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Abstract

In a generalized linear mixed model (GLMM), the random effects are typ-

ically uncorrelated and assumed to follow a normal distribution. However,

findings from recent studies on how the misspecification of the random effects

distribution affects the estimated model parameters are inconclusive. In the

thesis, we extend the randomization approach for deriving linear models to

the GLMM framework. Based on this approach, we develop an algorithm for

estimating the model parameters of the randomization-based GLMM (RB-

GLMM) for the completely randomized design (CRD) which does not require

normally distributed random effects. Instead, the discrete uniform distribution

on the symmetric group of permutations is used for the random effects. Our

simulation results suggest that the randomization-based algorithm may be an

alternative when the assumption of normality is violated.

In the second part of the thesis, we consider an RB-GLMM for the randomized

complete block design (RCBD) with random block effects. We investigate the

effect of misspecification of the correlation structure and of the random effects

distribution via simulation studies. In the simulation, we use the variance-

covariance matrices derived from the randomization approach. The misspec-

ified model with uncorrelated random effects is fitted to data generated from

the model with correlated random effects. We also fit the model with normally

distributed random effects to data simulated from models with different ran-

dom effects distributions. The simulation results show that misspecification

of both the correlation structure and of the random effects distribution has

hardly any effect on the estimates of the fixed effects parameters. However,

the estimated variance components are frequently severely biased and standard

errors of these estimates are substantially higher.
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Chapter 1

Introduction

1.1 Motivation

Generalized linear models (GLMs) are an extension of classical linear models

and are widely used for analyzing categorical data, such as binary responses or

counts. Generalized linear mixed models (GLMMs) generalize GLMs further

by introducing random effects. In GLMMs, the random effects are often used

to accommodate correlation among the observations. Such data are common

in applied fields such as biology, medical or biomedical studies. The random

effects are also used in GLMMs to model count data with overdispersion [see

Rabe-Hesketh and Skrondal (2012, p.706) and Stroup (2012, p.340)]. Overdis-

persion usually occurs in Poisson models when the variance of the responses

is greater than the mean and is caused by positive correlation between counts

or responses [Hilbe (2011, p.141) and Stroup (2012, p. 340)].

The random effects in a GLMM are usually assumed to have a normal dis-

tribution. This is mainly done for computational simplicity in the analysis

for estimating the model parameters. However, inferences that are based on

the normality assumption may be incorrect if the actual distribution of the

random effects is not normal.

Recently it has been investigated how misspecification of the random effects

distribution affects the estimates of the model parameters. The findings from

misspecification studies however seem to be inconclusive. Some studies report

1



that misspecification has a strong effect (Litière et al., 2007, 2008) while oth-

ers conclude that it has very little effect (Neuhaus et al., 2013, McCulloch and

Neuhaus, 2011). This motivates us to develop an alternative approach where

no parametric distribution for the random effects in a GLMM is assumed. In-

stead, we derive GLMMs, moments of random effects and likelihood functions

by using the randomization of the underlying design as a starting point. In

particular, we consider the completely randomized design (CRD) and the ran-

domized complete block design (RCBD).

More precisely, we extend the randomization approach of Kempthorne (1955)

for deriving linear models to GLMMs. We derive the moments of the random

effects, and then construct the likelihood function of the derived GLMM from

the randomization. Based on this approach, we develop an algorithm for esti-

mating the model parameters and compare via simulation studies the results

obtained from our algorithm with a standard GLMM which assumes normal-

ity of the random effects distribution. Our approach is semi-parametric in the

sense that for the given realization of the random effects the conditional distri-

bution of the responses given the random effects is parametric and a member

of the exponential family. Assuming a parametric distribution for the random

effects is however not required.

In the next section, we begin by describing some background concepts, in

particular model equations of linear models, GLMs and GLMMs. These are

required to extend the randomization ideas for deriving linear models to the

GLMM framework.

1.2 GLMs and GLMMs

A classical linear model assumes that the n× 1 vector Y of responses can be

expressed as

Y = Xβ + ε,

where X is the n × p design matrix, β is a p × 1 vector of unknown param-

eters and ε is an n × 1 vector of random errors. The components of ε are

uncorrelated random variables with mean zero and constant variance σ2. In

addition, for inferential purposes it is usually assumed that the components of

2



ε, or equivalently the components of Y , are normally distributed. The corre-

sponding linear models are also referred to as normal linear models.

GLMs (McCullagh and Nelder, 1989, p.26-28) generalize the normal linear

model in two ways:

(i) The response variables Y1, . . . , Yn can have any distribution from the

exponential family. The probability density function (pdf) or probability

mass function (pmf) of the response variable Yi can then be expressed

as:

f(yi) = exp

[
yiθ − b(θ)
a(φ)

+ c(yi, φ)

]
,

where a(·), b(·) and c(·) are some known functions. Moreover, θ and φ

denote the canonical and the dispersion parameters, respectively.

(ii) A sufficiently smooth link function g : R → R is used to transform the

expected response E(Yi) for i = 1, . . . , n such that

g(E(Yi)) = ηi = x>i β,

where xi denotes a p×1 column vector of (coded) covariates, ηi is called

the linear predictor and β is again a vector of unknown model parame-

ters. In matrix notation, this relationship can be expressed as

g(E(Y )) = η = Xβ, (1.1)

where E(Y ) = (E(Y1), . . . , E(Yn))> is the expectation of the response

vector Y = (Y1, . . . , Yn)>. Also g(E(Y )) and η are vectors with com-

ponents g(E(Yi)) and ηi respectively.

GLMMs are an extension of GLMs where random effects are introduced into

the linear predictor. The conditional distribution with conditional pdf f(yi|u),

of the response variable Yi given the q×1 vector of random effects u is consid-

ered and assumed to be a member of the exponential family. Similar to GLMs

it is then assumed that (McCulloch et al., 2008, p.189-190)

g(E(Y |u)) = Xβ + Zu, (1.2)

where now E(Y |u) = (E(Y1|u), . . . , E(Yn|u))> is the conditional expectation

3



and g(E(Y |u)) has components g(E(Yi|u)). As before g(·) is the link function

and Z is an n× q model matrix for the random effects. It is assumed that the

expectation is equal to E(u) = 0 and that the variance-covariance matrix is

equal to V (u) = Σ. In the simplest case, Σ = σ2Iq, where Iq is the identity

matrix of order q. Moreover, it is typically assumed that the vector u has a

multivariate normal distribution, that is, u ∼ Nq(0,Σ).

1.3 Review of Literature

There are different aspects of misspecification in GLMMs. For instance, Mc-

Culloch et al. (2008) consider (in Chapter 12) departures from assumptions

such as misspecification of the link function, omission of important covariates,

misspecification of binary responses and misspecification of the random effects

distribution. However, we focus in the thesis on two aspects in particular; one

is misspecification of the distribution for the random effects only, e.g. normal

distribution rather than misspecified link function in GLMMs, and the other

is correlated random effects. In this section, we review articles particularly

related to the misspecification of the random effects distribution in GLMMs.

We also review a number of articles on correlated random effects in GLMMs,

as will be the case in our randomization approach.

1.3.1 Misspecification in GLMMs

Recently there has been interest in the extent to which estimated GLMM pa-

rameters which are obtained under the normality assumption are, for example,

biased or less precise if the distribution of the random effects is not normal. To

this end, simulation studies have been performed which have lead to conflicting

conclusions. First we summarize the studies which found that misspecification

has an effect and then review those which claim the contrary.

Heagerty and Kurland (2001) considered a mixed effects logistic regression

model and calculated the asymptotic bias of the maximum likelihood estimates

(MLEs) of the parameters for different situations with non-normal random ef-

fects distributions. They concluded that the misspecification of the random

effects distribution can lead to a considerable amount of bias in the maximum
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likelihood estimates of the fixed effects parameters and variance components.

Likewise, Agresti et al. (2004) investigated some examples of misspecified ran-

dom effects distributions for GLMMs by considering logistic regression models

for proportions and log-odds ratios as well as a frailty model for survival anal-

ysis. For the logistic regression models the true random effects distributions

considered in their simulation studies were normal, uniform or exponential,

whereas for the frailty model gamma and uniform distributions were used. In

order to investigate the effect of misspecification of the random effects distri-

bution, the data were analyzed under the assumption that the random effects

in the logistic regression models had a normal distribution while for the frailty

model a gamma distribution for the random effects was assumed. They found

that the MLEs of the fixed effects parameters were biased in both scenarios

due to the misspecified random effects distributions.

Litière et al. (2007) used a logistic regression random-intercept model in sim-

ulation studies to investigate the type I and type II errors associated with the

Wald test for the mean structure when the true random effects distributions

are not correctly specified. In this framework, data were generated by con-

sidering the true random effects as having normal, power function, discrete or

mixture distributions. The model was fitted by assuming normal distributions

for the random effects. They found that the type I and type II errors were

severely affected and, depending on the distribution of the random effects, the

power of the tests was either increased or decreased.

Continuing this line of research, Litière et al. (2008) performed further sim-

ulation studies by considering normal, uniform, exponential, chi-square, log-

normal, power function, discrete, symmetric and asymmetric mixtures of two

normals as the true random effects distributions in order to examine the im-

pact of misspecification on the estimation procedures and hypothesis tests in

GLMMs. They found that the MLEs of the fixed effects parameters were not

consistent when incorrect assumptions about the random effects distributions

were made. Also, the estimates of variance components were found to be

severely biased. Moreover, the power of tests and type I error rates associated

with Wald tests were observed to be seriously affected and these effects could

become more serious in the presence of more than one random effect in the
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model.

Different conclusions emerge from some other misspecification studies. Neuhaus

et al. (2011) considered a logistic regression random-intercept model where

normal and power function were used as the true random effects distributions,

whereas for the analysis normally distributed random effects were assumed.

They found only slightly increased type II error rates of the Wald test in their

simulation studies that could be attributed to the misspecification of the ran-

dom effects distribution. They also used a logistic regression random-intercept

and slope model by considering the multivariate normal and the symmetric

mixture of two multivariate normals as the true random effects distributions,

whereas the model was fitted by assuming the normal distribution for the

random effects in the analysis. They found that most of the estimated fixed

effects parameters are slightly biased due to misspecification of the random

effects distribution. They also observed that the estimates of variance compo-

nents may be biased.

McCulloch and Neuhaus (2011) used maximum likelihood estimation in GLMMs

to investigate the effect of misspecification of the random effects distribu-

tions for logistic regression models. They considered normal and a mixture

of bivariate-normals as the true random effects distributions for their simula-

tion studies while the analysis was performed by assuming a bivariate normal

distribution for the random effects. They found that the estimates of the fixed

effects parameters were approximately unbiased. The findings contradict to

much of the previous literature (e.g., Heagerty and Kurland (2001), Litière

et al. (2008) and Agresti et al. (2004)). McCulloch and Neuhaus (2011) ar-

gued that the contradiction is due to the fact that results for the non-clustered

data situation are incorrectly interpreted as relevant to the cluster data set-

ting. Also Neuhaus et al. (2011) replicates the simulation study of Litière et al.

(2007), but they got different results. They also observed that the estimate of

the intercept may be biased when the distribution of the random intercept is

not correctly specified.

Further simulation studies for generalized linear mixed models have been re-

ported by Neuhaus et al. (2013). They generated data considering logistic and

Poisson regression models with random intercepts and slopes. Some bivariate
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distributions, namely, t, exponential, log–normal and Tukey, were considered

as the true random effects distributions. The data were analyzed assuming a

bivariate normal distribution for the random intercepts and slopes i.e., a mis-

specified random effects distribution. The authors observed little bias in the

estimates of the fixed effects parameters. They also observed that a misspeci-

fied random effects distribution can bias estimates of variance components in

both logistic and Poisson regression models. The key results of the misspeci-

fication studies are summarized in Table 1.1.

As a consequence of the misspecification of the random effects distribution,

usually assumed to be a normal in a GLMM (see McCulloch et al. (2008,

p.299-301)), a number of authors suggest using the nonparametric maximum

likelihood approach for estimating the model parameters. To implement this

approach several methods have been proposed (e.g., see Butler et al. (1997),

Wang (2007), Laird (1978), Aitkin (1999) and Agresti et al. (2004)) where

a normality assumption for the random effects distribution is not required.

Butler et al. (1997) suggested nonparametric mixing distribution of the ran-

dom effects for analyzing the repeated binary measures. Wang (2007) pro-

posed an algorithm for the computation of the nonparametric maximum like-

lihood estimates considering a mixing distribution function of the random ef-

fects. Laird (1978) proposed also a mixing distribution function in the non-

parametric maximum likelihood estimation for the incomplete data problems.

Aitkin (1999) described an expectation maximization (EM) algorithm for non-

parametric maximum likelihood estimation in GLMs with variance component

structure. Agresti et al. (2004) applied this approach in their simulation study

for estimating the model parameters in a GLMM. Moreover, Piepho and Mc-

Culloch (2004) proposed the Johnson family of distributions and Magder and

Zeger (1996) considered mixtures of normal densities for the random effects

distribution. However, these methods are not widely used in data analysis as

the distributions are usually highly parameterized. As a result these methods

have not been implemented in mainstream statistical packages.

1.3.2 Correlated Random Effects

In standard GLMMs, random effects are usually assumed to be uncorrelated.

However, there is some literature where random effects are correlated. Work

related to correlated random effects can be found in Chapter 8 of Lee et al.
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(2006). They consider hierarchical generalized linear models (HGLMs) with

correlated random effects. They also present some examples of twin and family

data in Section 8.7, where the random effects are correlated. In the thesis, we

consider HGLMs because the existing software packages for HGLMs have bet-

ter support for correlated random effects. In addition, Stroup (2012) describes

the close linkage between design of experiments and statistical modelling in

several chapters of his book. In particular, correlated random errors arising

from repeated measures are described in Chapters 14 and 15.

Moreover, in the literature there are at least two applications of GLMMs,

equivalently hierarchical generalized linear models (HGLMs), with correlated

random effects by Lee and Lee (2012). They investigate the performance of

the hierarchical likelihood (h-likelihood) method for HGLMs with correlated

random effects via a simulation study and apply their method to real data

on seed germination and lip cancer. They apply a binomial-beta HGLM to

the seed germination data set where the response distribution is binomial and

the correlated random effects are assumed to have a Beta distribution. They

also apply a Poisson HGLM with correlated random effects to the lip cancer

data, considering the response distribution to be Poisson and using a Markov

random field model for the random effects.

There is also an application of HGLMs with correlated random effects in the

field of genetics by Noh et al. (2006). They consider logistic regression mixed

models with correlated random effects assumed to follow the normal distri-

bution. They use eight explanatory variables and four random effects for the

analysis of preeclampsia data.

Moreover, some recent studies focus on the linkage between the design of ex-

periments and statistical modelling, in particular in GLMs and GLMMs. For

example, Woods and Van de Ven (2011) considered GLMs (non-normal re-

sponses) and blocked designs for experiments, while Waite and Woods (2015)

looked at GLMMs for blocked experiments with random block effects. Similar

work related to GLMMs can also be found in Stroup (2012).
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1.4 Randomization Approach

The randomization approach for deriving linear models from the design was

introduced by Kempthorne (1955). This approach is also summarized in Chap-

ters 6 and 7 of Hinkelmann and Kempthorne (2008) for the CRD and RCBD

respectively. Kempthorne (1955) used the assumption of unit-treatment addi-

tivity where the responses depend on contributions from units and treatments

to derive linear models. We adapt this idea to the linear predictor of a GLM.

The randomization of units is then modelled in order to derive GLMMs. The

randomization ideas for both the CRD and RCBD are described in the follow-

ing sections.

1.4.1 Randomization in the CRD

A CRD is a design in which the selected treatments are assigned or allocated to

the experimental units completely at random. This is the simplest design where

we are interested in comparing the treatments in situations with homogeneous

experimental units. Randomization is the process of allocating the treatments

to the experimental units completely by a chance mechanism. Kempthorne

(1955) described this randomization process by using random numbers and

expressed it mathematically with design random variables (Hinkelmann and

Kempthorne, 2008, p.154-155). More precisely, for t treatments, each of which

is replicated r times, and n = tr experimental units, a random sequence of

the numbers 1, . . . , n is generated. Then, the t treatments are allocated to the

randomized units such that the first set of r units receive the first treatment

and the second set of r units receive the second treatment, and so on.

An equivalent way to achieve this randomization is by randomly permuting the

units and then writing down the assignment of treatments to the randomized

units in a systematic way. For example, suppose there are six units u1, u2, u3,

u4, u5, u6, and three equally replicated treatments so that t = 3 and r = 2.

After permuting the units, suppose the order of the units is u3, u6, u5, u1, u2,

u4. We then relabel the units as ũ1 = u3, ũ2 = u6, ũ3 = u5, ũ4 = u1, ũ5 = u2

and ũ6 = u4. In general, ũk = uπ(k), where π is a randomly chosen permutation

of the set {1, 2, 3, 4, 5, 6}. That is π ∈ S6, where S6 is the symmetric group of

order 6. In our example, the permutation π maps the set {1, 2, 3, 4, 5, 6} onto

10



itself as follows

1 7→ 3, 2 7→ 6, 3 7→ 5, 4 7→ 1, 5 7→ 2, 6 7→ 4

and the randomization of units is done by using a randomly selected element π

of the symmetric group S6. A description of the symmetric group Sn of n units

is given in the appendix (see Section A.1.1). Treatments are then assigned to

the randomized units ũk, for k = 1, . . . , 6, systematically such that ũ1 and ũ2

receive treatment 1; ũ3 and ũ4 receive treatment 2; and so on.

Formally, for general values of r and t, and hence n = tr, the randomization of

units in a CRD is modelled by randomly choosing a permutation π from the

symmetric group Sn. As will be explained in Section 2.1, by assuming unit-

treatment additivity on the scale of the linear predictor of a given GLM, it

can then be shown that the randomization gives rise to a random effect in the

linear predictor. The model thus becomes a GLMM. Conditionally, the linear

predictor of this model can be represented exactly as in (1.2). This is the

generalization of the randomization-based linear model of Hinkelmann and

Kempthorne (2008, p.159) to a randomization-based GLMM (RB-GLMM).

The moments of the random effects are also derived from the randomization

and it is found that the random effects are correlated. More precisely, there is

an exchangeable (i.e., compound symmetric) correlation structure among the

random effects.

GLMMs for the CRD, in which the variance-covariance matrix of the random

effects has the same form as in the RB-GLMM, but where the random effects

are assumed to have a normal distribution, have been considered in some appli-

cations. Lee et al. (2006, p.256) use this model to analyze family data where

the correlation comes from genetic and common family-environment effects.

This model is also considered in Rabe-Hesketh and Skrondal (2012, p.706)

and can be applied for modelling count data with overdispersion. A model

with correlated random effects is applied in genetic epidemiology and animal

breeding (Lee et al., 2006, p.251). For example, Wong (personal communica-

tion) obtained a real data set from the field of animal breeding and was inter-

ested in applying a GLMM with the same correlation structure for the random

effects as in the randomization-based model (https://stat.ethz.ch/pipermail/r-

sig-mixed-models/2010q4/004629.html).
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We derive the likelihood function of the RB-GLMM by using general proba-

bility and measure theoretic concepts. The relevant background material on

measure theory is described in Section A.2 of the appendix. In the deriva-

tion of the likelihood function we do not assume any parametric distribution

for the random effects. Instead, we use the discrete uniform distribution on

the symmetric group Sn. The derived likelihood function can be expressed in

terms of the permanent (Section A.4) of a suitably chosen matrix, as described

in Section 2.5. One needs to maximize the likelihood function or equivalently

the permanent of the matrix to obtain the maximum likelihood estimates of

the model parameters. However, it is well known that the direct computation

of the permanent is a very difficult problem (see Section 2.6).

The direct maximization of the likelihood function is also complicated as the

summation in the likelihood equation does not commute with taking natural

logarithms. In order to handle this problem, an alternative approach is con-

sidered where one needs to maximize a minorization function rather than the

log-likelihood (Lange, 2013, p.186-187). The advantage of this approach is

that the derivative of the minorization function can be found more easily. We

derive a minorization function for our likelihood function in Section 3.2. Based

on this minorization function, we develop an estimation algorithm where we

combine the iterative weighted least squares (IWLS) algorithm for standard

GLMs, with best linear predictors (BLP) of the random effects.

In Section 3.7, we conduct simulation studies in order to compare the esti-

mated model parameters obtained from the randomization-based algorithm

with standard GLMM estimates where normality is assumed for the random

effects distribution. The results show that for misspecified random effects dis-

tributions, the randomization-based algorithm gives more precise estimates of

the model parameters in most cases than the standard GLMM with normally

distributed random effects. However, because of its computational require-

ments, currently our algorithm can only be used for small samples. This is

due to the fact that the algorithm considers all n! permutations of the sym-

metric group Sn. This number increases rapidly with the increase of the sample

size.

However, it is for small samples, that violations of the normality assumption for
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the random effects may be expected to have the most serious effects and where

the randomization-based approach may provide a useful alternative. This is

a hypothesis at this stage rather than the results produced in the thesis. It

may be possible to verify this claim in the future, after better computation

has been developed to enable model fitting for larger sample sizes. Finally, we

apply our model to real count data which exhibit overdispersion in Section 3.8.

1.4.2 Randomization in the RCBD

An RCBD is a design in which the whole set of experimental units is arranged

in several blocks which are internally homogeneous. The treatments are al-

located randomly to the experimental units within each block such that each

treatment occurs exactly once in each block. For the RCBD, there are two

types of randomization for deriving linear models; one for random block ef-

fects associated with Brien and Bailey (2006) and one for fixed block effects

which is in line with the approach of Kempthorne (1955).

Extending the approach of Brien and Bailey (2006), we derive a RB-GLMM

for the RCBD with random block effects (see Chapter 4). The corresponding

randomization of b blocks and t units within each block is modelled by ele-

ments of the wreath product St oSb of two symmetric groups St and Sb (Section

A.1.3). In this setup, the symmetric group St represents the randomization of

units and Sb stands for the randomization of blocks. The variance-covariance

matrices of the random block effects and errors are derived by using the ran-

domization approach. We find that the random block effects and errors are

correlated; the details are given in Chapter 4. We also derive the likelihood

function for this model.

In addition to the models presented in the thesis, we have also considered

Kempthorne’s (1955) approach where the same randomization process is ap-

plied as for the CRD to each block. Generalizing the approach of Kempthorne

(1955), we have derived a RB-GLMM for the RCBD with fixed block effects

(see Appendix C). The corresponding randomization of units is modelled by

using the direct product Sbt of b instances of the symmetric group St, where St

represents the randomization of t units within each fixed block (Section A.1.2).

We also derived the likelihood function and moments of the random effects for
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this RB-GLMM. However, in order to keep the thesis to a reasonable length,

the details of these derivations are not presented here. Instead, we present a

summary of the main results in Appendix C (see Section C.1). Likewise, the

details of the derivation of the likelihood function for the RB-GLMM for the

RCBD with random block effects are not presented in the thesis. The form of

the derived likelihood function is however given in Section C.2 of the appendix.

We use simulation studies to investigate the impact of misspecification of the

correlation structure and of the distribution of the random effects for data

which are simulated from the GLMM for the RCBD with random block effects

in Chapter 4. More precisely, we fit several GLMMs with standard assumptions

to these data. This work is in line with previous studies where the misspec-

ification of the random effects distribution has been investigated. Previous

studies mostly considered uncorrelated random effects. However, in our case,

as a consequence of the randomization, the random block effects and errors are

correlated. The results show that there is hardly any effect on the estimates of

fixed treatment effects parameters in terms of their biases and standard errors

(SEs). However, this is not the case for the estimates of variance components

and it is found that these are frequently severely biased. We also find that the

SEs of the variance components estimates are substantially higher for the mis-

specified models than the corresponding estimates for the true models in most

cases where misspecification of the random effects distribution was present.

Similar results were also found by Neuhaus et al. (2011, 2013). An outline of

the structure of the thesis is given in the next section.

1.5 Structure of the Thesis

The thesis has been organized into two parts. In Part I, we derive the random-

ization-based GLMM for the CRD and describe an algorithm for estimating

the model parameters. In Part II, we investigate the impact of misspecifica-

tion of the correlation structure and of the distribution of the random effects in

a GLMM using variance-covariance matrices derived from the randomization

approach for the RCBD with random block effects.

Part I consists of Chapters 2 and 3 while Part II consists of Chapters 4 and 5.

The second chapter focuses on the derivation of the RB-GLMM for the CRD
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and the likelihood function. The randomization-based estimation algorithm

with a simulation study and an application to a real data set are described in

Chapter 3. The derivation of the RB-GLMM for the RCBD with random block

effects and of the moments of the random effects are described in Chapter 4.

Chapter 5 presents a simulation study which, in the context of the RB-GLMM

in Chapter 4, investigates misspecification of the random effects distribution

and of the correlation structure. Finally, conclusion and future work are con-

tained in Chapter 6. Background material and additional results are given in

the appendix. Moreover, the R-code used in the thesis is given on a DVD

(digital video disc) submitted with the thesis.
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Part I

Semi-Parametric Estimation in

a GLMM Based on

Randomization
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Chapter 2

Derivation of the Model and

Likelihood Function

In this chapter we begin by deriving the RB-GLMM and the likelihood func-

tion for the CRD where the responses depend on contributions from units and

treatments. In Section 2.1, the randomization approach for deriving linear

models is adapted to the GLM framework. In order to do this, we consider

a response variable whose distribution is a member of the exponential family.

We assume that the linear predictor is the sum of a constant contribution from

the unit on which the response is measured and of a constant contribution from

the treatment which is applied to the unit. In other words, we assume that the

principle of unit-treatment additivity holds on the scale of the linear predictor

of a GLM.

The randomization of units is then modelled by using permutations from the

symmetric group. A consequence of the randomization is that the contribution

of the experimental units to the linear predictor becomes a random variable.

The resulting model for the response is then a GLMM whose conditional ex-

pectation can be expressed as in equation (1.2).

Deriving the GLMM based on this randomization idea requires working out the

conditional expectation in the framework of general probability theory, which

in turn builds on measure theory. We derive some useful results using measure

theoretic concepts which we use to derive the model and the likelihood func-

tion. In Section 2.1.5, we derive moments of the random effects based on the
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randomization idea and show that the random effects are correlated due to the

randomization. This is similar to the work of Hinkelmann and Kempthorne

(2008, p.160) in the context of linear models.

In Section 2.2, the likelihood function for the RB-GLMM is derived by using

general probability and measure theoretic concepts. In deriving the likelihood

function, no parametric distribution is assumed for the random effects. More

precisely, the distribution of the random effects is derived from the uniform

distribution on the symmetric group of permutations.

The results for the GLMM which are derived from the randomization for the

CRD are summarized in matrix notation and presented in Section 2.3. More-

over, we factorize the singular variance-covariance matrix of the random effects

in order to facilitate the use of available software packages for fitting GLMMs.

We describe the factorization of this matrix in Section 2.4. We show that for

the CRD the likelihood function for the RB-GLMM is a multiple of the per-

manent (Section A.4) of a suitably chosen matrix (Section 2.5). In order to

obtain the maximum likelihood estimates of the model parameters one needs

to maximize the likelihood function or equivalently the permanent of the ma-

trix. However, the direct computation of the permanent is well known to be a

very hard problem. The complexity of calculating the permanent and its con-

sequences for estimating the model parameters of the RB-GLMM are briefly

described in Section 2.6.

2.1 Derivation of the Model

In this section, our main goal is to derive the RB-GLMM for the CRD. In

order to do so, we first adapt Kempthorne’s (1955) randomization approach

for deriving linear models to GLMs. We then express the randomization-based

model as a standard GLMM. As the standard form of GLMMs involves the

conditional expectation of the responses given the vector of random effects,

we derive the conditional expectation in accordance with its general measure-

theoretic definition. In measure theory, the conditional expectation is defined

with respect to a σ-field. The details of this derivation are given in Section

2.1.3. Then in Section 2.1.4, applying a link function to the conditional ex-

pectation we obtain the standard form (1.2) for the RB-GLMM for the CRD.
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2.1.1 Adapting Kempthorne’s Approach to GLMs

In order to derive the RB-GLMM for the CRD, we adapt the approach of

Kempthorne (1955) for deriving linear models from the randomization to the

link-transformed mean response in the framework of GLMs. Let {1, . . . , n} be

a set of units and J = {1, . . . , t} be a set of t distinct treatments. Let Xi,j be

the response for unit i and treatment j whose distribution is assumed to be

from the exponential family. The Xi,j are potential outcomes which are not

all simultaneously observable (Rubin, 2005). Formally Xi,j is a real random

variable on a probability space (Ω,F , P ) (see appendix Section A.2.1), where

Ω is a non-empty set, F is a σ-field on Ω and P is a probability measure on F .

