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sequencing across two tissues highlights
the environment as the principal source of
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Abstract

Background: CpG methylation variation is involved in human trait formation and disease susceptibility. Analyses
within populations have been biased towards CpG-dense regions through the application of targeted arrays. We
generate whole-genome bisulfite sequencing data for approximately 30 adipose and blood samples from
monozygotic and dizygotic twins for the characterization of non-genetic and genetic effects at single-site
resolution.

Results: Purely invariable CpGs display a bimodal distribution with enrichment of unmethylated CpGs and
depletion of fully methylated CpGs in promoter and enhancer regions. Population-variable CpGs account for
approximately 15–20 % of total CpGs per tissue, are enriched in enhancer-associated regions and depleted in
promoters, and single nucleotide polymorphisms at CpGs are a frequent confounder of extreme methylation
variation. Differential methylation is primarily non-genetic in origin, with non-shared environment accounting for
most of the variance. These non-genetic effects are mainly tissue-specific. Tobacco smoking is associated with
differential methylation in blood with no evidence of this exposure impacting cell counts. Opposite to non-genetic
effects, genetic effects of CpG methylation are shared across tissues and thus limit inter-tissue epigenetic drift. CpH
methylation is rare, and shows similar characteristics of variation patterns as CpGs.

Conclusions: Our study highlights the utility of low pass whole-genome bisulfite sequencing in identifying
methylome variation beyond promoter regions, and suggests that targeting the population dynamic methylome of
tissues requires assessment of understudied intergenic CpGs distal to gene promoters to reveal the full extent of
inter-individual variation.
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Background
The human genome comprises ~600 million cytosine
bases on each strand, with ~5 % in the CpG dinucleotide
context. Methylation of Cs in this context is a common
epigenetic modification classically studied as a silencing
mark when occurring in promoter regions or CpG
islands (CGIs) [1]. Other general findings on methylation
and gene regulation are gene body methylation showing
positive correlation with expression [2] and exon/intron
boundary methylation level differences correlating with
alternative splicing [3].
CpG methylation has been intensively investigated on

a genome-wide level for association with clinical pheno-
types [4]. These studies have identified specific differen-
tially methylated regions (DMRs) associated with various
diseases, including cancer [5, 6], multiple sclerosis [7],
Alzheimer’s disease [8], rheumatoid arthritis [9], and im-
munoglobulin E concentration in association with allergic
diseases [10]. Variation in CpG methylation has also been
investigated in healthy populations using array-based pro-
filing (e.g., Illumina HumanMethylation450 Beadchip,
hereafter Illumina 450 K array) of large population-based
cohorts, associating differential CpG methylation in blood
with metabolic traits [11] and body mass index [12], and
in CD4+ T-cells with fasting lipid levels [13]. Similarly, we
recently utilized the Illumina 450 K array to assess methy-
lation variation across 648 adipose samples from twins be-
longing to the MuTHER cohort and observed overall low
variance in methylation across healthy individuals [14]. In
addition, we showed that methylation signatures in enhan-
cer elements exhibit a more pronounced pattern of inter-
individual variation compared to promoter regions.
However, a main limitation with studies using the Illu-

mina 450 K array is that the platform only covers ~1.5 %
of overall genomic CpGs, which are biased towards pro-
moters and strongly underrepresented in distal regula-
tory elements, i.e., enhancers. Compared to targeted
array-based methods, whole-genome bisulfite sequen-
cing (WGBS) offers single-site resolution CpG methyla-
tion interrogation at full genomic coverage. Recent
sequencing-based studies across multiple developmental
and somatic mouse and human cell types identified only
~20 % of CpGs as variable [15–17]. In these studies,
DMRs across tissues were also shown to mainly map
outside of promoter-associated regions (mostly outside
regions covered by the 450 K array) and to be highly
enriched in enhancers.
Another advantage of WGBS is its ability to access

patterns of non-CpG or CpH (H = A, C, T) methylation.
CpH methylation is asymmetric, meaning that methyla-
tion is often observed on only one strand. Previous stud-
ies have identified that CpH methylation accounts for
~25 % of all methylated cytosines in human embryonic
stem cells [2], ~35 % in brain tissue [18], and ~65 % in

oocytes [19], but is rare in differentiated somatic cells
like fibroblasts and monocytes [2, 3]. However, despite
its low frequency, some functional relevance is thought
to be associated with CpH methylation in somatic cells
outside the brain [20].
As highlighted above, most genome-wide methylation

studies of inter-individual variation to date have been
biased towards promoter and CpG-dense regions. Com-
prehensive and unbiased analyses of population variation
at single-CpG/CpH resolution have not been carried out
so far. In a recent study, Ziller et al. applied down-
sampling analysis to NIH Roadmap data generated in
healthy cells and tissues with 30-fold coverage and dis-
covered that per-sample coverage of 5–15-fold is suffi-
cient for the identification of DMRs [21].
To address this gap and to explore the contribution of

genetic versus non-genetic factors to global methylome
variation, we applied WGBS to generate full genome
single-site resolution methylomes of 34 adipose and 27
blood samples from monozygotic (MZ) and dizygotic
(DZ) twins of the MuTHER cohort [22]. Our per-sample
mean genome coverage of ~7-fold interrogated the
methylation state of ~25 million CpGs and ~1 billion
CpHs. Through thorough quality control and filtering
steps, we characterized the global DNA methylation
landscape, including frequency and genome feature asso-
ciation of population static and dynamic CpG and CpH
methylation. By taking advantage of the twin structure,
we estimated the genetic versus environmental origin
(shared and non-shared/unique) of variation and devel-
oped a method to detect population differentially methy-
lation regions (pDMRs), which we distinguish from
those of non-shared environmental origin (eDMRs). Fi-
nally, we associated these pDMRs and eDMRs with
functional relevance by performing transcription factor
(TF) binding site motif and pathway analysis, and by in-
vestigating expression of associated genes in adipocytes
and hematopoietic cells.

Results
Study cohort, and data generation and processing
We performed WGBS on 34 adipose (seven MZ pairs,
six DZ pairs, and eight singletons) and 27 blood (seven
MZ pairs, six DZ pairs, and one singleton) DNA samples
derived from a total of 43 female twins belonging to the
MuTHER cohort [22, 23] (see “Methods” and Additional
file 1: Table S1). We generated 11.5 billion 100 base pair
(bp) paired-end reads covering 2.3 tera base pairs (Tbp)
of sequence. We applied standard alignment methods
and filters to obtain a mean genome coverage of 6.3-fold
(range 1.0-fold to 12.9-fold) for adipose and 8.7-fold
(range 0.7-fold to 29.0-fold) for blood (Additional file 1:
Table S1). We compared the mean genome coverage to
the number of overall detected CpGs for each sample,
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observing that CpG-discovery was saturated at ~6-fold
coverage, detecting ~27 million sites (Additional file 2:
Figure S1). The median bisulfite conversion efficiency of
CpHs was determined to be 99.4 % (range 97.4–99.8 %;
Additional file 1: Table S1).
We have previously profiled the adipose samples on

the Illumina 450 K array [14], which we used here for
comparison. We observed sample-based correlations of
Illumina 450 K and WGBS to saturate at 10-fold to 12-
fold average genome sequencing coverage (Pearson’s R
~0.94) (Fig. 1a), and at 12-fold per CpG coverage (Pear-
son’s R ~ 0.94) for CpG-based correlations (Fig. 1b).
Additionally, we observed correlation to be highly
dependent on strand-concordance of methylation, i.e.,
we observed low correlation of CpGs displaying discord-
ant methylation between forward and reverse strands
(Fig. 1c). We also noted low correlation across the two
approaches for CpGs displaying abnormal high coverage
(see “Methods”). These CpGs were shown to be enriched
in “blacklisted” regions defined by the ENCODE project
(http://hgwdev.cse.ucsc.edu/cgi-bin/hgFi-
leUi?db=hg19&g=wgEncodeMapability), which include
genomic regions with artifactual high read counts across
tissues and cell lines in DNaseI, formaldehyde-assisted
isolation of regulatory elements (FAIRE), and ChIP-seq
experiments [24]. Taken together, in all subsequent ana-
lysis we excluded CpGs not covered by at least two reads
per strand with an absolute strand difference in methyla-
tion of ≤ 20 %, CpGs located within blacklisted regions
defined by ENCODE or us (see “Methods”), and CpGs
not located on autosomes, leaving on average 7.9 × 106

unique and high-confidence CpGs per sample. The
number of CpGs passing all filters correlated well with
overall sequencing depth with a ratio of approximately 1

million detected CpGs per 1-fold mean coverage, satur-
ating at ~20-fold coverage (Additional file 2: Figure S1).

