodynamics. Non-

local time-dependent problems are resolved by LIEM in the Laplace transform do-

main and in the time-domain, respectively. The Durbin’s inversion method is em-

ployed in the Laplace transform method, while the Newmark method is chosen as

the time marching scheme in the time-domain technique. Two examples are car-

9



1.4. Scope of the Present Thesis

ried out and the influence of free parameters are studied. Additionally, numerical

solutions form both methods are compared, showing reasonable agreement.

Chapter 8 summarizes this thesis and suggests the future work as well as pos-

sible improvements. The author’s publications during the doctoral research are also

listed.
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CHAPTER 2
An Overview of Meshless Methods

2.1 Introduction

A multitude of meshless methods have been developed over the last three decades.

It is noteworthy that they are in fact originated from the mesh-free idea in spite of

significant varieties of names between many individual methods. Meshless strong-

form methods that base on some collocation techniques and usually discretize at

field nodes are truly meshfree methods since no numerical integration is involved

and no mesh is needed for field variable approximations. However, other meshless

methods, such as those based upon the Galerkin weak-form, an auxiliary back-

ground grid is needed for numerical integrations. Therefore, they are basically not

truly meshfree methods.

This chapter is aimed at presenting an overview of the historical developments

of meshless methods, followed by their general solution procedures. And some

remarks and future developments close this chapter.
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2.2 Historical Developments

2.2.1 Smooth Particle Hydrodynamics (SPH)

The advent of meshless methods is traceable to more than thirty years ago with the

developing of finite difference methods for arbitrary irregular meshes [54]. How-

ever, due to the prevalence of FEM, the research interest focused on it was rare. In

1977, Lucy [55] and Gingold [56] proposed a Lagrangian method on the basis of

kernel estimated method, which was firstly employed for modelling astrophysical

phenomena without boundaries including exploding stars and dust clouds etc.. This

method is the well-known Smooth Particle Hydrodynamics (SPH), which regards

the fluid as a group of moving particles and the governing differential equations

were rewritten as the kernel estimates integrals.

In despite of the roaring success of SPH, the publications were very modest

compared with other methods in those times and were mainly presented in the pa-

pers of Monaghan and co-workers [57]. There were hardly any applications of SPH

to other kinds of problems until the 90’s. It consequently revealed some inherent

shortcomings of SPH including tensile instability, lack of interpolation consistency

in field variable approximations, and difficulty in enforcing displacement bound-

ary conditions [58]. Over the last decades, there have been substantial improve-

ments and modifications in SPH. Johnson [59] developed a normalized smoothing

function (NSF) algorithm that improve the accuracy of SPH impact computations.

Dyka [60] figured out the origin of the tensile instability and proposed a stabilized

scheme. Vignjevic [61] described a specific treatment of zero-energy modes.

The applications of SPH include a wide range of aspects, such as the simulation

of stars collisions [62], incompressible flows [63], gravity currents [64], heat trans-

fer [65] and so on. Besides, SPH has shown its capacity to simulate high velocity
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impact problems. Randles and Libersky [66] have made great efforts to apply SPH

to impact problems. Liu and co-workers have applied SPH to underwater explo-

sions [67].

2.2.2 Diffuse Element Method (DEM)

Another scheme to construct meshfree approximations, which emerged ten years

later after SPH was initially introduced, is the moving least-square (MLS) approx-

imations proposed by Lancaster and Salkauskas [68]. Then, Nayroles et al firstly

applied MLS in the Galerkin technique in 1992 to formulate the Diffuse Element

Method (DEM) [69], which bases on the thought that replacing the interpolation

within a FEM element by the MLS local interpolation [70]. Many academicians

indicated that it was only after the DEM that the idea of ‘meshless’ or ‘meshfree’

began to intrigue the interests of the academic and research community.

2.2.3 Element-Free Galerkin Method (EFG)

Belytschko and colleagues announced another extraordinary idea in 1994 related

to Element-Free Galerkin Method (EFG) [71] that can be regarded as an extension

of Nayroless DEM. This class of methods introduces a series of refinements and

improvements over DEM formulations. Firstly, it properly determines the approxi-

mation derivatives because Belytschko have stated that neglecting some derivatives

detracts significantly from the accuracy of the DEM. In addition, Belytschko have

shown that DEM fails to pass the patch test on the account of the fact that the MLS

trial function does not yield an interpolation and the essential boundary conditions

cannot directly satisfy. Therefore, implementation of essential boundary conditions

was achieved by the employment of Lagrange Multipliers in the EFG. Moreover,

Chung [72] proposed local and global error estimates for EFG. Belytschko et al
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[73, 74] conducted a deep exploration on the numerical integration and the approx-

imation scheme. The EFG method was found to be more consistent, accurate and

stable than the DEM, although the ‘improvements’ result in substantially more ex-

pensive than SPH.

The prevalence of EFG among other meshless methods pushes forward its ap-

plication extending to a variety of problems. Belytschko [75] have used EFG to

simulate the fracture and crack propagation. Krysl [76] applied EFG in the analysis

of arbitrary Kirchhoff shells. Hengen [77] combined the EFG and FEM and hence

maximized their own strengths. Du [78] applied EFG in 2D shallow water flows

in rivers. Cordes [79] used EFG to solve solid mechanics problems containing ma-

terial discontinuities. Zhang [80] proposed a meshless model for the mechanics

analysis of jointed rock structures based on the EFG method.

2.2.4 Reproducing Kernel Particle Method (RKPM)

In 1995, Liu [81] proposed the Reproducing Kernel Particle Method (RKPM),

which was motivated by the theory of wavelets as well as the attributions of the EFG

method. RKPM is another path to overcome the lack of consistency in SPH and

successful applications have been found in the multiscale technique [82], acoustics

analysis [83], structural dynamics [81], fluid dynamics [84], stress concentration

[85], large deformation analysis [86], metal forming process analysis [87], shear-

deformation beams and plates [88], micro-electromechanical system [89], etc..

2.2.5 H-p Cloud

In the same year, Duarte and Oden [90] proposed a new methodology called H-p

Cloud. It used MLS interpolations to build a partition of unity and its convergence

was proved by Liu et al [91]. Then, it is employed as a low-cost procedure to
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construct trial and test functions for Galerkin approximations. Mendonca [92] used

H-p Cloud method to solve Timoshenko beam problems, while Garcia [93] applied

it on the Mindlin’s thick plate model.

2.2.6 Partition of Unity

Another two steps deserve to be mentioned in the advance of meshfress methods

are the proposed of the Partition of Unity Finite Element Method (PUFEM) and

Generalized Finite Difference Method (GFEM) [94, 95]. Both of them can deal

with randomly distributed nodes. Furthermore, the PUFEM has played an crucial

role that closely resembles MLS and partitions of unity, as can be seen from the

article by Babuska and Melenk [96].

2.2.7 Finite Point Method (FPM)

The Finite Point Method was developed by Onate [97] in 1996, which was formu-

lated on the basis of a weighted least-square interpolation of nodal values and node

collocation for evaluating the approximation integrals. Fluid problems were orig-

inally addressed by the proposed method [98] and then other problems associated

with elastic mechanics were concerned [99]. Recently, Ortega [100] improved the

adaptive features of FPM and guaranteed its accuracy and cost effectiveness when

it is employed to solve practical fluid problems. In addition, Aluru [101] proposed

the so-called Point Collocation Method (PCM) that has been applied to analyse

piezoelectric devices [102] on reproducing kernel approximations basis. And the

importance of positivity conditions has been pointed out for the purpose of estab-

lishing a robust PCM [103].
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2.2.8 Meshless Local Petrov-Galerkin (MLPG)

A significant achievement in the evolution of meshless methods should be attributed

to Atluri and Zhu [104] who introduced the Meshless Local Petrov-Galerkin (MLPG)

in 1998, which presented another route to implement the meshfree idea on the ba-

sis of local weak form that get rid of the auxiliary grids thoroughly. Besides, the

employment of Petrov-Galerkin method greatly simplify the integration appeared

in the local weak form. Therefore, MLPG can be performed easily in a truly mesh-

less sense.The proposed method was constructed within the MLS framework until

other approximation approaches were used to formulate MLPG. Plenty of MLPG

schemes was derived benefiting from the fact that test functions can be selected

arbitrarily in the Petrov-Galerkin method [105].

MLPG has been applied to many areas including elastostatic and elastody-

namic problems of solids [106, 107], high order partial differential equations for

thin beams [108] and thick beams (shear deformable beams) [109], plate structures

[110], vibration analysis for solids [111], linear fracture problems [112], fluid me-

chanics problems [113], crack propagation [114], high-speed impact [115], etc.. A

special instance of MLPG, called the Local Boundary Integral Equation method

(LBIE), has demonstrated its talent in both linear and non-linear boundary value

problems [116].

2.2.9 Radial Basis Functions (RBFs)

Radial Basis Functions (RBFs) was initially presented as the multiquadrics by Kansa

in 1991 for the sake of resolving partial differential equations and fluid dynamic

issues by taking advantages of collocation methods [117]. Although collocation

methods are relatively easy and straight-forward, they usually fail to derive a sparse

stiffness matrix when a global support domain is employed, that may lead to sub-

16



2.2. Historical Developments

stantially rise in computational time and cost supposing that there were vast of

collocation points located within the problem domain. On the other hand, com-

pactly supported RBFs have been applied to solve partial differential equations as

well. However, the accuracy is not inspiring compared with solutions from global

supported RBFs even though the stiffness matrix is not dense anymore. Addition-

ally, the mix of governing equations and boundary conditions in RBFs absolutely

lead to a set of asymmetric system equations. As a consequence, the RBF Hermite-

Collocation method [118] was proposed as a tool to prevent the annoying asymme-

try.

RBF approximation technique has drawn the attention of academics and re-

searchers since the beginning of Kansa’s attempt. However, its applications to prac-

tical problems are hardly be seen in the literature and plenty of investigations have

been carried out mathematically. Some applications deserve to be mentioned are

concerned in the transport phenomena [119] and heat conduction [120].

2.2.10 Point Interpolation Method (PIM)

Liu and co-workers [121] introduced the Point Interpolation Method (PIM) in 2001

as an alternative method to construct the meshless approximation based on the in-

terpolation technique. Therefore, shape functions in PIM is characterized by the

Kronecker delta function property, demonstrating one of the major differences be-

tween the interpolation technique and the MLS approximation.

Two kinds of PIM formulations have been developed using the polynomial basis

[122] and the RBFs [123]. However, problems arise when applying the polynomial

PIM for the reason that the interpolation matrix is sensitive to the selection of poly-

nomial basis. In other words, inappropriate selections may give rise to a badly

conditioned matrix, or even worse, suffer from singularities. By contrast, the Ra-
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dial Point Interpolation Method (RPIM) is more stable and robust for managing

arbitrarily distributed nodes and hence extensively employed to different branches

of engineering. e.g., two- and three-dimensional solid mechanics [122], piezoelec-

tric material [124], material nonlinear problems in civil engineering [125] and so

on.

One more trouble relies on the fact that the approximation function could be

discontinuous since no weighted function is employed in PIM. Great efforts have

been devoted saving it from this trouble. For instance, the Local Radial Point In-

terpolation Methods (LRPIM) was put forward by using multiquadric RBFs as the

approximation scheme and has been explored in details in [126].

Besides, PIM and RPIM shape functions have been extended to the boundary

integration equations of partial differential equations and formulated the Boundary

Point Interpolation Method (BPIM) and the Boundary Radial Point Interpolation

Method (BRPIM) respectively [127]. Boundary conditions of the proposed meth-

ods can be enforced easily benefiting from the Kronecker delta function property of

their shape functions and consequently resulting in high efficiency.

2.2.11 Meshless Weak-Strong (MWS) Form Methods

In spite of the high accuracy of meshless methods based on Galerkin methods, it

needs a background grids to carry out numerical integrals. Moreover, they are com-

putationally more expensive than FEM. On the contrary, collocation methods are

usually unstable and less accurate even though they are computationally efficient.

Therefore, great interest has been triggered to look for a more ideal method that dis-

carding a portion or even all of the background grids and ensuring the stability as

well as the accuracy of a specific method. Zhang [128, 129] have proposed the least-

squares collocation meshless method and weighted least-square meshless method
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as an attempt to reach the aforementioned goal. Besides, Liu and Gu [130] devel-

oped a series of meshless methods based on the combination of Galerkin methods

and collocation techniques, named Meshfree Weak-Strong (MWS) form methods,

aiming at applying both of the strong-form and weak-form formulations simulta-

neously in a particular problem in order to derive the discretized system equations.

Nodes located on or close to the domain boundaries with derivative boundary con-

ditions are treated by the weak-form, whereas collocation points are all treated by

the strong-form. Advantages of both methods are gathered in the MWS method so

improvements of solutions and the saving of computational resources can be seen

obviously.

2.2.12 Others

Although several widespread meshless methods are reviewed in the previous sec-

tions, it is noteworthy that there are plenty of other meshless method in the liter-

ature. Mukherjee [131] presented a meshless method based on the Boundary El-

ement Method (BEM) named the Boundary Node Method (BNM), for which the

application can be seen in [132] and numerical solutions are well presented. How-

ever, it is time consuming since the the number of system equations double resulting

from the enforcement of boundary conditions in BNM. The Finite Spheres, which

is in fact a special MLPG method, was introduce in 2000 [133]. Its approxima-

tion scheme is implemented by use of the partition of unity and hence no concerns

are needed about the boundary conditions. In addition, a group of hybrid-based

meshless methods have also arised such as the Hybrid Boundary Integral Equation

method(HBIE) [134], Hybrid Boundary Point Interpolation Method (HBPIM) and

the Hybrid Boundary Radial Point Interpolation Method (HBRPIM) [135]. The

most prominent characteristic of these hybrid-based methods is they usually result
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in a symmetric system matrix and it is an advantage for them to couple with other

developed meshless methods that have the same symmetric property.

2.3 General Solution Procedures

The most significant differences between meshless methods and FEM is the con-

struction of shape functions. Predefined elements and meshes are introduced so that

shape functions can be constructed using elements or meshes information in FEM.

Whereas in meshless methods, only field nodes located within the support domain

are selected to construct shape functions for specific points of interest. General

solution procedures of meshless methods are outlined in this section as follows.

Step 1: Creation of field nodes

The problem domain is shown in Figure 2.1 (a). A set of randomly distributed

field nodes is firstly generated in the problem domain and on its boundary, see Fig-

ure 2.1 (b). The density of field nodes which usually associate with field variables

depends on the required accuracy.

(a)                                                                               (b)

Field nodes

Figure 2.1: (a) Problem domain; (b) Field nodes distribute in the problem domain and on
the boundary.

Step 2: Construction of shape functions
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Shape functions of a point of interest x within a problem domain in meshless

methods can be constructed by means of interpolating or approximating the field

variable such as the displacement u over its support domain using information of

field nodes, i.e.,

u(x) =
n∑
i=1

φi(x)ui = Φ(x)Us (2.1)

in which n is the total number of nodes located in the support domain of point x, φi

is the shape function of the ith node within its support domain, ui is the nodal value

at the ith point, Us is the vector that collects all nodal values in the problem domain.

A support domain of a point x that includes all field nodes in the problem do-

main is called global support domain. However, local support domain is the one

that widely used in meshless methods, which means only some specific nodes are

taken advantage of to approximate or interpolate the function value at x, and shape

functions outside the local support domain will be regarded as zero. Local support

domains are usually circular or rectangular as shown in Figure 2.2, they can how-

ever have different geometrical shapes and dimensions corresponding to different

points.

Step 3: Formation of discretized global system equations

Discrete equations can be formulated in terms of nodal values using their shape

functions and weak-form or strong-form formulations. And then these discretized

equations are assembled into the global system equations for the entire problem

domain.

Step 4: Solving global system equations

Solutions for the field variable are obtained for all points in the problem domain

and can be subsequently utilized to achieve other purposes. Flow chart of meshless

methods can be seen in Figure 2.3.
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Field node

Point of interest x

Local support domain

Figure 2.2: Local support domains.

Problem 

domain
Field nodes 

creation

Shape function 

construction 

System equations in 

strong/weak forms Solutions

Figure 2.3: Flow chart of Meshless methods.
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2.4 Summary and Future development

Some overview papers, related to the developments of meshless methods [58, 136]

and its applications to electromagnetics [137], computational fluid dynamics [138],

laminated and functionally graded plates and shells [139], structure and fracture

mechanics [140], heat transfer and fluid flow [141], material forming[142], should

be referred to. Additionally, Some main meshless methods are summed up in Table

2.1 on the basis of the discussions in this chapter.

It is until recently that meshless methods are commercially available. Neverthe-

less, no rigorous demonstration has been performed mathematically on these meth-

ods compared with the fully developed FEM. And the computational efficiency has

become another issue of major concern since the preferred weak-formed meshless

methods are stable and accurate but time-consuming. Moreover, the applications

of meshless methods to practical problems have not yet achieved striking improve-

ments. Therefore, more efforts are needed in order to make fully used of meshless

methods.
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Table 2.1: Main types of meshless methods

Meshless/Meshfree
methods

Approximation /
interpolation scheme Discretization scheme

Smoothed Particle
Hydrodynamics (SPH)

[56]
Kernel estimate Collocation method

Diffuse Element Method
(DEM) [69]

Moving least-square Collocation method

Element-Free Galerkin
method (EFG) [71]

Moving least-square Galerkin weak form

Reproducing Kernel
Particle Method (RPKM)

[81]

Reproducing kernel
estimate

Galerkin weak form

H-p clouds [90]
Moving least-square

interpolation Galerkin weak form

Partition of Unity Method
(PUM) [94]

Partition of unity Galerkin weak form

Finite Point Method
(FPM) [97]

Moving least-square Collocation method

Point Collocation Method
(PCM) [101]

Reproducing kernel
estimate

Collocation method

Local Petrov-Galerkin
method (MLPG) [104]

Moving least-square Petrov-Galerkin weak
form

Local Boundary Integral
Equation method (LBIE)

[116]
Moving least-square Petrov-Galerkin weak

form

Radial Basis Functions
meshless method (RBF)

[117]
Radial basis functions Collocation method

Point Interpolation Method
(PIM) [121]

Point interpolation Galerkin weak form

Meshfree Weak-Strong
form methods (MWS)

[130]

Moving least-square +
point interpolation

Galerkin weak form +
collocation method
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CHAPTER 3
Meshless Shape Function

Construction

3.1 Introduction

The primary issue needed to be fulfilled is to construct shape functions in order

to interpolate or approximate unknown field variables before solving a problem

governed by a set of partial differential equations numerically. Meshless shape

functions usually approximate unknown field variables such as displacement com-

ponents at points of interest by use of a group of field nodes located randomly in

the support domain. Lots of well-developed and efficient interpolation and approxi-

mation techniques are available in the history of meshless methods. Among others,

the Moving Least Square (MLS) approximation as well as the Point Interpolation

Method (PIM) have been widely used. In this chapter, mathematical constructions

of meshless shape functions based mainly upon point interpolation approaches are

presented. Also, their consistency, continuity and other distinct properties are dis-

cussed. Then, shape functions are implemented and the influences of parameters

are investigated in details. Finally, interpolation errors of meshless shape functions
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based on different RBFs are examined.

3.2 Polynomial Point Interpolation Methods

One of the most widely used meshless shape function construction methods de-

serves to be mentioned is the Point Interpolation Method (PIM), which results in

different forms by means of different basis functions employed to carry out the in-

terpolation schemes. Polynomials have been used as the basis functions in a variety

of numerical approaches [121].

