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Whales have 1000-fold more cells than humans and mice have 1000-fold

fewer; however, cancer risk across species does not increase with the

number of somatic cells and the lifespan of the organism. This observation

is known as Peto’s paradox. How much would evolution have to change

the parameters of somatic evolution in order to equalize the cancer risk

between species that differ by orders of magnitude in size? Analysis of

previously published models of colorectal cancer suggests that a two- to

three-fold decrease in the mutation rate or stem cell division rate is enough

to reduce a whale’s cancer risk to that of a human. Similarly, the addition

of one to two required tumour-suppressor gene mutations would also be

sufficient. We surveyed mammalian genomes and did not find a positive

correlation of tumour-suppressor genes with increasing body mass and

longevity. However, we found evidence of the amplification of TP53 in

elephants, MAL in horses and FBXO31 in microbats, which might explain

Peto’s paradox in those species. Exploring parameters that evolution may

have fine-tuned in large, long-lived organisms will help guide future experi-

ments to reveal the underlying biology responsible for Peto’s paradox and

guide cancer prevention in humans.

provided by Queen Mary Resear
1. Background
It is an open question why an elephant, with 100� more cells than a human, or

a whale with 1000� more cells than a human, has approximately the same (or

lower) cancer risk as a human [1]. This is Peto’s paradox, and though many

potential solutions have been proposed, it remains unsolved [2–5]. The fact

that cancer rates are approximately constant across body sizes and lifespans

suggests that there has been selection on the life histories of organisms to pre-

vent cancer in large, long-lived organisms [2,3]. In order to investigate Peto’s

paradox, it would be helpful to understand how much evolution would have

to change the parameters of somatic evolution to compensate for the evolution

of large bodies and long lifespans. For example, we can ask how much the

somatic mutation rate must decrease in order for a whale, which has 1000�
more cells than a human, to retain the same cancer risk as a human.

Computational models of cancer risk [3,6–10] can be used in comparative

oncology to estimate how cancer risk should scale across body size and life-

span, and to test how much mutation rate, generation time, number of stem

cells and the number of mutations would have to evolve to compensate for

the evolution of large bodies and long lifespans. We used an algebraic model

[7,11] and a Wright–Fisher model [6], which are generally similar, except

that the Wright–Fisher model allows for cell lineage death (figure 1a,b). We

then used the available genomic data for mammals to look for evidence that
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Figure 1. Estimated risk of colorectal cancer relative to body size under an algebraic and Wright – Fisher model. In the algebraic model (a) [7], cell lineages
accumulate mutations over time, which are passed on to their daughter cell in the next generation and there is no cell death. In the Wright – Fisher model
(b) [6], cells gain mutations over time, but each lineage has a chance of dying and being eliminated from the population. In both models, cancer occurs
when a cell accumulates k mutations. The single light blue cell represents the zygote to show that all cells came from a single initial lineage. The probability
was calculated using the algebraic and Wright – Fisher models with the parameters listed in table 1 [7] (c). Blue/green dots for mouse, human and whale indicate
the estimated risk of colon cancer occurring within 90 years of life given the approximate number of cells in a human colon, 1000 times fewer cells to represent the
mouse, and 1000 times more cells to represent the whale. The red dot indicates the lifetime risk of colon cancer according to the American Cancer Society which is
about 5.3% for men and women averaged together [12]. The estimated age incidences of cancer for whale and human, given the algebraic model, are shown in (d )
and (e), respectively. (c – e) Adapted from [2] with permission from Elsevier.

Table 1. Model parameters. These parameters were used for the algebraic
model to see how colorectal cancer incidence scales with body size.
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the number of tumour-suppressor genes may have increased

to compensate for large bodies and long lifespans.
Parameter values were taken from [7]. The mutation rate assumes that
there are three genes (1 kb each) per pathway and a background mutation
rate of 1029 mutations per base pair per cell division.

parameter value definition

u 3 � 1026 mutations/oncogenic

pathway/cell division

d age(days)/4 divisions since birth

(rate ¼ 1 div./4 days)

k 6 rate liming mutations

required for cancer

N 8 effective stem cells per

crypt

m (1.5 � 1023 – 1.5 � 1010) crypts per colon
2. Results
(a) Model 1: algebraic model of cancer incidence
Calabrese and Shibata [7] devised a simple mathematical

equation to express the probability of a human developing

colorectal cancer given their age that closely matches the

SEER cancer incidence data [13]. The probability of an indi-

vidual developing colorectal cancer after a given number of

stem cell divisions is

p ¼ 1� (1� (1� (1� u)d)k)Nm,

where u is the mutation rate per gene, per division; d is the

number of stem cell divisions since birth; k is the number of

rate-limiting mutations required for cancer to occur; N is

the number of effective stem cells per crypt and m is the

number of crypts per colon [7].