Global CpG methylation patterns
First, we aimed to characterize the global CpG methyla-
tion landscape per tissue and thus combined all datasets.
In total, we covered 23.6 × 106 and 25.0 × 106 CpGs in
adipose and blood, respectively, with a mean methylation
of 80 % irrespective of tissue (Additional file 2: Figure
S2A, B). Because private sequence variants mapping to
CpGs (i.e., introducing or removing) might bias methyla-
tion measures, we overlapped the two datasets with
dbSNP137 [25] and noted that as much as 27 % of our de-
tected CpGs in fact overlapped an annotated single nu-
cleotide polymorphism (SNP). Taking this into account,
we covered 17.2 × 106 and 18.4 × 106 CpGs (Additional file
1: Table S2) in the combined variant-removed adipose and
blood datasets, respectively. We noted that removing
SNPs only marginally impacted mean and median methy-
lation levels (Additional file 2: Figure S2C, D). Of these
CpGs, 19 % and 22 % mapped to CGI-associated regions
in adipose and blood, respectively, leaving the vast major-
ity mapping to regions with lower CpG density. Focusing
on the genic context we observed ~53 % of CpGs per tis-
sue to locate within gene regions (Additional file 1: Table
S2; for region annotation see “Methods”).
Previous studies have identified areas with low CpG

methylation (<50 %) to comprise active regulatory
regions [17, 26, 27], which we aimed to study in more
detail here using the combined datasets. To be conserva-
tive we only kept CpGs with a minimum coverage of 12-
fold (14.7 × 106 CpGs in adipose, 17.8 × 106 CpGs in
blood). We identified on average 63,000 low-methylated
regions per tissue with ~30 % being unmethylated
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Fig. 1 Comparison of sequencing-derived and array-derived methylation data. 450 K methylation array data were available for adipose tissue, and
methylation values for CpG-sites jointly interrogated by both whole-genome bisulfite sequencing and the array were extracted for each individual.
Shown are Pearson’s correlation coefficients derived from comparing array to sequencing methylation data for jointly interrogated CpG-sites for
(a) samples at indicated mean genome coverage (black diamonds), with blue crosses indicating the number of jointly detected sites per sample,
(b) CpG-sites at indicated coverage across all samples, (c) CpG-sites displaying 0 to 20 % (blue crosses), >20 to 40 % (red diamonds), >40 to 60 %
(green points), or >60–100 % (purple triangles) methylation difference between forward and reverse strands at indicated sequencing coverage
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regions and the remainder being low-methylated regions
(Additional file 1: Table S3A). Irrespective of tissue,
unmethylated regions displayed stable methylation
across regions nearing 0 % and spanning an average
genomic size of ~2400 bp and on average 122 CpGs per
region. In contrast, low-methylated regions displayed
methylation levels between 5 % and 45 % and a size of
~750 bp (Additional file 1: Table S3B, Additional file 2:
Figure S3A, B) with only on average 11 CpGs. We
then compared these different unmethylated and low-
methylated regions across tissues and found that as
much as 90 % of the detected unmethylated regions
were identified in both tissues, compared to the low-
methylated regions that displayed more tissue-specificity
with an overlap across tissues of only ~45 % (Fig. 2a, b)
[15–17].
To further investigate the characteristics of the iden-

tified adipose unmethylated and low-methylated re-
gions, we used ChIP-seq data from the NIH Roadmap
consortium [28] for the active promoter-associated
H3K4me3 [29] and the active enhancer-associated
H3K4me1 [30] marks in human adipocytes. We gener-
ated a normalized signal intensity ranked list for these
histone marks using a background-subtracted binning
approach (see “Methods” and [14]) and overlapped the
top 1 % bins with the unmethylated and low-
methylated adipose regions identified in the combined

dataset. In total, 78 % of the adipose unmethylated
regions overlapped an the H3K4me3 bin and this co-
localization was further strengthened when restricting
to similar regions also identified in blood, correspond-
ing to 84 % (Fig. 2c). This pattern was further pro-
nounced if we restricted to H3K4me3 bins located 1 kb
upstream of a transcription start site (TSS) where 91 %
of the adipose unmethylated regions overlapped. We
also looked specifically at the unmethylated regions de-
tected only in adipose (N = 2,320) and noted here that
only 35 % overlapped a H3K4me3 bin (Fig. 2c), but in-
stead the majority (56 %) of these overlapped with a
top 1 % H3K4me1 bin, indicating these regions to be
more enhancer-like (Fig. 2d). Focusing on the low-
methylated regions in adipose instead, we observed en-
richment in the top-ranking H3K4me1 bins (Fig. 2d),
with 25 % of shared and 26 % of adipose-specific re-
gions overlapping with the top 1 % of H3K4me1 bins.
However, this overall lower enrichment of low-
methylated regions in H3K4me1 bins may lie in the
lower specificity of the enhancer-associated mark be-
ing more generally associated with gene activity and
also localizing, e.g., to promoters [30]. Indeed, we ob-
served low methylated regions to be enriched in the
top ranking H3K4me1 bins when compared to the
percentage of overlap in bins ranking lower than the top
1 % (Additional file 2: Figure S3C).

Fig. 2 DNA methylation footprint in adipose tissue and blood. Datasets were merged within tissues, keeping only sites covered ≥12-fold, and the
MethylseekR software [26] was employed to identify unmethylated and low-methylated footprints in adipose and blood. Shown are Venn
diagrams describing tissue-specificity of identified (a) unmethylated regions (UMR) and (b) low-methylated regions (LMR). For overlapping areas,
numbers indicate percentage of overlap based on adipose tissue and blood as indicated. c Histograms display the number of tissue-shared and
adipose-specific UMRs overlapping with ranked H3K4me3 bins (see text; top 5 % are shown). d Adipose LMRs and adipose-specific UMRs
overlapped with ranked H3K4me1 bins (top 5 % are shown)
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The invariable CpG landscape
Our recent survey of methylation variation in the
complete MuTHER adipose cohort (N = 648) using the
Illumina 450 K array indicated that the majority of tar-
geted CpGs show low variability in methylation levels
[14]. However, whether this low variability included also
purely invariable methylation states of CpGs was left un-
explained owing to the technical limitations of array-
based methods. We thus aimed here to study this in
greater detail using our variant-removed datasets to look
for constitutively unmethylated (0 %) or fully methylated
(100 %) CpGs. We defined population invariable CpGs
as being detected in two or more individuals per tissue
and displaying methylation value standard deviation
(SD) of zero across individuals. We determined invari-
able CpGs for each tissue and distinguished between
tissue-specific (methylation SD = 0 in one and SD > 0 in
the other tissue) and shared (methylation SD = 0 in both
tissues). We detected 26 % and 6 % of CpGs to be invari-
able in adipose and blood, respectively, highlighting that
invariability in DNA methylation is more frequent in
adipose than in blood. This ratio changed only slightly at
higher CpG sequence coverage (Additional file 1: Table
S4), excluding the possibility that lower average genomic
coverage in adipose leads to the discovery of fewer vari-
ant sites and indicating that higher cellular heterogeneity
of blood drives variance. Most invariable CpGs in adi-
pose were tissue-specific (10 % were shared with blood),
whereas the opposite was seen in blood (i.e., 80 % of in-
variable CpGs in blood were also invariable in adipose).
Fully methylated CpGs (100 %) comprised 80 % of all in-
variable CpGs within adipose, 35 % within blood, 85 %
of adipose-specific, 65 % of blood-specific, and 36 % of
shared total invariable CpGs (Additional file 2: Figure
S4A), identifying tissue-specific invariable CpGs to be
mainly methylated whereas shared CpGs are predomin-
antly unmethylated. The lower frequency of methylated
CpGs in blood could be a reflection of greater cellular
diversity compared to adipose tissue.
We also investigated the distribution of unmethylated

