
For Review
 O

nly

 

 

 

 

 

 

Procuring load curtailment from local customers under 

uncertainty 
 

 

Journal: Philosophical Transactions A 

Manuscript ID RSTA-2016-0311.R2 

Article Type: Research 

Date Submitted by the Author: 17-May-2017 

Complete List of Authors: Mijatovic, Aleksandar; King's College London, Mathematics; The Alan 
Turing Institute 
Moriarty, John; Queen Mary University of London, School of Mathematical 
Sciences 
Vogrinc, Jure; Imperial College London, Mathematics 

Issue Code (this should have 

already been entered but 
please contact the Editorial 
Office if it is not present): 

ENERGY-FRO 

Subject: 
Power and energy systems < ENGINEERING AND TECHNOLOGY, Statistics 
< MATHEMATICS 

Keywords: Demand side response, uncertainty, stochastic optimisation 

  

Note: The following files were submitted by the author for peer review, but cannot be converted to 
PDF.  You must view these files (e.g. movies) online. 

MijatovicMoriartyVogrinc.tex 

 

 

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159075697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Review
 O

nly

rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Power systems engineering, applied

probability

Keywords:

Demand side response, uncertainty,

stochastic optimisation

Author for correspondence:

Jure Vogrinc

e-mail: j.vogrinc13@imperial.ac.uk

Procuring load curtailment

from local customers under

uncertainty

Aleksandar Mijatović1,2, John Moriarty3
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Demand Side Response (DSR) provides a flexible

approach to managing constrained power network

assets. This is valuable if future asset utilisation is

uncertain. However there may be uncertainty over

the process of procurement of DSR from customers.

In this context we combine probabilistic modelling,

simulation and optimisation to identify economically

optimal procurement policies from heterogeneous

customers local to the asset, under chance constraints

on the adequacy of the procured DSR. Mathematically

this gives rise to a search over permutations, and we

provide an illustrative example implementation and

case study.

1. Frequently used notation

Ai Availability payment to i-th customer

C0 Capacity of the constrained asset

Ci DSR capacity added by i-th customer

D Utilisation at time 1 (without DSR)

Ei Exercise payment to i-th customer at time 1

H Minimum threshold for DSR procurement

M Number of utilisation scenarios

N Number of qualifying DSR customers

pi Probability that i-th customer passes the

acceptance test

β Acceptance test cost

γ Value of lost load

µi Mean of utilisation in i-th scenario

ρ Permutation (ordering) of N objects

σi Standard deviation of utilisation in i-th

scenario
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2. Introduction

(a) Demand side response

Demand side response (DSR) may be defined as “actions by consumers to change the amount

of electricity they take off the grid at particular times in response to a signal” [20]. As described

in [25], DSR offers potential benefits across the entire electricity system, including generation,

transmission, distribution and consumption. At the level of generation, DSR may allow a lower

margin of installed generation capacity to be maintained relative to the system maximum

demand. DSR may also potentially be deployed to increase the level of utilisation in transmission

networks, to manage distribution network constraints of various kinds, or to help maintain the

balance between generation and load in systems with significant renewable penetration.

According to the UK energy market regulator Ofgem [19] three main methods are used to

facilitate DSR:

(i) Tariffs, including time of use pricing; critical peak pricing, where the peak periods and

associated prices are communicated to customers a short time before they begin; and

real-time pricing,

(ii) Automated devices such as ‘smart’ appliances which respond either to changing network

conditions or to price signals. A related approach is demand bidding whereby customers

offer demand response via an online platform [21], for example by scheduling their

appliances intelligently,

(iii) Contracts with industrial and commercial customers to curtail load. This approach

includes load curtailment at pre-agreed times; interruptible contracts, where the utility

may shed customer load a limited number of times; or the direct control of loads, whereby

utility companies have free access to customer processes.

Method (iii) is our focus in this paper.

The first DSR programmes emerged following the energy crises of the 1970s [27]. Nevertheless,

neither the operational nor the planning aspects of DSR can yet be considered mature subjects.

