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The resolution of inflammation is now known to be an active process, armed with a multitude of mediators both lipid and protein
in nature. Melanocortins are peptides endowed with considerable promise with their proresolution and anti-inflammatory effects
in preclinical models of inflammatory disease, with tissue protective effects. These peptides and their targets are appealing because
they can be seen as a natural way of inducing these effects as they harness endogenous pathways of control. Whereas most of
the information generated about these mediators derives from several acute models of inflammation (such as zymosan induced
peritonitis), there is some indication that these mediators may inhibit chronic inflammation bymodulating cytokines, chemokines,
and leukocyte apoptosis. In addition, proresolving mediators and their mimics have often been tested alongside therapeutic
protocols, hence have been tested in settings more relevant to real life clinical scenarios. We provide here an overview on some
of these mediators with a focus on melanocortin peptides and receptors, proposing that they may unveil new opportunities for
innovative treatments of inflammatory arthritis.

1. Inflammation: Onset and Resolution

One novel approach to the area of inflammation, developed
over the last twenty years, is the concept of resolution of
inflammation. Current therapies suppress active processes
of inflammation, for example, NSAIDs (nonsteroidal anti-
inflammatory drugs) block cyclo-oxygenases, glucocorti-
coids inhibit generation of multiple cytokines, and biologics
such as anti-TNF𝛼 and anti-CD20 therapies, target specific
effectors or antigens. However, thismay be only half the story.
The story of inflammation begins with a tissue insult originat-
ing from an infection, trauma, or damage. The affected tissue
secretes signals including autacoids, plasma-derived medi-
ators such as kinins and complement factors, culminating
with the nowprominent cytokines and chemokines.There are
multiple molecules that constitute a distress signal.This leads
to an initial recruitment of neutrophils, (or eosinophils,

upon parasite attack) which mop up any initial infection
and call in macrophages, which are also inflammatory. Once
neutrophils andmacrophages have cleared the inflammation,
the neutrophils undergo apoptosis, the macrophage changes
its phenotype into a proresolving and tissue repair one,
and then leaves and the tissue should return to its baseline
uninflamed state [1]. However this return to baseline is not,
as was once thought, characterised solely by absence of the
inflammatory insult but it results also from a positive process
with its own armamentarium of mediators that bring the
tissue from an inflammatory state back into its normal resting
state (Figure 1).

There are several processes of clearance of inflammation
that lead to the return to the normal state (catabasis) [2].
Exclusion of the primary insult, for example, phagocytosis
of invading bacteria, is foremost as this stops the synthesis
of proinflammatory mediators. There is then the breakdown

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159075822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/2013/985815


2 International Journal of Inflammation

Acute phaseOnset

Increased vascular permeability

Neutrophil infiltration

Monocyte infiltration

Cytokines

Chemokines

Lipid mediators

Resolution phase

Reduction of  neutrophils

Reduction of inflammatory monocytes

Neutralization of injurious element

Apoptosis of neutrophils

Clearance of apoptotic cells

Tissue repair

The inflammatory response

Figure 1: The inflammatory response. Stimuli such as tissue injury or microbial invasion trigger the release of chemical mediators
(complement, cytokines, eicosanoids, and other autacoids) that activate the leukocyte recruitment (onset). Neutrophils are the first cell type
to be recruited, and then peripheral bloodmonocytes also accumulate at the inflammatory site (acute phase).Thesemonocytes will eventually
differentiate into a more phagocytic phenotype helping to neutralize the injurious element and to clear the tissues off apoptotic neutrophils
(resolution phase).This proresolvingmacrophage (and the involvement of stromal cells cannot be excluded here either) orchestrate resolution,
by releasing and/or responding to proresolving mediators, some of which have been discussed in this review (see main text). Eventually, fully
differentiated cells that have cleared the site by debris, dead cells, and bacteria will leave (via the lymphatic?) and the previously inflamed
tissue or organ will regain its functionality, with return to homeostasis.