We varied the parameter m from 1.5 � 103 to 1.5 � 1010 to

see how the total number of stem cells in the colon changes

the lifetime (90 year) risk of developing colorectal cancer

(figure 1b). Estimates from human and mouse suggest that

for every order of magnitude increase in body size, the
number of crypts increases proportionally (see §4 Material

and methods). Each crypt likely houses a similar number of

stem cells so this corresponds to a proportional increase in

stem cell number. Otherwise, we used the same parameter

values as Calabrese and Shibata (table 1) to allow an easy
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Figure 2. Estimated somatic mutation rates scaling with size. Mutation rate estimates show that a 3.2-fold decrease enables an animal that is 1000� larger (and so
with 1000� more stem cells) than a human to have the same cancer risk. The mutation rates shown in the plot resulted in cancer risk predictions for the given
number of cells that best matched the estimates for human (i.e. 1.2 � 108 colonic stem cells) using the Calabrese – Shibata algebraic model [7].
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comparison with their original results, though these are esti-

mates and some measurements (e.g. stem cell division rates)

are still under investigation.

If a blue whale has m ¼ 1.5 � 1010 colonic crypts, this

model predicts that all blue whales would have colorectal

cancer by age 90 (figure 1c). More specifically, when we

solve the equation for years 0–90, we find over 50% of blue

whales would have colorectal cancer by age 50 and all

would have colorectal cancer by age 80 (figure 1d ). The esti-

mate for an animal 1000 times smaller than a human (e.g. a

mouse) is barely above zero even after 90 years. In reality, a

mouse only lives a maximum of 4 years [14], so based on

this equation they should never get colorectal cancer (figure

1c). The chance of an individual person getting colorectal

cancer by age 90 is about 2.5% according to this model

(figure 1c,e) and 5.3% as reported by the American Cancer

Society [12]. It is implausible that 100% of blue whales actu-

ally get colorectal cancer by age 80. Though we do not know

how often blue whales get colorectal cancer, they have been

reported occasionally to have other cancers [15,16] and can

live for over 100 years [14].

Next, we investigated the set of parameter values that would

allow the estimated age incidence of colorectal cancer in large

animals to be similar to that of humans. We tested 10 000

mutation rates ranging from 3 � 1028 to 3 � 1025. A mere 3.2-

fold decrease in mutation rate can account for a 1000-fold

increase in body size (figure 2). The somatic mutation rates for

an elephant and whale would need to be 4.6 � 10210 and

3.13� 10210, respectively, in order for them to each have the

same age incidence of colon cancer as humans (figure 2).

Additionally, we tested if altering the number of hits

required for carcinogenesis (k) could allow cancer rates to be

approximately equal across many orders of magnitude in

size. We found that increasing the number of hits required

for cancer was a powerful tumour suppressive mechanism.

Keeping all other parameters consistent with the values listed

in table 1, we varied k to range from 6 to 10. With 10 required

hits, an animal 1000� larger than a human would have less
than a 0.002% chance of getting cancer by age 90. However,

just two extra hits (i.e. k ¼ 8) for an animal this size gives the

closest match to the human incidence curve (where k ¼ 6)

and is slightly below with a lifetime risk of only 1.5%.

Another hypothesis that has been proposed to explain

Peto’s paradox involves changing the dynamics, or popu-

lation size, of the dividing stem cells in structures such as

crypts. With this model, we find that even if each crypt con-

tained only one stem cell, a whale would still be predicted to

have a lifetime colorectal cancer risk of 96%, so this is an un-

likely solution to the paradox. However, changing the stem

cell division rate from once every 4 days to once every 13

days for an animal with one thousand times more crypts

than a human reduces the lifetime cancer risk to 2.2% and

the age incidence line closely matches that of human.
(b) Model 2: Wright – Fisher model of cancer incidence
We next adapted a more realistic Wright–Fisher-based model of

cancer initiation, which allows for cell lineage death [6]. We have

simplified the model to maintain a constant population of size

N, representing the crypt stem cells in the colon.