A particular challenge has been to value the benefits of flexible solutions such as DSR under

uncertainty, and a recent contribution in this direction is [24]. In the latter paper real options

analysis is used to value DSR alongside capital network investment on a consistent basis for

planning purposes, so that an informed choice may be made between the two. In particular the

authors highlight the potentially high value of DSR under uncertain growth in peak load, as it

offers to defer capital investment for a number of years and thus potentially avoid the stranding

of assets in scenarios of subsequent low peak demand growth.

We focus on the application of DSR by a distribution network operator (DNO) through load

curtailment, as described in (iii) above. The goal is to manage the maximum utilisation of a

particular cable or transformer, in order to defer or avoid a capital-intensive reinforcement of

this asset. The strategic decision to use DSR rather than reinforcement is assumed to have already

been made. For clarity we use the following terminology:

• A qualifying customer is an industrial or commercial customer who:

– is served by the constrained asset, and

– has sufficiently high demand, both to make a significant DSR contribution to and

justify the fixed automation costs involved in joining the DSR programme.

• A contracted customer is a qualifying customer who passes an acceptance test, and is thus

assumed to enter the DSR programme. This assessment represents the outcome of a test

procedure, whereby both the utility and customer verify the suitability of the customer’s

load for curtailment within the parameters of the DSR programme.
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We therefore do not assume that each qualifying customer will participate in the DSR scheme

if invited. Instead an acceptance test is carried out to determine whether both the utility and

the customer are willing to proceed (a real-world example of acceptance testing, although in a

different DSR scheme, is described in [22]). We assume that each acceptance test carries a fixed

cost β for the utility, and so the assessments occur only after the customer is invited to join the

programme. Example reasons for failure of the acceptance test include unacceptable disruption

caused to the customer’s business by load curtailment; technical unsuitability of the customer’s

devices or control equipment; and loads which may not be available for DSR when needed.

Since it is not known a priori which qualifying customers will pass, we model the outcome of

the acceptance test probabilistically.

This study is timely since DSR programmes are now entering the ‘business as usual’

practice of both transmission system and distribution network operators. National Grid, the

UK transmission system operator, has several current DSR programmes for large customers.

These include frequency response, reserve services and the triad system for managing peak

load [19]. A triad is defined to be the three half-hour periods in each year at which demand in

the transmission system is highest. Demand is financially penalised during the these periods,

incentivising customers to reduce consumption. Since the precise timing of demand peaks, and

hence the triad, can only be identified at the end of the year, suppliers offer triad prediction

services. With an opposite aim National Grid has also recently introduced Demand Turn Up,

a trial ‘footroom’ DSR programme which incentivises large customers to increase demand (or

reduce generation) at times when there is an excess of generation, typically overnight and

on weekend afternoons. An example using direct load control is the ‘managed connections’

programme from UK DNO Electricity North West Ltd [14]. This programme offers potentially

cheaper and quicker connections for new distributed generation by installing direct control of

the generation export, which may be activated during network faults. In this way traditional

network reinforcement can be deferred, thus potentially avoiding the associated delay and cost.

The company has also recently developed a tool to compare specific investment projects at the

grid and primary level in the framework of real options analysis, based on [24]. The latter tool has

recently been used to identify the managed connections programme as a preferable alternative to

a more capital intensive, specific network reinforcement [15].

In contrast to the larger DSR schemes of transmission system operators, or the online platforms

used for demand bidding, in this paper we address local schemes run by DNOs with no more

than tens of qualifying customers. It is assumed that the DNO has had initial contact with

each qualifying customer and thus knows both their level of directly controllable load and the

compensation they require to join the programme. Clearly, insufficient DSR procurement by the

DNO would carry the risk of lost load, while excessive or inefficient procurement would result in

unnecessarily high costs to be borne by the utility and ultimately by its customers. Uncertainty

in future asset utilisation is also a material consideration, since in our model procurement takes

place one year in advance. This is in order to take account of the ‘lead time’ required both for

procurement and to commission the necessary communications and automation equipment. Our

aim is therefore to address the problem of optimally procuring DSR from qualifying customers,

while also taking into account uncertainty in both its procurement and its provision.