of the proinflammatory stimuli and also the cessation of
production of these proinflammatory cytokines, chemokines,
and other inflammatory mediators such as MMPs (matrix
metalloproteinases) and proteolytic enzymes. This is the
process that is targeted by most current therapy. Then
there is the removal of the inflammatory cell infiltrate. This
can be local cell death, usually by apoptosis followed by
phagocytosis by macrophages (M2 phenotype, with anti-
inflammatory remit) that then leave the site by lymphatic
drainage [3]. Some of these macrophages themselves may
die by apoptosis and be cleared by other resident cells. The
crucial concept is that ingestion of the apoptotic neutrophils
bymacrophages (efferocytosis)would prevent the appearance
of necrotic cells, which eventually will release their harmful
content, therefore perpetuating the inflammatory response.
In addition, this process is nonphlogistic; that is, it does
not induce an inflammatory response [4]. Some cells might
recirculate systemically and leave the site of inflammation [5].
The resolution phase of an acute inflammatory process can be
defined in histological terms as the interval from maximum
neutrophilic infiltration to the absence of neutrophilia [1].

There is now a host of mediators that are involved
in the resolution phase of inflammation. Some of these
are autacoids like adenosine, locally generated hormones
like melanocortins and somatostatin, bioactive lipids like
lipoxins, resolvins, protectins and maresins, proteins like
heme oxygenase 1, annexin A1, galectins, and erythropoietin.
Due to space limitation, we will discuss here a few examples
of proresolving proteins and peptides in the melanocortin
system.

2. The Melanocortin System as
Archetypal for Proresolving Endogenous
Mediators and Targets

In 1950, Philip Hench won the Nobel prize for treating
patients with rheumatoid arthritis (RA) with cortisone [6, 7].
What is less well known is that he treated 6 patients with
adrenocorticotrophic hormone (ACTH) with equally good
results, as reported in that seminal paper. ACTH is the proto-
type of the melanocortins and its anti-inflammatory actions
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have been confirmed and formed the basis for its use in the
clinical management of inflammatory arthritides such as in
the treatment of gout, where it is still used in the USA today.
A placebo controlled trial of synacthen, a synthetic form of
ACTH, in patients with RA showed an additional benefit
which lasted three months after two injections on alternate
days [8]. ACTH was evaluated in the treatment of gout
patients, with relative contraindications to NSAIDS, ACTH
was found to have good effect over and above that which
would be expected from the release of endogenous cortisol
alone [9]. The later discovery of the proopiomelanocortin
system with a number of melanocortins and melanocortin
receptors (MCR) has improved our understanding of the
biological basis of these effects.

2.1. Melanocortin Receptors. The melanocortin system
(Table 1) encompasses five melanocortin receptors, their
ligands (agonists and antagonists), and the accessory
proteins. The melanocortin receptors are a family of five
small stimulatory G protein-coupled receptors, termed MC

1

to MC
5
, initially identified as neuropeptide receptors in

mice and humans in the early 1990s [21–27]. Each receptor
has seven transmembrane domains, with an extracellular
amino-terminus and short cytosolic carboxy-terminus.
The melanocortin 2 receptor (MC

2
) is the only one of the

five which has been shown to require an accessory protein
for translocation to the cell membrane [28]. However the
presence of the accessory proteins (MRAP1 or MRAP2
(melanocortin receptor accessory protein)) may have an
effect on the surface expression of the other melanocortin
receptors and their ability to be activated by agonists [29, 30].

All melanocortin receptors signal via the cyclic AMP
(cAMP) pathway, activating adenylate cyclase resulting in
increased intracellular cyclic AMP [31–33]. Activation of
certain MCRs has also been shown to mobilise calcium from
intracellular stores [34–36] in certain cell types or conditions.
For example, activation of MC

3
with alpha-MSH can result

in increases in intracellular calcium in the presence of the
protein kinase A inhibitor H-89 [31]. Similarly, if the cAMP
pathway is blocked then MC

1
can signal via intracellular

calcium mobilisation or the inositol trisphosphate pathway
[37, 38]. MC

1
has been shown to affect the NF𝜅B pathway by

protecting I𝜅B𝛼 from degradation leading to a downregula-
tion of inflammatory cytokines and chemokines [33, 39].