Using the same parameters (table 1) and calculating

colorectal cancer risk across body sizes, we find that the

Wright–Fisher model provides a much lower estimate of life-

time risk than the Calabrese–Shibata model. After 1000

simulations of a human colon, the 90-year cancer risk is only

0.4% and for 1000-times as many stem cells, representing a

whale colon, just over 25% of individuals get colon cancer

(figure 1c). These lower values are expected when using the

same input as in the Calabrese–Shibata model because the

incorporation of random cell lineage death lowers the prob-

ability of a cell becoming cancerous as it not only has to

accumulate all k oncogenic mutations (these can also be

thought of as k different pathways that must be disrupted in

order to achieve a cancer phenotype), but it also must avoid

being eliminated from the population. However, 25% is still

an extremely high cancer rate when only considering one
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Figure 3. Cancer gene copy numbers across mammalian genomes. The number of tumour-suppressor genes does not increase with body mass (a). Based on our
BLAST search, we find no positive correlation between tumour-suppressor genes as a whole, or GK and CT together with body mass. This was tested with a linear
regression and is true on both the linear and log scale. The log (base 10) of the mass in grams is shown here to ease visualization of the range of masses. There is a
strong linear correlation between the number of proto-oncogenes and GK (b). Based on our BLAST search for cancer gene families, the number of proto-oncogenes
and GK found in a genome are highly correlated (r2 ¼ 0.85, p-value , 0.001). Cow is the largest animal shown and has the lowest number of both gene types,
though the rest of the data points are not in order of size.
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cancer type (i.e. colorectal cancer). In humans, the lifetime risk

of most individual cancers are well below 10% with the excep-

tion of breast (12.4%) and prostate cancer (16.2%) [12].

We also note that the lifetime risk of colon cancer seems to

level off around 25% for the largest species modelled (figure 1c).

This inflection point is a consequence of the probability of

losing a cell lineage becoming independent of population size

when the population is sufficiently large in a Wright–Fisher

model. The probability that a given cell in generation t has no pro-

geny in generation tþ 1 is equal to (1 2 1/N)N. As N increases,

we can make the following approximation:

lim
N! 1

1� x

N

� �N
� ex:

Therefore, when N is sufficiently large, the probability of cell lin-

eage death is independent of the population size and becomes a

constant (e21� 0.37), which likely explains why cancer risk

levels off when N � 1010 with this model.

In this model, just one additional required hit for colon

cancer (i.e. k ¼ 7) can account for the risk due to the 1000-fold

increase in cell numbers. This one additional hit, which rep-

resents the requirement for an extra pathway/gene to be

disrupted in order to develop a cancerous phenotype, decreases

the lifetime risk of large animals, like whales, to 0.6% which

closely matches the human estimate of 0.4% for k ¼ 6.

Decreasing the mutation rate for larger animals also

greatly reduces their lifetime risk. Given 1.2 � 1011 crypt

stem cells, a rate of 1.3 � 1026 mutations (2.3-fold decrease)

per oncogenic pathway per division decreases the lifetime

risk of cancer to the same as humans. This result can also

be obtained by decreasing the cell division rate to once

every 8.5 days. This results in a lifetime risk of 0.5% and a

rate of one division every 9 days lowers this below the

human estimate to 0.2%.
(c) Evolution of cancer gene families in mammalian
genomes

It should be relatively easy for a species to evolve redundant

checks on neoplastic progression by duplicating tumour-

suppressor genes, which would present as expanded gene

families in those species. Alternatively, a species could

decrease the risk of progression by deleting proto-oncogenes

[17]. We developed a genome-wide BLAST search intended

to find all genes within a gene family based on one represen-

tative. We used the TP53 gene family (TP53, TP63 and TP73)

as our positive control, with TP53 as the query gene. In order

for a BLAST hit to be considered as an instance of the given

gene family, we required that it pass several filters based on

coverage, significance, function and location (see §4 Material

and methods). We applied the BLAST search and filters to a

highly curated set of 81 cancer genes to count the number of

proto-oncogenes and tumour-suppressor genes in eight

mammalian genomes. The tumour-suppressor genes were

further subdivided into ‘gatekeepers’ (GK) and ‘caretakers’

(CT) [18]. CT help maintain genome integrity by preventing

DNA damage and performing DNA repair. These functions

evolved billions of years before multi-cellularity and are essen-

tial to all forms of life [19]. GK control cell proliferation and

signalling by enforcing checkpoints to ensure that cells at risk

for neoplastic transformation do not continue to propagate.

We did not find a positive correlation between body mass

and the number of genome hits for any of the cancer gene cat-

egories (proto-oncogenes, GK and CT; tumour-suppressor

gene results are shown in figure 3).