(0 %) and fully methylated (100 %) invariable CpGs
within genomic features by overlapping with CGI fea-
tures, genic regions (see “Methods”), and with NIH
Roadmap H3K4me1 and H3K4me3 ChIP-seq data (avail-
able for adipose only). Compared to background (all
CpGs detected in two or more individuals), unmethy-
lated CpGs in adipose displayed a 12-fold to 14-fold sig-
nificant (Fisher’s exact test p < 1.0 × 10-16) enrichment in
promoter-associated regions (CGIs, TSS200, exon 1,
H3K4me3), and slighter 3.5-fold significant enrichment
(p < 1.0 × 10-16) in enhancer-associated regions
(H3K4me1). Vice versa, these CpGs were significantly
depleted in low CpG-context and intergenic regions.
Adipose-specific and blood-specific unmethylated CpGs

showed very similar genome feature association trends,
whereas shared CpGs showed an even stronger enrich-
ment in promoter regions, ranging between 15-fold and
17-fold (p < 1.0 × 10-16; Additional file 2: Figure S4B).
Genome features of fully methylated CpGs displayed

an opposing pattern: invariable CpGs in adipose showed
a ~3-fold significant (p < 1.0 × 10-16) depletion in CGIs,
TSS200, and exon1, and 43-fold significant (p < 1.0 × 10-16)
depletion in regions covered by H3K4me3. Additionally,
a 2.6-fold depletion (p < 1.0 × 10-16) was detected in the
enhancer-associated H3K4me1 histone mark. Similar
trends were observed for methylated adipose-specific,
blood, and shared invariable CpGs (Additional file 2:
Figure S4C).
When selecting invariable CpGs in a more stringent

approach, requiring CpGs to be detected and invariable
in five or more, or 10 or more individuals, we observed
the same trends as described above with even more
pronounced enrichment of unmethylated CpGs in
promoter-associated and enhancer-associated regions
(Additional file 2: Figures S5 and S6).

Population differentially methylated CpGs
To identify CpGs displaying differential methylation in a
healthy population, we estimated the difference in CpG
methylation of overlapping covered CpGs between any
two samples (Fisher’s exact test) to methylation levels
detected at these CpGs to determine the significance in
sequence read distributions. We identified these CpGs
as differentially methylated CpGs in population (pDMCs).
Using the sequence variant-containing datasets, we de-
tected median differential methylation to be 55 % in adi-
pose and 46 % in blood (Additional file 2: Figure S7A)
with extreme differential methylation (>60 % difference)
detected at 5.0 % and 3.7 % of total CpGs in adipose and
blood, respectively.
We then overlapped the significant pDMCs with the

variant-removed dataset (i.e., dbSNP137-annotated vari-
ants excluded) and found that ~25 % of CpGs displaying
<10 % differential methylation overlapped with a SNP,
this being equivalent to the amount of overall CpGs
overlapping a sequence variant (see “Global CpG methy-
lation patterns” above). However, with increasing differ-
ential methylation we observed higher confounding
variant bias, with pDMCs displaying >90 % of differential
methylation being ~95 % confounded by an SNP
(Fig. 3a). These findings were shared [31] and highlight
the importance of variant filtering for accurate interpret-
ation of differential methylation analyses in unrelated in-
dividuals, as we recently showed in public datasets [31].
Removing SNPs among the significant pDMCs reduced
the detected extreme differential methylation levels
(>60 % difference) to 3.3 % and 1.9 % in adipose and
blood, respectively. Concomitant with this we observed
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a drop in median methylation levels in both tissues
(medianAdipose = 50 %; medianBlood = 41 %; Additional file
2: Figure S7A). Overall, we determined the proportion of
pDMCs on total CpGs on autosomes to be 14 % in adi-
pose (40 % of these were shared with blood) and 22 % in
blood (26 % of these were shared with adipose) after
variant filtering (Fig. 3b). Compared to adipose, we ob-
served lower pDMC methylation levels (Additional file
2: Figure S7B) and a higher percentage of pDMCs on
total detected CpGs in blood, which might be explained
by the higher cellular heterogeneity of blood, which pre-
sumably blunts methylation differences of individual cell
populations and increases the number of potentially de-
tectable pDMCs, respectively. Similar differential methy-
lation distribution trends were observed for tissue-
specific and shared pDMCs in both tissues (Additional
file 2: Figure S7C, D).
We next sought to determine the proportion of signifi-

cant pDMCs that are due to different cellular heterogeneity
across the 27 individuals. We thus correlated methylation
levels of each pDMC with proportions of specific blood cell
types (i.e., neutrophils, lymphocytes, monocytes, and eo-
sinophils) where at least 10 individuals were covered. We
found that 17.5 % of the blood pDMCs were strongly cor-
related with different proportions of blood cell types
(Pearson’s R > 0.5, p < 0.05) and this relationship was
stronger with increased variation in methylation levels.
More specifically, when we restricted the analysis to the
top 1,000 pDMCs based on SD, we noted that as much as
24.1 % of the pDMCs correlated with blood cell type pro-
portions (Pearson’s R > 0.5, p < 0.05).
We also investigated the genomic features of our sig-

nificant pDMC (Fisher’s p < 0.05; detected in one or

more comparison) by overlapping their location with the
above introduced genomic regions (Additional file 2:
Figure S8): we noted that compared to background (all
CpGs detected in two or more individuals) adipose
pDMCs were significantly depleted in all CGI-associated
and genic regions (Fisher p < 1.0 × 10-16), and vice versa
enriched in low CpG contexts and intergenic regions
(p < 1.0 × 10-16). Strongest depletions were detected in
gene promoter regions (3-fold to 5-fold in TSS200, exon
1, H3K4me3; 22.7-fold in CGIs). Blood pDMCs displayed
a similar feature association although less pronounced
significant depletions (p < 1.0 × 10-16) were observed in
CGI-associated regions, e.g., only 4.5-fold in CGIs.
Tissue-specific pDMC feature associations were similar
to the ones obtained for the corresponding “complete”
adipose or blood, respectively, whereas shared pDMCs
associations were similar to the ones observed in
adipose (Additional file 2: Figure S8).

Population differentially methylated regions
Given that our WGBS data were at a relatively low depth
at an individual level, we next took advantage of the
complete population tissue cohorts to investigate regions
of clustered methylation variability, or pDMRs. We de-
termined pDMRs by weighting the variance of CpG
methylation across individuals as well as the consistency
of CpGs within the region (see “Methods”). For this ana-
lysis we considered CpGs covered in three or more indi-
viduals, leaving 14.7 × 106 CpGs in adipose and 17.8 ×
106 CpGs in blood. We selected the top 10 % of pDMRs
covering 23.8 × 105 regions in adipose and 26.2 × 105 re-
gions in blood for further analyses (Additional file 1:
Table S5). Of these top pDMRs, we noted that 34–37 %
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were shared across tissues (Additional file 1: Table S5).
Similar to pDMCs, we found that 24.5 % of CpGs map-
ping to pDMRs were significantly associated with blood
cell type proportions (Pearson’s R > 0.5, p < 0.05).
Genome feature association results identified pDMRs

to be significantly (Fisher’s p < 0.05) depleted in gene
promoter regions and enriched in enhancer regions irre-
spective of pDMR category. For instance, we observed
adipose pDMRs to be 3.4-fold depleted in CGIs (p <
1.0 × 10-16), and 3.8-fold depleted in H3K4me3-occupied
regions (p < 1.0 × 10-16) but 3.7-fold enriched in
H3K4me1-occupied regions (p < 1.0 × 10-16) (Additional
file 2: Figure S9A). This observation is consistent with
previous results showing enhancer regions to be more
variable than promoter regions [15, 16, 32]. Overall,
pDMC and pDMR genome feature association trends
are similar, with the notable exception of adipose
pDMCs (within tissue and tissue-specific) not showing
enrichment in H3K4me1-occupied regions.
We then focused on adipose pDMRs by separating re-

gions based on methylation level: 15 % of pDMRs were
identified to be lowly methylated (<50 %) and 85 % of
pDMRs were highly methylated (≥50 %). Compared to
all CpGs detected in three or more individuals, low-
pDMRs were 12.5-fold enriched in enhancer-associated
H3K4me1 regions (p < 1.0 × 10-16); high-pDMRs dis-
played a 10.9-fold depletion in gene promoter-associated
H3K4me3-occupied regions (p < 1.0 × 10-16) and, com-
pared to low-pDMRs, only slight but significant enrich-
ment in the enhancer-associated H3K4me1-occupied
regions (p = 3.7 × 10-9) was noted (Fig. 4a). Observed
low-pDMRs displayed strong enrichment in enhancer
regions; to identify TFs binding in these potentially open
chromatin regions and associated functions, we carried
out a TF binding site (TFBS) motif analysis within these
low-pDMRs mapping to the enhancer regions against all
remaining low-pDMRs (i.e., those not overlapping such
regulatory element) [33]. We found that the binding
motif of estrogen-related receptor alpha (ERRA)—a TF
known to be involved in adipogenesis, energy metabol-
ism, and lipid synthesis [34, 35]—to be the most signifi-
cantly (p = 1.0 × 10-97) enriched TFBS in these regions.
Additional significantly enriched motifs included TFBSs
for peroxisome proliferator-activated receptor γ (PPARG;
p = 1.0 × 10-84), retinoid X receptor (p = 1.0 × 10-65),
nuclear factor 1/CAAT-binding transcription factor
(p = 1.0 × 10-78 and p = 1.0 × 10-67), and activator pro-
tein 1 (p = 1.0 × 10-53), which are all TFs known to
be involved in adipocyte differentiation [36–38]
(Fig. 4b, Additional file 1: Table S6).
Finally, focusing on adipose high-pDMRs we carried

out a pathway analysis (Ingenuity) for regions close to
the TSS of genes and identified lipid metabolism as the
most significantly associated function (p = 1.5 × 10-5). In

addition to this stringent threshold, we also identified
pDMRs with less stringent thresholds, selecting the top
20 % and 25 % of CpGs per tissue (Additional file 1:
Table S5), and observed genome feature associations simi-
lar but less pronounced to the ones for stringently (top
10 %) selected pDMRs (Additional file 2: Figure S9B-E).