Consider a problem domain Ω represented by a group of arbitrarily distributed

nodes. The unknown field variable u at a point of interest x can be interpolated over

its support domain and expressed as

u(x) =
N∑
n=1

Pn(x)bn = { p1(x) p2(x) · · · pN(x) }



b1

b2

...

bN


= pTb (3.1)

in which n = 1, 2, . . . , N is the number of monomials in the polynomial basis

function {p}Nn=1 with degree≤ T−1 and pn(x) is the prescribed monomial, {b}Nn=1

are the unknown coefficients to be determined.

In a two-dimensional problem domain, the complete quadratic basis functions

are in the form of

pT = { 1 x y x2 xy y2 } (3.2)

Therefore, the approximation of function u over a set of nodes i.e. xk = (xk, yk), k =
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1, 2, . . . , K within its support domain yields K algebraic equations as follows:



b1 + b2x1 + b3y1 + b4x
2
1 + b5x1y1 + b6y

2
1 = u1

b1 + b2x2 + b3y2 + b4x
2
2 + b5x2y2 + b6y

2
2 = u2

...

b1 + b2xK + b3yK + b4x
2
K + b5xKyK + b6y

2
K = uK

(3.3)

which can be rewritten in the form of



1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

...
...

...
...

...
...

1 xK yK x2
K xKyK y2

K





b1

b2

b3

b4

b5

b6



=



u1

u2

...

uK


(3.4)

(3.3) and (3.4) demonstrate that the total number of nodes K included in the sup-

port domain always equals the total number of monomials N in the basis function

in PIM, namely, K = N . Consequently, the general matrix form of the PIM ap-

proximation scheme for two-dimensional problems can be expressed by enforcing

u(x) in (3.1) equals nodal values at K nodes within the support domain, as



1 x1 y1 · · · pN(x1)

1 x2 y2 · · · pN(x2)

...
...

... . . . ...

1 xK yK · · · pN(xK)


︸ ︷︷ ︸

P0



b1

b2

...

bN

︸ ︷︷ ︸
b

=



u1

u2

...

uK

︸ ︷︷ ︸
UP

(3.5)
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The matrix form of (3.5) can be written as

P0b = UP (3.6)

where b denotes the vector of unknowns, and UP is the vector that collects all nodal

values. Therefore, unknown coefficients b can be determined by

b = P−1
0 UP (3.7)

It is notable that b is dependent only on the coordinates of field nodes used

in P0 and nodal values in the corresponding support domains, which means that b

remains constants unless the nodal coordinates or values used in the interpolation

differed.

Substituting (3.7) into (3.1), we obtain

u(x) = pT(x)P−1
0 UP = ΦT(x)UP =

K∑
k=1

φkuk (3.8)

where Φ represents the vector of shape functions and is defined by

ΦT(x) = pT(x)P−1
0 = {φ1(x) φ2(x) · · · φk(x)} (3.9)

The ith derivatives of shape functions can be derived easily as well in the following

forms:

Φ(i)(x) =
∂ipT(x)

∂xi
P−1

0 = {φ(i)
1 (x) φ

(i)
2 (x) · · · φ

(i)
k (x)}T (3.10)

Some of the properties with respect to polynomial PIM shape functions are

listed below.
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� Consistency

Establishing polynomial PIM shape functions of high order consistency can be

realized without difficulties by raising the highest complete order of the monomial

used in the polynomial basis functions. In other words, a complete polynomial

basis of order m guarantees the Cm consistency, which is one of the characteristics

of polynomial PIM shape functions.

� Continuity

Continuity over the entire problem domain cannot be guaranteed when the poly-

nomial PIM shape functions are locally supported. This is due to the fact that

weighted functions are not employed and the matrix P0 changes suddenly as new

nodes enter or exit the local support domains. However, the discontinuity does not

arise regarding to the strong-forms and the local weak-forms.

� Kronecker delta function property

Polynomial PIM shape functions satisfy the Kronecker delta function property

and are characterized as

Φi(x = xj) =

 1 i = j i, j = 1, 2, . . . , K

0 i 6= j i, j = 1, 2, . . . , K
(3.11)

since the interpolation lead to u(xi) = ui at each node within the support domain.

� Linear independence

Linear independence property is required in the polynomial basis functions for

ensuring the existence of P−1
0 in (3.8). Inappropriate selection of polynomial basis

29



3.3. Radial Basis Functions (RBFs)

may lead to bad condition or even singularity of matrix P0.

3.3 Radial Basis Functions (RBFs)

Radial Basis Functions (RBFs) have been regarded as a practical solution in data

interpolation for nodes or grids scattered irregularly. More importantly, singularities

of polynomial PIM shape functions can be prevented by the employment of RBFs

instead of polynomial basis functions.

A continuous function u(x) can be interpolated over a set of nodes xk = (xk, yk), k =

1, 2, . . . , K as

u(x) =
M∑
m=1

Rm(|x− xm|)am = RTa (3.12)

where Rm(·) is the RBF and m = 1, 2, . . . ,M denotes the number of RBFs, am are

unknown coefficients to be found, |x − xm| denotes the distance that usually taken

to be Euclidean between x and xm. It can be seen obviously that Rm(|x − xm|)

depends only on |x− xm| which can be written as

|x− xm| =
√

(x− xm)2 + (y − ym)2 (3.13)

Therefore, the exact interpolation of function u(x) yields M linear equations for

every node, as
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3.3. Radial Basis Functions (RBFs)



a1R1(|x1 − x1|) + a2R2(|x1 − x2|) + · · ·+ aMRM(|x1 − xM |) = u1

a1R1(|x2 − x1|) + a2R2(|x2 − x2|) + · · ·+ aMRM(|x2 − xM |) = u2

...

a1R1(|xM − x1|) + a2R2(|xM − x2|) + · · ·+ aMRM(|xM − xM |) = uM

(3.14)

which can be written in the form of



R1(|x1 − x1|) R2(|x1 − x2|) · · · RM(|x1 − xM |)

R1(|x2 − x1|) R2(|x2 − x2|) · · · RM(|x2 − xM |)
...

... . . . ...

R1(|xM − x1|) R2(|xM − x2|) · · · RM(|xM − xM |)


︸ ︷︷ ︸

R0



a1

a2

...

aM

︸ ︷︷ ︸
a

=



u1

u2

...

uM

︸ ︷︷ ︸
U

(3.15)

The matrix form of (3.15) can be written as

R0a = U (3.16)

Provided that the inverse of R0 exists, the unknown coefficient a can be derived by

any standard matrix inversion techniques as

a = R−1
0 U (3.17)

A wide range of studies have been carried out theoretically and empirically with

the purpose of seeking a class of RBFs producing the matrix R0 without singular-

ities for any group of nodes, which results in plenty of positive definite RBFs that
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always ensure their determinant |R0| 6= 0. Some of the most commonly used RBFs

are listed in Table 3.1.

Table 3.1: Commonly used RBFs

RBFs Expression Shape Parameters

Gaussian (EXP) Rm(r) = exp(−r2/2c2
0) c0 > 0

Multiquadrics (MQ) Rm(r) = (r2 + c2
0)1/2 c0 > 0

Inverse multiquadrics Rm(r) = (r2 + c2
0)−1/2 c0 > 0

Thin Plate Spline (TPS) Rm(r) = r2ln(r) N/A

Cubic Rm(r) = r3 N/A

Linear Rm(r) = r N/A

Note: r = |x−xm| is a free parameter that associates with the distance between field nodes
in the problem domain.

3.4 Radial Point Interpolation Method (RPIM)

The above-mentioned RBFs fail to pass the patch test on the account of the fact that

the interpolation scheme in RBFs cannot achieve even the first order consistency.

However, it can be addressed without too much trouble by simply adding some

polynomial terms and then the polynomial consistency can be ensured. Besides,

studies have found that polynomial augmentations in RBFs not only improve the

interpolation stability and accuracy, but also reduce the sensitivity of free parame-

ters. Therefore, Wang et al [123] proposed the Radial Point Interpolation Method

(RPIM) in the framework of meshfree methods. Its approximation scheme can be

written as
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3.4. Radial Point Interpolation Method (RPIM)

u(x) =
M∑
m=1

Rm(|x− xm|)am +
N∑
n=1

Pn(x)bn = RTa + pTb (3.18)

The matrix form that represents a set of linear equations obtained by enforcing

the approximation function goes through nodal values as in the standard PIM can

be expressed as

R0a + P0b = U (3.19)

in which U denotes the vector that collects nodal values and

U = {u1 u2 · · · uM}T (3.20)

However, there are more unknowns than the total number of equations in (3.19), so

a further set of constraint conditions should be introduce to ensure a unique solution

as

M∑
m=1

pn(xm)am = PT
0a = 0 n = 1, 2, · · · , N (3.21)

where

PT
0 =



p1(x1) p1(x2) · · · p1(xM)

p2(x1) p2(x2) · · · p2(xM)

...
... . . . ...

pN(x1) pN(x2) · · · pN(xM)


(3.22)
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3.4. Radial Point Interpolation Method (RPIM)

Considering (3.19) and (3.21) yields an augmented matrix

Ũ =

 U

0

 =

 R0 P0

PT
0 0


︸ ︷︷ ︸

A

 a

b

︸ ︷︷ ︸
a0

= Aa0 (3.23)

in which

Ũ = {u1 u2 · · · uM 0 0 · · · 0}T (3.24)

a0 = {a1 a2 · · · aM b1 b2 · · · bN}T (3.25)

Form (3.23), coefficient a0 can be obtained by

a0 =

 a

b

 = A−1Ũ (3.26)

Substitute (3.26) into (3.18) yields the form of

u(x) = { RT(x) pT(x) }

 a

b

 = { RT(x) pT(x) }A−1Ũ

= Φ̃
T
(x)Ũ

(3.27)

in which Φ̃
T
(x) is the RPIM shape functions and can be expressed as

Φ̃
T
(x) = { RT(x) pT(x) }A−1

= { φ1(x) φ2(x) · · · φM(x) φM+1(x) · · · φM+N(x) }
(3.28)
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3.4. Radial Point Interpolation Method (RPIM)

Therefore, RPIM shape functions regarding to nodal values are derived as

ΦT(x) = { φ1(x) φ2(x) · · · φM(x) } (3.29)

and (3.27) can be overwrite as

u(x) = ΦT(x)U =
M∑
m=1

φmum (3.30)

Additionally, derivatives of u(x) can be easily derived as

u,i(x) = ΦT
,i(x)U (3.31)

where the comma denotes a partial differentiation in terms of the variable x or y

represented by i.

Some of the properties of RPIM shape functions are listed below.

� Consistency

The consistency over the entire problem domain cannot be ensured when new

nodes enter in or exit from the local support domains.

� Continuity

High continuity of RBFs results in high continuity of RPIM shape functions.

� Kronecker delta function property

RPIM shape functions satisfy the Kronecker delta function property since the

exact interpolation technique is employed.
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3.5 Implementation

In this section, RPIM shape functions will be implemented by use of both the global

and local support domains. Two examples are presented to investigate the properties

of RPIM shape functions and comparisons between results obtained from different

RBFs, i.e., the Gaussian (EXP) and the Multiquadrics (MQ) in Table 3.1, are made.

Additionally, the influence of free parameters in RBFs is analyzed as well.

3.5.1 Support Domains and Free Parameters

The most commonly used support domains in RPIM shape functions are of circle

and rectangular shapes. Since the circle ones are simple in construction and imple-

mentation, they are employed in this section and in the following sections. Circle

support domains with the radius r0 are usually centred at a point of interest x and the

number of field nodes within the circle is determined to be K = 12 in this chapter.

However, all of the field nodes in the problem domain Ω are selected to carry out

the interpolation or approximation scheme if the global support domain is utilized.

Both of the EXP-RBF and MQ-RBF in Table 3.1 involve the free parameter c0,

which at the following examples is taken as a constant as c0 = 2∆min, where ∆min

is the smallest distances between field nodes in the problem domain. However, the

influence of c0 on the RPIM shape functions are examined later.

3.5.2 1D RPIM Shape Functions with Global Support Domain

Firstly, a one-dimensional example is carried out to investigate the globally sup-

ported RPIM shape functions, which means all of the nodes located in the prob-

lem domain are involved in the interpolation scheme. As shown in Figure 3.1, a

set of field nodes (9 in total) are regularly and evenly distributed in a 1D domain
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xk ∈ [0, 1], and their coordinates are xk = (k − 1)/8.

Two kinds of RBFs, i.e., MQ-RBF and EXP-RBF, are employed. Besides,

RPIM-MQ and RPIM-EXP are referred to in the following to represent RPIM shape

functions using MQ-RBF and EXP-RBF, respectively.

1 2 3 4 5 6 7 8 9
𝑥

Figure 3.1: Field nodes used in 1D RPIM shape functions with global support domain.

RPIM-MQ and RPIM-EXP shape functions and their first order derivatives

are plotted in Figure 3.2 and Figure 3.3 with respect to different polynomial ba-

sis such as linear polynomials pT = { 1 x } and quadratic polynomials pT =

{ 1 x x2 } used in shape function constructions. From Figure 3.3 one can see

that the influence of polynomial terms is quit tiny. But it has been found that they do

help to improve the consistency as well as the stability of the interpolation scheme.

More importantly, all of the shape functions obtained in Figure 3.2 satisfy the Kro-

necker delta function property.

Output data of RPIM-MQ shape functions and their derivatives for node 5 cal-

culated at point x = 0.5 and point x = 0.74 are listed in Table 3.2 and Table

3.3, respectively. Data in Table 3.2 numerically confirms that RPIM shape function

possesses the Kronecker delta function property. Whereas Table 3.3 reflects another

important property of RPIM shape functions, namely, the partitions of unity.

Another two output samples related to RPIM-EXP shape functions are also pre-

sented, see Table 3.4 and Table 3.5, which lead to similar conclusions drawn in the

study of RPIM-MQ shape functions.
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Figure 3.2: RPIM-MQ and RPIM-EXP shape functions for node 5 at point x = 0.5 with
different number of polynomials.
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Figure 3.3: 1st derivatives of RPIM-MQ and RPIM-EXP shape functions for node 5 at
point x = 0.5 with different number of polynomials.
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Table 3.2: Numerical data of RPIM-MQ shape functions for node 5 calculated at node
x = 0.5 by use of the global support domain (with quadratic polynomials)

Node xk φ5
dφ5

dx

d2φ5

dx2

1 0.0 0.00000 0.25973 -2.32088

2 0.125 0.00000 -1.12850 11.39770

3 0.25 0.00000 2.86999 -33.65880

4 0.375 0.00000 -7.39344 133.19000

5 0.5 1.00000 0.00000 -217.21600

6 0.625 0.00000 7.39344 133.19000

7 0.75 0.00000 -2.86999 -33.65880

8 0.875 0.00000 1.12850 11.39770

9 1.0 0.00000 -0.25973 -2.32088
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Table 3.3: Numerical data of RPIM-MQ shape functions for node 5 calculated at node
x = 0.74 by use of the global support domain (with quadratic polynomials)

Node xk φ5
dφ5

dx

d2φ5

dx2

1 0.0 -0.00130 0.13168 0.82402

2 0.125 0.00430 -0.43104 -0.76230

3 0.25 -0.00890 0.90438 -1.03568

4 0.375 0.01770 -1.80184 3.88474

5 0.5 -0.03540 3.64290 -14.46230

6 0.625 0.08670 -9.24295 106.30300

7 0.75 0.97960 3.04884 -198.51200

8 0.875 -0.05210 4.60628 121.49800

9 1.0 0.00940 -0.85825 -17.73780∑
φ =

1.00000
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Table 3.4: Numerical data of RPIM-EXP shape functions for node 5 calculated at node
x = 0.5 by use of the global support domain (with quadratic polynomials)

Node xk φ5
dφ5

dx

d2φ5

dx2

1 0.0 0.00000 0.12323 -0.48433

2 0.125 0.00000 -0.70778 3.77222

3 0.25 0.00000 2.33308 -18.72240

4 0.375 0.00000 -7.03573 112.68900

5 0.5 1.00000 0.00000 -194.50900

6 0.625 0.00000 7.03573 112.68900

7 0.75 0.00000 -2.33308 -18.72240

8 0.875 0.00000 0.70778 3.77222

9 1.0 0.00000 -0.12323 -0.48433
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Table 3.5: Numerical data of RPIM-EXP shape functions for node 5 calculated at node
x = 0.74 by use of the global support domain (with quadratic polynomials)

Node xk φ5
dφ5

dx

d2φ5

dx2

1 0.0 -0.00140 0.13079 1.68462

2 0.125 0.00700 -0.66908 -8.05821

3 0.25 -0.01920 1.83889 20.26500

4 0.375 0.03890 -3.74450 -35.46800

5 0.5 -0.06730 6.57607 42.01890

6 0.625 0.12380 -12.65580 41.82910

7 0.75 0.94630 6.12120 -140.84400

8 0.875 -0.03190 2.74718 86.80420

9 1.0 0.00380 -0.34472 -8.23218∑
φ =

1.00000
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3.5.3 1D RPIM Shape Functions with Local Support Domain

Properties of RPIM shape functions with local support domains are examined by

another 1D example as shown in Figure 3.4. The total number of field nodes is

taken as 21 in a domain xk ∈ [0, 1], and their coordinates are xk = (k − 1)/20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 𝑥

Figure 3.4: Field nodes used in 1D RPIM shape functions with local support domains.

MQ-RBF and EXP-RBF are augmented by quadratic polynomials to form RPIM

shape functions. Output data for node 11 in Figure 3.4 evaluated at point x = 0.5

and point x = 0.24 are obtained by RPIM-MQ and RPIM-EXP, and presented in

Table 3.6 to Table 3.9.

It can been seen in Table 3.6 and Table 3.8 that only a part of nodes in the prob-

lem domain are selected to construct RPIM-MQ shape functions. They, however,

obtain results possessing the Kronecker delta function property within the local sup-

port domain. For example, at point x = 0.5 in Table 3.6 where node 11 is located,

it is clearly shown that

φi(x) =

 1 i = 11(x = xi)

0 i 6= 11(x 6= xi)
(3.32)

The observation of Table 3.7 and Table 3.9 have found that even RPIM shape

functions are locally supported, they satisfy the partitions of unity within each local

support domain, which means
∑K

k=1 φk(x) = 1.0 can be achieved in all local sup-

port domains. However, the summation of shape functions in Table 3.9 is not equal

to but approximate 1.0 because of inevitable numerical errors in the calculation of

complicated RBFs.