We assume that for every design d = (j1, . . . , jn) ∈ Jn the random variables

X1,j1 , . . . , Xn,jn are independent.

Let g : R → R be a known link function such that the assumption of unit-

treatment additivity (Kempthorne, 1955) holds for the transformed mean of

Xi,j. Then we can write

g(E(Xi,j)) = ui + vj (2.1)

for every i ∈ {1, . . . , n} and every j ∈ J , where ui and vj denote constants

which represent contributions from the i-th unit and j-th treatment, respec-

tively. Here we assume that all ui are different. Further letting ū =
1

n

n∑
i=1

ui,

v̄ =
1

t

t∑
j=1

vj, µ = ū + v̄, αj = vj − v̄ and ei = ui − ū we can rewrite equation

(2.1) as

g(E(Xi,j)) = µ+ αj + ei (2.2)

for i = 1, . . . , n and j = 1, . . . , t, where µ is the grand mean, αj is the treatment

effect and the unit errors ei are all different. The form of equation (2.2) is

similar to the specification of the linear predictor (1.1) in a GLM as there is

no random effect in this setup. More precisely, GLMs model the expectation

by applying a suitable link function g to the mean responses. It is now our

next goal to derive a GLMM in standard form, similar to the specification in

(1.2), by using the randomization to introduce random effects into (2.2).
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2.1.2 Modelling the Randomization

We continue to consider the random variables Xi,j on (Ω,F , P ). In order

to represent the randomization of units by using permutations, let Sn be the

symmetric group of permutations of the set {1, . . . , n} and Un be the uniform

distribution on Sn. The probability of picking one element π from the sym-

metric group Sn is Un({π}) = 1/n! for every π ∈ Sn. For i = 1, . . . , n define

ε̃i : Sn → R by

ε̃i(π) =
∑
σ∈Sn

eσ(i) 1{σ}(π) = eπ(i) for every π ∈ Sn, (2.3)

where the function 1{σ}(π) is an indicator function which is equal to one for

σ = π and zero otherwise. Here ε̃i is a random variable on the probability

space (Sn,P(Sn), Un), where P(Sn) is the power set of Sn. For later use let

ε̃ = (ε̃1, . . . , ε̃n)> be the vector of random variables ε̃1, . . . , ε̃n. Further define

εi : Sn × Ω→ R by

εi(π, ω) = ε̃i(π) for every (π, ω) ∈ Sn × Ω (2.4)

on the probability space (Sn × Ω,P(Sn)⊗F , Un ⊗ P ), where Sn × Ω is the

Cartesian product, P(Sn)⊗F is the product σ-field and Un⊗P is the product

measure.

Let d = (j1, . . . , jn) ∈ Jn be a fixed design which uses treatment ji for the

i-th run of the experiment. For every i = 1, . . . , n we define a random variable

Yi,ji : Sn × Ω→ R by

Yi,ji(π, ω) = Xπ(i),ji(ω) for every (π, ω) ∈ Sn × Ω (2.5)

on the probability space (Sn × Ω,P(Sn)⊗F , Un ⊗ P ) which represents the

response for the i-th randomized unit and treatment ji. Table 2.1 illustrates

the relationship between response variables defined in (2.5) and the original

variable for the situation with six units and three equally replicated treatments

that was considered in Section 1.4.1.
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Table 2.1: Responses under randomization of units for a fixed design in a CRD.

Fixed systematic design Non-randomized Random Randomized

observation treatment responses permutation responses

i ji Xi,ji π(i) Yi,ji = Xπ(i),ji

1 1 X1,1 3 Y1,1 = X3,1

2 1 X2,1 6 Y2,1 = X6,1

3 2 X3,2 5 Y3,2 = X5,2

4 2 X4,2 1 Y4,2 = X1,2

5 3 X5,3 2 Y5,3 = X2,3

6 3 X6,3 4 Y6,3 = X4,3

2.1.3 Conditional Expectation

We want to derive a GLMM from (2.2) and the randomization, in which the

vector ε = (ε1, . . . , εn)> plays the role of the vector u of random effects in

equation (1.2). In order to obtain an equation similar to (1.2) we need to

find g(E(Yi,ji |ε)) where the conditional expectation E(Yi,ji |ε) of Yi,ji given ε is

defined as E(Yi,ji |F0) and F0 = F (ε) is the σ-field generated by the vector ε

(Billingsley, 1985, p.466). For every component εi of ε there exists the σ-field

F (εi) generated by εi which consists of the sets ε−1
i (B) = {(π, ω) ∈ Sn × Ω :

εi(π, ω) ∈ B}, where B is a Borel set. So F (εi) = {ε−1
i (B) : B ∈ B(R)}, where

B(R) is the Borel σ-field (Section A.2.1). In addition, there is the σ-field gen-

erated by the vector ε of random variables ε1, . . . , εn for which we write F (ε).

Equivalently, F (ε) is the smallest σ-field which contains the union
n⋃
i=1

F (εi)

(Section A.2.4). Now in order to find E(Yi,ji |F (ε)) we want to apply Theorem

2 from the appendix (see Section A.2.6). This theorem gives a simple way to

calculate the conditional expectation, when the σ-field with respect to which

we want to calculate the conditional expectation is generated by a partition of

the space on which the random variable is defined.

Lemma 1 and Corollary 1 below enable us to prove that F (ε) is the σ-field

generated by the partition {{π} × Ω : π ∈ Sn} of Sn × Ω. This result enables

us to apply Theorem 2 in order to find the conditional expectation E(Yi,ji |ε).
Lemma 1. Let ε = (ε1, . . . , εn)> be the random vector with components εi

defined by (2.4). The σ-field F̃ = {A× Ω : A ⊆ Sn} generated by the set
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{{π} × Ω : π ∈ Sn} is a subset of F (ε) i.e., {A× Ω : A ⊆ Sn} ⊆ F (ε).

Proof. That F̃ is the σ-field generated by {{π} × Ω : π ∈ Sn} follows from

part (iii) of Lemma 19 (see appendix Section A.3) with S = Sn and F =

P(Sn). Let π ∈ Sn be fixed. Then we have εi(π, ω) = ε̃i(π) = eπ(i) using (2.4)

and (2.3). It follows that ε−1
i ({eπ(i)}) =

{
(σ, ω) ∈ Sn × Ω : εi (σ, ω) = eπ(i)

}
∈

F (ε). It also follows by using the intersection property of the σ-field in equa-

tion (A.1) of the appendix that
n⋂
i=1

ε−1
i

(
{eπ(i)}

)
∈ F (ε). Now

n⋂
i=1

ε−1
i

(
{eπ(i)}

)
=

n⋂
i=1

{
(σ, ω) ∈ Sn × Ω : εi (σ, ω) = eπ(i)

}
=

n⋂
i=1

{
(σ, ω) ∈ Sn × Ω : ε̃i (σ) = eπ(i)

}
=

n⋂
i=1

({
σ ∈ Sn : ε̃i (σ) = eπ(i)

}
× Ω

)
=

(
n⋂
i=1

{
σ ∈ Sn : ε̃i (σ) = eπ(i)

})
× Ω =

(
n⋂
i=1

{
σ ∈ Sn : eσ(i) = eπ(i)

})
× Ω

= {π} × Ω

since all ei are assumed to be different. So for every π ∈ Sn the set {π}×Ω ∈
F (ε). Therefore {{π} × Ω : π ∈ Sn} ⊆ F (ε). Thus the σ-field generated by

the set {{π} × Ω : π ∈ Sn} is a subset of F (ε). Hence F̃ ⊆ F (ε). �

By applying part (iv) of Lemma 19 to V = ε it follows that

F (ε) ⊆ {A× Ω : A ⊆ Sn} . (2.6)

Thus from (2.6) and Lemma 1 we obtain the following result.

Corollary 1. The σ-field generated by the vector ε = (ε1, . . . , εn)> with com-

ponents εi defined by (2.4) is F (ε) = {A× Ω : A ⊆ Sn}.

The elements of {{π} × Ω : π ∈ Sn} are mutually disjoint. Furthermore, we

have Sn×Ω =
⋃

π∈Sn
({π} × Ω) and so {{π}×Ω : π ∈ Sn} is a partition of Sn×Ω.

Also F (ε) is the σ-field generated by {Zl : l = 1, . . . , n!} = {{πl} × Ω : l =

1, . . . , n!}. Now to find E(Yi,ji |ε) = E(Yi,ji |F (ε)) we can apply Theorem 2

(Section A.2.6) to Sn×Ω and Zl = {πl}×Ω for l = 1, . . . , n!, where π1, . . . , πn!

are the distinct elements of Sn.
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Lemma 2. The conditional expectation of Yi,ji given ε is

E(Yi,ji |ε) =
∑
σ∈Sn

1{σ}×Ω

∫
Ω

Xσ(i),ji (ω̃)P (dω̃) . (2.7)

Proof. By using Theorem 2 from Section A.2.6 we can write

E(Yi,ji |ε) = E(Yi,ji |F (ε))

=
n!∑
l=1

1

(Un ⊗ P )({πl} × Ω)

∫
{πl}×Ω

Yi,ji(π, ω̃)(Un ⊗ P )d(π, ω̃)1{πl}×Ω

=
∑
σ∈Sn

1

(Un ⊗ P ) ({σ} × Ω)

∫
{σ}×Ω

Yi,ji (π, ω̃) (Un ⊗ P ) d (π, ω̃) 1{σ}×Ω

=
∑
σ∈Sn

1

Un ({σ})P (Ω)

∫
{σ}

∫
Ω

Yi,ji (π, ω̃)P (dω̃)Un (dπ) 1{σ}×Ω

=
∑
σ∈Sn

1{σ}×Ω

∫
Ω

Yi,ji(σ, ω̃)P (dω̃)=
∑
σ∈Sn

1{σ}×Ω

∫
Ω

Xσ(i),ji(ω̃)P (dω̃).

�

Note that E(Yi,ji |F (ε)) is a random variable. For every (π, ω) ∈ Sn × Ω the

realization of the conditional expectation is equal to

E(Yi,ji |ε)(π, ω) = E(Yi,ji|F (ε))(π, ω) =
∑
σ∈Sn

1{σ}×Ω(π, ω)

∫
Ω

Xσ(i),ji(ω̃)P (dω̃)

=
∑
σ∈Sn

1{σ}(π)

∫
Ω

Xσ(i),ji(ω̃)P (dω̃) =
∑
σ∈Sn

1{σ}(π)E(Xσ(i),ji)

= E(Xπ(i),ji) (2.8)

which depends only on π but not ω. Therefore, the conditional expectation

E(Yi,ji |ε) can be written as E(Yi,ji |ε) =
(∑

σ∈Sn 1{σ}
∫

Ω
Xσ(i),ji(ω̃)P (dω̃)

)
◦ p̃1,

where p̃1 : Sn × Ω→ Sn with p̃1(π, ω) = π is a projection or coordinate map-

ping.

Now consider the functions f = E(Yi,ji |ε) and g = ε which are both defined

on Sn × Ω. By the definition of the conditional expectation f is F (ε)-B(R)-

measurable. The well known factorization Lemma 18 (Section A.2.7) then

implies the existence of a B(Rn)-B(R)-measurable function h such that f =
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h ◦ g. By letting E(Yi,ji |ε = •) = h we can write

E(Yi,ji |ε) = E(Yi,ji |ε = •) ◦ ε, (2.9)

where E(Yi,ji |ε = •) : Rn → R is defined on the image set of ε i.e., Im(ε) =

{(eπ(1), . . . , eπ(n)) : π ∈ Sn} with E(Yi,ji |ε = (eπ(1), . . . , eπ(n))) = E(Xπ(i),ji). In

the following section, we introduce a link function to the conditional expecta-

tion E(Yi,ji |ε) in order to obtain a standard form of GLMMs.

2.1.4 Incorporating the Link Function

Let g be the link function for which (2.2) holds. It follows from (2.9) that

g (E(Yi,ji |ε)) = g ◦ E(Yi,ji |ε) = g ◦ (E(Yi,ji |ε = •) ◦ ε)

= (g ◦ E(Yi,ji |ε = •)) ◦ ε

= g (E(Yi,ji |ε = •)) ◦ ε. (2.10)

This can be verified by applying the functions to arbitrary elements (π, ω) ∈
Sn × Ω. Now from equation (2.10) using (2.8) and (2.2) we have

g (E(Yi,ji |ε)) (π, ω) = g
(
E(Xπ(i),ji)

)
= µ+ αji + eπ(i)

= µ+ αji + εi (π, ω) , (2.11)

where εi (π, ω) = ε̃i(π) =
∑

σ∈Sn eσ(i) 1{σ} (π) = eπ(i). Hence from equation

(2.11) and our previous derivations, we obtain

Model 1 : g(E(Yi,ji |ε)) = µ+ αji + εi (2.12)

for every i = 1 . . . , n and j = 1, . . . , t. One can see that the only random

variable on the right hand side of (2.12) is εi and the treatment ji is fixed by

the design d. Here the random variable εi is treated as the random effect in

the GLMM framework for the CRD. The form in (2.12) is our generalization

of the derived linear model of Hinkelmann and Kempthorne (2008, p.159) to

a GLMM.
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2.1.5 Moments of Random Effects

In matrix notation, equation (2.12) can be written in the standard GLMM

form (1.2) with Z being the identity matrix and u = ε. Below we use the

notation ui and ei as introduced in Section 2.1.1. Usually in a GLMM each of

the random effects u is assumed to be normally and independently distributed

with mean zero and constant variance. In our project, we do not assume any

parametric distribution for the random effects. By using the randomization

distribution of ε we derive the mean, variance, covariance and correlation of

the random effects below. To this end we introduce some notation. Set Qi,i∗ =

{π ∈ Sn : π(i) = i∗} for every i and i∗. Then Sn =
n⋃

i∗=1

Qi,i∗ . Clearly, the

number of elements of Qi,i∗ is |Qi,i∗ | = (n − 1)!. Moreover, for k 6= l we have

Sn =
n⋃

k∗ 6=l∗
(Qk,k∗

⋂
Ql,l∗) and the number of elements of Qk,k∗

⋂
Ql,l∗ for k 6= l

and k∗ 6= l∗ is |Qk,k∗
⋂
Ql,l∗ | = (n− 2)!.

2.1.5.1 Expectation and Variance

In this section we derive the mean and the variance of the random effects

from the randomization. By using the measure theoretic definition of the

expectation (Section A.2.5) we can compute the following results.

Lemma 3. The expectation and variance of an element εi of the vector of

random errors ε are

(i) E(εi) = 0;

(ii) V ar(εi) = σ2, where σ2 =
1

n

n∑
i=1

(ui − ū)2.

Proof. (i) For every unit i the expectation of εi is given by

E(εi) =

∫
Sn

∫
Ω

εi(π, ω)P (dω)Un(dπ) =
1

n!

∑
π∈Sn

∫
Ω

εi(π, ω)P (dω)

=
1

n!

∑
π∈Sn

∫
Ω

ε̃i(π)P (dω) =
1

n!

∑
π∈Sn

ε̃i(π) =
1

n!

∑
π∈Sn

eπ(i)

=
1

n!

n∑
i∗=1

∑
π∈Qi,i∗

ei∗ =
(n− 1)!

n!

n∑
i∗=1

ei∗ =
1

n

n∑
i∗=1

(ui∗ − ū) = 0.
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(ii) As we obtain E(εi) = 0 in part (i), the variance of εi is equal to

V ar(εi) = E(ε2i ) =

∫
Sn

∫
Ω

ε2i (π, ω)P (dω)Un(dπ)

=
1

n!

∑
π∈Sn

∫
Ω

ε2i (π, ω)P (dω) =
1

n!

∑
π∈Sn

ε̃2i (π) =
1

n!

∑
π∈Sn

e2
π(i)

=
1

n!

n∑
i∗=1

∑
π∈Qi,i∗

e2
i∗ =

(n− 1)!

n!

n∑
i∗=1

e2
i∗ =

1

n

n∑
i∗=1

(ui∗ − ū)2 = σ2.

�

From the above expressions one can see that neither the expectation nor the

variance of εi depends on i which means that the components of the vector

of random effects ε have mean zero and common variance σ2. We use these

results in predicting the random effects and for estimating the variance com-

ponent in Chapter 3. Next we compute the covariance and correlation between

components of the vector of random effects.

2.1.5.2 Covariance and Correlation

In Lemma 4, we use the results for the expectation and variance from Lemma

3 to calculate the covariance and correlation for the random effects.

Lemma 4. The covariance and correlation between two components εk and εl

of the vector of random errors ε with k 6= l are

(i) Cov(εk, εl) = − 1

n− 1
σ2;

(ii) Corr(εk, εl) = −1/(n− 1),

where σ2 is the common variance of the random errors defined in Lemma 3.
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Proof. (i) For k 6= l the covariance of εk and εl can be computed as

Cov(εk, εl) = E(εkεl) =
1

n!

∑
π∈Sn

eπ(k)eπ(l) =
1

n!

n∑
k∗ 6=l∗

∑
π∈Qk,k∗

⋂
Ql,l∗

ek∗ el∗

=
(n− 2)!

n!

n∑
k∗ 6=l∗

ek∗ el∗ =
1

n(n− 1)

n∑
k∗=1

ek∗
n∑

l∗=1
l∗ 6=k∗

el∗

=
1

n(n− 1)

n∑
k∗=1

ek∗

(
n∑

l∗=1

el∗ − ek∗
)

= − 1

n(n− 1)

n∑
k∗=1

e2
k∗

= − 1

n(n− 1)

n∑
k∗=1

(uk∗ − ū)2 = − 1

n− 1
σ2.

(ii) By using Lemma 3 (ii) and applying part (i) we calculate the correlation

between εk and εl for k 6= l and as

Corr(εk, εl) =
Cov(εk, εl)√
V ar(εk)V ar(εl)

= − 1

n− 1
.

�

The results in Lemma 4 show that the random errors are correlated due to the

randomization. A similar result was found by Hinkelmann and Kempthorne

(2008, p.160) for the derived linear model associated with the CRD.

2.2 Derivation of the Likelihood Function

For standard GLMMs, the method of maximum likelihood estimation is used

for estimating the model parameters, in particular, the fixed effect parame-

ters. The likelihood function is obtained by integrating out the random effects

assuming that the vector of random effects has a multivariate normal distri-

bution. The likelihood function is therefore often complicated as it generally

involves a high-dimensional integral with respect to the random effects distri-

bution (McCulloch et al., 2008, p.193).

In the RB-GLMM, we use the same general idea. However, since the distri-

bution of the random effects is derived from the uniform distribution on the

symmetric group, the integral is a general measure theoretic analogue which
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takes the form of a sum over all the elements of the symmetric group. The

construction of the likelihood function is based on the randomization of units

for the CRD using the symmetric group Sn. Then by using the concept of con-

ditional probability, joint probability and the law of total probability we derive

the likelihood function for the RB-GLMM (2.12). The likelihood function is

derived by using some auxiliary results which are stated and proved below.

2.2.1 Conditional Independence and Joint Probability

In order to derive the joint distribution of Y1,j1 , . . . , Yn,jn we show that these

are conditionally independent (McCulloch et al., 2008, p.189) given the vector

of random errors in Lemma 5.

Lemma 5. The random variables Y1,j1 , . . . , Yn,jn are conditionally independent

for every realization of the vector ε of random errors.

Proof. Let A1, . . . , An be elements of the Borel σ-field B(R). For every π ∈ Sn
we can write the conditional probability of Y1,j1 , . . . , Yn,jn given the vector of

random errors ε =
(
eπ(1), . . . , eπ(n)

)
as

(Un ⊗ P )
(
Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε =

(
eπ(1), . . . , eπ(n)

))
= (Un ⊗ P )

(
Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε−1

(
{
(
eπ(1), . . . , eπ(n)

)
}
))

= (Un ⊗ P )
(
Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε̃−1

(
{
(
eπ(1), . . . , eπ(n)

)
}
)
× Ω

)
.

(2.13)

As we assume that the values e1, . . . , en are all different, we have

ε̃−1
(
{
(
eπ(1), . . . , eπ(n)

)
}
)

= {π}. (2.14)

This is true because if σ ∈ ε̃−1
(
{(eπ(1), . . . , eπ(n))}

)
= {τ ∈ Sn : ε̃(τ) ∈

{(eπ(1), . . . , eπ(n))}} then ε̃(σ) = (eπ(1), . . . , eπ(n)). Hence eσ(i) = eπ(i) for every

i = 1, . . . , n. It follows that the two elements σ and π in Sn are equal, i.e., σ = π

as e1, . . . , en are all different. Then using (2.14), the conditional probability
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expression (2.13) can be rewritten as

(Un ⊗ P )
(
Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε =

(
eπ(1), . . . , eπ(n)

))
= (Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|{π} × Ω)

=
(Un ⊗ P ) ({Y1,j1 ∈ A1, . . . , Yn,jn ∈ An} ∩ ({π} × Ω))

(Un ⊗ P ) ({π} × Ω)
. (2.15)

Now in order to simplify the above expression the intersection in the numerator

of (2.15) can be written as

{Y1,j1 ∈ A1, . . . , Yn,jn ∈ An} ∩ ({π} × Ω)

= {(σ, ω) ∈ Sn × Ω : Y1,j1(σ, ω) ∈ A1, . . . , Yn,jn(σ, ω) ∈ An} ∩ ({π} × Ω)

= {(π, ω) : ω ∈ Ω and Y1,j1(π, ω) ∈ A1, . . . , Yn,jn(π, ω) ∈ An}

= {π} × {ω ∈ Ω : Xπ(1),j1(ω) ∈ A1, . . . , Xπ(n),jn(ω) ∈ An}

= {π} × {Xπ(1),j1 ∈ A1, . . . , Xπ(n),jn ∈ An}. (2.16)

Therefore, using (2.16) in (2.15) and that Xi,ji and Xi′ ,j
i
′ are independent for

i 6= i
′
(see Section 2.1.1), we obtain the conditional probability of Y1,j1 , . . . , Yn,jn

given ε =
(
eπ(1), . . . , eπ(n)

)
as

(Un ⊗ P )
(
Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε =

(
eπ(1), . . . , eπ(n)

))
=

(Un ⊗ P )
(
{π} × {Xπ(1),j1 ∈ A1, . . . , Xπ(n),jn ∈ An}

)
(Un ⊗ P ) ({π} × Ω)

=
Un({π})P

(
{Xπ(1),j1 ∈ A1, . . . , Xπ(n),jn ∈ An}

)
Un({π})P (Ω)

= P
(
Xπ(1),j1 ∈ A1

)
. . . P

(
Xπ(n),jn ∈ An

)
=

n∏
i=1

P
(
Xπ(i),ji ∈ Ai

)
(2.17)

=
n∏
i=1

P
(
{ω ∈ Ω : Xπ(i),ji(ω) ∈ Ai}

)
=

n∏
i=1

P ({ω ∈ Ω : Yi,ji(π, ω) ∈ Ai})

=
n∏
i=1

Un({π})P ({ω ∈ Ω : Yi,ji(π, ω) ∈ Ai})
Un({π})P (Ω)

=
n∏
i=1

(Un ⊗ P ) ({(σ, ω) ∈ Sn × Ω : Yi,ji(σ, ω) ∈ Ai} ∩ ({π} × Ω))

(Un ⊗ P ) ({π} × Ω)

=
n∏
i=1

(Un ⊗ P )({Yi,ji ∈ Ai} ∩ ({π} × Ω))

(Un ⊗ P ) ({π} × Ω)
=

n∏
i=1

(Un ⊗ P )(Yi,ji ∈ Ai|{π} × Ω)

=
n∏
i=1

(Un ⊗ P )
(
Yi,ji ∈ Ai|ε = (eπ(1), . . . , eπ(n))

)
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which shows that the random variables Y1,j1 , . . . , Yn,jn are conditionally inde-

pendent for the given realization of ε. �

Next, in addition to the results in Lemma 5, we derive the joint probabil-

ity by using the law of total probability. We consider the joint probability

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An) where the response variables Y1,j1 , . . . , Yn,jn

take values in Borel sets A1, . . . , An. These probabilities uniquely determine

the joint distribution of the variables Y1,j1 , . . . , Yn,jn (Billingsley, 1985, p.265)

and we present the derived result in Lemma 6.

Lemma 6. Let A1, . . . , An be elements of B(R). Then

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An) =

∫
Sn

n∏
i=1

P
(
Xπ(i),ji ∈ Ai

)
Un(dπ).

(2.18)

Proof. Let Im(ε) = {ε(π, ω) : (π, ω) ∈ Sn × Ω} be the image of ε. By using

the law of total probability it follows that

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An)

=
∑

c∈Im(ε)

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|ε = c) (Un ⊗ P ) (ε = c)

=
∑
π∈Sn

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|{π} × Ω) (Un ⊗ P ) ({π} × Ω)

(2.19)

which is true since for every c ∈ Im(ε) we can write

{ε = c} = {(π, ω) ∈ Sn × Ω : ε(π, ω) = c} = {(π, ω) ∈ Sn × Ω : ε̃(π) = c}

= {π ∈ Sn : ε̃(π) = c} × Ω = {π ∈ Sn : (eπ(1), . . . , eπ(n)) = c} × Ω

= {π} × Ω,

where we use again that e1, . . . , en are all distinct. It follows from equation
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(2.19) and by using the intermediate result (2.17) that

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An)

=
∑
π∈Sn

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|{π} × Ω)Un({π}) P (Ω)

=
1

n!

∑
π∈Sn

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|{π} × Ω)

=

∫
Sn

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An|{π} × Ω)Un(dπ)

=

∫
Sn

n∏
i=1

P
(
Xπ(i),ji ∈ Ai

)
Un (dπ).

�

Now using the derived result for the joint probability in Lemma 6 we derive

the joint density of the response random variables in Theorem 1. We then

obtain the expression for the likelihood function from the joint density in the

following section.

2.2.2 Joint Density and Likelihood Function

For i = 1, . . . , n let the random variable Xi,ji have a probability density func-

tion fi,ji(xi;θ) which depends on the parameter vector θ, where θ depends on

the fixed effects parameter vector β and the unknown vector e = (e1, . . . , en)>.

We then use Lemma 6 to derive the joint probability density function of

Y1,j1 , . . . , Yn,jn .

Theorem 1. Assume that the random variable Xi,ji has a density fi,ji(xi,θ)

for every i = 1, . . . , n. Then the joint probability density function of Y1,j1, . . .,

Yn,jn is

fY1,j1 ,...,Yn,jn (y1, . . . , yn;θ) =
1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ). (2.20)

Proof. Let A1, . . . , An be a collection of sets in the Borel σ-field B(R). It

follows that

P
(
Xπ(i),ji ∈ Ai

)
=

∫
Ai

fπ(i),ji(xi;θ) dxi. (2.21)

Substituting (2.21) in the joint probability equation (2.18) (see Lemma 6), we
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can write

(Un ⊗ P ) (Y1,j1 ∈ A1, . . . , Yn,jn ∈ An)

=

∫
Sn

n∏
i=1

∫
Ai

fπ(i),ji(xi;θ)dxiUn(dπ)

=

∫
Sn

∫
A1

. . .

∫
An

n∏
i=1

fπ(i),ji(xi;θ)dxn . . . dx1Un(dπ)

=
1

n!

∑
π∈Sn

∫
A1

. . .

∫
An

n∏
i=1

fπ(i),ji(xi;θ)dxn . . . dx1

=

∫
A1

. . .

