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Abstract: Ferroelectric composites, integrating dielectric ceramic fillers with mechanically 

flexible polymers, are promising materials for flexible electronic applications. Plenty of research 

has demonstrated the enhanced dielectric and ferroelectric properties of composite materials. 

However, the mechanisms responsible for these enhancements are not completely understood. 

Herein, we used typical dielectric materials, poly(vinylidene fluoride) (PVDF) and BaTiO3 

(BTO), to study the effect of a dielectric filler on the crystallization, phase transformation and 

dielectric properties of PVDF. The crystallization of β-PVDF was not affected by the presence 

of BTO particles, but small amounts of BTO (< 3 vol. %) made PVDF crystallize into larger 

spherulites. This is linked to crystallization kinetic studies, which showed that BTO acted as a 
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nucleation agent for large full ring banded spherulites when its content was less than 1 vol. %. 

Furthermore, solid state drawing in the presence of BTO particles promoted the formation of β-

PVDF with more pronounced preferred crystalline orientation at high drawing temperatures 

(120 °C). The dielectric and ferroelectric properties were enhanced with BTO filling. The 

100 °C oriented drawn PVDF tape exhibited a dielectric permittivity of 14 (100 Hz) and remnant 

polarization of 0.080 C/m2 (10 Hz), which increased to 23 and 0.095 C/m2, respectively, after 

filling with 5 vol. % BTO; neither resulting in high dielectric loss tangent (~ 0.02) nor obvious 

current leakage. Moreover, the coercive field decreased from 80 to 50 kV/mm with increasing 

BTO content from 0 to 5 vol. %. 

1. Introduction 

The ever-increasing demand for flexible electronic devices with excellent properties, like high 

energy density dielectric based capacitors, can be addressed by combining dielectric ceramic 

fillers and polymer matrices.1-3 Ceramic materials (e.g. barium titanate, BTO) possess large 

dielectric permittivity, high ferroelectric remnant polarization as well as excellent thermal 

stability. However, their application is impeded by their relatively low electric breakdown 

voltage, extreme processing conditions and high stiffness.4 Meanwhile, polymers can be easily 

fabricated into complex shapes and have high break down electric fields (e.g. PVDF, > 400 

kV/mm).5 However, the intrinsic dielectric constants of polymers are a few orders of magnitude 

lower than those of ceramic materials (e.g. PVDF ε’  ~ 10, BTO ε’  ~ 900 at 1 kHz and 25 °C). 

Composite materials promise to integrate high dielectric constant of ceramic particles with high 

breakdown field and mechanically flexibility of polymers.6,7 

In composite materials, inorganic fillers can act as nucleation sites for semi-crystalline 

polymers.8,9 Dillon and co-workers9 investigated the structure and morphology of 

PVDF_nanoclay composites, where the nanoclay showed an obvious nucleating effect, 

increasing the crystallization temperature Tc, from 125 ℃ to 145 ℃, which is consistent with the 
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work of Priya et al.10. Additionally, the nanoclay promoted the crystallization of the β-phase; a 

similar effect was also reported in PVDF composites with other inorganic fillers, e.g. BTO 

nanofibers,11 functionalized BTO nanoparticles,12 carbon nanofibers13 and functionalized 

graphene sheets14. Apart from nucleation effects during crystallization, the presence of inorganic 

fillers can also influence the polymer behaviour under solid state drawing. He et al.15 reported 

that the existence of organosilicate favoured the formation of β-PVDF during solid state drawing, 

which leaded to the improved piezoelectric and pyroelectric performance of 

PVDF_organosilicate composites. 

Correlated to electric properties, Tanaka16 put forward a multi-core model, which suggests that 

the characteristics of polymer chains at the interfaces differ from those in the matrix due to the 

adhesion between the polymer and inorganic fillers.17 As a result, the dipoles at the interfaces 

can show different behaviours in comparison with those in the polymer matrix. The constituted 

interfacial polarization efficiently enhances the dielectric properties of composites materials.18-20 

Moreover, the properties of ferroelectric polymers are also enhanced, especially for composites 

loaded with small amounts of fillers.19,21 For instance, the remnant polarization of PVDF-TrFE 

filled with 10.8 vol. % of BTO fibres increased to 0.093 C/m2 from the original value of 0.047 

C/m2 for pure PVDF-TrFE.19  

Though many studies have reported that PVDF composites exhibit improved dielectric and 

ferroelectric properties, the reasons for these enhancements are still not clearly understood. 