43



3.5. Implementation

Table 3.6: Numerical data of RPIM-MQ shape functions for node 11 calculated at x = 0.5
by use of local support domains (with quadratic polynomials)

Node xk φ11
dφ11

dx

d2φ11

dx2

5 0.2 0.00000 0.18336 -4.20902

6 0.25 0.00000 -0.77520 19.03910

7 0.3 0.00000 1.86029 -47.20410

8 0.35 0.00000 -3.80301 100.09800

9 0.4 0.00000 7.73407 -228.71500

10 0.45 0.00000 -18.72450 844.79000

11 0.5 1.00000 0.00000 -1367.60000

12 0.55 0.00000 18.72450 844.79000

13 0.6 0.00000 -7.73407 -228.71500

14 0.65 0.00000 3.80301 100.09800

15 0.7 0.00000 -1.86029 -47.20410

16 0.75 0.00000 0.77520 19.03910

17 0.8 0.00000 -0.18336 -4.20902
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Table 3.7: Numerical data of RPIM-MQ shape functions for node 11 calculated at x =
0.24 by use of local support domains (with quadratic polynomials)

Node xk φ11
dφ11

dx

d2φ11

dx2

1 0 0.00350 -0.35030 -5.74308

2 0.05 -0.01540 1.52937 24.01660

3 0.1 0.03790 -3.78724 -54.09260

4 0.15 -0.08260 8.43049 76.95430

5 0.2 0.22320 -25.36320 459.50400

6 0.25 0.93360 13.04500 -1196.72000

7 0.3 -0.14230 9.51451 957.50100

8 0.35 0.06300 -4.55779 -387.94200

9 0.4 -0.03190 2.34444 191.61100

10 0.45 0.01650 -1.21997 -98.14990

11 0.5 -0.00820 0.61248 48.55100

12 0.55 0.00360 -0.27128 -20.34120

13 0.6 -0.00090 0.07356 4.84687∑
φ =

1.00000
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Table 3.8: Numerical data of RPIM-EXP shape functions for node 11 calculated at x = 0.5
by use of local support domains (with quadratic polynomials)

Node xk φ11
dφ11

dx

d2φ11

dx2

5 0.2 0.00000 0.08297 -0.58831

6 0.25 0.00000 -0.46798 3.98696

7 0.3 0.00000 1.46369 -15.36820

8 0.35 0.00000 -3.51383 48.28720

9 0.4 0.00000 7.62784 -154.75700

10 0.45 0.00000 -18.72680 751.84100

11 0.5 1.00000 0.00000 -1266.80000

12 0.55 0.00000 18.72680 751.84100

13 0.6 0.00000 -7.62784 -154.75700

14 0.65 0.00000 3.51383 48.28720

15 0.7 0.00000 -1.46369 -15.36820

16 0.75 0.00000 0.46798 3.98696

17 0.8 0.00000 -0.08297 -0.58831
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Table 3.9: Numerical data of RPIM-EXP shape functions for node 11 calculated at x =
0.24 by use of local support domains (with quadratic polynomials)

Node xk φ11
dφ11

dx

d2φ11

dx2

1 0 0.00110 -0.10145 -2.71359

2 0.05 -0.00640 0.60991 14.75290

3 0.1 0.02170 -2.10789 -41.84010

4 0.15 -0.06070 6.12152 65.52850

5 0.2 0.19690 -22.57520 472.50500

6 0.25 0.96250 10.01870 -1217.39000

7 0.3 -0.17060 12.42520 987.22600

8 0.35 0.08670 -6.96972 -419.19700

9 0.4 -0.04840 4.02260 213.95600

10 0.45 0.02540 -2.14779 -106.54300

11 0.5 -0.01140 0.97170 46.05100

12 0.55 0.00380 -0.32838 -15.03270

13 0.6 -0.00070 0.06085 2.69946∑
φ =

0.99990
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3.5.4 2D RPIM Shape Functions with Global Support Domain

Secondly, RPIM shape functions are investigated in a two-dimensional (2D) exam-

ple using the global support domain. It can be seen in Figure 3.5 that a 2D problem

domain xk ∈ [0, 1], yk ∈ [0, 1] is represented by 5×5 points of regularly distributed

field nodes, and their coordinates are xk = (k − 1)/4, yk = (k − 1)/4.

𝑥

𝑦

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3.5: Field nodes used to construct 2D RPIM shape functions.

RPIM-MQ and RPIM-EXP shape functions are constructed with quadratic poly-

nomials pT = { 1 x y x2 xy y2 }. Figure 3.6 to Figure 3.8 plot the distri-

bution of RPIM shape functions, their first order and second derivatives, in which

Figure 3.6 again proves the Kronecker delta function property that being embedded

in the RPIM shape functions. However, differences arise in the first order deriva-

tives shown in Figure 3.7, and it differs more greatly in Figure 3.8 concerning their

second order derivatives.
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(a)

(b)

Figure 3.6: (a) RPIM-MQ shape functions for node 13 at x = (0.5, 0.5) ; (b) RPIM-EXP
shape functions for node 13 at x = (0.5, 0.5).

49



3.5. Implementation

(a)

(b)

Figure 3.7: (a) 1st derivative of RPIM-MQ shape functions for node 13 at x = (0.5, 0.5) ;
(b) 1st derivative of RPIM-EXP shape functions for node 13 at x = (0.5, 0.5).

50



3.5. Implementation

(a)

(b)

Figure 3.8: (a) 2nd derivative of RPIM-MQ shape functions for node 13 at x = (0.5, 0.5) ;
(b) 2nd derivative of RPIM-EXP shape functions for node 13 at x = (0.5, 0.5).
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Specifically, the distribution of RPIM shape functions and their derivatives for

node 13 along the middle line of the problem domain, namely, y = 0.5, are shown

in Figure 3.9 to Figure 3.11. Gaps between RPIM-MQ and RPIM-EXP increase

when the derivative order varies from 1 to 2. Consequently, numerical solutions

based on derivative information of RPIM shape functions may lead to results with

considerable differences when different kinds of RBFs are employed.

RPIM-MQ and RPIM-EXP output data for node 13 in Figure 3.5 evaluated at

point x = (0.5, 0.5) and point x = (0.74, 0.33) are listed in Table 3.10 to Table

3.13, from which the Kronecker delta function property and partitions of unity of

RPIM shape functions can be confirmed.
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Figure 3.9: RPIM shape functions for node 13 at x = (0.5, 0.5) along y = 0.5.

52



3.5. Implementation

0 0.2 0.4 0.6 0.8 1
 x

-4

-3

-2

-1

0

1

2

3

4
  d
?

13
/d

x
 d?

13
/dx-MQ

 d?
13

/dx-EXP

Figure 3.10: 1st derivative of RPIM shape functions for node 13 at x = (0.5, 0.5) along
y = 0.5.
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Figure 3.11: 2nd derivative of RPIM shape functions for node 13 at x = (0.5, 0.5) along
y = 0.5.
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3.6. Interpolation Errors

3.5.5 2D RPIM Shape Functions with Local Support Domain

The locally supported 2D RPIM shape functions are investigated by the same ex-

ample shown in Figure 3.5 in Section 3.5.4. The interpolation schemes are imple-

mented based on the MQ-RBF and EXP-RBF along with quadratic polynomials.

Output samples for node 13 in Figure 3.5 evaluated at point x = (0.5, 0.5) and

point x = (0.26, 0.43) are reported in Table 3.14 to Table 3.17 .

Table 3.14 and Table 3.16 have shown that not all of the field nodes in the prob-

lem domain are involved in the interpolation. However, the Kronecker delta func-

tion property is found over the field nodes in the local support domain. Moreover,

the property related to partitions of unity is found in Table 3.15 and Table 3.17.

3.6 Interpolation Errors

The interpolation errors for meshless shape functions based upon different RBFs

are investigated by fitting a given function f(x, y) = ex+y in a domain (xk, yk) ∈

[0, 1]× [0, 1]. 5× 5 field nodes are evenly and regularly distributed in the problem

domain.

The EXP, MQ and Cubic RBFs listed in Table 3.1 are employed respectively

to construct RPIM shape functions with quadratic linear polynomials. And the

interpolation errors of function values are defined as e = |(f̄i − fi)|/fi, where fi is

the exact value of the given function, and f̄i is the approximated value of the given

function. Therefore, interpolation errors corresponding to the first order and second

order derivatives of the approximated function are e(1) = |(f̄ (1)
i − f

(1)
i )|/f (1)

i and

e(2) = |(f̄ (2)
i − f

(2)
i )|/f (2)

i , in which f (1)
i and f (2)

i are exact values of the first order

and second order derivatives of the function, and f̄ (1)
i and f̄ (2)

i are values of the first

order and second order derivatives of the approximated function.
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3.6. Interpolation Errors

3.6.1 Influence of Free Parameter

Firstly, the influence of the free parameter c0 in the MQ and EXP RBFs is examined.

Parameter c0 is taken as c0 = ∆, 2∆, . . . , 10∆ respectively, in which ∆ is the nodal

distance. RPIM shape functions are implemented with global support domains and

local support domains, respectively. Interpolation errors with respect to the function

values and their derivatives at point x = (1, 1) when c0 varies are present in Figure

3.12 and Figure 3.13.
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 C

0

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
rr

or
s 

- 
M

Q

2nd derivative (Global support)

1st derivative (Global support)
Function (Global support)

2nd derivative (Local support)

1st derivative (Local support)
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Figure 3.12: Interpolation errors of RPIM-MQ at point x = (1, 1) for different c0.

It can be seen in Figure 3.12 that small c0 values in MQ RBF result in large in-

terpolation errors. Specifically, the effect of c0 on approximated function values is

insignificant. However, it greatly influences the accuracy of approximated deriva-

tives. Interpolation errors go up when the derivative order rises. It also shows in

Figure 3.12 that interpolation errors decrease obviously compared with errors re-

sulting from globally supported RPIM-MQ when locally supported RPIM-MQ is
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3.6. Interpolation Errors

used.

While in Figure 3.13, one can see that a small or large c0 value may lead to

the increase of interpolation errors when the global support domain is employed.

Therefore, the selection of c0 is limited only in a certain range. However, by using

the local support domain, the increase of c0 values can guarantee smaller interpo-

lation errors and hence, c0 can be selected without too much limitation. Besides,

interpolation errors decrease when locally supported RPIM-EXP is utilized.

1 2 3 4 5 6 7 8 9 10
 C

0

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
rr

or
s 

- 
E

X
P

2nd derivative (Global support)

1st derivative (Global support)
Function (Global support)

2nd derivative (Local support)

1st derivative (Local support)
Function (Local support)

Figure 3.13: Interpolation errors of RPIM-EXP at point x = (1, 1) for different c0.

3.6.2 Accuracy Study

In order to study the accuracy of different RBFs, interpolation results and errors of

RPIM-MQ, RPIM-EXP and RPIM-Cubic for the given function at point x = (1, 1)

with respect to the global and local support domain are listed in Table 3.18 and

Table 3.19, respectively. In this case, the problem domain is represented by a set of
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5× 5 field nodes, and the free parameter c0 is taken as 2∆.

Table 3.18: Interpolation results and errors of different RBFs at point x = (1, 1) using the
global support domain

RBFs f̄(1, 1) (Errors) df̄(1, 1)

dx
(Errors)

d2f̄(1, 1)

dx2
(Errors)

MQ (G)
7.38906

(1.53762E-13)
7.08022

(4.17971E-02)
2.97380

(5.97539E-01)

EXP (G)
7.38906

(1.07036E-11)
7.30219

(1.17565E-02)
5.89345

(2.02409E-01)

Cubic (G)
7.38906

(5.73121E-14)
5.39159

(2.70328E-01)
1.32659

(8.20466E-01)

G:Globally supported.

Table 3.19: Interpolation results and errors of different RBFs at point x = (1, 1) using the
local support domain

RBFs f̄(1, 1) (Errors) df̄(1, 1)

dx
(Errors)

d2f̄(1, 1)

dx2
(Errors)

MQ (L)
7.38906

(4.28161E-14)
7.21681

(2.33105E-02)
4.88888

(3.38362E-01)

EXP (L)
7.38906

(2.17323E-14)
7.31881

(9.50653E-03)
6.23721

(1.55885E-01)

Cubic (L)
7.38906

(3.14949E-15)
6.87487

(6.95873E-02)
4.39986

(4.04543E-01)

L:Locally supported.

These two tables show that interpolation errors of function values are much

smaller than that of derivatives, demonstrating that the accuracy of approximated

function values is higher then that of derivatives. The accuracy of second order

derivatives is lower than that of first order derivatives. Therefore, it can be con-
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cluded that higher order derivatives have lower accuracies. Additionally, compar-

isons between these two tables also show that interpolation errors reduce by using

local support domains, which means the locally supported RPIM shape functions

can improve the accuracy of solutions. Furthermore, it can be found that the Cubic

RBF has the highest accuracy in fitting function values in both tables, while it also

has the highest error dealing with derivatives. And the EXP RBF is more accurate

than other methods in interpolating derivatives in both tables.

3.6.3 Convergence Analysis

Then, the convergence of different methods is analyzed. Different densities of fields

nodes, 5×5, 11×11, 21×21, 31×31, 41×41, are regularly and evenly distributed in

the problem domain. And the free parameter c0 = 2∆ is used. Interpolation errors

at point x = (1, 1) of different methods for different node densities are plotted in

Figure 3.14 to Figure 3.16.

When global support domains are used in RPIM shape function constructions,

interpolation errors of the fitted function itself are very small as shown in Figure

3.14(a). However, errors become higher in RPIM-EXP when the number of field

nodes increases. For interpolation errors of approximated first order derivatives in

Figure 3.15(a), the convergence progress of RPIM-EXP is not stable even though

its accuracy is higher than the other two methods when lower densities of nodes

are used. And the convergences of RPIM-MQ and RPIM-Cubic are stable, but

RPIM-MQ results in a lower error. Moreover, errors resulting from PRIM-EXP

with respect to the second order derivatives rise shapely in Figure 3.16(a) and lead

to wrong numerical solutions. This is duo to the singularity arises in the EXP RBF

when the number of field nodes is large.
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Figure 3.14: Interpolation errors of function values for different node densities at x =
(1, 1): (a) globally supported; (b) locally supported.
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Figure 3.15: Interpolation errors of 1st derivatives for different node densities at x =
(1, 1): (a) globally supported; (b) locally supported.
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Figure 3.16: Interpolation errors of 2nd derivatives for different node densities at x =
(1, 1): (a) globally supported; (b) locally supported.
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When RPIM shape functions are locally supported, convergence progresses of

all methods become stable in Figure 3.14(b). Interpolation errors related to the first

order and the second order derivatives shown in Figure 3.15(b) and Figure 3.16(a)

are convergent, respectively. In this circumstance, the convergence of RPIM-EXP

improves and its accuracy is higher than the other two methods. Besides, RPIM-

MQ and RPIM-Cubic have steady convergence and RPIM-MQ is more accurate.

3.6.4 Number of Nodes in the Local Support Domain

Finally, the effect of the number of field nodes within the local support domain is

investigated. A set of field nodes, 11×11, are evenly and regularly distributed in the

domain. The free parameter c0 in MQ and EXP RBFs is selected as 2∆. Different

number of nodes, K = 5, 8, 12, 16, 20, 25, 36, 51, 101, are employed in the local

support domain to construct RPIM shape functions. Interpolation errors at point

x = (1, 1) related to RPIM-MQ, RPIM-EXP and RPIM-Cubic are plotted in Figure

3.17 to Figure 3.19.

Figure 3.17 shows that interpolation errors related to function values are very

small when the number of nodes in the local support domain varies. While errors

resulting from RPIM-EXP increase when K is over 40. In Figure 3.18, interpo-

lation errors regarding to the approximated first order derivatives in RPIM-Cubic

rise shapely with the number of nodes increases. Errors of RPIM-MQ and RPIM-

EXP are both less than 2% regardless of the number of K, but RPIM-EXP is more

accurate. Interpolation errors are obviously large in approximated second order

derivatives plotted in Figure 3.19, in which RPIM-EXP produces fewer errors com-

pared with the other two methods and it stays lower then 20% even the number of

nodes go up. However, RPIM-MQ and RPIM-Cubic can only lead to numerical

solutions with errors under 20% when K is selected between 5− 12.
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Figure 3.17: Interpolation errors of different RPIM shape functions at x = (1, 1) for dif-
ferent number of nodes in the local support domain.
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Figure 3.18: Interpolation errors of 1st derivatives at x = (1, 1) for different number of
nodes in the local support domain.
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Figure 3.19: Interpolation errors of 2nd derivatives at x = (1, 1) for different number of
nodes in the local support domain.

3.7 Conclusions

In this chapter, shape function constructions especially by means of Point Interpola-

tion Method (PIM), Radial Basis Functions (RBFs) and Radial Point Interpolation

Method (RPIM) are systemically introduced, and some of their properties such as

consistency and continuity are discussed. Implementations of RPIM shape func-

tions in both 1D and 2D problem domains are carried out, and interpolation errors

of meshless shape functions based on different RBFs are investigated by fitting of a

given function. Following conclusions can be obtained:

(1) The influence of polynomials on RPIM shape functions is insignificant. How-

ever, polynomial terms improve the interpolation stability as well as the con-

sistency of RPIM shape functions.
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(2) RPIM shape functions possess the Kronecker delta function property with

either global or local support domains.

(3) The partition of unity can be satisfied within the support domains of RPIM

shape functions.

(4) The free parameter c0 in MQ and EXP RBFs only has a slight effect on the

approximated function values. For interpolation errors related to derivatives,

a smaller c0 results in a bigger error in globally supported RPIM-MQ. While

in globally supported RPIM-EXP, both a small and a large c0 may lead to

the increase of errors. When the local support domain is employed, interpo-

lation errors reduce obviously and the increase of c0 can result in a smaller

interpolation error.

(5) The accuracy of approximated function values is much higher than that of

derivatives. The higher order derivatives, the lower accuracies. And the

locally supported RPIM shape functions improve the accuracy of numeri-

cal solutions. RPIM-Cubic is more accurate in fitting function values, while

RPIM-EXP has a higher accuracy in interpolating derivatives.

(6) The convergence study has found that when global support domain is used

to construct RPIM shape functions, the EXP RBF is not convergent stably,

and the singularity may arise when finer field nodes are employed. Conver-

gence progress of MQ and Cubic RBFs are stable, and MQ-RBF has fewer

interpolation errors. When the local support domain is utilized, convergences

become stable for all methods and EXP RBF turns out to be the most ac-

curate method. While in this circumstance Cubic RBF produces the largest

interpolation errors.

(7) Approximated function values are not sensitive to the number of nodes in-
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cluded in the local support domain, and RPIM-EXP produces the smallest

errors dealing with derivatives when the number of nodes within the local

support domain varies. Concerning about the second order derivatives, only

K is selected between 5− 12, RPIM-MQ and RPIM-Cubic can lead to solu-

tions with errors less than 20%.

74



CHAPTER 4
Meshless Point Collocation Methods

4.1 Introduction

In 1990, Kansa [117] presented an enhanced Multiquadrics (MQ) approximation

scheme for scattering data and applied it to solve fluid dynamic problems, which

is the initiate of meshless Point Collocation Method (PCM). Along this research

line, meshless methods based on radial basis function approximations were spring-

ing up. Zhang [143] investigated meshless collocation methods on the basis of both

globally supported and locally supported RBFs and proposed the Hermite type col-

location method to improve boundary solutions. Chen [144] developed some novel

RBF collocation methods to solve partial differential equations. And among others,

Liu [145, 146] presented meshless collocation methods based upon RBFs and point

interpolation, respectively.

All of the above-mentioned methods discretize the governing equations at field

nodes by collocations, which means the discretized equations are acquired straight-

forward from the strong-forms of governing equations. Besides, the discretization

is carried out with no use of weak-forms and thus, no numerical integrals and back-

ground grids are required. Consequently, PCM is simple and efficient compared
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with other Galerkin-based approaches and it is a truly meshless method.

However, singularities may arise when applying meshless collocation methods

and some remedies have been developed. The use of RBFs [117] and matrix trian-

gularization algorithm [146] are all effective to prevent this problem.

Duo to its advantages, PCM has been applied to various aspects and just some

recent developments are quoted, see [147, 148].

In this chapter, a meshless point collocation method based on the RPIM shape

function, in which RBFs are employed to carry out approximations, is presented.

Besides, several illustrated examples are reported, and the influence of support do-

mains, different types of RBFs as well as free parameters is investigated. Com-

parisons between numerical solutions and Abaqus results validate the accuracy of

PCM.

4.2 Point Collocation Method (PCM) for 1D Solids

The general meshless point collocation steps for establishing the discretized system

equations and dealing with boundary conditions will be presented in this section by

use of a simple one-dimensional (1D) problem.

