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Abstract 

 

Melodic discrimination tests have been used for many years to assess individual differences in 

musical abilities. These tests are usually analysed using classical test theory. However, classical test 

theory is not well-suited for optimising test efficiency or for investigating construct validity. This 

paper addresses this problem by applying modern item response modelling techniques to three 

melodic discrimination tests. First, descriptive item response modelling is used to develop a short 

melodic discrimination test from a larger item pool. The resulting test meets the test-theoretic 

assumptions of a Rasch item response model (Rasch, 1960) and possesses good concurrent and 

convergent validity as well as good testing efficiency. Second, an explicit cognitive model of melodic 

discrimination is used to generate hypotheses relating item difficulty to structural item features such 

as melodic complexity, similarity, and tonalness. These hypotheses are then tested on response data 

from three melodic discrimination tests (n = 317) using explanatory item response modelling. Results 

indicate that item difficulty is predicted by melodic complexity and melodic similarity, consistent 

with the proposed cognitive model. This provides useful evidence for construct validity. This paper 

therefore demonstrates the benefits of item response modelling both for efficient test construction and 

for test validity. 

 

Keywords: melodic discrimination, similarity, memory, musical abilities, item response modelling 
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Modelling melodic discrimination tests: Descriptive and explanatory approaches 

 

Melody is ubiquitous in the music of all cultures (e.g. Eerola, 2006; Schmuckler, 2009; Unyk, 

Trehub, Trainor, & Schellenberg, 1992). As a result, the ability to recognize, compare, and reproduce 

melodies is crucial both for the perception and the production of music. Correspondingly, melodic 

processing tests are commonly used to assess individual differences in musical aptitude and expertise 

(e.g. Bentley, 1966; Gaston, 1957; Gordon, 1965, 1982; Law & Zentner, 2012; Müllensiefen, Gingras, 

Musil, & Stewart, 2014; Seashore, 1919; Ullén, Mosing, Holm, Eriksson, & Madison, 2014; 

Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 2010; Wing, 1961). 

Melodic processing abilities are typically assessed using melodic discrimination tests. In each 

trial of a melodic discrimination test, the test-taker is played several similar versions of an unfamiliar 

melody, and their task is to identify differences between these versions. The precise nature of the task 

can vary, but typically a ‘same-different’ task is used, where the test-taker has to determine whether 

two melody versions are the same or different (e.g. Law & Zentner, 2012; Müllensiefen et al., 2014; 

Wallentin et al., 2010). Sometimes the second melody is transposed in pitch relative to the first; in this 

case, the listener is instructed to ignore transposition and instead compare pitch intervals (e.g. 

Müllensiefen et al., 2014). 

Melodic discrimination paradigms also form the basis of many melodic similarity 

experiments. As with many melodic discrimination tests, participants are typically presented with one 

pair of melodies in each trial. Instead of detecting differences between melodies, the participant’s task 

is to evaluate the similarity of these melodies (e.g. Eerola & Bregman, 2007; Müllensiefen & Frieler, 

2007; Prince, 2014). However, whether the task is to evaluate melodic similarity or to detect melodic 

differences seems to make little difference to response patterns (Bartlett & Dowling, 1988). This 

suggests that similar cognitive processes underlie both scenarios.  

Melodic discrimination tests are usually constructed and analysed using classical test theory 

(CTT; e.g. Gulliksen, 1950). The purpose of CTT is to model the statistical properties of scores 

delivered by ability tests. In CTT, analysis is primarily carried out at the level of the complete test, not 

the individual item. Each person is modelled as possessing a true score that would be achieved on the 
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test if measurement error were zero; observed test scores are then produced by summing the true score 

together with an error score representing the test’s imprecision as a measurement instrument (e.g. 

Novick, 1966). 

CTT has formed the basis of decades of test construction and validation. However, it 

possesses a number of important disadvantages, mostly stemming from its reliance on test-level 

analysis rather than item-level analysis. Firstly, CTT is not an ideal tool for choosing which items to 

include within a test. It provides some item-level measures of performance, such as mean scores and 

item-total correlations, but these performance measures are intrinsically confounded with one another, 

and they cannot be generalised to new tests or new test-taker populations (e.g. Schmidt & Embretson, 

2003). This is problematic for efficient test construction, where it is important to ensure that each item 

contributes optimally to test performance. Secondly, CTT analyses at the test level can only provide 

limited information concerning construct validity, the question of how test scores relate to the 

underlying construct of interest (e.g. Messick, 1989, 1995). In these analyses, construct validity is 

primarily assessed by investigating external relationships between test scores and other measures. For 

example, evidence for construct validity comes when test scores correlate highly with other tests 

intended to measure the same or related abilities (concurrent and convergent validity) while 

correlating poorly with tests thought to measure unrelated abilities (discriminant validity). However, 

all of these arguments for construct validity depend themselves on the construct validity of the 

reference measures. In some senses, therefore, these arguments simply defer the problem of construct 

validity to other tests rather than addressing it directly. 

The issue of item selection is problematic for melodic discrimination tests. Like many 

musical listening tests, melodic discrimination tests are often intrinsically inefficient because of the 

nature of the response paradigm. Each item usually only has a few response options, meaning that 

correct answers can often be achieved by guessing. This introduces noise into the response data, 

reducing test reliability. This can be compensated for with increased test length, but this comes at the 

expense of practicality and participant fatigue. In order to balance reliability with test length, it is 

therefore necessary to optimise item selection by choosing only the best performing items and 
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ensuring that these items provide consistent discrimination power over the required ability range. 

Unfortunately, CTT is not well-suited to this task. 

The issue of construct validity is also important for melodic discrimination testing. Despite 

the widespread use of melodic discrimination tests in musical listening test batteries, there is 

surprisingly little consensus about what cognitive ability (or abilities) these tests actually measure. 

Previous studies have proposed a range of underlying abilities, including ‘audiation’ (Gordon, 1989), 

melodic memory (Müllensiefen et al., 2014), and tonal memory (Vispoel, 1993). However, definitions 

of these abilities are usually cursory and unsubstantiated. This seriously undermines the construct 

validity of the melodic discrimination test.  

This paper aims to address these issues of test efficiency and construct validity using modern 

techniques of item response modelling (also known as item response theory). Unlike the test-level 

focus of CTT, item response modelling is an approach to psychometric testing that focuses on 

analysing individual items. Two main approaches exist: descriptive modelling and explanatory 

modelling (de Boeck & Wilson, 2004). Descriptive modelling is a powerful tool for test construction, 

whereas explanatory modelling is a powerful tool for investigating construct validity.  

Descriptive item response modelling uses response data to quantify the behaviour of each test 

item individually. Each item is treated as a black box, with the only feature of interest being its 

psychometric characteristics. Diagnostic checks can be used to assess the item’s psychometric quality, 

and information curves can be computed to illustrate how effective a particular item is for different 

ability levels. This information can then be used to select an optimal set of items for a future test. 