Moreover, the altered crystallization of the polymers and the corresponding relationship between 

the structure and electric properties, due to the existence of inorganic fillers, has not been 

comprehensively studied. Herein, we firstly report the crystallization kinetics of PVDF filled 

with various amounts of BTO from 0.15 to 10 vol. %, and then the impact of BTO particles on 

the α- to β- phase transformation of PVDF during solid state drawing. Finally, the correlation 

between the different crystalline features and the electric properties was analysed. 
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2. Material and methods 

2.1 Materials 

PVDF pellets were purchased from Sigma Aldrich Chemical Co. The average molecular weight 

of the PVDF was about 180 kg/mol (Mw) and 71 kg/mol (Mn). Tetragonal BaTiO3 (BTO) 

particles (~ 300 nm) were purchased from Nanostructured & Amorphous Materials, Inc. The 

density of the PVDF and BTO particles was 1.78 and 5.85 g/cm3, respectively, according to the 

suppliers. All of the materials were used without post-treatments. 

2.2 Sample preparation 

The PVDF_BTO composites were firstly melt-blended using an X’plore micro compounder 

(MC 15) at 210 oC and 100 rpm for 10 mins and then collected using an X’plore micro cast film 

line (Xplore Instruments, Geleen, The Netherlands). These extrusion conditions were found to 

be optimum to produce good dispersion of the BTO particles and high crystallinity of the PVDF. 

The volume content of BTO in the as-extruded films was varied from 0.15 to 10 vol. %. Samples 

of dimensions 50×15 mm2 were cut from the as-extruded films and solid state drawn at 100 oC 

and 120 oC at 10 mm/min using an Instron 5900R84 machine equipped with a temperature-

controlled chamber (Instron, Massachusetts, USA). The chosen drawing temperatures were 

appropriate to enable significant chain mobility and transform the polymer to β-phase. The draw 

ratio of films was calculated by dividing the extension by the original length.  

The thickness of drawn films was about 25 µm, measured using a digital micrometer. Gold 

electrodes were evaporated on both sides of the films to enable dielectric and ferroelectric 

measurements.  

2.3 Characterization 

Phase determination of PVDF was ascertained using one-dimensional wide-angle X-ray 

diffraction (1D-WAXD) patterns (X’Pert Pro, PANalytical, Almelo, The Netherlands). The two-

dimensional wide-angle X-ray diffraction (2D-WAXD) ring patterns were used to evaluate the 
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crystalline preferred orientation of composites films, which were obtained using a single crystal 

X-ray diffractometer (Kappa ApexII Duo, Bruker AXS GmbH, Karlsruhe, Germany) with the 

incident beam normal to the film surface.  

The morphologies of the gold coated films were characterized using scanning electron 

microscopy (SEM) (FEI Inspect-F, Hillsboro, OR, USA).  

The thermal behaviours (melting, crystallization and isothermal crystallization kinetics) of the 

PVDF_BTO composites were investigated using a differential scanning calorimeter (DSC) 

(DSC4000, PerkinElmer, Massachusetts, USA). Four samples of each composite material, about 

5 mg, were directly cut from as-extruded or drawn films. Melting temperature and crystallinity 

were determined using the first heating (from 25 to 180 °C, 5 °C/min) data. The crystallization 

temperature was determined using the cooling (from 180-25 °C, 5 °C /min) data. The enthalpy 

for a fully crystalline PVDF is 104.6 J/g.22 Isothermal crystallization was recorded at 150 °C for 

15 minutes.  

The fraction of ferroelectric β-phase was determined using Fourier transform infrared 

spectroscopy (FTIR) (Tensor 27, Bruker Optik GmbH, Ettlingen, Germany) and calculated using 

Equation (1) where Aα and Aβ correspond to the measured absorbance at 764 cm-1 (α-phase) and 

840 cm-1 (β-phase). 