4.2.1 Meshless Formulation for 1D Solids

Governing Equation

Consider a 1D plane stress problem in an arbitrary domain Ω. The governing equa-

tion is in the form, for isotropic medium, of

∂σx
∂x

+ fx = 0 (4.1)
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where σx denotes the stress, fx is the body force.

Recalling the Hook’ law, we have

σx = E ′εx (4.2)

in which E ′ = E/(1− µ2), E is the Young’s modulus and µ is the Poisson’s ratio.

And εx =
∂u

∂x
is the strain component, u represents the displacement. Therefore, the

governing equation for 1D elastostatics can be expressed in terms of displacement

components as,

E ′
∂2u

∂x2
+ fx = 0 (4.3)

Meshless Approximation and System Equation Discretization

Assume that there are M nodes in the problem domain as shown in Figure 4.1, in

which node 1 and node M are located on the boundary. The displacement compo-

nent u in the governing partial differential equation can be approximated by using

the RPIM shape functions introduced in Chapter 3 as

u(x) =
K∑
k=1

φkuk (4.4)

Therefore, (4.3) can be discretized at collocation points as (body force is ignored)

E ′u(k)

K∑
k=1

φk,xx = 0 (4.5)

where the comma denotes partial derivatives in terms of the variable that follows,

K is the number of nodes in the support domain. In case K = M , all of the field

nodes within the problem domain are used to construct the RPIM shape functions.
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However, K usually less than M when employing the local support domain, see

Figure 4.1.

Boundary Conditions

Displacement boundaries can be introduced immediately as

u(xk) = u0 (4.6)

where k = 1, 2, . . . ,MD, MD is the number of nodes located on the displacement

boundaries, and u0 is the prescribed displacement.

On traction boundaries, where the traction forces t0x are prescribed, boundary

conditions are

E ′u(k)

K∑
k=1

φk,x = t0x (4.7)

𝑥

Field nodes

Boundary node

1    2    3 K M

Boundary nodeLocal support domain

Global support domain

Figure 4.1: A 1D problem domain and the distribution of field nodes.

4.2.2 A Bar under Uniform Tension

To illustrate the application of meshless collocation methods to 1D solid, a bar

problem set up in Figure 4.2 is considered. The bar is fixed at the edge x = 0,

and it is subjected to a uniformly distributed tension σ0 = 1.0 at the edge x = L.

The total length L is 20 and the free parameter c0 in RBFs is selected as 2∆. 41
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nodes are regularly and evenly distributed along the bar, and their coordinates are

xk = 0.5(k−1). Material data are defined as: Young’s modulusE = 1.0, Poisson’s

ratio µ = 0.0. Gaussian (EXP) and Multiquadrics (MQ) RBFs listed in Table 3.1

are employed to build up the RPIM shape functions, respectively. And the average

relative errors of approximated solutions over the entire domain can be calculated

by

e =
1

M

M∑
m=1

∣∣∣∣ f̄m − fmfm

∣∣∣∣ (4.8)

where f̄m represents the numerical solution, and fm is the exact solution or the

analytical solution.

𝑥

𝒚

𝐿

σ0

Figure 4.2: A bar under uniform tension.

Table 4.1 lists the average errors of numerical solutions related to displacements,

strains and stresses along the bar. Approximations in PCM are carried out by using

RPIM shape functions with the global support domain. The MQ and EXP RBFs

employed present solutions with high accuracy in this case. However, RPIM-MQ

lead to a smaller error. Both methods are time-consuming since all field nodes are

involved in shape function constructions.

Numerical errors resulting from locally supported RPIM shape functions are re-

ported in Table 4.2. The number of nodes in the local support domain is taken as

12 in this case. Accurate solutions are achieved since the average errors are very

small. Specifically, the accuracy of RPIM-MQ only has a slight difference com-

pared with that in Table 4.1. While the average errors of RPIM-EXP decrease when
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local support domains are used. Besides, it is computationally efficient compared

with globally supported RPIM.

Table 4.1: Average errors of displacement, strain and stress solutions along the bar ob-
tained by using the global support domain.

xk ux (MQ) ux (EXP) εx (MQ) εx (EXP) σx (MQ) σx (EXP)

Average
errors

1.544E-10 5.688E-09 1.104E-12 4.170E-09 1.104E-12 4.170E-09

Table 4.2: Avarage errors of displacement, strain and stress solutions along the bar ob-
tained by using the local support domain.

xk ux (MQ) ux (EXP) εx (MQ) εx (EXP) σx (MQ) σx (EXP)

Average
errors

4.290E-08 4.255E-07 1.206E-12 2.659E-10 1.206E-12 2.659E-10

In order to investigate the influence of free parameter c0 in RBFs, PCM are im-

plemented on the basis of different RBFs including MQ and EXP with c0 = ∆,

c0 = 2∆, c0 = 3∆ and c0 = 4∆ , respectively. Average errors of displacements,

strains and stresses along the bar with different c0 values by using global support

shape functions can be seen in Table 4.3, from which one can obviously see that

RPIM-EXP shape functions lead to incorrect solutions when c0 = 3∆ or c0 = 4∆

since the errors are huge. This is duo to the singularity in EXP-RBF arises during

the function approximation and hence RPIM-EXP shape functions become unsta-

ble. On the contrary, solutions obtained by MQ-based PCM have small average

errors when c0 differs, indicating that RPIM-MQ is more stable and not sensitive to

the free parameter when the global support domain is used.

Additionally, when shape functions are locally supported, a total number of

12 nodes are included in the support domain to construct RPIM shape functions.
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Average errors of their numerical solutions have been listed in Table 4.4, which

shows that numerical errors are increasing when c0 values arise. The accuracy of

EXP-based PCM improve greatly and only a small error occurs when c0 = 4∆,

which reflects that the singularity issue can be solved by means of employing EXP-

RBF together with local support domains. And the accuracy of RPIM-MQ is higher

than that of RPIM-EXP in most cases.

Table 4.3: Average errors of displacement, strain and stress solutions along the bar with
different c0 using the global support domain.

c0 ux (MQ) ux (EXP) εx (MQ) εx (EXP) σx (MQ) σx (EXP)

1∆ 3.694E-11 9.219E-11 2.712E-13 4.467E-14 2.712E-13 4.467E-14

2∆ 1.544E-10 5.688E-09 1.104E-12 4.170E-09 1.104E-12 4.170E-09

3∆ 3.929E-11 9.678E-01 9.074E-12 9.718E-01 9.074E-12 9.718E-01

4∆ 5.685E-10 9.740E-01 1.752E-10 9.751E-01 1.752E-10 9.751E-01

Table 4.4: Average errors of displacement, strain and stress solutions along the bar with
different c0 using the local support domain.

c0 ux (MQ) ux (EXP) εx (MQ) εx (EXP) σx (MQ) σx (EXP)

1∆ 6.276E-10 2.847E-12 1.016E-12 2.753E-13 1.016E-12 2.753E-13

2∆ 4.290E-08 4.255E-07 1.206E-12 2.659E-10 1.206E-12 2.659E-10

3∆ 3.770E-07 1.662E-03 9.655E-12 2.506E-06 9.655E-12 2.506E-06

4∆ 1.105E-05 9.670E-01 2.380E-04 6.254E-03 2.380E-04 6.254E-03

Finally, the elapsed real time for calculating σx along the bar by using different

kinds of support domains and RBFs are examined and listed in Table 4.5 and Table

4.6. Related parameters including the total number of field nodes, c0 and K0 can

also be seen in the tables. It is shown that quite similar average errors have been

81



4.2. Point Collocation Method (PCM) for 1D Solids

obtained, but PCMs using EXP approximations take more time in both tables. And

When these two tables are compared, it is clearly shown that locally supported

PCMs are computationally efficient as the elapsed real time is very small. A smaller

amount of field nodes employed results in closed average errors with the globally

supported PCMs, and only 5 nodes used in the local support domain can lead to

high accurate solutions.

Table 4.5: Elapsed real time for calculating σx along the bar by using the global support
domain.

RBF Field nodes c0 Average errors Elapsed real
time (Second)

MQ 101 2.5∆ 2.511E-11 1.147

EXP 101 0.2∆ 2.593E-11 1.543

Table 4.6: Elapsed real time for calculating σx along the bar by using the local support
domain.

RBF Field nodes K0 c0
Average
errors

Elapsed real
time

(Second)

MQ 91 5 2.8∆ 2.581E-11 0.167

EXP 91 5 1.0∆ 2.543E-11 0.172

To sum up, MQ-based PCM presents a better performance compared with EXP-

based PCM because of its insensitivity to the varying of the free parameter and

its stability under different kinds of support domains . Besides, approximations

carrying out in local support domains are superior to others since they are time

saving and producing better solutions even different kinds of RBFs are selected.

Therefore, in the following Sections and Chapters, RPIM-MQ shape functions that

are locally supported will be used to carry out meshless approximations.
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4.3 Point Collocation Method (PCM) for 2D Solids

In this section, PCM is applied to 2D solid mechanics problems. Meshless formu-

lations are presented and three numerical examples are carried out to illustrate the

convenience, accuracy and efficiency of strong-form meshless methods.

4.3.1 Meshless Formulation for 2D Solids

Consider a 2D problem domain of isotropic medium. The governing equations for

the plane stress case defined in the x− y plane are

∂σx
∂x

+
∂τyx
∂y

+ fx = 0 (4.9a)

∂σy
∂y

+
∂τxy
∂x

+ fy = 0 (4.9b)

in which σx , σy and τxy = τyx are stress components. And fx and fy are two

components of the external body forces applied at x and y directions, respectively.

Recalling Hook’s Law and ignore the body forces, equilibrium equations in

(4.9a) and (4.9b) can be written explicitly in terms of displacement components as

E ′
∂2u

∂x2
+G

∂2u

∂y2
+ µE ′

∂2v

∂x∂y
+G

∂2v

∂x∂y
= 0 (4.10a)

E ′
∂2v

∂y2
+G

∂2v

∂x2
+ µE ′

∂2u

∂x∂y
+G

∂2u

∂x∂y
= 0 (4.10b)

in which u and v are displacement components along axis x and y, respectively.

And G =
E

2(1 + µ)
is the shear modulus.

The above equations can be approximated by use of RPIM shape functions
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presented in Chapter 3 and then discretized directly by collocating at field nodes.

Therefore, the displacement at a point of interest x can be approximated as

 u(x)

v(x)

 =
K∑
k=1

 φk 0

0 φk


 uk

vk

 (4.11)

Substituting (4.11) into (4.10), the discretized system equations can be derived as

u(k)

K∑
k=1

(E ′φk,xx +Gφk,yy) + v(k)

K∑
k=1

(µE ′φk,xy +Gφk,xy) = 0 (4.12a)

u(k)

K∑
k=1

(µE ′φk,xy +Gφk,xy) + v(k)

K∑
k=1

(E ′φk,yy +Gφk,xx) = 0 (4.12b)

For nodes on the displacement boundaries, boundary conditions can be intro-

duced straightforward as

u(xk) = u0 (4.13a)

v(xk) = v0 (4.13b)

where u0 and v0 are specified displacements in x and y directions, respectively.

On the traction boundaries, where the traction forces along x and y directions

are prescribed, the boundary conditions are

t0x = lσx +mτyx (4.14a)

t0y = mσy + lτxy (4.14b)

where l = cos(n, x),m = cos(n, y), n is the outward normal vector on the bound-
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ary. Rewrite (4.14) in terms of displacement components, we have

t0x = lE ′
∂u

∂x
+mG

∂u

∂y
+ µlE ′

∂v

∂y
+mG

∂v

∂x
(4.15a)

t0y = µmE ′
∂u

∂x
+ lG

∂u

∂y
+mE ′

∂v

∂y
+ lG

∂v

∂x
(4.15b)

RPIM shape functions are employed and then the traction boundary conditions can

be rewritten as

K∑
k=1

(lE ′φk,x +mGφk,y)u
(k) +

K∑
k=1

(µlE ′φk,y +mGφk,x) v
(k) = t0x (4.16a)

K∑
k=1

(µmE ′φk,x + lGφk,y)u
(k) +

K∑
k=1

(mE ′φk,y + lGφk,x) v
(k) = t0y (4.16b)

Based on the strong-forms of governing equations in (4.12) and traction bound-

ary conditions in (4.16), formulations related to plane strain problems can be ob-

tained easily by replacing the Young’s modules E in E ′ with

Ē =
E

1− µ2
(4.17)

and the Poisson ratio µ with

µ̄ =
µ

1− µ (4.18)

However, displacement boundary conditions can still be imposed as (4.13).

The application of PCM to 2D elastostatics is demonstrated by the following
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three examples. Approximation procedures are carried out by using the locally

supported RPIM-MQ shape functions. Free parameter c0 in the MQ RBF is taken

as c0 = 2∆. And the local support domain is selected as a circle of radius r0 centred

at collocation points x, in which K = 12 is used in all examples.

4.3.2 A Square Panel under Uniform Displacement

Firstly, a square panel of side a = 5cm is investigated. The plate is fixed at x = 0

and subjected to a uniformly distributed displacement u0 = 0.001cm along the

edge x = 5cm as shown in Figure 4.3. In this case, material parameters are taken

as: Young’s modulus E = 2.1 × 106N/cm2, Poisson ratio µ = 0.2. The contour

plot of εxx obtained from Abaqus is presented in Figure 4.4, which can be regarded

as the benchmark to evaluate other numerical results.

𝑥

𝒚

𝑎

𝑢0

Figure 4.3: A square panel under uniform displacement.

86



4.3. Point Collocation Method (PCM) for 2D Solids

Figure 4.4: Abaqus contour plot of εxx for a square panel under uniform displacement.

Numerical errors for strains at point (0.0, 2.5) with different values of c0 are

plotted in Figure 4.5. The problem domain is represented by a set of regularly

and evenly distributed nodes and the node density is 31 × 31. The total number of

nodes in the local support domain is selected as 12. Abaqus solution εxx(0.0, 2.5) =

1.83823× 10−4 is regarded as the benchmark. It is shown that numerical errors are

all less than 1% when c0 changes, but it increases after c0 is greater than 5∆.

Figure 4.6 shows numerical errors for strains at point (0.0, 2.5) with differ-

ent number of nodes in the local support domain. In this case, a group of 31 ×

31 field nodes are regularly and evenly distributed in the problem domain and

the free parameter c0 is selected as 2∆. The total number of nodes involved in

the local support domain to construct RPIM shape functions are taken as K =

8, 12, 17, 25, 38, 53, 103. It can be seen that numerical errors are increasing when

K is greater than 17. And K values located within 12− 25 result in solutions with

errors less than 0.1%. In addition, it requires more computing time to obtain the

coefficient matrix with the increase of nodes in the local support domain.
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Figure 4.5: Numerical errors of εxx(0.0, 0.25) for different c0 values.
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Figure 4.6: Numerical errors of εxx(0.0, 0.25) for different number of nodes in the local
support domain.
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The convergence study is carried out by using different densities of field nodes

in the problem domain. Related parameters are selected as c0 = 2∆ and K = 12.

Numerical solutions of εxx(0.0, 0.25) and their errors compared with the Abaqus

solution are listed in Table 4.7, showing that the accuracy of solutions increase

when finer field nodes are employed, but the time needed for solving algebraic

equations goes up when the total number of field nodes employed in the problem is

large.

Table 4.7: Numerical solutions and errors of εxx(0.0, 0.25) for different densities of field
nodes.

M εxx Errors (%)

5× 5 1.89065E-04 2.85166

11× 11 1.83349E-04 0.25786

21× 21 1.83748E-04 0.04080

31× 31 1.83728E-04 0.05168

41× 41 1.83734E-04 0.04842

In order to demonstrate the accuracy of PCM based on RPIM-MQ, strain dis-

tribution εxx versus x at y = 0.019cm and y = 2.519cm are plotted in Figure 4.7.

While solutions for εxx versus y at x = 0.019cm and x = 2.519cm are shown in

Figure 4.8. The field node density is 31 × 31 and other parameters are chosen to

be c0 = 2∆, K = 12. Abaqus solutions are also reported for comparison pur-

pose. Good convergence have been achieved when y = 2.519cm or x = 2.519cm.

However, errors can be seen on geometrical boundaries when y = 0.019cm or

x = 0.019cm. This is duo to the singularity arises nearby geometrical boundaries.
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Figure 4.7: Distribution of εxx versus x at y = 0.019cm and y = 2.519cm.
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Figure 4.8: Distribution of εxx versus y at x = 0.019cm and x = 2.519cm.
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4.3.3 A Square Board with a Circle Hole under Tensile Load

Secondly, a square board of width 2b containing a circle hole of radius a subjected

to a uniform tension load σ0 on the top and the bottom is analyzed (where b = 2a

) as shown in Figure 4.9(a). Due to the symmetry, only one-quarter of the plate is

studied, see Figure 4.9(b). Young’s modulus is one unit and Poisson ratio µ = 0.3 .

The total number of field nodes is 1364. Other parameters are selected as c0 = 2∆,

K = 12.

x1

x2

𝜎0

𝜎0

𝑎

(a)

𝑎

𝑏

𝜎0

(b)

Figure 4.9: A square board containing a circle hole under tensile load: (a) geometry; (b)
a quarter of the plate.

To demonstrate the accuracy of PCM, Abaqus contour plots related to the dis-

tribution of strains and stresses are presented in Figure 4.10 to Figure 4.11 for the

sake of comparison. Variations of normalized strains and stresses along axis x1 are

plotted in Figure 4.12 and Figure 4.13. As expected, numerical solutions given by

PCM are convergent with Abaqus results.
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(a)

(b)

Figure 4.10: Abaqus contour plot of strain distributions for a square board with a circle
hole under tensile load: (a) ε11; (b) ε22.
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(a)

(b)

Figure 4.11: Abaqus contour plot of stress distributions for a square board with a circle
hole under tensile load: (a) σ11; (b) σ22.
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Figure 4.12: Strain variations along axis x1 for a square board with a circle hole under
tensile load.
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Figure 4.13: Stress variations along axis x1 for a square board with a circle hole under
tensile load.
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4.3.4 A Disk under Internal Pressure

Finally, a disk under internal pressure is analyzed with dimensions a = 1cm, b =

2cm as shown in Figure 4.14(a). Young’s modulus is one unit and Poisson ratio µ =

0.3. Again, only one-quarter of the disk is considered in this example because of the

symmetry, see Figure 4.14(b). The total number of field nodes is 989. Parameter c0

in RPIM-MQ is taken as 2∆, and the number of nodes involved in the local support

domain is 12.

x1

x2

𝑎

𝜎0

𝑏

(a)

𝑎

𝑏

𝜎0

(b)

Figure 4.14: A disk subjected to internal pressure: (a) geometry; (b) a quarter of the disk.

ABAQUS contours with respect to the strain and stress distributions along x and

y direction are reported respectively in Figure 4.15 and Figure 4.16 for comparison

purpose. Besides, normalized strains and stresses along axis x1 are plotted in Figure

4.17 and Figure 4.18, respectively. The maximum errors of numerical solutions are

5.56% for ε22 and 6.80% for σ22 appeared at point (1.0, 0.0). Good agreement has

been obtained for other field nodes, which again validates the accuracy of PCM to

general problems.
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(a)

(b)

Figure 4.15: Abaqus contour plot of strain distributions for a disk subjected to internal
pressure: (a) ε11; (b) ε22.
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(a)

(b)

Figure 4.16: Abaqus contour plot of stress distributions for a disk subjected to internal
pressure: (a) σ11; (b) σ22.
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Figure 4.17: Strain distributions along axis x1 for a disk subjected to internal pressure.
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Figure 4.18: Stress distributions along axis x1 for a disk subjected to internal pressure.
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4.4 Conclusions

In this chapter, formulations of meshless Point Collocation Method (PCM) are pre-

sented for one- and two-dimensional solids. Meshless approximations are carried

out by use of RBFs and governing equations are directly discretized at field nodes.