Perhaps the most well-known example of descriptive item response modelling is the Rasch 

model (Rasch, 1960). In the Rasch model, each item is characterised by one difficulty parameter and 

each person by one ability parameter. The probability that a person responds correctly to a given item 

is modelled as a logistic function of the difference between person ability (𝛽) and item difficulty (𝛿): 

𝑃(success) =
𝑒𝛽−𝛿

1 + 𝑒𝛽−𝛿
 

When person ability is equal to item difficulty, the probability of success is 0.5; as person ability 

becomes much larger than item difficulty, the probability of success approaches 1, and so on. This 
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model was later expanded to take account of further subtleties in response behaviour, such as differing 

item discrimination abilities and non-zero chance success rates (e.g. the three-parameter logistic 

model; Birnbaum, 1968; Lord, 1980). Nonetheless, the original Rasch model is still commonly used 

for test construction (e.g. Bond & Fox, 2015) 

Descriptive item response modelling has been applied successfully once before to a melodic 

discrimination test (Vispoel, 1993). This item response model then formed the basis of a computerised 

adaptive test, where item selection was optimised on-the-fly according to the current performance of 

the test-taker. Computer simulations suggested that this should produce excellent improvements in 

testing efficiency. Unfortunately, this test never became widely available, and so there is still a 

demand for a short yet reliable melodic discrimination test. 

Explanatory item response modelling provides an alternative approach to item response 

modelling where items are not treated as black boxes. Instead, explanatory item response models use 

structural features of items to explain their psychometric characteristics. Typically such a model will 

derive from an explicit cognitive model of the various mental processes involved in test-taking. By 

evaluating the fit of the item response model to the data, it is possible to test the cognitive model 

itself. Explanatory item response modelling therefore provides essential evidence for construct 

validity (Carroll, 1993; Embretson, 1983). 

One of the first examples of explanatory item response models was the linear logistic test 

model (Fischer, 1973). This model extends the Rasch model by modelling item difficulty as a linear 

combination of structural item features, typically the number and type of fundamental cognitive 

operations required to answer the item correctly. Once a linear logistic test model is constructed, it is 

then possible to predict the difficulty of new items before they are administered to test-takers. 

Though formal explanatory item response modelling has not yet been applied to the melodic 

discrimination paradigm, a great number of studies from the experimental psychology tradition have 

investigated how melodic discrimination performance is affected by item features (e.g. Cuddy, Cohen, 

& Mewhort, 1981; Cuddy, Cohen, & Miller, 1979; Cuddy & Lyons, 1981; Dowling & Bartlett, 1981; 

Dowling & Fujitani, 1971; Dowling, 1978; Mikumo, 1992; Schulze, Dowling, & Tillmann, 2012). 

However, these studies tend to focus solely on the role of working memory in melodic discrimination. 
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None of these studies have explicitly discussed the full range of cognitive processes inherent in the 

melodic discrimination task, or used their findings to substantiate the construct validity of the melodic 

discrimination test. 

This paper therefore uses both descriptive and explanatory item response modelling to 

investigate the melodic discrimination paradigm. First, we review the various melodic discrimination 

tasks used in prior research. We then outline an explicit cognitive model for the task, conceptualising 

melodic discrimination as similarity comparison performed within the constraints of working 

memory. This model generates hypotheses relating item difficulty to structural item features, which 

are operationalised using formal measures of melodic complexity, similarity, and tonalness. Three 

empirical studies are then conducted. The first uses descriptive item response modelling to construct a 

short yet efficient melodic discrimination test. The second study assesses the construct validity of this 

melodic discrimination test by relating melodic discrimination scores to scores on other tests, thereby 

investigating concurrent and convergent validity. The final study then investigates construct validity 

by applying explanatory item response modelling to three different melodic discrimination tests. 

Through these complementary approaches, the aim is to address both the efficiency and the construct 

validity of the melodic discrimination test.  

 

1. Melodic discrimination tasks 

There are several different types of melodic discrimination task. Of these, the ‘same-different’ 

melodic discrimination task is probably the most common (e.g. Dowling & Fujitani, 1971). Here the 

participant is played two versions of the same melody which are either identical or non-identical after 

transposition. The participant is then asked to determine whether the two melodies are identical or not. 

In Gordon’s Advanced Measures of Music Audiation (AMMA; Gordon, 1989), the participant 

additionally has to state whether these melodies differ in pitch content or in rhythm content. 

Another variant of the melodic discrimination paradigm requires the test-taker to identify 

which particular note differs between two versions of the same melody (Ullén et al., 2014; Vispoel, 

1993). In some of these tests, every melody pair contains a difference somewhere (Ullén et al., 2014); 

in other tests, some melody pairs are allowed to be completely identical (Vispoel, 1993). 
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Some tests use more than two melodies per trial. Cuddy and colleagues (1979) played their 

participants one standard melody and two comparison melodies in each trial, and instructed them to 

determine which comparison melody matched the standard melody. Harrison (2015) played 

participants three melodies in each trial, and instructed them to identify which melody differed from 

the others. 

We suggest that all of these task variants rely on very similar skills. On account of space 

constraints, this paper focuses on modelling the ‘same-different’ task. However, the model is expected 

to generalise well to other melodic discrimination tests. 

 

2. Cognitive model 

We propose that the essence of the melodic discrimination paradigm is a similarity 

comparison task that depends strongly on the limitations of working memory. In total, however, four 

important cognitive processes underlie the task: perceptual encoding, memory retention, similarity 

comparison, and decision-making. Though the final response is ultimately determined by the 

decision-making process, the reliability and accuracy of this decision depend on each of the preceding 

steps. 

 

2.1. Perceptual encoding 

Perceptual encoding applies to both melodies in the trial. In perceptual encoding, the listener 

forms a cognitive representation of a melody as it is played. This representation comprises a range of 

melodic features at various levels of abstraction, including pitch content, interval content, contour, 

tonality, and metrical structure. The difficulty of this task can vary depending on the nature of the 

melody. For example, some melodies exhibit a clearer harmonic structure than others, and presumably 

it is easier to derive a tonal representation for these melodies (e.g. Cuddy et al., 1981). Encoding 

difficulty may also depend on the prior musical context, typically the preceding melody in the trial. In 

particular, there is some evidence that tonal context may facilitate or impair the processing of the new 

melody, depending on the transposition between the two melodies (Cuddy et al., 1981, 1979; c.f. 

Takeuchi & Hulse, 1992). 
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2.2. Memory retention 

Memory retention is only required for the first melody in each trial. The representation of this 

melody developed during perceptual encoding is stored in working memory so that it can eventually 

be compared to the second melody. However, because working memory is limited in capacity, the 

initial melody representation may not always be retained with complete precision. How well the 

melody is retained depends on the melody’s memorability. 

Complexity is an important contributor to memorability. More complex melodies are likely to 

place higher demands on the limited capacity of working memory, resulting in lower memorability. 

There are several different ways of operationalising melodic complexity; previous studies have used 

the number of notes in the melody (Akiva-Kabiri, Vecchi, Granot, Basso, & Schön, 2009; Brittin, 

2000; DeWitt & Crowder, 1986; Edworthy, 1985; Schulze et al., 2012), and some studies have also 

used contour complexity (Croonen, 1994; Cuddy et al., 1981). While high length is reliably associated 

with poor melody discrimination performance, the effect of contour complexity seems less reliable. 

Another contributing factor to memorability is the degree to which the melody conforms to 

culturally learned musical schemata, such as tonal and metrical structure. In general, stimuli which 

conform to learned schemata tend to be better retained in working memory than non-conforming 

stimuli (e.g. Egan & Schwartz, 1979; Engle & Bukstel, 1978; Gobet & Simon, 1998), and 

correspondingly melodies conforming to Western tonal structure tend to be easier to retain in working 

memory, at least for Western listeners (Cuddy et al., 1981; Dowling, 1991; Halpern, Bartlett, & 

Dowling, 1995; Schulze et al., 2012; Watkins, 1985). Similarly, metrical rhythmic patterns seem to be 

better retained in working memory than non-metrical patterns (Bharucha & Pryor, 1986).  