In terms of distribution, melanocortin receptors are
found in the brain and in peripheral tissues. It is notable
that MC

1
, MC
3
, and MC

5
are expressed on multiple cells of

the immune system suggesting a role in inflammation. Of
note to the rheumatologist, MC

1
and MC

5
are present in

human articular chondrocytes [40] and rheumatoid synovial
fibroblasts. These cells are known to be part of the chronic
immune response of rheumatoid arthritis and represent a
source of effector cells for endogenous ligand.

2.2. Melanocortin Receptor Ligands. The ligands for the
melanocortin receptors are derived from the proopiome-
lanocortin system. Proopiomelanocortin (POMC) is the pre-
cursor protein, from which prohormone convertases cleave

the melanocortin stimulating hormones (MSH) alpha-,
beta- and gamma-MSH and ACTH as well as the non-
melanocortin peptides, beta-lipotropin, gamma-lipotropin,
and beta-endorphin. Initially, POMC and its related compo-
nents were thought to be restricted to the pituitary but now
have been shown to have a wider distribution [41]. Table 2
summarizes the endogenous and synthetic melanocortin
peptides.

MC
2
only responds to ACTH while the other melano-

cortin receptors respond to the melanocortin stimulating
hormones to differing degrees [42]. MC

1
responds to alpha-

MSH>ACTH>gamma-MSH, as does MC
5
, whilst MC

3

responds to gamma-MSH=ACTH>alpha-MSH. As well as
endogenous agonists, there are endogenous antagonists in
both the mouse and human system [43]. These are known
as agouti and agouti-related protein in the mouse and agouti
signalling protein in the human. Other regulators in mice are
mahogany, syndecan and the mahogunin ring finger 1 [44].

2.3. Anti-Inflammatory and Antiarthritic Actions of Melano-
cortin Peptides. The anti-inflammatory actions of alpha-
MSH have been shown using in vitro studies on stable cell
lines and human primary cells, as well as in vivo models of
diseases such as rheumatoid arthritis, colitis or ischaemia
reperfusion injury. Alpha-MSH was initially found to be
an antipyretic, able to counteract the pyrogenic activities
of IL6 and TNF𝛼 [45]. Manna and Aggarwal then showed
that alpha-MSH suppressed proinflammatory cytokine pro-
duction by monocytes in response to bacterial lipopolysac-
charide, by inhibiting NF𝜅B translocation to the nucleus
[33]. Not only does alpha-MSH suppress proinflammatory
cytokines, but also it can activate the production of anti-
inflammatory cytokines such as IL10 from monocytes [46]
and keratinocytes [47]. Alpha-MSH has been shown to be
inhibitory in several inflammatory models. It is effective in
experimental contact dermatitis and suppresses the sensiti-
sation and elicitation phase of the immune response. Alpha-
MSH induces hapten specific tolerance when given intra-
venously and this response is dependent on the induction of
IL10 [48]. This finding has been taken forward in the nickel-
induced contact eczema model in humans where a topical
application of alpha-MSH reduced disease [49]. Alpha-MSH
has been used in a model of cutaneous vasculitis induced
by LPS and the peptide was able to reduce vascular damage
and haemorrhage by downregulating cell adhesionmolecules
crucial for the extravasation of leukocytes to the site of
inflammation [50]. Alpha-MSH has been topically applied to
an airwaysmodel of allergy sensitised to ovalbumin, proaller-
gic cytokines were reduced, and the anti-inflammatory action
of alpha-MSH was dependent on IL10 [51].

Melanocortin agonists have been investigated in models
of stroke encompassing mouse, rat, and gerbil models and
also global and local ischaemic models. Gerbils, given ten
minutes of global cerebral ischaemia by the occlusion of both
carotid arteries, had reduced neuronal death, hippocampal
damage and improved functional recovery if treated with an
alpha-MSH derivative with a longer half-life (Nle4, D-Phe7
alpha-MSH, NDP-MSH) between three and nine hours after
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Table 1: The melanocortin system.