F �β� = 	

1.26	� + 	
                              �1� 

A Precision Impedance Analyser (4294A; Agilent, Santa Clara, USA) was used to test the 

dielectric frequency spectra at room temperature. The test frequency range was 100 Hz to 100 

MHz. Ferroelectric properties were measured on a tester (NPL, Teddington, UK) at room 

temperature and 10 Hz. 
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3. Results and discussions 

3.1 Effect of BTO addition on the PVDF crystallization 

The 1D-XRD data of the BTO and the as-extruded films is shown in Figure 1a. The BTO 

powder diffraction data matches the JCPDS PDF#75-0460 data file with characteristic peaks at 

2θ=44.9° (002) and 45.4° (200) and tetragonal structure (Figure 1a(1)). The diffraction peaks in 

Figure 1a(2) at 2θ=17.8° (100)α, 18.6° (020)α and 20.0° (110)α were assigned to the non-

ferroelectric α-PVDF. The β-phase characteristic peak at 2θ=20.8°, (110)/(200)β reflections, 

could not be observed as an obvious peak, but appeared as a small shoulder in the pure PVDF 

and composite films, which suggests the α-phase is the predominant crystalline phase. Our 

previous studies showed that extruded PVDF can crystallize into small amounts of β-phase (~ 8 

wt. %) as determined by FTIR technique.22 

Figure 1b shows the surface SEM images of the as-extruded films. It suggests the good 

dispersion of the bright white BTO particles (~ 300 nm) in the dark grey PVDF matrix. All of 

the samples displayed spherulite morphology, suggesting the crystallization of α-phase, which is 

consistent with the XRD data (Figure 1a). Composites with BTO content of 0.15, 0.5 vol. % 

crystallized into larger spherulites (diameter ~ 10 µm) compared to pure PVDF (diameter ~ 3 

µm). With increasing BTO content from 5 and 10 vol. %, no clear spherulite boundaries were 

observed and the BTO particles started to agglomerate. However, the composites showed no 

holes or pores, suggesting good compatibility between the BTO particles and PVDF matrix. 

There was no apparent preferred orientation in relation to the drawing directions for any of the 

films. 

Figures 1c-f show DSC temperature scans and isothermal crystallization data for the as-extruded 

PVDF and composite films. The values of melting (Tm) and crystallization (Tc) temperatures are 

listed in Table 1, which also includes the crystallinity (Χc), which was determined from the 
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fusion enthalpy. The PVDF and composite films exhibit two fusion peaks during the first heating 

DSC temperature scan (Figure 1c). The lower temperature broader peak is due to the fusion of 

smaller and/or imperfect crystals.22 As shown in Table 1, the position of the main fusion peak 

(Tm) was hardly altered by the addition of BTO particles (~ 169 °C). Similarly, a crystallinity of 

about 50%,22 typical for PVDF, was found, independent of the BTO content. Figure 1d depicts 

the cooling DSC temperature scan after first heating. The Tc of pure PVDF was 142.1 °C, and 

barely varied with addition of less than 5 vol. % of BTO particles. The Tc increased to 143.5 and 

146.2 °C in correspondence of 5 and 10 vol. % of BTO particles. The crystallization of semi-

crystalline polymers involves two steps, crystal nucleation and crystal growth. More nucleation 

sites were formed with a high content of BTO (> 5 vol. %), which accelerated the crystallization 

of the PVDF and increased the Tc values. 

Isothermal crystallization experiments were conducted to understand the effect of BTO on the 

crystallization of PVDF. Due to the higher Tc of the PVDF composites containing 5 and 10 vol. % 

BTO, the isothermal crystallization temperature was chosen as 150 °C. The time dependence of 

Χc for the as-extruded PVDF and composite films are shown in Figure 1e. For all of the samples, 

the crystallinity firstly increased with time before reaching a plateau. During isothermal 

crystallization at 150 °C, pure PVDF achieved up to 38% crystallinity, which is lower than that 

of the extruded films due to the onset crystallization temperature. Compared to the pure PVDF, 

the composite samples exhibited higher crystallinity regardless of filler content. The crystallinity 

firstly increased with increasing BTO content up to 3 vol. %, which is due to the nucleating 

effect of BTO particles, then decreased at higher BTO content (5 vol. % and 10 vol. %), 

resulting from the reduced chain mobility with a high filler content.  
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Figure 1 Crystallization features of PVDF and composites filled with different BTO content: (a) XRD 

patterns of: (1) BTO; (2) PVDF; (3) PVDF_BTO 0.15 vol. %; (4) PVDF_BTO 0.5 vol. %; (5) 