 

2.3. Similarity comparison  

In the similarity comparison process, the individual hears a new melody, compares it to the 

memory representation of a melody previously heard in that trial, and judges the similarity of the pair 

of melodies. In the standard ‘same-different’ task, this similarity judgement will be unidimensional, 

but in the AMMA variant the test-taker must make separate similarity judgments for pitch and rhythm 
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dimensions. In both cases, we suggest that similarity judgments are made while the new melody is 

playing, meaning that this new melody does not need to be stored in working memory. 

Melodic similarity is evaluated using the features available from the memory representation 

for the first melody. Of these features, tonality and contour seem to play the biggest role in 

determining similarity judgements, perhaps because these features dominate melodic working 

memory (Dowling, 1978; Schmuckler, 2009). 

Several types of tonal similarity contribute to the similarity comparison process. One type 

concerns the key distance between the two melodies. Bartlett and Dowling (1980) found that pairs of 

melodies are perceived as more similar when the second melody is transposed to a related key (such 

as the dominant) as opposed to an unrelated key (such as the tritone). This key-distance effect seems 

to bias similarity judgments towards ‘same’ responses even when the listener is instructed to ignore 

transposition. Several studies have failed to replicate this effect, however (Pick et al., 1988; Takeuchi 

& Hulse, 1992). 

A second type of tonal similarity concerns the melody’s harmonic implications after adjusting 

for transposition. Melodies that have different implications in terms of their underlying harmonic 

sequences will clearly be easier to distinguish. A simple example is when a note in a diatonic melody 

is substituted for a non-diatonic note (e.g. Cuddy et al., 1979). 

Almost all experimental studies of melodic discrimination use stimuli where the comparison 

melodies are transposed within trials. This contrasts with musical listening test batteries, where it is 

common not to transpose the comparison melody (e.g. Gordon, 1989; Law & Zentner, 2012; Vispoel, 

1993; Wallentin et al., 2010). The precise effects of this transposition are unclear. Dowling and 

Fujitani (1971) found melody discrimination to be much easier for untransposed melodies, perhaps 

because the similarity comparison process can make use of absolute pitch comparisons. Furthermore, 

the authors also found that contour similarity only played a role for transposed melodies, not 

untransposed melodies. However, this observed interaction between contour similarity and 

transposition may simply have been the artefact of a ceiling effect. 

 

2.4. Decision-making 
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In the forced-choice version of the ‘same-different’ task, we suggest that the listener uses a 

certain similarity threshold as a decision criterion, and this threshold stays approximately constant 

throughout the test. Similarly to other perceptual threshold models in psychophysics (e.g. Gigerenzer 

& Murray, 1987), if perceived similarity exceeds this threshold, then the listener responds that the 

melodies are the same; otherwise, the melodies are deemed to be different. This assumption is implicit 

in studies that analyse the discrimination paradigm using signal detection theory (e.g. Müllensiefen et 

al., 2014; Schulze et al., 2012). In confidence-level versions of this paradigm, we assume instead that 

the listener’s stated confidence level corresponds directly to their similarity judgement (Bartlett & 

Dowling, 1988), which allows task performance to be assessed by calculating areas under the memory 

operating characteristic (e.g. DeWitt & Crowder, 1986; Dowling, 1971). 

The discrimination task used in Gordon’s (1989) AMMA still uses two melodies in each trial, 

but the test-taker is given three response options: tonal difference, rhythmic difference, or no 

difference. There are several possible strategies the test-taker could employ here. We suggest one 

such strategy where the listener first decides whether or not a difference exists between the melodies, 

depending on whether the overall perceived similarity of the pair exceeds a certain threshold. If the 

threshold is exceeded, the participant responds ‘no difference’. Otherwise, the participant compares 

the pair’s rhythmic similarity to its pitch similarity. If the rhythmic similarity is lower, the participant 

responds ‘rhythmic difference’, otherwise the participant responds ‘tonal difference’. 

 

2.5. Hypotheses 

The cognitive model described above provides clear hypotheses about how item features 

should relate to item difficulty. Specifically, any item feature that impairs perceptual encoding, 

memory retention, similarity comparison, or decision-making should be expected to be positively 

associated with item difficulty. Differences in decision-making impairment are unlikely to arise 

within any one melodic discrimination test, since response paradigms typically do not change within a 

test. However, the remaining three stages are susceptible to effects of item features. Melodic 

complexity should impair memory retention, hence increasing item difficulty. Conformity to cultural 

schemata, such as tonal and metrical structure, should aid perceptual encoding and memory retention, 
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decreasing item difficulty. Contour and tonal similarity should impair similarity comparison, hence 

increasing item difficulty. Transposition should impair perceptual encoding and similarity 

comparison, hence increasing item difficulty. Lastly, greater key distance between melodies should 

bias listeners towards responding ‘different’, hence decreasing difficulty for ‘different’ items and 

increasing difficulty for ‘same’ items. 

The model also predicts that melodic discrimination performance should be affected by the 

order of the melodies being discriminated. This is particularly clear in the case of the ‘same-different’ 

task, where only the first melody in the pair needs to be retained in working memory. Suppose that the 

two melodies are different, and that one of these melodies is less memorable than the other. Since 

only the first melody needs to be retained in working memory, melodic discrimination performance 

should be worse when the less memorable melody comes first. 

This asymmetry in melodic discrimination judgements has previously been documented by 

Bartlett & Dowling (1988). In this study, the authors presented participants with two melodies in each 

trial, one of which was scalar (i.e. comprised solely diatonic pitches; denoted S) and one of which was 

non-scalar (i.e. contained at least one non-diatonic pitch; denoted N). Scalar melodies should be more 

memorable than non-scalar melodies, since they conform better to Western musical schemata. 

Correspondingly, melodic discrimination performance should be better when the scalar melody comes 

first (SN) than when it comes second (NS). This is exactly what the authors found. 

The same study from Bartlett & Dowling (1988) provides several additional results against 

which to test our model. Specifically, the best overall discrimination performance was found in SN 

trials; SS and NS trials both produced worse performance than SN trials, but approximately similar 

performance to each other; lastly, NN trials produced intermediate performance. 

The first two results are clearly predicted by our model. SN trials benefit from both high 

memorability for the first melody presented (S) and low tonal similarity between S and N melodies, 

both of which are associated with good melodic discrimination performance. In contrast, SS trials 

possess high tonal similarity for the two melodies, resulting in worse performance than SN trials. 

Likewise, NS trials possess low memorability for the first melody (N) compared to SN trials, resulting 

in comparatively worse performance. 
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Our model does not make a clear prediction about the third result, the intermediate difficulty 

of NN trials. Though it is clear that memorability should be low in NN trials, it is not clear whether 

tonal similarity should be higher or lower for NN trials than in NS trials, as not all non-scalar melodies 

have equivalent harmonic implications. Nonetheless, the fact that NN trials elicited intermediate 

performance is consistent with our model, and suggests that tonal similarity was low for these 

melodies. 

Interestingly, the original authors (Bartlett & Dowling, 1988) interpreted their results as a 

demonstration that memorability does not play a role in the asymmetry effect. Their rationale was that 

a memorability interpretation predicts that melodic discrimination performance should only be 

affected by the nature of the first melody in the pair. Therefore, performance should be just as high in 

SS trials as in SN trials, and performance should be just as bad in NN trials as in NS trials. When SS 

trials were in fact found to be harder than SN trials, the authors concluded that the memorability 

hypothesis had been contradicted. 