To date the literature on DSR operation has been dominated by the study of price responsive

demand, with recent examples including its impact on distribution networks [16] and on the

scheduling of generation [28]. In contrast there has been relatively little academic study of

load curtailment, and this has been focused on aggregating response from many customers.

An approach using distributed control is studied in [7], while an algorithm inspired by packet

switching in digital communications networks has been explored in [2]. The use of thousands

of small loads such as water heaters or air conditioners is studied in [13], and [23] presents a

randomised algorithmic approach potentially suitable for controlling millions of appliances. In

contrast the setting for the present paper is the direct control of small numbers of relatively large

loads, in order to relieve a specific constrained network asset. Since in this context the operational
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control problem should be straightforward, we focus instead on the question of optimal customer

selection given knowledge of their individual controllable loads and their bids for participation

in the DSR programme.

(b) Problem setting and scope

The problem setting, which is identical to that of [24], is as follows. A specific distribution network

asset has become constrained by its maximum utilisation and one possible solution is a relatively

costly reinforcement of the asset. The DNO considers a feasible and lower-cost alternative to be

the direct control of load from selected customers served by the asset. A receiver and control

system is installed at each participating customer site, enabling communication from the DNO

and automated load control. In return for a reduced electricity bill the DNO is then able to either

cycle or shut off an appliance for a certain amount of time, a certain number of times per year,

in order to relieve the network asset when its level of utilisation is highest. Since we consider

only the utilisation of a specific cable or transformer in the distribution network, we make the

approximation that network effects are not modelled.

Our probabilistic modelling of the procurement process, which was outlined above, will

have significant consequences for the underlying optimisation problem which is formulated

mathematically in Section 2(c) below and solved in Section 4. In the absence of uncertainty over

acceptance testing, the problem reduces to one of integer programming, in which each qualifying

customer is simply selected or not for the programme. However if each customer’s ability to

participate is uncertain then any given solution to this integer programming problem may not

be implementable in practice, since one or more of the desired customers may not pass the

acceptance test. The solution we propose is to create

• an ordered ‘wish list’, denoted by ρ, which may be interpreted as a ranking of the

qualifying customers in decreasing order of their desirability to the DNO, together with

• a threshold, denoted by H , which indicates when the desired total amount of DSR has been

contracted and thus the procurement process would stop. That is, once this threshold has

been met, the process of inviting customers and acceptance testing stops.

Our chosen objective is therefore to identify an optimal order ρ in which qualifying customers

are invited to participate. This will necessitate a particular mathematical formulation which we

provide in the next section. Finally we note that our modelling of future utilisation at time 1,

which uses probability weighted scenarios plus added noise, is the same as that used in [24].

(c) Overview of the modelling and optimisation paradigms

Our study aims to perform an economic optimisation over a particularly large and complex

parameter space, with a two-stage model of uncertainty and a chance constraint on the loss of

load. In this section we discuss the modelling and optimisation issues that arise in this context and

give an overview of our approach for tackling them (for the detailed descriptions see Sections 3

and 4 below).

Let N be the number of qualifying customers and let ρ represent an arbitrary (but fixed)

order in which they are to be approached to join the DSR programme. Mathematically ρ is

therefore a permutation of the set {1, . . . , N}, where the first element of the permutation, written

ρ(1), denotes the first customer to be approached, and so on for ρ(2), etc. We write SN for the

permutation group, which consists of all possible such permutations. In contrast the problem of

choosing an optimal subset (which, as discussed, is more appropriate in the case of a deterministic

procurement process) would correspond to choosing an element of the power set. The large size

of the considered parameter space can be appreciated by taking N = 20 qualifying customers,

when the number of possible permutations in SN is 20!≈ 2× 1018. In contrast the number of

subsets in the power set is 220 ≈ 1× 106. Identifying the optimal permutation can therefore
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be computationally prohibitive in the context of integer programming techniques, even for a

relatively small number of customers N . The problem is further complicated by the necessity to

evaluate the performance of each candidate permutation ρ over a detailed model of uncertainty.