Differentially methylated CpGs of genetic versus
environmental origin
Inter-individual methylation variation can be attributed
to genetic and non-genetic effects. Non-genetic effects
can be further divided into familial (i.e., shared environ-
mental) and non-familiar (i.e., unique/non-shared envir-
onmental or stochastic) effects. Twin studies provide the
ideal model to calculate the proportion of methylation
variation attributable to these different factors. Here, we
calculated intra-class correlations (ICC) of the identified
adipose pDMCs that were covered in at least five MZ
and five DZ adipose samples (N = 4,798) to estimate
additive genetic effects, shared environmental effects,
and non-shared environmental effects. We found that
for 37 % of the pDMCs, additive genetic effects
accounted for >30 % of the total variance in methylation.
In contrast, shared environment seem to have a minor
role; only 3 % of the pDMCs had shared environment
contributing >30 % to adipose methylation variation, in-
dicating that the remaining proportion of the non-
genetic variance was due to non-shared environment
and/or stochastic factors. In fact, >60 % of the pDMCs
were estimated to have non-shared environment account-
ing for >90 % of the variance. Interestingly, these environ-
mentally driven pDMCs were shown to be depleted in
promoters (p = 2.4 × 10-13) but enriched in coding regions
(p = 3.9 × 10-4) when compared to all pDMCs detected in
adipose tissue (Additional file 2: Figure S10).
We sought to characterize these abundant non-shared

environmental DMCs in more detail; for simplicity, we
refer to these CpGs as “environmental” in origin or
eDMC. For this purpose we estimated DMCs within two
MZ pairs per tissue sequenced at moderate coverage
(MZ2, MZ3; ≥10-fold in adipose, ≥19-fold in blood;
Additional file 1: Table S1) and compared these with a
similarly powered analysis in unrelated individuals. First,
at p < 0.05 (Fisher’s exact test) we identified on average
1.13-times (adipose) and 1.3-times (blood) more DMCs
in unrelated samples versus MZ twins, confirming gen-
etic effects on CpG methylation variation when over-
lapped SNPs are accounted for. Second, as shown in the
heritability analysis, a large proportion of DMCs seemed
to be of non-shared environmental origin (i.e., eDMCs)
and we estimated non-shared environmental effects to
account for over 75 % of methylation variation in blood
(Additional file 2: Figure S11A). To study this pattern
further we analyzed the identical set of blood samples
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(MZ2 and MZ3) using a targeted capture-based ap-
proach for bisulfite sequencing of functional elements,
MCC-seq, that we recently introduced [27]. Carrying out
the same analysis in this independent higher coverage
dataset (MZ2: >22-fold; MZ3: >25-fold) we estimated
eDMCs to account for 64 % of all detected DMCs. This
lower proportion of eDMCs in targeted MCC-seq versus
WGBS was in fact not due to differential coverage but
rather due to the predominance of enhancer/promoter
regions targeted in the former method. More specifically,
when we filtered the WGBS-derived DMCs to only
cover overlapping MCC-seq functional elements, we
found the same proportion (65 %) of total DMCs

(Additional file 2: Figure S11A). These findings are in
agreement with genome feature annotation of purely
environmentally driven adipose pDMCs from the twin
analysis, showing genic regions to be influenced to a
larger extent by unique environmental or stochastic
factors (Additional file 2: Figure S11B).

Functional characterization of differentially methylated
CpGs of non-shared environmental origin
We next investigated whether eDMCs cluster in regions
and can be linked to potential functional relevance. We
screened 500 bp regions upstream and downstream of
each eDMC identified at nominal significance (p < 0.05),

Fig. 4 Genomic feature association of adipose-specific population differentially methylated regions (pDMRs), and transcription factor binding site
(TFBS) motif analysis for adipose-specific low-methylated pDMRs. We determined pDMRs using a novel algorithm that weights the variance of
CpGs methylation across individuals as well as the consistency of CpGs within the region (see “Methods”). a We associated the top 10 % of
adipose-specific pDMRs with genomic features. The fold change of pDMR versus background (all CpGs detected in three or more individuals) is
shown for each genomic feature. The red line demarks the border between enrichment (relative change > 1) and depletion (relative change < 1).
b TFBS analysis was carried out for adipose-specific low-methylated pDMRs using the Homer software [33]. Shown are selected TFBS motifs
including overall rank in the Homer analysis, p-value, forward consensus binding sequence, associated function, and references. The complete
TFBS motif analysis result is available in Additional file 1: Table S6
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and defined regions containing three or more eDMCs
displaying unidirectional differential methylation as
eDMRs, with overlapping eDMRs being merged. In adi-
pose, we identified 54 and 75 eDMRs, comprising 0.27 %
and 0.32 % of eDMCs in the MZ2 and MZ3 pairs, re-
spectively (false discovery rate [FDR] ≤ 0.1 % based on
permutation test). In blood, we observed 923 and 386
eDMRs, comprising 1.66 % and 0.82 % of eDMCs in the
MZ2 and MZ3 pairs, respectively (FDR ≤ 0.1 % based on
permutation test). All identified eDMRs were tissue-
specific and not shared among MZ pairs. We then
sought to test for potential tissue-specific regulation of
eDMR-associated genes and thus overlapped eDMRs
with RefSeq-annotated genes. RNA-seq-derived gene ex-
pression data were available for subcutaneous adipocytes
as well as for normal primary B-cells, T-cells, and mono-
cytes (all samples from an unrelated study cohort) [27].
First, we compared the expression level for eDMR-
associated genes (eDMRs were mapped to genic regions
including 10 kb downstream of the TSS) between adipo-
cytes and hematopoietic cell types. eDMR-associated
genes were significantly enriched in genes with higher
expression in adipose tissue than in blood, with enrich-
ment increasing from 1.34-fold for genes solely over-
expressed (z-score derived p < 0.001) in adipose tissue to
1.8-fold in genes >16-fold over-expressed (p < 0.001) in
adipose (Fig. 5a), suggesting that adipose eDMRs map to
dynamic genes specific to adipose tissue. For blood-
associated eDMRs we did not observe similar enrich-
ment in genes with elevated expression in hematopoietic
cells (Fig. 5b). However, pathway analysis of blood
eDMR-associated genes identified hematological system
development and function (p = 1.1 × 10-3) as well as
humoral immune response (p = 1.1 × 10-3) as the top as-
sociated bio functions.
These findings indicate that inter-twin eDMR count

differences may arise from differences in blood hetero-
geneity. To address this we performed a similar analysis
as previously, correlating pDMC methylation levels of
each CpG in the defined eDMRs with proportions of
specific blood cell types (i.e., neutrophils, lymphocytes,
monocytes, and eosinophils) where at least 10 individ-
uals were covered. We found that eDMCs were to a
lesser extent confounded by different cell heterogeneity
than all DMCs in the population (12.6 % versus 24.5 %).
Because we observed a striking difference in the number
of blood eDMRs between the two twin pairs (i.e.,
NeDMR_MZ2 = 923 versus NeDMR_MZ3 = 386), we also
compared the confounding effect of cell type across the
two pairs. We found only a slightly higher number of
CpGs impacted by cell type proportions in MZ2 than in
MZ3 (13.3 % versus 11.9 %, p = 0.42), so the difference
in eDMRs between the two twin pairs seem to be only
to a minor extent affected by differences in cell counts.