As discussed above, however, their results can be easily explained as long as both 

memorability and similarity are taken into account. The effect of memorability explains why the task 

is harder when the first melody is non-scalar, but the effect of similarity explains why the task is 

harder when both melodies are scalar (SS) as opposed to when the second melody is non-scalar (SN). 

In conclusion, therefore, it seems that a wide range of experimental effects in melodic discrimination 

tasks can be explained by analysing the memorability of the first melody in the trial and the structural 

similarity of the pair of melodies in the trial. 

 

3. Formal measures of melodic similarity, complexity, and tonalness 

Structural item features need to be operationalised effectively if they are to form the basis of a 

reliable predictive model of item difficulty. Previous studies of melodic discrimination have 

manipulated melodic similarity, complexity, and tonalness as categorical variables. However, we 

suggest that these features may be better represented by continuous formal measures.  

 

3.1. Melodic similarity 



MODELLING MELODIC DISCRIMINATION TESTS 15 

A great number of formal measures of melodic similarity already exist. These include 

geometric measures (Aloupis et al., 2006; O’Maidin, 1998), string-matching techniques such as edit 

distance (Crawford, Ilipoulos, & Raman, 1998; Mongeau & Sankoff, 1990), n-gram measures 

(Downie, 2003; Uitdenbogerd, 2002), hidden Markov models (Meek & Birmingham, 2001), and the 

Earth Mover’s Distance algorithm (Typke, Wiering, & Veltkamp, 2007). There also exist measures 

derived directly from music theory (Grachten, Arcos, & de Mantaras, 2005) and from psychological 

models (Müllensiefen & Pendzich, 2009). Each of these classes of measures provides a useful 

perspective on melodic similarity, and it is difficult to choose just one and ignore the others.  

One way to reconcile this diversity is by using hybrid measures, which combine scores across 

a number of different similarity measures to form one unidimensional measure of perceived 

similarity. An example is the hybrid measure opti3 (Müllensiefen & Frieler, 2007), which was 

developed by modelling similarity judgements of pop songs by expert musicians. This measure takes 

a pair of melodies and outputs a numeric similarity rating between zero (completely dissimilar) and 

one (completely identical). 

Previous research into the melodic discrimination task (e.g. Dowling, 1978; Schmuckler, 

2009) suggests that similarity judgements in the paradigm rely primarily on contour and tonal 

similarity. Additionally, if the paradigm allows for rhythmic differences between melodies (e.g. 

Gordon, 1989), rhythmic similarity should presumably also predict item difficulty. We therefore 

construct a hybrid similarity measure out of individual measures of contour similarity, tonal 

similarity, and rhythmic similarity. These individual measures are sourced from the SIMILE toolbox 

(Müllensiefen & Frieler, 2004, 2007), where they are identified by the labels conSEd, harmCorE, and 

rhytFuz2 respectively. 

Each of these three measures works by computing new representations for each melody and 

then calculating edit distances between these representations. Contour representations are derived 

according to Steinbeck (1982). Essentially, this involves identifying all contour extrema, excluding 

those corresponding to changing notes, and then interpolating pitch values between these extrema 

using straight lines. Tonal representations take the form of sequences of harmonic symbols, one for 

each bar, each of which corresponds to the pitch class and mode of that bar as computed by the 
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Krumhansl-Schmuckler algorithm (Krumhansl, 1990). Lastly, the rhythmic representation is 

computed by classifying each note into one of five possible note-length classes: very short, short, 

normal, long, and very long. This classification is performed with respect to the notated beat length 

for the melody. 

Once the respective representations are computed, similarity for a particular representation is 

calculated as the normalised edit distance between the two melody representations, as follows:  

𝜎(𝑠, 𝑡) = 1 −
𝑑𝑒(𝑠, 𝑡)

max(|𝑠|, |𝑡|)
 

where 𝜎(𝑠, 𝑡) is the similarity between the two melody representations 𝑠 and 𝑡, 𝑑𝑒(𝑠, 𝑡) is the edit 

distance between the melody representations 𝑠 and 𝑡, and |𝑠| and |𝑡| correspond to the number of 

symbols in the melody representations 𝑠 and 𝑡. Here a simple edit distance is used, meaning that the 

cost of inserting, deleting, or substituting a symbol is always one. Since the maximum edit distance 

between 𝑠 and 𝑡 is equal to the number of symbols in the longer of the two melody representations, 

and the minimum edit distance is zero, the similarity value (𝜎(𝑠, 𝑡)) always takes a value between 

zero (completely different) and one (completely identical). 

These three similarity measures are then combined linearly to form a unidimensional hybrid 

measure. Ideally the weights of each measure would be optimised empirically to match their relative 

perceptual contributions. However, because of a lack of prior empirical data, the present work uses 

equal weights for each measure. 

 

3.2. Melodic complexity 

Most previous studies have operationalised melodic complexity as the number of notes in the 

melody, and this measure has proved to be a reliable predictor of melodic discrimination difficulty 

(e.g. Akiva-Kabiri et al., 2009; DeWitt & Crowder, 1986; Schulze et al., 2012). In this paper we use 

the number of notes in the melody as well as two additional measures of melodic complexity. Both 

are calculated using the software toolbox FANTASTIC (Müllensiefen, 2009). 

The first additional measure is interval entropy. Interval entropy describes how much 

intervallic variation there is within the melody. Let 𝐹(𝑖) denote the number of times that an interval of 
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𝑖 semitones occurs in the melody, with positive values of 𝑖 denoting ascending intervals and negative 

values denoting descending intervals. Define the relative frequency of each interval as 

𝑓𝑖 =
𝐹(𝑖)

∑ 𝐹(𝑗) 𝑗
 

where 𝑗 ranges over all intervals in the melody. Then interval entropy is defined as: 

interval entropy = −
∑ 𝑓𝑖 log2 𝑓𝑖𝑖

log2 23
 

Higher values of interval entropy correspond to greater intervallic variation. 

The second additional measure is step contour local variation, which describes how much 

pitch varies at a local level. First, a step contour vector 𝒙 is computed for the melody. This vector has 

length 64, and its elements correspond to samples of the raw pitch values (measured by MIDI note 

number) of the melody at equally spaced time intervals along the whole melody. Then step contour 

local variation is defined as the mean absolute difference between adjacent values in this vector: 

step contour local variation =
∑ |𝑥𝑖+1 − 𝑥𝑖|63

𝑖=1

63
 

These formal measures primarily address pitch complexity, not rhythmic complexity. The 

justification for this is that the melodic discrimination tests modelled in the present paper 

predominantly employ pitch differences between melodies, not rhythmic differences. As a result, we 

expect pitch memory to play a more important role than rhythmic memory in discrimination 

performance, and correspondingly pitch complexity should play a bigger role than rhythmic 

complexity in explaining item difficulty. However, for modelling tests where rhythmic differences 

play a big role, it would be worth including additional formal measures of rhythmic complexity. 