Melanocortin Receptors

MC1 MC2 MC3 MC4 MC5

Endogenous agonists 𝛼MSH=ACTH>
𝛽MSH>𝛾MSH ACTH 𝛾MSH>ACTH

=𝛼MSH=𝛽MSH
𝛼MSH=ACTH>
𝛽MSH>𝛾MSH

𝛼MSH>ACTH=
𝛽MSH≫𝛾MSH

Distribution

Skin
Melanocytes
Keratinocytes
Endothelial cells
Mucosal cells
Adipocytes
Chondrocytes
Osteoblasts
Macrophages
Monocytes
Dendritic cells
Mast cells
Neutrophils
CD8+ T cells
B Lymphocytes

Adrenal glands
Adipocyte
Osteoblasts
Dendritic cell
Chondrocyte

Hypothalamus
Macrophages
Monocytes
Dendritic cells
CD4+ T cells
B lymphocytes

Hypothalamus
Dendritic cells
Osteoblasts

Exocrine glands
Sebocytes
Macrophages
Dendritic cells
Mast cells
Chondrocyte
CD4 T cells
B lymphocytes
NK cells

Signalling pathways cAMP
ERK1/ERK2 cAMP cAMP

Intracellular [Ca2+] cAMP
cAMP
Intracellular [Ca2+]
Jak/STAT

Biological functions
Skin pigmentation
Inflammation
Wound healing

Steroidogenesis Energy homeostasis
Inflammation

Energy homeostasis
Food intake
Erectile function

Exocrine glands
function,
Inflammation
Defensive behaviour

Role in
disease/Potential use

Skin cancer
Inflammation
Alopecia areata (?)
Vitiligo

Familial
glucocorticoid
deficiency

Inflammation
Gouty arthritis
Obesity
Tuberculosis (?)

Obesity
Cachexia
Sexual dysfunction

Seborrheic dermatitis
Acne vulgaris
Inflammation

insult. InterestinglyMC
4
blockade abrogated the effects of the

NDP-MSH suggesting the activity of MC4R in this process
[52]. In human studies, alpha-MSH levels in the plasma have
been used as a biomarker for predicting functional recovery
from stroke [53].

Alpha-MSH and its analogues have also been used in
preclinical models of renal and lung injury, secondary to
sepsis or other forms of injury. It has been shown in
multiple models to ameliorate injury with improvements
in histology and plasma creatinine compared to controls.
AP214, a nonselective melanocortin agonist derived from
alpha-MSH, has been used in a sepsis-induced kidney injury
model. Treatment with AP214 was delayed until six hours
after the onset of sepsis and still reduced damage to the
kidney as monitored by histological score, tubular damage,
and serum creatinine; these effects were associated also with
an improved liver function [16]. AP214 also reduced serum
TNF𝛼 and IL10 and showed evidence of reduced NF𝜅B
activation.There was also an improvement in survival rate in
both lethal sepsis groups (improved from 0% survival to 10%
survival) and sublethal sepsis groups (an improvement from
40% survival to 70% survival).This has been reflected in other
studies of kidney injury models where alpha-MSH was given

up to 6 hours after injury, observing increased recovery and
protection against renal injury [54].

Alpha-MSH also ameliorates liver inflammation—as
assessed following endotoxin induced inflammation in mice-
even if given 30 minutes after onset, with decreased neu-
trophils infiltration and also decreased gene expression of
chemotactic cytokines such as MCP1 (monocyte chemoat-
tractant protein) and IL8 as well as TNF𝛼 [55]. Severe tissue
injury in the lung can lead to acute respiratory distress
syndrome as can renal ischaemic reperfusion injury with
similar pathways activated in both organs. Alpha-MSH can
inhibit lung oedema decrease injury score and leukocyte
infiltrate as well as decreasing serum creatinine and improv-
ing histology score in the kidney. Gene expression of TNF𝛼
and ICAM1 (intercellular adhesion molecule) is reduced in
the lung after treatment with alpha-MSH. Alpha-MSH also
prevented the degradation of I𝜅B, phosphorylation of p38
mitogen activated protein kinase and decreased AP1 binding
suggesting that alpha-MSH can operate through various
pathways tomodulate the inflammatory response, rather than
just triggering one method of dampening inflammation [56].