The difference may rather be explained by different en-
vironmental exposure impacting CpG methylation, such
as tobacco smoking, which represents the most com-
monly studied and proven environmental factor impact-
ing methylation [39–42]. Indeed, both MZ2 siblings
have been smoking for the past 40 years, whereas the
MZ3 siblings had not consumed cigarettes within the
last 20 years. To further investigate the direct impact of
smoking on the blood methylome in our study cohort,
we compared MZ2 and MZ3 DMCs to replicate array-
derived loci differentially methylated in smokers versus
never-smokers [41, 42], based on the Zeilinger et al. re-
port that methylation levels of former smokers regain
levels observed in never smokers [41]. We observe sig-
nificant (Fisher’s p < 0.05) enrichment of significant
DMCs overlapping known smoking loci compared to all
jointly detected CpGs for three out of four comparisons,
and all observed smoking-associated DMC methylation
trends match previously reported ones (Additional file 2:
Table S7). Interestingly, within MZ2 siblings we identi-
fied a blood eDMR comprising 37 significant eDMCs
within a CpG island overlapping the HSPA12B locus
(Fig. 5c) reported to be involved in asthma with inter-
action of environmental tobacco smoke [43].
Finally, further investigation of blood eDMRs identi-

fied one region comprising 21 eDMCs overlapping a
CpG island in FAM171A2 (Fig. 5d). Interestingly,
FAM171A2 was linked to platelet count in a recent
genome-wide association study [44]; comparing with all
available MZs, we in fact observed a differential platelet
count of MZ2 to be in the highest third. Because this re-
gion was not covered in MZ3, this finding can only be
considered an indication that FAM171A2 differential
methylation is associated with platelet count.

Inter-tissue epigenetic drift
Variation in CpG methylation within a tissue over time
is often referred to as aging epigenetic drift. Similarly,
methylation variation across tissues could then be con-
sidered inter-tissue epigenetic drift. We recently showed
that a large proportion of CpGs associated with common
genetic variants are stable across tissues [14]. This, to-
gether with our finding that the majority of pDMC are
purely of non-shared environmental origin, may indicate
that genetic factors have the ability to limit inter-tissue
epigenetic drift. To test this hypothesis, we first focused
on DMCs that were identified to be shared across tissues
(i.e., adipose and blood). We again utilized the two MZ
pairs per tissue sequenced at moderate coverage (MZ2
and MZ3). We selected all tissue-shared pDMCs (Fisher’s
p < 0.05) covered in all four adipose MZ2 and MZ3
samples (N = 155,172). We then enriched this set of
tissue-shared pDMCs to reflect those impacted by gen-
etic variation by selecting the top 50 % (N = 77,586) of
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Fig. 5 (See legend on next page.)
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CpGs displaying th highest “across twin adipose
methylation variance/within twin adipose methylation
variance” ratio. We further restricted our analysis to
CpGs also covered in the four blood MZ2 and MZ3
samples and excluded adipose and blood eDMCs,
resulting in 31,167 CpGs. Reads for these CpGs were
then merged within each pair and tissue, followed by
an MZ2 versus MZ3 pairwise comparison that revealed
378 tissue-shared DMCs (Fisher’s p < 0.05). Of note,
70 % (N = 265) of these CpGs showed the same direc-
tion of effect across tissues, which is a significant devi-
ation from the expected distribution under the null
hypothesis (uniform random distribution expected;
exact binomial p = 3.4 × 10-15) and most likely reflects
genetic effects. We then undertook a similar approach
for eDMCs and selected significant eDMCs (Fisher’s
p < 0.05) that were shared across tissue (MZ2: N = 1,098;
MZ3: N = 1,228) and then merged the reads across tissues.
We performed new pairwise analyses within each pair and
noted that only ~50 % of the eDMCs remained significant
per pair (MZ2: N = 555; MZ3: N = 640); thus there was no
significant deviation from expected effects under the null
hypothesis (uniform random distribution expected; MZ2
exact binomial test p = 0.74, MZ3 p = 0.15).
Second, we used the ICC estimates of the 4,798 adi-

pose pDMC included in the analysis of the estimation
of additive genetic, shared, and non-shared environ-
mental effects but divided those into adipose-specific
and tissue-shared. We then compared the heritability
and non-shared environmental proportions across the
two groups. We found the proportions of heritable CpGs
to be significantly larger in the tissue-shared group than in
the adipose-specific group (Fisher’s p = 0.004-0.04,
Additional file 1: Table S8). In contrast, purely envir-
onmentally driven pDMCs were more tissue-specific
(Fisher’s p = 0.02, Additional file 1: Table S8).
Taken together, genetic variation seems to significantly

constrain inter-tissue epigenetic drift as opposed to non-
shared environmental factors, which impact the methy-
lome in a tissue-specific manner.

The non-CpG methylation landscape
Earlier genome-wide investigations employing multiple
tissues but few replicates per tissue have identified that
non-CpG and CpH methylation comprise up to 25 % of
all cytosine methylation in embryonic stem cells [2] and
induce pluripotent cells [45], decreases upon differenti-
ation, and are near absent in investigated differentiated
cells and tissues including whole blood [2, 45], with ex-
ceptional somatic CpH methylation observed in brain
tissue and placenta [46]. Notably, the genome-wide CpH
methylation in adipose tissue is unknown. Consequently,
we investigated CpH methylation from our adipose and
blood WGBS effort. We restricted our analysis to sites
covered four or more reads applying SNP/blacklist filter-
ing (removal of 4.2 % of Cs). In total we detected 9.63 ×
108 and 1.00 × 109 CpHs in adipose and blood, respect-
ively, with even distribution of CpH coverage on the for-
ward and reverse strands (Additional file 1: Table S9).
CpH methylation was then determined by applying a
stringent detection cut-off of >50 % methylation per
CpH in two or more individuals to exclude random bi-
sulfite conversion artifacts biasing our analysis. Compar-
ing to CpG methylation of >50 % (in the filtered and
variant removed datasets) for each individual, we deter-
mined CpH methylation to comprise on average 9.3 %
(SD = 2.2 %) and 8.6 % (SD = 3.2 %) of total cytosine
methylation in adipose and blood, respectively. Across
the population we identified CpH methylation to impact
in total 1.7 × 106 (0.18 % of all CpHs) and 2.3 × 106

(0.23 %) CpHs in adipose and blood, respectively. We
observed a dinucleotide methylation frequency of CpA >
CpT > CpC—a trend that is consistent with previous
WGBS studies [2, 3, 18, 19], and roughly one third
CpHpG and two thirds CpHpH methylation, with even
overall strand distribution (Additional file 2: Figure
S12A). Genome feature association of CpH methylation
compared to CpH background (all CpH detected in two
or more individuals) revealed in adipose and blood a
1.6-fold to 2.9-fold depletion (Fisher’s p < 1.0 × 10-16) in
regions displaying no or low CpG methylation (CGI,

(See figure on previous page.)
Fig. 5 Characterization of differentially methylated CpGs of non-shared environmental origin (eDMR). a eDMRs identified in adipose were associated
with genes by overlapping with RefSeq-annotated genes (defined as genic regions including 10 kb downstream of the transcription start site);
DeSeq normalized total stranded RNA-seq data were used to determine fold expression changes for RefSeq genes between subcutaneous
adipose tissue and T-cells, monocytes, and B-cells. The number of genes significantly (DeSeq-adjusted p < 0.05) overexpressed in adipose versus
each hematopoietic cell type (>1-fold, >4-fold, >16-fold higher expression in adipose) was determined for eDMR-associated and all RefSeq
genes; the latter to identify dynamic adipose-specific genes. Shown is the ratio of eDMR-associated versus RefSeq genes averaged across the
three hematopoietic cell types corrected for background at indicated fold overexpression levels in adipose. Stars indicate z-score-derived
p-values <0.001. b Same as (a) but comparing eDMR-associated genes overexpressed in hematopoietic cells to adipose. c (top) UCSC-derived scheme
of the HSPA12B RefSeq gene locus and CGIs in the gene region (hg19). (bottom) Zoom into HSPA12B gene region overlapping CGI CpG: 121. For each
twin within MZ2, methylation levels are shown for each detected CpG site. The trendl ine was determined using a moving average (period = 2).
Methylation values highlighted in black in co-twin 1 indicate significant eDMCs (Fisher’s exact test p < 0.05), the associated eDMR is highlighted
in rose. d (top) UCSC-derived scheme of the FAM171A2 RefSeq gene locus and CGIs in the gene region (hg19). (bottom) Zoom into FAM171A2
gene region overlapping CGI CpG: 136. Illustration as in (c)
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TSS200, H3K4me3, H3K4me1) (Additional file 2: Figure
S12B). This indicates that CpH methylation in these
two tissues occurs mainly in the presence of CpG
methylation, and might occur by potentially “erroneous/
unspecific” methylation through the CpG methylation
machinery.
To study this in more detail we investigated the rela-