 

3.3. Melodic tonalness 

Conformity to Western tonal structure is assessed using the tonalness measure from the 

FANTASTIC toolbox (Müllensiefen, 2009), based on the Krumhansl-Schmuckler algorithm 

(Krumhansl, 1990). The total durations of each pitch class in the melody are correlated with the 

Krumhansl-Kessler (1982) profiles for all 24 major and minor keys, and tonalness is defined as the 

highest of the 24 correlation coefficients. 
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4. Studies 

4.1. Study 1 

The aim of the first study was to construct a short yet efficient melodic discrimination test. To 

do this, we develop a descriptive item response model of a longer pre-existing melodic discrimination 

test, and then use this model to select a set of items to maximise test performance for a typical 

population of adult students. This involves ensuring both that the retained items possess desirable 

psychometric characteristics individually, and also that these items combine to produce good 

discrimination power over an appropriate ability range.  

 

Method  

Participants 

A total of 152 participants took part. These participants ranged from 18 to 39 years in age (M 

= 21.5, SD = 4.4), with approximately three quarters being female. All participants were first-year 

undergraduates who participated for course credit. 

Materials 

 This study used the complete set of 28 melodic discrimination items from v. 0.91 of the 

melodic memory test component of the Goldsmiths Musical Sophistication Index (Gold-MSI; 

Müllensiefen et al., 2014; Müllensiefen, Gingras, Stewart, & Musil, 2013). This test uses a ‘same-

different’ discrimination paradigm where exactly half of the items constitute ‘different’ pairs. The 

second melody in each pair is always transposed relative to the first, either by a semitone or by a fifth. 

All melodies are between 10 and 17 notes in length, and were originally created by shuffling the order 

of intervals and rhythmic durations in pre-existing folk and popular melodies to render the original 

melodies unrecognisable. ‘Different’ pairs of melodies always differ in terms of the pitch of one, two, 

or three notes, and the nature of these differences is characterised by two systematically manipulated 

dichotomous variables: whether the difference violates the tonality of the original melody, and 

whether the difference violates the contour of the original melody. 

Procedure 
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The Gold-MSI items were administered as part of a longer testing session collecting data for 

several unrelated studies. This testing session lasted approximately 100 minutes including short 

breaks between tests, and included two other listening tests, two questionnaires, and a visual attention 

and search test. Participants were tested in groups through a computerised interface, each with their 

own computer and headphones. 

 

Results 

In order to arrive at a smaller subset of the 28 items that would satisfy the rigorous 

assumptions of Rasch item response models (Rasch, 1960), we fit a Rasch model to the data from the 

152 participants on all 28 items using the R package ‘eRM’ (Mair & Hatzinger, 2007). Andersen’s 

(1973) likelihood ratio test of the model assumption of subgroup homogeneity (median as split-

criterion) on the resulting Rasch model failed (p < .05) and 8 items showed significant deviations (p > 

.05) from the model assumption according to subsequent Wald tests. After removing these 8 items, a 

second Rasch model was fitted which barely passed the likelihood ratio test at the conventional 

significance level (p = .055) but still contained 4 items that violated model assumptions. Next, 

individual items that failed the Wald test at a significance level of .05 were eliminated on a step-by-

step basis, as is common procedure for reviewing and refining Rasch models (Bond & Fox, 2015). 

This iterative procedure arrived at a model passing the likelihood ratio test and containing 18 items 

that each passed the Wald test. Visually inspecting item difficulties and person abilities according to 

this model on a person-item map as well as the item information curves of all 18 items suggested that 

the test contained too many items at the easy end of the ability spectrum, and that several items had 

almost identical difficulty parameters and therefore seemed redundant. Therefore, the four easiest 

items as well as one item with a redundant difficulty parameter were removed and a Rasch model was 

fit to the remaining 13 items. This model passed the Andersen likelihood ratio test with all items also 

being clearly non-significant on the Wald test. This model also achieved a non-significant p-value (p 

> .05) on the goodness-of-fit chi-square test as implemented in the R package ‘ltm’ (Rizopoulos, 

2006). In addition, the distribution of test scores (simple sum scores) on this 13-item test was 

balanced with respect to the low and high ends of the distribution and overall appeared fairly close to 
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a normal distribution (a formal test of normality is not appropriate for the discrete distributions that 

arise from summing scores of 13 binary items). 

 

Discussion 

This study demonstrated the construction of a short 13-item melodic discrimination test which 

successfully met the requirements of the Rasch model. The resulting test takes about 6 minutes to 

complete, and is designed to possess good discrimination ability for an adult population of test-takers. 

Rasch modelling has been extensively validated as a test construction tool (Bond & Fox, 

2015), prompting its use in this study. However, there are two disadvantages to its use here. First, 

Rasch models assume a chance success rate of zero, whereas the ‘same-different’ task used in this test 

has a 50% chance success rate. Secondly, Rasch models cannot account for varying decision 

thresholds between participants. However, both of these problems can be mitigated by scoring the test 

with measures from signal detection theory and using sensitivity (d’) as the measure of test 

performance. 

 

4.2. Study 2 

The aim of this study was to investigate the construct validity of the shortened melodic 

discrimination test using measures of concurrent and convergent validity. Concurrent validity means 

that test scores correlate well with scores on a pre-established test of the same ability, whereas 

convergent validity means that test scores correlate appropriately with measures of other related 

abilities. Both are important indicators of construct validity. 

 

Participants 

Forty-four participants took part in this study, none of whom had participated in Study 1. 

These participants ranged in age from 18 to 63 years (M = 24.1, SD = 7.6), with exactly half being 

female and half male. All participants were students, and approximately a third received monetary 

remuneration in exchange for participation. 
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Materials 

Melodic discrimination tests. Two melodic discrimination tests were used. The first was the 

new 13-item test constructed in Study 1. The second test was the Advanced Measures of Music 

Audiation (AMMA; Gordon, 1989), used to investigate concurrent validity. The AMMA constitute 

the most widely used melodic discrimination test in academic research, and feature in many recent 

studies as a measure of musical aptitude (e.g. Hu et al., 2013; Kühnis, Elmer, Meyer, & Jäncke, 2012, 

2013; Mehr, Schachner, Katz, & Spelke, 2013; Mehr, Song, & Spelke, 2016). The AMMA comprise 

30 items, none of which include transpositions. As described earlier, the AMMA use a variant of the 

‘same-different’ task where the test-taker additionally has to identify whether alterations occur in 

pitch content or in rhythm content. Gordon recommends using responses to the melodies that differ in 

pitch content to calculate a tonal score for the participant, and those that differ in rhythm to calculate a 

rhythmic score. ‘Same’ items contribute to both scores. 

Musical sophistication. Musical sophistication was assessed using the 39-item Gold-MSI 

questionnaire (Müllensiefen et al., 2014) in order to investigate convergent validity. This 

questionnaire assesses self-reported individual differences in skilled musical behaviours on five 

subscales (Active Musical Engagement, Perceptual Abilities, Musical Training, Singing Abilities, 

Emotional Engagement with Music) and one general factor (General Musical Sophistication). 

 

Procedure 

Data were collected as part of a larger validation study for the Gold-MSI questionnaire and 

listening tests (Avron, 2012). Participation was split into two testing sessions separated by 14 days. 

All testing was conducted in a quiet laboratory setting, with audio stimuli played over headphones. In 

the first testing session participants took the Weschler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 2011; results not reported here), followed by the Gold-MSI questionnaire, and then the new 

melodic discrimination test. In the second session, participants first took the AMMA, then a repeat of 

the Gold-MSI questionnaire, then two tests of executive function and two unrelated Gold-MSI 

musical listening tests (results not reported here). Participants responded to the Gold-MSI 
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questionnaire and the new melodic discrimination test over a computer interface, but responded to the 

AMMA using the official paper response sheet.  