∫
An

1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(xi;θ)dxn . . . dx1. (2.22)

Equation (2.22) shows that the mapping fY1,j1 ,...,Yn,jn defined by

(y1, . . . , yn) 7→ 1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ) (2.23)

is the joint probability density function of the distribution of the random vector

(Y1,j1 , . . . , Yn,jn) on the probability space (Sn × Ω,P(Sn)⊗F , Un ⊗ P ). �

Finally we obtain the likelihood function L(θ) from the randomization using

the joint density (2.20).

Corollary 2. Under the assumption of Theorem 1 the likelihood function for

the RB-GLMM for the CRD is equal to

L(θ) =
1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ), (2.24)

where fπ(i),ji(yi;θ) is the conditional density function of the random variable

Yi,ji given π and θ is the vector of parameters of interest.

L(θ) in (2.24) depends on the unknown vector e in addition to β. The elements

of e are estimated by using the best linear predictor in Section 3.5. The

likelihood function for a standard GLMM with normally distributed random

effects (McCulloch et al., 2008, p.193) is given by

L(θ) =

∫ n∏
i=1

fYi|u(yi;θ|u)fU (u)du, (2.25)

where fU (u) is the density function of a multivariate normal distribution with
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mean zero and variance-covariance matrix V (u) = σ2I, and fYi|u(yi;θ|u) is

the conditional density of the response Yi given u. However, in our case the

likelihood function derived from the randomization (2.24) may be regarded as

a discrete version of (2.25) in which the multivariate normal distribution is

replaced by the uniform distribution on the symmetric group Sn.

2.3 Summary of RB-GLMM for the CRD

In this section, we summarize the derived results of the RB-GLMM for the

CRD. We refer to the model equation (2.12) as the RB-GLMM for the CRD

where the conditional distribution of Yi,ji given ε is from the exponential fam-

ily. Here the random variables Xi,ji , . . . , Xn,jn are assumed to be independent

for a fixed design d = (j1, . . . , jn) and whose distribution is a member of the

exponential family as before (see Section 2.1.1). The relationship between Yi,ji
and Xi,ji is described for a fixed specific design d in Table 2.1. The likeli-

hood function for this model is given in (2.24) where the density fπ(i),ji(yi;θ)

is a member of the exponential family. More precisely, the random variables

Y1,j1 , . . . , Yn,jn are conditionally independent for the given realization of the

vector ε of random errors (see Lemma 5).

To summarize the derived model in matrix notation, let Y be the n× 1 vector

of responses, X be the n × (t + 1) design matrix for fixed effects. Then the

derived GLMM (Model (2.12)) from the randomization is

g (E(Y |ε)) = Xβ + ε, (2.26)

where E(Y |ε) is the conditional expectation, g (E(Y |ε)) is a vector with com-

ponents g (E(Yi,ji |ε)), g(·) is the link function as before, β = (µ, α1, . . . , αt)
> is

a (t+ 1)× 1 vector of treatment effect parameters fixed by the specific design

d and ε is the n × 1 vector of random errors. Note that the design matrix

X in (2.26) is overparameterized. In Section 3.7.2, we use the overparameter-

ized design matrix to simulate the data. However, for estimating the model

parameters we use the effects-coded parameters and the corresponding design

matrix. For example, β̃ = (µ, α1, . . . , αt−1)> is the effects-coded fixed effects

parameter vector where αt = −α1 − . . .− αt−1 for an equi-replicated design.

Moreover, from Lemma 3 and 4 we have E(ε) = 0 and the variance-covariance
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matrix of ε is V (ε) =
σ2

n− 1

(
nIn − 1n1

>
n

)
= σ2P , where P is the correlation

matrix and equal to

P =
1

n− 1

(
nIn − 1n1

>
n

)
=



1 − 1

n− 1
. . . − 1

n− 1

− 1

n− 1
1 . . . − 1

n− 1
...

...
...

− 1

n− 1
− 1

n− 1
. . . 1


. (2.27)

The symmetric n × n matrix P is singular as can be verified by noting that

its columns sum up to the zero vector.

2.4 Factorization of the Singular Correlation

Matrix

The matrix P in (2.27) does not have an inverse. This causes problems in

applying standard estimation and inferential procedures for the model pa-

rameters. For example, software for estimating the parameters of a GLMM

can usually not handle multivariate normal random effects u with variance-

covariance matrix equal to V (ε) = σ2P . In addition, the density of the

multivariate normal distribution with the singular variance-covariance ma-

trix does not exist. To overcome this problem we factorize the matrix P
as P = LL> and replace ε with Lε̃∗, where L is an n × (n − 1) matrix and

ε̃∗ is an (n − 1) × 1 random vector with E(ε̃∗) = 0 and V (ε̃∗) = σ2In−1. In

other words, ε̃∗ satisfies the assumptions of the standard GLMM (1.2). The

vector Lε̃∗ in the GLMM with g (E(Y |ε̃∗)) = Xβ + Lε̃∗ has the same mean

and variance-covariance matrix as the random vector ε in the GLMM with

g (E(Y |ε)) = Xβ + ε derived from the randomization. This can be seen

by noting that V (Lε̃∗) = LV (ε̃∗)L> = σ2LL> = σ2P = V (ε). Below we

present a lemma and its constructive proof of the factorization P = LL>.

Lemma 7. Let u1, . . . ,un be an orthonormal basis of Rn, where u1 =
1√
n

1n.

Then the n× n singular matrix P can be factorized as P = LL>, where L =
√
λ2Ũ , Ũ = (u2, . . . ,un) and λ2 =

n

n− 1
is the non-zero positive eigenvalue

of P with multiplicity n− 1.

Proof. We know from Rao (1973, p.67) that the matrix P has only two dis-
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tinct eigenvalues λ1 = 0 and λ2 =
n

n− 1
with multiplicity 1 and n− 1, respec-

tively. Let U = (u1, . . . ,un) be the orthogonal matrix corresponding to the

basis u1, . . . ,un. Then by Theorem B.19 of Christensen (1987, p.332) we have

U>PU = diag(λ1, λ2, . . . , λ2), (2.28)

where n − 1 diagonal elements of the matrix on the right hand side of (2.28)

are equal to λ2. Letting d1 = λ1 = 0 and di = λ2 for i = 2, . . . , n it follows

that

P = Udiag(λ1, λ2, . . . , λ2)U> = Udiag(d1, d2, . . . , dn)U>

=
n∑
i=1

diuiu
>
i =

n∑
i=2

diuiu
>
i = λ2

n∑
i=2

uiu
>
i = λ2ŨŨ

>
= LL>.

�

The factorization in Lemma 7 will be used in fitting HGLMs with correlated

random effects by setting L as the design matrix for the random effects for

estimating the model parameters in the estimation software in Chapter 3. In

the next section, we express the likelihood function (2.24), derived from the

randomization, as the permanent of a suitably chosen square matrix.

2.5 Likelihood Function as Permanent

The permanent of a matrix is similar to the determinant defined in Section

A.4. The calculation of the determinant of a matrix is easy, however, this

is not the case for the permanent. Using the definition of the permanent of

the square matrix (A.11), the derived likelihood function can be expressed in

terms of the multiple of a square matrix where each element is the probability

density function of the random variables Yi,ji .

Corollary 3. Under the assumption of Theorem 1 the likelihood function L(θ)

can be expressed as the permanent of a square matrix.

Proof. Apart from the factor 1/n! the right-hand side of equation (2.24) is
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the permanent (Section A.4) of the n× n square matrix D, where

D =


f1,j1(y1;θ) f1,j2(y2;θ) . . . f1,jn(yn;θ)

f2,j1(y1;θ) f2,j2(y2;θ) . . . f2,jn(yn;θ)
...

...
...

fn,j1(y1;θ) fn,j2(y2;θ) . . . fn,jn(yn;θ)

 . (2.29)

More precisely, the permanent of D is computed as

perD =
∑
π∈Sn

fπ(1),j1(y1;θ) fπ(2),j2(y2;θ) . . . fπ(n),jn(yn;θ)

=
∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ). (2.30)

Therefore, using (2.30) in (2.24) we can write the likelihood function in terms

of the permanent of the square matrix D as

L(θ) =
1

n!
perD =

1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ).

�

To compute the likelihood function it is necessary to calculate the permanent

of the n×n square matrixD in equation (2.29). It is well known that the exact

calculation of the permanent is very difficult because it involves the summation

over all permutations of the symmetric group Sn and hence computationally

time consuming. In the next section, we briefly describe the computational

complexity of calculating the permanent, equivalently the likelihood function,

and its consequences for estimating the model parameters of interest.

2.6 Complexity of Calculating the Likelihood

Function

Complexity of an algorithm refers to the time and/or space required to compute

all the necessary steps. Usually the order of the complexity of an algorithm

is expressed in terms of the “big-O” notation (Arora and Barak, 2009, p.3).

For example, O(1) denotes constant running time, O(n) denotes linear, O(n2)
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quadratic, O(nc) for polynomial time of order c and O(cn) for non-polynomial

or exponential time, where c ia a constant and n is the input size of an al-

gorithm. The notation refers to the upper bound of the complexity of an

algorithm.

There are various types of complexity classes such as P, NP and #P (Jerrum,

2003). The class P is the set of problems that can be solved in polynomial time.

Problems in the NP class can be solved in non-polynomial time or exponential

time. The class #P is for problems that can be computed in non-deterministic

polynomial time. In the complexity class #P, the most difficult problems are

#P-complete. It has been shown that computing the permanent of a matrix is

a #P-complete problem (Valiant, 1979). Also it appears that Ryser’s method

(Minc, 1984) is the most efficient for the exact computation of the permanent

in terms of complexity. This method is evaluated using O(2nn2) arithmetic

operations.

However, a well known approximation algorithm for calculating the permanent

of a matrix with non-negative entries has been developed by Jerrum et al.

(2004) with run time O(n10(log n)3). Bezáková et al. (2008) improved this

algorithm with reduced run time O(n7(log n)4). Also Huber and Law (2008)

developed an algorithm for approximation of the permanent by using a differ-

ent approach with expected run time O(n4 log n).

The above computational complexity immediately tells us that it requires a

huge number of operations and a huge amount of time to run an algorithm

based on the randomization for calculating and maximizing the likelihood func-

tion in order to estimate the model parameters.

As a consequence of the above complexity results, we only consider the model

for the simple underlying design CRD in order to estimate the model pa-

rameters. At this stage, the computational complexity does not allow us to

estimate the model parameters of more complex designs. Even for the derived

GLMM for the CRD we can only consider small examples. Although we do

not use the permanent directly for the purpose of estimation in the random-

ization approach, it requires a high performance parallel computing cluster

even for small examples. Considering the computational complexity for cal-
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culating the permanent, equivalently the likelihood function, we develop the

randomization-based estimation algorithm only for the derived model for the

CRD in the next chapter.
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Chapter 3

Estimation

We describe the estimation algorithm for the RB-GLMM for the CRD (Model

given in (2.26)). The direct maximization of the likelihood function (2.24)

is complicated because the summation in the likelihood does not commute

with taking natural logarithms. To overcome this difficulty, we consider an

alternative approach in which we maximize a minorization function rather

than the likelihood function (Lange, 2013, p.186-187). The derivative of the

minorization function can be found more easily. In general, we are apply-

ing a minorization-maximization (MM) algorithm to maximize the likelihood

function (see Chapter 8, Lange (2013)). This type of algorithm includes a well-

known expectation-maximization (EM) algorithm which is commonly used for

latent variable models including GLMMs as a special case (e.g. McCulloch

(1997)). The definition of the minorization function and background concepts

are described in Section 3.1. We derive the minorization function for the

likelihood function in Section 3.2. We then investigate the concavity of the

minorization function and of the log-likelihood in Section 3.3.

In order to implement the algorithm for estimating the model parameters, we

derive iterative weighted least squares (IWLS) equations in Section 3.4. We

also derive the best linear predictors (BLP) of the random effects in Section

3.5. In Section 3.6, we give detailed steps and a flowchart of the algorithm.

We conduct a simulation study for estimating the model parameters using the

randomization-based algorithm with some examples in Section 3.7. In Section

3.8, we present an application of the RB-GLMM to a real data set. Section 3.9

briefly discusses computational limitations and future plans for generalizing

the algorithm to larger samples.
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3.1 Minorization Function

We introduce the minorization function as a surrogate function of the log-

likelihood for estimating the RB-GLMM parameters for the CRD due to the

fact that the minorization function is concave, and hence has a unique global

maximum. Let θ ∈ Rp be the vector of p unknown parameters. A function

m : Rp × Rp → R is a minorization function for logL(θ) if it satisfies the

following properties (see Lange (2013, p.186-187), Lange et al. (2000), Hunter

and Lange (2004), Wu et al. (2010)) :

(a) For all γ, τ ∈ Rp it holds

m(γ, τ ) ≤ logL(γ) (3.1)

(b) For all γ ∈ Rp

m(γ, γ) = logL(γ). (3.2)

Instead of maximizing logL(θ) we consider the maximization of the minoriza-

tion function m(γ, θ). Let θ̂0 be some initial estimate of θ. For every

k = 0, 1, 2, . . . let θ̂k+1 be a vector that maximizes the minorization func-

tion m(γ, θ̂k) when it is only regarded as a function of γ and θ̂k is held fixed.

It then follows by using property (3.1) that

logL(θ̂k+1) ≥ m(θ̂k+1, θ̂k) ≥ m(θ̂k, θ̂k). (3.3)

Using the second property (3.2) we can write

m(θ̂k, θ̂k) = logL(θ̂k). (3.4)

Therefore finally using (3.3) and (3.4) we obtain

logL(θ̂k+1) ≥ logL(θ̂k) (3.5)

which ensures that the log-likelihood increases or stays constant from iteration

to iteration. This is illustrated later in Section 3.3 numerically with an example

(see Table 3.1).
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3.2 Derivation of the Minorization Function

In this section, we derive a minorization function for the likelihood function

L(θ) in (2.24) for the RB-GLMM for the CRD. We recall that

L(θ) =
1

n!

∑
π∈Sn

n∏
i=1

fπ(i),ji(yi;θ),

where fπ(i),ji(yi;θ) is the density of a distribution from the exponential family.

In order to derive the minorization function for the likelihood function, we first

introduce some notation and definitions. Let h : Sn×Rp → R be the function

defined by

h(π,γ) =
n∏
i=1

fπ(i),ji(yi;γ) (3.6)

for every π ∈ Sn and γ ∈ Rp. Furthermore, we define h̃ : Sn × Rp → R by

h̃(π, τ ) =
h(π, τ )∫

Sn
h(σ, τ )Un(dσ)

, (3.7)

where, as before, Un denotes the uniform distribution on the symmetric group

Sn. The function h̃, defined in (3.7), is non-negative and satisfies∫
Sn

h̃(σ, τ )Un(dσ) = 1.

We now define a measure D with respect to another measure by using h̃ as

a density, as described in Section A.2.8. Using equation (A.8), substituting

M = D, f = h̃ and N = Un, we obtain

D(A) =

∫
A

h̃(π, τ )Un(dπ) (3.8)

for every A ∈ P(Sn). Let X : Sn → R be the random variable defined by

X(π) =
h(π,γ)

h(π, τ )
on the probability space (Sn,P(Sn), D). It is worth noting

that the random variable X is non-negative by definition. Then the expec-

tation of X with respect to D, denoted by ED(X), (Section A.2.5) is defined

as

ED(X) =

∫
Sn

X(π)D(dπ). (3.9)

Equation (3.9) can be rewritten by using the equation (A.9) in the appendix
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with g = X, M = D, f = h̃ and N = Un. It follows that

ED(X) =

∫
Sn

X(π)h̃(π, τ )Un(dπ), (3.10)

since the probability measure D has density h̃ with respect to Un. By using

the above definitions and results we derive the following lemma.

Lemma 8. The function m(γ, τ ) defined by

m(γ, τ ) = logL(τ ) +
1

n!

∑
π∈Sn

h̃(π, τ ) log h(π,γ)− 1

n!

∑
π∈Sn

h̃(π, τ ) log h(π, τ )

(3.11)

is a minorization function for the log-likelihood function logL(θ) of the RB-

GLMM (2.26) for the CRD.

Proof. We begin by considering the difference of log-likelihood functions as

logL(γ)− logL(τ ) = log
L(γ)

L(τ )
= log

(1/n!)
∑

π∈Sn
∏n

i=1 fπ(i),ji(yi;γ)

(1/n!)
∑

π∈Sn
∏n

i=1 fπ(i),ji(yi; τ )

= log

∫
Sn

∏n
i=1 fπ(i),ji(yi;γ)Un(dπ)∫

Sn

∏n
i=1 fπ(i),ji(yi; τ )Un(dπ)

= log

∫
Sn
h(π,γ)Un(dπ)∫

Sn
h(π, τ )Un(dπ)

= log

∫
Sn

h(π,γ)

h(π, τ )

h(π, τ )∫
Sn
h(σ, τ )Un(dσ)

Un(dπ)

= log

∫
Sn

h(π,γ)

h(π, τ )
h̃(π, τ )Un(dπ)

= log

∫
Sn

X(π)h̃(π, τ )Un(dπ)

= logED(X) (3.12)

which is obtained by using equation (3.10). Jensen’s inequality (Billingsley,

1985, p.75, 283) shows that for every concave function

logE(X) ≥ E(logX). (3.13)

Therefore, by using (3.13) we can see that

logL(γ)− logL(τ ) = logED(X) ≥ ED(logX). (3.14)
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Moreover, the expectation ED(logX) can be written as

ED(logX) =

∫
Sn

[logX(π)] h̃(π, τ )Un(dπ) =

∫
Sn

[
log

h(π,γ)

h(π, τ )

]
h̃(π, τ )Un(dπ)

=

∫
Sn

[log h(π,γ)] h̃(π, τ )Un(dπ)−
∫
Sn

[log h(π, τ )] h̃(π, τ )Un(dπ).

(3.15)

Using equation (3.15) in (3.14) it follows that

logL(γ) ≥ logL(τ ) +

∫
Sn

[log h(π,γ)] h̃(π, τ )Un(dπ)

−
∫
Sn

[log h(π, τ )] h̃(π, τ )Un(dπ)

= logL(τ ) +
1

n!

∑
π∈Sn

h̃(π, τ ) log h(π,γ)

− 1

n!

∑
π∈Sn

h̃(π, τ ) log h(π, τ ).

Defining the function m by

m(γ, τ ) = logL(τ ) +
1

n!

∑
π∈Sn

h̃(π, τ ) log h(π,γ)− 1

n!

∑
π∈Sn

h̃(π, τ ) log h(π, τ )

(3.16)

we can see that m(γ, τ ) ≤ logL(γ) and m(γ,γ) = logL(γ). That is, m

satisfies the properties (3.1) and (3.2) and is hence a minorization function for

logL(θ). �

3.3 Concavity and Monotonicity of the Mi-

norization Function

In this section we demonstrate the concavity of the minorization function m

in (3.16). Using (3.6) we can write

log h(π,γ) = log
n∏
i=1

fπ(i),ji(yi;γ) (3.17)

and it can be shown that as a function of γ only, log h(π,γ) is concave (Bickel

and Doksum, 2001, p.59-61). They have shown that log h(π,γ) is concave
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for the full exponential family where fπ(i),ji(yi;γ) is a member of this family.

Hence it follows that for fixed τ , the function T defined by

Tτ (γ) =
∑
π∈Sn

h̃(π, τ ) log h(π,γ)

is also concave since a linear combination of concave functions with positive

coefficients is concave. It follows that the minorization function m defined

in Lemma 8 is concave. The log-likelihood function logL(θ) may not be a

concave function while the minorization function m is always concave. The

concavity of the minorization function m is shown graphically in Figure 3.1.
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Figure 3.1: Log-likelihood and different minorization functions

Figure 3.1 shows minorization functions m(·, θ̂k), k = 1, . . . , 5 at different iter-

ations and the log-likelihood. The maximization of the minorization functions

is performed iteratively until a maximum of the log-likelihood is reached. The

figure shows that the maxima of the minorization functions at different itera-

tions gradually approach the maximum of the log-likelihood function.

Moreover, we consider a numerical example to illustrate that the log-likelihood

increases or stays constant from iteration to iteration. In this example, we

consider the number of treatments t = 2 and replications r = 3. We use the

log-likelihood of the RB-GLMM for the CRD of α1 assuming that the values

of µ and the random effects εi are known. The results are given in Table 3.1.
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Table 3.1: Example of increasing log-likelihood from iteration to iteration when

true α1 = 0.25.

Iteration α̂1 Log-likelihood Minorization

1 0.14071 −19.98390 −20.15749

2 0.17086 −19.89267 −19.90640

3 0.18183 −19.87107 −19.87294

4 0.18594 −19.86453 −19.86480

5 0.18749 −19.86229 −19.86233

6 0.18808 −19.86147 −19.86148

7 0.18830 −19.86117 −19.86117

8 0.18838 −19.86106 −19.86106

From Table 3.1 it can be seen that the log-likelihood increases from iteration

1 to 2, 2 to 3 and so on. By iteration 8, the log-likelihood is constant up to

three decimal points i.e., the value of the log-likelihood is the same as the value

of the previous iteration. Moreover, this is also the case for the minorization

function. The log-likelihood and the minorization functions are the same at

iteration 8.

3.4 Iterative Weighted Least Squares

Of the terms defining the minorization function m in Lemma 8, only the middle

term depends on γ. Therefore maximizing the minorization function m(γ, τ )

for fixed τ it is equivalent to maximizing the function
∑

π∈Sn h̃(π, τ ) log h(π,γ).

More precisely, for a given estimate θ̂k of θ, the maximization of m(γ, θ̂k) as

a function of γ is equivalent to maximizing

Tθ̂k(γ) =
∑
π∈Sn

h̃(π, θ̂k) log h(π,γ)

=
∑
π∈Sn

h̃(π, θ̂k) log

(
n∏
i=1

fπ(i),ji(yi;γ)

)

=
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

log fπ(i),ji(yi;γ). (3.18)

We will show that for a given estimate θ̂k, a maximum of m(γ, θ̂k) can be
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computed using the familiar iterative weighted least squares (IWLS) algorithm

for GLMs. In equation (3.18), fπ(i),ji(yi;γ) is the density of a distribution

from the exponential family. We now write fπ(i),ji(yi;γ) in the form of the

exponential family with some known functions a(·), b(·), c(·) and dispersion

parameter φ (McCullagh and Nelder, 1989, p.28) as

fπ(i),ji(yi;γ) = exp
(
(yiθπ(i),ji,γ − b(θπ(i),ji,γ))/a(φ) + c(yi, φ)

)
, (3.19)

where θπ(i),ji,γ is the (canonical) parameter related to the vector γ and π in

Sn. More precisely, from the properties of the standard GLMs, it follows that

E(Yi,ji |ε = e) = µπ(i),ji,γ = b′
(
θπ(i),ji,γ

)
(3.20)

and

var(Yi,ji|ε = e) = a(φ)b′′
(
θπ(i),ji,γ

)
. (3.21)

We recall the RB-GLMM for the CRD (2.26) that

g (E(Y |ε)) = Xβ + ε.

The n × (t + 1) design matrix X for the fixed treatments with number of

parameters t+ 1 is defined by

X =



x>1

x>2
...

x>i
...

x>n


=



x11 x12 . . . x1s . . . x1(t+1)

x21 x22 . . . x2s . . . x2(t+1)

...
...

...
...

...

xi1 xi2 . . . xis . . . xi(t+1)

...
...

...
...

xn1 xn2 . . . xns . . . xn(t+1)


. (3.22)

Note that the elements of X are either 1 or 0. Also the n × n model matrix

Zπ for the random effects is defined as

Zπ =



z>π(1)

z>π(2)
...

z>π(i)
...

z>π(n)


, (3.23)
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where the unit vector z>π(i), i = 1, . . . , n, is obtained by permuting the i-th row

of the identity matrix In of order n.

Suppose that the vector γ is partitioned as γ = (γ>1 ,γ
>
2 )> where γ1 is a

(t + 1) × 1 vector of unknown fixed effects parameters and γ2 is the n × 1

vector of the unit errors ei, i = 1, . . . , n, defined by equation (2.2). We write

the vector of linear predictors, ηπ,γ , by incorporating the random effects with

fixed treatment effects in GLMMs setup as ηπ,γ = Xγ1+Zπγ2. We then write

the ith element of ηπ,γ , denoted by ηπ(i),ji,γ , for the fixed design d = (j1, . . . , jn)

as

ηπ(i),ji,γ = x>i γ1 + z>π(i)γ2. (3.24)

Because of (3.19) we can rewrite equation (3.18) as

Tθ̂k(γ) =
∑
π∈Sn

h̃(π, θ̂k)

(
n∑
i=1

(
yiθπ(i),ji,γ − b

(
θπ(i),ji,γ

))
/a(φ) +

n∑
i=1

c (yi, φ)

)
.

(3.25)

Thus maximizing (3.25) as a function of γ is equivalent to maximizing

T̃θ̂k(γ) =
∑
π∈Sn

h̃(π, θ̂k)

(
n∑
i=1

(
yiθπ(i),ji,γ − b

(
θπ(i),ji,γ

))
/a(φ)

)

=
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

T πi,γ , (3.26)

where

T πi,γ =
(
yiθπ(i),ji,γ − b

(
θπ(i),ji,γ

))
/a(φ). (3.27)

We now compute the partial derivatives of equation (3.26) with respect to

the component γ1,s, s = 1, . . . , t + 1, of γ1 by applying the chain rule of

differentiation

∂T̃θ̂k(γ)

∂γ1,s

= Us =
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

∂T πi,γ
∂γ1,s

=
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

(
∂T πi,γ

∂θπ(i),ji,γ

.
∂θπ(i),ji,γ

∂µπ(i),ji,γ

.
∂µπ(i),ji,γ

∂γ1,s

)
.(3.28)

We compute each partial derivative of (3.28) separately. First using (3.27) and
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(3.20) we write

∂T πi,γ
∂θπ(i),ji,γ

=
(
yi − b′

(
θπ(i),ji,γ

))
/a(φ)

=
(
yi − µπ(i),ji,γ

)
/a(φ). (3.29)

Furthermore, using (3.21) we compute

∂θπ(i),ji,γ

∂µπ(i),ji,γ

=
1

∂µπ(i),ji,γ

∂θπ(i),ji,γ

=
1

b′′
(
θπ(i),ji,γ

) =
a(φ)

var(Yi,ji |ε = e)
. (3.30)

Moreover, using (3.24) and assuming the vector γ2 is known we then calculate

∂µπ(i),ji,γ

∂γ1,s

=
∂µπ(i),ji,γ

∂ηπ(i),ji,γ

.
∂ηπ(i),ji,γ

∂γ1,s

=
∂µπ(i),ji,γ

∂ηπ(i),ji,γ

∂(x>i γ1 + z>π(i)γ2)

∂γ1,s

=
1

g′(µπ(i),ji,γ)
xis (3.31)

with g(µπ(i),ji,γ) = ηπ(i),ji,γ and g′(µπ(i),ji,γ) =
∂ηπ(i),ji,γ

∂µπ(i),ji,γ

where g is the link

function as before. Finally substituting (3.29), (3.30) and (3.31) into (3.28),

we can write

Us =
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

(
yi − µπ(i),ji,γ

a(φ)

a(φ)

var(Yi,ji|ε = e)

1

g′(µπ(i),ji,γ)
xis

)

=
∑
π∈Sn

h̃(π, θ̂k)
n∑
i=1

(
(yi − µπ(i),ji,γ)

1

var(Yi,ji |ε = e)

1

g′(µπ(i),ji,γ)
xis

)
.(3.32)

Gathering partial derivatives with respect to γ1,s, s = 1, . . . , t + 1 into a (t +

1)× 1 column vector we get

∂T̃θ̂k(γ)

∂γ1

= Uπ,γ =
∑
π∈Sn

h̃(π, θ̂k)X
>W π,γDπ,γ(y − µπ,γ). (3.33)
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The matrices and vectors in (3.33) are defined as follows:

W π,γ = diag

(
1

var(Y1,j1 |ε = e)(g′(µπ(1),j1,γ))
2
, . . . ,

1

var(Y1,j1 |ε = e)(g′(µπ(n),jn,γ))
2

)
,

(3.34)

Dπ,γ = diag
(
g′(µπ(1),j1,γ), . . . , g′(µπ(n),jn,γ)

)
(3.35)

and µπ,γ = (µπ(1),j1,γ , . . . , µπ(n),jn,γ)>. Now, using the first-order Taylor ap-

proximation to the link function g at µπ(i),ji,γ (McCullagh and Nelder, 1989,

p.40) we have

g(yi) ' g(µπ(i),ji,γ) + (yi − µπ(i),ji,γ)g′(µπ(i),ji,γ)

= x>i γ1 + z>π(i)γ2 + (yi − µπ(i),ji,γ)g′(µπ(i),ji,γ)

for every i. Setting the new working variable z̃π(i),ji,γ = g(µπ(i),ji,γ) + (yi −
µπ(i),ji,γ)g′(µπ(i),ji,γ) equation (3.33) can be approximated by∑

π∈Sn

h̃(π, θ̂k)X
>W π,γ(z̃π,γ −Xγ1 −Zπγ2) (3.36)

where z̃π,γ = (z̃π(1),j1,γ , . . . , z̃π(n),jn,γ)>. Equating (3.36) to 0 yields the form

of the IWLS equation as

X>

(∑
π∈Sn

h̃(π, θ̂k)W π,γ

)
Xγ1 = X>

∑
π∈Sn

h̃(π, θ̂k)W π,γ(z̃π,γ −Zπγ2).

