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NONCOMMUTATIVE SPHERICALLY SYMMETRIC
SPACETIMES AT SEMICLASSICAL ORDER

CHRISTOPHER FRITZ & SHAHN MAJID

ABSTRACT. Working within the recent formalism of Poisson-Riemannian ge-
ometry, we completely solve the case of generic spherically symmetric metric
and spherically symmetric Poisson-bracket to find a unique answer for the
quantum differential calculus, quantum metric and quantum Levi-Civita con-
nection at semiclassical order O(X). Here A is the deformation parameter,
plausibly the Planck scale. We find that r,¢,dr, dt are all forced to be central,
i.e. undeformed at order A, while for each value of r,t we are forced to have a
fuzzy sphere of radius r» with a unique differential calculus which is necessarily
nonassociative at order A\2. We give the spherically symmetric quantisation
of the FLRW cosmology in detail and also recover a previous analysis for the
Schwarzschild black hole, now showing that the quantum Ricci tensor for the
latter vanishes at order A. The quantum Laplace-Beltrami operator for spher-
ically symmetric models turns out to be undeformed at order A while more
generally in Poisson-Riemannian geometry we show that it deforms to
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in terms of the classical Levi-Civita connection ¥/, the contorsion tensor S, the
Poisson-bivector w and the Ricci curvature of the Poisson-connection that con-
trols the quantum differential structure. The Majid-Ruegg spacetime [z,¢] =
Az with its standard calculus and unique quantum metric provides an example
with nontrivial correction to the Laplacian at order .

1. INTRODUCTION

In recent years it has come to be fairly widely accepted that quantum gravity effects
could render spacetime better modelled as a ‘quantum’ geometry than a classical
one, with coordinates x* now generating a noncommutative coordinate algebra.
We refer to [24, 14, 26, 12, 21] for some early works, as well as [34] from the
1940s although this did not propose a closed coordinate algebra as such. A further
ingredient to such a quantum spacetime hypothesis was to include differential forms
dz* such as in [31, 1, 33|, while in recent years one also has quantum metrics and
quantum bimodule connections within a systematic framework of ‘noncommutative
Riemannian geometry’ [16, 29, 9, 28]. The latter links to spectral triples or ‘Dirac
operators’ in the general approach to noncommutative geometry of Connes[13] as
well as to quantum group frame bundles in 2+1 quantum gravity[27]. It may also
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relate to other ideas for ‘quantum geometry’ from spin foams and loop quantum
cosmology, see for example[18, 5, 4].

In the present paper we continue recent work [10] which explores the content of
such noncommutative Riemannian geometry at the Poisson level of first order in a
deformation or ‘quantisation’ parameter \. This is obviously useful to understand
issues at order A\ before attempting the full theory, but it also turns out to be
surprisingly rich with compatibility conditions between the Poisson bivector w”
that controls the quantum spacetime relations [z#,2"] = Aw"” + O(A\?) and the
classical Riemannian metric g,, that we also want to quantise. This emergence
of a well-defined order A ‘Poisson-Riemannian geometry’ in [10] implies a specific
paradigm of physics governing first order corrections and coming out of the quantum
spacetime hypothesis in much the same way as classical mechanics emerges from
quantum mechanics at first order in A. In our case A is plausibly the Planck scale
so, although this is a Poisson-level theory, it includes quantum gravity effects and
could be called ‘semi-quantum gravity’[10] or ‘classical-quantum gravity’.

The key further ingredient in this theory is a type of connection V which controls
commutators such as

[2#,d2"] = -Aw"PTY dz” + O(\?)

where I" are the Christoffel symbols of V. It is only the combination w"?I"}; which
we actually need here and which can be seen as the structure constants of a Lie-
Rinehart or ‘contravariant’ connection known to be relevant to quantising vector
bundles [20, 22, 11, 17, 6]. One can also think of these as covariant derivatives
partially defined just along hamiltonian vector fields. In our case we follow [10]
and suppose a full ordinary covariant derivative V of which only the hamiltonian
vector field directions are relevant to the commutation relations. This is physically
reasonable given that covariant derivatives already arise extensively in General
Relativity but does mean that our covariant derivatives have extra directions that
do not play an immediate role for the quantisation (but which could couple to
physical fields later on). The field equations for this connection V are [10]:

(1) Poisson compatibility V.,w®? +T%5,w®? +T75,w* = 0 where T is the torsion
of V;

(2) Metric compatibility V~g,. = 0;

(3) A condition on the curvature and torsion of V (see (2.14) in Section 2).

It was shown in [10] that (1) allows for the entire classical exterior algebra to
quantise uniquely at lowest order, now with a quantum wedge product Aq; (2) allows
for the metric similarly to quantise to a quantum metric g; and (3) for the classical
Levi-Civita connection V to quantise to a quantum Levi-Civita V. In fact the
formulae for V; in [10] give a unique ‘closest to quantum Levi-Civita’ connection
at order A even when (3) does not hold but in that case Vig; has an order A
correction. Our first main goal of the present work is to describe these results more
explicitly using tensor calculus methods as in classical General Relativity (starting
with Lemma 2.2) and also to extend them to cover the quantum Laplacian and
quantum Ricci tensor in Theorem 2.3 and Section 2.2. This takes considerable
work and occupies our ‘formalism’ Section 2.



NONCOMMUTATIVE SPHERICALLY SYMMETRIC SPACETIMES 3

We believe that these Poisson-Riemannian field equations deserve further study as
an extension of classical General Relativity. In this respect our second main goal
is a full analysis of their content in the spherically symmetric case. This includes
the example of the Schwarzschild black hole already covered in [10] but now taken
further and also, which is new, the FLRW or big-bang cosmological model. In
our class of quantisations we assume that both the metric and the Poisson tensor
are spherically symmetric and find generically that ¢ must be central. The radius
variable r and the differentials d¢,dr are then also central as an outcome of our
analysis. This means that the only quantisation that can take place is on the
spheres at each fixed r,¢t and we find that these are necessarily the ‘nonassociative
fuzzy sphere’ quantisation of S? and calculus at order A obtained in [7] as a cochain
twist and later in [10] within Poisson-Riemannian geometry. This result is both
positive and negative. It is positive because our analysis says that this simple form
of quantisation is unique under our assumptions at order )\, it is negative because
it is hard to extract physical predictions in this model and we show in particular
that more obvious sources such as corrections to the quantum scaler curvature
and quantum Laplace-Beltrami operator vanish at order A, in line with cochain
twist as a kind of ‘gauge transformation’. We do still have changes to the form of
the quantum metric (and quantum Ricci tensor) and more subtle effects such as
nonassociativity of the differential calculus at order \2.

To explain this latter point in more detail, one can see[6, 10] that the Jacobi iden-
tity in the form 0 = [z#, [d2”, 2”]]+cyclic at order A\? amounts to vanishing of the
curvature of V after contraction with w. Thus, usual associative noncommutative
geometry[13] where the quantum differential forms define a differential graded al-
gebra corresponds essentially to V a flat connection (this being precisely true in
the symplectic case). In general, the existence of a flat connection respecting a Lie
symmetry can have a topological obstruction (it is governed by the relevant Atiyah
class) and this goes some way towards understanding why some noncommutative
algebras[9, 28] admit few covariant noncommutative geometries. At the semiclassi-
cal level we can see this as fixing w and finding only very restricted solutions for v, g
in the presence of rotational symmetry. Our new result in Theorem 4.1 is a similar
rigidity where we fix ¢ and find no flat V and w with rotational symmetry. We
are not limited to flat V in Poisson-Riemannian geometry as the nonassociativity
shows up at order A% not order A and indeed from a General Relativity point of
view if assuming a flat connection is too restrictive then it is reasonable to accept
that we need a curved one. It is also worth remembering that noncommutative
geometry was only meant to be an effective description and X is so small that \2
is not relevant in practice away from singular situations that blow up its effective
value. Therefore we have no real evidence that the world is in fact ‘flat’ in this
respect. It is therefore one of the notable outcomes of our analysis that spherical
symmetry generically requires such nonassociativity of differentials at order A\2.

It is worth noting that a primary reason for wanting associative algebras is a prac-
tical one that these are much easier and more familiar to work with. In modern
thinking, however, there is a class of quasiassociative algebras, shown in the 1990s to
include the octonions, where the breakdown of associativity is nevertheless strictly
controlled by a certain 3-cocycle ‘associator’. In formal terms the algebra is asso-
ciative in a monoidal category, where a coherence theorem of Mac Lane[23] says
that one can work as if the algebra is strictly associative; one can put in brackets as
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needed for compositions to make sense (this involves inserting the 3-cocycle) and
different ways to do this give the same final result. Such categories are familiar
in topological quantum field theory and in quantum group theory, where they are
induced by a ‘Drinfeld cochain twist’[15] of an underlying symmetry. The quantum
group C,[SU;], for example, has no bicovariant differential calculus quantising the
classical one but does have a nonassociative one where the exterior algebra is a
super co-quasi-quantum group[6]. Our nonassociative fuzzy spheres have similarly
been conjectured in [7] to extend to all orders in A as quasiassociative cochain twists
for a certain action of the Lorentz group. This is recalled in Section 2.5. In general
there is a considerable amount of current interest in nonassociative twists in various
contexts[8, 3, 30] including in relation to contravariant connections|2].

Finally on this topic, although not exactly the same as far as we know, there
is a similarity here with quantum anomalies in physics where symmetries do not
survive quantisation due to curvature obstructions. In that context it is sometime
possible to cancel anomalies by introducing extra dimensions and in quantum group
examples one can often do something similar (thus C,[SUz] does have a bicovariant
associative differential calculus[35], but it is 4-dimensional). It is not known if
we can do the same for the nonassociative fuzzy sphere to make it associative or
by implication for spherically symmetric mildly nonassociative spacetimes in our
analysis, but if so it may link up with the associative noncommutative Schwarzschild
black hole with a 5-dimensional differential calculus in [25]. This is outside our
current scope since it leaves our Poisson-Riemannian deformation theory setting,
but could provide an alternative extra dimensions ‘consequence’ of our analysis.

Other possible effects include the form of the quantum metric g; and its inverse
(', )1. Here a natural way to write its coefficients is as g1 = dz* e g, ® da” where
e is the quantum product, which is arranged so that g,, is inverse to the equally
natural matrix g" = (dz*,dz");. Then we find in the general analysis that

gm/ =9u t+ §h;w

at order A where h,, is a certain antisymmetric tensor (or 2-form) built from the
classical data in (2.12). The physical interpretation of this is not clear but if we
suppose that the g,,,, are the observed ‘effective metric’ then we see that this acquires
an anti-symmetric or spin 1 component, making contact with other scenarios where
non-symmetric metrics have been studied. On the other hand, h,, is not tensorial
i.e. transforms in a more complicated way if we change coordinates, albeit in
such a way that when proper account is taken of the quantum tensor product ®,
our constructions themselves are coordinate invariant. We look at this closely on
one of the models in Section 4.3. The same applies for the quantum Ricci tensor.
Theorem 2.3 also shows that the quantum Laplacian 0y = (', )1V1d gets generically
an order \ correction given by the Ricci curvature of V and the covariant derivative
of the contorsion tensor of V. In both cases Poisson-Riemannian geometry leads
in principle to calculable effects due to our standing assumption that quantum
field are identified with quantum ones just with modified operations. The precise
physical significance of these effects, however, is much more involved question due
to the necessity of working on a curved background but frequency dependence of
the speed of light and of gravitational redshift could both be expected features
based on limited ad-hoc experience from other models[1, 25]. The difference is that
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Poisson-Riemannian geometry now offers the possibility of a systematic geometric
treatment of such phenomena as an important direction for further work.

A third main goal of the paper is the detailed computation of some examples so
as to explore some of the theory and issues above. Here the 2-dimensional Majid-
Ruegg spacetime [z,t] = Az is explored at the Poisson level in Section 2.3 and has
the merit that its full noncommutative geometry is known already by algebraic
means|[9] (our results are reconciled with that work in the Appendix). The classical
metric

g=dz?+bv? wv=zdt-tde

describes either a strong gravitational source with a Ricci singularity at = 0 or an
expanding universe, depending on the sign of the parameter b. We find now that
there are order X corrections in the quantum wave equation with plane waves at first
order now provided by Kummer M and U functions. One of the surprising outcomes
of the paper is that such cases are relatively rare and for example in Section 2.4
we find no order A correction to the quantum Laplacian for the Bertotti-Robinson
metric quantisation of [28] on the same coordinate algebra (this has the same w but
a different Vv, g). The other model that we look at in particular detail, in Section 3,
is the rotationally invariant quantisation of the classical spatially-flat FLRW metric

g=—dt® + aQ(t) Z:(dxl)2

We find that everything works in the sense that, as for the black hole, there do
exist w, V solving our field equations. Here V pulls back to a unique contravariant
connection, so there is a unique noncommutative geometry at order A. We further
find that h,, = 0 when computed in this section so that the quantum metric, and
also the quantum Levi-Civita connection, look remarkably undeformed at order .
This model is a warm up to the general analysis but because it is done in Cartesian
and not the polar coordinates used in Section 4, it provides a good illustration of
the subtle issues concerning changes of coordinates as reconciled in Section 4.3.
The paper ends with some further discussion in Section 6.

2. FORMALISM

Throughout this paper by ‘quantum’ we mean extended to noncommutative geom-
etry to order \. There is a physical assumption that quantities will extend further
to all orders according to axioms yet to be determined but we do not consider the
details of that yet (the idea is to proceed order by order strictly as necessary). This
is for convenience and one could more precisely say ‘semiquantum’ as in [10]. We
use o for the deformed product and ; for the covariant derivative with respect to the
Poisson compatible ‘quantising’ connection V. This usually has torsion and should
not be confused with the Levi-Civita connection.

2.1. Poisson-Riemannian geometry and the quantum Laplacian. We start
with a short recap of results we need from [10] but in a more explicit tensorial form,
along with some new general results in the same spirit. We let M be a smooth
manifold with exterior algebra €0, equipped with a metric tensor g and torsion free
metric compatible Levi-Civita connection ¥ on Q' and Christoffel symbols T'. We
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let v: Q! - Q' ® 0! be another connection on Q! with similarly defined ‘Christoffel
symbols’ I', so that

Vpda® = -T%,dz?, Vpda® = -T"4,dz"

respectively for the two connections. The tensor product here is over C* (M) and
we view the covariant derivative abstractly as a map or in practice with its first
output against 9/0z” to define V4. Its action on the component tensor of a 1-form
N = Nadz® is Vgna = (Van)a = 0sMa — Ny 17 ga, which fixes its extension to other
tensors. The torsion and curvature tensors of V are
Ty =Ty =T% 5, R%y5 =I5, =T%p,5 + TasT 0 =170 5T 5.

in the conventions of [10]. In the presence of a metric we have a contorsion tensor
S defined by

[, =T, + 5By
where metric compatibility Vg = 0 is equivalent to the first of

L s
5%y = 59" (Topy + Tpoy + Thop), Ty = 5%y = 5%

and also implies that the lowered R,gs is antisymmetric in the first pair of indices
(as well as the second). Also note that the lowered index contorsion here obeys
Sapy = =Sysa. In this setup, torsion becomes the relevant field which determines
metric compatible V via S. This set up is slightly more than we strictly needed for
the noncommutative geometry itself as explained in the introduction.