PVDF_BTO 1 vol. %; (6) PVDF_BTO 3 vol. %; (7) PVDF_BTO 5 vol. % and (8) PVDF_BTO 10 vol. %; 

(b) SEM images of extruded films; (c) first heating DSC temperature scan; (d) cooling DSC temperature 

scan; (e) crystallinity against time during isothermal crystallization at 150 °C; (f) fitted Avrami results; 

and (g) schematic diagrams for spherulites crystallized at 150 °C.  

Another characteristic shown in Figure 1e is the reduced time needed to reach the plateau for the 

composites with the higher BTO contents (5 and 10 vol. %). The isothermal crystallization 

behaviour is well described by the Avrami equation23, as shown in Equation (2), where Χt is the 

relative crystallinity at a corresponding time t, which is equal to the absolute crystallinity Χc, 

crystallized at time t, divided by the final maximum crystallinity; K is a constant correlated to 

the overall crystallization rate; n is the Avrami exponent which describes both the nucleation 
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nature (nt) and crystal growth geometry (nc) (Equation (3)). Values of K and n for PVDF and the 

composite films were determined by fitting the plots of ln[-ln(1- Χt)] against lnt using Equation 

(4). The fitting curves are shown in Figure 1f and the related crystallization kinetics parameters 

are listed in Table 1, where the t1/2 is defined as the required time to complete half of the 

crystallization, and is used to evaluate the crystallization rate.  

�t = 1 − exp�−K���                     �2� 

� = �� + ��                                        �3� 

ln − ln�1 − �t�! = lnK + nlnt     �4� 

�#/% = &ln2
K '

#
�                                    �5� 

Table 1 Characteristic temperatures and thermodynamic values obtained from the DSC data. Melting 

temperature Tm and crystallinity Χc were determined from the first heating DSC curves; crystallization 

temperature Tc was determined from the cooling DSC curves and crystallinity Χc-iso, Avrami n and t1/2 

were calculated on the basis of DSC isothermal crystallization data.  

Samples Tm (°C) Χc Tc (°C) Χc-iso Avrami n t1/2 (s) 

PVDF 168.3±1 50.7±2% 142.1±1 38.6±3% 3.8±0.1 331 

BTO 0.15 vol.% 168.7±2 51.7±2% 141.7±1 45.4±2% 1.4±0.5 327 

BTO 0.5 vol.% 168.9±2 52.0±3% 141.6±1 46.4±3% 1.7±0.2 344 

BTO 1 vol.% 168.9±2 48.3±3% 142.0±2 47.9±1% 3.1±0.4 207 

BTO 3 vol.% 168.8±1 50.0±4% 142.0±1 53.7±4% 3.6±0.2 240 

BTO 5 vol.% 168.7±1 49.6±2% 143.5±1 38.0±2% 3.5±0.4 205 

BTO 10 vol.% 168.6±1 50.4±2% 146.2±1 35.7±1% 3.9±0.2 136 

The Avrami equation is built on the ideal assumptions of: homogenous nucleation; no change in 

the crystal shape; constant crystallization rate and volume of polymer; and no occurrence of 

secondary crystallization.24 However, real isothermal crystallization is more complicated than 

this, and all of the details cannot be precisely revealed by the Avrami equation. Consequently, 
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the Avrami exponent n values, shown in Table 1, are not integers (as one would expect) and are 

highly scattered. Pure PVDF exhibited a value of about 4 and crystallized into spherulites 

(Figure 2a), indicating homogenous nucleation (nt = 1) and three dimensional spherulite crystals 

(nc = 3). The composites samples, however, showed two different behaviours. The composites 

filled with the lower BTO contents of 0.15, 0.5 vol. % had a n value of about 2, suggesting the 

crystallization of two-dimensional crystals (nc = 2) and heterogeneous nucleation (nt = 0). The n 

was in the range of 3 to 4 for composites filled with BTO contents higher than 1 vol. %, 

suggesting the crystallization of spherulites (nc = 3) and heterogeneous nucleation (nt = 0). 