Melanocortin agonists have been used in the treatment
of various experimental arthritis models. AP214 is a peptide
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Table 2: State of the art for the development of melanocortin agonists.

Compound Classification Activity Effects References

𝛼MSH Endogenous Pan agonist Anti-inflammatory
Skin pigmentation [10]

𝛽MSH Endogenous Pan agonist

𝛾MSH Endogenous Pan agonist with increased
MC3 selectivity

Anti-inflammatory [11]

Agouti related
peptide Endogenous Antagonist, MC3, MC4 Skin pigmentation

Agouti signalling
protein Endogenous Antagonist, MC1, MC3,

MC4
Skin pigmentation

D-Trp8-𝛾MSH Synthetic peptide Agonist with increased
MC3 selectivity

Anti-inflammatory
(arthritis) [12]

NDP-𝛼MSH
(MT-I) Synthetic peptide Pan agonist Anti-inflammatory [10]

MT-II Synthetic peptide Pan agonist Anti-inflammatory [13]

KPV Synthetic peptide MC1 agonist Anti-inflammatory [10]
KPT Synthetic peptide Pan agonist Anti-inflammatory [10]
(CKPV)2 Synthetic peptide Pan agonist Anti-inflammatory [14]

GKPV Synthetic peptide on
beads Pan agonist Anti-inflammatory

(melanoma) [15]

AP214 Synthetic peptide Pan agonist Anti-inflammatory
(sepsis and arthritis)

Action Pharma A/S
[16, 17]

HP228 Synthetic peptide Pan agonist
Protective in acute models
of inflammation and organ

damage
[18]

BMS470539 Small molecule Agonist MC1 Inhibits LPS response [19]
ME10501 Small molecule High affinity mMC1, hMC4 Neuroprotective [20]
Bremelanotide Small molecule Agonist MC1 and MC4 Prevents organ dysfunction Palatin Technologies

SHU-9119 Synthetic peptide
Antagonist at MC3 and

MC4, agonist for MC1 and
MC5

Experimental tool

Afamelanotide Synthetic peptide Pan agonist

Vitiligo, acne vulgaris,
erythropoietic

protoporphyria, solar
urticaria

Clinuvel
Pharmaceuticals

RM-493 Synthetic peptide Agonist MC4 Obesity Rhythm
Pharmaceuticals, Inc

Czen001, 002 Synthetic peptide Agonist Anti-infective
Anti-inflammatory MSH Pharma

pan-agonist which has been shown to reduce the disease
score in a mouse model of arthritis and induce proresolving
properties (increased phagocytosis) in macrophages [17].
Carrier technology has been applied to alpha- and gamma-
MSH and used in the CIA (collagen induced arthritis) and
urate peritonitis models showing effective amelioration of
inflammatory parameters of the two experimental diseases
[11]. This approach aims to facilitate the targeting to inflam-
matory sites of unstable peptides such as melanocortins, by
fusion with the latency-associated peptide (LAP) of TGF𝛽1
through a cleavable matrix metalloproteinase linker [57].

Alpha-MSH has been used to treat adjuvant arthritis
in rats with an increase in body weight, reduction of the
arthritis score, and erosions [58]. POMC gene therapy has

been used to treat adjuvant arthritis in rats with a reduction
in paw swelling after adjuvant injection as well as thermal
hypersensitivity [59]. Melanocortins have also been studied
in models of gouty arthritis. Alpha-MSH and a small peptide
derivative (CKPV-2) have been shown to inhibit the ability
of monocytes to produce neutrophils chemoattractants and
activating compounds in response to urate crystals [60].
The melanocortin peptide ACTH

4–10 has been shown to
reduce neutrophil accumulation in an in vivo model of
crystal-induced peritonitis and to inhibit in vitromacrophage
activation with reduced chemokine KC release [61]. By
using the mixed MC

3
/MC
4
antagonist SHU9119, this study

identified MC
3
as being responsible for these actions, since

peritonealmacrophages do not expressMC
4
. Also the agonist
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melanotan II, a stable pan-agonist at all receptors, gave
similar results as the alpha-MSH derivative [61, 62]. In
the same system, two MC