There is a weak negative correlation between body mass

and the number of gatekeeper genes (R2 ¼ 0.66, p-value ¼

0.015) or proto-oncogenes (R2 ¼ 0.51, p-value ¼ 0.047). The

relationship is also true for the combination of GK and CT;

however, CT alone do not show any significant correlation

with mass (R2 ¼ 0.37, p-value ¼ 0.10) (figure 3a). These



Table 2. Tumour-suppressor genes amplified in non-human mammals. This
list includes all tumour-suppressor genes that we found to have at least
four additional copies (i.e. five total copies) in mammalian genomes based
on the ‘one: many’ orthologue annotation provided by ENSEMBL.

gene
common
name scientific name

copy
no.

FBXO31 microbat Myotis lucifugus 63

TP53 African

elephant

Loxodonta africana 12

IL6 tree shrew Tupaia belangeri 12

LCN2 guinea pig Cavia porcellus 12

CTGF lesser

hedgehog

tenrec

Echinops telfairi 9

ING4 rock hyrax Procavia capensis 9

ALOX15 microbat M. lucifugus 8

MAL horse Equus caballus 8

MSMB opossum Monodelphis

domestica

8

guinea pig C. porcellus 6

AKR1B10 rat Rattus norvegicus 7

LIF rock hyrax P. capensis 7

African

elephant

L. africana 5

TCEB2 rat R. norvegicus 7

TNFRSF 10A pig Sus scrofa 7

TNFRSF 10B pig S. scrofa 7

AKR1B1 rat R. norvegicus 6

SLIT2 cat Felis catus 6

CST5 rat R. norvegicus 5

IFNB1 cow Bos taurus 5

squirrel Ictidomys

tridecemilineatus

5

S100A11 bushbaby Otolemus garnettii 5
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negative associations are driven solely by the lower counts

found in cow and are completely abolished if the cow data-

point is removed from the analysis. Interestingly, we found

a strong correlation between the number of proto-oncogene

and GK genes, which seems independent of size (R2 ¼ 0.85,

p-value , 0.001) (figure 3b). We do not find this relationship

between proto-oncogenes and CT (R2 ¼ 0.13, p-value ¼ 0.36).

There are no significant relationships between the number of

genes in any of the cancer gene categories and lifespan, or the

product of mass times lifespan.

(d) Copy number of specific tumour-suppressor genes
in mammals

Our BLAST analysis above is not sensitive enough to pick up

small changes in individual gene copy numbers so we examined

the copy number of specific tumour-suppressor genes in mam-

mals. We focused on increased copies of tumour-suppressor

genes as it is difficult to confirm a gene deletion in draft genomes

due to possible incompleteness and mis-assemblies.

We used a comprehensive list of 830 human tumour-

suppressor genes [20] and obtained the orthologous genes in

36 non-human mammals from ENSEMBLBIOMART v. 72 (see elec-

tronic supplementary material, table S3). Genes that were found

to have a ‘one : many’ relationship to the human tumour-

suppressor gene in at least one mammal were considered for

further analysis. Our results revealed that for 382 of the genes

(46%), at least one species has one or more additional ortho-

logues to the human gene, though often these are listed in the

database as ‘apparent orthologues’ and are not high confidence

calls. Only 11% of the genes (99) have three or more paralogues

in at least one mammal and this decreases to a set of 36 genes

(4.3%) when we require a minimum of four copies of a gene.

To limit false positives due to the unknown certainty of low

copy number increases, we focused on the instances of extreme

gene amplification. We found that 19 tumour-suppressor genes

had five or more paralagous genes (i.e. at least four extra copies

relative to the human genome) (table 2). Some genes in the list

(e.g. IL6 and CTGF) are perhaps better known for oncogenic

activity; however, they are included in the list of 830 genes

because there are published reports of them demonstrating

tumour suppressive behaviour in certain tissues [20].

Our results show a number of interesting outliers with

evidence of massive gene amplification (table 2). The most

extreme case is the FBXO31 gene in the microbat (Myotis
lucifugus) with 63 annotated copies. No other mammalian

genome in the ENSEMBL database has more than one copy of this

gene; however, the recent publication of the Brandt’s bat

(Myotis brandtii) genome reveals 57 copies of FBXO31 [21]. This

gene encodes an F-box protein that mediates the DNA damage

response by promoting the degradation of cyclin D1 through

polyubiquitination to induce cell cycle arrest in G1 [22]. Though

the microbat is only 10 g, it can for live up to 34 years [14] so

one hypothesis is that these additional tumour-suppressors

may decrease the cancer risk of the bat, which would otherwise

be heightened by their increased longevity [23].