A simple 1D problem is demonstrated to investigate the influence of support do-

mains, types of RBFs as well as the free parameter c0 on PCM solutions. In addi-

tion, three 2D examples are conducted in order to apply PCM based on the locally

supported RPIM-MQ to general cases, in which the selection of c0, the total number

of nodes in the local support domain and the convergence of the presented method

are discussed. Abaqus solutions are also reported and used for comparison. It can

be concluded based on the study above that:

(1) Approximations based on the global support domain are time-consuming

since all field nodes in the problem domain are involved to construct shape

functions, and thus resulting in a set of fully populated system equations. On

the contrary, approximations based on local support domains lead to a sparse

system matrix, which significantly reduce the computational efforts.

(2) When the global support domain is employed, the EXP-RBF is sensitive to

the varying of the free parameter, which indicates that inappropriate selec-

tions of free parameters in EXP-RBF give rise to singularities and conse-

quently incorrect solutions are obtained. Nevertheless, approximations based

on the MQ-RBF are numerically stable in the same circumstance and there-

fore provide accurate solutions.

(3) When the shape function is locally supported, the influence of c0 drops evi-

dently in PCM based on EXP RBF. Therefore, its singularity can be prevented

by choosing suitable support domains and approximation schemes.
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(4) The computing time spent on calculating the coefficient matrix increases

when the total number of nodes in the local support domain is large. And

numerical solutions with high accuracy can be obtained when the number of

nodes in the local support domain locates in the range of 12 to 25.

(5) The accuracy of solutions increases when finer field nodes are used. But it

requires more time to solve the discretized system equations.

(6) Applications of PCM based on the locally supported RPIM-MQ to 2D solid

problems demonstrate its convenience, accuracy and computational efficiency.
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CHAPTER 5
Meshless Local Integral Equation

Methods

5.1 Introduction

Before the Meshless Local Petrov-Galerkin (MLPG) method was put forward, a

class of mesh reduction methods, such as Element Free Galerkin (EFG) methods,

are on the basis of global weak-forms, in which background grids have to be intro-

duced in order to carry out numerical integrals and then deriving global integrals

of governing equations over the entire problem domain. However, with the pro-

posal of MLPG [104] based on the local weak-forms, numerical integrals can be

carried out within the local domains with respect to every specific node. Therefore,

global background cells are removed completely and achieve really and truly the

‘meshfree’ idea.

Inspired by the idea of MLPG, variety kinds of meshless methods based upon

the local weak-forms were proposed by employing different approximation schemes

and formulation procedures. Among others, Liu et al [149, 150] proposed the Lo-

cal Point Interpolation Method (LPIM) and the Local Radial Point Interpolation
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Method (LRPIM). The former one is based on polynomial basis functions and hence

may lead to singularities. While in LRPIM, a more robust scheme, RBF approxi-

mations, are employed. Sladek et al [151] proposed the meshless Local Boundary

Integral Equation method (LBIE), and a comparative study has been conducted be-

tween MLS and polynomial RBF approximations. Besides, analytical solutions of

LBIE for 2D non-homogeneous elasticity were presented but quite complex [152].

Wen [153] applied LBIE to solid mechanics and derived closed forms for all do-

main integrals in local weak-forms based on RBF interpolations. The CPU time

reduces greatly since the closed form of LBIE is obtained.

Applications of local weak-form meshless methods are far to be exhaustive in

the literature. Recently, it was used to address functionally graded Reissner’s plate

problems [154], and poroelastic problems [155].

This chapter is structured as follows: formulations of meshless Local Integral

Equation Method (LIEM) are presented for 2D isotropic medium. Then, a step

function is selected as the test function, and the MQ RBF approximation is em-

ployed to derive analytical solutions for domain integrals. Finally, effects of param-

eters including the number of straight lines that enclose the local integral domain as

well as the integral radius are observed, and the accuracy and convergence of LIEM

are demonstrated by three examples. Comparisons are made with Abaqus solutions

and PCM results.

5.2 Local Integral Equation Method (LIEM)

The governing equation for 2D isotropic medium is,

σij,j + fi = 0 (5.1)
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Consider a problem domain Ω with boundary Γ presented in Figure 5.1, the

equilibrium equation in (5.1) can be satisfied over a local integral domain Ωs bounded

by Γs for any point of interest x, leading to the local weak-form of the governing

equation as

∫
Ωs

(σij,j + fi)u
∗
i dΩ = 0 (5.2)

where u∗i is the test function or weight function centred at x.

Figure 5.1: A problem domain Ω with boundary Γ and the local integral domain Ωs for a
point x bounded by Γs.

The use of the integration by parts yields

∫
Ωs

σij,ju
∗
i dΩ =

∫
Γs

σijnju
∗
i dΓ−

∫
Ωs

σiju
∗
i,jdΩ (5.3)

where nj denotes the unit outward normal on the boundary. Substituting (5.3) into
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(5.2) results in the following weak-form:

∫
Γs

σijnju
∗
i dΓ−

∫
Ωs

(σiju
∗
i,j − fiu∗i )dΩ = 0 (5.4)

As shown in Figure 5.1, the local boundary Γs is formed by different compo-

nents including ΓD, ΓT and Ls, namely, Γs = ΓD ∪ ΓT ∪ Ls, in which:

ΓD is the displacement boundary that intersects with the global boundary Γ;

ΓT is the traction boundary that has an intersection with the global boundary Γ;

Ls is the interior part of the local boundary that has no intersection with the

global boundary.

Therefore, (5.4) can be written in the form of

∫
ΓD

σijnju
∗
i dΓ +

∫
ΓT

σijnju
∗
i dΓ +

∫
Ls

σijnju
∗
i dΓ

−
∫

Ωs

(σiju
∗
i,j − fiu∗i )dΩ = 0

(5.5)

Consider the relationship between the stress and the traction on the boundary,

(5.5) can be expressed as

∫
Ωs

σiju
∗
i,jdΩ−

∫
Ls

tiu
∗
i dΓ−

∫
ΓD

tiu
∗
i dΓ =

∫
ΓT

t0iu
∗
i dΓ +

∫
Ωs

fiu
∗
i dΩ (5.6)

However, for the local boundary that has no intersection with the global bound-

ary, which means the local integral domain is completely located within the problem

domain, there is no need to consider the integration over ΓD and ΓT , but only Ls is

left and in this instance Ls = Γs. Thus, (5.5) becomes

∫
Ls

tinju
∗
i dΓ−

∫
Ωs

(σiju
∗
i,j − fiu∗i )dΩ = 0 (5.7)
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5.3 Analytical Solutions for Domain Integrals

With the purpose of simplifying the local weak-forms, the test function u∗i in each

integral domain can be purposely selected. When a step function is employed

u∗i (x) =

 φi(x) at x ∈ (Ωs ∪ Γs)

0 at x /∈ Ωs

(5.8)

where φi(x) = 1 and no body forces are taken into account, the local integral

equations in (5.4) and (5.6) become

∫
Γs

σijnjdΓ = 0 (5.9)

and

∫
Ls

tidΓ +

∫
ΓD

tidΓ = −
∫

ΓT

t0i dΓ (5.10)

Assume that the local integral domain Ωs is enclosed by several straight lines,

see Figure 5.2. Then (5.9) can be written as

∫
Γs

σijnjdΓ =
L∑
l=1

nlj

∫
Γl

σijdΓ (5.11)

in which L denotes the number of straight lines that enclose the local integral do-

main.

Recalling the RPIM-MQ shape functions reported in Chapter 3, we have ap-

proximations of field variables in terms of nodal values as

u(x) =
K∑
k=1

φkuk (5.12a)
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φ(x) =
M∑
m=1

Rm(r)am +
N∑
n=1

Pn(x)bn (5.12b)

Figure 5.2: A local integral domain enclosed by straight lines.

By using Hook’s law and the meshless approximation scheme presented in

(5.12a) and (5.12b), one has

∫
Γl

σxxn
l
xdΓ =

∫
Γl

nlxE
′
(
∂u

∂x
+ µ

∂v

∂y

)
dΓ

= nlxE
′
K∑
k=1

[(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
u(k) + µ

(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
v(k)

]
(5.13a)

∫
Γl

σyyn
l
ydΓ =

∫
Γl

nlyE
′
(
∂v

∂y
+ µ

∂u

∂x

)
dΓ

= nlyE
′
K∑
k=1

[(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
v(k) + µ

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
u(k)

]
(5.13b)

∫
Γl

τxyn
l
ydΓ =

∫
Γl

nlyG

(
∂u

∂y
+
∂v

∂x

)
dΓ

= nlyG

K∑
k=1

[(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
u(k) +

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
v(k)

]
(5.13c)
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∫
Γl

τyxn
l
xdΓ =

∫
Γl

nlxG

(
∂u

∂y
+
∂v

∂x

)
dΓ

= nlxG

K∑
k=1

[(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
u(k) +

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
v(k)

]
(5.13d)

For an arbitrary boundary shape of the local integral domain shown in Figure

5.2, boundary integrals

Rmx =

∫ Sl

0

∂Rm

∂x
ds (5.14a)

Rmy =

∫ Sl

0

∂Rm

∂y
ds (5.14b)

Pnx =

∫ Sl

0

∂Pn
∂x

ds (5.14c)

Pny =

∫ Sl

0

∂Pn
∂y

ds (5.14d)

where Rm =
√
c2

0 + (x− xk)2 + (y − yk)2 and Pn = {1, x, y, x2, xy, y2}.

Analytical solutions of boundary integrals in closed form can be found in [153],

in which nlx = sin βl, nly = − cos βl, and

Rmx =(r2 − r1) cos βl

−
[(
xla − xk

)
sin βl −

(
yla − yk

)
cos βl

]
sin βl ln

D1

D2

(5.15a)

Rmy =(r2 − r1) sin βl

−
[(
yla − yk

)
cos βl −

(
xla − xk

)
sin βl

]
cos βl ln

D1

D2

(5.15b)
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r1 =

√
c2 + (xla − xk)

2 + (yla − yk)
2 (5.15c)

r2 =

√
c2 +

(
xlb − xk

)2
+
(
ylb − yk

)2 (5.15d)

D1 =
(
xla − xk

)
cos βl +

(
yla − yk

)
sin βl + r1 (5.15e)

D2 =
(
xlb − xk

)
cos βl +

(
ylb − yk

)
sin βl + r2 (5.15f)

And the polynomial terms

P1x = P3x = P6x = 0 (5.16a)

P2x = s, (5.16b)

P4x = 2xlas+ s2 cos βl (5.16c)

P5x = ylas+
s2 sin βl

2
(5.16d)

P1y = P2y = P4y = 0 (5.16e)

P3y = s, (5.16f)

P6y = 2ylas+ s2 sin βl (5.16g)

P5y = xlas+
s2 cos βl

2
(5.16h)
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s =

√(
xlb − xla

)2
+
(
ylb − yla

)2 (5.16i)

Substitute (5.13) into (5.11), we can obtain a set of discretized equtions as

L∑
l=1

K∑
k=1

[
nlxE

′

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
u(k)

+ µnlxE
′

(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
v(k)

]
+

L∑
l=1

K∑
k=1

[
nlyG

(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
u(k)

+ nlyG

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
v(k)

]
= 0

(5.17a)

L∑
l=1

K∑
k=1

[
nlyE

′

(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
v(k)

+ µnlyE
′

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
u(k)

]
+

L∑
l=1

K∑
k=1

[
nlxG

(
M∑
m=1

Rmyam +
N∑
n=1

Pnybn

)
u(k)

+ nlxG

(
M∑
m=1

Rmxam +
N∑
n=1

Pnxbn

)
v(k)

]
= 0

(5.17b)

which can be rearrange as

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am

+
N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am

+
N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
= 0

(5.18a)
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K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmx

)
am

+
N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
nlyE

′Rmy + nlxGRmx

)
am

+
N∑
n=1

(
nlyE

′Pny + nlxGPnx
)
bn

]
= 0

(5.18b)

Traction boundary conditions can be introduced based upon (5.10) as

∫
Γ−ΓT

tidΓ = −
∫

ΓT

t0i dΓ for xk k = 1, 2, . . . ,MT (5.19)

And the displacement boundary conditions can be imposed straightway as

ui(xk) = u0
i for xk k = 1, 2, . . . ,MD (5.20)

where MD is the number of nodes located on the displacement boundary, and MT

is number of nodes located on the traction boundary.

5.4 Numerical Examples

In this section, LIEM is employed to solve 2D elastostatic problems. The local

support domain is selected as a circle of radius r0 centred at field points x, in which

the minimum number of nodes K ≥ K0. It has been reported that the reasonable

value of K0 should be 8 ≤ K0 ≤ 25 [153]. Therefore, K0 = 12 is taken for all

examples followed. LIEM solutions are compared with Abaqus and PCM results.
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5.4. Numerical Examples

5.4.1 A Square Panel under Uniform Displacement

A square panel subjected to a uniformly distributed displacement as shown in Figure

5.3 is analysed. The side a = 5cm and the plate is fixed at x = 0. A prescribed

displacement u0 = 0.001cm is applied along the edge x = 5cm . Material constants

are : Young’s modulus E = 2.1× 106N/cm2, Poisson ratio µ = 0.2.

𝑥

𝒚

𝑎

𝑢0

Figure 5.3: A square panel subjected to a uniformly distributed displacement.

L=3 L=128L=8L=4 L=36

𝑥𝑘 𝑥𝑘 𝑥𝑘 𝑥𝑘 𝑥𝑘

D

Figure 5.4: Local integral domains enclosed by different number of straight lines.
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5.4. Numerical Examples

The local integral domain enclosed by different number of straight lines are

presented in Figure 5.4, in which D is the radius of the local integral domain. The

strain εxx at point (0.0, 2.5) obtained by using different number of L and D are

listed in Table 5.1 . In this case, Abaqus solution εxx(0.0, 2.5) = 1.83823 × 10−4

is regarded as the benchmark and the problem domain is represented by 21 × 21

nodes that regularly and evenly distribute. Overall, the influence of L and D is

insignificant except the situation when D = ∆ and large number of L is used.

The convergence of LIEM is also observed with parameters L = 36 andD/∆ =

0.5. Solutions obtained by different densities of field nodes are presented in Table

5.2. It can be seen clearly that strain values converge rapidly when the number

of nodes increases. However, the CPU time goes up as well with the rise of node

densities and a large amount of time have spent on solving the discretized system

equations.

Table 5.2: Strains εxx obtained with L = 36 and D/∆ = 0.5 for different densities of field
nodes at point (0.0, 2.5)

M 11× 11 21× 21 31× 31 41× 41

εxx 1.85152E-04 1.83948E-04 1.83818E-04 1.83791E-04

Errors (%) 0.72298 0.06800 0.00272 0.01741

Then, the computing time for PCM and LIEM to obtain εxx(0.0, 2.5) are inves-

tigated. Free parameters used in both methods are listed in Table 5.3 , in which the

numerical solutions as well as their errors, and the elapsed real time are presented

as well. It is found that the application of closed form LIEM improves the compu-

tational efficiency significantly, and it achieves an accurate solution without a high

density of field nodes. Conversely, PCM requires more field nodes to get the same

precision and it is time demanding.
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Figure 5.5: Distribution of εxx versus x at y = 0.019cm.
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Figure 5.6: Distribution of εxx versus x at y = 2.519cm.
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Figure 5.7: Distribution of εxx versus y at x = 0.019cm.

0 1 2 3 4 5
 y

1.6

1.8

2

2.2

2.4

 0
xx

#10-4

PCM

LIEM

Abaqus

Figure 5.8: Distribution of εxx versus y at x = 2.519cm.
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Finally, in order to demonstrate the accuracy of LIEM, strain distribution εxx

along y = 0.019cm, y = 2.519cm and x = 0.019cm, x = 2.519cm are plotted

in Figure 5.5 to Figure 5.8 with parameters L = 36, D/∆ = 0.5 and 31 × 31

field nodes. Abaqus and PCM results obtained in the last Chapter are also reported

for comparisons. It shows that solutions around geometrical boundaries improve

greatly when LIEM is utilized, which validates the accuracy of LIEM indirectly.

5.4.2 A Square Board with a Circle Hole under Tensile Stress

A square board of width 2b containing a circle hole of radius a (where a = b/2 )

subjected to a uniformly distributed tensile stress σ0 on top and bottom shown in

Figure 5.9 is observed. Only one-quarter of the plate is studied because of symme-

try. Young’s modulus E = 1.0 and Poisson ratio µ = 0.3 . The total number of

field nodes is 1364, and free parameters are selected as L = 8, D/∆ = 0.5.

x1

x2

𝜎0

𝜎0

𝑎

(a)

𝑎

𝑏

𝜎0

(b)

Figure 5.9: A square board containing a circle hole subjected to tensile load: (a) geometry;
(b) a quarter of the plate.
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Figure 5.10: Strain variations along axis x1 for a square board with a circle hole under
tensile load.
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Figure 5.11: Stress variations along axis x1 for a square board with a circle hole under
tensile load.
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LIEM results involve the distribution of strains and stresses along axis x1 are

plotted in Figure 5.10 and Figure 5.11, respectively. While Abaqus and PCM so-

lutions are presented as well for the sake of comparisons. Good agreements have

been achieved even though very small gaps can be found in the distribution of ε22

and σ22 nearby geometrical boundaries.

5.4.3 A Disk under Internal Pressure

A disk subjected to an internal pressure is investigated with dimensions a = 1cm,

b = 2cm as shown in Figure 5.12(a) and only a quarter of the disk is considered

in this example, see Figure 5.12(b). Young’s modulus E = 1.0 and Poisson ratio

µ = 0.3. The total number of field nodes is 989.

x1

x2

𝑎

𝜎0

𝑏

(a)

𝑎

𝑏

𝜎0

(b)

Figure 5.12: A disk subjected to internal pressure: (a) geometry; (b) a quarter of the disk.

The distribution of strains and stresses along axis x1 are plotted in Figure 5.13

and Figure 5.14 respectively with free parametersL = 8,D/∆ = 0.5. Comparisons

have been made with Abaqus and PCM solutions, which show great convergence

and again demonstrate the accuracy of LIEM.
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Figure 5.13: Strain variations along axis x1 for a ring under interior pressure.
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Figure 5.14: Stress variations along axis x1 for a ring under interior pressure.
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5.5 Conclusions

In this chapter, mathematical procedures of LIEM are presented for 2D solids. By

use of the MQ RBF approximation, analytical solutions for domain integrals are

derived. Three numerical examples are carried out and the following conclusions

are obtained:

(1) Investigations with respect to the number of straight lines that enclose the

local integral domain and the radius of the local integral domain indicate that

they have slight effects on numerical solutions.

(2) When the densities of nodes located in the problem domain increases, numer-

ical solutions of LIEM converge rapidly and only a little time is required to

compute the coefficient matrix. However, it takes time for solving the dis-

cretized algebraic equations.

(3) The employment of analytical formulations of domain integrals improves the

computational efficiency greatly, and PCM takes more time to achieve the

same accuracy compared with LIEM.

(4) LIEM solutions for solid mechanics problems are accurate and convergent

when appropriate parameters are chosen.
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CHAPTER 6
Meshless Methods for Nonlocal

Elastostatics

6.1 Introduction

Classical continuum mechanics is a local theory that involves a certain degree of in-

herent limitation because it ignores the long rang force in real materials. Therefore,

nonlocal theories framed in the realm of continuum theories have been promising to

model and simulate material properties exhibited at micro-, and even, at nano-scale

levels. It should be a sufficient motivation for research work oriented to nonlocal

theories.