3
agonists MT-II and gamma-

MSH also inhibited neutrophil accumulation and release of
cytokine and chemokines from macrophage. Furthermore
MC
3
is expressed in the C57BL6 mouse and Sprague Daw-

ley rat peritoneal macrophages, as determined by Western
blot. ACTH reduced joint size and inhibited neutrophils
accumulation in rat knee joints injected with urate crystals.
SHU9119 abrogated the effectiveness of ACTH in this model
while gamma-MSH showed similar protective qualities [63].
Further evidence suggesting that MC

3
is important in this

model came with the efficacy of nonselective and selective
MC
3
agonists in the amelioration of urate crystal-induced

peritonitis in a mouse colony bearing a nonfunctional MC
1
.

This was further supported by presence of MC
3
protein in

mouse peritoneal macrophages [64]. [D-Trp8]gamma-MSH
(a gamma-MSH derivative with preference for activating
mouseMC

3
) afforded protectionwhen used for the treatment

of rat gout arthritis or urate peritonitis, and but notwhenused
in MC

3
deficient mice (only the urate peritonitis model has

been tested), again suggesting a role for MC
3
in controlling

the inflammation produced by urate crystals [65]. The same
compound has been shown to be efficacious in murine
peritonitis despite a nonfunctional MC

1
, again guiding us to

believe thatMC
3
might bemore relevant in thismousemodel

of gout [66]. Overall these experiments show the efficacy
of ACTH and its derivatives, natural and synthetic, in the
treatment of mouse and rat models of gout and suggest that
MC
3
is the receptor mediating these effects.

2.4. Melanocortins in Human Arthritis. Little is known about
the effects ofmelanocortins on human arthritis other than the
effects of ACTH in rheumatoid arthritis and gout which have
been known about since the 1950s [6, 7, 67–72]. The clinical
efficacy of ACTH in gouty arthritis was reevaluated in the
1990s [9] and this retrospective study confirmed an efficacy
over and beyond what one would expect from the release of
endogenous cortisol. In theUnited States, ACTH is part of the
clinical armamentarium for gout, especially for the treatment
of patients with contraindications to NSAIDs. Catania et al.
discovered elevated levels of alpha-MSH in the synovial fluid
of rheumatoid arthritis and juvenile chronic arthritis patients
compared to those with osteoarthritis (OA). Using paired
samples, these authors also showed that the levels of alpha-
MSH were elevated in synovial fluid as compared to serum.
The concentrations of alpha-MSH were proportional to the
degree of inflammation [73]. Bohm’s and Grassel’s groups
have reported presence of melanocortin receptors 1 and 5
in human chondrocytes and have proposed a role for the
melanocortins in the osteoarticular system [74]. Yoon et al.
showed a reduction in MMP13 production and p38 kinase
phosphorylation when human chondrosarcoma cells were
pretreated with alpha-MSH and then stimulated with TNF𝛼.
This was independent of ERK and JNK kinases but reliant
on p38 kinases and NF𝜅B [75]. Addition of alpha-MSH to
TNF𝛼-activated human chondrocytes reduced production of

proinflammatory cytokines and increased the release of the
anti-inflammatory cytokine IL10 [76].

2.5. Would NewTherapeutics Emerge from Research on Mela-
nocortins? We conclude this overview by highlighting the
therapeutic potential that the area of the resolution of
inflammation may retain. For space limitation, we focus
on the melanocortin research only, though it is clear that
other effectors of resolution and their targets would also be
endowed with promising opportunities. Only the future will
tell if new therapeutics will indeed be developed out of this
research effort.

Given the data from preclinical models and the success
of alpha-MSH and its derivatives as well as de novo agonists,
melanocortin ligands have been taken forward into clinical
trials for further investigation in humans. The minimum
peptide sequence from alpha-MSH that can activate MC
receptors is a tri-peptide (KPV). However, although active,
it has a very short half-life and much work has been based
on modifying alpha-MSH and its derivatives to extend their
duration of action. There is much effort on melanocortin
peptides, with the aimof producing a preparation, that is, easy
to deliver, specific to its target tissue, more selective, and with
a longer half-life.