(3.37)

3.5 Best Linear Predictor of Random Effects

Implementing the algorithm for estimating the vector β of fixed effect param-

eters in the RB-GLMM (2.26), one needs to predict the vector ε of random

errors. This is due to the fact that the estimation of β depends on ε, however,

the vector ε is an unobserved random variable. In order to do so we use the

best linear predictor (BLP) of the vector of random errors ε. The formula is

given by McCulloch et al. (2008, p.307) and Searle et al. (1992, p.266) as

BLP(ε) = ε̂ = µε +CΣ−1(y − µY ), (3.38)

where µε = E(ε) is the expectation of ε, µY = E(Y ) is the mean for the

vector of responses Y , C = Cov(ε,Y ) is the variance-covariance matrix be-
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tween ε and Y , and Σ = Cov(Y ) is also the variance-covariance matrix of

Y . In the RB-GLMM (2.26) for a fixed design d = (j1, . . . , jn), we recall that

Y = (Y1,j1 , . . . , Yn,jn)> and ε = (ε1, . . . , εn)>. The formula given by (3.38) is

based on the first and second moments of ε and Y but without any assumption

of normality.

The derivation of the BLP formula is solely based on the moments of the

random effects using the minimized criterion E((ε̂ − ε)>(ε̂ − ε)), which is

known as the mean square error of prediction (MSEP) (see Searle et al. (1992,

p.261, 267)). It follows that the linear predictor ε̂ computed according to the

BLP formula (3.38) is the best among all other linear predictors in the sense

that

E((ε̂− ε)>(ε̂− ε)) ≤ E((ε̂∗ − ε)>(ε̂∗ − ε)), (3.39)

where ε̂∗ is any other linear predictor of ε. For the RB-GLMM the expected

values are computed on the product space Sn × Ω.

Equation (3.38) is applicable to all forms of µY and µε and therefore we can

apply (3.38) for predicting the vector of random errors ε in the RB-GLMM

(2.26) for the CRD. In order to apply (3.38) into the estimation algorithm

we now derive some auxiliary results. The detailed derivation of these results

is given below. We first compute the expectation and variance of an element

Yi,ji and also the covariance between two elements Yk,jk and Yl,jl for k 6= l of Y .

Lemma 9. Let Xi,ji be the response whose distribution is assumed to be from

the exponential family. Let Yi,ji be the response for the i-th randomized experi-

mental unit and treatment ji which is an element of the vector of responses Y .

Then the expectation and variance of Yi,ji, and the covariance between Yk,jk
and Yl,jl for k 6= l are

(i) E(Yi,ji) =
1

n

n∑
i∗=1

E(Xi∗,ji) = mji,

(ii) V ar(Yi,ji) =
1

n

n∑
i∗=1

(
V ar(Xi∗,ji) + (E(Xi∗,ji))

2)−m2
ji

,

(iii) Cov(Yk,jk , Yl,jl) =
1

n− 1
mjkmjl −

1

n(n− 1)

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl).
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Proof. (i) The expectation of Yi,ji for every i and ji is given by

E(Yi,ji) =

∫
Sn

∫
Ω

Yi,ji(π, ω)P (dω)Un (dπ) =
1

n!

∑
π∈Sn

∫
Ω

Xπ(i),ji(ω)P (dω)

=
1

n!

∑
π∈Sn

E(Xπ(i),ji) =
1

n!

n∑
i∗=1

∑
π∈Qi,i∗

E(Xi∗,ji)

=
(n− 1)!

n!

n∑
i∗=1

E(Xi∗,ji) =
1

n

n∑
i∗=1

E(Xi∗,ji) = mji .

(ii) Using the result in part (i), the variance of Yi,ji is equal to

V ar(Yi,ji) = E(Y 2
i,ji

)− (E(Yi,ji))
2

=

∫
Sn

∫
Ω

Y 2
i,ji

(π, ω)P (dω)Un (dπ)−m2
ji

=
1

n!

∑
π∈Sn

∫
Ω

X2
π(i),ji

(ω)P (dω)−m2
ji

=
1

n

n∑
i∗=1

E(X2
i∗,ji

)−m2
ji

=
1

n

n∑
i∗=1

(
V ar(Xi∗,ji) + (E(Xi∗,ji))

2)−m2
ji
.

(iii) Again by using the result in part (i), we can write the covariance of Yk,jk
and Yl,jl for k 6= l as

Cov(Yk,jk , Yl,jl) = E(Yk,jkYl,jl)− E(Yk,jk)E(Yl,jl)

= E(Yk,jkYl,jl)−mjkmjl . (3.40)
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Now E(Yk,jkYl,jl) in (3.40) is equal to

E(Yk,jkYl,jl) =

∫
Sn

∫
Ω

Yk,jk(π, ω) Yl,jl(π, ω)P (dω)Un(dπ)

=
1

n!

∑
π∈Sn

∫
Ω

Xπ(k),jk(ω)Xπ(l),jl(ω)P (dω) =
1

n!

∑
π∈Sn

E(Xπ(k),jkXπ(l),jl)

=
1

n!

n∑
k∗ 6=l∗

∑
π∈Qk,k∗

⋂
Ql,l∗

E(Xk∗,jkXl∗,jl) =
(n− 2)!

n!

n∑
k∗ 6=l∗

E(Xk∗,jkXl∗,jl)

=
(n− 2)!

n!

n∑
k∗ 6=l∗

E(Xk∗,jkXl∗,jl) =
1

n(n− 1)

n∑
k∗=1

n∑
l∗=1
l∗ 6=k∗

E(Xk∗,jk)E(Xl∗,jl)

=
1

n(n− 1)

n∑
k∗=1

(
n∑

l∗=1

E(Xk∗,jk)E(Xl∗,jl)− E(Xk∗,jk)E(Xk∗,jl)

)

=
1

n(n− 1)

(
n∑

k∗=1

E(Xk∗,jk)
n∑

l∗=1

E(Xl∗,jl)−
n∑

k∗=1

E(Xk∗,jk)E(Xk∗,jl)

)

=
1

n(n− 1)

(
n2mjkmjl −

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl)

)

=
n

n− 1
mjkmjl −

1

n(n− 1)

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl). (3.41)

Using (3.41) in (3.40) we can rewrite

Cov(Yk,jk , Yl,jl) =
n

n− 1
mjkmjl −

1

n(n− 1)

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl)

−mjkmjl

=
1

n− 1
mjkmjl −

1

n(n− 1)

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl).

�

The results in Lemma 9 are similar to those in Section 7.3 of McCulloch et al.

(2008). Next in order to derive the covariance matrix C between ε and Y we

compute the following results.

Lemma 10. The covariances between εi and Yi,ji, and εk and Yl,jl for k 6= l

are

(i) Cov(εi, Yi,ji) =
1

n

n∑
i∗=1

ei∗E(Xi∗,ji),
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(ii) Cov(εk, Yl,jl) = − 1

(n− 1)n

n∑
k∗=1

ek∗E(Xk∗,jl).

Proof. (i) We know from part (i) of Lemma 3 that E(εi) = 0. The covari-

ance between εi and Yi,ji can be written as

Cov(εi, Yi,ji) = E(εiYi,ji)− E(εi)E(Yi,ji) = E(εiYi,ji)

= E(E(εiYi,ji |ε)). (3.42)

Now we consider the inner expectation in (3.42),

E(εiYi,ji |ε) = E(εiYi,ji |F (ε))

=
n!∑
l=1

1

(Un ⊗ P ) ({πl} × Ω)

∫
{πl}×Ω

εi(π, ω̃)Yi,ji(π, ω̃) (Un ⊗ P ) d (π, ω̃) 1{πl}×Ω

=
∑
σ∈Sn

1

(Un ⊗ P ) ({σ} × Ω)

∫
{σ}×Ω

εi(π, ω̃)Yi,ji(π, ω̃) (Un ⊗ P ) d (π, ω̃) 1{σ}×Ω

=
∑
σ∈Sn

1

Un ({σ})P (Ω)

∫
{σ}

∫
Ω

εi(π, ω̃)Yi,ji(π, ω̃)P (dω̃)Un (dπ) 1{σ}×Ω

=
∑
σ∈Sn

1{σ}×Ω

∫
Ω

ε̃i(π)Yi,ji (σ, ω̃)P (dω̃)

=
∑
σ∈Sn

1{σ}×Ω

∫
Ω

eπ(i)Xσ(i),ji (ω̃)P (dω̃)

=
∑
σ∈Sn

eπ(i)1{σ}×Ω

∫
Ω

Xσ(i),ji (ω̃)P (dω̃) . (3.43)

We can rewrite (3.43) for every (π, ω) ∈ Sn × Ω as

E(εiYi,ji |F (ε)) (π, ω) =
∑
σ∈Sn

eπ(i)1{σ}×Ω (π, ω)

∫
Ω

Xσ(i),ji (ω̃)P (dω̃)

=
∑
σ∈Sn

eπ(i)1{σ} (π)

∫
Ω

Xσ(i),ji (ω̃)P (dω̃)

=
∑
σ∈Sn

eπ(i)1{σ}(π)E(Xσ(i),ji)

= eπ(i)E(Xπ(i),ji). (3.44)

Using (3.44) in (3.42) the covariance between εi and Yi,ji can be rewritten
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as

Cov(εi, Yi,ji) = E(eπ(i)E(Xπ(i),ji)) =

∫
Sn

eπ(i)E(Xπ(i),ji)Un(dπ)

=
1

n!

∑
π∈Sn

eπ(i)E(Xπ(i),ji) =
1

n!

n∑
i∗=1

∑
π∈Qi,i∗

ei∗E(Xi∗,ji)

=
(n− 1)!

n!

n∑
i∗=1

ei∗E(Xi∗,ji) =
1

n

n∑
i∗=1

ei∗E(Xi∗,ji).

(ii) Similar to part (i) and using (3.44), the covariance between εk and Yl,jl
for k 6= l is equal to

Cov(εk, Yl,jl) = E(εkYl,jl) = E(E(εkYl,jl |ε)) = E
(
eπ(k)E(Xπ(l),jl)

)
=

∫
Sn

eπ(k)E(Xπ(l),jl)Un(dπ) =
1

n!

∑
π∈Sn

eπ(k)E(Xπ(l),jl)

=
1

n!

n∑
k∗ 6=l∗

∑
π∈Qk,k∗

⋂
Ql,l∗

ek∗E(Xl∗,jl)

=
(n− 2)!

n!

n∑
k∗ 6=l∗

ek∗E(Xl∗,jl)

=
1

n(n− 1)

n∑
k∗=1

ek∗
n∑

l∗=1
l∗ 6=k∗

E(Xl∗,jl)

=
1

n(n− 1)

n∑
k∗=1

ek∗

(
n∑

l∗=1

E(Xl∗,jl)− E(Xk∗,jl)

)

=
1

n(n− 1)

(
n∑

k∗=1

ek∗
n∑

l∗=1

E(Xl∗,jl)−
n∑

k∗=1

ek∗E(Xk∗,jl)

)

= − 1

(n− 1)n

n∑
k∗=1

ek∗E(Xk∗,jl).

�

The results in Lemmas 9 and 10 will allow us to explicitly express µY , Σ and

C in the BLP equation (3.38) in matrix notation. Let M be the n×n matrix

M =


E(X1,j1) · · · E(X1,jn)

...
...

E(Xn,j1) · · · E(Xn,jn)

 (3.45)
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and V be the n× n matrix

V =


V ar(X1,j1) · · · V ar(X1,jn)

...
...

V ar(Xn,j1) · · · V ar(Xn,jn)

 . (3.46)

The elements of M and V are functions of the vector β of fixed effects pa-

rameters and of the vector e = (e1, . . . , en)> where ei’s are defined in Section

2.1.1. Now from Lemma 9(i) we can write the mean vector µY of responses as

µY = E(Y ) = E(Y1,j1 , . . . , Yn,jn) =
1

n
M>1n. (3.47)

For every vector a = (a1, . . . , an)> let diag(a) be the diagonal matrix with

elements a1, . . . , an on the main diagonal. Also diag2(a) = diag(a) diag(a).

Now we can write the results of Lemma 9 and 10 in matrix notation below.

Lemma 11. Let aM be the vector containing the diagonal elements of M>M .

Then the variance-covariance matrix Σ of the vector Y of responses is

Σ =
1

(n− 1)n

(
(n− 1) diag(V >1n) + n diag(aM )− diag2(M>1n)

−M>(In −
1

n
1n1

>
n )M

)
. (3.48)

Lemma 12. The covariance matrix C between ε and Y is equal to

C =
1

(n− 1)n
(n diag(e>M)− 1ne

>M ). (3.49)

One can show that the diagonal elements of Σ in (3.48) have the same form in

part (ii) of Lemma 9 and that the off-diagonal elements are exactly the same

as in Lemma 9(iii). Similarly, the diagonal and off-diagonal elements of C

in (3.49) are the same as in Lemma 10(i) and (ii) respectively. The proof of

Lemma 11 and 12 is given in Appendix B.

Finally, for the RB-GLMM (2.26) using µε = 0 (Section 2.1.6), the BLP

equation (3.38) reduces to

BLP(ε) = ε̂ = π(ê) = CΣ−1(y − µY ), (3.50)
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where µY , C and Σ are given in equations (3.47), (3.48) and (3.49) respec-

tively. The right hand side of (3.50) depends on e, and so this will be used

as an update equation in an iterative procedure. Note that Σ and C depend

only on M and V . Therefore, during the algorithm one can also easily update

Σ and C to get Σ(l+1) and C(l+1), say from, M (l+1) and V (l+1).

We now consider the situation, in particular, that the random variables Xi,j

follow the Poisson distribution and we call the corresponding RB-GLMM the

Poisson RB-GLMM. We show the calculation of the BLP equation (3.50) for

the Poisson RB-GLMM for the CRD (2.26). Recall that for the given fixed

design d = (j1, . . . , jn) we have µY = E(Y1,j1 , . . . , Yn,jn) =
1

n
M>1n. For the

Poisson responses and the CRD, from (2.2) we have E(Xi,j) = exp(µ+αj+ei).

Let β = (µ, α1, . . . , αt−1)> ∈ Rt be the effects-coded fixed effects parameter

vector and e = (e1, . . . , en)> be defined as before. Define the t× t matrix

A =

(
1t−1 I t−1

1 −1t−1

)
=


1 1 · · · 0
...

...
...

1 0 · · · 1

1 −1 · · · −1

 . (3.51)

Then Aβ = (µ + α1, . . . , µ + αt)
> where αt = −α1 − . . . − αt−1. Let gi ∈ Rt

be the i-th unit (column) vector in Rt with 1 in row i and 0 otherwise. Then

we can write g>i Aβ = µ+ αi. For the given design d = (j1, . . . , jn) define the

n× t matrix

G =


g>j1
...

g>jn

 . (3.52)

Note that in the special case of an equi-replicated design d with t treatments

and replication r where the treatments are in the order j1 = . . . = jr =

1, jr+1 = . . . = j2r = 2, . . . , j(t−1)r+1 = . . . = jtr = t then the matrix G

simplifies to the Kronecker product G = I t ⊗ 1r. It follows that for Poisson

responses, in general, the matrix M in (3.45) can be computed as

M = exp(1n1
>
ndiag(GAβ) + e1>n ), (3.53)
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where the exponential function is applied to every element of the n×n matrix

1n1
>
ndiag(GAβ) + e1>n . (3.54)

For the Poisson responses the mean is equal to the variance. It follows that

M = V . Now from (3.48) we can write the variance-covariance matrix for the

Poisson responses (ΣP ) as

ΣP =
1

(n− 1)n

(
(n− 1) diag(M>1n) + n diag(aM )− diag2(M>1n)

−M>(In −
1

n
1n1

>
n )M

)
, (3.55)

whereM is given by equation (3.53). Using ΣP we can write the BLP equation

for the Poisson RB-GLMM as

ε̂ = CΣ−1
P (y − µY ). (3.56)

3.6 Algorithm

In this section, we describe the randomization-based algorithm for implement-

ing the estimation procedure for the RB-GLMM (2.26) for the CRD. In the

algorithm, the systematic part of the model for the fixed treatment effects

represented by Xβ. However, for the effects due to the units we restrict our-

selves to the case where Zπ is a matrix obtained by permuting the rows of the

identity matrix In of order n and a vector ε = e of errors whose components

are a fixed permutation (corresponding to the actual randomization used in

the experiment) of the errors ei, i = 1, ..., n, defined by equation (2.2).

The parameters of interest to be estimated are the components of the vector

β. In order to be able to compute an estimate we also need to know the vector

ε which is however not observable. Whenever ε is needed in a computation we

use equation (3.50). In what follows we denote the vector obtained by com-

bining ε and β by θ. In other words θ = (β>, ε>)>. The algorithm performs

an outer iteration in which a new minorization function m(γ, θ̂k) based on the

estimate θ̂k of θ from the k-th loop of that outer iteration is computed. Note

that given θ̂k the function m(γ, θ̂k) depends only on γ. Having determined

m(γ, θ̂k) an inner iteration is invoked to find a vector γ∗ that maximizes this
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function. To this end, γ is partitioned in the same way as θ as γ = (γ>1 ,γ
>
2 )>

where the dimension of γ1 is the same as that of β and γ2 has n components.

From the estimate θ̂k we obtain initial estimates γ
(0)
1 and γ

(0)
2 for starting

the inner iteration (by using the sub-vectors of θ̂k corresponding to β and

ε, respectively). During the (l + 1)th iteration of the inner iteration first

an estimate γ
(l+1)
1 of γ1 is computed by solving (3.37) for γ1. In this step,

we set γ = γ(l) =
(

(γ
(l)
1 )>, (γ

(l)
2 )>

)>
and γ2 = γ

(l)
2 in (3.37), where γ

(l)
1

and γ
(l)
2 are estimates from the lth inner iteration. Subsequently, an up-

date γ
(l+1)
2 is calculated by using

(
(γ

(l)
1 )>, (γ

(l)
2 )>

)>
as a surrogate for θ in

the BLP formula (3.50). When the inner iteration has converged after, say,

l∗ iterations, an update θ̂k+1 of the estimate in the outer loop is given by

θ̂k+1 =
(

(γ
(l∗)
1 )>, (γ

(l∗)
2 )>

)>
. After convergence of the outer loop we obtain an

estimate of β and a prediction of ε. The detailed steps of the algorithm are

now outlined as follows:

1. Input: Responses y = (y1, . . . , yn)>, design matrix X.

2. Initial estimate θ̂0 for outer iteration:

(a) Calculate estimate β̂0 of β from the GLM without random effects

and linear predictor η = Xβ.

(b) Set ε̂0 = (y− µ̂)
∂η̂

∂µ̂
(McCullagh and Nelder, 1989, p.40) which are

residuals obtained from the GLM fit.

(c) Set θ̂0 = (β̂
>
0 , ε̂

>
0 )>.

3. Start outer iteration: Set k = 1

4. Computation of h̃: Calculate h̃(π, θ̂k−1) for all π ∈ Sn.

5. Initial estimate γ̂(0) = ((γ̂
(0)
1 )>, (γ̂

(0)
2 )>)> for inner iteration: Set γ̂(0) =

θ̂k−1.

6. Start inner iteration: Set l = 1.

7. Preliminary calculations for WLS (3.37): Calculate∑
π∈Sn

h̃(π, θ̂k−1)W π,γ
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and ∑
π∈Sn

h̃(π, θ̂k−1)W π,γ(zπ,γ −Zπγ2)

using γ = γ̂(l−1) and γ̂2 = γ̂
(l−1)
2 .

8. Update estimate of γ1: Solve (3.37) for γ1 and use the solution as the

new estimate γ̂
(l)
1 .

9. Update estimate of γ2: Calculate γ̂
(l)
2 using (3.50) substituting γ2 for ε.

10. New estimate from inner iteration: Set γ̂(l) = ((γ̂
(l)
1 )>, (γ̂

(l)
2 )>)>.

11. Test of convergence of γ̂1 for inner iteration: If ||γ̂(l)
1 − γ̂

(l−1)
1 || < δ̃ where

δ̃ is a very small positive quantity, terminate inner iteration. Otherwise

set l = l + 1 and go to step 7.

12. New estimate from outer iteration: Set θ̂k = (β̂
>
k , ε̂

>
k )> = γ̂(l).

13. Test of convergence of β̂ for outer iteration: If ||β̂k − β̂k−1|| < δ̃, termi-

nate outer iteration. Otherwise set k = k + 1 and go to step 4.

14. Output: The estimate θ̂k = (β̂
>
k , ε̂

>
k )> of θ = (β>, ε>)>.

The steps of the algorithm are given in Figure 3.2 via a flowchart.
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s3. Outer it-

eration: k=1

s2. Initial θ̂0

from GLM
s1. Input y

s4. Compute

h̃(π, θ̂k−1)

s5. Choose γ̂0=θ̂k−1

s6. Inner it-

eration: l=1

s7. Preliminary

calculations for WLS

s8. Update γ̂
(l)
1

using (3.37)

s9. Update γ̂
(l)
2

using (3.50)

s10. Set γ̂(l) =

((γ̂
(l)
1 )>, (γ̂

(l)
2 )>)>

Set l=l+1

s11.

Converged

γ̂1?

s12. Set θ̂k = γ̂(l)

s13.

Converged

β̂?

Set k=k+1

s14. Output θ̂

No

Yes

No

Yes

Figure 3.2: Flowchart of the randomization-based algorithm.

3.7 Simulation Study

We assess the estimated parameters for the RB-GLMM (2.26) (equivalently

model (2.12)) for the CRD via simulation studies by using the randomization-

based algorithm. To this end, we generated Poisson responses from the RB-

GLMM and run the algorithm for estimating the model parameters on the

simulated data. We then compare the results obtained from the randomization-

based algorithm with results obtained from fitting a Poisson GLM and a

HGLM (hierarchical generalized linear model) to the same set of simulated

data. We use the R-package hglm for fitting the HGLM which is based on the

h-likelihood method of estimation (Lee and Nelder, 1996, Lee and Lee, 2012)

and suitable for correlated random effects in GLMMs (Rönneg̊ard et al., 2010).

When fitting the HGLM, we assume correlated and normally distributed ran-
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dom effects. In Section 3.7.1, we describe the simulation settings for different

examples for the CRD including unit contributions, treatment contributions

and true parameter values. Section 3.7.2 describes the generation of the data

from the RB-GLMM for the CRD. We present and compare the simulation

results in Section 3.7.3. Moreover, Section 3.7.4 summarizes the findings of

the simulation studies.

3.7.1 Simulation Settings

We consider several examples for simulating data from the randomization-

based model (2.12). We first specify the number of treatments (t) and the

number of replications of each treatment (r) allocated to the experimental

units according to a CRD. It follows that in total there are n = rt experi-

mental units. We then specify the i-th unit contributions (ui) and the j-th

treatment contributions (vj) in a fixed design (see model (2.1)).

For Examples 1-3, we set t = 2, v1 = 1.75 and v2 = 1.25 where the values of

the vi’s have been chosen arbitrarily. We then randomly generated unit con-

tributions ui, for i = 1, 2, . . . , n, from the t-distribution with three degrees of

freedom (t3) for Examples 1 and 2, and from the standard normal distribution

N(0, 1) for Example 3. Following the notation in equation (2.2), we recode the

ui and vj to specify true values for the overall mean µ, the fixed treatment ef-

fects parameters αj, for j = 1, 2 . . . , t, and the unit errors ei, for i = 1, 2 . . . , n,

with variance component σ2. The ui and ei values for the different examples

are given in Table 3.2.

Table 3.2: Unit contributions used in examples.

Examples t r ui and ei values for i = 1, 2 . . . , n Distribution

Example 1

2 3

ui: 0.790, -2.064, -1.345, 0.247, 2.987, 0.075 t3

ei: 0.675, -2.179, -1.460, 0.132, 2.872, -0.040 -

Example 2
ui: 1.176, 0.429, -0.058, 0.836, 1.261, 2.843 t3

ei: 0.095, -0.652, -1.140, -0.245, 0.180, 1.762 -

Example 3
ui: -0.626, 0.184, -0.836, 1.595, 0.330, -0.820 N(0, 1)

ei: -0.597, 0.213, -0.807, 1.624, 0.359, -0.791 -

For estimating the model parameters we use the constraint
∑t

j=1 αj = 0 and

estimate (t − 1) fixed treatment effect parameters α1, . . . , αt−1 and µ. True
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parameter values for different examples are given in Table 3.3.

3.7.2 Data Generation

Recall that the design matrix X is overparameterized and we use the same X

and β for simulating the data which are defined in Section 2.3. We simulated

1000 Poisson data sets of size n = 6 from the RB-GLMM for the CRD (2.26).

As can be seen from Table 3.2, the ui and ei values are the same in 1000

simulations. This is because we generated ui values only once in the simulation.

We used the linear predictor Xβ + ε where, in each simulation, Xβ is fixed

while ε is formed by randomly permuting the ei values given in Table 3.2. More

precisely, in each simulation ε = (eπ(1), . . . , eπ(6))
> for some randomly chosen

π ∈ S6. As a result, the data are generated from the Poisson distribution using

many different linear predictors based on the randomization approach.

3.7.3 Simulation Results

In this section, we present simulation results in order to assess and compare

the estimates and their standard errors. For implementing the model estima-

tion, we run the randomization-based algorithm where we do not assume any

distribution for the random effects. In addition, we fitted a Poisson GLM and

a HGLM to the same set of simulated data. The GLM and HGLM are consid-

ered as misspecified models in the sense that there are no random effects in the

GLM framework, and the random effects of the HGLM fitting are assumed to

follow the normal distribution. For each combination of the true parameters,

the data are generated from the RB-GLMM for the CRD.

We summarize the results by averaging over all data sets where the estimation

algorithms converged, except the HGLM in Example 2. In Example 2, we ex-

cluded the outputs for the data set 319 before summarizing the results. This is

because we observed an unusual outlier for the estimated variance component

σ̂2 (σ̂2 = 1160.5370066), when the true value of σ2 was 0.822. In order to com-

pare the estimated model parameters, we present a summary of the simulation

results in Table 3.3.

From Table 3.3, it can be seen that the GLM and the randomization-based
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algorithm converged in 100% of all cases for each example. The convergence

for the HGLM estimation algorithm varies slightly between the examples. The

HGLM estimation algorithm converged for 981 (98.1%), 988 (98.8%) and 991

(99.1%) out of 1000 simulated data sets for Examples 1-3 respectively. In these

examples, the convergence is higher for the randomization-based algorithm

than for the HGLM estimation algorithm.

Table 3.3: True parameters, estimates, empirical standard errors (SE), mean

square error of prediction (MSEP) and convergence under different models.

Example 1: True µ = 1.615, α1 = 0.25 and σ2 = 2.60.