The morphologies of the samples crystallized at 150 °C are shown in Figure 2, where PVDF 

crystallized into spherulites, consistent with an Avrami exponent n of about 4 (Figure 2a). A 

similar spherulite structure was maintained for the composites filled with 0.15 vol. % of BTO 

particles (Figure 2b), which is contrary to the Avrami exponent n ranging from 1 to 2. This 

contradiction can be explained by the larger banded spherulites formed in the PVDF_BTO 0.5 

vol. % composites, the diameter of which were about 50 µm, with concentric rings along the 

radial direction (Figure 2c inset). Banded spherulite structure has been reported in various semi-

crystalline polymers.25,26 The BTO particles served as nucleating agents for the crystallization of 

PVDF. For composites loaded with a small content of BTO fillers (up to 0.5 vol. %), the 

heterogeneous nucleus of inorganic particles provided enough space for the growth of the PVDF 

crystals, thus forming the large ring banded spherulites. The Avrami exponent n of PVDF_BTO 

0.5 vol. % was less than 2, which is consistent with the structure of the twisted lamellae in the 

banded spherulites, not the spherulites themselves. With increasing BTO content, more 

nucleation sites were present. In this case, the crystals influenced each other and the growth of 

large ring banded spherulites was impeded. Correspondingly, the Avrami exponent n for 

composites with large BTO content was in the range of 3 to 4. Figure 1g schematically illustrates 

the different microstructures due to varying BTO content. 
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Figure 2 SEM images of samples isothermally crystallized at 150 °C: (a) pure PVDF; (b) PVDF_BTO 

0.15 vol. %; (c) PVDF_BTO 0.5 vol. %; (d) PVDF_BTO 1 vol. %; (e) PVDF_BTO 3 vol. %; (f) 

PVDF_BTO 5 vol. %; (g) PVDF_BTO 10 vol. %. 

On the basis of the t1/2 values (Table 1), the crystallization rate of PVDF was influenced by the 

addition of BTO particles. Despite the nucleating effect, the t1/2 values of composites filled with 

0.15 and 0.5 vol. % BTO particles were similar to that of pure PVDF, arising from the longer 

time needed to the form large ring banded spherulites. With further increasing BTO content, the 

t1/2 values became smaller, indicating that the addition of large amounts of BTO particles 

facilitated the crystallization of PVDF because there were more nucleation sites. 

An important link exists between the isothermal crystallization studies and the morphology and 

thermal behaviours of the as-extruded films. Composites filled with less than 1 vol. % BTO 

particles crystallized into large ring banded spherulites (diameter ~ 50 µm) during isothermal 

crystallization, correspondingly, the as-extruded composites filled with the same BTO content 

crystallized into large spherulites (diameter ~ 10 µm), almost tripling the size of the spherulites 

crystallized in the pure PVDF (diameter ~ 3 µm). The introduction of a small content of BTO 

(up to 0.5 vol. %) reduced the amount of nucleating agent, which provided enough space for the 
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formation of ring banded spherulites during isothermal crystallization. However, during 

extrusion the crystallization of PVDF underwent rapid cooling and melt draw-down, inhibiting 

the formation of ring banded spherulites but still led to the crystallization of larger spherulites 

compared to pure PVDF. 

3.2 Effect of BTO particles on solid state drawing of PVDF films 

Ferroelectric β-phase PVDF is widely used in applications that require electro-active properties. 

The common method to obtain the β-phase is solid state drawing of α-phase PVDF with draw 

ratios ranging from 3 to 5. Figure S1 shows the stress-strain curves recorded during drawing of 

the as-extruded films, at 100 °C and 120 °C. The stretching temperatures were chosen according 

to the crystalline relaxation temperature of PVDF.27 The samples showed similar values of strain 

at failure, ranging from 3 to 4.2, which should be sufficient to transform α- to β-phase.28 Figure 

S2 shows the morphology of drawn films, which display fibrilar structure and no obvious 

difference exists between the 100 °C and 120 °C drawn films. 