The second highest gene copy number we came across

was 12 which included TP53, IL6 and LCN2. TP53 is mutated

in the majority of human cancers and plays a crucial role in

multiple tumour suppressive pathways including apoptosis,

senescence and DNA repair [24]. Redundant copies of this

gene could greatly reduce the risk of tumorigenesis and has

been experimentally shown in mice [25].
Additionally, the African elephant genome has five copies

of LIF (leukaemia inhibitory factor). LIF is a target of p53 and

can induce cell differentiation in immune cells [26]. However,

the closest sequenced relative to the African elephant, the

hyrax (Procavia capensis), has seven copies of LIF. When we

looked at the mammals with less than five copies, we found

that the lesser hedgehog tenrec (Echinops telfairi) also has

three copies of the gene so we can assume that this amplifica-

tion occurred before the divergence of these species within

Afrotheria and, though it may be biologically interesting, it

is not likely an explanation for Peto’s paradox.

The other species listed in table 2 that are of interest

include the horse (Equus caballus) and cow (Bos taurus). The

horse draft genome (EquCab2) has eight orthologues to the

human tumour-suppressor gene MAL, which are located in

tandem on scaffold 15. The only other species in the database

with any duplicate copies is the microbat with a total of two

MAL loci. This gene is involved in T-cell differentiation [27]
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and apical transport of membrane and secretory proteins

[28–30]. Downregulation of this gene has been linked to

multiple epithelial cancers, including colon, cervical and

oesophageal [31–33]. The tumour suppressive properties of

MAL have been verified in head and neck squamous cell car-

cinoma where the decrease of expression is associated with

tumorigenesis, and the exogenous expression of MAL
decreased cell proliferation and increased apoptosis [34].

The final gene from our analysis with more than four

copies in a large organism is IFNB1 found in the cow. This

gene belongs to the class of interferon genes known for

their role in triggering the immune response to eradicate

pathogens and tumour cells [35,36]. However, we also see

the same number of redundant copies (five) in the squirrel

genome and two copies (i.e. one extra copy) in the guinea

pig, horse and hyrax genomes, which makes it less likely to

be directly involved with enhanced tumour suppression in

large, long-lived animals.
 0:20140222
3. Discussion

Essentially, all models are wrong, but some are useful.

—George E. P. Box [37, p. 424]
The algebraic and Wright–Fisher models used in this analysis

are not intended to represent accurately the complexity of

neoplastic progression; however, they are still useful for evaluat-

ing potential solutions to Peto’s paradox. Interestingly, we find

that the parameter changes that would be necessary to resolve

Peto’s paradox in large organisms fall within normal biological

constraints. There is still much work to be done in the field to

obtain more accurate estimates of human somatic mutation

rates, as reported values span orders of magnitude and range

from 10211 to 1029 mutations/base/division [38–42]. Though

the estimates are not perfect, slight differences in mutation

rate across species have been observed. For example, one study

that derives somatic mutation rates from specific loci across eu-

karyotes found that the per base mutation rates for human and

mouse are 5.0� 10211 and 1.8� 10210, respectively [39]. This is

a 3.6-fold decrease in mutation rate in human versus mouse and

is remarkably close to the results of our modelling, which suggest

that a two- to threefold decrease in mutation rate can account for a

1000-fold difference in body size between mice and humans. This

effective decrease in mutation rate may be accomplished by

having better DNA repair in the larger species, more efficient

removal of mutated cells, or less endogenous damage as a

result of a lower mass-specific basal metabolic rate [2].

To decrease the lifetime risk of colon cancer sufficiently in

large animals such as whales, we estimated that the stem cell

division rate would only have to decrease from once every

4 days to once every 8.5 days, or 13 days, depending on the

model. Crypt stem cells in mice divide once a day [43]; how-

ever, human measurements are limited and are estimated to

be at least once per week [44,45]. One could investigate this

by measuring the mitotic index of colonic crypts across

species spanning orders of magnitude in size.

We were also able to resolve Peto’s paradox by increasing

the number of rate-limiting hits required for transformation.

Both models show that with just one or two additional hits,

the risk of cancer can be greatly reduced in large animals.

Therefore, we might anticipate finding functionally redundant

pathways or additional tumour-suppressor genes that act as a

‘back up’ in case of failure to existing pathways in animals that
have evolved this tumour suppression mechanism better to

combat cancer, which has been previously proposed as a

solution to Peto’s paradox [2,10,46]. The implications of this

are not entirely straightforward though, as duplication of a

tumour-suppressor gene could still have a dominant negative

effect on the wild-type copies and would therefore not add

the same type of protection as an independent gene with func-

tional redundancy. However, our analysis of published animal

genomes does not support our initial hypothesis that the total

number of tumour-suppressor genes is increased in proportion

to body mass.