Models µ̂ SE(µ̂) α̂1 SE(α̂1) σ̂2 SE(σ̂2) MSEP Converged

GLM 2.429 0.229 0.236 1.087 – – – 100%

HGLM 1.454 0.339 0.271 0.851 4.313 3.374 41.763 98.1%

RB-GLMM 1.970 0.210 0.247 0.428 1.246 0.515 5.275 100%

Example 2: True µ = 2.581, α1 = 0.25 and σ2 = 0.822.

Models µ̂ SE(µ̂) α̂1 SE(α̂1) σ̂2 SE(σ̂2) MSEP Converged

GLM 2.891 0.125 0.263 0.610 – – – 100%

HGLM 2.529 0.155 0.270 0.460 1.292 0.955 12.806 98.8%

RB-GLMM 2.666 0.125 0.224 0.250 0.562 0.199 0.905 100%

Example 3: True µ = 1.971, α1 = 0.25 and σ2 = 0.741.

Models µ̂ SE(µ̂) α̂1 SE(α̂1) σ̂2 SE(σ̂2) MSEP Converged

GLM 2.241 0.170 0.285 0.574 – – – 100%

HGLM 1.887 0.222 0.291 0.482 1.192 0.973 11.473 99.1%

RB-GLMM 2.075 0.166 0.205 0.320 0.436 0.225 1.109 100%

From Table 3.3, it can also be seen that the randomization-based estimated

overall mean effect (µ̂) is less biased than the corresponding GLM estimates in

each example. In each example, both the randomization-based and the GLM

estimates of µ are overestimated whereas the HGLM estimates are underes-

timated. The empirical standard errors (SE) of µ̂ are substantially smaller

for the randomization-based estimates than for the GLM and for the HGLM

estimates in each example, except for the GLM in Example 2. In Example 2,

the SE of µ̂ (0.125) for the GLM is the same as for the RB-GLMM.

In Example 1, the randomization-based estimated treatment effect parameter

α̂1 is very close to the true α1 i.e., less biased (α1 = 0.25 and α̂1 = 0.247)

than the corresponding estimates obtained from the GLM (α̂1 = 0.236) and

the HGLM (α̂1 = 0.271) estimation algorithm. However, in Examples 2 and 3,

the randomization-based α̂1 is underestimated (0.224 and 0.205) whereas the
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corresponding estimates for the GLM (0.263 and 0.285) and the HGLM (0.270

and 0.291) are overestimated. Moreover, the randomization-based α̂1 is also

more precise as its SE is substantially smaller than the GLM and the HGLM

estimates in each example.

The estimated variance component σ̂2 obtained from the randomization-based

algorithm is also less biased in each example (σ2 = 2.60, σ̂2 = 1.246 for Ex-

ample 1; σ2 = 0.822, σ̂2 = 0.562 for Example 2; and σ2 = 0.741, σ̂2 = 0.436

for Example 3) than the corresponding HGLM estimates (σ̂2 = 4.313 for Ex-

ample 1, σ̂2 = 1.292 for Example 2 and σ̂2 = 1.192 for Example 3). Moreover,

the randomization-based estimate of σ2 is underestimated whereas the cor-

responding HGLM estimate is overestimated in each example. It is also the

case that the empirical standard errors of σ̂2 are substantially smaller for the

randomization-based algorithm than for the HGLM estimation algorithm in

each example.

Table 3.3 also shows that the MSEP values for predicting the random effects,

calculated by (3.39), are substantially smaller for the RB-GLMM (5.275, 0.905

and 1.109 for Examples 1-3 respectively) than the corresponding values for the

HGLM (41.775, 12.806 and 11.473 for Examples 1-3 respectively).

3.7.4 Conclusion

From the simulation results it can be concluded that, for the examples consid-

ered, the randomization-based estimated fixed effects parameters (µ̂ and α̂1)

are less biased and more precise in the Poisson GLMM than the corresponding

GLM estimates in most cases. This is due to the fact that there are no random

effects in the GLM framework, whereas the data used in the simulation were

generated with random effects in addition to fixed effects from the RB-GLMM.

The estimated fixed effects parameters obtained from both the randomization-

based and the HGLM estimation algorithm in Poisson GLMMs are very close to

true values in most cases. However, the randomization-based estimated fixed

effects parameters are more precise than the HGLM estimates. Moreover, the

randomization-based algorithm gives better and more precise estimates of the

variance component in Poisson GLMMs than the HGLM estimation algorithm
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when there was misspecification of the random effects distribution. A possible

explanation is that the randomization-based algorithm does not make any

assumption about the random effects distribution, while normality is assumed

in the HGLM estimation algorithm.

3.8 An Example with Real Data

The Poisson GLMM with individual level random effects (number of obser-

vations is equal to the number of elements of the vector of the random ef-

fects), equivalently the RB-GLMM for the CRD (2.26), can be applied to

model overdispersed count data (Rabe-Hesketh and Skrondal, 2012, p.706).

For details on overdispersion see Chapter 7 of Hilbe (2011). It has shown in

Chapters 8 and 9 by Hilbe (2011) that a negative binomial (NB) regression

can also be applied as an alternative to a Poisson regression for analyzing the

overdispersed count data. The IWLS estimation algorithm is also used in the

negative binomial GLM as in standard GLMs.

Overdispersion can be identified by using the value of the Pearson χ2-statistic

divided by the degrees of freedom (df). We call this value the dispersion. If

this is greater than 1, then the model is overdispersed (Hilbe, 2011, p.142).

The Pearson χ2-statistic and residuals [Hilbe (2011, p.62) and Stroup (2012,

p. 343)] are defined by

Pearson χ2 =
n∑
i=1

(yi − µ∗i )2

V (µ∗i )
(3.57)

and

residuals =
yi − µ∗i√
V (µ∗i )

(3.58)

respectively, where µ∗i is the expected counts and V is the variance function.

The function V is equal to µ∗i and µ∗i +κµ∗i
2 for the Poisson and NB regression

models respectively where κ is the dispersion parameter (Hilbe, 2011, p.63).

When κ → 0 the negative binomial model becomes Poisson (Hilbe, 2011,

p.221). We consider an overdispersed count data set for fitting the different

models, the details of which are described in the next sections.
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3.8.1 Data and Variables

We use the Medpar data which stands for the US national Medicare inpatient

hospital database. This data set is organized yearly from the hospital records

and prepared for each state. The details can be found in Hilbe (2011, p.100)

and the R-package COUNT. There are 115 variables in the full Medpar data

set and 14 million records, with one record for each hospitalization.

In the medpar file, the data come from 1991 Medicare files for the state of Ari-

zona and only one diagnostic group (DRG 112) is considered. The data have

been selected at random from the original data file and there are 1495 obser-

vations in the medpar data file with 10 variables. The data were downloaded

from the website http : //www.cambridge.org/9780521857727 of Cambridge

University Press.

The count response variable is the los: Length-of-Stay (Days in the Hospital)

and we only consider the covariate hmo (Health Maintenance Organization).

The variable hmo is binary and coded as hmo = 1 if the patient belongs to a

Health Maintenance Organization, 0 otherwise.

3.8.2 Analysis

In this section, we first fitted a Poisson GLM to the full medpar data set con-

sisting of 1495 observations from 54 hospitals in order to investigate whether

overdispersion is present or not. The summary of the results is given in Table

3.4.

Table 3.4: Results obtained by fitting Poisson GLM to the full medpar data

with n = 1495.

V ariable Estimate SE p-value Dispersion

Constant 2.310 0.009 0.000
7.821

hmo -0.150 0.024 0.000

From Table 3.4 it can be seen that the Pearson dispersion value is 7.821 which

shows overdispersion in the data. Moreover, the hmo is found to be highly

significant (p-value < 0.01). Similar results were also found by Hilbe (2011) in
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Chapter 6. To analyze this data set, Hilbe (2011) again fitted the NB regres-

sion and showed in Chapter 8 that NB regression fits better than the Poisson

GLM in the presence of overdispersion.

However, we now consider a subset of the medpar data in order to fit the

Poisson RB-GLMM. In the full medpar data set, of the 54 hospitals, there

were 40 hospitals that each had more than 6 observations. We selected one

hospital from these 40 hospitals at random and found 74 observations in

the selected hospital. We then selected 6 observations at random from this

hospital and fitted different models to the selected subset of medpar data

(medpar small). The summary of results obtained from fitting different mod-

els to the medpar small data set is given in Table 3.5.

Table 3.5 shows that the Pearson dispersion value for the Poisson GLM is 2.457

which shows the presence of overdispersion in the selected subset of the medpar

data. We then fitted the NB regression model to the same subset of the data

and observed that the Pearson dispersion is 1.351. It can be concluded that

there is still some overdispersion as the dispersion value is greater than 1.
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Table 3.5: Results obtained from fitting different models to medpar small

data with n = 6.

Poisson GLM

V ariable Estimate SE p-value Dispersion

Constant 1.833 0.200 0.000
2.457

hmo -0.734 0.455 0.106

Negative Binomial GLM

V ariable Estimate SE p-value Dispersion

Constant 1.833 0.282 0.000
1.351

hmo -0.734 0.571 0.198

Poisson HGLM

V ariable Estimate SE p-value Dispersion

Constant 1.705 0.282 0.104
0.387

hmo -0.743 0.731 0.495

Poisson RB-GLMM

V ariable Estimate SE p-value Dispersion

Constant 1.623 0.250 0.000
0.677

hmo -0.234 0.856 0.785

In addition, we fitted a Poisson HGLM with correlated and normally dis-

tributed random effects, and the RB-GLMM where the assumption of nor-

mality is not required. In the RB-GLMM, we compute the Hessian (second

derivative of the log-likelihood) matrix by using the R-package numDeriv

and hence obtain the variance-covariance matrix of the estimated parameters

in order to calculate standard errors of the estimates. The estimated variance

component σ̂2 is calculated by Lemma 3(ii) in Section 2.1.5 and found to be

0.328 and 0.148 for the HGLM and the RB-GLMM respectively.

It has shown that standard errors of the estimates may be underestimated

because of the overdispersion in the data (Hilbe, 2011, p.141). From Table 3.5

it can be observed that this is the case in the Poisson GLM compared with

the other three models.

The Pearson dispersion values are found to be less than 1 in both the HGLM

(0.387) and RB-GLMM (0.677) and suggest that the Poisson GLMM with

individual level random effects may be a good choice for analyzing the overdis-

persed count data. However, the main goal is to show an application of the

RB-GLMM to real data set. Moreover, we compare the observed counts with
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predicted values under different models in Table 3.6 and Figure 3.3.

Table 3.6: Observed vs Predicted days in Hospital under different models.

No. Observed
Predicted

Poisson-GLM NB-GLM HGLM RB-GLMM

1 10 6 6 9 9

2 1 3 3 2 3

3 9 6 6 8 8

4 2 6 6 3 3

5 5 3 3 4 3

6 4 6 6 4 4
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Figure 3.3: Observed vs Predicted days in Hospital

It can be seen from Table 3.6 and Figure 3.3 that the predicted number of days

in the hospital are very close to the corresponding observed days for both the

HGLM and the RB-GLMM. However, this is not the case in the Poisson and

NB regressions.

3.9 Computational Limitations

The results obtained from the randomization-based algorithm in Sections 3.7

and 3.8 are promising. However, there are some computational limitations for
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applicability of the randomization-based algorithm. Here we discuss some of

the challenges for implementing the algorithm. The number of all possible per-

mutations (n!) in the symmetric group Sn increases rapidly with the increase in

sample size n and so does both the memory and computational time needed by

the randomization-based estimation algorithm. The algorithm then becomes

computationally infeasible for n > 10 on standard personal computers (PCs)

such as 8-core PCs.

To overcome this difficulty we deal with the required computations by using

batch-wise permutations instead of a single permutation. We split all the

permutations into batches of suitable size (based on the number of available

cores) so that each one of them can be stored and processed into the available

memory. The results are then aggregated when all batch-wise computations

are completed. However, another challenge in handling the large number of

batches is that it sometimes exceeds the available memory due to garbage col-

lection failure. We enforce the memory deallocation prior to invoking another

batch and avoid exceeding the memory limit. We are then able to handle the

memory problem by deleting the collected garbage stored from previous com-

putations.

The next challenge to deal with is the required computation time. We ap-

proach the problem by processing a number of batches in parallel on different

cores. Using the High Performance Computing (HPC) services at Queen Mary

University of London, we managed to implement the randomization-based es-

timation algorithm for up to n = 12 (12! = 479001600 permutations) with 48

cores (12 CPUs-central processing units with 4 cores each). However, in the

HPC facility, it took approximately 32 hours to finish the processing of the

algorithm for a single data set of size n = 12.

As a result, to implement the algorithm for larger samples, we plan to use a

random subset of permutations instead of all possible permutations from Sn.

We will then compute all the relevant steps of the algorithm for the randomly

selected subset of permutations and summarize the results based on this subset

of permutations.
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Part II

Misspecification of Correlation

and Distribution of Random

Effects in GLMMs
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Chapter 4

Derivation of the RB-GLMM

for the RCBD with Random

Block Effects

In the second part of my project, we investigate the impact of misspecifica-

tion of the correlation structure and of the random effects distribution via

an extensive simulation study (see Chapter 5). To this end, we first derive a

RB-GLMM for the RCBD with random block effects. A model with random

block effects can be derived by randomizing the blocks in addition to the units

(Section 1.4.2). The symmetric groups Sb and St are used for the random-

ization of b blocks and t treatments within each block, respectively. In the

context of linear models Brien and Bailey (2006) represent the corresponding

randomization by elements of the wreath product St o Sb of St and Sb (Section

A.1.3). Here we generalize this approach to GLMMs. The generalization fol-

lows a pattern similar to the derivation of the model for the CRD in Section 2.1.

We begin in Section 4.1 by formulating a model within the GLM framework.

In Section 4.2, we introduce some notation and random variables which are

used in the derivation of the model. To obtain the GLMM for the RCBD,

we derive the conditional expectation of the responses given the vector of the

random effects. This is the content of Section 4.3. This derivation is similar

to the derivation of the conditional expectation in the model for the CRD in

Section 2.1.3. However, in the RCBD setting we have two random effects,

one for random blocks and the other is associated with random errors for the
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experimental units. In Section 4.4, we apply the link function to the derived

conditional expectation and finally obtain the RB-GLMM for the RCBD with

random block effects, which we call Model 2.

We then derive moments of the random effects, random blocks and random

errors, in Section 4.5. It is shown that the random effects are correlated and

that the random blocks and random unit errors are uncorrelated. In Section

4.6, we summarize the derived results and present Model 2 in matrix notation

with variance-covariance matrices for random blocks and unit errors derived

from the randomization. The derivations are similar to those in Section 2.1

but are complicated by the more complex type of design.

4.1 GLM for the RCBD

For i = 1, . . . , t, j = 1, . . . , t and k = 1, . . . , b let the random variable Xi,j,k

represent the response for the i-th unit, j-th treatment and k-th block whose

distribution is assumed to be from the exponential family. Formally Xi,j,k is a

real random variable as before on a probability space (Ω,F , P ) (see appendix

Section A.2.1). We adapt the assumption of unit-treatment additivity (Cox,

2009, Kempthorne, 1955) for g(E(Xi,j,k)) where E(Xi,j,k) is the expectation

of Xi,j,k and g is the link function as before. More precisely, adapting the

approach of Kempthorne (1955) we assume that

g(E(Xi,j,k)) = ui,k + vj, (4.1)

where ui,k and vj denote fixed contributions from the i-th unit of the k-th

block and the j-th treatment, respectively. We also assume that for every

k the values ui,k are all different. Write ū =
1

bt

t∑
i=1

b∑
k=1

ui,k, v̄ =
1

t

t∑
j=1

vj and

ūk =
1

t

t∑
i=1

ui,k. Letting µ = ū+ v̄, αj = vj− v̄, βk = ūk− ū and ei,k = ui,k− ūk,

equation (4.1) can be rewritten as

g(E(Xi,j,k)) = µ+ αj + βk + ei,k, (4.2)

where µ is the grand mean, αj is the j-th treatment effect, βk is the k-th block

effect and the unit errors e1,k, . . . , et,k are assumed to be all different for every

k = 1, . . . , b. We consider the treatment j as being fixed for every block k by

73



the specific design d = (j1, . . . , jt) and assume that

(i) for every block k the random variables X1,j1,k, . . . , Xt,jt,k are independent,

in particular, Xi,ji,k and Xi′ ,j
i
′ ,k are independent for i 6= i

′
which means

that in the same block outcomes for the different units are independent;

(ii) for k 6= k
′

the random variables Xi,ji,k and Xi′ ,j
i
′ ,k
′ are also independent

i.e., outcomes for units in different blocks are independent.

4.2 Notation and Definitions

Let U be the uniform distribution on StoSb and a = t!bb! is the number elements

in the wreath product St oSb. The probability of randomly selecting an element

(π, δ) = (π1, . . . , πb, δ) from St o Sb is U({(π, δ)}) = 1/a. For i = 1, . . . , t and

k = 1, . . . , b we define ε̃i,k : St o Sb → R by

ε̃i,k(π, δ) =
∑

(σ,τ)∈StoSb

eστ(k)(i),τ(k) 1{(σ,τ)}(π, δ) = eπδ(k)(i),δ(k) (4.3)

and B̃k : St o Sb → R by

B̃k(π, δ) =
∑
τ∈Sb

βτ(k)1{τ}(δ) = βδ(k) (4.4)

for every (π, δ) ∈ St o Sb. Here ε̃i,k and B̃k are random variables on the proba-

bility space (St oSb,P(St oSb), U), where P(St oSb) is the power set of St oSb.
Note that B̃ =

(
B̃1, . . . , B̃b

)>
is the vector of random variables B̃1, . . . , B̃b.

Further define εi,k : St o Sb × Ω→ R by

εi,k((π, δ), ω) = ε̃i,k(π, δ) (4.5)

and Bk : St o Sb × Ω→ R with

Bk((π, δ), ω) = B̃k(π, δ) (4.6)

for every ((π, δ) , ω) ∈ St o Sb ×Ω. Therefore εi,k and Bk are random variables

on the probability space (St oSb×Ω,P(St oSb)⊗F , U ⊗P ), where St oSb×Ω

is the Cartesian product, P(St o Sb)⊗F is the product σ-field and U ⊗ P is
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the product measure on P(St o Sb)⊗F . For the fixed design d = (j1, . . . , jt)

in each block, and for every i = 1, . . . , t, and k = 1, . . . , b, we define Yi,ji,k :

St o Sb × Ω→ R by

Yi,ji,k((π, δ), ω) = Xπδ(k)(i),ji,δ(k)(ω) (4.7)

for every ((π, δ), ω) ∈ St oSb×Ω. This is a random variable on the probability

space (St o Sb ×Ω,P(St o Sb)⊗F , U ⊗ P ) which represents the response after

the randomization of blocks and units to treatments within block. That is

Yi,ji,k is the response for the unit with label i and treatment ji in block k.

4.3 Conditional Expectation

Our main goal is to derive from the randomization and equation (4.2) a GLMM

in standard form by incorporating two random effects associated with the

RCBD. This requires deriving a form similar to the one in equation (1.2). In

order to do this, we first derive the conditional expectation of the responses

Yi,ji,k given the vector of two random effects, random blocks (B) and random

errors (ε), by using the same approach as in Section 2.1.3. More precisely, we

compute E(Yi,ji,k|ε,B) = E(Yi,ji,k|F (ε,B)), where F (ε,B) is the σ-field gen-

erated by the vector (ε,B) = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b, B1, . . . , Bb)
> cor-

responding to the vector of random errors ε = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b)
>

and the vector of random blocks B = (B1, . . . , Bb)
>.

For every component εi,k and Bk of (ε,B) there exist the σ-fields generated by

εi,k and Bk which we call F (εi,k) and F (Bk), respectively. Moreover, F (εi,k)

and F (Bk) consist of the sets

ε−1
i,k (B) = {((π, δ) , ω) ∈ St o Sb × Ω : εi,k ((π, δ) , ω) ∈ B}

and

B−1
k (B) = {((π, δ) , ω) ∈ St o Sb × Ω : Bk ((π, δ) , ω) ∈ B} ,

respectively, where B is a Borel set. It follows that F (εi,k) = {ε−1
i,k (B) : B ∈

B(R)} and F (Bk) = {B−1
k (B) : B ∈ B(R)}, where B(R) is the Borel σ-field.

In addition, there is the σ-field generated by the vector (ε,B) of random vari-
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ables, for which we write F (ε,B), and which is defined as the σ-field generated

by the union of F (ε1,1), . . .F (εt,1), . . .F (ε1,b), . . . ,F (εt,b), F (B1), . . . ,F (Bb)

i.e., F (ε,B) is the σ-field generated by

(
b⋃

k=1

t⋃
i=1

F (εi,k)

)⋃( b⋃
k=1

F (Bk)

)
.

Equivalently, F (ε,B) is the smallest σ-field (Section A.2.4) which contains

the union

(
b⋃

k=1

t⋃
i=1

F (εi,k)

)⋃( b⋃
k=1

F (Bk)

)
.

Now we wish to find the conditional expectation E(Yi,ji,k|F (ε, B)). The fol-

lowing results, Lemma 13 and Corollary 4, will help us to derive that F (ε,B)

is the σ-field generated by the partition {{(π, δ)}×Ω : (π, δ) ∈ StoSb}. This al-

lows us to use Theorem 2 (Section A.2.6) to derive the conditional expectation

E(Yi,ji,k|ε, B). The derivations of these results are similar to the derivations

in Section 2.1.3. The details of these derivations are given below.

Lemma 13. Let εi,k and Bk be the components of the random vector (ε,B)

defined by (4.5) and (4.6), respectively. The σ-field {A× Ω : A ⊆ St o Sb} gen-

erated by the set {{(π, δ)} × Ω : (π, δ) ∈ St o Sb} is a subset of F (ε,B) i.e.,

{A× Ω : A ⊆ St o Sb} ⊆ F (ε,B).

Proof. We need to show that for every (π, δ) ∈ St o Sb the set {(π, δ)} ×
Ω ∈ F (ε,B). If we can show this, then we can write {{(π, δ)} × Ω :

(π, δ) ∈ St o Sb} ⊆ F (ε,B). Therefore, the σ-field generated by the set

{{(π, δ)} × Ω : (π, δ) ∈ St o Sb} is a subset of F (ε,B). Applying part (iii)

of Lemma 19 of the appendix with S = St o Sb and s = (π, δ) it can be seen

that {A× Ω : A ⊆ St o Sb} is the σ-field generated by the set {{(π, δ)} × Ω :

(π, δ) ∈ St o Sb} and it follows that {A× Ω : A ⊆ St o Sb} ⊆ F (ε,B). Now let

(π, δ) ∈ St o Sb be fixed. Then by definition and using (4.5) and (4.3) we have

εi,k((π, δ) , ω) = ε̃i,k((π, δ)) = eπδ(k)(i),δ(k). Moreover, by using (4.6) and (4.4)

we can write Bk((π, δ) , ω) = B̃k((π, δ)) = βδ(k). It follows that

ε−1
i,k ({eπδ(k)(i),δ(k)})

=
{

((σ, τ) , ω) ∈ St o Sb × Ω : εi,k ((σ, τ) , ω) = eπδ(k)(i),δ(k)

}
∈ F (ε,B)

and

B−1
k ({βδ(k)}) =

{
((σ, τ) , ω) ∈ St o Sb × Ω : Bk ((σ, τ) , ω) = βδ(k)

}
∈ F (ε,B)

since εi,k and Bk are measurable. It also follows that by using the intersection
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property (A.1) of the σ-field

b⋂
k=1

t⋂
i=1

ε−1
i,k

(
{eπδ(k)(i),δ(k)}

)
∈ F (ε,B) (4.8)

and
b⋂

k=1

B−1
k ({βδ(k)}) ∈ F (ε,B). (4.9)

Under the assumption that β1, . . . , βb are all different we can write

b⋂
k=1

B−1
k

(
{βδ(k)}

)
=

b⋂
k=1

{
((σ, τ) , ω) ∈ St o Sb × Ω : Bk ((σ, τ) , ω) = βδ(k)

}
=

b⋂
k=1

{
((σ, τ) , ω) ∈ St o Sb × Ω : B̃k (σ, τ) = βδ(k)

}
=

b⋂
k=1

({
(σ, τ) ∈ St o Sb : B̃k (σ, τ) = βδ(k)

}
× Ω

)
=

(
b⋂

k=1

{
(σ, τ) ∈ St o Sb : B̃k (σ, τ) = βδ(k)

})
× Ω

=

(
b⋂

k=1

{
(σ, τ) ∈ St o Sb : βτ(k) = βδ(k)

})
× Ω. (4.10)

Since we assume that for every k = 1, . . . , b the values e1,k, . . . , et,k are all

different so again we can write

b⋂
k=1

t⋂
i=1

ε−1
i,k

(
{eπδ(k)(i),δ(k)}

)
=

b⋂
k=1

t⋂
i=1

{
((σ, τ) , ω) ∈ St o Sb × Ω : εi,k ((σ, τ) , ω) = eπδ(k)(i),δ(k)

}
=

b⋂
k=1

t⋂
i=1

{
((σ, τ) , ω) ∈ St o Sb × Ω : ε̃i,k (σ, τ) = eπδ(k)(i),δ(k)

}
=

b⋂
k=1

t⋂
i=1

({
(σ, τ) ∈ St o Sb : ε̃i,k (σ, τ) = eπδ(k)(i),δ(k)

}
× Ω

)
=

(
b⋂

k=1

t⋂
i=1

{
(σ, τ) ∈ St o Sb : ε̃i,k (σ, τ) = eπδ(k)(i),δ(k)

})
× Ω. (4.11)
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Now by using (4.10) and (4.11) we see that(
b⋂

k=1

t⋂
i=1

ε−1
i,k

(
{eπδ(k)(i),δ(k)}

))⋂(
b⋂

k=1

B−1
k

(
{βδ(k)}

))
= {(π, δ)} × Ω.

Thus, using (4.8) and (4.9), for every (π, δ) ∈ St o Sb the set {(π, δ)} × Ω ∈
F (ε,B). �

Now by applying part (iv) of Lemma 19 to V = (ε, B) with

(ε,B) = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b, B1, . . . , Bb)
> (4.12)

we can write

F (ε,B) ⊆ {A× Ω : A ⊆ St o Sb} . (4.13)

Thus from equation (4.13) and Lemma 13 we obtain the following result:

Corollary 4. The σ-field F (ε,B) generated by the vector (ε,B) defined in

(4.12) is F (ε,B) = {A× Ω : A ⊆ St o Sb} .

Furthermore, we have St oSb×Ω =
⋃

(π,δ)∈StoSb
({(π, δ)} × Ω). Since {A×Ω : A ⊆

St oSb} is the σ-field generated by the set {{(π, δ)}×Ω : (π, δ) ∈ St oSb} it fol-

lows from Corollary 4 that F (ε,B) is the σ-field generated by {{(π, δ)}×Ω :

(π, δ) ∈ St o Sb}.

In order to find E(Yi,ji,k|ε,B) = E(Yi,ji,k|F (ε,B)) we can apply Theorem 2 in

the appendix to Ω̃ = StoSb×Ω and Zl =
{(
π(l), δl

)}
×Ω =

{(
π

(l)
1 , . . . , π

(l)
b , δl

)}
×

Ω for l = 1, . . . , t!bb! = a (say), where
(
π(1), δ1

)
=
(
π

(1)
1 , . . . , π

(1)
b , δ1

)
, . . . ,(

π(a), δa
)

=
(
π

(a)
1 , . . . , π

(a)
b , δa

)
are the different elements of St o Sb. So s in

Theorem 2 is equal to the number of elements in St o Sb i.e., s = t!bb! =

a. Also G in Theorem 2 is the σ-field generated by {Zl : l = 1, . . . , a} ={{(
π(l), δl

)}
× Ω : l = 1, . . . , a

}
so G = F (ε,B).

Next, in Lemma 14 we derive the conditional expectation E(Yi,ji,k|ε,B) by

substituting the random variable Yi,ji,k : St o Sb × Ω → R defined on the

probability space (Ω,F , P ) = (St o Sb × Ω,P(St o Sb) ⊗ F , U ⊗ P ) for the

random variable X in Theorem 2.