Figure 3 shows the XRD data for the drawn films. Reflections from the β-phase at 20.7° 

(110)/(200)β are clearly present (Figure 3a(i)). For the films drawn at 100 °C, the emergence of 

the peak at 20.7° occurred with the disappearance of the (100)α peak and a reduction in the 

intensity of the (110)α peaks. The films drawn at 120 °C clearly show combined reflections from 

the α- and β-phases. None of the drawn films exhibited full transformation into the β-phase, but 

the lower drawing temperature (100 °C) favoured this transformation, which is consistent with 

other reported works.27,29,30  

The phase transformation of PVDF is induced by the uniaxial tensile deformation. Figure 3a(ii) 

and b(ii) depict the 2D-WAXD patterns for the films drawn to breaking point at 100 °C and 

120 °C, respectively. Referenced to the 1D-XRD data, the arcs displayed in Figure 3a(ii) are 

attributed to the (020)α and (110)/(200)β reflections in the 100 °C drawn PVDF films. The 
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equatorially concentrated (hk0) arcs indicate that the alignment of c-axis, which means the 

polymer chains are parallel to the drawing direction. Similarly, all of the composite samples 

exhibited diffraction arcs of (100)α, (020)α and (110)/(200)β. The full rings from the reflections 

of the BTO particles are progressively more obvious with increasing filler content. The degree of 

crystalline orientation was evaluated using the Herman’s factor (f) using Equation (6), where φ is 

the angle between polymer chain axis and the reference direction (stretching direction), <cos2
φ˃ 

is defined using Equation (7) and I(φ) is the scattered intensity along the angle φ. For ideal 

orientation, φ=0 and f=1.  

) = �3 ˂cos%.˃ − 1� 2⁄                 �6� 

< cos%. >= 3 I�.�sin.cos%.d.7
8

9
3 I�.�sin.d.7

8
9

      �7� 

 

The degree of orientation of the a- and b-axes of the crystallites in stretched films was calculated 

using the diffraction of (100)α, (020)α and (110)/(200)β reflections. The unit cell of α- and β-

PVDF are pseudo-orthorhombic and orthorhombic31, respectively. In this case, the degree of 

orientation of the c-axis (polymer chain axis) can be derived from the relationship that exists for 

the a-, b-and c-axes in orthogonal crystallites (Equation (8)). 

); + )< + )� = 0                           �8� 

The calculated f values, which represent the degree of the orientation of polymer chain axis for 

PVDF and the composite samples, are listed at the bottom of each 2D-WAXD pattern. The 

addition of BTO particles hardly influences the crystalline preferred orientation when drawing at 

100 °C. 
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Figure 3 XRD data for films drawn to breaking point at (a) 100 °C and (b) 120 °C: (i) 1D-WAXD and (ii) 

2D-WAXD; the drawing direction is vertical with the incident beam normal to the film surface and the 

orientation Herman’s factor values were listed at the bottom of each ring pattern. 

Apart from the (020)α and (110)/(200)β reflections, the 120 °C drawn PVDF showed four arcs at 

about 45° off the equator, which are reflections from the (021)α crystal planes. The increased 

chain mobility with increased temperature leads to a smaller effect of drawing on chain 

conformation, only orienting the crystals but not changing the chain conformation from trans-

gauche to all-trans, thereby merely forming oriented α-crystals. The intensity of the (021)α 

reflection became weaker with increasing BTO amount, which is due to the reduced α-PVDF 

content in the composites. Contrary to the condition of drawing at 100 °C, the degree of 

orientation was enhanced by the presence of BTO particles. The f value peaked at 0.94 for the 

composite filled with 1 vol. % BTO.  
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Figure 4a shows the DSC heating scans for the drawn films. The values of the calculated 

crystallinity and melting temperature are listed in Table 2. The crystallinity values represent total 

crystallinity of the α- and β-phases combined. Compared to the DSC graphs for the as-extruded 

samples, the drawn films exhibited only one fusion peak, which was about 3 °C lower than that 

of the main fusion peak for the as-extruded films (Figure 1c and Table 1). This is probably 

ascribed to the different crystalline phases; however, according to the literature the values of the 

melting temperature for α- and β-PVDF are possibly not differentiated.9,32,33 The films drawn at 

100 °C showed similar crystallinity to those of the as-extruded films, while the crystallinity of 

the films drawn at 120 °C increased moderately, which is linked to their more obvious strain 

hardening behaviour (Figure S1 and Table 2). Another feature shown in Figure 4a is the highly 

asymmetric shape of the fusion peaks for the 100 °C drawn films, owing to the heterogeneous 

distribution of crystallite size formed during drawing at the lower temperature,27 which suggests 

strong interactions between the PVDF and BTO fillers. 