Put differently, this issue arises because the objective function in the optimisation is given as an

expectation that cannot be computed in closed form for any given permutation ρ.

We are hence faced with a global optimisation problem over a very large finite set, making an

exhaustive search infeasible. A deterministic local search approach would require a predefined

notion of a neighbourhood of a permutation ρ in SN and would consist of optimising over the

neighbourhood of ρ in SN . This would clearly lead to a local minimum at best. Furthermore, the

resulting permutation would depend heavily on the specific choice of the neighbourhood of the

starting permutation ρ. A general approach to global optimisation problems over very large finite

(and infinite) sets, capable of circumventing these difficulties, is known as stochastic optimisation,

see e.g. [9]. In our context, the underlying idea behind this class of methods can be described as

follows: choose randomly a new permutation ρ′ and use a probabilistic criterion, based on the

values the objective function at ρ and ρ′, to decide whether to move to ρ′. This stochastic search

is not exhaustive and is hence feasible, as long as it converges rather quickly to an acceptable

solution, sufficiently close to a global minimum.

A paradigm known as Simulated Annealing (SA) encapsulates the idea of a non-exhaustive

stochastic search, generalising for example stochastic gradient and other stochastic methods. The

SA paradigm is crucial in many areas of application [17,18]. Due to the general nature of SA, its

definition is broad (see Section 4 below) and requires a development of an optimisation algorithm

in each specific application separately. More specifically, our approach to this computational

challenge will be two-fold: to simulate outcomes in a Monte Carlo fashion as described in

Section 3, and to incorporate this within the SA paradigm for heuristic search, as described in

Section 4. In this way we seek to identify an economically approximately optimal permutation

ρ∈ SN . However it should be noted that the specific choice of the SA algorithm is for the sake

of concreteness in our running example and case study, and in principle other versions of the

algorithm, based on a heuristic stochastic search paradigm, could be used.

Given a candidate permutation ρ the two time points in our probabilistic simulation model,

namely DSR procurement at time 0 and then DSR provision at time 1, are described in Table 1.

The sum of the DNO’s simulated costs for time 0 and time 1 is then calculated by adding the

Table 1. The two stages: procurement and provision

Time 0 Procurement is simulated by assessing the qualifying customers in the order

specified by ρ, flipping a biased coin each time to determine the outcome of

the acceptance test. Procurement stops when either the threshold H has been

reached or when all customers have been assessed, whichever is earlier.

Time 1 Provision is simulated at a single time point in the year following procurement by

simulating the level of utilisation and using the procured DSR in a least cost

fashion to relieve the constrained asset. If insufficient DSR has been procured

at time 0 this results in involuntary load shedding.

costs of the DSR programme given in Section 3(b) to the value of any load shed involuntarily at

time 1 at a flat rate γ per MVA of load unserved. We note an interplay between the parameters γ

and H . The role of γ is to make the model of DNO costs more complete by taking account of the

value of lost load. In the absence of a constraint on the loss of load probability, γ could potentially

therefore cause the economic optimisation to trade off a greater loss of load probability against a

lower cost of procurement and provision. However the threshold H provides a guarantee that a

certain minimum level of DSR will be procured (if available). Thus unless there is a problem with

the availability of directly controllable load, this threshold H places a chance constraint on the

loss of load at time 1 by ensuring adequate procurement at time 0. Further, as noted in Table 1, the
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threshold H also has the practical purpose of indicating when the procurement process should

stop.

(d) Contribution

In this paper we address the procurement and provision of DSR through load curtailment from

customers local to a specific constrained network asset, taking account of uncertainty at both

stages. In particular we

• provide a probabilistic problem formulation,
• propose a stochastic optimisation procedure in the framework of simulated annealing,
• develop the details of an algorithmic implementation, and
• discuss particular considerations arising from case study results.