tionship between CpH methylation and methylation of
nearby CpGs and found for 95 % of methylated CpHs in
adipose and 97 % in blood that the closest CpGs dis-
played ≥50 % methylation, with an average distance be-
tween CpH and CpG of ~150 bp. When restricted to the
closest detected CpG within 10 bp only, these numbers
increased to 99.7 % in adipose and 99.6 % in blood,
underlining the possibility of potential concomitant CpH
methylation in close proximity to CpG methylation.
Next, we sought to characterize the remaining 5.2 % and
3.2 % of CpHs in adipose and blood, respectively, that
were ≥50 % methylated but in proximity to CpGs display-
ing <50 % methylation (highCpH-lowCpG). We found that
40 % of adipose and 59 % blood highCpH-lowCpG methy-
lation was shared between tissues. To investigate whether
highCpH-lowCpG methylation is clustered, we screened
for concomitant methylation within 500 bp around each
site within individuals. Considering ≥3 CpHs as a cluster
we detected 62 % of these sites to be clustered per tissue.
As expected, genomic feature association identified adi-
pose and blood highCpH-lowCpG methylation as enriched
in promoter-associated and enhancer-associated regions
(Fisher’s p < 1.0 × 10-16, Additional file 2: Figure S12C).
However, in both tissues we also observe as >2.5-fold en-
richment in CGI shores (Fisher’s p < 1.0 × 10-16, Additional
file 2: Figure S12C), suggesting that highCpH-lowCpG
methylation might be observed in areas of CpG methyla-
tion transition, i.e., be located between unmethylated and
methylated CpGs and be detected as highCpH-lowCpG as
it is in closer proximity to unmethylated CpGs.

Discussion
By generating full genome single-base resolution methy-
lation maps of 34 adipose and 27 whole blood samples
employing WGBS, we report the first comprehensive
and unbiased analysis of human CpG and CpH methyla-
tion variation at the population level. We identified se-
quence variants at CpGs to underlie the majority of
extreme differential methylation, and when taking this
into account we estimate that ~15–20 % of CpGs are dif-
ferentially methylated in the population. Our estimate of
the dynamic population methylome of a tissue is in line
with earlier studies investigating inter-tissue methylome
variation [15–17]. We also note that, similar to these
cross-tissue epigenome-mapping efforts, population-based
methylome analysis at single-site resolution can be used
to map potentially regulatory elements. More specifically,

we show how dynamic regions map preferentially to
distal-regulatory elements whereas CpGs that are invari-
able in a population are mainly located in promoter-
associated regions.
Our study design with mean genome coverage of ~6–9-

fold mirrors recent suggestions by the NIH Roadmap for
coverage requirements for the detection of functionally
relevant methylation changes [21]; however, leaving minor
differences in methylation levels across individuals
(i.e., <20 %) unidentifiable as the detection of such
small differences in methylation would require ~30–
50-fold sequence coverage. Sequencing to the latter
depth is still cost-prohibitive for large population stud-
ies and, given the relative small proportion of the
methylome being variable across tissues or across indi-
viduals in a given tissue rather than by WGBS, popula-
tion methylation variation might be interrogated by
more cost-efficient targeted approaches once a tissue-
specific methylome variability map is established. In-
deed, we recently implemented a methylome capture
approach based on dynamic sites in adipose identified
in this study (in combination with other regions) that
allows highly efficient and comprehensive interroga-
tion of adipose methylome variability [27]. However,
we also report that all differentially methylated CpGs
in the population are enriched in intergenic regions
and low CpG content regions, as opposed to CpGs that
are variable due to a non-shared environment which
are enriched in genic regions. Thus, when targeting
population-variable “functional sites,” the full scope of
methylation variation remains underappreciated.
We also highlight how population-based low pass

WGBS can be used for powerful discoveries of clustered
regions of differentially methylated CpGs by weighting
within-population variability as well as the within-region
consistency. Applying this new algorithm we identified
population-variable clusters of methylation sites (pDMRs).
Whereas previous approaches investigating tissue-specific
DMRs employed Hidden Markov models, determining
variance across the population followed by segmentation
and selection for highly variable regions [16], or applied a
random effects model incorporating methylation variabil-
ity information derived from pairwise comparisons [15],
our approach additionally incorporates information about
the consistency of a DMR profile across the population.
Because we were dealing with populations, we assumed
that profile inconsistencies would potentially yield false
positive results, hence excluded these. Functional annota-
tion of these pDMR seemed to reflect tissue-specific sig-
natures and again highlights that extension of epigenome
mapping across population samples may provide new in-
sights into regulatory regions, and indeed may be more
useful in the context of phenotypic correlations than
cross-tissue maps because static “tissue-indicators” are
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excluded. For instance, dynamic regions in adipose were
mapped to genes enriched in lipid metabolism pathways,
and to enhancer elements harboring binding site motifs
for TFs involved in adipocyte differentiation, energy me-
tabolism, and lipid synthesis. Interestingly, the most sig-
nificantly enriched TFBS was the motif of PPARγ, a
master regulator of adipogenesis with critical involvement
in insulin sensitivity. Recently, PPARγ activation by the in-
sulin sensitizer (antidiabetic) drug rosiglitazone was
shown to correlate with enhancer RNA (eRNA) expres-
sion almost exclusively at PPARγ-binding sites, inducing
the recruitment of transcriptional co-activators [47]. In
contrast, transcriptional repression was concomitant with
eRNA downregulation at sites devoid of PPARγ but
enriched in other TFs [47]. Our data show population-
variable epigenetic signatures in regulatory mechanism in
PPARγ enhancer regions, with potential impact on inter-
individual response to treatments.
Our study design included not only population-based

samples but also family structure with both MZ and DZ
twins. This allowed us to disentangle genetic and non-
genetic effects (shared and non-shared environment) on
the population methylome. We estimated that >60 % of
DMCs are purely of non-shared environmental origin
(referred to as eDMCs), and shared environment seems
to play only a minor role in shaping the dynamic methy-
lome. We highlight that these eDMCs are significantly
clustered in regions and thus likely of true environmen-
tal origin rather than biological noise in tissue develop-
ment. In fact, by incorporating a differential blood
count, we show that clustered regions of eDMCs are to
a lesser extent cofounded by blood cellular heterogeneity
than the complete set of population DMCs. One of these
non-shared environment regions allowed us to make
links between methylation signatures in blood and
tobacco smoking, thus potentially reflecting the wide
impact this specific exposure has on multiple circu-
lating cell types. We also identified a potential link
between pronounced methylome variation and plate-
let count because one of our eDMRs mapped to
FAM171A2, which has been associated with platelet
count in a large genome-wide association study [44].
This could be an example where both environment
and genetic variants work in concert. We note
though that while platelets have no nuclear genome,
their variation may be correlated with other blood
counts, raising the possibility of a spurious associ-
ation. This highlights the importance of applying
accurate statistical models that adjust for cellular
composition in epigenome-wide association studies
of disease traits when peripheral blood is used as the
discovery tissue.
We also applied the twin structure to study how genetic

and environmental factors impact inter-tissue epigenetic

drift, utilizing the dynamic CpGs shared across both tis-
sues. Here we found that only a minority of CpG genetic
variants had a significant effect in limiting inter-tissue
drift. More strikingly, effects of environmental origin com-
pletely lack such ability, exerting their effect only in a
tissue-specific manner. Thus, as only a minority of methy-
lation changes seems to be stable across tissues, it is of
great importance to conduct epigenome-wide association
studies in tissues closely related to the trait of interest be-
cause otherwise a major fraction of association might not
be captured.
Finally, we also investigated population CpH methyla-

tion in both tissues, identifying 94.8 % of methylated
CpHs in adipose and 96.8 % in blood to be in close
proximity to a methylated CpG. This is in line with a
previous study employing reduced representation bisul-
fite sequencing to investigate CpA methylation across
tissues, which identified that CpH methylation is
spatially correlated with CpG methylation [45]. These
observations hint towards potential CpG methylation
machinery errors facilitating CpH methylation. Closer
investigation of remaining highCpH-lowCpG methyla-
tion identified enrichment in areas of methylation transi-
tion. We did not observe a clearly preferred cytosine
sequence context or an indication of genetic influence
on highCpH-lowCpG methylation. Overall, our observa-
tions do not support (and also do not conclusively ex-
clude) the functional relevance of CpH methylation in
investigated tissues.