78



Lemma 14. The conditional expectation of Yi,ji,k given (ε,B) is

E(Yi,ji,k|ε,B) =
∑

(σ,τ)∈StoSb

1{(σ,τ)}×Ω

∫
Ω

Xστ(k)(i),j,τ(k)(ω̃)P (dω̃). (4.14)

Proof. According to Theorem 2 in the appendix and by using equation (4.7)

the conditional expectation is equal to

E(Yi,ji,k|ε,B) = E(Yi,ji,k|F (ε,B))

=
a∑
l=1

1

(U ⊗ P )({(π(l), δl)} × Ω)

∫
{(π(l),δl)}×Ω

Yi,ji,k((π, δ), ω̃)(U ⊗ P )

d ((π, δ), ω̃) 1{(π(l),δl)}×Ω

=
∑

(σ,τ)∈StoSb

1

(U ⊗ P ) ({(σ, τ)} × Ω)

∫
{(σ,τ)}×Ω

Yi,ji,k((π, δ), ω̃)(U ⊗ P )

d((π, δ), ω̃)1{(σ,τ)}×Ω

=
∑

(σ,τ)∈StoSb

1

U({(σ, τ)})P (Ω)

∫
{(σ,τ)}

∫
Ω

Yi,ji,k((π, δ), ω̃)P (dω̃)U(d(π, δ))

1{(σ,τ)}×Ω

=
∑

(σ,τ)∈StoSb

1{(σ,τ)}×Ω

∫
Ω

Yi,ji,k((σ, τ), ω̃)P (dω̃)

=
∑

(σ,τ)∈StoSb

1{(σ,τ)}×Ω

∫
Ω

Xστ(k)(i),j,τ(k)(ω̃)P (dω̃)

�

The conditional expectation E(Yi,ji,k|ε,B) is a random variable. For every

((π, δ), ω) ∈ St oSb×Ω the corresponding realization of the conditional expec-

tation is equal to

E(Yi,ji,k|F (ε,B))((π, δ), ω)

=
∑

(σ,τ)∈StoSb

1{(σ,τ)}×Ω((π, δ), ω)

∫
Ω

Xστ(k)(i),ji,τ(k) (ω̃)P (dω̃)

=
∑

(σ,τ)∈StoSb

1{(σ,τ)} (π, δ)

∫
Ω

Xστ(k)(i),ji,τ(k) (ω̃)P (dω̃)

=
∑

(σ,τ)∈StoSb

1{(σ,τ)}(π, δ)E(Xστ(k)(i),ji,τ(k)) = E(Xπδ(k)(i),ji,δ(k)). (4.15)

Equation (4.15) does not depend on ω ∈ Ω, rather only on the element (π, δ) ∈
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St o Sb. Therefore we can write

E(Yi,ji,k|ε, B) =

 ∑
(σ,τ)∈StoSb

1{(σ,τ)}

∫
Ω

Xστ(k)(i),ji,τ(k) (ω̃)P (dω̃)

 ◦ p̂1,

where p̂1 : St o Sb × Ω→ St o Sb with p̂1 ((π, δ) , ω) = (π, δ).

Similar to Section 2.1.3 it is useful to factorize the conditional expectation. In

order to apply the factorization lemma (Lemma 18 in Section A.2.7) we sub-

stitute the functions f = E(Yi,ji,k|ε,B) and g = (ε,B) which are both defined

on St o Sb × Ω. It follows that the function f is F (ε,B)-B(R)-measurable by

the definition of the conditional expectation. Then, by Lemma 18, there exists

a function h = E(Yi,ji,k| (ε,B) = •) which is B(Rn)-B(R)-measurable with

n = b(t+ 1) such that f = h ◦ g. Therefore we can write

E(Yi,ji,k|ε,B) = E(Yi,ji,k|(ε,B) = •) ◦ (ε,B), (4.16)

where E(Yi,ji,k| (ε,B) = •) is defined on the image set of (ε,B) i.e., Im(ε,B) =

{(eπδ(1)(1),δ(1), . . . , eπδ(1)(t),δ(1), . . . , eπδ(b)(1),δ(b), . . . eπδ(b)(t),δ(b), βδ(1), . . . βδ(b)) : (π, δ)

∈ St o Sb}. It follows that E(Yi,ji,k|(ε,B) = (eπδ(1)(1),δ(1), . . . , eπδ(1)(t),δ(1), . . . ,

eπδ(b)(1),δ(b), . . . eπδ(b)(t),δ(b), βδ(1), . . . βδ(b))) = E(Xπδ(k)(i),ji,δ(k)).

4.4 Link Function to Conditional Expectation

In GLMMs, we model the conditional expectation of the responses given the

vector of random effects by using a suitable link function. Now, in order to

derive the RB-GLMM for the RCBD we introduce a link function g as before.

It follows from (4.16) that

g (E(Yi,ji,k|ε,B)) = g ◦ E(Yi,ji,k|ε,B)

= g ◦ (E(Yi,ji,k| (ε,B) = •) ◦ (ε,B))

= (g ◦ E(Yi,ji,k| (ε,B) = •)) ◦ (ε,B)

= g (E(Yi,ji,k| (ε,B) = •)) ◦ (ε,B) . (4.17)

For every element ((π, δ), ω) ∈ St o Sb × Ω, we use (4.17), (4.15) and (4.2) to

write g(E(Yi,ji,k|ε,B)) as
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g(E(Yi,ji,k|ε,B))((π, δ), ω) = g(E(Xπδ(k)(i),ji,δ(k)))

= µ+ αji + βδ(k) + eπδ(k)(i),δ(k)

= µ+ αji +Bk((π, δ), ω) + εi,k((π, δ), ω),

(4.18)

where εi,k ((π, δ), ω) = ε̃i,k(π, δ) = eπδ(k)(i),δ(k) and Bk ((π, δ), ω) = B̃k(π, δ) =

βδ(k). Finally, equation (4.18) and our previous results enable us to write

Model 2 : g (E(Yi,ji,k|ε,B)) = µ+ αji +Bk + εi,k (4.19)

for every i = 1 . . . , t, j = 1, . . . , t and k = 1, . . . , b. There are two random

variables, Bk and εi,k, on the right hand side of (4.19) and the treatment ji is

fixed by the specific design d as before. More precisely, µ is the grand mean,

αji is the fixed treatment effect and Bk and εi,k are two random effects due to

random blocks and random unit errors respectively.

4.5 Moments of Random Effects

In this section, we derive expectations, variances and covariances for the com-

ponents of both vectors of random effects, that is, for the random blocks B

= (B1, . . . , Bb)
> and for the random errors ε = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b)

>

from the randomization associated with Model 2 in (4.19). The derivations

are similar to those for Model 1 in Section 2.1.5 but are more complicated due

to the underlying more complex design.

4.5.1 Random Errors

We derive the expectations, variances and covariances for the components of ε.

In order to derive these results, we first setQ∗k,k∗ = {(π, δ) ∈ St o Sb : δ(k) = k∗}.

Then, the wreath product of St and Sb is St oSb =
b⋃

k∗=1

Q∗k,k∗ . Furthermore, set

Q∗k,k∗,i,i∗ = {(π, δ) ∈ StoSb : δ(k) = k∗, πk∗(i) = i∗}. Then Q∗k,k∗ =
t⋃

i∗=1

Q∗k,k∗,i,i∗ .

It follows that St o Sb =
b⋃

k∗=1

t⋃
i∗=1

Q∗k,k∗,i,i∗ . The number of elements of Q∗k,k∗,i,i∗
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is |Q∗k,k∗,i,i∗| = (b − 1)!(t − 1)!t!(b−1). Moreover, for i 6= i
′

we can write St o Sb

=
b⋃

k∗=1

t⋃
i∗ 6=i′∗

(Q∗k,k∗,i,i∗
⋂
Q∗
k,k∗,i′ ,i′∗

) and |Q∗k,k∗,i,i∗
⋂
Q∗
k,k∗,i′ ,i′∗

| = (b − 1)! (t −

2)! t!(b−1). Also, for k 6= k
′

we have St o Sb =
b⋃

k∗ 6=k′∗

(
Q∗k,k∗

⋂
Q∗
k′ ,k′∗

)
=

b⋃
k∗ 6=k′∗

t⋃
i∗=1

t⋃
i′∗=1

(
Q∗k,k∗,i,i∗

⋂
Q∗
k′ ,k′∗,i′ ,i′∗

)
and |Q∗k,k∗,i,i∗

⋂
Q∗
k′ ,k′∗,i′ ,i′∗

| = (b−2)! (t−

1)!2 t!(b−2). Recall ui,k values and their mean ū have already been defined in

Section 4.1. With these preliminaries we can prove the following results.

Lemma 15. Let ε = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b)
> be the vector of random

unit errors in Model 2 (4.19). Then

(i) E(εi,k) = 0,

(ii) V ar(εi,k) = σ2
W ,

(iii) Cov(εi,k, εi′ ,k) = − 1

t− 1
σ2
W for every k and i 6= i

′
,

(iv) Cov(εi,k, εi′ ,k′ ) = 0 for k 6= k
′
,

where σ2
W =

1

bt

b∑
k∗=1

t∑
i∗=1

(ui∗,k∗ − ūk∗)2.

Proof. (i) The expectation of εi,k is given by

E(εi,k) =

∫
StoSb

∫
Ω

εi,k((π, δ), ω)P (dω)U(d(π, δ))

=
1

a

∑
(π,δ)∈StoSb

∫
Ω

εi,k((π, δ), ω)P (dω) =
1

a

∑
(π,δ)∈StoSb

ε̃i,k(π, δ)

=
1

a

∑
(π,δ)∈StoSb

eπδ(k)(i),δ(k) =
1

a

b∑
k∗=1

∑
(π,δ)∈Q∗

k,k∗

eπk∗ (i),k∗

=
1

a

b∑
k∗=1

t∑
i∗=1

∑
(π,δ)∈Q∗

k,k∗,i,i∗

ei∗,k∗ =
(b− 1)!(t− 1)!t!(b−1)

t!bb!

b∑
k∗=1

t∑
i∗=1

ei∗,k∗

=
1

bt

b∑
k∗=1

t∑
i∗=1

ei∗,k∗ =
1

bt

b∑
k∗=1

t∑
i∗=1

(ui∗,k∗ − ūk∗) = 0.
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(ii) Now by using E(εi,k)=0 from part (i), the variance of εi,k is equal to

V ar(εi,k) = E(ε2i,k) =

∫
StoSb

∫
Ω

ε2i,k((π, δ), ω)P (dω)U (d(π, δ))

=
1

a

∑
(π,δ)∈StoSb

∫
Ω

ε2i,k((π, δ), ω)P (dω)

=
1

a

∑
(π,δ)∈StoSb

ε̃2i,k(π, δ) =
1

a

∑
(π,δ)∈StoSb

e2
πδ(k)(i),δ(k)

=
1

a

b∑
k∗=1

∑
(π,δ)∈Q∗

k,k∗

e2
πk∗ (i),k∗ =

1

a

b∑
k∗=1

t∑
i∗=1

∑
(π,δ)∈Q∗

k,k∗,i,i∗

e2
i∗,k∗

=
(b− 1)!(t− 1)!t!(b−1)

t!bb!

b∑
k∗=1

t∑
i∗=1

e2
i∗,k∗

=
1

bt

b∑
k∗=1

t∑
i∗=1

e2
i∗,k∗ =

1

bt

b∑
k∗=1

t∑
i∗=1

(ui∗,k∗ − ūk∗)2 = σ2
W .

(iii) For every k and i 6= i
′
, we calculate the covariance of εi,k and εi′ ,k by

parts (i) and (ii) as

Cov(εi,k, εi′ ,k) = E(εi,kεi′ ,k) =
1

a

∑
(π,δ)∈StoSb

eπδ(k)(i),δ(k) eπδ(k)(i′ ),δ(k)

=
1

a

b∑
k∗=1

∑
(π,δ)∈Q∗

k,k∗

eπk∗ (i),k∗ eπk∗ (i′ ),k∗

=
1

a

b∑
k∗=1

t∑
i∗ 6=i′∗

∑
(π,δ)∈Q∗

k,k∗,i,i∗
⋂
Q∗
k,k∗,i′ ,i′∗

ei∗,k∗ ei′∗,k∗

=
(b− 1)!(t− 2)!t!(b−1)

t!bb!

b∑
k∗=1

t∑
i∗ 6=i′∗

ei∗,k∗ ei′∗,k∗

=
1

bt(t− 1)

b∑
k∗=1

t∑
i∗ 6=i′∗

ei∗,k∗ ei′∗,k∗ =
1

bt(t− 1)

b∑
k∗=1

t∑
i∗=1

t∑
i
′∗=1
i
′∗ 6=i∗

ei∗,k∗ ei′∗,k∗

=
1

bt(t− 1)

b∑
k∗=1

t∑
i∗=1

ei∗,k∗

 t∑
i′∗=1

ei′∗,k∗ − ei∗,k∗


= − 1

bt(t− 1)

b∑
k∗=1

t∑
i∗=1

e2
i∗,k∗ = − 1

bt(t− 1)

b∑
k∗=1

t∑
i∗=1

(ui∗,k∗ − ūk∗)2

= − 1

t− 1
σ2
W .
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(iv) Similarly, for k 6= k
′

and every i and i
′

we derive the covariance of εi,k

and εi′ ,k′ as

Cov(εi,k, εi′ ,k′ ) = E(εi,kεi′ ,k′ ) =
1

a

∑
(π,δ)∈StoSb

eπδ(k)(i),δ(k) eπ
δ(k
′
)
(i′ ),δ(k′ )

=
1

a

b∑
k∗ 6=k′∗

∑
(π,δ)∈Q∗

k,k∗
⋂
Q∗
k
′
,k
′∗

eπk∗ (i),k∗ eπ
k
′∗ (i′ ),k′∗

=
1

a

b∑
k∗ 6=k′∗

t∑
i∗=1

t∑
i′∗=1

∑
(π,δ)∈Q∗

k,k∗,i,i∗
⋂
Q∗
k
′
,k
′∗,i′ ,i′∗

ei∗,k∗ ei′∗,k′∗

=
(b− 2)! (t− 1)!2 t!(b−2)

t!b b!

b∑
k∗ 6=k′∗

t∑
i∗=1

t∑
i′∗=1

ei∗,k∗ ei′∗,k′∗

=
1

b(b− 1)t2

b∑
k∗ 6=k′∗

t∑
i∗=1

ei∗,k∗ t∑
i′∗=1

ei′∗,k′∗


=

1

b(b− 1)t2

b∑
k∗ 6=k′∗

(
t∑

i∗=1

ei∗,k∗

) t∑
i′∗=1

ei′∗,k′∗

 = 0.

�

The result in part (iii) of Lemma 15 shows that the random errors are cor-

related when in the same block due to randomization, whereas part (iv) of

Lemma 15 shows that they are uncorrelated when in different blocks.

4.5.2 Random Blocks

In this section we derive the expectations, variances and covariances for the

components of B and we show that the random blocks are correlated. Recall

thatBk has already been defined in Section 4.2. SetQk,k∗ = {δ ∈ Sb : δ(k) = k∗}.

Then Sb =
b⋃

k∗=1

Qk,k∗ and the number of elements of Qk,k∗ is (b−1)!. We further

set Sb =
⋃

k∗ 6=l∗
(Qk,k∗

⋂
Ql,l∗) which we use to derive the covariance between two

different blocks.

Lemma 16. The expectation and variance of an element Bk of the vector of

random blocks B and the covariance of two components Bk and Bk′ are

(i) E(Bk) = 0,
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(ii) V ar(Bk) = σ2
B,

(iii) Cov(Bk, Bk′ ) = − 1

b− 1
σ2
B for k 6= k

′
,

where σ2
B =

1

b

b∑
k∗=1

(ūk∗ − ū)2.

Proof. (i) The expectation of Bk is given by

E(Bk) =

∫
StoSb

∫
Ω

Bk((π, δ), ω)P (dω)U(d(π, δ))

=
1

a

∑
(π,δ)∈StoSb

∫
Ω

Bk((π, δ), ω)P (dω) =
1

a

∑
(π,δ)∈StoSb

B̃k(π, δ)

=
1

a

∑
(π,δ)∈StoSb

βδ(k) =
t!b

t!bb!

∑
δ∈Sb

βδ(k) =
1

b!

b∑
k∗=1

∑
δ∈Qk,k∗

βk∗

=
(b− 1)!

b!

b∑
k∗=1

βk∗ =
1

b

b∑
k∗=1

βk∗ =
1

b

b∑
k∗=1

(ūk∗ − ū) = 0.

(ii) The variance of Bk can be computed using E(Bk) = 0 as

V ar(Bk) = E(B2
k) =

∫
StoSb

∫
Ω

B2
k((π, δ), ω)P (dω)U(d(π, δ))

=
1

a

∑
(π,δ)∈StoSb

∫
Ω

B2
k((π, δ), ω)P (dω) =

1

a

∑
(π,δ)∈StoSb

B̃2
k(π, δ)

=
1

a

∑
(π,δ)∈StoSb

β2
δ(k) =

t!b

t!b b!

∑
δ∈Sb

β2
δ(k) =

1

b!

b∑
k∗=1

∑
δ∈Qk,k∗

β2
k∗

=
(b− 1)!

b!

b∑
k∗=1

β2
k∗ =

1

b

b∑
k∗=1

β2
k∗ =

1

b

b∑
k∗=1

(ūk∗ − ū)2 = σ2
B.
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(iii) Similarly for k 6= l the covariance of Bk and Bl is

Cov(Bk, Bl) = E(BkBl) =
1

a

∑
(π,δ)∈StoSb

βδ(k)βδ(l) =
t!b

t!bb!

∑
δ∈Sb

βδ(k)βδ(l)

=
1

b!

b∑
k∗ 6=l∗

∑
δ∈Qk,k∗

⋂
Ql,l∗

βk∗βl∗ =
(b− 2)!

b!

b∑
k∗ 6=l∗

βk∗βl∗

=
1

b(b− 1)

b∑
k∗ 6=l∗

βk∗βl∗ =
1

b(b− 1)

b∑
k∗=1

b∑
l∗=1
l∗ 6=k∗

βk∗βl∗

=
1

b(b− 1)

b∑
k∗=1

βk∗

 b∑
l∗=1
l∗ 6=k∗

βl∗


=

1

b(b− 1)

b∑
k∗=1

βk∗

(
b∑

l∗=1

βl∗ − βk∗
)

= − 1

b(b− 1)

b∑
k∗=1

β2
k∗

= − 1

b(b− 1)

b∑
k∗=1

(ūk∗ − ū)2 = − 1

b− 1
σ2
B.

�

4.5.3 Covariance between Random Blocks and Errors

We now derive the covariance between random blocks and errors, and show

that the random blocks and unit errors are uncorrelated.

Lemma 17. Let B = (B1, . . . , Bb)
> and ε = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b)

>

be the vectors of random blocks and unit errors respectively in Model (4.19).

Then

(i) Cov(Bk, εi,k) = 0,

(ii) Cov(Bk, εi,k′ ) = 0 for k 6= k
′
.

Proof. (i) Using E(εi,k) = 0 and E(Bk) = 0 from part (i) of Lemma 15

and 16 respectively, we compute the covariance of Bk and εi,k as
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Cov(Bk, εi,k) = E(Bkεi,k) =
1

a

∑
(π,δ)∈StoSb

βδ(k)eπδ(k)(i),δ(k)

=
1

a

b∑
k∗=1

∑
(π,δ)∈Q∗

k,k∗

βk∗eπk∗ (i),k∗

=
1

a

b∑
k∗=1

t∑
i∗=1

∑
(π,δ)∈Q∗

k,k∗,i,i∗

βk∗ei∗,k∗

=
(b− 1)!(t− 1)!t!(b−1)

t!bb!

b∑
k∗=1

t∑
i∗=1

βk∗ei∗,k∗

=
1

bt

b∑
k∗=1

βk∗

(
t∑

i∗=1

ei∗,k∗

)
= 0.

(ii) Similarly for k 6= k
′

the covariance of Bk and εi,k′ is

Cov(Bk, εi,k′ ) = E(Bkεi,k′ ) =
1

a

∑
(π,δ)∈StoSb

βδ(k)eπ
δ(k
′
)
(i),δ(k′ )

=
1

a

b∑
k∗ 6=k′∗

∑
(π,δ)∈Q∗

k,k∗
⋂
Q∗
k
′
,k
′∗

βk∗eπ
k
′∗ (i),k′∗

=
1

a

b∑
k∗ 6=k′∗

t∑
i∗=1

∑
(π,δ)∈Q∗

k,k∗
⋂
Q∗
k
′
,k
′∗,i,i∗

βk∗ei∗,k′∗

=
(b− 2)!(t− 1)!2t!(b−2)

t!bb!

b∑
k∗ 6=k′∗

t∑
i∗=1

βk∗ei∗,k′∗

=
1

b(b− 1)t2

b∑
k∗ 6=k′∗

βk∗

(
t∑

i∗=1

ei∗,k′∗

)
= 0.

�

4.6 Summary of Results

In order to summarize the derived results for Model 2 (4.19) we let Y be the

bt× 1 vector of responses and X be the bt× (t+ 1) design matrix for the fixed
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treatment effects. We then rewrite Model 2 in matrix notation as

g(E(Y |ε, B)) = Xβ + ZB + ε, (4.20)

where g(E(Y |ε, B)) is a vector of conditional expectations with components

g(E(Yi,ji,k|ε, B)) and β = (µ, α1, . . . , αt)
> is the (t+1)×1 vector of fixed treat-

ment effect parameters, Z is the model matrix of order bt × b corresponding

to random block effects, B is the b × 1 vector of random block effects, and ε

is the bt × 1 vector of random errors. We call (4.20) the RB-GLMM for the

RCBD with random block effects where the conditional distribution of Yi,ji,k

given (ε, B) is a member of the exponential family.

We can now summarize the results of Lemma 15 in matrix notation. The ex-

pectation can be written as E(ε) = 0 and the variance-covariance matrix can

be written as V (ε) = diag(Q, . . . ,Q) with Q =
σ2
W

t− 1
(tI t − 1t1

>
t ) = σ2

WP t,

where P t =
1

t− 1
(tI t − 1t1

>
t ) is a matrix of order t × t. Moreover, from

Lemma 16 we can write E(B) = 0 and V (B) =
σ2
B

b− 1

(
bIb − 1b1

>
b

)
= σ2

BPb

with the b × b matrix Pb =
1

b− 1

(
bIb − 1b1

>
b

)
. It also follows from Lemma

17 that Cov(B, ε) = 0, i.e., the vectors for random blocks and unit errors are

uncorrelated.

The matrices Pb and P t are singular and hence do not have inverses. This cre-

ates a problem for fitting GLMMs in most of the available software packages.

To handle this problem we factorize Pb and P t, as we did for Model 1 asso-

ciated with the CRD in Section 2.4, so that the original variance-covariance

matrices remain unchanged.

Similar to Section 2.4 we replace B with LB̃
∗

such that LL> = Pb. Here L

is a b × (b − 1) matrix and B̃
∗

is a (b − 1) × 1 vector of random blocks with

E(B̃
∗
) = 0 and V (B̃

∗
) = σ2

BIb−1. We also replace ε with L̃ε̃∗ where

L̃ =


L∗ 0 . . . 0

0 L∗ . . . 0
...

...
...

0 0 . . . L∗


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is a matrix of order bt× b(t− 1), 0 is the t× (t− 1) matrix of zeros and L∗ is

a t× (t− 1) matrix such that L∗L∗> = P t. Note that L∗ is not unique.

In this case ε̃∗ is a b(t − 1) × 1 vector of random errors with E(ε̃∗) = 0 and

V (ε̃∗) = diag(Q̃, . . . , Q̃) where Q̃ = σ2
WI t−1. More precisely, the vectors

B̃
∗

and ε̃∗ satisfy the usual assumptions of the standard GLMM (1.2) and

Cov(B̃
∗
, ε̃∗) = 0. Now the vectors LB̃

∗
and L̃ε̃∗ in the GLMM with

g(E(Y |ε̃, B̃)) = Xβ + ZLB̃
∗

+ L̃ε̃
∗

(4.21)

have the same means and variance-covariance matrices as the random vectors

B and ε in the GLMM with

g(E(Y |ε, B)) = Xβ +ZB + ε

derived from the randomization for the RCBD with random block effects

(Model (4.20)).

In Chapter 5, we investigate the impact of misspecification of the correlation

structure and of the random effects distribution considering Model 2 (4.20)

and the variance-covariance matrices derived from the randomization via sim-

ulation studies. The above factorization results allow us to calculate inverses

of variance-covariance matrices for both vectors of random blocks B and ran-

dom unit errors ε, which in turn allows us to apply HGLMs with correlated

random effects to the simulated data.
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Chapter 5

Simulation Study

We investigate the effect of misspecification of the correlation structure and of

the distribution of the random effects on the estimated fixed effect parameters

and variance components in GLMMs via simulation studies. To this end we

simulated Poisson data from the GLMM (4.20) for the RCBD with random

block effects using the variance-covariance matrices of the random blocks and

unit errors that were derived from the randomization in Chapter 4. Different

parametric models (see Section 5.1) are fitted to these data and then compared

with the simulation results. In Section 5.2, we describe the simulation settings

including true parameter values and specifications of the distributions of the

random effects. The key simulation results are presented in Section 5.3 and

some further results are given in the Appendices D to F. Moreover, we present

results obtained from the additional comparisons of the models in Section 5.4.

Section 5.5 summarizes the findings of the simulation studies.

5.1 Models

We consider five models (M2, M2∗, M3, M4, M5) in total; these models differ

with respect to their linear predictors. We are interested in comparing these

models in order to investigate the impact of model misspecification on the

estimated model parameters. We distinguish a model in which the random

effects, e.g., those for blocks and unit errors, are correlated, with the variance

covariance matrices being derived from the randomization, from the model in

which the random effects are uncorrelated (M2 versus M2∗). We distinguish

models that in the linear predictor contain random effects for both blocks and

90



unit errors from models that contain only random effects for blocks (M2 versus

M3) and only for unit errors (M2 versus M4). We recall the RB-GLMM for

the RCBD with random block effects (model (4.20)). The vector of linear

predictors η, corresponding to model (4.20) with correlated random effects

(M2) is defined as

M2 : η = Xβ +ZB + ε. (5.1)

The detailed description of this model and the variance-covariance matrices

for the random blocks and unit errors are given in Section 4.6.

We now consider a standard GLMM (M2∗) with uncorrelated random effects

and the vector of linear predictors η∗ is

M2∗ : η∗ = Xβ +ZB∗ + ε∗, (5.2)

whereB∗ is the b×1 vector of uncorrelated random blocks with the expectation

E(B∗) = 0 and the variance-covariance matrix V (B∗) = σ2
BIb. Moreover, ε∗

is the bt×1 vector of uncorrelated random errors with E(ε∗) = 0 and V (ε∗) =

diag(G∗, . . . ,G∗) where G∗ = σ2
WI t. The components between random blocks

and errors are assumed to be uncorrelated i.e., Cov(B∗, ε∗) = 0.

Moreover, we consider two additional GLMMs (M3, M4) with the vector of

linear predictors η, given by

M3 : η = Xβ +ZB (5.3)

and

M4 : η = Xβ + ε. (5.4)

In addition, we consider a GLM (M5) for fixed treatment effects with the

linear predictor as

M5 : η = Xβ. (5.5)

5.2 Simulation Settings

Following the simulation settings of previous studies (e.g., Agresti et al. (2004),

Neuhaus et al. (2013) and McCulloch and Neuhaus (2011)) and in order to
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generate reasonable Poisson data from the GLMM for the RCBD with random

block effects, we consider the following settings for our simulation studies. The

main goal is to investigate the impact of misspecification of the correlation

structure and of the distribution of the random effects in GLMMs on the

estimated model parameters.