3. Simulation model

As described above our simulation model has two parts, namely contracting and then operation.

Before describing these parts we first clarify the stochastic model used for utilisation and the

contract structure assumed in the DSR programme. This section concludes with a description of

the optimisation problem which is based on the simulation model.

(a) Utilisation scenarios

We assume that the DNO’s model of the future utilisation at time 1 is expressed using a number

M of probability weighted scenarios. These scenarios are typically chosen by expert judgement

and may for instance correspond to different economic scenarios. Particularly if the number of

scenarios is small, there may remain significant uncertainty over utilisation within each scenario.

To take account of this, and hence relate the scenarios more closely to the real world, an

appropriate amount of random noise may be added in each scenario. Indeed by the use of a

continuous distribution for the noise model we in principle allow any surrounding value to be

simulated. This has the added benefit of avoiding sensitivity to the use of ‘round numbers’ or

other particular values in the scenario predictions. In our running example and case study we

choose the (zero-mean) Normal distribution for this noise. Although this specific choice is merely

for concreteness in the paper, it is a well-known symmetric distribution with a single parameter

(the standard deviation) and so would be a practical and transparent choice in practice. In this case

the overall distribution of future utilisation across all scenarios is a Gaussian mixture distribution.

We use the following notation. The considered asset’s capacity is denoted by C0. For 1≤ i≤M ,

scenario i predicts a level µi of utilisation and has probability weight qi. The utilisation in this

scenario is simulated as a normally distributed random variable with mean µi and standard

deviation σi. We denote by D a random variable with the corresponding Gaussian mixture

distribution.

(b) DSR programme costs

The cost structure we assume for DSR procurement is as follows. Firstly there is a cost β for each

acceptance test, which accounts for the DNO’s resources spent in conducting each test. Secondly,

provided that the invited customer passes the acceptance test, an availability payment accounts

for fixed compensation paid, together with any costs arising from the installation of necessary

communications and automation equipment. Finally, an additional exercise payment is made at

time 1 to each customer who is required in the event to provide demand response.

Our notation is as follows. Labelling the potential DSR customers in a list from 1 to N , we

attribute to the i-th customer the following data:

• Ci the DSR capacity added by a successful contract with the i-th customer;
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• Ai the availability payment;
• Ei the exercise payment;
• pi the probability that the i-th customer passes the acceptance test, with 0< pi ≤ 1.

These quantities are assumed to be known at time 0. The plausibility of this set-up, as well

as alternatives to it, are discussed in Section 6. For concreteness we will take the desired total

capacity (that is, the asset’s capacity C0 plus any contracted DSR) as H =max1≤i≤M (µi + 3σi).

Provided that it is met at time 0 this target ensures that, after DSR, the utilisation at time 1 will

not exceed the asset’s capacity with probability more than 99.7% under our model.

Running example, Part 1. We will develop the following example, which is based in part on [24].

Capacities are measured in MVA and costs in thousands of GBP.

• Asset capacity: C0 = 15.45;
• desired total capacity threshold H = 16.15;
• cost of load unserved per MVA: γ = 5000;
• cost of acceptance test: β = 3;
• number of scenarios: 2;
• predicted utilisation means: µ1 = 16.0, µ2 = 15.8;
• predicted utilisation standard deviations: σ1 = 0.05, σ2 = 0.1;
• scenario weights: q1 = 0.4, q2 = 0.6.

There are 5 qualifying customers and, for convenience, we specify their characteristics using the following

vectors C, A, E and p. The i-th customer, if approached, will pass the acceptance test with probability

pi = p[i], and, if successful, will enter a contract offering Ci =C[i] of DSR capacity in exchange for an

availability payment of Ai =A[i] and additional exercise payment of Ei =E[i] if its load is curtailed at

time 1. We take

• C = [0.6, 0.5, 0.34, 0.3, 0.2];
• A= [60, 45, 30, 24, 15];
• E = [20, 20, 12, 12, 8];
• p= [0.7, 0.6, 0.8, 0.6, 0.7].