Though we were able to use simple models to gain insight

into a complicated disease, there are many assumptions that go

into these models that we must acknowledge when interpreting

the results. These models assume that all mutations are evolution-

arily neutral for cell-level selection. The model also assumes a

constant cell population size and mutation rate. Additionally,

all k mutations necessary for cancer are required to occur in

one single cell, which ignores the possibility of cell cooperation

[47] and does not address clonal expansions, which would dras-

tically alter the time to accumulate the mutations [48]. When

oncogenic clones with a fitness advantage expand in the popu-

lation, this greatly increases the chance that another oncogenic

event will occur in a cell harbouring the prior mutation, which

could decrease the time required for the evolution of malignant

cells. Our model implementation does not consider fitness and

selection of clones which limit its ability to realistically depict

cancer; however, we can still gain theoretical insights and test

hypotheses which could be pursued in the future with more

appropriately detailed models and experiments.

Both models also assume that the rate-limiting step in

carcinogenesis is the accumulation of oncogenic point

mutations; however, other events can affect tumour initiation

and progression. We do not address genetic changes involving

chromosomal rearrangements, copy number changes, nor does

this study consider epigenetic changes or alterations to the

tissue microenvironment. This was done to gain an initial

understanding of the parameters involved in carcinogenesis;

however, all of the conditions and events listed above may be

important in vivo and we are currently not capturing their

contributions. Previous work has shown that within rodents,

repression of telomerase activity (and therefore replica-

tive senescence—an anti-cancer mechanism) coevolved with

increased body mass, such that larger species have decreased

expression [49]. This, along with other comparative studies

revealing changes in expression in correlation with body size

and/or lifespan [49–54], stresses the importance of continuing

to expand our analysis of tumour suppression mechanisms in

large long-lived organisms since evolution was not constrained

to the set of parameters we have examined here.

The Wright–Fisher model (model 2) was originally devel-

oped to model one single crypt as it progresses from a benign

polyp to an invasive tumour [6]. We have expanded the initial

cell population to represent all stem cells in the colon; however,

this ignores the compartmentalization structure provided by

crypts, which are considered a barrier for the clonal expansion

of pre-malignant cells [55,56]. This simplification to our model

was made to reduce drastically the computational complexity

and allowed for more direct comparisons with the Calabrese–

Shibata model (model 1), which also did not consider the effects

of the crypt structure.

A major caveat in this study is the difficulty in verifying a

true gene deletion in a draft genome in the presence of
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incomplete assemblies, mis-assemblies and inaccurate anno-

tations. There may also be undetected cancer genes in

non-human species with little homology to the human gene

sequences. However, we added the time since the most

recent common ancestor with human to our linear model, to

account for the difficulty of detecting genes with low levels

of homology due to evolutionary distance, and this did not

change the results, suggesting that the number of genes we

find in each species is not simply a function of how closely

they are related to humans. Human tumour-suppressor

genes were used for this analysis, but in doing so we made

the assumption that they perform the same function in the

other species. This has not been experimentally verified.

Additionally, we limited ourselves to these known tumour-

suppressor genes, but there may be additional genes acting

as tumour suppressors in other species that would have been

missed, in addition to possible flaws in our filtering criteria

that could cause some genes to be missed. As an example,

we set the requirement that for two hits to be considered as

separate instances of a query gene, they had to be at least

1 Mb apart; however, if a gene were duplicated in a tandem

repeat, we would likely only count them as one copy.

Despite these limitations, we found genes that have been

dramatically amplified in specific mammalian genomes, the

most interesting of which is the discovery of 12 TP53 copies in

the genome of the African elephant. We subsequently cloned

those genes and identified 19 distinct copies of TP53 in African

elephants and 15–20 in Asian elephants [1]. Another potential

lead for solving Peto’s paradox is MAL, which is found to have

eight copies in the horse genome and two in microbat. This

could be an example of convergent evolution where a large

animal (horse) and a small, long-lived animal (microbat) both

evolved extra copies of the same gene to overcome their

increased risk of cancer. Further analysis and experimenta-

tion would need to be performed to determine the function

of these copies and whether or not they provide enhanced

suppression of carcinogenesis.