 

Results 

Two participants failed to complete all tasks, but their remaining data are included in this 

analysis where possible. Sensitivity (d’) scores for the new melodic discrimination test were 

calculated using signal detection theory (Macmillan & Creelman, 2005). These scores were 

moderately correlated both with AMMA tonal scores (r(40) = .488, p = .001) and with AMMA 

rhythm scores (r(40) = .541, p < .001). Tonal and rhythm scores from the AMMA also correlated very 

highly with each other (r(41) = .825, p < .001). 

Self-report scores from the Gold-MSI questionnaire were averaged between the two testing 

sessions before being compared to scores on the new melodic discrimination test. Melodic 

discrimination d’ scores were significantly correlated with General Musical Sophistication (r(41) = 

.412, p = .006) as well as with Active Musical Engagement (r(41) = .419, p = .005), Perceptual 

Abilities (r(41) = .436, p = .003) and Singing Abilities (r(41) = .333, p = .029). However, test 

performance was not significantly correlated with Musical Training (r(41) = .246, p = .112) or with 

Emotional Engagement with Music (r(41) = .217, p = .162). 

 

Discussion 

The new melodic discrimination test demonstrated good concurrent validity as evidenced by 

moderate correlations with Gordon’s AMMA and good convergent validity as evidenced by 

correlations with several self-reported measures of musical sophistication. The high correlation 

between the tonal and rhythm scores of the AMMA suggests that they both assess shared abilities, 

although part of this correlation will come from the fact that ‘same’ items contribute to both scores. 

The lack of significance of the correlation between test scores and musical training was 

surprising but may have been an artefact of the small sample group used. A study of the original (v. 

0.91) Gold-MSI melodic memory test observed a correlation of r = .301 between melodic 

discrimination scores and musical training, and this correlation was highly statistically significant on 
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account of the study’s large sample size (N = ~140,000; Müllensiefen et al., 2014). However, a 

correlation of r = .301 would only have approximately a 50% chance of producing a statistically 

significant effect with only 43 participants, as in the present study. The relationship between melodic 

discrimination ability and musical training is therefore re-examined in Study 3. 

 

4.3. Study 3 

The aim of this study was to investigate the construct validity of the melodic discrimination 

paradigm using explanatory item response modelling. One short test does not provide enough 

variation in item features to explore their effects on item parameters properly, so this study compiled 

response data for three different melodic discrimination tests: v. 0.91 of the Gold-MSI melodic 

memory test (reanalysing data from Study 1), the AMMA (reanalysing data from Study 2), and the 

Musical Ear Test (MET; Wallentin et al., 2010; data collected in this study). 

Construct validity can be supported by explanatory item response modelling to the extent that 

variations in item difficulty can be predicted from a cognitive understanding of the task involved 

(Embretson, 1983). The cognitive model presented in this paper provides clear predictions about how 

item features should predict item difficulty. Specifically, melodic complexity and similarity should 

increase item difficulty, tonalness should decrease difficulty, and transposition should increase 

difficulty. This provides four experimental hypotheses to be tested by this study. 

Contrary to prior research, Study 2 had found that musical training did not predict melodic 

discrimination performance. An additional aim of Study 3 was therefore to reinvestigate the possible 

association between musical training and task performance. 

 

Method 

Participants 

This study used data from 317 participants. Of these, 156 participants came from Study 1, 

with four extra participants contributing data after the test construction process described in Study 1 

was completed. Study 2 provided data from 42 participants. An additional 119 participants were then 
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recruited for Study 3. This participant group was recruited by a market research company1 and was 

nationally representative in terms of age, gender, occupation, income, and geographic location. 

Participant ages ranged from 18 to 77 (M = 42.6, SD = 14.4), and approximately half of the 

participants were female. 

Materials 

The materials used in Studies 1 and 2 have already been described. Study 3 additionally made 

use of the MET (Wallentin et al., 2010), a listening battery containing a 52-item melodic 

discrimination test using the ‘same-different’ melodic discrimination paradigm. Like the AMMA, this 

test does not contain any transpositions. In the present study we use only the first 20 items of the 

melodic subtest, thereby shortening its length to approximately 4 minutes. Using the Spearman-

Brown prophecy formula, it was calculated that this shortened test would still possess good internal 

reliability (estimated Cronbach’s 𝛼 = 0.90). All melodies are between 3 to 8 notes in length and have 

a duration of one bar. The ‘different’ trials all contain one pitch violation, and in half of these cases 

this pitch violation also constitutes a contour violation.  

Procedure 

The procedures for Studies 1 and 2 have already been described. Data for Study 3 were 

collected as part of a validation study for a series of computerised adaptive listening tests (Harrison, 

2015). This validation study took place online using the Concerto testing platform (Scalise & Allen, 

2015). Participants took the MET at the end of a 30-minute testing session comprising two other 

listening tests and a short questionnaire. Participants agreed to wear headphones and to take the 

experiment in a quiet room free from interruptions.  

 

Item analysis 

 The 20 MET items and the 30 AMMA items were transcribed manually from the original 

audio files, and along with the 28 Gold-MSI items were converted to tabular format with numerical 

                                                      
1 http://www.qualtrics.com 

http://www.qualtrics.com/
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values characterising note pitch and onsets. Formal measures of melodic complexity, similarity, and 

tonalness were then calculated according to the definitions provided earlier.   

Each of the three melodic discrimination tests used in this study involves just one melody 

comparison per trial. According to the cognitive model proposed in this paper, it is only the first 

melody in a pair that needs to be maintained in memory, and therefore only this melody should be 

considered when assessing complexity and tonalness. On this basis, each item’s measures of 

complexity and tonalness were calculated solely from the first melody in the pair. 

 

Results 

Comparing item features for the three tests 

 Pairwise correlation coefficients were calculated for all the item features. The results 

indicated that length (i.e. number of notes), interval entropy, and step contour local variation were all 

strongly positively correlated (for each pair, r(76) > .50, p < .001). No other item features were 

significantly correlated. 

On account of their high collinearity, the three features length, interval entropy, and step 

contour local variation were combined using principal component analysis to form a composite 

measure of melodic complexity. Different sets of weightings for this composite measure were 

estimated for ‘same’ items and for ‘different’ items, but in both cases, all three variables loaded 

approximately equally onto these composite measures (loadings: .80 < 𝑥 < .90). 

Distributions of melodic complexity, similarity, and tonalness are plotted in Figures 1–3. 

Though the three tests differ systematically on these measures, there is on the whole substantial 

overlap between scores on different tests, and there is significant variation in scores within each test, 

which bodes well for explanatory item response modelling. One possible exception is tonalness, 

where values are universally high, reflecting the fact that the great majority of melodies in this corpus 

were tonal. 

All items in the AMMA and the MET use untransposed melodies, whereas all the items in the 

Gold-MSI use transposed melodies. Unfortunately, this meant that effects of transposition on item 



MODELLING MELODIC DISCRIMINATION TESTS 26 

difficulty would be confounded by differences in abilities between participant groups used for the 

different studies. Transposition was therefore dropped from the analysis.  

 

Designing the explanatory item response models 

 We construct our explanatory item response models within the framework of generalised 

linear mixed modelling (de Boeck et al., 2011; Doran, Bates, Bliese, & Dowling, 2007). Mixed-

effects logistic regression can be used to construct an explanatory version of the Rasch model used in 

Study 1, where item difficulty is instead modelled as a linear combination of predictor variables. 

However, the standard Rasch model is not generally well-suited to modelling melodic discrimination 

tasks because it assumes a zero chance success rate, whereas most melodic discrimination tasks in fact 

have relatively high chance success rates. 