(c) Time 0: Procurement

Since future utilisation is uncertain, there is a risk that the DSR contracts entered at time 0 will

not provide sufficient DSR capacity to bring utilisation within capacity at time 1. As discussed

above, this risk may be constrained by a conservative choice for H . However in order to preserve

the generality of the model, and to account for the economic cost of load unserved, we allow this

event to be explicitly penalised by associating a cost γ per MVA to the load unserved at time 1.

Next we describe the model of the contracts entered at time 0.

The fixed cost β for each acceptance test (which has been introduced above) is incurred

irrespective of the test outcome. Independently of the order ρ and irrespective of whether the

customer is approached, we associate with each potential customer i a Bernoulli random variable

Bi (that is, a biased coin toss) with parameter pi. The role of Bi is to represent the outcome

of the contract negotiation with the i-th customer at time 0, should that negotiation take place: a

successful contract being indicated by the value Bi = 1 (which has probability pi), while the value

Bi = 0 corresponds to no contract being entered with that customer.

The network operator stops approaching customers when either its target amount of DSR

capacity has been contracted or, failing this, when all customers have been approached. After

k customers have been approached, the capacity contribution from DSR at time 1 is equal to

k
∑

i=1

Cρ(i)Bρ(i), (3.1)
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which is random since it depends on the realisation of the indicators B= (B1, B2, . . . ) of success

in contract negotiation. Suppose that the target is to contract sufficient DSR that a load of H

(measured in MVA) can be brought within capacity at time 1. Then from (3.1), the total number

of customers who are approached at time 0 will be given by T , the smallest positive integer less

than N such that CT1 ≥H , where

Ck1 = C0 +

k
∑

i=1

Cρ(i)Bρ(i),

or alternatively if CN1 <H then T =N . Thus T depends on B (so that we write T = T (B)). Denote

by Lρ(B) the subset of {1, 2, . . . , N} containing all the customers who have been approached,

tested and successfully contracted (note that |Lρ(B)| ≤ T (B)).

(d) Time 1: Provision

Next we describe the operational model, which specifies the manner in which the DSR contracts

agreed at time 0 are used at time 1. Given the set of contracted customers Lρ(B) and given also

the realisation of the utilisation level D at time 1, the network operator is faced with the task of

selecting the subset K =Kρ(B, D)⊂Lρ(B) of customers from whom demand response is to be

requested in return for any agreed exercise payments. The total cost of the DSR scheme to the

network operator in this model is thus

V K
ρ (B, D) = βT (B) +

∑

i∈Lρ(B)

Ai +
∑

i∈K

Ei + γ
(

D −
∑

i∈K

Ci − C0

)+
,

where the first term on the right hand side is the total cost of acceptance testing for the T

customers approached at time 0, the second accounts for the fixed payments under the agreed

contracts, the third sums the exercise payments for the contracts exercised at time 1, and the

fourth term penalises the load not served (here (a)+ equals a when a is positive and equals 0

otherwise). Thus if K is chosen on a least cost basis, the corresponding total cost is

Vρ(B, D) = βT (B) +
∑

i∈Lρ(B)

Ai + min
K⊆Lρ(B)





∑

i∈K

Ei + γ
(

D −
∑

i∈K

Ci − C0

)+



 . (3.2)

Running example, Part 2. Take for instance the permutation ρ= (5, 4, 3, 2, 1). Suppose that at time 0

the realisations of the Bernoulli random variables are B= [1, 1, 1, 0, 1], and that at time 1 the realised load

is D= 15.78.