We let w®” define the Poisson bracket {f,h} = w*?(9,f)9sh. This is a bivector
field and it is shown in [10] that V in our full sense is Poisson compatible if and
only if

(2.1) Vw4 TO‘Mw‘SB + TP 5,0 =0
or equivalently in the Riemannian case that
(2.2) Vw4 8% w1+ 885w = 0.

We also want w to be a Poisson tensor even though this is not strictly needed at
order A,

2.3 WY =0
N

cyclic(a,.7)
which given Poisson-compatibility is equivalent [10] to
(2.4) > WY, = 0.

cyclic(e,8,7)

Given the Poisson tensor and (2.1) respectively we quantize the product of functions
with each other and 1-forms by functions,

A A A
Foh=fh+J{fhy, fen=fn+ S0 faVin, nef=nf-Zw" Vi
to order A, so that
(2.5) [2%,n] = 2PV g1
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to order A in the quantum algebra. It is shown in [10] that we also can quantize
the wedge product of 1-forms and higher,

A
. - A da” =dxrT Ada” + —w " VadaT A Vsda” +
2.6 da® Ay dz? do‘dBQV‘;VdO‘ dz” + \H*?
to order A. This gives anticommutation relations
(2.7) {dz®,da?}; = AT, TP, da’ A da” + 20H*P.

Here the extra ‘non-functorial’ term needed is given by a family of 2-forms
1
HYP = zwaﬁy(vaﬁw - 2R5,,W)dx“ Adx?.

The exterior derivative d is taken as undeformed in the underlying vector spaces.
Note that because the products by functions is modified, the quantum tensor prod-
uct ®1, i.e. over the quantum algebra is not the usual tensor product. It is charac-
terised by
ne®1fel=nefe®(

for all functions f and any 7n,{. If we denote by A the vector space C* (M) with
this modified product, which can always be taken to be associative, and if Q! with
e is separately a left and right action of A (even if they do not associate) then ®;
is just the usual tensor product ® 4 over A. Note that Q' ®; Q! ®; Q! in the case
of nonassociative differentials will still have ambiguities at order A2. The quantum
and classical tensor products are in fact identified by a natural transformation ¢ to
order A, as explained in [10]. The fact that everything works and is consistent at
order ) is a nontrivial part of that work, where we work associatively modulo \2.

Next, although not strictly necessary, it is useful to optionally require that the Vg
is geometrically well behaved in noncommutative geometry in that its associated
quantum torsion commutes with the quantum product by functions (a ‘bimodule
map’). This is a quantum tensoriality property in the same spirit as requiring
centrality of the quantum metric. We say that such a V is regular, amounting to

(2.8) w*VeT7,, =0

With or without this simplifying assumption, there is a quantum metric g; € Q' ®;
Q! to order A given by|[10]

A A
(2.9) g1 = guda @1 da¥ + EwaﬂI’MMF”ﬂydx” ®q dz” + ERde” ®q dz”

and obeying A1(g1) = 0 as well as a ‘reality’ property flip(* ® *)g; = g1. Note the
quantum Q' as a vector space is identified with the classical Q! and the above
formula specifies an element of Q! ®; Q! by giving the classical 1-forms for each
factor in each term. This should not be confused with §,, which we will introduce
later as coefficients with respect to the e product. In our case x** = z* since our
classical manifold has real coordinates and also acts trivially on all classical (real)
tensor components, while A* = =\, The action of * on a e-product reverse orders
while on a Aj-product it reverse order with sign according to the degrees. For the
most part this *-operation takes care of itself given that our classical tensors are
real, so we will not emphasise it. The first two terms in (2.9) are the functorial
part gg and the last term is a correction. Here

1 (a2
(210) R#l’ = 5904[300 W(VWTﬁW - Rﬁ;w'y + Rﬁu,u’y)
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is antisymmetric and can be viewed as the generalised Ricci 2-form
1
R = i'Rde” Adz! = g, H"

(note the sign and factor in our conventions for 2-form components). Next we let
(,)1:9'® Q' > A be the inverse metric as a bimodule map. We define A-valued
coefficients g1, Gur by

91 = g1dat @ da” = dat e g, ®1 dz” = dat ®1 Gy e da”
so that

_ A A
(2~11) Guv = 91uv + §Waﬂrfyaug'w,5 =0uw t+ §hm/

to order A, where we also write h,, for the leading order correction in §,,. Here
91w is read off from (2.9) as the quantum metric coefficients when we choose to
use the undeformed product and g, are the coefficients when we choose to reorder
and use the deformed product as stated (we can also place the §,,, with the second
factor since ®; behaves well with respect to the e product as we explained above).
The two sets of coefficients are related by (2.11) but in different calculations one or
the other may be easier to work depending on the context (the same remark will
apply to all our other quantum tensors). From (2.9) and (2.11) we find

(2.12) by = Ryw + waﬁ(ruanrﬁﬁv + Fyaugw,ﬁ) =—hyy

where we use metric compatibility of V in the form g,, 3 = I'y3, + ',y to replace
the second term to more easily verify antisymmetry. We let g*” be the A-valued
matrix inverse so that g,,  g"7 =4, = g7 e g,,, and define

A~
(2.13) (A2, da")y = g = g = Sh

which we extend by (f e dz”,dz” e f); = f e (dz*,dz"); e f for any functions f, f.
This gives us a bimodule map ( , )1 : Q' ®; Q! - A inverse to g; in the usual sense
of noncommutative geometry [9], namely

((, 1®id)(n®1g1)=n=(>de(, )1)(g1®17)
for all n € Q!, except that we only claim these facts to order A\. From the above,
W = "9 hag + 9" {gap, 97} = R + w (T, D" ,g"7 + T0n 9" )
= Rl“/ - waﬁgncrﬂanfygg = —Ey'u

and R has indices raised by g. As an application, in bimodule noncommutative
geometry there is a quantum dimension[9] which we can now compute.

Proposition 2.1. In the setting above, the ‘quantum dimension’ to order X\ is

dimy = ( )1(g1) = dm(M) + 2 {gunn ™).

Proof. Given the above results, we have
dim; = (dz" e, dz”)1 = G © G + ([d2", g ], da”)

A
=dim(M) + §(h,“, —huw) "+ 20 g T 5,97 = dim(M) = Aw™Pg" \Top,
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where the middle term vanishes as ¢g"” is symmetric and we transferred to the

derivative to the inverse metric. We can now use metric compatibility in the form
Lugy +Tugu = guv,p to obtain the answer. O

Finally, the theory in [10] says that there is a quantum torsion free quantum metric
compatible (or quantum Levi-Civita) connection Vi : Q' - Q! ®; Q! to order A if
and only if

(2.14) TR+ W g5 87 51 (R py + V'SP ) dz” ® dat A da” = 0

In fact the theory always gives a unique ‘best possible’ V1 at this order for which
the symmetric part of V1g; vanishes. This leaves open that Vig; = O()\), namely
proportional to the left hand side of (2.14). The construction of V; takes the form

Vi=Vo+q 'Q(S)+\K

where the first two terms are functorial and the last term is a further correction.
Translating the formulae in [10] into indices and combining, one has

Lemma 2.2. cf[10] Writing Vida* = -T'1*,,da ®; dz¥, the construction of [10]
can be written explicitly as

— A — — —
Tyl =T + Ewaﬂ (T a0 = T T 0, T g + T i (R + V5S™ ) -

Proof. Tt is already stated in [10] that
A
Vo(dz') = - (FLW + S (L = T D D - FLBKR"VW)) da* ®, da”

Next, we carefully we write the term w”V; o V;(9) in Q(S) in [10, Lemma 3.2] as
curvature plus an extra term involving V.S and T', to give

- L L A « L K L K T A L
q 1Q(S)(dx ): (S % + 5“) 5(3 /m,aF Brv -5 m—F auF Bu) + ZRw(S) uv

A
—Ewo‘ﬁFLaKVgS”W)dx“ ®; dz”

where

Ru(8) v =0 (R rapS" v = R* uap S s = R"vapS" un)
is the curvature of V evaluated on the Poisson bivector and acting on the contorsion
tensor S. Finally, we take K given explicitly in [10, Corollary 5.9],

1 1
K(dxb) = (§waﬂ(sbanvlﬁsnﬂu - SLﬁI{RNV[_La) - ZRW(S)LI—“’) dl’u ®1 dl’y
and combine all the terms to give the compact formula stated. O

As a bimodule connection there is also a generalised braiding o; : Q' ®; Q! -
0@ Q! that expresses the right-handed Liebniz rule for a bimodule left connection,

(2.15) o1(dz® ®; dz?) = oo (dz® ®; dz?) + A (v,.8) (dz®)
which comes out as
(2.16)

o1(dz® @1 dz?) = da” @1 dz® + A ("I, TP s — WP (R 15, + S%5y:0) ) Az’ @1 da”

The bimodule noncommutative geometry also has a natural definition of quantum
Laplacian [9] and we can now compute this
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Theorem 2.3. In Poisson-Riemannian geometry the quantum Laplacian to order
A is

Ouf = (, )1Vidf =0f + 3w (Ric"y - §7.0) (Vpdf),
Proof. Here Ric”, = gwRﬁl,ga = —R”’l,gag”ﬁ and (?adf)v = fa~y —T‘\L,wf’b as usual.

Let us also note that d is not deformed but can look different, namely write df =
(Oaf) o dz® so that

~ A
8= 0y + Ewaﬁrv 51000,
and we similarly write Vidx" = —f‘ﬁw e dx* ®1 do” so that
™oL L A aBTe K Tt L
Iy ,uyzrl ,uu"'gw Fun,aF Bp:Fuu+§7 nz

say, using symmetry of the last two indices of I'. Then by the bimodule and
derivation properties at the quantum level, we deduce

o f=(, )1(d('§,,f ® dz” + (5af) o Vyidz®) = (5M5Vf - (5af) . f‘law) N7iad

We then expand this out to obtain as the classical Of and five corrections time A/2
as follows:

(i) From the deformed product with g*” we obtain
{0400 f = (0a )T, 4"}
(ii) From the deformation in §"* we obtain
~(0400f = ()T )W =0

by the antisymmetry of h*” compared to symmetry of T® uv and of 9,0, f. So there
is no contribution from this aspect at order A.

(iii) From the deformation in 8,0, f we obtain
W PTY 5, 9" 00 0,0, f + g 0, (W*PT7 3,000, f)
= 20T 5,,9" 00040, f + g™ (900 £)0, (W*PT75,)

(iv) From the deformation in -0, f e T® uv We obtain

_Waﬁrvﬁnguyfnuuaaayf - {aaf7 fauu}g’“j

(v) From the deformation in T'" and our above formulae for that, we obtain
_'Vbiwgl“jaLf = _(abf)waﬁ (QT‘\L;LH,DLFNBDQHV +fLﬁnRiCKa +fLomSH;ﬁ)
where S% = 5%, g"" is the ‘contorsion vector field’ and ; is with respect to V.

Now, comparing we see that the cubic derivatives of f in (i) and (iii) cancel using
metric compatibility to write a derivative of the metric in terms of I'. Similarly the
1-derivative term from (i) is =0, f times
(T, 9"} = 0T g™ 590 9"" = —waﬁan,ag“”(Fnau +Lupn)g™
= _QWQBFL;LK,QQNVFH[}V
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where we inserted g¢,,, turned dz onto this and used metric compatibility of V. In

the last step we used that T is torsion free so symmetric in the last two indices.
The result exactly cancels with a term in (v) giving

0L f = Of + %(&f)w“ﬁf"m (Ric" s - S75) + O(P) f

where we have not yet analysed corrections with quadratic derivatives of f. Turning
to these, the remainder of (i) and (iv) contribute

{04/, fv} - (aaawf)waﬁrvﬁnfﬁ = _waﬁ(aaavf)fv;ﬂ
=w* (000, £)S7 .5 — (0005 ) g" W*T7 .5
=W (000, £)S7 .5 = (000 [)g" W (T s + TV Ty =T, T, = T7 T,

Meanwhile in (iii), we use poisson-compatibility in the direct form[10]
waﬁ# = wﬁ"I‘aW + w"o‘f‘ﬁw
to obtain
(Db )g" (WPT7 gy + WP, T 5, — w0 PTR 5, T, )

using g"” symmetric to massage the last term. The middle term vanishes as it is
antisymmetric in «,y and the remaining two terms together with the above terms
from I'7,,.3 combine to give (9,0, g™ w R7,,5. This gives our 2-derivative
corrections at order A as

%(aaa7 HwP (87,5 - Ric"p).

We then combine our results to the expression stated. [

2.2. Quantum Riemann and Ricci curvatures. The quantum Riemann cur-
vature in noncommutative geometry is defined by

(2.17) Riem; = (d ®; id - (A ® id)(id ®; V1)) V4

and we start by obtaining an expression for it to semiclassical order in terms of
tensors. It will be convenient to define components by

1~ 1—
Riem; (dz®) = —5 B1 % puvda” A dz” @ da = —5 B g o (A A da”) @ da”

— —~ A —~ —~
R g = Ra®ppw + 5“67 (RaﬁnVﬁI‘nw + Raﬁun,érn'w)
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depending on how the coefficients enter. If we write Iy =T + %’y‘ then
Riem; (dz®) = (d ®; id - (A; ®;1d)(id ®1 V1))V (dz®)
= —(d®; id - (A ®1 id)(id ®; V1)1, 5d2t @, dz’”
=~ (T1%uppda” Adat @1 da? + (D14 dat) Ar (D17, pda”) @1 da?)
=— (fal,,@,uda:“ Adz” @ da? + (T%,,dat) Ay (T7,5d2") @1 da:B)

A PO JU
) (T s + T up = 7% n 1 T up) dat A da” @ dz”?

1~ A
= —§Raﬁm,dx“ Adz? @ da’ + §7y‘aug;,,dm“ Ada? @, dz”?

A = -

—§w”<v,, (T, da") A Ve (T7,5d2") @1 da”
(2.18) AT, T, s H" ®; dz”
to O(A\?), where ? is with respect to the Levi-Civita connection. The term ﬁawgfww
does not contribute due to the antisymmetry of the wedge product. This implies
for the components
—~ —~ 1 — — — —
B g = R g + A (i(ﬁ\auﬁfu — 7 upw) + w”C(I‘Z‘,m - Famrﬁw)(FZﬁ,c - 17esl" )

nKk

W=y =
+ 2 r UVFWCB(RCMVN_RCVW%_Tc;w;m))

where we inserted a previous formula for H in terms of the curvature and torsion
of V. One can similarly read off ¥ from the quantum Levi-Civita connection in
Lemma 2.2.