In order to account for these non-zero chance success rates, we modify the link function (γ) 

within the logistic regression to produce a non-zero lower asymptote in the response function, as 

follows: 

𝛾(𝑥) = log (
𝑥 − 𝑐

1 − 𝑥
) 

where c corresponds to the probability (between 0 and 1) of guessing the answer correctly by chance 

(the guessing parameter), and x corresponds to the expected success rate. 

Participants and items are specified as random effects and proposed predictors of item 

difficulty are specified as fixed effects. By extracting the coefficients of the fixed effects, a linear 

model can be constructed that predicts item difficulty on the basis of the proposed predictors. The 

resulting explanatory item response model is analogous to a three-parameter logistic model 

(Birnbaum, 1968), but with a pre-specified guessing parameter. This a priori constraint is useful as 

the empirical estimation of guessing parameters typically requires a great number of participants (e.g. 

de Ayala, 2009)  

 An additional advantage of constructing explanatory item responses models using mixed-

effects modelling is the ability to account for hierarchical characteristics of the response data (e.g. 

Doran et al., 2007). This ability is crucial for modelling the current dataset, where data are aggregated 
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from three different studies. These three different studies differ systematically in many ways: The 

participants were sampled from different populations; some participants took their tests online 

whereas some took their tests in the lab; some tests use transposition and some do not; the tests use 

different timbres and tempi; and so on. It is important to take these differences into account when 

aggregating the three datasets. To do this we make the following assumptions. First, we acknowledge 

that the three different participant groups may differ systematically in terms of ability. We therefore 

model participant ability within each group as being sampled from separate normal distributions each 

with different means and variances. Secondly, we assume that the differences in implementations 

between the tests, such as the transposition of the melodies, the user interface, and the motivation of 

the participants, can all be modelled as a numeric constant for each test that is added or subtracted to 

the item difficulty of each item within that test. This constant can be described as the test’s inherent 

difficulty. After these differences between the tests are taken into account, it is then understood that 

part of the remaining variation in item difficulties can be accounted for as the result of systematic 

effects of structural item features: complexity, similarity, and tonalness. Any remaining variation 

should then be uncorrelated error. 

 We fit these item response models using the ‘lme4’ and ‘psyphy’ packages (Bates, Maechler, 

Bolker, & Walker, 2015; Knoblauch, 2014) implemented in the statistical computing software ‘R’ (R 

Core Team, 2014). The mean ability for each test’s participant group is combined with each test’s 

inherent difficulty to form one three-level categorical variable, test, which is estimated as a fixed 

effect. Abilities of individual participants are estimated as random intercepts, with separate variance 

parameters estimated for each participant group. Hypothesised effects of structural item features are 

modelled as fixed effects. Residual variation in item difficulty is modelled as a random intercept for 

each item. Except for where otherwise stated, this specification of the item response model is used for 

all further analyses. 

 One limitation of this modelling approach is that the same guessing parameter must be 

employed for all items. This is problematic for the current dataset, as the AMMA have three response 

options (i.e. guessing parameter of 0.33) compared to the two options of the Gold-MSI and MET (i.e. 

guessing parameter of 0.5). In these analyses we adopt a guessing parameter of 0.33 for all items. The 
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rationale behind using the lower guessing parameter is that, owing to the bounded property of the 

logistic function, underestimating the guessing parameter results in better model fit than 

overestimating it. 

 We model ‘same’ and ‘different’ items separately because our cognitive model of 

performance on ‘same-different’ melodic discrimination tasks would predict that the item difficulty 

predictors should behave differently for these two types of items. In particular, melodic similarity is 

hypothesised to be positively correlated with item difficulty for ‘different’ items, whereas the 

corresponding relationship is meaningless for ‘same’ items because all ‘same’ items have perfect 

similarities by definition. Modelling ‘same’ and ‘different’ items separately is a simple way to avoid 

this problem. Usefully, this also eliminates the issue of participant bias that the Rasch model was 

unable to account for, as separate participant intercepts are estimated for ‘same’ and for ‘different’ 

items.  

 

 Results of explanatory item response modelling 

‘Same’ items 

 A generalised linear mixed model was constructed for the ‘same’ items according to the 

procedures described above, with all continuous predictors scaled and centred to give standard 

deviations of 1 and means of 0. The null model (Model 0) comprised a fixed effect of test, a random 

intercept for items, and three random intercepts for participants, one for each test. Model 1 was 

constructed by taking the null model and adding a fixed effect of musical training. Model 2 was then 

constructed by taking Model 1 and adding a fixed effect of complexity. Lastly, Model 3 was 

constructed from Model 2 by adding a fixed effect of tonalness. The resulting four models are 

compared in Table 1. The likelihood ratio tests indicate that the addition of musical training and 

complexity significantly improved model fit, whereas the addition of tonalness did not. These results 

are supported by the differences in Akaike’s information criterion (AIC) values, which indicate very 

strong support for Model 1, moderate support for Model 2, and no support for Model 3 (Murtaugh, 

2014). However, the more conservative Bayesian information criterion (BIC) analysis supports the 

addition of musical training but not the addition of complexity or tonalness. 
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The coefficients for the fixed effects can be converted to a traditional item response theory 

metric (e.g. de Ayala, 2009; DeMars, 2010) by dividing by the standard deviation of the random 

effect of participant. Here we use the random effect for the MET participants, since this participant 

group was most representative of the general population. Taking Model 2 as the final model, the 

fixed-effect coefficients indicate that increasing musical training by one standard deviation increased 

ability by 0.26 (SE = 0.08, p < .001), while increasing complexity by one standard deviation increased 

item difficulty by 0.63 (SE = 0.22, p = .004). 

The residual variation in item difficulty can similarly be estimated by taking the standard 

deviation of the item random intercept and dividing it by the standard deviation of the participant 

random intercept. This estimates the error standard deviation in item difficulty to be 0.92. 

 

‘Different’ items 

 Data for the ‘different’ items were modelled in a similar manner, with the continuous 

predictors scaled and centred. The null model (Model 0) took the same form as for the ‘same’ items, 

and then four models were constructed for comparison by sequentially adding musical training 

(Model 1), complexity (Model 2), melodic similarity (Model 3), and tonalness (Model 4) as fixed 

effects. Model 4 did not converge, probably because of the complexity of the model, but the four 

simpler models did converge, and are compared in Table 2. The likelihood ratio tests indicate that 

musical training, complexity, and melodic similarity each significantly improved the fit of the model. 

The AIC values show substantial support for musical training and minor support for complexity and 

melodic similarity. The BIC values, meanwhile, only show support for musical training. The fixed-

effect coefficients in Model 3 indicate that increasing musical training by one standard deviation 

increased ability by 0.82 (SE = 0.11, p < .001), increasing melodic similarity by one standard 

deviation increased item difficulty by 0.50 (SE = 0.20, p = .013), and increasing complexity by one 

standard deviation gave a marginally significant increase of 0.57 in item difficulty (SE = 0.28, p = 

.064). The estimated error standard deviation in item difficulty was 0.90. 

 

Discussion 
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The aim of this final study was to investigate the construct validity of the melodic 

discrimination paradigm using explanatory item response modelling. A cognitive model for the 

melodic discrimination task was used to generate testable hypotheses relating structural item features 

to item difficulty. On the basis of this cognitive model, it was hypothesised that melodic complexity 

and similarity should increase item difficulty, tonalness should decrease difficulty, and transposition 

should increase difficulty. 