Figure 4b shows the FTIR data of the drawn films. The fraction of β-phase (F(β)) is listed in 

Table 2. Films drawn at 100 °C exhibit more β-phase, which is consistent with their XRD data, 

and F(β) was nearly independent of BTO content. For films drawn at 120 °C, the formation of 

the β-phase was enhanced with the BTO filling. The increase was more prominent at low 

loadings (<5 vol. % BTO).  
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Figure 4 (a) DSC heating scans and (b) FTIR for PVDF and composite films drawn to breaking point at: 

(i) 100 °C; (ii) 120 °C. 

Table 2 Crystallinity Χc, melting temperature Tm and fraction of β-phase F(β) for samples drawn to 

maximum at 100 °C and 120 °C, the drawing rate is constant 10 mm/min. 

Samples Drawn at 100 °C Drawn at 120 °C 

Χc Tm (°C) F(β) wt. % Χc Tm (°C) F(β) wt. % 

PVDF 50.3±2% 165.5±2 86.0±4 50.7±2% 166.5±2 47.3±3 

BTO 0.15 vol. % 53.5±4% 165.7±1 88.3±5 51.6±2% 167.4±1 51.4±2 

BTO 0.5 vol. % 49.4±4% 166.1±2 87.2±4 52.5±2% 166.5±2 53.9±3 

BTO 1 vol. % 48.8±3% 165.2±2 86.2±4 54.0±1% 166.9±1 59.9±4 

BTO 3 vol. % 48.9±1% 166.3±1 83.2±5 54.8±1% 166.7±2 56.1±3 

BTO 5 vol. % 49.2±4% 166.1±1 84.7±3 51.0±3% 166.1±2 51.0±3 

BTO 10 vol. % 49.4±5% 165.2±2 85.1±5 51.1±3% 166.5±1 45.2±3 

3.3 Electric properties of PVDF_BTO composites 

Dielectric properties 

The dielectric frequency spectra for the pure PVDF and the composites are shown in Figure 5a-c. 

In the frequency range of 100 Hz-10000 Hz, the loss tangent (D) of the as-extruded films 

decreased with the increase of frequency, which is ascribed to the crystalline relaxation of α-

PVDF.34 
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Figure 5 Frequency dependence of dielectric constant (ε’ ) and dielectric loss (D) of pure PVDF and 

composites with BTO content of 0.15, 0.5, 5, 10 vol. %: (a) as-extruded films; (b) films drawn to 

breaking point at 100 °C and 10 mm/min; (c) films drawn to breaking point at 120 °C and 10 mm/min. (d) 

values of ε’ and D as a function of vol. % BTO. 

Figure 5d shows the relationship between the BTO content and the values of ε’  and D measured 

at 100 Hz and room temperature. The 100 °C drawn pure PVDF and composites with low BTO 

content (0.15 and 0.5 vol. %) displayed larger dielectric constant compared to the as-extruded 

films and the 120 °C drawn films with the same BTO content, which is due to the higher content 

of β-phase, consistent with the reported work by Guan et al. 35 Composites filled with large 

amounts of BTO particles (5 and 10 vol. %), however, exhibited smaller ε’  values in the drawn 

samples in comparison with the as-extruded samples, which is associated with the fact that 

drawing reduces agglomeration of the particles and improves the distribution of high ratios of 

fillers. Meanwhile, the D did not increase obviously due to the addition of BTO particles, which 

proves the fact that the introduction of BTO particles did not result in severe defects, and is also 
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consistent with the DSC data that the composites and pure PVDF samples showed similar 

crystallinity values.  