The goal of this analysis was to gain theoretical insight

into the most realistic hypotheses to resolve Peto’s paradox,

rather than precise parameter estimations. We found that

decreasing the mutation rate or division rate, or increasing

the number of required mutations can all sufficiently reduce

the lifetime cancer risk in an animal orders of magnitude

larger than a human; however, decreasing the number of

stem cells per crypt (or epithelial proliferative unit) is not a

likely solution. The necessary changes in the mutation rates

and number of required hits are small and are well within

biologically feasible ranges. These values should be the

focus of future experiments designed to measure the somatic

mutation rates, stem cell generation times and the number of

pathways that must be mutated to transform cells across

species that span a wide range of sizes and lifespans. These

data in the future may serve to identity the most effective

strategies to prevent human cancer.
4. Material and methods
(a) Justification for assuming that colon crypt count

scales with body mass
A human colon is on average 1.5 m long and 6 cm in diameter [57],

which gives an approximate area of 3 � 103 cm2 (i.e. diameter �
p � length). The total number of crypts is estimated to be 1.5 �
107 [58,59], so the crypt density is approximately 5000 crypts per

cm2. A mouse, which is three orders of magnitude smaller than a

human, has roughly 6 cm2 of colon (6 cm long and 0.3 cm in diam-

eter) [59]. Using the same crypt density, we calculate there to be

approximately 3 � 104 crypts in a mouse colon, which is the

expected three orders of magnitude difference.

(b) Calabrese – Shibata model
The Calabrese–Shibata model, which we have repurposed to

explore solutions to Peto’s paradox, was originally detailed in

previous publications [7,11]. We use the same equation to calcu-

late the risk of colorectal cancer given the age of the individual:

p ¼ 1� (1� (1� (1� u)d)k)Nm,

where u is the mutation rate per gene per division, d is the

number of stem cell divisions since birth, k is the number of

rate-limiting mutations required for cancer to occur, N is the

number of effective stem cells per crypt and m is the number

of crypts per colon [7]. We wrote a script in C (source code avail-

able upon request) to run through the model using ranges for

each parameter and the results were plotted in R.

(c) Wright – Fisher model
The Wright–Fisher model represents a constant population size,

with non-overlapping generations, where each cell of the new

generation choses a parent cell from which to inherit its

mutant status. This occurs with equal probability (1/N ) because

we are not considering selective coefficients, to make it more

comparable to the Calabrese–Shibata model and avoid using

parameters that lack good experimental measurements. Given a

population of N cells, the probability of a configuration of cells

with 0 to k mutations at a given time (t þ 1) can be expressed

using the following multinomial distribution:

[N0(tþ 1), . . . , Nk(tþ 1)] � N(t)!
N0(t)! . . . Nk(t)!

Yk

j¼0

u
Nj(t)
j ,

where N(t) is the size of the total population at time t, Nj(t) is the

population size of cells at time t with j mutations and uj is the

probability that a cell in generation t þ 1 will have j mutations:

uj ¼
Xj

i¼0

d� i
j� i

� �
u j�i(1� u)d�jxi(t),

where u is the mutation rate per gene per generation, d is the

number of potential driver genes and xi(t) is the fraction of cells

with i mutations at time t. The number of potential driver genes

d was set to six in this study to be comparable with the algebraic

model having the parameters listed in table 1. This has been

formally detailed in the original publication [6]. In our implemen-

tation, each instance of the model represents one colon with

N crypt stem cells and all mutations are neutral. For each set of par-

ameters, the model was run 1000 times to estimate the frequency of

cancer. We ran a minimum of three independent replicates of the

1000 runs to make sure the number of cases reported to have

cancer (i.e. contain k mutations) was consistent and we averaged

across the replicates. R was used to visualize and plot the data.

(d) BLAST analysis for gene family expansions
We retrieved protein sequences of more than 300 genes from the

Cancer Genome Anatomy Project (CGAP) website [60]. We

focused on genes with either oncogene (22 genes) or tumour-

suppressor (59 genes) classification by CGAP (electronic sup-

plementary material, table S1). Other genes were classified as

partners of fusion genes by CGAP and were excluded from our

analysis. We further divided the tumour-suppressor genes into
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two groups: CT (28 genes) if the gene had gene ontology annota-

tions suggesting their functionality in DNA damage repair;

otherwise genes were classified as GK (31 genes). We used the

NCBI gene ontology annotation for human and checked for

each gene whether it was associated with a gene ontology term

(or a descendant of such term in the gene ontology hierarchy)

having ‘DNA damage’ or ‘DNA repair’ in its description.