Next, following [9], we consider the classical map i : Q% - Q! ® Q! that sends a
2-form to an antisymmetric 1-1 form in the obvious way.

Proposition 2.4. The map i quantises to a bimodule map such that Aiiq = id to

O(\?) by
1
i1(dz? Ada”) = i(dx” ®1 dz” —dz” @1 dzt) + AI(dz* A dz”)

for any tensor map I(dz Adx¥) = I" (pdz* ® dz? where the tensor I is antisym-
metric in u,v and symmetric in o, 5. The functorial choice here is

v 1 KT " 14 " v
I af = _Zw (Fl Kal_‘ 8 + It T(XF m,@)~

Proof. The functorial construction in [10] gives ig : Q% — Q! ®; Q' necessarily
obeying Agig = id. Here V(i) = 0 since the connection on Q? is descended from
the connection on Q' ® Q! so that ig = ¢ i on identifying the vector spaces. This
gives the expression stated for the canonical I and this also works for A; since this
on 1(dz* @ dz¥ - dz¥ @ da*) differs from Ag by 3(H" - H"*) = 0. Finally, if
we change the canonical I to any other tensor with the same symmetries then its
wedge is not changed and we preserve all required properties. Note that canonical
choice can also be written as

(2.19)

1 A
i1(dat Ay da”) = i(dx“ ®1de” —dz” @1 dat) - §w°‘BI‘“MI"’5deT ®1 da” + Xi(H"")
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when we allow for the relations of Aq. O

Now we can follow [9] and use 4; to lift the first output of Riem; and take a trace
of this to compute the quantum Ricci tensor. To take the trace it is convenient,
but not necessary, to use the quantum metric and its inverse, so

(220) Ricciy = (( , )1 ®1 id ® ®1d)(ld ®1 11 ®1 ld)(ld ®1 Rleml)(gl)
We now calculate Ricciy from (2.20) taking first the ‘classical” antisymmetric lift
1
i1(det Ada”) = i(dx“ ®; dz” — dz” @ dzt)

corresponding to I = 0. Then using the second form of the components of Riemy,

Ricciy = ((, )1 ®1 id ®1 ®id)(id ®1 i1 ®1 id)(id ® Riem;)(g1)

1 _

—5(( )1 ®1id ®1 8id)(id ®1 i1 ©1id)(de” » G 1 Ri’ e (da” Adz?) ®; dz?)
1 _

= =3((. )1 @111 8id)(da” 81 Gus o Ry’ e in(da? Ada”) ®; da?)

1 —
= _§(dxa7§aﬁ d RIB'\/MU ° dxu)l o da” ®1 dz”

1 — 1
= —§§a“ ®Gop® Rlﬂwu edr’ ®; dz” - E(dxo‘, [Rorypv, dz?])dz” @1 dz”

In the fourth line we used the fact that the Riemann tensor is already antisymmetric
in 1 and v. Note that G e Go5 = (§"* + AR'*) @ Gup = 6 5 + AhH 5 to O(A\?) where
we lower an index using the classical metric. Meanwhile, putting in general I adds

a term

—gﬁaw(( ) oid ® 0id)(de® &) [(de' A da”) @ dz)

and we therefore obtain

1~ A e _
Ricci; = —iRl“W o ds’ @ da” - 3 (R Ry = 0" 6°° Ry T c5) dz” @1 dz”

A
(2.21) —ERaW(I”Ca,,de ®; dz”
The idea of [9] is then to use the freedom in I to arrange that
A1(Riceip) =0, flip(* ® *)Ricciy = Riceiy

to order A so that Ricci; enjoys the same quantum symmetry and ‘reality’ properties
(to order A) as ¢g1. (A further ‘reality’ condition on the map 41 in [9] just amounts
in our case to the entries of the tensor I being real.) If we write components

Ricciy := —%EW edzr” ® dz* = —%dx” . Ew ®7 dz#
then (2.21) is equivalent to
(222)  Fipw = B v + A (A B — 0" 0% R e + B e % )
and .
EW = EW - Awaﬁﬁué,argﬂu
respectively, where EW is the classical Ricci tensor. This second version is useful

for the quantum reality condition, which says that if we write Ry v = RW + Apuw
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then the quantum correction p,,, is required to be antisymmetric. Remember that
this will have contributions from R; as well as the terms directly visible in (2.22).

We then define the quantum Ricci scaler as
. 15 -
(2.23) Sy =(, )1Ricciy = _§R1m/ o gt

which does not depend on the lifting tensor I due to the antisymmetry of the
first two indices of R. There does not appear to be a completely canonical choice
of Ricci in noncommutative geometry as it depends on the choice of lifting for
which we have not done a general analysis, but this constructive approach allows
us to begin to explore it. The reader should note that the natural conventions
in our context reduce in the classical limit to —% of the usual Riemann and Ricci
curvatures, which we have handled by putting this factor into the definition of the
tensor components so that these all have limits that match standard conventions.

2.3. Laplacian in the bicrossproduct model. We apply the above formalism to
the bicrossproduct model quantum spacetime[26]. Much of the quantum geometry
(but not the Laplacian) was already solved to all orders by algebraic methods in
[9] and the Appendix carefully checks that our new tensor calculus formulae agree
with that to order A (this is not easy and provides a critical check).

The 2D version here has coordinates ¢,r with r invertible and Poisson bracket
{r,t} = r or w'¥ = r in the coordinate basis. The work [9] used r rather than
x as this is also the radial geometry of a higher-dimensional model. The Poisson-
compatible ‘quantising’ connection is given by I'’¢; = —=r~1, T,y = =1 or in abstract
terms vdr = 0 and vdt = r"}(dt ® dr — dr ® dt). Letting v = rdt — tdr, we have
Vdr = Vv = 0 so a pair of central 1-forms v,dr at least at first order. This model
has trivial curvature of V (and is indeed associative) but in other respects is a good
test of our formulae with nontrivial torsion and contorsion and curvature of the
Levi-Civita connection.

Next we take classical metric g = dr ® dr + bv ® v where b is a nonzero real param-
eter which clearly has inverse (dr,dr) =1, (v,v) = b7%, (dr,v) = (v,dr) = 0, as the
unique form of classical metric for which Vg = 0 for the above Poisson-compatible
connection. This was shown in [9] where it was also shown that the classical Rie-
mannian geometry is that of either a strongly gravitating particle or an expanding
universe according to the sign of b. The Levi-Civita connection for g is

~ 2 ~ 2b
VU:——v®dr, Vdr:—v®v
r r

In tensor terms, now in the coordinate basis 2° = t and ! = 7, the metric tensor
and Levi-Civita connection are cf[9, Appendix]

br?  —brt 1+bt? t
= - brz r
G (—brt 1+ bt2) » 9 ( 1)

o _ ~2bt (1 +20t%) P12 20t
e\t (1 + 2682) —2r 2t (1 + 0t2) ) e T\ 26t —2br 12

The contorsion tensor can be written[9]

xh
Snag = Qbea#$“6gygny, Sli = 27'7
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where €p1 = 1 is antisymmetric. Then formula (2.10) gives R1g = br or R, = —bre,,
and hence R = R1odt Adr =bv Adr as in [10, Sec 7.1]

We also write

df = frdr+ fadt = (O, f)dr+ (0o f)v; Ouf = %f Orf = furt ﬁf,t
Then

of=(, )Vdf=(, )(0-f)Vdr+ (0, f)Vv+do, f ®dr +dd, f ®v)
2
= (0 )+ O f+bTIOLf
r
is the classical Laplacian for g. When b < 0 the interpretation of the classical
geometry is that of a strong gravitational source and curvature singularity at r = 0.

Being conformaly flat after a change of variables to r’ = 1/r,# = t/r the massless
waves or zero eigenfunctions of the classical Laplacian are plane waves in t’, r’ space

7,L1.)7‘,
4w’

7
of the form e e*v= or
wt g w
z/Jj(t,r) —e'r et

while the massive modes are harder to describe due to the conformal factor. One
can similarly solve the expanding universe case where b > 0 and the interpretation
of the r,t variables is swapped. This completes the classical data.

Next, the quantum metric at semiclassical order from (2.9) is

A A
g1 = guydl"u ®1 dz¥ + §R01(dt ®1dr —dr ®; dt) + §w10gM0F010F001d1‘“ ®1 dr
=g da! ® da” + %btdr ®1dr + %brdr ®1 dt — \ordt ® dr

Also, from the formula (2.12), we have
ho1 = Ro1 + goow T 10T % + wlorologol,o =-3br
and similarly hig = 3br, so that

I +>\ 0 -3br\ _ _ A3br
9uv = Guv 5 3br 0 = Guv Te,uw

For the correction in T';! uv for the quantum Levi-Civita connection in Lemma 2.2
we have

A afT A afT A K
Ew BFluO,aFOBV - 5” 6F100F0auroﬂv - §w01510mvls v

A o . 0 1
= 2T 0.0 — Nbepy, — §TF10KV15 v = 20D (0 —r-lt)

and

_2bt  2(1+bt?) _9p 2bt
0 _ r 2 1 _ r
VSt =\ 2t(1+62) | V1S = ( 2bt _ 2bt” )

z 2
,,.2 7.3 T T
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where V; in this context means with respect to r. Similarly, the correction to I';° v
in Lemma 2.2 is

A = A = A

EwaﬁFOuO,aroﬁu _ §WQBFOOOFO(JHF05U _ 5&)01 SOOHvlsn,uu

At } A . 2 0
:_5 O/J,O,I/_)\br 1t6p,u_ ETFOOKVIS Qv :A( 2bt 1 )

r 2r?
giving
Vidr=-T},dz" ® da” - 2\b(dt — r~'tdr) ®; dr
- A
Vidt =-T°,, dz" ® dz” - §f2dr ®1 dr — 2X\b(dt -~ 'tdr) ®; dt.

One can check that the condition (2.14) holds so that this is the quantum Levi-
Civita connection at order .

The quantum Riemann tensor by direct computation (using Maple) from (2.18)
comes out as

1
(2.24) Riem; (dz®) = —iRo‘gwdz” Adz¥ ®; daP + @dt Adr e dz®
T

For the quantum Ricci tensor we need a lift map i; and we take
1 A
(At A dr) = S (dt & dr - dr @y db) + ng
r

where dt Ay dr = dt A dr since Vdr = 0 and only H% is non-zero. The first term
is the functorial term and the second term is AI(d¢ A dr). Then (2.21) gives us
Ricciy = g1/r? to order \ in agreement with the algebraic result in [9]. This means
that the quantum Ricci scaler is undeformed.

Finally, the contracted contorsion tensor obeys
e
S#;O = 0, S'u;l = —273
r
while the curvature of V vanishes. Hence the Laplacian in Theorem 2.3 is
A = A =
O f=0f+ gww(—sﬂ;l)(vodf)# =0f+ 52" (Vodf),

which can be further expanded out using the values of ng. We see that there
is an order A correction. It is not so clear how to immediately read off physical
predictions from this but one thing we can still do in the deformed case is make
the conformal change of variables as classically and separate off ¥ = et f, to give
an equation for null modes

? 2 0 w?
(ar'2 Apso( aw)‘b)fzo

where A =1Ap. This is solved by

1

, z‘/bA%#L)
—Zwr ()\P-'-T w — AP
=r'e A - 2
f ( M(1 m 2,10/bAZ, + f
2/ —bA
+BU(1—\/W7P 2,10/bA2 + \/_)
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for constants A and B. M(a,b,z) and U(a,b,z) denote the Kummer M and U
functions (or hypergeometric 1 Fy, U respectively in Mathematica). In the limit
Ap — 0, this becomes

== Ve
wa

L VDA e %\/—b(B A) e
w

which means we recover our two independent solutions ¢ as a check. Bearing in
mind that our equations are only justified to order A, we can equally well write

Lt e _w/bAp
o2 ()
"
(AM(I—ZV_b)\P,Q,z 20y U - YR, 2 ))
2 /=b 2 r/=b

and proceed to analyse the behaviour for small Ap in terms of integral formulae.
Thus

1
F(1-a)I'(1+a) Jo
which we evaluate for z = 215 and s real in terms of the function
ME00 (1,2, 28) fol et In(=4)du

M(L,2,2i5) [ e2sudu

1 1- 1 1-
M(1-a,2,2) = e (= %yady = f e (1+aln(~—2))du+O(a?)
u 0 u

T (s) =1

shown in Figure 1. This function in the principal region (containing s = 0) is

qualitatively identical to the trig function —2tan(s/2) but blows up slightly more

slowly as s — <m. This gives us M (1 -a,2,21s) = 5 (e?* = 1)(1+arrp(s)) + O(a?)

V=bAp
2

and s = —“=, we have up to normalisation

and hence with a =1 et

w |l

rv—b ™ —b

as one of our independent solutions. Notice that for A\p # 0 our solution blows up
and our approximations break down as r approaches a certain minimum distance as
shown to the classical Ricci singularity at r = 0, depending on the frequency. This
is a geometric ‘horizon’ of some sort (with scale controlled by \/-b) but frequency
dependent, and very different effect from the usual Planck scale bound |r| >> |w|Ap
needed in any case for our general analysis. Meanwhile for large |r|, the effective
Ap is suppressed as 73,(0) = -1.

WM (t,r) = % sin(—=)e A (HEVINGED) L o2, >

For the other mode, the similar integral

1 [
U(l-a,2,z :7f e *Y
(-0.2:2)= s [ e
is not directly applicable as it is not valid on the imaginary axis but we can still
proceed in a similar way for the other mode by defining

U009(1,2,215)
U(1,2,21s)

1+

u)“du
u

Tu(s) =1 =T(s)+15(s)

where the real function T'(s) resembles 7 tanh(s) (but is vertical at the origin)
and S(s) resembles —In(e”" + 2|s|) as also shown in Figure 1, where vy ~ 0.577 is
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" v =T+25 9

T™
10 -4
10 .
5
05
6 2 T2 4 6 -10 -5 5 10 8
5 0.
5 -20
-1h
~10 25
1.5

FIGURE 1. Functions 73 and 7y related to differentials of Kummer
M(1-a,2,21s) and U(1-a,2,2:18) at a = 0 and similar to tan, tanh
and a shifted In (shown dashed for reference)

the Euler constant. Then U(1 - a,2,21s) = i(l +arry(s)) + O(a?) giving up to
normalisation

Wt = e e T IE D) o)

as a second solution. This still has our general Planck scale lower bound needed
for the general analysis but no specific geometric bound at finite radius as 7y does
not blow up and moreover has only a mild log divergence as s - oo or r — 0. There
is no particular suppression of Ap as s > 0 or 7 - oo and indeed 7y tends to a
constant nonzero imaginary value (the meaning of which is unclear as it can be
absorbed in a normalisation).