Possible side effects of melanocortin receptor stimulating
drugs are skin pigmentation and increased risk of melanoma
due to activation of MC

1
, hypertension, and behavioural

disturbances due to activation of MC
3
, MC
4
, and MC

5
. Pan-

agonists may activate the yawning and stretching reflexes
stimulated byMC

4
. An important aspect to consider for small

molecules targeting MC
3
would be their inability to cross

the blood brain barrier, thus preventing unwanted actions on
food intake and central control of blood pressure [77].

Despite these potential side effects, melanocortin-based
therapeutics are generally safe and well tolerated by patients.
In addition, ACTH (which activates all melanocortin recep-
tors, as discussed above) is currently used for the treat-
ment of gout, but it displays efficacy also for proteinuric
nephropathies [78], exacerbations of multiple sclerosis [79],
and several rheumatic disorders [8, 9, 72, 80], indicating that
targeting themelanocortin systemmight be a genuinely valid
therapeutic approach. However, the paucity on appropriate
randomized, controlled, double-blind trials to evaluate the
efficacy of this drug has limited its use as well as development
of melanocortin-based therapies.

The perception may be changing right now. In fact, we
are experiencing a renaissance of the melanocortin field as
many drugs are (or have been) subjected to clinical trials
to treat a variety of conditions (http://clinicaltrials.gov). For
example, the drug RM-493, a selective MC

4
peptide agonist

from Rhythm Pharmaceuticals, Inc. is currently on a phase-
II trial to evaluate its antiobesity effects. The drug bremelan-
otide (Palatin Technologies), which activates MC

1
and MC

4

receptors, is currently under investigation for female sexual
arousal disorder, although the effects on blood pressure have
questioned the risk/benefit ratio of bremelanotide for this
indication. Action Pharma A/S completed a phase-II clinical
trial using the compound AP214 (described earlier in this

http://clinicaltrials.gov
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review) to assess the prevention of kidney injury in patients
undergoing cardiac surgery. In addition, the FDA Office of
Orphan Products Development is running a trial to assess
the effects of alpha-MSH on acute renal failure. A third study
(phase II, completed) focused on nephropathies is conducted
by Radboud University, in which they aimed to evaluate
the effects of a synthetic ACTH on idiopathic membranous
nephropathy. Diabetic nephropathy is another indication
under evaluation in a phase IV clinical trial conducted by
Southeast Renal Research Institute. ACTH is also being
evaluated for the treatment of systemic lupus erythematosus
andmultiple sclerosis (Questcor Pharmaceuticals, Inc., phase
IV and I, resp.). The peptide afamelanotide, an alpha-MSH
derivative with increased stability and potency developed by
Clinuvel Pharmaceuticals Limited, is currently under inves-
tigation for the treatment of erythropoietic protoporphyria
(phase-III, recruiting), solar urticaria (phase II, completed),
vitiligo (phase I), and for the treatment of acne vulgaris due
to its anti-inflammatory properties (phase II, completed).
Of note, companies such as MSH Pharma, Inc. include in
their pipeline melanocortin drugs to treat conditions such
as rheumatoid arthritis and inflammatory bowel disease,
highlighting that there is a renewed current interest in
developingmelanocortin-based therapies for chronic inflam-
matory diseases and that melanocortin drugs are ready for
translation.
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Garćıa-Borrón, “Mahogunin ring finger-1 (MGRN1) E3 ubiq-
uitin ligase inhibits signaling from melanocortin receptor by
competition withG𝛼s,” Journal of Biological Chemistry, vol. 284,
no. 46, pp. 31714–31725, 2009.

[45] L. W. Martin, A. Catania, M. E. Hiltz, and J. M. Lipton,
“Neuropeptide 𝛼-MSH antagonizes IL-6- and TNF-induced
fever,” Peptides, vol. 12, no. 2, pp. 297–299, 1991.

[46] R. S. Bhardwaj, A. Schwarz, E. Becher et al., “Pro-
opiomelanocortin-derived peptides induce IL-10 production
in human monocytes 1,” Journal of Immunology, vol. 156, no. 7,
pp. 2517–2521, 1996.
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