Genomes from the NCBI RefSeq database were used as

BLAST databases against the 81 human cancer-related query

genes to count the number of total hits in each genome. We lim-

ited the analysis to fully sequenced mammals at the time of

analysis: cow, chimp, dog, horse, macaque, mouse, opossum

and rat. For a BLAST hit to count as an independent instance

of that gene in a given genome, it had to meet our criteria of cov-

erage, significance, location, reciprocity and functionality. First,

the union of all hits to that sequence in the subject’s genome

must cover at least 50% of the human query gene. Second, one

of the BLAST hits in this region must have an e-value � 1025

and all other hits counting towards the 50% coverage must

have e-values � 1023. Third, the BLAST hit must be greater

than 1 Mb away from any other determined location of the

query gene in the given subject genome. The location of hits

for each organism, based on these criteria, was used as input

into the UCSC genome browser to retrieve the predicted protein

sequences determined by the N-SCAN algorithm. These

sequences were then used for a reciprocal BLAST back to

human RefSeq protein sequences (release 37). For a region to

count as a true hit in a non-human species, the predicted protein

sequence must return a top hit in the human genome that is

either the original human query gene that produced that hit, or

a paralogous gene. Paralogues were defined by the ENSEMBL

genome browser (release 56). N-SCAN was also used to deter-

mine the functionality of the genomic regions to exclude

known pseudogenes and intergenic regions that were not pre-

dicted to be genes. These criteria were determined by

comparison of our results to known p53 gene families

(as reported by ENSEMBL release 56) as a positive control. The

numbers of hits for each of the 81 individual genes were tallied

as proto-oncogenes, CT and GK for each organism.

Body mass data [14,61] and the evolutionary distance from

humans were taken from the literature [62–66]. We fit a linear

regression model to the data (electronic supplementary material,

table S2) using the statistical package R to determine the relation-

ship between the number of each gene type (proto-oncogenes,

CT and GK) and the animal’s body mass (representing the

total number of cells in the organism). We tested this on both a

log and linear scale.

(e) Determining copy number of tumour-suppressor
genes

A list of 830 tumour-suppressor genes was downloaded from the

Memorial Sloan Kettering CancerGenes database [20] (for full list
see electronic supplementary material, table S3). This list

includes all genes that have been associated with tumour sup-

pressive behaviour in at least one instance and have been

assigned gene ontology terms related to these functions such as

‘positive regulation of apoptosis’ and ‘negative regulation of

cell proliferation’. Genes appear in this list regardless of whether

or not they also have been reported to have oncogenic properties.

We obtained the orthologous relationships for 36 non-human

mammals from ENSEMBL BIOMART v. 72: alpaca (Vicugna pacos),

armadillo (Dasypus novemcinctus), bushbaby (Otolemur garnettii),
cat (Felis catus), chimpanzee (Pan troglodytes), common shrew

(Sorex araneus), cow (B. taurus), dog (Canis lupus familiaris), dol-

phin (Tursiops truncatus), African elephant (Loxodonta africana),

ferret (Mustela putorius furo), gibbon (Nomascus leucogenys), gor-

illa (Gorilla gorilla gorilla), guinea pig (Cavia porcellus), hedgehog

(Erinaceus europaeus), horse (E. caballus), kangaroo rat (Dipodomys
ordii), lesser hedgehog tenrec (E. telfairi), macaque (Macaca
mulatta), marmoset (Callithrix jacchus), megabat (Pteropus
vampyrus), microbat (M. lucifugus), mouse (Mus musculus),

mouse lemur (Microcebus murinus), opossum (Monodelphis domes-
tica), orangutan (Pongo abelii), panda (Ailuropoda melanoleuca), pig

(Sus scrofa), rabbit (Oryctolagus cuniculus), rat (Rattus norvegicus),

rock hyrax (P. capensis), sloth (Choloepus hoffmanni), squirrel

(Ictidomys tridecemlineatus), tarsier (Tarsius syrichta), Tasmanian

devil (Sarcophilus harrisii) and tree shrew (Tupaia belangeri).
A phylogeny of the mammals used in this study is provided in

electronic supplementary material, figure S1.

Genes that were found to have a ‘one : many’ relationship, as

annotated by ENSEMBL, to the human tumour-suppressor gene in

at least on mammal were considered for downstream analysis.

The top genes were filtered based on the maximum number of

times they occurred in any one species. All genes in table 2

occurred at least five times in the species indicated. The entire

matrix of genes and copy number in each species is provided

in the electronic supplementary material, table S3.
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