Both of our solutions have been exhibited as deviations from the classical solutions
and consequently they can reasonably be expected to lead to physical predictions,
such as a change of the group velocity along the lines of [1] and of gravitational
redshift along the lines of [25]. However, doing this in a convincing way in a GR
setting requires rather more analysis and is beyond our scope here.

2.4. Laplacian in the 2D Bertotti-Robinson model. By way of contrast we
note that the bicrossproduct spacetime algebra has an alternative differential struc-
ture for which the full quantum geometry was also already solved, in [28]. We have
the same Poisson bracket as above but this time the zero curvature ‘quantising’ con-
nection Vdr = %dr ®dr, Vvdt= —%dt or non-zero Christoffel sysmbols Ity = —rt
and I'%p = ar™! and the de Sitter metric in the form

g=ar2dredr+br* (dredt+dredr) +c?*dt ® dt

where only the nonzero combination § = ca?/(b? - ac) of parameters is relevant
up coordinate transformations. One can easily compute the classical Levi-Civita
connection in these coordinates as

o - beort po __ aca - m _ baarT"
b2 —ac’ r(b2 —ac)’ b2 - ac
il carlt?e bear® = -b*(1-a) +ac
0= 5 —— 10 = n=——r5—
b2 —ac ’ b2 —ac’ r(b? - ac)

Combing this with the ‘quantising’ connection yields the contorsion tensor

bear® « b’
5010 = —5111 = 5001 + ? =

b
b2 —ac

0 1 1
5002_501:_5 10 = b2 _ ac
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baar=®2 1 carlt?e

S = ———, Slyg=-———
’ b2 —ac

b2 - ac
From here we compute S* = ;52— (br™®, —cr) for the t,7 components giving v, S* =
0 so that in conjunction with flatness of ¥V, Theorem 2.3 shows that there is no

order A correction to the Laplace operator.

[e%

We can also find the geometric quantum Laplacian to all orders directly from the
full quantum geometry at least after a convenient but non-algebraic coordinate
transformation in [28]. If we allow this then the model has generators R,T with

the only non-zero commutation relations [T,R] = X, [R,dR] = X V8dR where
A= AVb? - ac and the quantum metric and quantum Levi-Civita connection[28]

g1 =dRe ™ g dR - dT ®, dT,
vidT = —V3e*"™V3 e dR®1 dR, VidR = V(AR ®, dT +dT ®, dR),
which immediately gives us
(dR,dR); = 2T (AT, dT), = -1, @T=(, )VidT =5, oL R=0.

Finally, for a general normal-ordered function f(7, R) with T"s to the left, we have
of [(R) - f(R-X'V0)
df = — @ =

oT V6

due to the standard form of the commutation relations. With these ingredients and
following exactly the same method as above, we have

AT +0'fedR; 0'f(R)=

2 -
01 = (hTa(df) = Vo sk - S (02 e Y3 < 0f 0N
9 _ NV o’

when we expand 9! = 35 5 oam O(\?) and write the bullet as classical plus
Poisson bracket. This confirms what we found from Theorem 2.3. We can also use

identities from quantum mechanics applied to R,7T in our case to further write

78 82 _ —
o f=Vook - S g

where
F(R+2XV3) - 2f(R-NV3) + f(R)

(AV5)?
We see that the quantum Laplacian working in the quantum algebra with normal-
ordered quantum wave functions has the classical form except that the derivative in
the R direction is a finite difference one. It is also clear that we have eigenfunctions
(T, R) = eTe* . This is an identical situation to the standard Minkowski space-
time bicrossproduct model in [1] except that there time became a finite difference
and there was no actual quantum geometry. Like there, one could claim that there
is an order A correction provided classical fields are identified with normal ordered
ones, but from the point of view of Poisson-Riemannian geometry this is an arte-
fact of such an assumption (the Poisson geometry being closer to Weyl ordering).
We have focussed on the 2D case but the same conclusion holds for the Bertotti-
Robinson quantum metric on S™™! x dSy in [28] keeping the angular coordinates
to the left along with T'; then only the double R-derivative deforms namely to Ay
on normal-ordered functions. [28] already obtained the quantum Ricci and scaler
curvatures in the same form as classically (normal ordered in the former case).

Alf(R) =
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2.5. Fuzzy nonassociative sphere revisited. The case of the sphere in Poisson-
Riemannian geometry is covered in [10] mainly in very explicit cartesian coordinates
where we broke the rotational symmetry. However, the results are fully rotationally
invariant as is more evident if we work with 2%, i = 1,2, 3 and the relation ¥, 2% = 1.
We took V = ¥V (the Levi-Civita connection) so S = 0, and w the inverse of the
canonical volume 2-form on the unit sphere. Then the results of [10] give us a
particular ‘fuzzy sphere’ differential calculus

[2%,27]0 = X 2%, [2%,d27 ] = AP € 2 d2",
to order A\. These are initially valid for ¢ = 1,2 but must hold in this form for
i =1,2,3 by rotational symmetry of both the Poisson bracket and the Levi-Civita
connection. One also finds from the algebra that 2™ edz™ =0 (sum over m = 1,2,3)

at order A on differentiating the radius 1 relation. Here Q! is a projective module
with dz* as a redundant set of generators and a relation. We also have

{dz",d2"}e = A(32%27 - 6;5) Vol
to order A as derived in [10] for ¢ = 1,2 and which then holds for ¢ = 1,2,3. This
can also be derived by applying d to the bimodule relations and using dz* A dz’ =
€’ k%.]i Vol at the classical level on the unit sphere. We will also use the antisymmetric
lift Vol = £(2*)7*(dz' ® d2? - d2? ® dz') at the classical level. The classical sphere

2

metric g, is given in [10] in the 2!, 2% coordinates but we can also write it as

3 . .
g= Z dz'®dz’
i=1
Similarly, the inverse metric and metric inner product are
[ R L (S AN b I

for u,v = 1,2, which extends as the second equality for 4,5 = 1,2,3. The sphere is
2-dimensional so only two of the z* are independent in any coordinate patch but
the expressions themselves are rotationally invariant in terms of all three.

The work [10] also computes the quantum metric and quantum Levi-Civita con-
nection at order A\. We have

g1 =9Wd2’“ ®; dz" - d23 ®1 €3Z‘j2’id2’j + )\\761

2(2%)2
v A i i i j

=g;wd2'” ® dz"” + Wegij (z3dZ' ®; dz? — P ®1 dzﬂ)

- — A\ KB

Vidz! = -z e gy = -, 5dz" ®; dz? — X\z*Vol + B (dz3 ®1 (e”ﬂgm + ijem)dz'y)
z
_ A _ .
= —Fuaﬁdza ®1 dzﬁ - W (eﬁ'.ij»’Z«"LIIZBCL'Z,'2 ®q dz? - GNUBdZB ®q dZV)

where we massaged the formulae in [10]. The classical Christoffel symbols are

fﬂag = Z‘uga[;.
If we work with coefficients g;; in the middle for the metric then the given quantum
metric corresponds to the correction term
2-(2%)? ; ~
h= M63@'(3122 ®1 dz? =

(2%)°

22- (%) o
)2 Vol
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which we see is antisymmetric. For the inverse metric we have from (2.13) that
S Y
k
(dz*,dz7); =g" + Eeijkz

to order A when %, = 1,2 but which extends to 7,5 = 1,2,3 with ¢¥ = 0ij — 2029,
For the connection it is a nice check that the formula in Lemma 2.2 gives the same
answer for Vy. Then we can calculate the quantum Riemann tensor from (2.17) or
directly from the above formulae for V;.

Riem;(dz®) = (d ®;id - (A1 ®1 id)(id ®; V1)) V1(dz®)
=- (d(Flauﬁ) AdzH ®1 dZ’B + Flau,ydz'u A1 Flvyﬂdzy ®1 dZﬁ)
which can be broken down into three terms as follows

(i) The first term gives
—~ A @
d(T1%5) And2t @ dzf = -T%,5,dz" nd2" ®; dzf - §8u (Z—d) ezppdzt Adz” @4 dz?
z

= —fo‘ug’,,dz” Adz* @ d2? - (z?’dzo‘ - zo‘dz?’) Adz¥ ®; dzP

A
AT
2(z3)2 7

— A
=-I",5,.,d2" Andz! @ dz? - 23 (z3V01 ®1 dz% - 2%Vol ®1 dz?’)

z

The last step comes from expanding the expression in the previous line and simpli-
fying, this will prove useful in comparing to the other terms.

(ii) Expanding A; gives a further two terms at O(A). But first, using the formula
for the classical Christoffel symbols and metric compatibility note that

Vaf‘bwdz” = Va2 ' gudz” = (0" aguv + 2" 20 9ap )dz”
Now consider
WV, 0%, d2" AV T, 5d2" ®; d2f
= W (0% Gy + 2% 2y G ) A2 A (87 g + 27 259, )d2" @1 d2P
= w7 guygupd2t Adz" @ dz?

1

= —3(6‘1;,3 +€3,,2%27 ) gupdzt A 2Y ® dz? = Vol ®; dz®
z

where the cancellations in the second line result from the antisymmetry of p, v and
71, (. For the second term use

1
H" = i(z”z” - 5" )Vol
giving
—- = 1
e, I7,sH" dz? = §zO‘ZVgMgl,g(z“z” - 0" )Vol ®; dz?

1 a v (Zl)2+(’22)2 1 B
:52 z ( (23)4 - (2;3)4 (5V5V01®1 dz

Za 3
= —@VOI ®1 dz
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Combining these two (remembering to add an overall 1/2 to the first) results in
f‘o‘wdz” A1 f”l,gdz” ®; dz”

= fo‘lwf‘\'yygdz“ Adz¥ ®; d2P + 2% (z3Vol ®1 dz% - 2%Vol ®; dzg)
z

iii) The last term involves the O(\) of T'1* 17, 5d2" A dz” ®; d2? and is
oy B
2791,5(zo‘z3egwdz“—e°‘73dz?’)/\dz”@ldzﬁ+zag,wdz“/\(272363V5dz”—6733d23)®1dzﬁ
The second term, which given in components is
- 1
zo‘gw(zvzde&,g + ;evg&;yz‘s)

can be shown to be symmetric in u, v and therefore vanishes, whereas the first can
be expanded and simplified to give

1
(2%)?

Now, taking together the above terms gives the semiclassical Riemann tensor as

279,58 (2% 2 €3, A2t —€® 3d23 ) Ad2" @1d2P = -

(e}
(1—(23)2)V01®1dza—22—3\701®1dz3

1
Riem; (dz%) = —§R°‘3de“ Adz” @) dzP + (1+(2*)*)Vol ®; dz*

2(23)2
Where the classical Riemann tensor is R*,,, dz" Adz” ® dz7 = dz* A g. This is the
same result as the general tensorial calculation using (2.18), as a useful check.

For the Ricci tensor, the form of the quantum lift from Proposition 2.4 is
1
i1(dz* Adz¥) = 3 (dz# @1 dz" —dz” @1 2"') + A (dz" A d2¥)

The functorial choice here comes out as I(dz* Adz") = 0, but we leave this general.
In 2D the lift map has three independent components which, in tensor notation, we
parametrize as o := I'?44, B:=1"9 and 5= I'?4,, with the remaining components
being related by symmetry. Then the tensorial formula (2.21) gives us

1 3\ —
Ricci; = —591 - 7\/01

A
NEE ((ozzlz2 +7((22)2 - 1))dzt @1 dzt - (B2 2% + 4((2H)? - 1))d2? @, d2?
z
+(v2' 2% +a((zh)? - 1)dzt @ d2? - (72122 + B((22)2 - 1))dz? @y dz")
Next, following our general method, we require I to be such that A;Ricci; =0, i.e.
quantum symmetric. This results in the constraint

v=- (323+2a((zl)2—1)+25((zz)2—1))

4212
with « and 8 undetermined. We also want Ricci; to be hermitian or ‘real’ in the
sense flip(* ® *)Ricci; = Ricciy which already holds for —%gl. Since A is imaginary
this requires the matrix of coefficents in the order A terms displayed above to be
antisymmetric as all tensors are real. This imposes three more constraints which
are fortunately not independent and give us a unique suitable lift, namely with

3 3 2122

a= -, = g(1-()), 7=22%
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The result (and similarly in any rotated coordinate chart) is

(dz1 ® dz? —dz? @ zl) - ﬂg

~d1 d2:
i1(dz" A dz?) e

1
2
1
Ricciy = —=
1 291
where the latter in our conventions is analogous to the classical case. And from
this or from (2.23) we get the quantum scalar curvature

1~ = =
51:—55, S=R,g" =2

the same as classically in our conventions, so this has no corrections at order .
As remarked in the general theory, the quantum Ricci scalar is independent of the
choice of lift 1.

We also find no correction to the Laplacian at order A since the classical Ricci
tensor is proportional to the metric hence the contraction in Theorem 2.3 gives
w*(Vgdf)a which factors through ¥V Adf = 0 due to zero torsion of the Levi-
Civita connection.

We close with some other comments about the model. In fact the parameter A
in this model is dimensionless and if we want to have the usual finite-dimensional
‘spin j’ representations of our algebra then we need

A=1/\/i(j+ 1)

for some natural number j as a quantisation condition on the parameter. Our reality
conventions require A imaginary. It is also known from [7] that this differential
algebra arises from twisting by a cochain at least to order A? but in such a way that
the twisting also induces the correct differential structure at order A, i.e. as given
by the Levi-Civita connection. We take U(so; 3) with generators and relations

(M;, M;] = €iju My, [M;, N;j]=¢€juNi, [Ni,N;]=—€jMy
acting on the classical z* (i.e. converting [7] to the coordinate algebra) as,
M, >l = qjkzk, N; b2l = 2000 - 0ij-

This is the action of so1 3 on the ‘sphere at infinity’. The cochain we need is then[7]

1 2\, 1
FlU=14Af+ [+ [=o M@ N;

where the higher terms are conjectured to exist in such a way that the algebra
remains associative at all orders (and gives the quantisation of S? as a quotient of
U(suz)). On the other hand cochain twisting extends the differential calculus to
all orders as a graded quasi-algebra in the sense of [8]. Specifically, if we start with
the classical algebra and exterior algebra on the sphere, the deformed products are

el = (Fp2)(F2pa?) = 2" + Deignd
% j -1 4 -2 i i D man
Z'edz? = (F7 p2")dF 7 >2) =22’ + 5z]eimnz dz

o . . N \
dzd e 2t = (F7'pdz?)dF 2 b2t = (d2f)z2' - §Zl€jmn2mdzn - §eijmdzm
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to order A, giving relations
o A , .
[2,d27]e = 5((zlejmn + 20 €imn )2 d2" + €jmd2™) = A2 €jmpn 2 d2"
in agreement with the quantisation of the calculus by the Levi-Civita connecton.
For the last step we let
w' = eljkzjdzk.
and note that classically z'w/e;;;, = ~dz* using the differential of the sphere relation
and hence z'w/ — 27w’ = —¢;;,dz*, which we use. This twisting result in [7] is in
contrast to other cochain twist or deformation theory quantisations such as in [32],
which consider only the coordinate algebra. It means that although the differential
calculus is not associative at order A2, corresponding to the curvature of the sphere,
different brackets are related via an associator and hence strictly controlled. One
can then twist other aspects of the noncommutative geometry using the formalism
of [8], see also more recently [3].