Conclusions
Our study highlights the utility of low pass population
WGBS in identifying differentially methylated sites and
regions. Non-shared or unique environmental factors that
act mainly in a tissue-dependent manner were shown to
be the main source of human methylome variation. We
identified that methylation variation occurs mainly outside
promoter regions, thus demonstrating the limitation of
current array-based population methylation studies and
underlining the importance of expanding these studies be-
yond promoter regions, specifically into enhancer regions.
The presented results may also function as a guide to de-
sign targeted panels for cost-effective and comprehensive
evaluation of only variable methylation in investigated tis-
sues. However, we note that when targeting the known
“functional” methylome, the full scope of environmental
variation remains underappreciated.

Methods
Study cohort
Participating in this study were 43 Caucasian female
twins belonging to the TwinsUK/MuTHER cohort [23,
48]. Primary subcutaneous adipose tissue was collected
from 34 individuals, and whole blood samples from 27
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individuals, as described previously [48]. In brief, skin
punch biopsies were taken from a relatively photo-
protected lower abdominal site, and adipose tissue biop-
sies were dissected from the same incision. Peripheral
blood samples were taken simultaneously, and all sam-
ples were stored immediately in liquid nitrogen [48].

Ethics
All sample collection procedures followed were in ac-
cordance with the ethical standards of the St. Thomas’
Research Ethics Committee (REC reference 07/H0802/
84) at St. Thomas’ Hospital in London, and all study
participants provided written informed consent. The
study has also received certification of ethical acceptability
for research involving human subjects by the Faculty of
Medicine Institutional Review Board at McGill University
(IRB Assurance number: FWA00004545). Finally, all
experimental procedures complied with the Helsinki
Declaration.

DNA extraction
Genomic DNA (gDNA) was isolated using the NORGEN
purification kit (Norgen Biotek Corporation, Thorold, ON,
Canada) according to manufacturer’s protocol. All quanti-
fications were carried out using Quant-iT PicoGreen (Life
Technologies, Burlington, ON, Canada).

Array-based methylation profiling
Using the HumanMethylation450 BeadChip (Illumina,
San Diego, CA, USA), methylation profiles of all adipose
tissue samples have previously been generated [14]. In
short, 700 ng gDNA per sample were bisulfite converted
using the EZ-96 DNA Methylation kit (Zymo Research,
Irvine, CA, USA) according to manufacturer’s protocol.
Next, 5 μL of bisulfite-converted DNA were processed
and arrayed on HumanMethylation450 BeadChips as de-
scribed by Illumina. For the remaining samples, methyl-
ated (M) and unmethylated (UM) signal intensities were
quantile normalized for each probe type separately and
β-values were calculated using R as (Mnormalized)/
(UMnormalized +Mnormalized), with β ranging from 0
(no methylation at any allele) to 1 (full methylation at
both alleles) [14]. The BeadChip contains a total of
485,577 probes, of which we discarded probes with ≥90 %
sequence similarity to multiple genomic locations, probes
with sequence variants in the probe binding region (1000
Genomes Phase I integrated variant set release (v3);
probes containing two or more SNPs), and probes located
on the Y chromosome, leaving a total of 385,553 probes
for further analyses.

Whole genome shotgun bisulfite sequencing
WGBS gDNA library preparations were carried out
using the TruSeq DNA Sample Prep Kit v2 (Illumina)

with an added bisulfite conversion step. Briefly, 1–3 μg
of gDNA was fragmented to 300–400 bp peak size using
the focused-ultrasonicator E210 (Covaris, Woburn, MA,
USA) to generate double-stranded DNA with 3′ or 5′
overhangs. Fragment size distribution was controlled on
a Bioanalyzer DNA 1000 Chip (Agilent, Mississauga,
ON, Canada). End repair, sample purification with
AMPure beads (Beckman Coulter, Mississauga, ON,
Canada), adenylation of 3′ ends, and adaptor ligation
was carried out as per Illumina’s recommendations. The
ligation product was cleaned-up by one AMPure purifi-
cation step, the purified DNA was then analyzed on a
Bioanalyzer High Sensitivity DNA Chip (Agilent), and
quantified by PicoGreen before undergoing bisulfite con-
version using the Epitect Fast DNA Bisulfite Kit (Qiagen,
Toronto, ON, Canada) according to manufacturer’s
protocol. Bisulfite-converted DNA was quantified using
OliGreen (Life Technologies), and based on quantity
amplified by four to six cycles of PCR using the Hifi
Uracil + DNA polymerase (Kapa Biosystems, Woburn,
MA, USA) according to manufacturer’s protocol. Ampli-
fied libraries were validated and quantified on Bioanaly-
zer High Sensitivity DNA Chips and underwent 100 bp
paired-end sequencing on Illumina HiSeq2000 or
HiSeq2500 systems. Generated sequencing reads were
aligned to the bisulfite-converted reference genome
using Burrows–Wheeler alignment: (i) clonal reads, (ii)
reads with low mapping quality score (<20), (iii) reads
with >2 % mismatch to converted reference over the
alignment length, (iv) reads mapping on the forward
and reverse strand of the bisulfite-converted genome,
(v) read pairs not mapped at the expected distance
based on library insert size, and (vi) read pairs that
mapped in the wrong direction were removed as de-
scribed by Johnson et al. [49]. To exclude sample mix-
ups we determined variants using Bis-SNP [50] and
compared them to available microarray or sequencing-
derived genotype information of the same samples. Fur-
ther, we overlapped loci highly covered in our WGBS
data with DAC Blacklisted Regions (DBRs) and Duke
Excluded Regions (DERs) generated for the ENCODE
project (http://hgwdev.cse.ucsc.edu/cgi-bin/hgFileUi?db=
hg19&g=wgEncodeMapability) [24]. Both DBRs and
DERs comprise blacklisted regions in the human gen-
ome that yield artifactually high read counts across tis-
sues and cell lines in next-generation sequencing and
were defined based on DNaseI, FAIRE, and ChIP se-
quencing experiments. Overall, the tendency of CpGs to
overlap with blacklisted regions increased irrespective
of tissue with (i) increasing coverage, i.e., all loci cov-
ered more than their sample-specific coverage plus 50-
fold the SD of coverage in at least one individual overlap
blacklisted regions; and (ii) increasing number of indi-
viduals in whom loci are detected as highly covered, i.e.,

Busche et al. Genome Biology  (2015) 16:290 Page 14 of 18

http://hgwdev.cse.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://hgwdev.cse.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability


loci, which were detected in five individuals being cov-
ered more than average individual-specific coverage
plus 3–4-fold the SD of coverage had a >60 % probabil-
ity to overlap blacklisted regions (Additional file 2:
Figure S13). To exclude these potentially artifactual re-
gions from downstream analyses we removed DBR and
DER blacklisted regions, covering in total 19,048,164 bp
on autosomes and chromosome X. Additionally, we
determined a study-specific threshold excluding loci
covered more than the sample-specific coverage plus
1.5-fold the SD of coverage in at least two samples,
thereby removing 17,893 loci from further analysis. To
remove confounding sequence variants we filtered for
SNPs annotated in dbSNP137 [25].

RNA sequencing
RNA sequencing has been described previously [27]. In
short, subcutaneous AT was available for four obese in-
dividuals undergoing bariatric surgery, and B cells, T
cells, and monocytes were available from four healthy
individuals (Uppsala Blood Transfusion Center, Upp-
sala University Hospital, Sweden). RNA was isolated
from adipocyte cells extracted from AT [51, 52] and
hematopoietic cells using the miRNeasy Mini Kit
(Qiagen) according to manufacturer’s protocol. We
used as input 500 ng RNA (RNA integrity number > 7)
for library preparations using the Illumina TruSeq
Stranded Total RNA Sample preparation kit according
to manufacturer's protocol. Final libraries were quality
controlled on a Bioanalyzer and underwent 100 bp
paired-end sequencing on the Illumina HiSeq2000 sys-
tem. Generated raw reads were filtered for quality
(phred33 ≥ 30) and length (n ≥ 32), and adapter se-
quences were removed using Trimmomatic v. 0.32
[53]. Reads passing filters were then aligned to the hu-
man reference (hg19) using TopHat v.2.0.10 [54] and
bowtie v.2.1.0 [55]. UCSC gene counts were obtained
using htseq-count v.0.6.1 (http://www-huber.embl.de/
users/anders/HTSeq), and differential expression ana-
lysis was carried out using DESeq [56].