We specify the number of treatments t = 2, 3, 4 and the number of blocks

b = 5t, 10t, 20t. It follows that the number of blocks depends on the number

of treatments. There are nine different combinations of a number of treat-

ments and a number of blocks (t, b): (2,10), (2,20), (2,40), (3,15), (3,30),

(3,60), (4,20), (4,40) and (4,80). We choose the error variances as σ2
W =

0.01, 0.04, 0.09, 0.16 and, hence, the corresponding standard deviations are

σW = 0.1, 0.2, 0.3, 0.4. We also choose the block variances as σ2
B = (1σW )2,

(2σW )2, (3σW )2, (4σW )2, (5σW )2. For every combination of t, b and σ2
W we

compute

t0.90,(t−1)(b−1) ×
√

2σ2
W

b
= d1,

t0.95,(t−1)(b−1) ×
√

2σ2
W

b
= d2

and

t0.99,(t−1)(b−1) ×
√

2σ2
W

b
= d3,

where t0.90,(t−1)(b−1), t0.95,(t−1)(b−1) and t0.99,(t−1)(b−1) are the upper 10%, 5% and

1% points of the t-distribution with (t−1)(b−1) degrees of freedom. We then

choose values for the fixed effect parameters α̃j and µ for j = 1, . . . , t using dr,

r = 1, 2, 3 as

α̃
(r)
j =

3

t− 1
jdr

and

µ(r) =
1

t

t∑
j=1

α̃
(r)
j =

3(t+ 1)

2(t− 1)
dr,

where the superscript on α̃
(r)
j and µ(r) stands for the different ‘least significant

difference’ (LSD) values. We note that the α̃j parameters for the fixed effects

are on a straight line. Moreover, the fixed effect parameters are chosen such

that the difference α̃t−α̃1 is equal to three times the least significant difference

for testing H0 : α̃j = α̃j′ at significance levels 0.10, 0.05 and 0.01. The LSD is

derived from the corresponding linear model and should be regarded as a proxy

to the actual LSD. For the purpose of comparison with the simulation results
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Table 5.2 does not give the original α̃j values but the differences αj = α̃j − ¯̃α.

We consider three different random effects distributions to generate random

effects for blocks and errors:

(i) block effects are generated from N(0, σ2
B) and errors from N(0, σ2

W ),

(ii) block effects are generated from U(−aB, aB) and errors from U(−aW , aW ),

where aB = σB
√

3 and aW = σW
√

3,

(ii) block effects are generated from
σB√

3
t3 and errors from

σW√
3
t3, where t3 is

the t-distribution with 3 degrees of freedom.

We note that, in all three cases, random effects for blocks and errors have mean

zero and the same variance. There are 540 different possible combinations of

the true parameter values. For each combination, we generated 1000 data

sets from the Poisson distribution and then fitted different parametric models

to the same set of simulated data. In the thesis, we focus on 36 of these

combinations in particular those with relatively large and small values of true

variance components σ2
B and σ2

W .

5.3 Simulation Results

We present results for four different scenarios of combinations of variance com-

ponents (σ2
W , σ2

B) and fixed treatments effect parameters (α1, α2, α3). The

true values for σ2
W and σ2

B under different scenarios are given in Table 5.1, each

scenario consists of nine different treatment-block combinations and of the true

parameter values. In Scenario-I and II we choose relatively large values for σ2
W

and σ2
B, compared to those chosen in Scenario-III and IV. The variance com-

ponent σ2
B has the same relationship with σW (σ2

B=(3σW )2) in Scenario-I and

Scenario-III, it also has the same relationship (σ2
B=(2σW )2) in Scenario-II and

Scenario-IV.
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Table 5.1: True values of σ2
W and σ2

B under different scenarios.

Scenario-I Scenario-II

σ2
W=0.16 σ2

W=0.16

σ2
B=(3σW )2=1.44 σ2

B=(2σW )2=0.64

Scenario-III Scenario-IV

σ2
W=0.04 σ2

W=0.04

σ2
B=(3σW )2=0.36 σ2

B=(2σW )2=0.16

True values for α1, α2 and α3 are the same in Scenario-I and II, and also

the same in Scenario-III and IV for all treatment-block combinations. These

values can be seen in Table 5.2.

Table 5.2: True values of α1, α2 and α3 under different scenarios.

Para- t = 2 t = 3 t = 4

Scenarios meters b = 10 b = 20 b = 40 b = 15 b = 30 b = 60 b = 20 b = 40 b = 80

α1 -0.371 -0.482 -0.325 -0.541 -0.371 -0.258 -0.454 -0.316 -0.222

I and II α2 - - - 0.000 0.000 0.000 -0.151 -0.105 -0.074

α3 - - - - - - 0.151 0.105 0.074

α1 -0.186 -0.241 -0.163 -0.270 -0.185 -0.129 -0.227 -0.158 -0.111

III and IV α2 - - - 0.000 0.000 0.000 -0.076 -0.053 -0.037

α3 - - - - - - 0.076 0.053 0.037

We implement the model estimation using the R-package hglm (hierarchical

generalized linear model) which is suitable for modelling correlated random

effects in GLMMs (Rönneg̊ard et al., 2010) based on the h-likelihood method

of estimation (Lee and Nelder, 1996, Lee and Lee, 2012). However, we note that

the hglm package gives the standard errors (SEs) of the variance components

estimates (σ̂2
B, σ̂2

W ) for the random effects on a log scale. We approximate

SEs of σ̂2
B and σ̂2

W on the original scale by the Delta-method (Ver Hoef, 2012)

using the formula

SE(θ̂) = θ̂ SE(log θ̂), (5.6)

where θ̂ = σ̂2
B or σ̂2

W .

We compare results of the simulation studies for fixed effects and variance

components estimates in terms of their biases and SEs. We calculate bias

by subtracting median estimates from true values of the parameters, as done

by Litière et al. (2008), McCulloch and Neuhaus (2011) and Neuhaus et al.
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(2011, 2013) in their simulation studies. We present relative biases and SEs

of the estimated fixed effect parameters and variance components obtained

by fitting the true model and misspecified models due to misspecification of

the correlation structure and of the random effects distribution for Scenario-I.

Further simulation results are found to be similar for Scenario-II to IV and

given in the Appendices D to F respectively.

5.3.1 Results without Misspecification

In this section, we assess the parameter estimates of the Poisson GLMM (model

(4.20), equivalently M2, with the linear predictor (5.1)) under no model mis-

specification. Poisson data are simulated from M2 assuming correlated and

normally distributed random effects (blocks and errors). We then fit the same

model M2 assuming correlated and normally distributed random effects. More

precisely, we consider the same assumptions that are used for generating the

data and for the model fitting i.e., no model misspecification is assumed. We

report the results by averaging the estimated parameters over all simulated

data sets. The summary of results are presented in Table 5.3 including median

estimates of the parameters as reported by Litière et al. (2008) and Neuhaus

et al. (2011).

It can be seen from Table 5.3 that the estimated parameter values are close to

the true values. The model-based (M2) standard errors (SE) and empirical

standard errors (standard deviation of the estimates) are also very close to each

other. As the h-likelihood estimation algorithm (Lee and Nelder, 1996, Lee

and Lee, 2012) applied to our model is able to reproduce the true values of the

parameters, this method appears suitable for fitting GLMMs with correlated

random block effects and errors. The convergence of this estimation algorithm

on the simulated data is very high (98.8 % to 100%) for all the nine treatment-

block combinations.
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Table 5.3: Estimates, standard errors and convergence obtained from fitting

Poisson GLMM with linear predictor M2: η = Xβ + ZB + ε (5.1) under

Scenario-I (σ2
W=0.16, σ2

B=1.44).

t b True values
Estimates Standard Errors Convergence

Mean Median Model-based Empirical (%)

2

10

α1 = −0.371 -0.378 -0.381 0.148 0.154

98.8σ2
B 1.530 1.372 0.743 0.828

σ2
W 0.161 0.139 0.092 0.111

20

α1 = −0.482 -0.480 -0.479 0.101 0.101

100σ2
B 1.459 1.403 0.482 0.503

σ2
W 0.165 0.157 0.061 0.068

40

α1 = −0.325 -0.325 -0.320 0.080 0.077

100σ2
B 1.498 1.461 0.353 0.404

σ2
W 0.167 0.164 0.047 0.056

3

15

α1 = −0.541 -0.549 -0.548 0.137 0.139

100
α2 = 0.000 0.004 0.001 0.131 0.137

σ2
B 1.547 1.427 0.598 0.646

σ2
W 0.165 0.158 0.056 0.067

30

α1 = −0.371 -0.377 -0.375 0.108 0.110

100
α2 = 0.000 0.004 0.003 0.104 0.105

σ2
B 1.545 1.503 0.422 0.463

σ2
W 0.166 0.162 0.043 0.056

60

α1 = −0.258 -0.260 -0.259 0.084 0.081

100
α2 = 0.000 -0.001 0.000 0.081 0.080

σ2
B 1.550 1.514 0.302 0.340

σ2
W 0.169 0.166 0.034 0.045

4

20

α1 = −0.454 -0.461 -0.457 0.138 0.138

99.9

α2 = −0.151 -0.145 -0.142 0.131 0.133

α3 = 0.151 0.155 0.157 0.126 0.130

σ2
B 1.528 1.481 0.511 0.538

σ2
W 0.165 0.162 0.044 0.060

40

α1 = −0.316 -0.323 -0.322 0.107 0.105

100

α2 = −0.105 -0.106 -0.103 0.103 0.100

α3 = 0.105 0.111 0.114 0.100 0.098

σ2
B 1.531 1.490 0.362 0.406

σ2
W 0.168 0.164 0.034 0.048

80

α1 = −0.222 -0.223 -0.223 0.081 0.080

100

α2 = −0.074 -0.074 -0.072 0.079 0.079

α3 = 0.074 0.072 0.072 0.077 0.071

σ2
B 1.521 1.501 0.256 0.279

σ2
W 0.170 0.168 0.026 0.037
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5.3.2 Results with Misspecified Correlation Structure

We simulated Poisson data from M2 with correlated and normally distributed

random effects (i.e., the same data as in Section 5.3.1). We fitted the misspeci-

fied model M2∗ with uncorrelated random effects (5.2) and the true model M2

with correlated random effects (5.1) to the same set of simulated data. Model

M2∗ is misspecified in the sense that it assumes uncorrelated random effects.

We then compare biases and empirical SEs of the estimated model parameters

obtained from fitting M2 and M2∗.

5.3.2.1 Bias and SEs of Fixed Effects Estimates

In this section, we present relative biases and empirical SEs of the fixed effect

estimates (α̂1, α̂2, α̂3) in Figure 5.1 and 5.2 respectively. It can be seen from

Figure 5.1 that the percent relative biases of α̂1, α̂2 and α̂3 are very close for

the true model (M2) and the misspecified model (M2∗). Figure 5.2 also shows

that SEs of α̂1, α̂2, α̂3 are almost the same in all nine treatment-block combi-

nations for M2 and M2∗.

It follows that the misspecification of the correlation structure of the random

effects has hardly any effect on the estimated fixed treatment effect parameters.

That is, fixed effect estimates are not affected in terms of their biases and

SEs due to misspecification of the correlation structure of the random effects

distribution.
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Figure 5.1: Comparison of relative biases of α̂1, α̂2 and α̂3 under Scenario-I

between M2 (true model) and M2∗(misspecified model).
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Figure 5.2: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-I between M2

(true model) and M2∗(misspecified model).
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5.3.2.2 Bias and SEs of Variance Components Estimates

In this section, we compare relative biases (Figure 5.3) and empirical SEs

(Figure 5.4) of the variance components estimates σ̂2
B and σ̂2

W between the

true model (M2) and the misspecified model (M2∗). The top panel of Figure

5.3 represents relative biases of σ̂2
B and the bottom panel shows relative biases

for σ̂2
W . It can be seen from the top panel that the percent relative bias of σ̂2

B

for the true model is negligible (ranges from -5 % to 5 %) in all nine treatment-

block combinations. However, σ̂2
B seems to be consistently underestimated in

all nine treatment-block combinations for the misspecified model M2∗ due

to misspecification of the correlation structure for the random effects. The

amount of bias is substantially higher (-15% to -5%) in the misspecified model

compared to the true model.
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Figure 5.3: Comparison of relative biases of σ̂2
B and σ̂2

W under Scenario-I

between M2 (true model) and M2∗(misspecified model).

It can also be seen from the bottom panel of Figure 5.3 that the relative bias

of σ̂2
W is also negligible for the true model (M2) whereas it is substantially

higher (20% to 90%) for the misspecified model (M2∗). Thus, both variance

components estimates σ̂2
B and σ̂2

W are found to be severely biased due to mis-

specification of the correlation structure of the random blocks and errors.
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Figure 5.4: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-I between M2

(true model) and M2∗(misspecified model).

Moreover, from the top panel of Figure 5.4 it can be seen that there is not much

difference in estimated SEs of σ̂2
B between the true and misspecified models

for all nine treatment-block combinations. However, there are some differences

in the estimated SEs of σ̂2
W between the true and misspecified models. In all

nine treatment-block combinations, SEs of σ̂2
W are found to be higher for the

misspecified model M2∗ than the true model M2 due to misspecification of

the correlation structure of the random effects. In summary, it appears that

model misspecification in terms of correlation structure of the random effects

has a substantial effect on the estimated variance components for both random

blocks and errors.

5.3.3 Results with Misspecified Random Effects Distri-

butions

We simulated Poisson data from M2 with correlated random effects (block

effects and errors) those are generated from normal, uniform and transformed

t3 with the same mean and variance but different shapes. We fitted M2 under

the assumption that random effects are normally distributed to the same set
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of simulated data. That is, misspecification occurred when we fitted models

assuming normally distributed random effects whereas the data are generated

assuming random effects come from uniform and t3 distributions.

5.3.3.1 Bias and SEs of Fixed Effects Estimates

Figure 5.5 and 5.6 show the percent relative biases and empirical SEs of the

estimated fixed treatment effect parameters (α̂1, α̂2, α̂3) respectively. From

Figure 5.5 it can be seen that there is no substantial differences in the relative

biases of α̂1, α̂2 and α̂3 for all nine treatment-block combinations under three

different random effects distributions (normal, uniform, t3).
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Figure 5.5: Comparison of percent relative biases of α̂1, α̂2 and α̂3 under

Scenario-I among normal, uniform and t3 random effects distributions.
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Figure 5.6: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-I among

normal, uniform and t3 random effects distributions.

For normal, uniform and t3 random effects distributions, it can be seen from

Figure 5.6 that the empirical SEs of α̂1, α̂2 and α̂3 do not differ in all nine

treatment-block combinations. We conclude that the misspecification of the

random effects distribution does not have any effect in biases and standard

errors on the estimates of the fixed treatment effect parameters.

5.3.3.2 Bias and SEs of Variance Components Estimates

We compare relative biases and SEs of σ̂2
B and σ̂2

W under different random

effects distributions in Figure 5.7 and 5.8 respectively. Relative biases of σ̂2
B

and σ̂2
W are presented at the top and bottom panel of Figure 5.7 respectively.

From both panels it can be seen that the percent relative biases of σ̂2
B and σ̂2

W

are very close to each other in the case of normal and uniform random effects

distributions. However, it seems that σ̂2
B and σ̂2

W are severely biased and

underestimated in all treatment-block combinations when random effects are

generated from t3 (t-distribution with 3 degrees of freedom). The amount of

bias is substantially higher (-40% to -10%) for t3 than for normal and uniform
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random effects distributions.
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Figure 5.7: Comparison of percent relative biases of σ̂2
B and σ̂2

W under Scenario-

I among normal, uniform and t3 random effects distributions.
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Figure 5.8: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-I among normal,

uniform and t3 random effects distributions.
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Moreover, the top panel in Figure 5.8 represents empirical SEs of σ̂2
B while the

bottom panel represents empirical SEs of σ̂2
W . From both panels it can be seen

that SEs of σ̂2
B and σ̂2

W are very close when random block effects and errors

are generated from normal and uniform distributions. However, SEs of σ̂2
B and

σ̂2
W seem to be substantially higher when random effects are simulated from

t3 than when simulated from normal and uniform distributions. In summary,

we conclude that relative biases and SEs in variance components estimates σ̂2
B

and σ̂2
W are higher when random effects are simulated from the heavy-tailed

distribution t3 than normal and uniform distributions.

5.4 Additional Model Comparisons

In this section, we investigate the effect of misspecification in GLMMs on the

estimated model parameters in terms of their biases and empirical SEs by

comparing different models:

(a) M2 vs M3: models with unit errors and without errors

(b) M2 vs M4: models with blocks and without blocks

(c) M2 vs M5: fitting a GLMM compared to a GLM

We generated Poisson data from model M2 assuming correlated and normally

distributed random block effects and errors. All models are fitted to the same

set of simulated data under the assumption of normally distributed random

effects. The summary of results obtained by fitting the models is presented in

Table 5.4.

Comparison (a) investigates if not modelling the random errors affects the

estimates of fixed treatment effect parameters (α̂1, α̂2, α̂3) and the variance

component estimate for block effects (σ̂2
B). From Table 5.4, it can be seen that

the estimated values for α̂1, α̂2 and α̂3 are very close to their true parameter

values and hence the relative biases in percentage of these estimates are also

very close to each other for both M2 (true model) and M3 (misspecified).

However, empirical SEs of these estimates are substantially higher for the mis-

specified model (M3) than for the true model (M2) in all nine treatment-block

combinations. It can also be seen that biases and SEs of the variance compo-

nent estimate σ̂2
B are not too different for models M2 and M3.
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In (b), we compare models with blocks (M2) and without blocks (M4) to inves-

tigate the impact of block effects on the estimated treatment effect parameters

α̂1, α̂2 and α̂3, and on the estimate σ̂2
W of the error variance component. Table

5.4 shows that biases and empirical SEs of α̂1, α̂2 and α̂3 are slightly higher for

M4 (misspecified model) than for M2 (true model) in most of the treatment-

block combinations. However, the estimate σ̂2
B seems to be severely biased and

empirical SEs of this estimate are substantially higher for M4 than for M2 in

all nine treatment-block combinations.

In (c), we investigate the impact of both random effects (blocks and errors) on

the estimated fixed treatment effect parameters by comparing the models M2

and M5. It can be seen from Table 5.4 that the estimates α̂1, α̂2 and α̂3 are

not affected in terms of their biases when we fit the Poisson GLM (M5) with

fixed treatment effects to the data generated from the Poisson GLMM (M2)

with correlated random effects (blocks and errors). However, empirical SEs of

α̂1, α̂2 and α̂3 are substantially higher for M5 (misspecified model) than for

M2 (true model) in all nine treatment-block combinations.

5.5 Conclusion

We have investigated the impact of models misspecification in GLMMs setup

via simulation studies on the estimated model parameters in terms of their

biases and empirical SEs. We studied the misspecification of the random ef-

fects distribution, as done by most previous studies. However, unlike these

studies, we also looked at misspecification of the correlation structure of the

random effects as being derived from the randomization for the RB-GLMM

with random block effects.

From the results in Section 5.3 we conclude that misspecification of both the

correlation structure and the distribution of the random effects has hardly any

effect on estimates of fixed treatment effect parameters (α̂1, α̂2, α̂3) in terms of

their biases and empirical SEs. Similar results were reported by Neuhaus et al.

(2013) and McCulloch and Neuhaus (2011). However, it has shown by Litière

et al. (2008) that maximum likelihood estimates of fixed effect parameters are
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inconsistent due to misspecification of the random effects distribution which

is not in agreement with our findings.

The estimates of variance components (σ̂2
B, σ̂2

W ) are frequently severely biased

and their SEs are mostly higher due to misspecification of both random effects

distribution and correlation structure. The estimated variance components

were also found to be biased by Litière et al. (2008) and Neuhaus et al. (2011,

2013) when the misspecification of the random effects distribution was present.

The additional comparisons in Section 5.4 show that the fixed treatment effect

estimates are affected when we do not consider the random errors. This is

because SEs of these estimates are found to be substantially higher for the

misspecified model than for the true model. However, the variance component

estimate σ̂2
B is not affected in terms of bias and SEs. Moreover, we conclude

that the estimated fixed treatment effect parameters and the error variance

component σ̂2
W are found to be biased and SEs of these estimates are sig-

nificantly higher when we ignore the block effects in the model fitting. The

estimated fixed effect parameters are not affected in terms of their biases when

we fit the GLM (M5) to the data generated from the GLMM (M2). However,

empirical SEs of these estimates are found to be substantially higher for the

misspecified model (M5) than for the true model (M2). To the best of our

knowledge, such types of additional comparisons of models misspecification

have not been considered by any previous studies.
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Chapter 6

Conclusion and Future Work

6.1 Discussion and Conclusion

GLMMs are commonly used where random effects are incorporated for mod-

elling the correlation or overdispersion in the data. For simplicity in the anal-

ysis, random effects are often assumed to follow a normal distribution. How-

ever, the estimated model parameters obtained by assuming normality for the

random effects distribution can give misleading conclusions when the actual

distribution of the random effects does not follow the normal distribution.

It has been suggested that misspecification of the random effects distribution

in GLMMs may lead to

(i) bias in the estimated fixed effects parameters and variance components

(Heagerty and Kurland (2001), Agresti et al. (2004), Litière et al. (2008)),

(ii) incorrect type-I and type-II error rates (Litière et al. (2007, 2008)),

(iii) reduce the power of statistical test (e.g., Wald test) of the model param-

eters of interest (Litière et al., 2007, 2008).

The main motivation of the thesis is to develop a statistical method for estimat-

ing the model parameters in GLMMs without assuming any specific parametric

form of the random effects distribution. The thesis focuses on the randomiza-

tion justification for deriving certain GLMMs associated with underlying de-

signs, in particular the CRD and the RCBD. In this framework, no parametric

108



distribution is assumed for the random effects arising from the randomization

for estimating the model parameters. As a result the randomization-based ap-

proach for estimating the model parameters may be an useful alternative when

the normality assumption for the random effects distribution is not valid.

A GLMM based on the randomization approach for the CRD, RB-GLMM

(2.26), is derived in Chapter 2. This model is also known as the individual

level random effects GLMM, as can be seen in Rabe-Hesketh and Skrondal

(2012, p.706-707) where the number of observations is equal to the number

of random errors. Rabe-Hesketh and Skrondal (2012, p.706-707) considered

this model for analyzing the data with overdispersion using the assumption

of normality for the random effects distribution. Moreover, the results of the

derived moments for the random effects in Section 2.1.5 show that there is

an exchangeable (compound symmetric) correlation structure among the ran-

dom effects. The same correlation structure can be found in Lee et al. (2006,

p.256) for modelling the correlation arising due to common family-environment

and genetic effects in family data. Moreover, we derive the likelihood func-

tion (2.24) for the RB-GLMM for the CRD in such a way that no parametric

distribution for the random effects is required. Rather, the discrete uniform

distribution on the symmetric group Sn is used for the random effects.

As the summation over all possible permutations in the symmetric group Sn is

involved in the likelihood function, the direct maximization of the likelihood

function is complicated as the sum does not commute with the natural loga-

rithm. We develop an algorithm for estimating the model parameters of the

RB-GLMM for the CRD in Chapter 3, where we maximize a minorization func-

tion rather than the log-likelihood function. The randomization-based algo-

rithm combines the IWLS algorithm for estimating the fixed treatment effects

parameters and BLP for predicting the random effects. We conduct simula-

tion studies to assess the estimates of the model parameters for small samples.

The results show that when there is a misspecification of the random effects

distribution, the randomization-based algorithm gives better estimates of the

model parameters in most cases than the standard GLMMs where normality

is assumed for the random effects distribution. However, the randomization-

based algorithm can only be applied for small samples at this stage because of

computational limitations, as it requires all n! permutations in the symmetric

group Sn.
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In Chapter 4, we extend the randomization approach of Brien and Bailey

(2006) for deriving linear models for the RCBD with random block effects to

GLMMs, and the resulting model (4.19) is found to be a GLMM with two

random effects, one for random block effects and the other for the random

unit errors (Section 1.4.2). The variance-covariance matrices are also derived

from the randomization and we show that the random block effects and errors

are correlated due to randomization.

In Chapter 5, we conduct simulation studies in order to investigate the impact

of misspecification of the random effects distribution and of the correlation

structure among the random effects. The data are simulated from the GLMM

for the RCBD with random block effects, derived in Chapter 4, considering dif-

ferent random effects distributions. However, in the analysis different paramet-

ric models are fitted to these data with standard assumptions for the random

effects, such as normality and no correlation. The simulation results show that

the estimates of the fixed treatment effect parameters are not affected in terms

of their biases and standard errors due to misspecification of both the corre-

lation structure and of the random effects distribution. Similar results were

found by McCulloch and Neuhaus (2011) and Neuhaus et al. (2013). However,

the estimates of the variance components are severely biased due to misspeci-

fication of the correlation structure. Moreover, when the random effects were

generated from t3 distribution while, in the analysis, these are assumed to be

normally distributed, the estimates of variance components are also affected

in terms of the biases and standard errors for the misspecified random effects

distribution. Neuhaus et al. (2011, 2013) also reported similar results.

6.2 Future Work

We implemented the randomization-based algorithm for the RB-GLMM for

the CRD for small samples in Chapter 3 using all n! permutations in the sym-

metric group Sn. However, because of computational limitations, as described

in Section 3.9, the algorithm becomes infeasible for large samples as the num-

ber of permutations in Sn, n!, rapidly increases as n, the sample size, increases.

As a result, one can implement the randomization-based algorithm for large

samples using a random subset of permutations instead of all possible permu-
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tations in Sn.

In the thesis, we have considered two types of randomization for the RCBD

following Brien and Bailey (2006) for random block effects using the wreath

product St o Sb and Kempthorne (1955) for fixed block effects using the di-

rect product Sbt , described in Section 1.4.2. Extending these randomization

approaches for deriving linear models to GLMMs, we derived the RB-GLMMs

for the RCBD with both random and fixed block effects, moments of the ran-

dom effects and the likelihood functions.

It is possible to extend the randomization-based estimation algorithm of the

RB-GLMM for the CRD, to RB-GLMMs for the RCBD with both random and

fixed block effects. More precisely, one could derive the minorization functions

for the likelihood functions C.3 and C.4, similar to Lemma 8 in Section 3.2,

as before. One could then maximize these minorization functions for estimat-

ing the RB-GLMMs parameters combining IWLS algorithm and BLP of the

random effects, as done similarly for the RB-GLMM for the CRD in Section

3.6. However, at the moment, it does not seem to be possible to implement

this approach in a practically useful way because of computational constraints.

Moreover, in principle, one could consider more complex experimental designs

for which other groups will be needed. One could then derive the RB-GLMMs

based on the randomization approach for these designs. One could also then

derive the likelihood functions and minorization functions for the RB-GLMMs.

Based on that one could extend the current randomization-based algorithm to

develop algorithms for estimating the model parameters of the RB-GLMMs

for the more complex designs.

One could also extend the randomization-based algorithm to a regression prob-

lem where multiple factors, including continuous and categorical, can be an-

alyzed using an extended form of the design matrix. Finally, our plan is to

develop an R package based on the randomization approach to have all rel-

evant functions in the thesis, so that one can run the randomization-based

algorithm for the data analysis.
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Appendix A

Background Material

Background concepts and results related to my PhD project are described

here. More specifically, the relevant concepts of groups and measure theory

are described in Sections A.1 and A.2 respectively. The permanent of a square

matrix is also described in Section A.4.

A.1 Groups

To describe the randomization approach for the models of interest, we consider

three specific groups, namely, the symmetric group Sn of all permutations of

n objects, the direct product Sbt of b instances of St, and the wreath product

St o Sb of the symmetric groups St and Sb, which are particularly relevant to

the PhD project. The summary description of these groups is given in the

following sections.

We begin with a group. A group G is defined as a set with a binary operation

◦ which satisfies the following axioms for example, (Cameron, 1998):

(i) Closure: If a, b ∈ G then a ◦ b ∈ G for all a and b.

(ii) Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c) .

(iii) Identity: There exists an identity element e ∈ G such that e ◦ a = a for

every a ∈ G.

(iv) Inverse: For every a ∈ G there exists an inverse element a−1 ∈ G such

that a−1 ◦ a = e. The identity element e is unique, as is the inverse a−1
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for every a ∈ G.

A.1.1 Symmetric Group

Let Ω = {1, 2, . . . , n} be the set of the first n natural numbers. The symmetric

group Sn (see e.g., Cameron, 1998) is the set of all permutations of Ω with the

operation ◦ being the composition of functions. That is (σ ◦ π) (i) = σ (π(i))

for every i ∈ Ω and σ, π ∈ Sn. The number of elements of the symmetric group

Sn is n!.