The application of nonlocal theories has been extended to various aspects show-

ing the ability to interpret and predict material physical properties at microscopic

scales. Some recent examples include the gradient enhanced damage for quasi-

brittle material [156], propagation of Rayleigh surface waves with small wave-

lengths in nonlocal solids[157], crack problems in piezoelectric materials and func-

tionally graded materials [22, 158], and moreover, the bending, buckling and free

vibration of nanobeams [32]. Above quoted references have successfully presented

122



6.2. Eringen’s Model

the positive signs of nonlocal theories in explaining size effects.

However, nonlocal problems are complex to solve analytically even for a sim-

ple 1D issue. Therefore, numerical approaches are increasing used to resolve the

dilemmas. A numerical method based on FEM has been proposed and employed

to address 2D nonlocal elastic problems with a nonlocal stiffness matrix indicat-

ing the nonlocal characteristics [43]. The nonlocal Timoshenko nanobeams were

investigated numerically by means of meshless collocation technique with RBF ap-

proximation schemes [49]. Additionally, Wen and Huang have applied PCM to the

nonlocal elastic sphere and figured out solutions with high accuracy [52]. And,

LIEM has been employed to address 2D nonlocal elastostatic mechanical cases and

fracture problems [51, 53].

In this chapter, meshless methods including PCM and LIEM are employed to

address nonlocal elastostatic problems respectively based on the Eringen’s model.

Formulations related to 2D nonlocal problems are reported and then numerical ex-

amples are carried out. Comparisons between solutions obtained form different

methods are made and the feasibility and effectiveness of meshless methods for

solving nonlocal static problems are validated.

6.2 Eringen’s Model

A leap has been provided in extending nonlocal theories to practical problems since

the simplified nonlocal elastic theories were promising for linear homogeneous

isotropic media by the work of Eringen and co-workers [17], in which only the

stress and strain relationship is regarded as nonlocality and characterized by an at-

tenuation function. Its constitutive relation is in the form of

σ(x) =

∫
V

α(x, x′, l)Dε(x′)dV (x′) =

∫
V

α(x, x′, l)σ̄(x′)dV (x′) (6.1)
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6.2. Eringen’s Model

where V denotes the domain volume; l is the characteristic length; x is the collo-

cation point and x′ is the domain integration point; σ̄ and ε are vectors of classical

(local) stress and strain, respectively; D represents the elastic moduli matrix; α is

the nonlocal kernel defined as a function of the ratio |x- x′|2/l; σ is referred to as

nonlocal stress, which is expressed as a weighted value of the local strain ε.

A variant integral model considering the stress as a weighted summation of

the classical and nonlocal stress is the most prevailing one [159]. Its constitutive

relation is:

σ(x) = ξ1σ̄(x) + ξ2

∫
V

α(x, x′, l)σ̄(x′)dV (x′) (6.2)

The above equation considers the nonlocal elastic material as a two-phase material

that involves the local elasticity with portion factor ξ1 and the nonlocal elasticity

with portion factor ξ2, where ξ1 and ξ2 are positive constants and ξ1 + ξ2 = 1.

The functional form of the nonlocal kernel α(x, x′, l) is still a controversial

problem. However, it is clear that the nonlocal kernel has to follow some gen-

eral conditions[160], e.g., reaching its maximum at x = x′ but attenuating rapidly

with the increase of distances |x- x′|, and must satisfy the normalization condition

over the infinite integration domain so that its integral gives unity as

∫
V∞

α
(
|x− x′|2/l

)
dV ′ = 1 (6.3)

in which V∞ indicates the infinite domain embedding V . In practice, for simplicity,

the nonlocal kernel is usually of Gaussian form as ,

α (x, x′, l) =
1

2πl2
exp

(
−|x− x′|2/l

)
(6.4)
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6.3 PCM for Nonlocal Elastostatics (NL-PCM)

Recalling Hook’s law, the stress components in the context of nonlcoal elasticity

can be derived easily based upon (6.2), for 2D plane-stress problems, as

σxx(x) =ξ1

[
E ′
(
∂u(x)

∂x
+ µ

∂v(x)

∂y

)]
+

ξ2

∫
V

α(x, x′, l)
[
E ′
(
∂u(x′)
∂x′

+ µ
∂v(x′)
∂y′

)]
dV (x′)

(6.5a)

σyy(x) =ξ1

[
E ′
(
∂v(x)

∂y
+ µ

∂u(x)

∂x

)]
+

ξ2

∫
V

α(x, x′, l)
[
E ′
(
∂v(x′)
∂y′

+ µ
∂u(x′)
∂x′

)]
dV (x′)

(6.5b)

τxy(x) =ξ1

[
G

(
∂u(x)

∂y
+
∂v(x)

∂x

)]
+

ξ2

∫
V

α(x, x′, l)
[
G

(
∂u(x′)
∂y′

+
∂v(x′)
∂x′

)]
dV (x′)

(6.5c)

The equilibrium equation for 2D isotropic solids is expressed as

σij,j + fi = 0 (6.6)

Substitute stress components in (6.5) into (6.6), we have

ξ1

[
E ′
(
∂2u(x)

∂x2
+ µ

∂2v(x)

∂x∂y

)]
+

ξ2

∂
∫
V
α(x, x′, l)
∂x

[
E ′
(
∂u(x′)
∂x′

+ µ
∂v(x′)
∂y′

)]
dV (x′)+

ξ1

[
G

(
∂2u(x)

∂y2
+
∂2v(x)

∂x∂y

)]
+

ξ2

∂
∫
V
α(x, x′, l)
∂y

[
G

(
∂u(x′)
∂y′

+
∂v(x′)
∂x′

)]
dV (x′) = 0

(6.7a)
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ξ1

[
E ′
(
∂2v(x)

∂y2
+ µ

∂2u(x)

∂x∂y

)]
+

ξ2

∂
∫
V
α(x, x′, l)
∂y

[
E ′
(
∂v(x′)
∂y′

+ µ
∂u(x′)
∂x′

)]
dV (x′)+

ξ1

[
G

(
∂2u(x)

∂x∂y
+
∂2v(x)

∂x2

)]
+

ξ2

∂
∫
V
α(x, x′, l)
∂x

[
G

(
∂u(x′)
∂y′

+
∂v(x′)
∂x′

)]
dV (x′) = 0

(6.7b)

Equations above can be rearranged as following:

ξ1

(
E ′
∂2u(x)

∂x2
+G

∂2u(x)

∂y2

)
+

ξ2

(∫
V

∂α(x, x′, l)
∂x

E ′
∂u(x′)
∂x′

+

∫
V

∂α(x, x′, l)
∂y

G
∂u(x′)
∂y′

)
dV (x′)+

ξ1

(
E ′µ

∂2v(x)

∂x∂y
+G

∂2v(x)

∂x∂y

)
+

ξ2

(∫
V

∂α(x, x′, l)
∂x

E ′µ
∂v(x′)
∂y′

+

∫
V

∂α(x, x′, l)
∂y

G
∂v(x′)
∂x′

)
dV (x′) = 0

(6.8a)

ξ1

(
E ′µ

∂2u(x)

∂x∂y
+G

∂2u(x)

∂x∂y

)
+

ξ2

(∫
V

∂α(x, x′, l)
∂y

E ′µ
∂u(x′)
∂x′

+

∫
V

∂α(x, x′, l)
∂x

G
∂u(x′)
∂y′

)
dV (x′)+

ξ1

(
E ′
∂2v(x)

∂y2
+G

∂2v(x)

∂x2

)
+

ξ2

(∫
V

∂α(x, x′, l)
∂y

E ′
∂v(x′)
∂y′

+

∫
V

∂α(x, x′, l)
∂x

G
∂v(x′)
∂x′

)
dV (x′) = 0

(6.8b)

Assume that the 2D problem domain is represented by a set of randomly dis-

tributed nodes. The locally supported RPIM-MQ shape function presented in Chap-

ter 3 is employed to carry out the meshfree approximations. Then equations in (6.8)

are discretized directly by collocating at field nodes. Finally, system equations of

PCM with respect to nonlocal elastostatics, which can be referred to as NL-PCM,
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are obtained as

ξ1

K∑
k=1

u(k) (E ′φk,xx +Gφk,yy) +

ξ2

K′∑
k′=1

u(k′)

(∫
V

α(x, x′, l),xE ′φk′,x′ +

∫
V

α(x, x′, l),yGφk′,y′
)
dV (x′)+

ξ1

K∑
k=1

v(k) (E ′µφk,xy +Gφk,xy) +

ξ2

K′∑
k′=1

v(k′)

(∫
V

α(x, x′, l),xE ′µφk′,y′ +

∫
V

α(x, x′, l),yGφk′,x′
)
dV (x′) = 0

(6.9a)

ξ1

K∑
k=1

u(k) (E ′µφk,xy +Gφk,xy) +

ξ2

K′∑
k′=1

u(k′)

(∫
V

α(x, x′, l),yE ′µφk′,x′ +

∫
V

α(x, x′, l),xGφk′,y′
)
dV (x′)+

ξ1

K∑
k=1

v(k) (E ′φk,yy +Gφk,xx) +

ξ2

K′∑
k′=1

v(k′)

(∫
V

α(x, x′, l),yE ′φk′,y′ +

∫
V

α(x, x′, l),xGφk′,x′
)
dV (x′) = 0

(6.9b)

in which k = 1, 2, . . . , K and k′ = 1, 2, . . . , K ′ are the number of field nodes within

the local support domain centred at point x and x’, respectively.

The domain integrals in (6.9) should be carried out by introducing a set of back-

ground grids as shown in Figure 6.1. The four-point standard scheme is employed

and x′p denotes the integral points in each sub integral volume ∆Vq, where

∆Vq = d1 × d2 (6.10)
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and the coordinates of four sub integral points are

x′1 =

(
d1

2
√

3
,

d2

2
√

3

)
(6.11a)

x′2 =

(
− d1

2
√

3
,

d2

2
√

3

)
(6.11b)

x′3 =

(
− d1

2
√

3
, − d2

2
√

3

)
(6.11c)

x′4 =

(
d1

2
√

3
, − d2

2
√

3

)
(6.11d)

Therefore, the domain integral can be approximated as

∫
V

α(x, x′, l)dV (x′) =
V∑
q=1

4∑
p=1

α(x, x′p, l)∆Vqwp (6.12)

in which V is the number of sub integral domains and wp = 1/4.

∆𝑉𝑞

x𝑝
′

12

3 4

𝑑1

𝑑2

Figure 6.1: Background grids and the four point standard scheme for domain integrals.
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Discretized equations of (6.9) can be derived by considering the domain integral

approximation in (6.12) as

ξ1

K∑
k=1

u(k) (E ′φk,xx +Gφk,yy) +

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

(α(x, x′p, l),xE ′φk′,x′ + α(x, x′p, l),yGφk′,y′) ∆Vqwp+

ξ1

K∑
k=1

v(k) (E ′µφk,xy +Gφk,xy) +

ξ2

K′∑
k′=1

v(k′)
V∑
q=1

4∑
p=1

(α(x, x′p, l),xE ′µφk′,y′ + α(x, x′p, l),yGφk′,x′) ∆Vqwp = 0

(6.13a)

ξ1

K∑
k=1

u(k) (E ′µφk,xy +Gφk,xy) +

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

(α(x, x′p, l),yE ′µφk′,x′ + α(x, x′p, l),xGφk′,y′) ∆Vqwp+

ξ1

K∑
k=1

v(k) (E ′φk,yy +Gφk,xx) +

ξ2

K′∑
k′=1

v(k′)
V∑
q=1

4∑
p=1

(α(x, x′p, l),yE ′φk′,y′ + α(x, x′p, l),xGφk′,x′) ∆Vqwp = 0

(6.13b)

Displacement boundary conditions can be introduced directly as

u(xk) = u0 (6.14a)

v(xk) = v0 (6.14b)

where k = 1, 2, . . . ,MD. u0 and v0 are specified displacements along x and y
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directions.

While on traction boundaries, where tractions along x and y directions are pre-

scribed, boundary conditions can be imposed as

t0x = l

(
ξ1σ̄xx(x) + ξ2

∫
V

α(x, x′, l)σ̄xx(x′)dV (x′)
)

+m

(
ξ1τ̄yx(x) + ξ2

∫
V

α(x, x′, l)τ̄yx(x′)dV (x′)
) (6.15a)

t0y = m

(
ξ1σ̄yy(x) + ξ2

∫
V

α(x, x′, l)σ̄yy(x′)dV (x′)
)

+ l

(
ξ1τ̄xy(x) + ξ2

∫
V

α(x, x′, l)τ̄xy(x′)dV (x′)
) (6.15b)

which can be discretized as

ξ1

K∑
k=1

u(k) (lE ′φk,x +mGφk,y) +

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

(lE ′φk′,x′ +mGφk′,y′)α(x, x′p, l)∆Vqwp+

ξ1

K∑
k=1

v(k) (µlE ′φk,y +mGφk,x) +

ξ2

K′∑
k′=1

v(k′)
V∑
q=1

4∑
p=1

(µlE ′φk′,y′ +mGφk′,x′)α(x, x′p, l)∆Vqwp = t0x

(6.16a)

ξ1

K∑
k=1

u(k) (µmE ′φk,x + lGφk,y) +

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

(µmE ′φk′,x′ + lGφk′,y′)α(x, x′p, l)∆Vqwp+

ξ1

K∑
k=1

v(k) (mE ′φk,y + lGφk,x) +

ξ2

K∑
k=1

v(k′)
V∑
q=1

4∑
p=1

(mE ′φk′,y′ + lGφk′,x′)α(x, x′p, l)∆Vqwp = t0y

(6.16b)
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6.4 LIEM for Nonlocal Elastostatics (NL-LIEM)

Consider a 2D problem domain shown in Figure 5.1 and the nonlocal constitutive

relationship in (6.2), the local boundary integral equation in (5.11) becomes

∫
Γs

σij(x)nj(x)dΓ(x)

=
L∑
l=1

nlj

∫
Γl

(
ξ1σ̄ij(x) + ξ2

∫
V

α(x, x′, l)σ̄ij(x′)dV (x′)
)
dΓ(x)

= ξ1

L∑
l=1

nlj

∫
Γl

σ̄ij(x)dΓ(x) + ξ2

L∑
l=1

nlj∆l

∫
V

α(x, x′, l)σ̄ij(x′)dV (x′)

(6.17)

where ∆l is the length of the lth straight line that encloses the local integral domain.

Solutions of the local elasticity phase with portion factor ξ1 can be easily ob-

tained based on (5.18). Besides, by taking advantages of RPIM shape functions, in

which

u(x) =
K∑
k=1

φkuk (6.18)

(6.17) can be overwritten in the form of

ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am +

N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

ξ2

L∑
l=1

∆l

K′∑
k′=1

u(k′)

∫
V

α(x, x′, l)
(
nlxE

′φk′,x′ + nlyGφk′,y′
)
dV (x′)+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am +

N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
+

ξ2

L∑
l=1

∆l

K′∑
k′=1

v(k′)

∫
V

α(x, x′, l)
(
µnlxE

′φk′,y′ + nlyGφk′,x′
)
dV (x′) = 0

(6.19a)
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ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmy

)
am +

N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

ξ2

L∑
l=1

∆l

K′∑
k′=1

u(k′)

∫
V

α(x, x′, l)
(
µnlyE

′φk′,x′ + nlxGφk′,y′
)
dV (x′)+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
nlyE

′Rmy + nlxGRmx

)
am +

N∑
n=1

(
nlyE

′Pny + nlxGPnx
)
bn

]
+

ξ2

L∑
l=1

∆l

K′∑
k′=1

v(k′)

∫
V

α(x, x′, l)
(
nlyE

′φk′,y′ + nlxGφk′,x′
)
dV (x′) = 0

(6.19b)

which can be rearranged as

ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am +

N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

ξ2

K′∑
k′=1

u(k′)

∫
V

[
L∑
l=1

∆l

(
nlxE

′φk′,x′ + nlyGφk′,y′
)
α(x, x′, l)

]
dV (x′)+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am +

N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v(k′)

∫
V

[
L∑
l=1

∆l

(
µnlxE

′φk′,y′ + nlyGφk′,x′
)
α(x, x′, l)

]
dV (x′) = 0

(6.20a)

ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmy

)
am +

N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

ξ2

K′∑
k′=1

u(k′)

∫
V

[
L∑
l=1

∆l

(
µnlyE

′φk′,x′ + nlxGφk′,y′
)
α(x, x′, l)

]
dV (x′)+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
nlyE

′Rmy + nlxGRmx

)
am +

N∑
n=1

(
nlyE

′Pny + nlxGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v(k′)

∫
V

[
L∑
l=1

∆l

(
nlyE

′φk′,y′ + nlxGφk′,x′
)
α(x, x′, l)

]
dV (x′) = 0

(6.20b)
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The domain integrals in (6.20a) and (6.20b) can be treated by using the four-

point standard integral scheme, then a set of discretized system equations can be

derived for addressing nonlocal elastostatic problems based upon LIEM as

ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am +

N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

L∑
l=1

∆l

(
nlxE

′φk′,x′ + nlyGφk′,y′
)
α(x, x′p, l)∆Vqwp+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am +

N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v(k′)
V∑
q=1

4∑
p=1

L∑
l=1

∆l

(
µnlxE

′φk′,y′ + nlyGφk′,x′
)
α(x, x′p, l)∆Vqwp = 0

(6.21a)

ξ1

K∑
k=1

u(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmy

)
am +

N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

ξ2

K′∑
k′=1

u(k′)
V∑
q=1

4∑
p=1

L∑
l=1

∆l

(
µnlyE

′φk′,x′ + nlxGφk′,y′
)
α(x, x′p, l)∆Vqwp+

ξ1

K∑
k=1

v(k)

L∑
l=1

[
M∑
m=1

(
nlyE

′Rmy + nlxGRmx

)
am +

N∑
n=1

(
nlyE

′Pny + nlxGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v(k′)
V∑
q=1

4∑
p=1

L∑
l=1

∆l

(
nlyE

′φk′,y′ + nlxGφk′,x′
)
α(x, x′p, l)∆Vqwp = 0

(6.21b)

Finally, boundary conditions of NL-LIEM can be introduced as (5.19) and (5.20).

6.5 Numerical Examples

In this section, both of the NL-PCM and NL-LIEM are utilized to resolve 2D non-

local elastostatic problems. In NL-PCM, free parameter c0 in the MQ RBF is se-
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lected as c0 = 2∆min. While free parameters in NL-LIEM are taken as: c0 = ∆min,

D/∆min = 0.5, L = 8. And the number of nodes located within the local support

domain is taken as K0 = 12 for all examples followed.

6.5.1 A Square Panel under Uniform Displacement

A square panel of side a = 5cm is investigated. The edge is fixed at x = 0, and it

is subjected to a uniformly distributed displacement u0 = 0.001cm along the edge

x = 5cm as shown in Figure 6.2. The investigation is carried out by assuming

material constants: Young’s modulus E = 2.1× 106N/cm2, Poisson ratio µ = 0.2.

A total number of 961 nodes are regularly and evenly distributed in the problem

domain, which means there are 30 subdomains along both x and y directions.

𝑥

𝒚

𝑎

𝑢0

Figure 6.2: A square panel subjected to a uniformly distributed displacement.