To get a sense of how these equations fit together even though nonassociative, we
work now in the quantum algebra so from now till the end of the section all products
are deformed ones. We have the commutation relations

[2%,27] = ANe 2%, [28,d27] = dw'sd
to order A. Then, if we apply d to the first relation we have
)\eijkdzk = [dzi7zj] + [zi,dzj] = )\(wizj - wjzi) = A€jik€rmnz W"
= —)\eijkekmnzmenabzadzb = —Aeijk(éségn - 656;")zmzadzb = )\eijkdzk - )\zmeijkzkdzm

which confirms that Y 2™dz™ = O(A\) (which is to be expected since it is zero
classically). In fact we only need the commutation relations for 4,j = 1,2 to arrive
at this deduction. Moreover,
0=d(> 2"2™) =22"dz™ = Aw™ 2™ + [d2®, 2%] + Aw®2?
m

™ = O(\) since zero classically, which tells us that

[23,d2%] = Mw?2® + 22™d2™.

Hence 2™dz™ = 0 at order \ if the 23 commutation relations hold as claimed. In fact
assuming only the 7, j = 1,2 commutation relations one can deduce (so long as 2° is
invertible) that [23,d27] = Mw327 for j = 1,2 by looking at [(2%)?,d2"] = 223[23,d2"]
on the one hand and using the radius relation on the other hand. From this and
Neispdz® = [dz?) 23] +[2%, d2®] we deduce that [2%,d2%] = Aw’2® as claimed. Then by
the same calculation as for the [23,dz?] relation we can deduce [23,dz3] = w323
as well. Thus, we have internal consistency of the quantum algebra relations even
if we do not have associativity of the relations involving the dz*.

and wz

3. SEMIQUANTUM FLRW MODEL

We will use both Cartesian and spatially polar coordinates t,r,6, ¢ whereby d2(Q =
sin?(0)d¢ ® d¢ is the unit sphere metric. It is already known from [10] that for a
bivector w to be rotationally invariant leads in polars to

p t .
(3.1) w2 = f(. ,7) _ —w32, W01 = g(t,r) = _ 10
sin
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for some functions f, g and other components zero. Our approach is to solve (2.2)
for S using the above form of w and ¥ for the chosen metric, which in the present
section is the spatial flat FLRW one

g =-dt®dt +a(t)*(dr ® dr + r2d?Q)
with
9, =aa, T9 =aar?, T9 =aar®sin(h),
. Thy=-r, T, = —rsin®(6)
T2, = —sin(f) cos(h)
) fg:), = cot(6)

Remarkably, if w is generic in the sense that the functions a, f, g are algebraically
independent and invertible then it turns out that one can next solve the Poisson-
compatibility condition (2.2) for S uniquely using computer algebra. This is relevant
if we drop the requirement (2.3) that w obeys the Jacobi identity which is to say
if we allow the coordinate algebra to be nonassociative at order A\? and if we drop
(2.14) which is to say we allow a possible quantum effect where Vig1 = O(\) in
its antisymmetric part. Such a theory appears quite natural for this reason, but
for the present purposes we do want to go further and impose (2.3) as well as the
condition (2.14) for the existence of a fully quantum Levi-Civita connection.

Proposition 3.1. In the FLRW spacetime with spherically symmetric Poisson
tensor, a Poisson-compatible connection obeying (2.14) and (2.3) requires up to
normalisation that g(r,t) =0 and f(r,t) =1. The contorsion tensor in this case is

5022 = aer, 5122 = a27", 5033 = adr2 sin2(0), 5133 = 0,27‘ sin2(9)
S120 = S123 = S223 = S320 = S130 = S132 = S230 = S233 =0

up to the outer antisymmetry of Su,~. The remaining components Suov, Suiv
are undetermined but are irrelevant to the combination wO‘BVﬁ (the contravariant
connection), which is uniquely determined.

Proof. As already noted in [10] for w of the rotationally invariant form (3.1) to
obey (2.3) comes down to

(3.2) 90 f =90, f=0

which tells us that either f =k a constant or g = 0. We examine the former case,
then the Poisson compatibility condition (2.2) becomes

S201=0, S301=0, So01g-09r9=0, S314=0, S233=0, S322=0
Sosrkr?a® + S112gsin(0) =0,  72a’ksin(0)Sp21 + S3119 =0, aasin()g+ kSas; =0
Soosg — 12 sin(&)(ra2 — Sa31) =0, So02a%g + S1129 = 0, sin(6)g + Sazokr =0
krta®sin(0)aa + Ss129 + kSo22 = 0,  a’rksin() + Sapsg + kS331 = 0
rta3sin®(0)Sos3 — S312 =0, sin()g - rkSsa0 =0, kr?Sos; — Sop2gsin(f) =0
a®So03 — S22 =0,  Sop1r?sin() + Sgos = 0,  2kaar? sin(0) — Soaz sin(0) — kSoss = 0
gaasin(0)-kSse1 =0, r2a28tg+r2adg+S012 =0, (2ra2—3122)k 51112(0)+5331 =0.
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This is not enough to determine all the components of S and hence V but determines
enough of them for the Ricci 2-form to be uniquely determined for k # 0, as

1
Ro1 = — (5r2ad6tg —a? + griaa + 8?97"2(161 - 8397"2 - 2ro.g + 6g)
r

1
Rasz = ] sin(0) (k*r*a® + ga®r® - g%).

We can now impose the Levi-Civita condition, using the Physics package in Maple,
to expand (2.14) and solve for g simultaneously with the above requirements of
(2.2) (details omitted). This results in g = 0 as the only unique solution permitting
Poisson compatibility and a quantum Levi-Civita connection for f a (nonzero)
constant. The case f = 0 also has this conclusion and we exclude this so as to
exclude the unquantized case w = 0 in our analysis. We now go back and examine
the second case, setting g = 0 and leaving f arbitrary. Now (2.2) includes

O f=0, 9 f=0

independently of the contorsion tensor. Hence this takes us back to g = 0 and f
constant again. We can absorb the latter constant in A, i.e. we take £ =1 up to
the overall normalisation of w. Then the above-listed content of (2.2) setting k =1
and g = 0 gives us the values of S and 12 undetermined components as stated.

In the process above we also solved (2.14) so this holds for the stated S with f =1
and g = 0. As this depended on a Maple solution, we check it analytically, setting

(3.3)  Qyuw = w®? 9po 7 g (R jiya + Va S yp) = w®? 9o S pu (R vy + VaS’y0)
while from the above with k=1, g =0, the Ricci two-form for our solution is

1
(3.4) R = —§ka2r2 sin(60)do A dg

and is independent of the undetermined components. This allows us to compute
VoRuw = ViR =0 as well as

0oy 0 0ar0
VaRy = arksin(6) 2 Oa 8 , VsRuw = arksin(0) —?LT —Oa g 8
O 000 0 000
Further calculation yields Qo = Q1,0 =0 and
00-ar0 0 0 ar0
Qayw = arksin(6) Org ()a 8 . Qs = arksin(f) _?W 0 8 8
0000 0 000

Substituting into (2.14) we see that this holds in the form %ng %VWRW =0. O

Thus we see that if we want the Poisson bracket to obey the Jacobi identity so as to
keep an associative coordinate algebra and if we want a full quantum Levi-Civita
connection without on O(\) correction to the antisymmetric part of the quantum
metric compatibility tensor Vigi, then rotational invariance forces us to a model
in which time is central and in which the other commutation relations are also
determined uniquely from w®? V. To work these out it is convenient (though not
essential) to work with the angular variables in terms of z' = x%/r as redundant



NONCOMMUTATIVE SPHERICALLY SYMMETRIC SPACETIMES 27

unit sphere variables at each r, ¢, with dz* = %dxi - %dr. Now, using the contorsion
tensor above Christoffel symbols of the ‘quantising’ connection come out as
(3.5)

0 -5% —5%2-5%3 S 2502 803
ro - 0ad - 511 =52 -5%3 o 24800828
my 0 0 0 0 ’ g 0 0 0 O
0 0 0 0 0 0 0 O
5200 501 e 5203 S%005%01  S%03 e
2 5210 5211 1 T_12 2 51’2%22 3 5310 5311 2 53122 2 1T_; 2
=l o0 o =2 (@(52) ) <zzg)§ Tw= o o 2 (1;§z2> ) =z Sg
S22 T (o1)2 02 21212
o o G =R i

while the bimodule relations are independent of the undetermined components of
S and come out as

[z, 27] = Xe¥ 2R, [28,d27] = AP el 2™ d2m.

Our quantum algebra at order A is thus classical in the r, ¢ directions and a standard
fuzzy sphere as in Section 2.5 in the angular ones. We also have

[r,2']=0, [r,dz']=0, [2'dr]=0

so that r,t,dt,dr are all central. The undetermined contorsion components do not
enter these relations from (2.5) because only w?? is nonzero so contraction with the
Christoffel symbols selects only the I'*5, and I'*3, components which depend on
only the corresponding S components.

For the rest of this section for the sake of brevity, we shall concentrate on the case
where the undetermined and irrelevant S components are all set to zero, returning
later when analyzing general spherically symmetric metrics to see what happens
when these are included. For the record, changing to Cartesians, the nonzero
bimodule relations are
[z, 27] = A€o, (2%, Q7] = Zadél,,,am Q"
r

by letting dz® = Q%/r while our choice of the undetermined contorsion tensor com-
ponents allows us to write down a nice expression for the ‘quantising’ connection

z™ a

7 _ 7 n 7 _ 7 I3 _
k= ——5€kn€" jm, Toj==0"5 T750=0
r a
The torsion comes out as
m b4
7 1 n 7 (2
Tjk:rj€mn€jk7 TOj:a(Sj

and the Riemann, Ricci and scaler curvatures are

(36) R gkl = 726 jm€ Kkl Tt 74 (iCj.’t €Emn€ kKl TT T €jmne€ kl)
1 ) 2
(37) Rij = 74 (5@'7" - mixj), S = 70127‘2

and it should be noted that Rojk-l =Rlgp = Rijol =0 and R;p = Ry; = 0.
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3.1. Construction of quantum metric and quantum Levi-Civita connec-
tion. Having solved for a Poisson bracket and Poisson compatible metric-compatible
connection we are in a position to read off, according to the theory in [10], the full
exterior algebra and the quantum metric to lowest order. First compute

g 1, . o
(3.8) HY = ~5,3 (elnkxmxjxk - TQGanéjmxk) dz™ Adx™
r

from which we get

a2 k a2 k n m
. mn = —_ Emnkd = 5 Cmnk
(3.9) R EmnkT R EmnpT dz™ Adz
r 2r

As with the curvature, all time components are equal to zero. From I' and H% we
have

dx*Arda’? = d;z:l/\dgsj+2—3 (TZGln'm.Ij + 7269 L + 12 0+ ElnkIEkIJQZm) da™Adz"”
T
(3.10) drayda’ =drada’, dtapda’ =dtada’, da’ Ay dt=da’ Adt

{da’,da’ }; = - (rQEanx] + 729 a1 k8t + eznkxkxjxm) dz™ A dz"
r

Similary, from I' and R we compute g; from (2.9). Remarkably, the correction term

%waﬁgupff’wl“’},y exactly cancels the AR, so that g,, = g, and

(3.11) g1 = guda ®; da”

Moreover since the components g,,,, depend only on time, we also have that g1,, =
Giuv- It is a nice check to verify that A;(g1) = 0 is satisfied as it must from our
general theory. The second version of the metric is subtly different and equality
depends on the form of the FLRW metric. One can also compute

W[V, Vu]T%y =0, w'[V,,V,]5%, =0

— a k 9 aa & k
ViRmn = _77’; (emnkx Z;—T 6rnni) - 7 (Ginkl' — €EimkT )

and see once again that (2.14) holds as it must by construction in Proposition 3.1.

Hence a quantum Levi-Civita connection for g; exists by the theory from [10] and
from Lemma 2.2 we find it to be

vi(da') =T, da" ®; dz”

which, like the quantum metric earlier, keeps its undeformed coefficients in the
coordinate basis if we keep all coefficients to the left and use ®;. The theory in
[10] ensures that this is quantum torsion free and quantum metric compatible as a
bimodule connection with generalised braiding o7 from (2.16) which computes as
(3.12)

o1(dz® ®; da®) = dzb @ da + %3 (ekbkxkxmzn +epnlzF e, + 2r2€szk§mn

+ 2126 k0%, — r2e®, a0, + rzebckzkéab) dz" ®1 da™
Ul(dt ®1 d(Ea) =dz® @ dt
Ul(dl‘a ®1 dt) =dt ® dz?
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It is a reassuring but rather nontrivial check to verify directly from our results for
V1,01,g1 that V1g; = 0 as implied by the general theory in [10]. Lastly, we compute
the quantum lift map from Proposition 2.4 as

1
i1(dz® A dxb) =3 (dxa ®, dz’ - dz’ ® dx“)
- %eabmxn (dz™ ®1 dz™ + dz" ®1 da™)
,

1
(3.13) i1 (df A de®) = 5 (At @) da® ~ dz® i)

1
il(dl'a A dt) = 5 (dl’a ® dt — dt & diL’a)

with we have taken the functorial choice I = 0.

3.2. Laplace operator and Curvature Tensors. We first observe that [dz™, gmn] =
0 for the FLRW metric since either the coefficients g,,,, depend only on ¢ or are con-
stant in our basis. Hence the inverse metric is simply (dz?,dz®); = g2 undeformed
similarly to the coefficients of g, since then

(fedz™, gy edat) eda” = (f eda®,da" e g, )1 @ da” - (f e daz®, [dz", gy ])1 e dz”
= fe(dz®,da"); e gy, eda” = fedz”

as required, where we also need that {g°™, g;mn} = 0 which holds for the FLRW

metric. Similarly on the other side. It follows that the quantum dimension is

the same as the classical dimension, namely 4, in our model. Similarly, because
V1,91, (, )1 also have their classical form, from Theorem 2.3 we get that

le = gaﬁ (f,oc,@ + fﬁf’ya,ﬁ)

is also undeformed on the underlying vector space. We used that Vi is a left
connection. We can also calculate Riemann tensor using (2.17) from which we see
that corrections come from Aq.
Riem, (dz) = (d ® id)Vida’ ~ T, da* A, T7 o dz” @) dz®
2

1, Aa® ,
= —§Rla,u.vd$# Adz” ®; dx® - —e’nkxkszmdxm Adz" ®q do’?