A.1.2 Direct Product of Symmetric Groups

Let St be the symmetric group of all permutations of the set {1, 2, . . . , t}. The

direct product Sbt is the Cartesian product Sbt = St×St× . . .×St of b instances

of St. The group elements are b-tuples (π1, . . . , πb) where πk ∈ St for k =

1, 2, . . . , b. Suppose π(1),π(2) ∈ Sbt then the group operation on Sbt is defined

component wise as

π(2) ◦ π(1) =
(
π

(2)
1 , . . . , π

(2)
b

)
◦
(
π

(1)
1 , . . . , π

(1)
b

)
=

(
π

(2)
1 π

(1)
1 , . . . , π

(2)
b π

(1)
b

)
,

where for every k = 1, . . . , b and for every i ∈ {1, . . . , t} we have

π
(2)
k π

(1)
k (i) = π

(2)
k (π

(1)
k (i)).

Moreover, for every element π = (π1, . . . , πb) ∈ Sbt the inverse is

π−1 = (π1, . . . , πb)
−1 =

(
π−1

1 , . . . , π−1
b

)
.

The number of elements of the direct product Sbt is |Sbt | = t!b.

A.1.3 Wreath Product

Let St and Sb be the two symmetric groups of permutations of the sets {1, 2, . . . , t}
and {1, 2, . . . , b} respectively. The elements of the wreath product St o Sb
(Cameron, 1999) are the elements of Sbt × Sb. Therefore, the number of ele-

ments of St oSb is |St oSb| = t!bb!. The wreath product St oSb consists of elements
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(π, δ) where π = (π1, . . . , πb) ∈ Sbt and δ ∈ Sb. Let
(
π(1), δ1

)
,
(
π(2), δ2

)
∈ StoSb

then the group operation on St o Sb is defined as

(
π(2), δ2

)
◦
(
π(1), δ1

)
=

(
π

(2)
1 , . . . , π

(2)
b , δ2

)
◦
(
π

(1)
1 , . . . , π

(1)
b , δ1

)
=

(
π

(2)
1 π

(1)
δ2(1), . . . , π

(2)
b π

(1)
δ2(b), δ2δ1

)
.

Moreover, the inverse of every element (π, δ) is given by

(π, δ)−1 = (π1, . . . , πb, δ)
−1 =

(
π−1
δ−1(1), . . . , π

−1
δ−1(b), δ

−1
)
.

A.2 Measure Theory

Some measure theoretic concepts and results are particularly relevant to my

PhD project and these are briefly summarized below.

A.2.1 Measure Space

A fundamental notion in measure theory is the measure space. It is a triple

(Ω,F ,M) where Ω is a non-empty set, F is a σ-field on Ω and M is a measure

on F . A σ-field F (Billingsley, 1985, p.17) is defined as a subset of the power

set P(Ω) such that

(a) Ω ∈ F ;

(b) If A ∈ F then the complement of A is in F , i.e. A{ ∈ F ;

(c) If a sequence A1, A2, . . . ∈ F then the union
∞⋃
i=1

Ai ∈ F .

It follows that the intersection of a sequence A1, A2, . . . of elements of a σ-field

F is also an element of F , that is

∞⋂
i=1

Ai ∈ F . (A.1)

The pair (Ω,F ) is called a measurable space.

Usually a special σ-field is used for the real numbers which is known as the

Borel σ-field (Billingsley, 1985, p.155). The Borel σ-field B(R) can be defined
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as the smallest σ-field on R which contains all intervals (a, b), where a, b ∈ R.

The elements of the Borel σ-field are called Borel sets.

Now let (Ω,F ) be a measurable space. Then a function M : F → R is a

measure (Billingsley, 1985, p.157) if

(a) M(A) ≥ 0 for every A ∈ F ;

(b) M(∅) = 0, where ∅ is the empty set;

(c) If A1, A2, . . . ∈ F is a disjoint sequence with Ai ∩Aj = ∅ for i 6= j, then

M

(
∞⋃
i=1

Ai)

)
=
∞∑
i=1

M(Ai).

A measure P is said to be a probability measure if P (Ω) = 1 and the triple

(Ω,F , P ) is then called a probability space.

A.2.2 Measurable Function

Let (Ω,F ) and (Γ,G ) be two measurable spaces. A function f : Ω → Γ is a

said to be F -G -measurable (Billingsley, 1985, p.182) if for every G ∈ G

f−1(G) ∈ F , (A.2)

where f−1(G) = {ω ∈ Ω : f(ω) ∈ G}.

Let (Ω,F , P ) be a probability space. A real random variable (Billingsley,

1985, p.183) is an F -B(R) measurable function X : Ω→ R.

A.2.3 σ-field Generated by a Set and the Smallest σ-

field

Let Ω be a set and S be a non-empty subset of the power set P(Ω) i.e.

S ⊆ P(Ω). The σ-field F (S) generated by S is the intersection of all the

σ-fields containing S (Billingsley, 1985, p.19) i.e.

F (S) =
⋂

F :F is a σ−field
on Ω with S⊆F

F . (A.3)
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Moreover, F (S) is the smallest σ-field containing S. Note that F (S) ⊆ F

for all F with S ⊆ F .

A.2.4 σ-field Generated by Random Variables

Suppose (Ω,F , P ) is a probability space. Let X : Ω → R be a real random

variable. The σ-field generated by X is denoted by F (X) and defined as

(Billingsley, 1985, p.64)

F (X) = {X−1(B) : B ∈ B(R)}. (A.4)

Since by definition we have X−1(B) ∈ F for every B ∈ B(R) it follows that

F (X) ⊆ F .

Now let Xi : Ω→ R be a real random variable for i = 1, . . . , n. Then the σ-field

generated by the vector X = (X1, . . . , Xn)> is denoted by F (X) (Billingsley,

1985, p.260) and defined as the σ-field F (S) generated by S =
n⋃
i=1

F (Xi),

where F (Xi) is the σ-field generated by Xi. It is the smallest σ-field for which

every Xi is measurable.

A.2.5 General Definition of Conditional Expectation

Let (Ω,F , P ) be a probability space and X : Ω→ R be a real random variable

then the expectation of X (Billingsley, 1985, p.280) is defined as

E(X) =

∫
Ω

X(ω)P (dω).

Suppose F0 ⊆ F is a sub-σ-field of F , then the conditional expectation of

X given F0, denoted by E(X|F0) (Billingsley, 1985, p.466), is any F0-B(R)-

measurable random variable X0 : Ω→ R such that∫
H

X0(ω)P (dω) =

∫
H

X(ω)P (dω) for every H ∈ F0. (A.5)

It is important to note that E(X|F0) is a random variable. Moreover, any

two random variables, say X0 and X ′0, which satisfy (A.5) are equal with
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probability one. We are particularly interested in situations where the σ-field

F0 is generated by a vector X = (X1, . . . , Xn)> of random variables.

A.2.6 Conditional Expectation When F0 is Generated

by a Partition of Ω

Finding the conditional expectation E(X|F0) of a random variable X on a

probability space (Ω,F , P ) can be facilitated if the sub-σ-field F0 of F is

generated by a partition of Ω into mutually disjoint sets. The conditional

expectation of X given F0 can then be computed as follows (Billingsley, 1985,

p.467).

Theorem 2. Let X be a real random variable on a probability space (Ω,F , P )

and S = {Z1, . . . , Zm} be a partition of Ω with P (Zl) ≥ 0 for every l =

1, . . . ,m. Furthermore, let F0 = F (S) be the σ-field generated by S. Then

the conditional expectation of X given F0 is

E(X|Fo) =
m∑
l=1

EZl(X)1Zl , (A.6)

where EZl(X) =
1

P (Zl)

∫
Zl
X(ω)P (dω) and 1Zl is the indicator function.

A.2.7 Factorization Lemma

The factorization lemma (Lehmann, 1959, p.37) which is particularly relevant

for our model derivations and applied in Section 2.1 is given below.

Lemma 18. Suppose that f : Ω → R and g : Ω → G are functions and that

(G,G ) is a measurable space. Let F (g) be the σ-field generated by g. Then

f is F (g)-B(R)-measurable if and only if there exists a G -B(R)-measurable

h : G→ R such that

f = h ◦ g, (A.7)

where B(R) is the Borel σ-field.

A.2.8 Measure with Density

Let (Ω,F , N) be a measure space. Let f be a non-negative function. By

using f another measure M on the measurable space (Ω,F ) can be defined as
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(Billingsley, 1985, p.216)

M(A) =

∫
A

f(w)N(dw) for every A ∈ F . (A.8)

In general, a measure M for which equation (A.8) holds is said to have a

density f with respect to the measure N . The measure M is a probability

measure if M(Ω) = 1. The question whether a measure M on (Ω,F ) has a

density with respect to a measure N on (Ω,F ) is answered by the Radon-

Nikodym Theorem (Billingsley, 1985, p.443). However, in the thesis we are

only interested in situations where M is defined by (A.8). If M has a density

then integrals of the function g with respect to M can be calculated as integrals

of gf with respect to N , where f is the density in equation (A.8). More

precisely, we have the following result (Billingsley, 1985, p.217).

Theorem 3. If M has a density f with respect to N , then∫
Ω

g(w)M(dw) =

∫
Ω

g(w)f(w)N(dw) (A.9)

holds for every non-negative function g.

An important application of Theorem 3 occurs when we want to compute

the expectation of a random variable X on a probability space (Ω,F , D),

where D has a density f with respect to another probability measure P on

the measurable space (Ω,F ). The expectation ED(X) of X with respect to

D can then be computed as

ED(X) =

∫
Ω

X(ω)f(ω)P (dω), (A.10)

where, as explained in Section 3.2, the subscript D indicates that the expec-

tation is taken with regard to D.

The above definition of a measure with density (A.8) and the result (A.9) are

used to construct the minorization function for the log-likelihood function in

Section 3.2 .

A.3 Useful Lemma

In the derivations of RB-GLMMs, the relevant σ-field is generated by a vector

of random variables. Lemma 19 is formulated in a way that unifies similar
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arguments that are used in the derivation of all three specific RB-GLMMs for

the CRD and RCBD with both random and fixed block effects.

Lemma 19. Let S be a finite non-empty set and F be a σ-field on S. Also

let Ṽ1, . . . , Ṽm be real random variables on the measurable space (S,F ) and Ω

be a non-empty set. Assume that {s} ∈ F for every s ∈ S. For i = 1, . . . ,m

define Vi : S × Ω → R by Vi(s, ω) = Ṽi(s) for every (s, ω) ∈ S × Ω. Let

F (V ) be the σ-field generated by the vector V = (V1, . . . , Vm)> and define

F̃ = {A× Ω : A ∈ F}. Then

(i) F̃ is a σ-field on S × Ω,

(ii) Every Vi is F̃ -B(R)-measurable, where B(R) is the Borel σ-field,

(iii) F̃ is the σ-field generated by the set {{s} × Ω : s ∈ S} and

(iv) F (V ) ⊆ F̃ .

Proof. (i) To show that F̃ is a σ-field it is necessary to check all three

properties of a σ-field (Section A.2.1): (a) Since F is a σ-field on S it

contains S. Hence S × Ω ∈ F̃ ; (b) Let A × Ω ∈ F̃ . Then (A × Ω){ =

{(s, ω) ∈ S × Ω : (s, ω) /∈ A × Ω} = {s ∈ S : s /∈ A} × Ω = A{ × Ω.

Since F is a σ-field so A ∈ F implies that A{ ∈ F and hence A{×Ω ∈
F̃ ; (c) Let A1 × Ω, A2 × Ω, . . . be a sequence of elements of F̃ . Then
∞⋃
i=1

(Ai × Ω) = (
∞⋃
i=1

Ai)× Ω. Since each of A1, A2, . . . is an element of F

and F is a σ-field, it follows that
∞⋃
i=1

Ai ∈ F and so
∞⋃
i=1

(Ai × Ω) ∈ F̃ .

Hence F̃ is a σ-field on S × Ω.

(ii) Let B ∈ B(R). We need to show that V −1
i (B) ∈ F̃ . Now by definition

we can write V −1
i (B) = {(s, ω) ∈ S × Ω : Vi(s, ω) ∈ B} = {(s, ω) ∈

S × Ω : Ṽi(s) ∈ B} = {s ∈ S : Ṽi(s) ∈ B} × Ω = Ṽ −1
i (B) × Ω. Since Ṽi

is a real random variable on (S,F ), and hence F -B(R)- measurable, it

follows that Ṽ −1
i (B) ∈ F . Therefore V −1

i (B) ∈ F̃ and hence every Vi is

F̃ -B(R)-measurable.

(iii) For every s ∈ S we have {s} × Ω ∈ F̃ since by assumption {s} ∈ F .

Hence the σ-field generated by the set {{s} × Ω : s ∈ S} is a subset of

the σ-field F̃ . Conversely, if A × Ω ∈ F̃ then A × Ω =

( ⋃
a∈A
{a}
)
×

Ω =
⋃
a∈A

({a} × Ω) is an element of the σ-field generated by the set

{{s} × Ω : s ∈ S} since S and, hence, A is finite. So F̃ is a subset of
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the σ-field generated by the set {{s} × Ω : s ∈ S}. Thus F̃ is equal to

the σ-field generated by the set {{s} × Ω : s ∈ S}.

(iv) From parts (i) and (ii) it follows that the σ-field F (V ) generated by

the vector V is a subset of F̃ i.e., F (V ) ⊆ F̃ as we know F (V ) is the

smallest σ-field for which every Vi is measurable (Section A.2.4).

�

A.4 Permanent of a Matrix

The permanent of a square matrix is related to the likelihood function of the

RB-GLMM for the CRD as can be seen in Corollary 3 (Section 2.2.1). For an

n× n matrix A = (ai,j) the permanent of A is defined as (Marcus and Minc,

1964, p.18)

perA =
∑
π∈Sn

aπ(1),1 aπ(2),2 . . . aπ(n),n =
∑
π∈Sn

n∏
i=1

aπ(i),i, (A.11)

where Sn is the symmetric group of all permutations π of the set {1, 2, . . . , n}.
It can be shown that perA = perA> and so the permanent can equivalently

be defined by

perA =
∑
π∈Sn

n∏
i=1

ai,π(i)

which is also common in many books. On the other hand, the determinant of

A is defined by (Marcus and Minc, 1964, p.12)

detA =
∑
π∈Sn

sign(π)
n∏
i=1

aπ(i),i, (A.12)

where sign(π) = ±1. The sign of the permutation is computed by the number

of interchanges (even, odd) to obtain natural order as: sign(π) = +1 for even

and sign(π) = −1 for odd.
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Appendix B

Proof of Lemmas 11 and 12

Proof of Lemma 11 . Let Mil = E(Xi,jl) and Vil = V ar(Xi,jl). Recall that

Σ =
1

(n− 1)n

(
(n− 1) diag(V >1n) + n diag(aM )− diag2(M>1n)

−M>(In −
1

n
1n1

>
n )M

)
. (B.1)

We have that

diag(V >1n) =


n∑

i∗=1

vi∗1 · · · 0

...
...

0 · · ·
n∑

i∗=1

vi∗n

 , (B.2)

diag(aM ) =


n∑

i∗=1

M2
i∗1 · · · 0

...
...

0 · · ·
n∑

i∗=1

M2
i∗n

 , (B.3)

diag2(M>1n) =



(
n∑

i∗=1

Mi∗1

)2

· · · 0

...
...

0 · · ·
(

n∑
i∗=1

Mi∗n

)2

 (B.4)

and

M>(In −
1

n
1n1

>
n )M = GM (B.5)
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with

G = M>(In −
1

n
1n1

>
n ).

Now the elements of G are

Gil =
1

n

(
(n− 1)Mli −

n∑
k 6=l

Mki

)

=
1

n

(
(n− 1)Mli +Mli −Mli −

n∑
k 6=l

Mki

)

=
1

n

(
nMli −

n∑
i∗=1

Mi∗i

)
= Mli −

1

n

n∑
i∗=1

Mi∗i. (B.6)

Therefore, the elements of GM are

(GM )il =
n∑

i∗=1

Gii∗Mi∗l

=
n∑

i∗=1

(
Mi∗i −

1

n

n∑
i∗=1

Mi∗i

)
Mi∗l

=
n∑

i∗=1

Mi∗iMi∗l −
1

n

(
n∑

i∗=1

Mi∗i

)(
n∑

i∗=1

Mi∗l

)
. (B.7)

For i = l it follows that

(GM )ii =
n∑

i∗=1

M2
i∗i −

1

n

(
n∑

i∗=1

Mi∗i

)2

. (B.8)
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Therefore, the diagonal elements of Σ (B.1) are

Σii =
1

(n− 1)n

[
(n− 1)

n∑
i∗=1

Vi∗i + n

n∑
i∗=1

M2
i∗i −

(
n∑

i∗=1

Mi∗i

)2

−
n∑

i∗=1

M2
i∗i +

1

n

(
n∑

i∗=1

Mi∗i

)2 ]

=
1

n

n∑
i∗=1

(
Vi∗i +M2

i∗i

)
− 1

n2

(
n∑

i∗=1

Mi∗i

)2

=
1

n

n∑
i∗=1

(
V ar(Xi∗,ji) + (E(Xi∗,ji))

2
)
−

(
1

n

n∑
i∗=1

E(Xi∗,ji)

)2

=
1

n

n∑
i∗=1

(
V ar(Xi∗,ji) + (E(Xi∗,ji))

2
)
−m2

ji

= V ar(Yi,ji) (B.9)

which are exactly the same as in Lemma 9(ii). Similarly, the off-diagonal

elements of Σ for k 6= l are

Σkl =
1

(n− 1)n

[
−

(
n∑

k∗=1

Mk∗kMk∗l −
1

n

(
n∑

k∗=1

Mk∗k

)(
n∑

k∗=1

Mk∗l

))]

=
1

(n− 1)n2

(
n∑

k∗=1

Mk∗k

)(
n∑

k∗=1

Mk∗l

)
− 1

(n− 1)n

n∑
k∗=1

Mk∗kMk∗l

=
1

(n− 1)

(
1

n

n∑
k∗=1

E(Xk∗,jk)

)(
1

n

n∑
k∗=1

E(Xk∗,jl)

)

− 1

(n− 1)n

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl)

=
1

n− 1
mjkmjl −

1

n(n− 1)

n∑
k∗=1

E(Xk∗,jk)E(Xk∗,jl)

= Cov(Yk,jk , Yl,jl)

which are also the same as in Lemma 9(iii).

�

Proof of Lemma 12 . Recall that Mil = E(Xi,jl) and

C =
1

(n− 1)n
(n diag(e>M)− 1ne

>M ).
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We have that

diag(e>M) =


n∑

i∗=1

ei∗Mi∗1 · · · 0

...
...

0 · · ·
n∑

i∗=1

ei∗Mi∗n

 (B.10)

and

1ne
>M =


n∑

i∗=1

ei∗Mi∗1 · · ·
n∑

i∗=1

ei∗Mi∗n

...
...

n∑
i∗=1

ei∗Mi∗1 · · ·
n∑

i∗=1

ei∗Mi∗n

 . (B.11)

Therefore, the diagonal elements of C are

Cii =
1

(n− 1)n

(
n

n∑
i∗=1

ei∗Mi∗i −
n∑

i∗=1

ei∗Mi∗i

)
=

1

n

n∑
i∗=1

ei∗Mi∗i

=
1

n

n∑
i∗=1

ei∗E(Xi∗,ji). (B.12)

These are exactly the same as in Lemma 10(i). Similarly, the off-diagonal

elements for i 6= l are

Cil = − 1

(n− 1)n

n∑
i∗=1

ei∗Mi∗l = − 1

(n− 1)n

n∑
i∗=1

ei∗E(Xi∗,jl), (B.13)

which are also the same as in Lemma 10(ii). �
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Appendix C

RB-GLMM for the RCBD with

Fixed Block Effects and

Likelihood Functions

C.1 Summary of RB-GLMM for the RCBD

with Fixed Block Effects

The GLMM for the RCBD with fixed block effects is

g (E(Yi,ji,k|ε)) = µ+ αji + βk + εi,k (C.1)

for every i = 1 . . . , t, j = 1, . . . , t and k = 1, . . . , b. Here g is the link function

as before, Yi,ji,k is the response for the unit with label i and treatment ji in

block k and E(Yi,ji,k|ε) is the conditional expectation of Yi,ji,k given the vec-

tor of random errors ε = (ε1,1, . . . , εt,1, . . . , ε1,b, . . . , εt,b)
>. Also µ is the grand

mean, αji is the j-th fixed treatment effect on i-th experimental unit, βk is

the k-th fixed block effect and εi,k is the random unit error for i-th unit of

k-th block. The model form (C.1) is our generalization of the derived linear

model of Hinkelmann and Kempthorne (2008, p.281) to a GLMM. One can

see that the only random variable on the right hand side of (C.1) is εi,k and

the treatment j is fixed for every block k by the specific design d = (j1, . . . , jt).
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In matrix notation, the RB-GLMM with fixed block effects (C.1) is

g (E(Y |ε)) = Xβ + ε, (C.2)

where g (E(Y |ε)) is a vector of conditional expectations with components

g (E(Yi,ji,k|ε)), Y is the bt×1 vector of responses, X is the bt×(b+t+1) design

matrix for fixed effects, β = (µ, α1, . . . , αt, β1, . . . βb)
> is a (b+t+1)×1 vector of

fixed treatment and block effect parameters, and ε is the bt×1 vector of random

errors. The conditional distribution of Yi,ji,k given ε is a member of the expo-

nential family. Moreover, we also derivedE(ε) = 0 and the variance-covariance

matrix V (ε) = diag(Ṽ 1, . . . , Ṽ b) with Ṽ k =
σ2
ku

t− 1

(
tI t − 1t1

>
t

)
= σ2

kuPt for

k = 1, . . . , b where Pt =
1

t− 1

(
tI t − 1t1

>
t

)
as before and V ar(εi,k) = σ2

ku.

The likelihood function for the RB-GLMM (C.2) for the RCBD with fixed

block effects is equal to

L(θ) =
1

t!b

∑
π∈Sbt

b∏
k=1

t∏
i=1

fπk(i),ji,k(yi,k;θ), (C.3)

where fπk(i),ji,k(yi,k;θ) is the probability density function of the random vari-

able Yi,ji,k and Sbt is the direct product of b instances of the symmetric group

St.

C.2 Likelihood Function of RB-GLMM for the

RCBD with Random Block Effects

The likelihood function for the RB-GLM for the RCBD with random block

effects is

L(θ) =
1

t!bb!

∑
(π,δ)∈StoSb

b∏
k=1

t∏
i=1

fπδ(k)(i),ji,δ(k)(yi,k;θ), (C.4)

where fπδ(k)(i),ji,δ(k)(yi,k;θ) is the probability density function of the random

variable Yi,ji,k and St o Sb is the wreath product of b-copies of the symmetric

group St and Sb.
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Appendix D

Simulation Results under

Scenario-II

D.1 Misspecified Correlation Structure

D.1.1 Bias and SEs of Fixed Effects Estimates
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Figure D.1: Comparison of relative biases of α̂1, α̂2 and α̂3 under Scenario-II

between M2 (true model) and M2∗(misspecified model).

127



0
.0

8
0

.1
0

0
.1

2
0

.1
4

α1

Treatment block combinations (t,b)

S
E

(2,10) (2,20) (2,40) (3,15) (3,30) (3,60) (4,20) (4,40) (4,80)

●

●

●

●

●

●

●

●

●

0
.0

8
0

.1
0

0
.1

2
0

.1
4

α2

Treatment block combinations (t,b)

S
E

(3,15) (3,30) (3,60) (4,20) (4,40) (4,80)

●

●

●

●

●

●

0
.0

8
0

.1
0

0
.1

2
0

.1
4

α3

Treatment block combinations (t,b)

S
E

(4,20) (4,40) (4,80)

●

●

●

● M2: Correlated random effects M2*: Uncorrelated random effects

Figure D.2: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-II between

M2 (true model) and M2∗(misspecified model)

D.1.2 Bias and SEs of Variance Components Estimates
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Figure D.3: Comparison of relative biases of σ̂2
B and σ̂2

W under Scenario-II

between M2 (true model) and M2∗(misspecified model).
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Figure D.4: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-II between M2

(true model) and M2∗(misspecified model).

D.2 Misspecified Random Effects Distributions

D.2.1 Bias and SEs of Fixed Effects Estimates
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Figure D.5: Comparison of percent relative biases of α̂1, α̂2 and α̂3 under

Scenario-II among normal, uniform and t3 random effects distributions.
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Figure D.6: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-II among

normal, uniform and t3 random effects distributions.

D.2.2 Bias and SEs of Variance Components Estimates
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Figure D.7: Comparison of percent relative biases of σ̂2
B and σ̂2

W under

Scenario-II among normal, uniform and t3 random effects distributions.
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Figure D.8: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-II among normal,
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Appendix E

Simulation Results under

Scenario-III

E.1 Misspecified Correlation Structure

E.1.1 Bias and SEs of Fixed Effects Estimates
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Figure E.1: Comparison of relative biases of α̂1, α̂2 and α̂3 under Scenario-III

between M2 (true model) and M2∗(misspecified model).
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Figure E.2: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-III between

M2 (true model) and M2∗(misspecified model)

E.1.2 Bias and SEs of Variance Components Estimates
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Figure E.3: Comparison of relative biases of σ̂2
B and σ̂2

W under Scenario-III

between M2 (true model) and M2∗(misspecified model).
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Figure E.4: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-III between M2

(true model) and M2∗(misspecified model).

E.2 Misspecified Random Effects Distribution

E.2.1 Bias and SEs of Fixed Effects Estimates
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Figure E.5: Comparison of percent relative biases of α̂1, α̂2 and α̂3 under

Scenario-III among normal, uniform and t3 random effects distributions.
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Figure E.6: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-III among

normal, uniform and t3 random effects distributions.

E.2.2 Bias and SEs of Variance Components Estimates
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Figure E.7: Comparison of percent relative biases of σ̂2
B and σ̂2

W under

Scenario-III among normal, uniform and t3 random effects distributions.
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Figure E.8: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-III among nor-

mal, uniform and t3 random effects distributions.
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Appendix F

Simulation Results under

Scenario-IV

F.1 Misspecified Correlation Structure

F.1.1 Bias and SEs of Fixed Effects Estimates
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Figure F.1: Comparison of relative biases of α̂1, α̂2 and α̂3 under Scenario-IV

between M2 (true model) and M2∗(misspecified model).
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Figure F.2: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-IV between

M2 (true model) and M2∗(misspecified model)

F.1.2 Bias and SEs of Variance Components Estimates
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Figure F.3: Comparison of relative biases of σ̂2
B and σ̂2

W under Scenario-IV

between M2 (true model) and M2∗(misspecified model).
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F.2 Misspecified Random Effects Distribution

F.2.1 Bias and SEs of Fixed Effects Estimates
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Figure F.5: Comparison of percent relative biases of α̂1, α̂2 and α̂3 under

Scenario-IV among normal, uniform and t3 random effects distributions.
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Figure F.6: Comparison of SEs of α̂1, α̂2 and α̂3 under Scenario-IV among

normal, uniform and t3 random effects distributions.

F.2.2 Bias and SEs of Variance Components Estimates

−3
0

−2
0

−1
0

0

σ2
B

Treatment block combinations (t, b)

R
el

at
iv

e 
bi

as
 (%

)

(2,10) (2,20) (2,40) (3,15) (3,30) (3,60) (4,20) (4,40) (4,80)

●
●

●

●

●

●

● ●

●

−4
0

−2
0

0
20

40

σ2
W

Treatment block combinations (t, b)

R
el

at
iv

e 
bi

as
 (%

)

(2,10) (2,20) (2,40) (3,15) (3,30) (3,60) (4,20) (4,40) (4,80)

●

●

●

●

●

●

●

●

●

● Normal Uniform t3 df

Figure F.7: Comparison of percent relative biases of σ̂2
B and σ̂2

W under

Scenario-IV among normal, uniform and t3 random effects distributions.
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Figure F.8: Comparison of SEs of σ̂2
B and σ̂2

W under Scenario-IV among normal,
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