Figure 6.3 and Figure 6.4 show the nonlocal solutions of strain distribution

εxx along y = 0.019cm and y = 2.519cm respectively with characteristic length

l = 0.1cm and portion factor ξ1 = ξ2 = 0.5 by using NL-PCM and NL-LIEM.
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Nonlocal results reported in [43], which is based upon FEM, are also presented for

comparisons. Good agreements have been achieved, which validates the accuracy

of NL-PCM and NL-LIEM.

Then, the elapsed real time for calculating εxx by means of NL-PCM and NL-

LIEM are studied and presented in Table 6.1. Numerical solutions obtained in [43]

(εxx(2.5, 0.019)=1.93E-04 and εxx(2.5, 2.519)=2.00E-04) are regarded as bench-

marks. Parameters employed in both methods and the numerical errors are listed

as well. Evidently, PCM saves more CPU time than LIEM in addressing nonlocal

problems since there are no numerical integrals needed to be concerned.

Besides, NL-PCM and NL-LIEM solutions of strain distribution εxx along x =

0.019cm and x = 2.519cm with characteristic length l = 0.1cm and portion factor

ξ1 = ξ2 = 0.5 are presented in Figure 6.5 and Figure 6.6, respectively. Classi-

cal solutions obtained from Abaqus are plotted as well for comparisons. It can be

seen that even though non-uniform nonlocal strain distributions appear at geomet-

rical boundaries, there are only slight differences between nonlocal solutions and

classical ones in the core domain.

Fourthly, the effect of portion factor ξ1 is examined and therefore, NL-PCM and

NL-LIEM are implemented with different values of ξ1. Nonlocal strain distributions

εxx along y = 2.519cm and x = 0.019cm are reported in Figure 6.7 and Figure 6.8

for l = 0.25cm with different values of ξ1 (ξ1 = 0.1 and ξ1 = 0.5). It clearly shows

that the lower the value of ξ1 is, the more obvious nonlocality can be seen, which

can be described by the differences from classical solutions.

Finally, the influence of characteristic length l is studied and NL-PCM and NL-

LIEM are also implemented with different values of l. The strain profiles with

respect to εxx along y = 2.519cm and x = 4.750cm are obtained for ξ1 = 0.5 with

l = 0.1cm and l = 0.2cm, respectively. As shown in Figure 6.9 and Figure 6.10,

when the value of l goes up, the nonlocality extends towards the core domain.

135



6.5. Numerical Examples

0 1 2 3 4 5
 x

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2
 0

xx

#10-4

NL-LIEM

NL-PCM

[43]

Figure 6.3: Distribution of εxx along y = 0.019cm of a panel under uniform displacement
for l = 0.1cm and ξ1 = 0.5.
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Figure 6.4: Distribution of εxx along y = 2.519cm of a panel under uniform displacement
for l = 0.1cm and ξ1 = 0.5.
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Figure 6.5: Distribution of εxx along x = 0.019cm of a panel under uniform displacement
for l = 0.1cm and ξ1 = 0.5.
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Figure 6.6: Distribution of εxx along x = 2.519cm of a panel under uniform displacement
for l = 0.1cm and ξ1 = 0.5.

138



6.5. Numerical Examples

0 1 2 3 4 5
 x

0.5

1.5

2.5

3.5

4.5

5.5
 0

xx

#10-4

NL-LIEM, l=0.25, 9
1
=0.5

NL-PCM,  l=0.25, 9
1
=0.5

NL-LIEM, l=0.25, 9
1
=0.1

NL-PCM,  l=0.25, 9
1
=0.1

Classical

Figure 6.7: Distribution of εxx along y = 2.519cm of a plate under uniform displacement
for l = 0.25cm with ξ1 = 0.1 and ξ1 = 0.5.
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Figure 6.8: Distribution of εxx along x = 0.019cm of a panel under uniform displacement
for l = 0.25cm with ξ1 = 0.1 and ξ1 = 0.5.
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Figure 6.9: Distribution of εxx along y = 2.519cm of a panel under uniform displacement
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Figure 6.10: Distribution of εxx along x = 4.750cm of a panel under uniform displace-
ment for ξ1 = 0.5 with l = 0.1cm and l = 0.2cm.
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6.5.2 A Square Board with a Circle Hole under Tensile Stress

A square board of width 2b containing a circle hole of radius a subjected to a uni-

formly distributed tensile load σ0 on top and bottom is analysed (where b = 2a ) as

shown in Figure 6.11(a). Due to symmetry, only a quarter of the board is studied in

this example with different portion factor (ξ1 = 0.1 and ξ1 = 0.5 ) for the character-

istic length l = 0.2 and l = 0.4. However, in the domain integral of the governing

equation, contributions of strains from the whole plate must be taken into account.

The node distribution is shown in Figure 6.11(b). The number of background grids

is selected as 40× 40. Young’s modulus E = 1.0 and Poisson ratio µ = 0.3.

x1

x2

𝜎0

𝜎0

𝑎

(x1, x2)(−x1, x2)

(−x1, −x2) (x1, −x2)

(a)

𝑎

𝑏

𝜎0

(b)

Figure 6.11: A square board containing a circle hole subjected to tensile load: (a) geome-
try; (b) a quarter of the plate and the node distribution.

Nonlocal solutions obtained from NL-PCM and NL-LIEM in terms of normal-

ized strain distributions Eε11/σ0 and Eε22/σ0 along x2 = 0 for different values of

ξ1 and l are plotted in Figure 6.12 to Figure 6.15, showing great agreements. Ad-

ditionally, it illustrates that absolute values of nonlocal strains rise as the growth of

l. And nonlocal strain distributions tend to the classical results when ξ1 increases,

which accords with the physical interpretation of the Eringen’s model.
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Figure 6.12: Distribution of normalized strain Eε11/σ0 along x2 = 0 for a square board
containing a circle hole with ξ1 = 0.1, l = 0.2 and l = 0.4.
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Figure 6.13: Distribution of normalized strain Eε22/σ0 along x2 = 0 for a square board
containing a circle hole with ξ1 = 0.1, l = 0.2 and l = 0.4.
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Figure 6.14: Distribution of normalized strain Eε11/σ0 along x2 = 0 for a square board
containing a circle hole with ξ1 = 0.5, l = 0.2 and l = 0.4.
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Figure 6.15: Distribution of normalized strain Eε22/σ0 along x2 = 0 for a square board
containing a circle hole with ξ1 = 0.5, l = 0.2 and l = 0.4.
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6.5.3 A Disk under Internal Pressure

A disk with dimensions a = 1cm and b = 2cm is examined in this example. It is

subjected to an internal pressure σ0 as shown in Figure 6.16(a) and only one quarter

of the ring is considered, see Figure 6.16(b). The number of background grids is

selected as 40× 40 and material constants are taken as: Young’s modulus E = 1.0,

Poisson ratio µ = 0.3.

Nonlocal distributions of normalized strainsEε11/σ0 andEε22/σ0 derived from

NL-PCM and NL-LIEM along axis x1 for ξ1 = 0.1 and ξ1 = 0.5 with different

values of l ( in this case, l = 0.2cm and l = 0.4cm are selected) are presented in

Figure 6.17 to Figure 6.20. As expected, strong-form solutions match with weak-

form results. Besides, it is found that nonlocal solutions depart from the classical

ones when the value of characteristic length goes up, and the same trend can be

found when a small value of ξ1 is used.
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𝑎
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Figure 6.16: A disk subjected to internal pressure: (a) geometry; (b) a quarter of the disk
and the node distribution.
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Figure 6.17: Distribution of normalized strain Eε11/σ0 along x2 = 0 for a disk with ξ1 =
0.1, l = 0.2 and l = 0.4.
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Figure 6.18: Distribution of normalized strain Eε22/σ0 along x2 = 0 for a disk with ξ1 =
0.1, l = 0.2 and l = 0.4.
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Figure 6.19: Distribution of normalized strain Eε11/σ0 along x2 = 0 for a disk with ξ1 =
0.5, l = 0.2 and l = 0.4.
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Figure 6.20: Distribution of normalized strain Eε22/σ0 along x2 = 0 for a disk with ξ1 =
0.5, l = 0.2 and l = 0.4.
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6.6 Conclusions

In this chapter, meshless methods including PCM and LIEM are employed to deal

with nonlocal elastostatic problems and their formulations are presented based upon

the Eringen’s model. Meshless approximations in both of the proposed methods are

carried out by use of the MQ RBF. Three illustrated numerical examples demon-

strate the accuracy and reliability of NL-PCM and NL-LIEM. In addition, it is con-

cluded that:

(1) The lower the value of ξ1 is, the more obvious nonlocality can be seen, which

is corresponding to the physical significance of the Eringen’s model as when

ξ1 decreases, the nonlocal solution is dominated by the nonlocal phase in the

constitutive equation.

(2) When the value of characteristic length l increases, the nonlocal effect spreads

towards the core domain, and nonlocal solutions at geometrical boundaries

rise as well.

(3) Since no numerical integrals needed to be concerned in PCM, it saves more

CPU time than LIEM in addressing nonlocal problems.

(4) Meshless methods can be extended to solve nonlocal elastodynamic cases

easily.
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CHAPTER 7
LIEM for Nonlocal Elastodynamics

7.1 Introduction

Time-dependent problems are appealing but challenging in the course of research.

Two main kinds of methods are usually employed to solve elastodynamic cases

including the frequency-domain approach as well as the time-domain approach.

Frequency-domain formulations have been the subject of intense research work and

are mainly related to the Laplace transformed domain method. Problems are usu-

ally solved in the Laplace domain initially with proper transform parameters, and

then solutions in the real time-domain can be gained by taking advantage of the

inverse transformation procedure, such as Durbin’s [161], for Laplace transform.

While in the time-domain formulation, discretizations are carried out spatially and

temporally. Among others, the Houbolt method [162] has been widely used as the

time marching scheme in time-domain approaches. Simultaneously, the Newmark

method [163], which presents a good control of accuracy, has also been extensively

employed in FEM formulations to deal with dynamic cases with no need for domain

transformations.

Meshless methods were firstly applied by Liu and Belytschko [164] to address
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7.2. LIEM for Nonlocal Elastodynamics

dynamic problems in which the Element-Free Galerkin method was utilized. Be-

sides, global and local integral equations with MLS approximations are used to

solve dynamic problems in [165]. LIEM with the MLS approximation was applied

to both transient as well as steady-state elastodynamics, which were solved by the

Houbolt method and Laplace transformation approach, respectively [166]. More

recently, a modified MLPG method was proposed and employed to deal with elas-

todynamic problems in the time-domain by the Houbolt method [167]. Analytical

formulations of LIEM based on RBFs developed by Wen were applied to dynamic

fracture mechanics problems by use of the Laplace transform technique [168]. In

consideration of nonlocal dynamic problems, the finite integration method was ap-

plied to a nonlocal elastic bar subjected to dynamic loads in [169]. Even so, limited

work has been found on the application of meshless methods to nonlocal elastody-

namics.

In this chapter, analytical forms of LIEM based on RBF approximations are pre-

sented for nonlocal elastodynamic problems, which are treated both in the Laplace

transformed-domain and in the time-domain, respectively. The Newmark scheme

is implemented for the time marching in the time-domain technique, while the

Durbin’s inverse transformation is employed in the Laplace transform method. Two

examples are demonstrated, and numerical solutions from both approaches are com-

pared, showing reasonable agreement.

7.2 LIEM for Nonlocal Elastodynamics

Consider a linear elastic instance within a 2D domain Ω with boundary Γ as shown

in Figure 5.1. The governing equation of motion is

σij,j + fi = ρüi (7.1)
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7.2. LIEM for Nonlocal Elastodynamics

where ρ and üi are the mass density and the acceleration, respectively.

Two kinds of boundary conditions should be considered. For traction bound-

aries, we have

σijnj = t0i (7.2)

and for displacement boundaries, one has

ui = u0
i

(7.3)

The weak-form of the governing equation in (7.1) over a local integral domain

is in the form of

∫
Ωs

(σij,j + fi − ρüi)u∗i dΩ = 0 (7.4)

The above equation can be overwritten in the following symmetric weak-form by

making use of the divergence theorem as

∫
Γs

σijnju
∗
i dΓ−

∫
Ωs

(σiju
∗
i,j − fiu∗i + ρüiu

∗
i )dΩ = 0 (7.5)

Recalling that Γs = ΓD ∪ ΓT ∪ Ls, (7.5) can be written in the form of

∫
ΓD

σijnju
∗
i dΓ +

∫
ΓT

σijnju
∗
i dΓ +

∫
Ls

σijnju
∗
i dΓ

−
∫

Ωs

(σiju
∗
i,j − fiu∗i + ρüiu

∗
i )dΩ = 0

(7.6)

For the local boundary that has no intersection with the global boundary, (7.6) be-

comes

∫
Ωs

σiju
∗
i,jdΩ−

∫
Ls

tiu
∗
i dΓ =

∫
Ωs

(fi − ρüi)u∗i dΩ (7.7)
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However, if there is an intersection between the local boundary and the global

boundary, (7.6) may be written as

∫
Ωs

σiju
∗
i,jdΩ−

∫
Ls

tiu
∗
i dΓ−

∫
ΓD

tiu
∗
i dΓ =∫

ΓT

t0iu
∗
i dΓ +

∫
Ωs

(fi − ρüi)u∗i dΩ

(7.8)

A step function is employed as the test function u∗i in each integral domain

u∗i (x) =

 φi(x) at x ∈ (Ωs ∪ Γs)

0 at x /∈ Ωs

(7.9)

where φi(x) = 1.

Ignore body forces and the local integral equation in (7.5) and (7.8) can be

rewritten as

∫
Γs

σijnjdΓ =

∫
Ωs

ρüidΩ (7.10)

and

∫
Ls

tidΓ +

∫
ΓD

tidΓ =

∫
Ωs

ρüidΩ−
∫

ΓT

t0i dΓ (7.11)

The integral of stress components in (7.10) can be approximated by integral of

stresses over several straight lines that enclose the boundary as

∫
Γs

σijnjdΓ =
L∑
l=1

nlj

∫
Γl

σijdΓ (7.12)
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Therefore, recalling the nonlocal constitutive relationship in (6.2), (7.12) becomes

∫
Γs

σij(x)nj(x)dΓ(x)

= ξ1

L∑
l=1

nlj

∫
Γl

σ̄ij(x)dΓ(x) + ξ2

L∑
l=1

nlj∆l

∫
V

α(x, x′, l)σ̄ij(x′)dV (x′)
(7.13)

Substitute (7.13) into (7.10), one derives

ξ1

L∑
l=1

nlj

∫
Γl

σ̄ij(x)dΓ(x) + ξ2

L∑
l=1

nlj∆l

∫
V

α(x, x′, l)σ̄ij(x′)dV (x′) =

∫
Ωs

ρüidΩ

(7.14)

7.3 Time Marching Schemes

7.3.1 LIEM in Laplace Transform Domain

The transformation of a function f(t) in the real time-domain into the Laplace do-

main is defined as

f̂(p) =

∫ ∞
0

f(t)e−ptdt (7.15)

where p is the transformation parameter.

Transforming (7.14) into Laplace domain and one has

ξ1

L∑
l=1

nlj

∫
Γl

̂̄σij(x)dΓ(x) + ξ2

L∑
l=1

nlj∆l

∫
V

α(x, x′, l)̂̄σij(x′)dV (x′)

=

∫
Ωs

p2ρûidΩ

(7.16)
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Consider MQ RBF approximation schemes in Chapter 3, analytical forms of

LIEM in Laplace domain can be obtained as

ξ1

K∑
k=1

û(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am +

N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

ξ2

K′∑
k′=1

û(k′)

∫
V

[
L∑
l=1

∆l

(
nlxE

′φk′,x′ + nlyGφk′,y′
)
α(x, x′, l)

]
dV (x′)+

ξ1

K∑
k=1

v̂(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am +

N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v̂(k′)

∫
V

[
L∑
l=1

∆l

(
µnlxE

′φk′,y′ + nlyGφk′,x′
)
α(x, x′, l)

]
dV (x′) = I1

(7.17a)

ξ1

K∑
k=1

û(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmy

)
am +

N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

ξ2

K′∑
k′=1

û(k′)

∫
V

[
L∑
l=1

∆l

(
µnlyE

′φk′,x′ + nlxGφk′,y′
)
α(x, x′, l)

]
dV (x′)+

ξ1

K∑
k=1

v̂(k)

L∑
l=1

[
M∑
m=1

(
nlyE

′Rmy + nlxGRmx

)
am +

N∑
n=1

(
nlyE

′Pny + nlxGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v̂(k′)

∫
V

[
L∑
l=1

∆l

(
nlyE

′φk′,y′ + nlxGφk′,x′
)
α(x, x′, l)

]
dV (x′) = I2

(7.17b)

where the integral functions Ii =
∫

Ωs
p2ρûidΩ. When the area of the integral do-

main Ω is small, the integral functions can be approximated as

Ii = p2ρûiΩ (7.18)

the above approximation has been validated and reliable results have obtained in

[168].
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Thus, (7.17a) and (7.17b) can be modified into

ξ1

K∑
k=1

û(k)

L∑
l=1

[
M∑
m=1

(
nlxE

′Rmx + nlyGRmy

)
am +

N∑
n=1

(
nlxE

′Pnx + nlyGPny
)
bn

]
+

ξ2

K′∑
k′=1

û(k′)

∫
V

[
L∑
l=1

∆l

(
nlxE

′φk′,x′ + nlyGφk′,y′
)
α(x, x′, l)

]
dV (x′)− p2ρû(k)Ω+

ξ1

K∑
k=1

v̂(k)

L∑
l=1

[
M∑
m=1

(
µnlxE

′Rmy + nlyGRmx

)
am +

N∑
n=1

(
µnlxE

′Pny + nlyGPnx
)
bn

]
+

ξ2

K′∑
k′=1

v̂(k′)

∫
V

[
L∑
l=1

∆l

(
µnlxE

′φk′,y′ + nlyGφk′,x′
)
α(x, x′, l)

]
dV (x′) = 0

(7.19a)

ξ1

K∑
k=1

û(k)

L∑
l=1

[
M∑
m=1

(
µnlyE

′Rmx + nlxGRmy

)
am +

N∑
n=1

(
µnlyE

′Pnx + nlxGPny
)
bn

]
+

ξ2

K′∑
k′=1

û(k′)

∫
V

[
L∑
l=1

∆l

(
µnlyE

′φk′,x′ + nlxGφk′,y′
)
α(x, x′, l)

]
dV (x′)+

ξ1

K∑
k=1

v̂(k)
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(7.19b)

The domain integral in (7.19a) and (7.19b) can be treated by using the four-point

standard integral scheme. Then, the discretized system equations are derived in

Laplace domain for nonlocal elastodynamics based upon LIEM as
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(7.20b)

Boundary conditions for nodes located on the traction boundary should be in-

troduced as

∫
Γ−ΓT

t̂idΓ +

∫
ΓT

t̂0i dΓ = Ii for xk k = 1, 2, . . . ,MT (7.21)

While displacement boundary conditions can be imposed straightforward as

ûi(xk) = û0
i for xk k = 1, 2, . . . ,MD (7.22)
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Time-dependent solutions in the real time-domain can be obtained by the in-

verse transformation procedure. The Durbin’s [161] method is employed in the

form of

f(t) =
2eηt

T

[
−1

2
f̂(η) +

L∑
k=0

Re
{
f̂

(
η +

2kπ

T
i

)
epx

(
2kπt

T

)}]
(7.23)

in which f(pk) denotes the values in the Laplace domain for parameters pk = η +

2kπi/T , i =
√
−1. Free parameters η and T have a slight influence on the accuracy

of numerical results.