2r3
o (e nmTj + € jmTn + € nk0jm® )dx Andz" ®1 dx
1~
Riem; (dt) = —§R0a,wdx“ Adz” ® dz®

Next step is to calculate Ricci; which comes out as
Ricciy = —§Ra5dx ®1 dz

with no corrections to the coefficients in this form. The classical Ricci tensor for
the Levi-Civita connection in our conventions is

o 1 ‘ B
Ricci = 3 ((2&2 + ad) 0;;da’ @ da? — 3gdt ® dt)
a
and Ricci; has the same form just with ®,. The components again depend only

on time, hence are central, which means that p = 0 as well. It remains to verify
that Aq(Riccip) = 0 as it should have the same quantum symmetry as g;. So using
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(3.10), we first see that dtA; dt = 0 leaving (since the coefficients are time dependent
they can be neglected here)

2

di;da’ nda? = 6” (r Enma? + 1267 s + 12 )0 + € et :Cm)dx Adz™ =0

From (2.23) we calculate the scalar curvature. Since neither the quantum metric
or Ricci tensor have any semiclassical correction, it is straightforward to see that
the same is true of the Ricci scalar, i.e.

6
(3.14) Sy = —fS S=R,.g" (aa + a2)
a2
From Proposition 2.1, the quantum dimension of this model comes out as
dim(M); = dim(M) = P g" ,T,5, = 4

since the metric depends only on ¢ the O(\) term vanishes.

4. SEMIQUANTISATION OF SPHERICALLY SYMMETRIC METRICS

4.1. General analysis for the spherical case. In the previous section we saw
that for a spherically symmetric Poisson tensor, demanding a compatible connection
that also satisfied (2.14) results in a unique quantisation at order A of the FLRW
metric. Something similar for the Schwarzschild black hole in [10] suggests a general
phenomenon for the spherically symmetric case. We prove in the present section
that this is generically true. For the metric we choose a diagonal form

g=a’(r,t)dt ® dt + b*(r,t)dr ® dr + 2(r,t)(df ® df + sin?(0)d¢ ® d¢)

where a, b, ¢ are arbitrary functional parameters. The Poisson tensor is taken to be
the same as in Section 3, once again parameterized by

t
w2 - f(t,r) -2

N ) WOI = g(ta ’I“) = _wlo
sin @

The Christoffel symbols for the above metric are

=0 Oia =y Ora = __b@tbsin2(9) PO _ bo.b 0 cOc

1—‘00:aa7 Fo1—aa F33— 872() 11-:9@72» 22 —g
-~ alya = b ~ bO,.bsin?(6 b = co,c
F(1)02_7b2 7Fi1:%ar§;3: b2 FOl_%v F%QZ_ b;
(4.1) 2 atc 2 8 C

[ = P I = - F33 = —sin(0) cos(6)

fgs = 8207 f§1 = % I‘33 = cot(0)

Now for the quantum Levi—C1V1ta connection.

Theorem 4.1. For a generic spherically symmetric metric with functional param-
eters a,b,c and spherically symmetric Poisson tensor, the Poisson-compatibility
(2.2) and the quantum Levi-Civita condition (2.14) require up to normalisation
that g(r,t) =0 and f(r,t) =1 and the contorsion tensor components

So22 = cOie,  Siog =cOrc, Spzz = c@tcsinz(Q), S133 = c@rcsinz(Q)
S120 = S123 = S223 = S320 = S130 = S132 = S230 = S233 =0
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up to the outer antisymmetry of Su.. The remaining components S,o., Suiv
remain undetermined but do not affect wa5V5, which is unique. The relations of
the quantum algebra are uniquely determined to O(\) as those of the fuzzy sphere

[2%,27] = e 2k, [2,d27] = AP €l 2™ d2"
as in Section 2.5 and
[t,z"] =[r,2"]=0, [z",dt]=[z",dr]=0

so that t,r,dt,dr are central at order \.

Proof. The first part is very similar to the proof of Proposition 3.1 but with more
complicated expressions. We once again require that either f = k or g = 0 for w to be
Poisson. Taking first f = k and leaving g arbitrary gives the Poisson compatibility
condition (2.2) as

S'2=0, SP01=0, S%5=0, S%0=0, S°=0, 5%,=0,
gabSOm + abd,g + gad,b+ gbo,.a = 0, ab28tg + abgoib + b2gata + a3g5011 =0
28331 028 99 +2¢0,c = 0,  kc?S51 + gb*sin(0)S 12 =0, gdcsin(f) —cStsy =0,
a’g sin(9)5312 —ka?S%;5 —kede =0, gb*:S3y, sin(6) + kb2Stos sin(6) - kcd,c = 0,
S0 +8%2 =0, keS30+grcsin(0) =0, gsin(0)S31; + kS%; =0,
kcopc+ gb*sin(0)S%gs + k25331 =0,  kd®sin(6)S>51 — gb%dic =0,
A28%30+a25%42a2 +2c¢0,.¢ =0, gS300b?sin(0)+ka?S%; =0, kc2SY31-gb?S%42 =0
kc? sin(9)5’320 —a?gd,c=0, kedye—ga®S3is sin(9) +kc®S350,  a?9%11-b25%00 =0

Once again, the above is enough to determine R and can then be solved for g
simultaneously with (2.14) using computer algebra (details omitted) assuming that
a,b, c are generic in the sense of invertible and not enjoying any particular relations.
The only solution is g(r,t) =0 as in the FLRW case. Now, starting over with g =0
and f arbitrary, Poisson compatibility (2.2) gives a number of constraints including

Of=0, 0f=0

which again forces us back to g = 0, f = k (which we set to be 1). Our above
reduction of (2.2) setting g = 0 and k = 1 then gives the contorsion tensor is as
stated and by construction we also solved (2.14).

Now we now check (2.14) for this solution directly and independently of the com-
puter algebra (which then does not require a, b, ¢ generic). For this, the generalised
Ricci two-form comes out as

1
R = —502 sin(0)dé A do

giving us §0'RW = ?172,“, =0 as well as

0 0 -0,cO 0 0 -0,cO
- . 00 80| . . 0 0 -8,c0
VR = csin(0) Becde 0 0l V3R = csin(0) dcde 0 0

0 0 0O 0 0 0O
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Further calculation yields Qou = Q1 = 0 and

0 0 -0icO 0 0 -0ic0
0 0 -0,c0 0 0 -0,c0
@opo = csin(0) Ocdrc 0 0) @spw = esin(0) Ocdpc 0 0
0 0 0O 0 0 0O

Substituting, see see that (2.14) holds in the form %ng - %VW’RW =0, where Q
is the expression (3.3). This we have solved for the contorsion tensor obeying (2.2)

and (2.14) for any a, b, c and this gives us w*By g uniquely if these are generic.
Next we take the last two local coordinates z' and z? while identifying (2%)? =
1-(2%)? - (2')% Then the Poisson tensor becomes

7] 0 0 0

3
=2 (= s ®
ves (8z1 0z2 022 0z1
giving the coordinate algebra as stated. Since only w?® = w32 is nonzero, we also
have {t,z*} = {r,z"} = 0. The ‘quantising’ connection is
vdt = at“ bat opdt®dzt -0, dr @ da
aa a at 1 1
vdr = - 2 dt®dt—7dr®dr——(dr@dt+dt®dr) St opdt@dat -5 dreda”
i Orc O
vdz' = - ~ Ll @ e’ - Gap2'dz" ® A2 — S, dt @ dat — Sy ,dr @ dat
due to the Chrlstoffel Symbols
Ota @5001 5002 5003 gl 00 + adra Stb Sl 02 Sl
ra bdb . c0 O cO b 1b a b ol ol
0 | % e 9525 rt L +5h S712.5713
ny 0 0 0o o0l v 0 O 0 0
0 0 0 0 0 0 0 O
S%00 5201 2 5203 S%005%01  S%03 Guc
) 5%105%11 8ﬁc 5?1 3 S%108%1  SPis 8;C
— Sl (22 2122 — 22(1—(22)2 21(22)2
L=l o o 20 (g )?) CoL. Tw=l o o (123(%2) ) 2
0 0 (zl) 2 2a-EHY 0o o 26 2(1 (zH?*

(2%)? (2%)? (2%)? (2%)?
From (2.5) we immediately see that [¢,dz"] = [r,dz*] = 0. Furthermore,
[z}, dat] = —23T¥3pda?,  [22%,da] = 25T ¥ ppda”
so we can read of from the Christoffel symbols that [z*,d¢] = [¢#,dr] = 0. Evalu-

ating the nonzero terms gives

[z}, d2'] = —(z L2d2t - ((2Y)%-1)d2?), [22,d2?] = —(z 122d2% - ((2%)%-1)d2)

2 1
[22,d2"] = —%(zlzzdzl—((21)2—1)d22), [z, dz?] = %(2122(122_((22)2_1)(121)
z z

which upon using ¥; z'dz" = 0 becomes [2¢,dz?] = A\27 €', 2™ d2™. O

So we see that in generalizing the analysis, we recover the same bimodule structure
as in the FLRW case and by extension, that of the fuzzy sphere in Section 2.5.
The noncommutativity is purely spacial and confined to spatial ‘spherical shells’;
the surfaces of fuzzy spheres at each time and each classical radius r. We have
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checked directly in the proof of the theorem that this is a solution for all a,b,c
while for generic a,b,c we showed that it is the only solution, i.e. we are forced
into this form from our assumptions and spherical symmetry. There do in fact
exist particular combinations of these metric functional parameters which permit
alternative solutions for f and g. In fact we already saw an example in Section 2.4
with the Bertotti-Robinson metric which had f = 0 and g = —-r. To see why this
was allowed, we take a brief look at the Poisson compatibility condition (2.2) again,
now with arbitrary f and g and note the particular constraint

S5 fc+ goresin(f) =0, —S'safc+ gdrcsin() =0

It is clear that with ¢ arbitrary, we cannot have f = 0 without also having g = 0.
However, allowing ¢ =constant means we can also take f = 0 and g nonzero, as is
the case with the Bertotti-Robinson metric. This leads to a different contorsion
tensor with a flat V and in fact this exceptional model was solved using algebraic
methods in [28] including the quantum Levi-Civita connection to all orders in A.

Proceeding with our generic spherically symmetric metric, for brevity we define

2

1
Fy = TS (a2b83a - ab28t2b +b20,b0pa — a28rb8ra) , Fy= Z—QFl

Fy = ﬁ (adybdyc — badydyc + bdycdra), Fy = T?’Cbz (b20ra0sc + a>0,cora - badic)

c 1

F5 = oz (az&«b@rc +b20,c0b - a%@fc) , Fg= oz (b2a2 +b%(0pe)? - a2(6rc)2)
1 1

Fr=— (a®b0? - a®0,b0,c - b*04bdsc), Fy = — (-b%ad} + a*0,ad,c + b*d,adyc)

Fy = € (bOradic + adibdy.c — abdy-dsc)
abc

in which terms the Riemann tensor for the Poisson-compatible ‘quantising’ connec-
tion comes out as

Riem(dt) = —-Fidr Adt ® dr + C(dt), Riem(dr) = Fodr Adt @ dt + C(dr),

Riem(dz') = 6,dz" A dz® ® dz° + C(dz?),

where we have collected in the tensor C all contributions coming from the undeter-
mined components of the contorison tensor, namely

C(dz") =v,S 0ada! Adt @ dz® + V.5 1qda” Adr @ dz®
+(8%05S" v + S 005 00 + 510458 0r ) dt A da” ® dz®
+ (818" 0 + S0a8%1, + SLlaSlh,) dr Adz” ® dz®
+(5%0aS%, + 8108 ) d2' Adz” ® dz®
We also have the classical Ricci tensor for the Levi-Civita connection
Ricci = —% ((Fy + 2F3)dt ® dt — (Fy + 2F;)dr ® dr + Fo(dt ® dr + dr @ dt)

1 , ,
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and, for later reference, the Einstein tensor

- 1 2 2
G=-7 (“2(1?5 +2Fs)dt @ df - S (Fs - 2Fy)dr @ dr + Fy(df @ dr + dr @ dt)
C C

1 c? i .
o _F, - — g J
(23)2 (F5 Fy bQFl)éleZ ®dz )
Before continuing, we turn briefly to the quantity wﬁo‘(RLUW +5%,0:a) which ap-
pears in several formulas in Section 2, most importantly, the quantum Levi-Civita
connection condition (2.14). In particular, we note that it is surprising simple with
the only nonzero components

PR+ o) = T W (B ) = EL L
W R+ szia) = izl’ W (RP330 + $32,0) = %,
Rz + 5am) = 1_2(:#’ W (R%300 + S%39.0) = ‘g,
W (Roga + 5 50) = L;’l)Q’ W RP330 + 5%33.0) = _ZZQ

The undetermined components of S do not contribute. In general the ‘quantising’
connection always enters in combination with the Poisson tensor e.g. w®’T* B~ SO
the same argument as in the proof of Theorem 4.1 applies and we the undetermined
components S,1, or Sy, in geometrically relevant expressions, as demonstrated by
the generalized Ricci 2-form which now is

1 2
R = —5026mnkzkdzm Adz" = ——?’dz1 Adz?
z

From this we have the quantum wedge product
dtarda! = dtadz”, dz¥aArdt =dataAdt, dragdz” =dradz”, da*Aidr = do¥Adr

dz' Ay dz? =d2' Ade? + B (3zzzj - 5”) dz' Adz?

{d2',de’}1 = A (3227 = 6Y) d2! A d2?

Our next step is to calculate the quantum metric.

g1 = guda ®1 da” + ﬁe?ﬁj (z?’dz‘ ®1 dz? - 21d2® @, dzJ)

Working with metric components g;; (in the middle) we get
_A2-(%)?)
(@)
Meanwhile, for the inverse metric with components §% we get
A 23 A3
Azl da2), = o234+ 25 d22 dzl), = 32 - 22
('272)19 2627('2’2)19 262
(dt,dt); = ¢%°, (dr,dr); =g", (dz',dz');=¢%% (dz?,d2?);=¢%
Now, Lemma 2.2 gives the quantum connection as
A cOie
2P @

h 631-jdzi ®1 de

Vi (dt) = —fowdx” ®q dz” - (z?’dzi ®, dz7 - 2'd2® @, dzj)
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A cOpc
2(23)2 b2 €3ij

(4.2) vi(dr) = —flu,,dx“ ®1 dz” + (z3dzi ® dz? - 2'd2* @, dzj)

. A , , ,
Vi(dz®) = -, dat @ da” + 5 (eijkzkzadzz ® dz? - €%i3d2° dz’)

1
(z%)?
Lastly, we calculate the associated braiding. Its contributions at order \ are

o1(dz' ® d2?) =d2? @ dz' + A (eabczczizj + €200 + eijczccsab) dz @ dz°

when calculated using (2.16). Meanwhile, from Proposition 2.4 quantum antisym-
metric lift is

1
(4.3) i1(dat Ada”) = 3 (dz" @ dz¥ — da” @1 da) + A (dz" A dz”)

The functorial choice gives I(dz* A dz") = 0, but we leave this general.