The data provide positive support for two of these hypotheses. Both melodic complexity and 

similarity were positively related to item difficulty, as predicted. The predictive power of these 

predictors was supported by likelihood ratio tests and AIC statistics, but not by BIC statistics. 

However, BIC statistics are generally only appropriate when the exact ‘true’ model is contained in the 

candidate set of models, something which is very unlikely in cognitive experiments such as this 

(Murtaugh, 2014). It seems reasonable, therefore, to accept the support of the AIC statistics. 

Unfortunately, it was not possible to investigate the effect of transposition properly, because 

two out of the three melodic discrimination tests did not contain any transposed melodies. A similar 

effect may have prevented tonalness from having an effect on item difficulty, since while the MET 

employs some atonal melodies, both the AMMA and the Gold-MSI use only tonal melodies. The 

effects of both transposition and tonalness will therefore have largely been subsumed by the fixed 

effect of test. 

It was also hypothesised that musical training should be associated with better performance 

on the melodic discrimination task. The data strongly support this hypothesis, matching previous 

research linking melodic discrimination ability to musical expertise (e.g. Dowling, Bartlett, Halpern, 

& Andrews, 2008; Müllensiefen et al., 2014; Wallentin et al., 2010). 

The high collinearity between the three complexity measures was to be expected. Melodies 

with more notes correspondingly possess more intervals, and this provides more opportunity for 

variety in the intervallic distribution, resulting in a correlation between length and interval entropy. 

Likewise, a melody with more notes has more opportunity for pitch variation, producing a correlation 

between length and step contour local variation. An informal analysis we conducted of a corpus of 

Irish folk melodies confirmed that these high correlations are not an artefact of the present corpus. 
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Despite their high correlations, length, interval entropy, and step contour local variation each 

should capture some unique facet of complexity. Unfortunately, because we were using pre-existing 

melodic discrimination tests, it was not possible to manipulate these three features orthogonally, and 

so their relative combinations to item difficulty could not be evaluated. This could provide the basis 

for an interesting follow-up experimental study. 

The unexplained variation in item difficulty was rather high for both the ‘same’ and the 

‘different’ items. This suggests that there is still substantial room for improvement for the explanatory 

model. This might be achieved by using improved formal measures of melodic complexity and 

similarity, for example by optimising the weights of the hybrid similarity measure or by using a 

weighted edit distance rather than a simple edit distance for the similarity measures. The item 

response model might also be improved by developing the cognitive model further, and using it to 

identify additional predictors of item difficulty. 

 

5. General discussion 

The aim of this paper was to address the efficiency and validity of traditional melodic 

discrimination tests using modern techniques of item response modelling. Two complementary 

approaches were used: a descriptive approach and an explanatory approach. 

Studies 1 and 2 used descriptive item response modelling to construct and validate a new 

short yet efficient melodic discrimination test. This test satisfies the assumptions of a Rasch model, 

shows good concurrent and convergent validity, and is freely available for research2. However, as a 

trade-off for its short duration, the test’s discriminative power is necessarily limited. Moreover, 

because it is calibrated on a sample of a general student population, it will have low discrimination 

power in population groups with very high ability (e.g. professional musicians) or very low ability 

(e.g. amusics). 

Study 3 used explanatory item response modelling to investigate the construct validity of the 

melodic discrimination test. On the basis of a cognitive model of melodic discrimination, hypotheses 

                                                      
2 http://www.gold.ac.uk/music-mind-brain/gold-msi/  

http://www.gold.ac.uk/music-mind-brain/gold-msi/


MODELLING MELODIC DISCRIMINATION TESTS 32 

were generated relating item difficulty to structural item features. These hypotheses were then tested 

using response data from pre-existing melodic discrimination tests. The results support the proposed 

cognitive model, making an important contribution to the construct validity of the melodic 

discrimination test. 

This paper demonstrates that the melodic discrimination task cannot automatically be 

characterised as a simple measure of a single cognitive ability, such as melodic memory. Instead, 

melodic discrimination must draw on a number of distinct cognitive processes, each of which may 

contribute to individual differences in melodic discrimination ability. It is important to take this into 

account when interpreting scores on melodic discrimination tests, instead of simply equating test 

scores with concepts such as musical aptitude (e.g. Hu et al., 2013; Mehr et al., 2013, 2016) or 

melodic memory (e.g. Müllensiefen et al., 2014; Zenatti, 1975). 

It should be acknowledged, however, that the fact that melodic discrimination relies on 

several cognitive abilities does not necessarily mean that each ability contributes equally to individual 

differences in melodic discrimination scores. For example, it could be the case that almost all 

individuals possess sufficient perceptual encoding abilities for the traditional melodic discrimination 

task, meaning that perceptual encoding ability never is a limiting factor in task performance. Another 

alternative is that perceptual encoding is indeed a limiting factor in task performance, but individual 

variation in perceptual encoding abilities is small, and so this variation does not contribute 

substantially to individual differences in melodic discrimination scores. The methodologies used in 

this paper were not well-suited to investigating these questions. However, future research could aim to 

separate these different abilities through the use of multidimensional latent trait models, or by 

combining response data from a greater variety of testing paradigms, such as melodic recall tasks (e.g. 

Boltz, 1991) and similarity judgement tasks (e.g. Müllensiefen & Frieler, 2007). 

In this paper we used descriptive item response modelling for test construction and 

explanatory modelling to investigate construct validity. However, explanatory item response 

modelling may also prove to be an exciting tool for test construction. Effective explanatory item 

response models can be used to predict item parameters for computerised adaptive tests, drastically 

reducing their production costs (e.g. Gierl, 2013). Such computerised adaptive tests can be remarkably 
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efficient, requiring many fewer items to match the reliability of equivalent non-adaptive tests (de 

Ayala, 2009; Linden & Glas, 2007), and maintaining a high discriminative power regardless of the 

ability level being tested. As a result, developing good explanatory item response models for melodic 

discrimination could enable the economical construction of much more efficient melodic 

discrimination tests. We hope that the present paper provides a useful step towards this goal.  
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Tables and figures 

 

Table 1 

Model fit statistics for the ‘same’ items 

Model New predictor df AIC BIC log(likelihood) 𝜒2(1) p 

0 NA 10 4388.6 4451.3 −2184.3 NA NA 

1 Musical training 11 4378.6 4447.6 −2178.3 11.99 < .001 

2 Complexity 12 4372.9 4448.1 −2174.4 7.69 .006 

3 Tonalness 13 4372.8 4454.3 −2173.4 2.09 .148 

 

Table 2 

Model fit statistics for the ‘different’ items 

Model New predictor df AIC BIC log(likelihood) 𝜒2(1) p 

0 NA 10 4738.0 4801.2 −2359.0 NA NA 

1 Musical training 11 4679.9 4749.4 −2329.0 60.04 < .001 

2 Complexity 12 4677.8 4753.6 −2326.9 4.45 .042 

3 Similarity 13 4674.1 4756.3 −2324.1 5.67 .017 

 

 

Figure 1. Item-wise measures of complexity (composite measure), split by test. The width of each 

violin plot is proportional to the density of the complexity distribution. 

 

Figure 2. Item-wise measures of similarity (hybrid measure), split by test. The width of each violin 

plot is proportional to the density of the similarity distribution. 

 

Figure 3. Item-wise measures of tonalness, split by test. The width of each violin plot is proportional 

to the density of the tonalness distribution. 