7.3.2 LIEM in Time-Domain

In order to solve nonlocal elastodynamic problems in the time-domain directly

without transformation, the Newmark method [163], which is a general step-by-step

approach of integration of the equations of motion in the time-domain technique, is

employed. It’s approximations are given as:

u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1 (7.24)

un+1 = un + ∆tu̇n + (
1

2
− β)∆t2ün + β∆t2ün+1 (7.25)

in which u̇ , ü and u represent the velocity, acceleration and displacement, re-

spectively. The subscript n represents the time tn = n∆t, and therefore, tn+1 =

(n + 1)∆t, where ∆t is the selected time step. Parameters γ and β are closely re-

lated to the stability and accuracy of the Newmark approach and some observations

have been found that if one takes γ =
1

2
and β =

1

6
, (7.24) and (7.25) correspond

to the linear acceleration method. However, for γ =
1

2
and β =

1

4
, (7.24) and

(7.25) correspond to the average acceleration method. Additionally, the method is
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unconditionally stable when 2β ≥ γ ≥ 1

2
.

u̇n+1 and ün+1 can be expressed in terms of un+1, un, u̇n and ün as

u̇n+1 =
γ

β∆t
(un+1 − un) +

β − γ
β

u̇n −
γ − 2β

2β
∆tün (7.26)

ün+1 =
1

β∆t2
(un+1 − un)− 1

β∆t
u̇n −

1− 2β

2β
ün (7.27)

The following equations can be derived based upon (7.14) by considering the

MQ RBF approximations as
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where the integral functions I ′i =
∫

Ωs
ρüidΩ.

The four-point standard integral scheme is used to carry out the domain integral

in (7.28a) and (7.28b), then a set of discretized equations can be derived as
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(7.29b)

Consider the Newmark scheme presented above, the following discrete equa-

tions can be derived
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where Ctd = −β∆t2

ρΩs

, and Ĩ ′i = ui + ∆tu̇i +
1− 2β

2
∆t2üi.

Boundary conditions can be imposed as

∫
Γ−ΓT

tidΓ +

∫
ΓT

t0i dΓ = I ′i for xk k = 1, 2, . . . ,MT (7.31)

and

ui(xk) = u0
i for xk k = 1, 2, . . . ,MD (7.32)
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7.4 Numerical Examples

In this section, LIEM is employed to address 2D nonlocal elastodynamic problems

in Laplace transform domain and in time domain, respectively. Free parameters in

LIEM are taken as: c0 = ∆min, D/∆min = 0.5, L = 8. And the total number of

nodes involved in the local support domain is taken as K0 = 12 for all examples

followed.

7.4.1 A Square Panel Subjected to Dynamic Load

Consider a square panel of side a = 1.0 subjected to a Heaviside load σ0H(t)

on top, and the plate is fixed along the edge at x2 = 0 as shown in Figure 7.1(a) ,

whereH(t) is the Heaviside step function. And the regularly distributed collocation

points (11 × 11) are presented in Figure 7.1(b). Young’s modulus is one unit and

Poisson’s ration is taken as zero in order to compare with the analytical solutions

when portion factor ξ1 = 1.0.

(a) (b)

Figure 7.1: A square panel subjected to a Heaviside load: (a) geometry; (b) node distribu-
tions.
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The sample number in Laplace domain is selected as 51, free parameters ηT = 5

and T/t0 = 20, in which t0 = b/c1 represents the unit time, b is the specified length

and c1 denotes the longitudinal wave speed. While in the Newmark approximations,

time step ∆t = 0.1 and free parameters γ = 0.5, β = 0.25.
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Figure 7.2: Normalized displacement u2/b for point A against normalized time c1t/b when
ξ1 = 1.0.
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Figure 7.3: Normalized displacement u2/b for point B against normalized time c1t/b when
ξ1 = 1.0.
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Figure 7.4: Normalized stress σ22/b for point B against normalized time c1t/b when ξ1 =
1.0.
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Figure 7.5: Normalized stress σ22/b for point C against normalized time c1t/b when ξ1 =
1.0.
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Figure 7.2 and Figure 7.3 show the time-dependent displacements of point A

and B when ξ1 = 1.0. While the dynamic stresses with respect to ξ1 = 1.0 of

point B and C are plotted in Figure 7.4 and Figure 7.5. Analytical solutions are

plotted as well for comparison purpose. As expected, dynamic numerical solutions

obtained from LIEM implemented in the time domain and in the Laplace transform

domain have achieved reasonable agreement with analytical solutions. However,

fluctuations can be seen in stress solutions.

In addition, the normalized nonlocal dynamic displacements on point A and

B with the characteristic length l = 0.1 and l = 0.2 for different portion factors

(ξ1 = 0.5 / ξ1 = 0.8) are plotted in Figure 7.6 to Figure 7.11, which show that the

period of oscillation increases when the portion factor ξ1 decreases or the character-

istic length l increases, and nonlocal dynamic solutions derive from both methods

coincide with each other. Figure 7.12 to Figure 7.17 present the normalized nonlo-

cal time dependent stress distributions of point B and C, similar conclusions can be

drawn when the value of the characteristic length or portion factor varies.
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Figure 7.6: Normalized displacement u2/b for point A against normalized time c1t/b when
ξ1 = 0.5, l = 0.1.
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Figure 7.7: Normalized displacement u2/b for point A against normalized time c1t/b when
ξ1 = 0.5, l = 0.2.
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Figure 7.8: Normalized displacement u2/b for point A against normalized time c1t/b when
ξ1 = 0.8, l = 0.2.
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Figure 7.9: Normalized displacement u2/b for point B against normalized time c1t/b when
ξ1 = 0.5, l = 0.1.
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Figure 7.10: Normalized displacement u2/b for point B against normalized time c1t/b
when ξ1 = 0.5, l = 0.2.
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Figure 7.11: Normalized displacement u2/b for point B against normalized time c1t/b
when ξ1 = 0.8, l = 0.2.
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Figure 7.12: Normalized stress σ22/b for point B against normalized time c1t/b when ξ1 =
0.5, l = 0.1.
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Figure 7.13: Normalized stress σ22/b for point B against normalized time c1t/b when ξ1 =
0.5, l = 0.2.
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Figure 7.14: Normalized stress σ22/b for point B against normalized time c1t/b when ξ1 =
0.8, l = 0.2.
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Figure 7.15: Normalized stress σ22/b for point C against normalized time c1t/b when ξ1 =
0.5, l = 0.1.
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Figure 7.16: Normalized stress σ22/b for point C against normalized time c1t/b when ξ1 =
0.5, l = 0.2.
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Figure 7.17: Normalized stress σ22/b for point C against normalized time c1t/b when ξ1 =
0.8, l = 0.2.

7.4.2 A Ring under Internal Dynamic Pressure

In order to illustrate the application of LIEM embedded with Laplace transform

method or time-domain technique to general nonlocal dynamic problems, a ring

under an internal dynamic pressure is analysed as shown in Figure 7.18(a). Young’s

modulus E = 1.0, Poisson’s ratio µ = 0.3 and dimensions a = 1cm, b = 2cm.

Due to the symmetry, only one-quarter of the ring is considered in this example.

However, in the domain integrals in the governing equation, contributions of strains

from the whole ring must be taken into account as presented in Figure 7.18(b).

The total number of nodes and background grids are selected as 989 and 40 ×

40, respectively. The sample number in Laplace domain is selected as 51, free

parameters ηT = 5 and T/t0 = 25, while in the Newmark approximations, time

step ∆t = 0.2, and free parameters are taken as: γ = 0.5, β = 0.25.

The normalized dynamic tangential stresses at point A and B are plotted in

Figure 7.19 and Figure 7.20 with the portion factor ξ1 = 1.0. ABAQUS results are

used for comparisons and good agreement have been achieved, which validate the
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accuracy of both technique to general elastodynamic problems.
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Figure 7.18: A ring under an internal dynamic pressure: (a) geometry; (b) node distribu-
tions.
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Figure 7.19: Normalized tangential stress σθ/b for point A against normalized time c1t/b
when ξ1 = 1.0.
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Figure 7.20: Normalized tangential stress σθ/b for point B against normalized time c1t/b
when ξ1 = 1.0.
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Figure 7.21: Normalized tangential stress σθ/b for point A against normalized time c1t/b
when ξ1 = 0.5, l = 0.1.
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Figure 7.22: Normalized tangential stress σθ/b for point A against normalized time c1t/b
when ξ1 = 0.5, l = 0.2.
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Figure 7.23: Normalized tangential stress σθ/b for point A against normalized time c1t/b
when ξ1 = 0.8, l = 0.2.
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Figure 7.24: Normalized tangential stress σθ/b for point B against normalized time c1t/b
when ξ1 = 0.5, l = 0.1.
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Figure 7.25: Normalized tangential stress σθ/b for point B against normalized time c1t/b
when ξ1 = 0.5, l = 0.2.
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Figure 7.26: Normalized tangential stress σθ/b for point B against normalized time c1t/b
when ξ1 = 0.8, l = 0.2.

Besides, the normalized nonlocal dynamic tangential stresses on point A and

B with the characteristic length l = 0.1 and l = 0.2 for different portion factors

(ξ1 = 0.5 / ξ1 = 0.8) are plotted in Figure 7.21 to Figure 7.26. It can be seen

that the oscillation period go up when the value of l increases. And the nonlocal

solutions become closed to the classical results when ξ1 rises.

7.5 Conclusions

In this chapter, LIEM is employed to deal with 2D nonlocal elastodynamic prob-

lems both in the time domain and in the Laplace transformed domain. Consider a lo-

cal integral domain and the radial basis function approximation, analytical forms of

LIEM with respect to nonlocal elastodynamics are obtained. The Newmark method

is selected as the approximation scheme in the time-domain method while in the

Laplace transform technique, the Durbin’s inversion method is adopted. Two nu-

merical examples are carried out, and it is found that the period of oscillation in-

creases when the portion factor ξ1 decreases or the characteristic length l increases.
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Besides, nonlocal solutions are closer to classical results when the value of ξ1 rises,

indicating that the nonlocality is less evident when the local phase becomes promi-

nent. Numerical solutions demonstrated that both methods are stable, convergent

and accurate when appropriate parameters are taken. Therefore, the aforementioned

methods are efficient to solve nonlocal elasticity subjected to dynamic loads, and

can be used to validate other numerical algorithms for nonlocal elastic analysis.
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CHAPTER 8
Conclusions

8.1 Introduction

This last chapter concludes the thesis and suggests the possible direction for future

work. The author’s publications during the doctoral study are also listed.

8.2 Summary of Thesis

The research work reported in this thesis mainly focuses on the investigation of

meshfree numerical methods to nonlocal elasticity. Specifically, nonlocal elasto-

static problems are addressed by the meshfree strong-form method and the mesh-

free weak-form method, and the nonlocal elastodynamic problems are solved by

the meshfree weak-form method.

In Chapter 3, the construction of meshless shape function by means of using

PIM and RBF are introduced, and then RBFs are augmented by polynomials to form

the RPIM shape functions. Some of the properties with respect to different types

of meshless shape functions including continuity and consistency are discussed.

RPIM shape functions are implemented in both 1D and 2D problem domains, and
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it is found that polynomial terms only slightly affect the accuracy of the approxima-

tion. Besides, RPIM shape functions satisfy the partition of unity and possess the

Kronecker delta function property within their support domains. Interpolation er-

rors of different RPIM shape functions are examined, and it can be concluded that

the free parameter c0 in RBFs has an insignificant effect on numerical solutions.

And the accuracy of the approximated function itself is higher than that of deriva-

tives. Different RPIM shape functions are convergent if suitable parameters and

field node densities are chosen. Moreover, when RPIM shape functions are locally

supported, their sensitivity, accuracy and convergence improve evidently. However,

the total number of field nodes located within the local support domain is supposed

to purposefully selected.

In Chapter 4, formulations of Point Collocation Method (PCM), which is a

strong-form meshless method, are presented for 1D and 2D solid mechanics prob-

lems. RBFs approximations are employed and governing equations are discretized

directly at field nodes by certain forms of collocations. A 1D bar is set up and PCM

is implemented to find out solutions numerically. It is found that duo to entire field

nodes located in the problem domain are employed to construct shape functions, ap-

proximation schemes based upon the global support domain are time-consuming.

Besides, it results in a set of fully populated system equations and therefore, it takes

more time to solve the discretized algebraic equations. On the contrary, locally sup-

ported approximation schemes lead to a sparse system matrix, which significantly

reduce the computational efforts. Different kinds of RBF approximations in PCM,

i.e. EXP-RBF and MQ-RBF are examined as well. It shows that globally sup-

ported EXP-RBF in PCM gives rise to singularity and is sensitive to the varying

of the free parameter. However, aforementioned issues can be solved easily by us-

ing local support domains when carrying out the approximations. What is more,

MQ-RBF in PCM is always providing decent solutions in spite of local or global
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support domains employed and changes of the free parameter, which indicates that

MQ-RBF are numerically more stable and reliable. Finally, three 2D numerical ex-

amples are carried out to investigate the application of PCM to general problems.

Abaqus contour plots and solutions are reported as well for comparison purposes.

The convenience, accuracy and computational efficiency of PCM are demonstrated.

In Chapter 5, mathematical formulations of meshless Local Integral Equation

Method (LIEM) based upon the local weak-form are presented for 2D isotropic

solids. By taking advantage of the MQ RBF approximation scheme, analytical so-

lutions for domain integrals in LIEM are derived. Three numerical examples are

carried out to investigate the accuracy, convergence and the influence of related

parameters of LIEM. It shows that duo to the employment of closed forms of lo-

cal integrals, computational efficiency of LIEM improves obviously. Additionally,

observations with respect to parameters including the number of straight lines that

enclose the local integral domain as well as the integral radius indicate that they

have slight effects on LIEM solutions. And the convergence study demonstrates

that LIEM solutions converge rapidly when the densities of field nodes within the

problem domain goes up and only a little time is needed for the coefficient matrix

calculation. However, a large amount of time has been spent on solving the dis-

cretized system equations when the density of field nodes increases. Finally, com-

parisons have been made with Abaqus and PCM results, showing good agreements

and validating the accuracy of LIEM solutions.

In Chapter 6, PCM and LIEM are applied to nonlocal elastostatics and referred

to as NL-PCM and NL-LIEM, respectively. Firstly, the Eringen’s model that char-

acterized by an attenuation function is introduced. The equilibrium equation is

approximated by means of using RPIM shape functions, and a set of discretized

system equations are derived by directly collocating at field nodes in NL-PCM. In

addition, background grids are introduced to carry out domain integrals in nonlo-
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cal constitutive relations, and a four-point standard integral scheme is made use

of. While in NL-LIEM, nonlocal constitutive relations are substituted into local

boundary integral equations for each local domain and the final system equations

are obtained by taking advantages of RBF approximations as well as the four-point

standard integral scheme. Then, three illustrated examples are conducted to study

the application of NL-PCM and NL-LIEM to 2D nonlocal elastostatic problems.

The influence of characteristic length and portion factor are analyzed, and it can

be concluded that the nonlocal effect spreads towards the core domain when the

value of characteristic length goes up. In the meanwhile, nonlocal solutions at ge-

ometrical boundaries increase. Besides, the lower the value of portion factor ξ1

is, the more nonlocality are shown, which accords with the physical interpretation

of the Eringen’s model. Comparisons among solutions from NL-PCM, NL-LIEM

and references show good agreements, validating the accuracy and effectiveness

of meshless methods for solving static nonlocal problems. But, NL-PCM is more

computational efficient because of its collocation nature.

In Chapter 7, LIEM is employed to solve nonlocal elastodynamic problems. By

use of the divergence theorem and the step function, the weak-form of the govern-

ing equation of motion with respect to nonlocal constitutive relations are obtained.

Time marching is carried out both in the Laplace transform domain and the time

domain. The Durbin’s inverse transformation method is employed in the Laplace

transform method to obtain numerical results in the real time domain. While in the

time-domain technique, the Newmark scheme is adopted without domain transfor-

mations. Domain integrals in both approaches are treated by the four-point stan-

dard integral scheme. Then, two 2D nonlocal elastodynamic examples are pre-

sented, and the influence of characteristic length and portion factor on dynamic

cases are studied as well. Numerical solutions indicate that the period of oscillation

decreases when the portion factor ξ1 increases or the characteristic length l drops.
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Besides, nonlocal solutions tend to classical ones when the value of ξ1 rises duo to

the fact that nonlocal effects are less evident when the local phase in the constitu-

tive relation becomes prominent. Comparisons with classical solutions show good

agreement and nonlocal solutions of both methods coincide with each other, which

demonstrate that both approaches are accurate, stable and reliable when appropriate

parameters are chosen.

8.3 Future Work

The research exhibited in this thesis can be extended to the following aspects:

• The first is the follow-up work related to nonlocal problems.

1. Only some basic numerical examples are presented in this thesis. There-

fore, meshless methods can be extended to deal with more specific is-

sues characterized by nonlocality.

2. This thesis mainly focuses on 2D nonlocal problems. However, it can

be extended to 3D nonlocal cases without much difficulties.

3. Abaqus provides extensive user subroutines that allow users to adapt

it to their particular analysis requirements. As a consequence, it can

be used for comparisons if an Abaqus subroutine related to nonlocal

constitutive is developed.

4. Nonlocal numerical results at geometrical boundaries presented in this

thesis show nonhomogeneous fields. It has been pointed out in the con-

text of damage that nonlocal formulations of integral type are lack of

symmetry since nonlocal interactions are changing nearby the bound-

aries. Some remedies related to the modification of the nonlocal kernel
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have been developed with respect to damage model based on physical

considerations, which can be used for reference and introduced to non-

local elasticity.

5. The time-domain approach is a step-by-step solution technique, and can

be easily applied to evaluate dynamic responses of nonlocal problems

with physical and geometrical nonlinearities.

6. Extend nonlocal theories to size-dependent materials such as nanoplates

and nanobeams, and then investigate their nonlocal properties.

• The second is to apply meshless methods to other new areas of research.

1. Meshless methods are effective ways to avoid mesh distortions. Thus,

they can be applied to large deformation analysis and metal forming

process simulations.

2. Meshless methods are able to effectively predict the crack extension

due to the numerical difficulties resulting from mesh reconstructions

are absent.

3. Applications of meshless approached to other research fields such as the

heat transfer problems, fluid problems and even electromagnetic prob-

lems deserve beneficial attempts.

8.4 List of Publications

The author’s publications during the doctoral study are listed below:

1. XJ Huang and PH Wen, Meshless local integral equation method for two-

dimensional nonlocal elastodynamic problems. The 10th International Con-
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ference and Workshop on Numerical Simulation of 3D Sheet Metal Forming

Processes, Bristol, UK, 4-9 September 2016. (Oral presentation)

2. PH Wen, XJ Huang and MH Aliabadi, Meshless approaches for fracture

with nonlocal elasticity. Key Engineering Materials, 627, 357-360 (2015).

3. PH Wen, XJ Huang and MH Aliabadi, High accurate solutions of nonlocal

elasticity for sphere. Key Engineering Materials, 577-578, 509-512 (2014).

4. PH Wen, XJ Huang and MH Aliabadi, Fracture with nonlocal elasticity: an-

alytical and meshless approaches. European Journal of Computational Me-

chanics, 23, 217-234 (2014).

5. PH Wen, XJ Huang and MH Aliabadi, Two Dimensional Nonlocal Elasticity

Analysis by Local Integral Equation Method. Computer Modeling in Engi-

neering and Science, 96(3), 199-225 (2013).
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[99] Eugenio Oñate, F Perazzo, and J Miquel. A finite point method for elasticity

problems. Computers & Structures, 79(22):2151–2163, 2001.
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