4.2. Laplace operator and Curvature Tensor. Following from the previous
section, we first calculate the Laplace operator. From Theorem 2.3 we get that

le = gaﬁ (f,ocB + f,'yfryaﬁ)

as with the flat FLRW metric, is undeformed in the underlying algebra. Then,
(2.18) gives the quantum Riemann tensor as

1 ) )
Riem; (dt) = —§R0awdx“ Adz” @ dz® - egijz?’(ngt - Fydr) ndz* @1 d2?

s
2(23)2
+€3ijzi(F3dt - F4d7”') A de ®1 dZS)

1~ A ) ,
Riem;(dr) =-=R',,,dz" Adz” @ do® + ——— (€3;:2° (Fsdt — F3dr) Adz’ @1 dz”
9 o 2(z3)2 VY
z

+63¢jzi(F5dt - ngr) A de ®1 dzs)

AFg
2(23)2
Using the lift map (4.3) and the tensor formula (2.21) we get the quantum Ricci
tensor as

1+ (2%)®)dzt Ad2? ©; d2?
(1+(

1~
Riem;(dz") = —§R”awdx“ Adzr” ® dz® +

. 1 A , o ,
Ricciy = _§Ruydx” ®q da? - W(FG + Fy - F4)€3ij (Z3de ®1q dz’ - ZZdZ3 ®1 de)
3\ ; D P
—EFﬁﬁgideZ ®1 dz’ - ERavnclncwjdl‘y ®1 dz”
Lastly, we fix I so that we have both A;(Ricci;) =0 and flip(* ® *)Ricciy = Ricci;.
For the latter, it is easiest to consider the quantum Ricci tensor with components
in the middle so that from Section 2.2 we have

1 . ; .
p= PTEE ((F5 - F1)(2- (2%)%) + 2F5(1 + (2°)?)) e35;dz" @1 d2?
1~
—iR‘*WI"Cde" ®; dz”

where, for comparison, p = —%pwdx“ ®1 dx¥. The reality condition, since the
coefficients are real and \ imaginary, requires this to be antisymmetric. Also,

A A=
A1 (Ricciy) = —g’—ngﬁdzl Ad2? — 5Ra,m<1’7< avdz? A da?
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Putting this together results in
— 3 ‘ )
Ra,yncfnca,,dxy ®1 dz” = —ﬁFgegidez ®1 dz’

This answer for the contraction of the lift map with the Riemann tensor is unique,
but the same is not true of the lift map itself and we are left with a large moduli
of possible solutions with most components of I undetermined. We examine the
simplest possible form by setting these to zero, leaving us with

1 3\ : ;
z'l(dz1 A d22) =3 (dz1 ® dz? —dz? @ dzl) - E(Z—jdzl ®1 dz’

as the only part with an O()) contribution and which is the same as for the fuzzy
sphere seen previously. This results in
3
p= 4( 3)3 (F6 + F5 — F4)(2 (Z ) )63”(12 ®1 dZ]
which we note has the same structure as h for the quantum metric, but with different
coefficients. The quantum Ricci tensor (with components on the left) is now

1~ ) ) ) .
Ricci; = —iRde“ ®1 da” — —— (Fs + F5 — Fy)esi; (z3dz’ ® d27 - 2'd2® @ dz])

4(= 3)2
The scalar curvature, using (2.23), has no corrections and comes out as

1l =~ = 2
512—537 S:R#UQMVIE(F6+2F5—2F4) Fl
C

B2
Note that it depends only on t and r and is therefore central in the algebra. From
Proposition 2.1, the quantum dimension comes out as

dim(M); = dim(M) - Aw*?g" T, 5, = 4

It might also be of interest to think about a quantum Einstein tensor. While a
general theorem has not been established, we could consider a ‘naive’ construction
by analogy to the classical expression. Since the quantum and classical dimensions
are the same, we could take for example

1
G1 = RiCCil - islgl
which has the same form as the classical case. This can be written as

1 1 2
G = _§G1uydx” ® dz” = _adx” o Gy ® da”

where élw =G — /\waﬁé’\w,af'yﬁﬂ and as previously the hat denotes that this
is for the Levi-Civita connection. Now since in our case Sy is purely classical and
central, this can be expressed in component form as

~ = 1~
Gluu = Rlyu - 759#1/

following the same pattern as how the components of Ricci; and g; are written. If
we write le = G;w + A, then

—~ 1 2
Zzp—ZSh: W(F F4 b2 )(2 (Z ) )EgZ]dZ ®1 dZJ
where ¥ = —%Ewdx“ ®1 da¥ and is manifestly antisymmetric corresponding to

flip(* ® *)G1 = G1. Indeed, G, is both quantum symmetric and obeys the reality
condition since Riccip, g1 and S is real and central.
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With the results of this section, we can calculate the quantum geometry for all
metrics of the form (4.1) simply by choosing appropriate parameters for a,b and c.

4.3. FLRW metric case. Comparing the above results with those of the FLRW
metric in Section 3, there is a disparity that previously the metric appeared un-
deformed while now it has a quantum correction. We resolve this here. We first
specialise the general theory above to the FLRW metric

g=-dt®dt+a*(t)(dr ® dr +7r%5;;dz" @ dz7)
where we identify the parameters
a(r,t) =1, b(r,t)=a(t), c(rt)=ra(t).

This gives us the ‘quantising’ connection up to undetermined but irrelevant contor-
sion tensor components (which are set to zero for simplicity)

v(dt) = —aadr @ dr, v(dr)=-aa(dre®dt+dtedr)
. 1 g . .
V(dz') = ——dredz’ - Sa ®dz' - 6p2tdz® @ dzb
r a
Meanwhile, for the classical Ricci tensor of the Levi-Civita connection we have
N 1 a . .
Ricei = -5 (—?ﬁdt ®dt + (2&2 + ad) (dredr+ 7ﬂ25ijdzz ® dz]))
a

and the curvature scalar is as in (3.14). Now, the quantum metric comes out as
2

2

(4.4) g1 = guda? ®1 da¥ + (z?’dzi ® dz’ —dz® @, zidzj)

where z# refers to coordinates t,r, ', 22 as we used polar coordinates. Equivalently,
Gij (where the components are in the middle) has quantum correction

L a2 (=)?)
(22)3
For the inverse metric with components §* we obtain
A\ 23 A28
1 3.2\ _ 23 2 1y _ 32
(dz*,dz")1 =g +§r—27 (dz*,dz")1=9¢g “52
(dt,dt)q = g%, (dr,dr); = gt (dzl,dzl)l = ¢, (dZ2,d22)1 = ¢33

The quantum connection is

(45) Egijdzi ®1 de

vi(dt) = —fOde” ® dz” - CLdT’2€3ij (z3dzi ® dz/ - 21d2® @, dzj)

A
2(23)2

— A . . . .
Vi(dr) = —Flwdx“ ®1 dz” + Wﬁgij (z?’dzz ®, dz7 - 2'd2® @, dzj)

— A . . 1 )
Vi(dz®) = -, da? @ da” + 5 (eijkzkz“dzz ® dz? - Weaigdz‘?’ ®1 dz’)
Then, by computing (Fs + F5 — Fy) = r2(24% + ad) the quantum Ricci tensor is

Ar?

4(23)2

Ricciy = Ewdm“ ®q dz” - (2o'L2 +ad)es;; (zSdzi ®; dz’ - 2'd2® @, dzj)
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With components in the middle, this comes out as

1 , .
p= _4(2:3)3 T2(2d2 + aa)(2 = (23)2)631‘de1 ®1 dz’

and in either case S; = —%S in our conventions.

Now these results appear at first sight to be at odds with Section 3 since there the
quantum metric from (3.11) looks the same as classical when written in Cartesian
coordinates. We first write it terms of dz’ by writing da’ = rdz* — 2°dr and note
that since z’dr = 2° e dr, we can take such z° terms to the other side of ®;. Since
also dz% e ' = O(\?) (sum over 7), we find

g1 = —dt ®; dt + a*(t)(dr ®; dr + rzéijdzi ®; dz?)

This begins to look like (4.4) but note that only 2!, 22 (say) are coordinates with
2% a function of them. In particular,

=—(2*) e (2t edzt + 22 0 d2?) = —(2) (21 det + 2%d2?) - %Egijzidzj

would be needed to reduce to the form of (4.4) where the first term has only dz° ®;
dz® for a,b = 1,2. Equivalently, we show that we have the same Juv- Considering
only the angular part d;; dz'®1dz? = dzt @ dzt +dz? @ dz? +d23 ®1 d23 and examine
the last term more closely (sum over repeated indices understood)

dz? @1 d28=(2%) e 2% ed2" @) (2°) L e 2 e d2®
= (Z3 + Aeacz e dz® ®; ( + febdz ) edz®
z 2
a A A b
:dzac(%+26a6z) (;+26bdz)®1dz +[— dz]oz—3®1dzb
a.b A 1
=dz%e (232)2 ®1 dzb + 5 dz* ( 3)3 (Gab+236bdzazd +z3eaczbzc) ®1 dz?
dz® 1 dz?
—-az ( 3)3ecbz 2 ®1dz
b 92 _ 3
=dz%e —— G ®; dzb + dza( (=%)° )eab®1dzb

(2%)? (2%)°
The e in the first term is left unevaluated so as to obtain §;; and we clearly see
that we now have the same semiclassical correction h as in (4.5). We can perform a

similar calculation for the quantum Ricci tensor in Section (3.2), making the same
coordinate transformation as for the metric

1 .. ' _
Ricciy = -3 (—3gdt ®1 dt + (2(12 + ad) (dr @1 dr + r25ijdz’ ®1 dzj))
a

Indeed, since t and r are central in the algebra, the procedure is simply a repeat of
that for the metric and clearly results in the same p as above. Thus we obtain the
same results as in Section 3 but only after allowing for the change of variables in
the noncommutative algebra and ®;.
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4.4. Schwarzschild metric. We now look at some examples of well known met-
rics that fit the above analysis. For the first, we reexamine the Schwarzschild metric
case in [10, Sec. 7.2]. There it was found that (as we would now expect), the quan-
tum Levi-Civita condition is satisfied for a spherically symmetric Poisson tensor.
A difference however, is that in [10] the torsion tensor was restricted to being rota-
tionally invariant. By contrast, no such assumption is made here yet we are still led
to a unique (con)torsion from Theorem 4.1 up to undetermined components which
we show do not enter into the quantum metric, quantum connection etc. Here

-1
r T ; 4
g:_(l——s)dt®dt+(1——s) dr@dr+ 126,42 @ d2?
r r
so our three functional parameters are

1
2

o= (1-2) (1) e

giving the ‘quantising’ connection up to undetermined but irrelevant contorsion
tensor components (which are set to zero for simplicity)

_1
v(dt) = —(1 - LS) "S(dred+dtedr)
T r

1
2

v(dr) = —(1 - ’LS)E "Sdtedt+ (1 - ’"—S) Saredr
r r2 r r2

. 1 . .
V(dz') = ——dr @ dz’ - 6,p2°d2" ® d2°
r
As a check, by transforming into spherical polars and likewise neglecting the irrel-

evant components, we can recover the ‘quantising’ connection in [10]. In particular

v(do) = —%dr ® df + cos(0) sin(0)d¢ ® d¢

V(dg) = —%dr & do - cot (0) (40 ® dg + dé @ d0)

which agrees with [10]. Obviously, the classical Ricci tensor for the Levi-Civita
connection vanishes for the Schwarzschild metric, likewise for the curvature scalar.

Now, the quantum metric comes out as
2

r
While g;; (components in the middle) is
2=
()
For the inverse metric with components G we get

3 3

z 2 1\ _ 32 Az

+§727 (dz%,dz")1=9g T92
(dt?dt)l 2900, (d?",d?”)l :gllv (dzl7dzl)1 :.9227 (dZQadZQ)l :g33

The quantum connection is

g1 = gpda! ®1 dz” + (zgdzi ®1 dz? —dz® @, zidzj)

h

Egijdzl ®1 dz’

(d2',dz?)1 = g%

Vi(dt) = -T°,, dz" ®; dz”
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Vi(dr) = —’F\lwdx“ ® dz” + 22d2' @1 d27 - 2'd2® @ dzj)

AT
TEIEREL

— v A . . 1 .
Vi(dz®) = -I'",,dz" ® da” + 5 (eijkzkz“dzl ®1 dz’ - (23)2eai3dz3 ®1 dz’)
Meanwhile, from calculating the parameter Fg + F5 — Fy = 0, we see that analogous
to the classical case, the quantum Ricci tensor also vanishes

Ricci; =0, p=0, S;=0.

4.5. Bertotti-Robinson metric with fuzzy spheres. Another interesting ex-
ample is the Bertotti-Robinson metric, discussed in the context of a different dif-
ferential algebra in Section 2.4. In order to draw a comparison between this case
and the previous one, we define our metric as

g=-a’r**dt @ dt + b*r2dr @ dr + ¢*,;dz" ® d2’

To chime with the conventions in this section, we relabel the constant terms and
compared to the metric in Section 2.4, the off diagonal component is zero (either
by diagonalising or setting the corresponding coefficient to zero). So our three
functional parameters are

a(r,t) =ar®, b(rt)= brt, c(r,t)=c

As explained after Theorem 4.1, the theorem in this case does not give a unique
quantum geometry but does give one. Dropping the undetermined and irrelevant
contorsion components, Poisson-connection come out as

2
v(dt) = -2(dt@dr+dredt), v(dr)=-ar**Ldtedt+ Lirgdr
r C r

V(dz") = =0apz'd2® @ d2°
This is markedly different from that in Section 2.4 (apart from the different choice
of coordinates), in particular with regard to the bimodule relations since previously

t was not central. We also have the Ricci tensor for the Levi-Civita connection
1 a? o? . .
Ricci = -3 (a2r2adt ®dt - —dredr+ 0;;dz" ® dzj)
T

b2

with the corresponding scalar curvature

= 2 202
_ wo_ 2
S=R,g"= 2 e
The quantum metric is
v Ac? 310 j i7.3 j
g1 = guda” ® dz” + Wegﬂj (z dz' ®1dz! - 2'dz° ® dz )
z

While g;; (components in the middle) has the deformation term
L2 ()

(%)
For the inverse metric with components G we get

A 23 A 23
1 7.2y _ 23 2 11y _ 32
(dzt,dz")1=¢ +§C—2, (dz*,dz")1=9¢g 52

(dtadt)l = g(JO, (dT‘,d’l")l = gll’ (dzl7dzl)1 = 922’ (dZ2,d22)1 = 933

Egijdzl ®1 dz’
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Now, the quantum connection is
vi(dt) = -T°,,dz* ® dz¥, Vi(dr)=-T,,dz" ®; dz”
a iR v A k_a .1 j 1 a 3 i
Vi(dz®) = -I'", da? @ da” + 5 €ijrz 2%dz" @1 d2) — —5€%3dz” ®1 dz

(2%)?