Identification of unmethylated and low-methylated regions
Filtered variant-free methylation data for all individuals
were merged for each tissue, keeping only sites detected
in three or more individuals (equals ≥12-fold coverage
per site). Low-methylated regions and unmethylated re-
gions were identified using the R/Bioconductor package
MethylSeekR [26]. Briefly, a cutoff method was utilized
wherein unmethylated and low-methylated regions were
predicted at single-base resolution as regions of con-
secutive CpGs with methylation statuses under a set
level. We applied default settings (methylation threshold
of 50 % and FDR of 5 %). PMD filtering was not re-
quired because the alpha distribution was polarized.

Region definitions and genomic feature association
NCBI reference sequence gene and CGI annotations
(hg19) were downloaded from UCSC on 10 September
2013. Regions were defined as (i) CGI-associated regions
to be located in a CGI, a CGI shore 2 kb upstream
(north) or 2 kb downstream (south) of a CGI, a CGI
shelf 2 kb upstream (north) or 2 kb downstream (south)
of a CGI shore, or—if in none of the above—to be located
in open sea (Additional file 2: Figure S14A); (ii) gene-
associated regions to be located 201–1500 bp upstream of
the TSS (TSS1500), 200 bp upstream of the TSS (TSS200),
in the 5′UTR, exon 1, any of the remaining exonic re-
gions, intronic regions, 3′UTR, or—if in none of
above—to be located in intergenic regions (Additional file
2: Figure S14B); or (iii) H3K4me3 and H3K4me1 overlap-
ping regions derived from ChIP-seq data generated by the
NIH Roadmap Epigenomics Project [28]. ChIP-seq data
analysis was carried out as described previously [14]. In
short, aligned H3K4me1, H3K4me3, and input ChIP-seq
reads (.BAM files) generated for adipose tissue from five
independent donors to the NIH Roadmap Epigenomics
Project were downloaded from the Gene Expression
Omnibus repository accession numbers [GSM621425,
GSM669908, GSM669975, GSM670045, and GSM772757]
for H3K4me1; [GSM621435, GSM669925, GSM669988,
GSM669998, and GSM670041] for H3K4me3; and
[GSM621401, GSM669934, GSM669940, GSM669984,
and GSM670043] for the ChIP-seq input files. For data
processing, H3K4me1 and H3K4me3 data as well as
the input data were divided into 100 bp bins, and the
number of reads within each bin was counted. Normal-
ized signals intensities were generated by normalizing
the counts per bin to total number of reads, and nor-
malized signal intensities of input were subtracted
from ChIP-seq bin data. Data for each mark were then
ranked according to normalized signal intensities, and
the top 1 % (or other threshold as indicated in text)
bins per mark were kept for further analyses. Top-
ranked bins were further filtered, keeping only those
that were present in at least three individuals for either
mark. In genome feature associations, only H3K4me3
mark bins within 1 kb of the TSS of known RefSeq
transcripts were considered for promoter mapping,
and enhancers were identified using the top 1 %
H3K4me1 mark, discarding all data additionally overlap-
ping the H3K4me3 mark. Genomic feature associations
were carried out in bedtools [57] and R [58], applying
standard functions and the “GenomicRanges” package.

Population differentially methylated regions
We determined pDMRs by weighting the variance of CpG
methylation across individuals as well as consistency of
CpGs within the region (Additional file 2: Figure S15). We
removed CpGs covered by fewer than three individuals
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and calculated SD values for the remaining CpGs across
the population. We then scanned the methylomes with a
sliding window of 500 bp length, discarding regions with
single CpGs as well as regions that were subsets of bigger
regions. We further calculated the average SD values and
the consistency scores for each CpG region. The
consistency score for each CpG region was defined as
follows:

consistency ¼ 1
m

Xm

i¼1

rj;

where m is the number of individuals covering this re-
gion, is the Spearman correlation between the methyla-
tion profile of each individual (i) and the average
methylation profile across all individuals of the consid-
ered CpG region. Final pDMRs were selected to include
the top 10 % (top 20 % or top 25 %) of the above calcu-
lated CpG regions, filtered for regions with fewer than
three CpGs, and the putative intervals merged into non-
overlapping regions (with zero-base-pair-merge).

Statistical data analysis
Data analyses were carried out in R [58] applying stand-
ard functions and the “GenomicRanges” package. ICC
values for pDMCs were calculated using the R package
irr (v0.84) and only ICCs obtained for both MZ and DZ
pairs were kept. Twin-based DNA methylation heritabil-
ities (additive genetic effect) were estimated as twice the
difference of the ICC between MZ and DZ twins. Shared
environmental effects were estimated by subtracting the
heritability estimate from the MZ ICC.

Transcription factor binding site motif analysis
TFBS motif analysis was carried out using the Homer
software [33] applying default settings. Adipose-specific
low-pDMRs overlapping the top 1 % of binned ranked
H3K4me1 data (see above) were used as input, adipose
low-pDMRs not overlapping the top 10 % of binned
ranked H3K4me1 data were used as background (4,266
regions in total). TFBS motif consensus sequences were
generated using the STAMP software [59] applying default
settings; only forward consensus sequences are shown.

Ingenuity pathway analysis
We performed core analyses considering direct and in-
direct relationships, including endogenous chemicals,
and set thresholds to a maximum of 35 molecules per
network and 25 networks per analysis. We included all
available data sources, selected for the human species,
tissue and primary cells, and experimentally observed
molecules and/or relationships only, and selected strin-
gent filters when applicable.

Availability of supporting data
The MuTHER 450 K methylation data has been deposited
in the ArrayExpress database (www.ebi.ac.uk/arrayex-
press) previously, accession number E-MTAB-1866.
Processed WGBS data (minimum coverage two reads

per strand and ≤ 20 % methylation difference between
strands, SNPs/blacklists removed, for autosomes and
chrX) for all adipose and blood samples can be visualized
in the UCSC Genome Browser, (http://genome.ucsc.edu)
using the Track Hub Data feature (“McGill Population
Methylome”) by adding the following URL to “My Hubs”:
http://hubs.hpc.mcgill.ca/~elin/McGill_TwinsUK.popula-
tion.WGBS.hub.txt. All unfiltered processed WGBS data
are available in the ArrayExpress database, accession num-
ber E-MTAB-3549. Raw reads from the WGBS are depos-
ited in the European Genome-phenome Archive (EGA)
and available after approval by the Data Access Committee
(EGAC00001000402) designated to the study (https://
www.ebi.ac.uk/ega/home) using the accession number
EGAS00001001569.

Additional files

Additional file 1: Table S1. Sequencing statistics summary. Table S2.
Genome feature association of filtered variant-removed CpGs for adipose
and blood. Table S3. Characteristics of unmethylated (UMR) and
low-methylated regions (LMR) in adipose and blood. Table S4. Number
of invariable sites in filtered datasets at various minimum coverages.
Table S5. pDMR statistics in adipose and blood. Table S6. Result of the
TFBS motif analysis using the HOMER software. Table S7. MZ2 vs. MZ3-
derived significant DMCs overlapping known smoking methylation loci.
Table S8. Genetic and non-genetic effect of CpG methylation. Table S9.
Overall detected CpH methylation per tissue and strand. (XLSX 56 kb)

Additional file 2: Figure S1. Number of detected CpG-sites per mean
genome coverage. Figure S2. Overall CpG-site methylation levels. Figure
S3. DNA methylation footprint in adipose tissue and blood. Figure S4.
Invariable CpG tissue distribution and genomic feature association.
Figure S5. Invariable CpG tissue distribution and genomic feature association
for sites detected in ≥5 individuals. Figure S6. Invariable CpG tissue
distribution and genomic feature association for sites detected in ≥10
individuals. Figure S7. Differential methylation level distribution. Figure S8.
Genomic feature association of pDMCs. Figure S9. Genomic feature
association of pDMRs. Figure S10. Genome feature association of
DMCs of genetic vs. environmental origin. Figure S11. Proportion of
eDMCs on total DMCs and eDMC genomic feature association.
Figure S12. CpH methylation within sequence context. Figure S13.
Overlap of methylation data with Encode blacklisted regions.
Figure S14. CpG-site annotation scheme. Figure S15. pDMR definition.
Additional Figure legends. (ZIP 1855 kb)
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