Ferroelectric properties 

The ferroelectric properties of the pure PVDF and composites are shown in Figure 6. The 

displayed P-E loops are all saturated, which was determined by checking the invariance of the 

position of switching current peak with increasing maximum amplitude. The as-extruded 

samples displayed ferroelectric switching, which was associated with a field induced phase 

transformation during testing, from the non-polar α-phase to the polar δ-phase. The remnant 

polarization and coercive field for the pure as-extruded PVDF were 0.05 C/m2 and 115 kV/mm 

(Figure 6a, b), respectively, consistent with the reported values for δ-PVDF.36 Small amounts of 

BTO, 0.15 and 0.5 vol. %, slightly increased the remnant polarization. However, larger BTO 

contents, e.g. 10 vol. %, resulted in severe current leakage and decreased the breakdown voltage, 

which is mainly ascribed to particle aggregation and/ or the generation of defects.  
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Figure 6 Ferroelectric I-E and P-E loops for pure PVDF and composites with BTO content of 0.15, 0.5, 5, 

and 10 vol. %: (a, b) as-extruded films; (c, d) films drawn to the limit at 100 °C and 10 mm/min; (e, f) 

films drawn to their breaking point at 120 °C and 10 mm/min. The data was measured at 10 Hz. 

The drawn films (Figure 6c-f) produced well defined ferroelectric behaviour. The 100 °C drawn 

pure PVDF showed a remnant polarization of 0.080 C/m2 and a coercive field of 80 kV/mm. 

Comparable values were observed in the 120 °C drawn PVDF, 0.075 C/m2 and 86 kV/mm. The 

slightly lower remnant polarization in the 120 °C drawn PVDF films is linked to the lower 

content of the ferroelectric β-phase. It is clearly seen that the coercive field of the composites 

decreased to about 60 kV/mm. The interfaces between the PVDF matrix and BTO particles may 

have facilitated the nucleation of ferroelectric domains, which assists ferroelectric switching.37 
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For the 100 °C drawn films, the remnant polarization of the composites filled with 5 vol. % BTO 

reached 0.095 C/m2, the highest value that ever reported for PVDF based composite materials, 

without showing any current leakage, which is ascribed to the strong adhesion between PVDF 

and BTO without the occurrence of particle agglomeration.  

4. Conclusions 

In conclusion, the PVDF/BTO composites prepared by extrusion followed by solid state drawing 

were systematically studied. The BTO particles do not promote the crystallization of β-phase in 

PVDF, but larger α-PVDF spherulites were formed with the addition of less than 3 vol. % of 

BTO particles. A study of isothermal crystallization revealed that small amounts of BTO 

produce a significant change in the crystallization behaviour of PVDF; the Avrami exponent n 

changed from 4 to 2 with the addition of small amounts of BTO (less than 1 vol. %), which 

indicates that the crystals of PVDF were changed from three-dimensional spherulites to two-

dimensional lamellar structure due to the nucleation effect of BTO on the crystallization of large 

full ring banded spherulites. Additionally, in the following process of transforming α- to β-

PVDF via solid state drawing, the rigid BTO particles produced stress concentrating effects 

along with the formation of voids and cavities, facilitating the generation of β-PVDF with more 

pronounced crystalline orientation in the case of the higher drawing temperature (120 °C). 

Finally, the dielectric properties were improved with the addition of BTO, the dielectric 

permittivity of 100 °C drawn films roughly increased from 14 to 23 (100 Hz), while the 

dielectric loss remained at about 0.02 after filling with 5 vol. % of BTO particles. The 

ferroelectric properties were also enhanced by drawing; the 100 °C drawn PVDF_BTO 5 vol. % 

composites films showed a remnant polarization of 0.095 C/m2 the highest value ever reported 

for PVDF based composite materials and a coercive field of 50 kV/mm without the occurrence 

of obvious current leakage.  
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Highlights 

• Poly(vinylidene fluoride)/BaTiO3 (PVDF/BTO) composite films were produced. 

• Small amounts of BTO (< 3 vol. %) made PVDF crystallize into larger spherulites. 

• BTO promoted the formation of β-PVDF during high temperature solid state drawing. 

• The dielectric and ferroelectric properties were enhanced with BTO filling. 