Again, calculating the parameter Fg + F5 — F; = 1, the quantum Ricci tensor is

1~ A o S )
Ricci; = —§Rl“,d$'u ®q da” - WGBij (ZSdZZ ®1 dz? - ZZdZ‘3 ®1 dZJ)
With components in the middle, this comes out as
1 332 i j
p:—m@—(z ) )Egijdz ®1 dz

and in either case S = —%S in our conventions.

5. CONCLUSIONS

In this paper we simplified and extended the study of Poisson-Riemannian geometry
introduced in [10] to include a formula for the quantum Laplace-Beltrami operator
at semiclassical order (Theorem 2.3) and we also looked at the lifting map needed
to define a reasonable Ricci tensor in a constructive approach to that. Our second
main piece of analysis was Theorem 4.1 for spherically symmetric Poisson tensors on
spherically symmetric spacetimes. We found that if the metric components are suf-
ficiently generic (in particular the coefficient of the angular part of the metric is not
constant) then any quantisation has to have ¢,dt,r,dr central and nonassociative
fuzzy spheres[7] at each value of time and radius. We also found that the Laplace-
Beltrami operator has no corrections at order A. Key to the startling rigidity here
was condition (2.14) from [10] needed for the existence of a quantum Levi-Civita
connection V;. Hence if one wanted to avoid this conclusion then [10] says that we
can drop (2.14) and still have a canonical V; and now with a larger range of spheri-
cally symmetric models but with a new physical effect of Vg1 = O(A). One can also
drop our other assumption in the analysis that w obeys (2.3) for the Jacobi identity.
In that generic (nonassociative algebra) context we noted that spherical symmetry
and Poisson-compatibility leads to a unique contorsion tensor, while imposing the
Jacobi identity leads to half the modes of S being undetermined but in such a way
that the contravariant connection w®?v 4 more relevant to the quantum geometry
is still unique. This suggests an interesting direction for the general theory.

The paper also included detailed calculations of the quantum metric, quantum Levi-
Civita connection and quantum Laplacian for a number of models, some of them,
such as the FLRW, Schwarzschild and the time-central Bertotti-Robinson model
being covered by Theorem 4.1. The important case of the FLRW model was first
solved directly in Cartesian coordinates both as a warm up and as an independent
check of the main theorem (the needed quantum change of coordinates was provided
in Section 4.3). Two models not covered by our analysis of spherical symmetry are
the 2D bicrossproduct model for which most of the algebraic side of the quantum
geometry but not the quantum Laplacian was already found in [9], and the non-time
central but spherically symmetric Bertotti-Robinson model for which the full quan-
tum geometry was already found in [28] (this case is not excluded by Theorem 4.1
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since the coefficient of the angular metric is constant). In both cases the quan-
tum spacetime algebra is the much-studied Majid-Ruegg spacetime [x;,t] = Az; in
[26]. The non-time central Bertotti-Robinson model quantises S"! x dS5 and the
quantum Laplacian in Section 2.4 is quite similar to the old ‘Minkowski spacetime’
Laplacian for this spacetime algebra which has previously led to variable speed
of light[1] in that provided wave functions are normal ordered, one of the double-
differentials becomes a finite-difference (the main difference from[1] is that this time
there is an actual quantum geometry forcing the classical metric not to be flat[28]).
However, when we analysed this within Poisson-Riemannian geometry we found
no order A correction to the quantum Laplacian. We traced this to the formula
for the bullet product in Poisson-Riemannian geometry in [10] being realised on
the classical space by an antisymmetric deformation, which is analogous to Weyl-
ordered rather than left or right normal ordered functions in the noncommutative
algebra being identified with classical ones. Our conclusion then is that order A
predictions from such models[1] were an artefact of the hypothesised normal order-
ing assumption and that Theorem 2.3 is a more stringent test within the paradigm
of Poisson-Riemannian geometry. We should not then be too surprised that order
A corrections are more rare than one might naively have expected from the formula
in Theorem 2.3. The 2D bicrossproduct model in Section 2.3 does however have an
order A deformation to the Laplacian even within Poisson-Riemannian geometry
and we were able to solve the deformed massless wave equation at order A using
Kummer functions (i.e. it is effectively the Kummer equation). This behaviour is
reminiscent of the minimally coupled black hole in the wave operator approach of
[25] without yet having a general framework for the physical interpretation of the
order A deformations obtained from Poisson-Riemannian geometry.

It is even less clear at the present time how to draw physical conclusions from
our formulae for the quantum metric g; and quantum Ricci tensor Ricciy. In the
FLRW model for example we found that g; looks identical to the classical metric
but of course as an element of the quantum tensor product Q! ®; Q!. The physical
understanding of how quantum tensors relate to classical ones is suggested here
as a topic of further work. Another topic on which we made only a tentative
comment at the end of Section 4.2, is what should be the quantum Einstein tensor.
Its deformation could perhaps be reinterpreted as an effective change to the stress
energy tensor. This is another direction for further work.

APPENDIX A. MATCH UP WITH THE ALGEBRAIC BICROSSPRODUCT MODEL

This is a supplement to Section 2.3 in which we will verify that the semiclassical
theory obtained by our tensor calculus formulae agrees with the order A part of the
full quantum geometry found for this model by algebraic means in [9]. This provide
a completely independent check of the main formulae in Section 2.1.

Welet v=redt—tedr=v+ %dr and the (full) quantum metric, inverse quantum
metric and quantum Levi-Civita connection in [9] are

g1 = (1+bA)dr @, dr+ by ®, v - b\v @, dr

)=t ([drv)i=0, (ndr)i= —2— . (drdr) =

1
T 1+bA2’ 1+ bA2
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\Y% dr—87bv® V—&lﬂg dr
P T @A) T r(dar o)
4bA 8(1+b)%))

Viv = v ®q dr

e ® _ 7
ra+ ) O T T Toae)
(there is a typo in the coefficient of 5’ in [9]).
We note immediately by expanding ¢g; to O(\) and changing from v to v that
A
g1 =dr ®; dr+bv®1v+b§(dr®1v—v®1 dr)
A
= gudat ® da” + b§dr ®1v-Abv®dr
LA A

=gdat @ dz” + §btdr ®1 dr + Ebrdr ®1 dt — \ordt ®; dr
the same as we obtained from (2.9). We used rdt = T'dt—%d’r to move all coefficients
to the left through ®; in order make this comparison. We can do a similar trick

with rdt = (dt) e r + %dr to put the coefficients in the middle, giving

g1 =dr ®, dr + b(dt) e 72 @, dt + b(dr) e t> ®  dr —b(dr) et e r ®, dt
—b(dt) eret®; dr+bA(dr®v—v®;dr)

I +é 0 -3br
Jpw = Jp T 5 \ 3 0 |

which agrees with g,,, implied by h,, = —3bre,, as computed from (2.12).

so that

Similarly, working to O()\), the quantum connection from [10, Prop 7.1] is
2b
Vidr=—(v®1v-Av®;dr)
T
2b A 2b
=—v® (redt—tedr-=dr)-A—ve® dr
r 2 r
1 3b
=2bv ®, dt —2bv(r™ " ot) ® dr - A—v ®; dr
T
=-T),da" @ da” - 2\b(dt - r~'tdr) ® dr
in the same manner as the computation of v ® v for the metric, which agrees with
the correction in 1"11,“, of
A = A = A .
Ew ﬂFluO,aroﬂu - 5‘*‘) Bl—‘lOOFOauFOBV - §w01510r§v15 1%

A PP . 0 1
- _§F1MO,V — Abeu — §rrloﬂv15 v = 2Xb (0 —r‘lt)

in Lemma 2.2. Here

_2bt  2(1+bt?) _9p 2bt
0 _ r 2 1 _ r
VSt = 2t(1+62) | V1S = ( 2bt _ 2bt” )

— 2
r2 r3 T T
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where V; in this context means with respect to r. Similarly, the semiquantum
connection Viv = —%(v ®1 dr + bAv ®;1 v) implies

Vidt =vi(rtev+ (rit)edr)=drt @ v+d(rtt) @ dr+r e viv+ (r ) e vidr
A
=—r2dre, (redt—tedr- Edr) —r2tdr @, dr + r'dt ®; dr

—2r (v @ dr + bAv ®1 v) + 2b(r~'t) e (v @1 v - Mv ®; dr)

A
=—rtdr ®1 dt + (r_2 o )dr ® dr + §r_2dr ® dr - r2tdr ® dr + ride ®1 dr

A
—2r 2y @ dr = A\or v @y v+ 2br 2tv @, (redt —tedr - §dT) —2\2br %ty @ dr

A
=—rldr @ dt + r 2tdr @, dr — Er_er ® dr - r2tdr @ dr + 1 *dt ®1 dr
—2r 20 @1 dr = Abr 2v @1 v + 2b(r~%t) e rv ®; dt — 2b(r~%t) e tv ®; dr — A3br *tv ®; dr

— A
= —I‘Ode“ ®1 dz” - 57"_2d7° ®1 dr = ANor 20 @1 v — \or to @ dt — \br~2tv ®; dr

_ A
=-TY,, do" @ da” - §r-2dr ®1 dr — 2\b(dt - r tdr) ®; dt

which agrees with the correction to I'1°,, of

A afT A afT A K
59 T 0.0l s = SW T 00T ol gy = S0 5%, V15"
Aes ) A 3 2 0
= _5 O/J,O,V = Abr 1t€;u/ - §TFOOKV15 pv = )\(_th 1 )

r 2r2
in Lemma 2.2.

Next note that because Vv = Vdr = 0, we do not have any corrections to products
with these basic 1-forms and this allows us to equally well write

df = (8rf).dr+(avf).v
with the classical derivatives if we use this basis. Then working to O()),
O f=(, 1Vadf=(, )1((0rf) @ Vidr+ (0,f) e Viv +d0, f ® dr +d0, f ® v)

2bA
r

=(, )1((8Tf)027bv®1v—(ﬁrf)o ?v@l dr—(@vf)ogv®1dr—(6vf)o vV ® v
+ (02 f)dr ®1 dr + (0,0, f)v ®1 dr + (0,0, f)dr ®1 v + (92 f)v @1 v)

=@ N2+ 20,0, pa00 - (0,122 — (9,5) 22
r 2 r2

r

b—l
2 A A 2 -1
+ (arf) + (avarf)§ - (ara’uf)a + (avf)b

= Df + /\(—gavf + %[alnaT]f + 8varf)

10 0 t 9 10
)

:Df+/\(r<%87'f+r26t2f_r?8t

where we used hert = hr~! + %avh for any function h and, to O(\),

(U,U)l = bil, (d?",’l})l = —é, (’l}7d7")1 =

A
5 > (dr,dr); = 1.
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This agrees with the quantum Laplacian to order A obtained in Section 2.3.

In this model we can in fact write down the full quantum Laplacian in noncommu-
tative geometry in the setting of [9] just as easily and we do this now as it was not
done in that work. We again write

df = (0, f)edr+(0uf)ev

where 0,,0, are now quantised versions of the ones before and are derivations of
the noncommutative algebra since dr,v are central. They obey

avf(r) =0, avf(t) =r'e O f, arf(r) = f,a arf(t) =—r'e too f

as easily found using the derivation rule, the values on r,t and the relations ter~! =

r~t e (t+ ) in the algebra. Here o f(t) = A1 (f(t+ ) = f(t)) is a finite difference.

Then for any f in the algebra, one can compute ( , )1 Vidf using the full expressions

above to obtain

(8 =6bA2)0,f = A(8 +4bA2)D,f 1 O2f +N0,O,f
4+ 7bA2 T T e

for V1 the quantum Levi-Civita connection stated above for this model.

O1f = + b‘laff

Finally, the work [9] already contained the full quantum Ricci as proportional to
the quantum metric. The first ingredient for this is the quantum Riemann tensor
in [9] and expanding this gives

1 b
Riemy (dr) =-2b— ev A dr®; (redt—tedr)+ 7—dt Adredr
r r
1 TOA
=—2bdt Ay dr @1 dt +2b— etere(dtn; dr)®;dr+ —dtadredr
T T

t A Al
=-2bdt Adr @ dt + 2b(f +—{t,r}+ f{—7t}r) o (dt Adr) @ dr
ro 2r2 2 " r?

+@dt Adr®dr
T

t 4bX
=-2bdt Adr ® dt +2b(—) e (dt Adr) @ dr + —dt Adr @ dr
T T
1+ b
= —ingde“ Adz” ® dz? + BA=dt Adr @y dr + o(\?).

where we use v,dr central for the second equality, then dt A; dr = dt A dr and
V1(dt Adr) = —r~tdt Adr. There is a similar formula for Riem; (dt) obtained from
Riem;(v) = r @ Riem; (dt) — ¢ e Riem;(dr) given in [9] and expanding. Thus the
curvature agrees with (2.24) obtained from our tensor formulae.

Next the lifting map i; was given by the method in [9] uniquely (by the time the
reality property is included) as,
1
i1(vardr) = 5(1/ ® dr—dr®; v) + %gl +0(\?)

according to the order A\ part of the full calculation in [9, Sec 6.2.1] (the 9/4 in
[9, eqn (5.21)] was an error and should be 7/4). It was then shown in [9] that
Ricci; = g1/r?. Expanding the quantum metric from [9] as recalled above, the
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quantum Ricci is to O()\?),

1
Riccil:—2O(dr®1dr+br01/®1dt—btoy®1dr—b)\1/®1dr)
r

1 b A b A b
—dreidr+—-(v+ =dr)®dt - (< et)(v+ =dr)® dr - < Av @ dr
r2 r 2 r2 2 r2

Ab

1~ t Ab
=——R,dz" @ dz" - ——<dre dr+ - —-dre; dt
2 2 2r

)
15 Ab
=5 Rudat @1 da” + S dr ey v+ O(\?).

where for the second equality uses Vdr = Vv = 0 so that bullet products with these
are classical products. For the third equality we used {%2, t} = —7% from the e which
cancels the last term. We obtain exactly this answer by calculation from (2.21).
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