We have H = 16.15 and the first customer to be approached is number 5, since ρ(1) = 5. This contract

is successfully negotiated since B5 = 1. The resulting capacity is C11 = 15.65 since C0 = 15.45 and C[5] =

0.2. The next negotiation is with customer 4 (ρ(2) = 4) and is not successful (B4 = 0), so that C21 =

15.65. This is followed by successful contracting with customers 3 and 2 (B3 =B2 = 1), bringing capacity

successively to C31 = 15.99 and C41 = 16.49. At this point the threshold H is exceeded so the negotiation of

contracts concludes and customer ρ(5) = 1 is not approached. The set of contracted customers is Lρ(B) =

{2, 3, 5} and the cost of acceptance testing plus the fixed contractual payments equals 4 ∗ 3 + (15 + 30 +

45) = 102.

A search over the possible subsets K ⊆Lρ(B) reveals that the economic optimum at time 1 is to request

capacity from customer 3 only, thus reaching total capacity 15.79 and exceeding the required level D=

15.78. The associated operational cost is then 12, and the total cost equals Vρ(B, D) = 102 + 12= 114.

(e) Optimisation problem

We may now state the main optimisation problem as follows:
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Goal: Find ρ, a permutation of {1, . . . , N} that minimises E [Vρ(B, D)].

Here E denotes the mathematical expectation over the distributions of B and D. The goal is

therefore to find a permutation ρ giving the lowest average cost for the DSR scheme. This

optimisation problem is challenging for the following reasons:

(i) The cost Vρ(B, D) depends in a non-linear fashion on the realisation of the random

quantities B and D. Thus its expectation cannot in general be calculated explicitly, and

it may also be challenging to approximate deterministically.

(ii) The permutation space (that is, the set of all permutations ρ of N customers) is a large

discrete set with no convexity structure. In addition its size grows rapidly with N , so

that an exhaustive search over this space becomes computationally intractable even for

modest values of N . For example in the case study below with 9 customers there are

362,880 (that is, 9 factorial) permutations, while with 20 customers there are more than

2× 1018 permutations over which to search.

In contrast the approximation of the expectation E [Vρ(B, D)] for a given permutation ρ using

simulations is relatively computationally inexpensive. We will therefore employ an approximate

stochastic optimisation method, as follows. Beginning with an arbitrary permutation ρ we may

propose another randomly chosen permutation, approximate its expected cost via simulation,

and compare this to the approximate cost of the present permutation ρ. A random walk may then

be performed over the space of all possible permutations, by moving to the new permutation

if its approximate expected cost is lower, or staying at the present permtuation if it is higher.

As it progresses, this random walk identifies permutations with progressively lower expected

cost. It may be possible to accelerate this progress by proposing the next permutation not

entirely randomly but instead in a guided fashion, choosing randomly among “neighbouring

permutations", provided we can give a suitable meaning to this concept.

We now discuss the evaluation of the objective function E [Vρ(B, D)]. If there is an analytical

formula for this expectation, or an analytical expression which is known to be a close

approximation, then this would provide a computationally inexpensive approach. If such an

expression is not available, however, the objective function must be approximated. This may be

done inexpensively using Monte Carlo simulation. Although this approximation step introduces

error, this may be accounted for in the above comparison step. In particular the walk may be

permitted to move to a new permutation whose approximate objective function is less favourable.

Indeed, when the proposals are selected from among the neighbours of the present permutation,

this approach offers the benefit of helping the walk to ‘escape’ from permutations which are

optimal among their neighbours, but not optimal globally.

In the next section we introduce simulated annealing, the particular approach to stochastic

optimisation considered in this paper.

4. Simulated annealing

For completeness, in this section we provide a general description of the simulated annealing

algorithm. Assume that we are given a discrete parameter set Θ and an objective function f : Θ→

R to be minimised over Θ, so that the optimisation problem is to find a parameter θ∗ such that

f(θ∗) =min
θ∈Θ

f(θ). (4.1)

Running example, Part 3. In the present paper the parameter set Θ consists of all orderings of N objects,

Θ= SN and the objective function is f(ρ) = E[Vρ(B, D)] (Vρ is defined as in (3.2)).
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Simulated annealing, which was introduced in [6,11,12], is a stochastic algorithm designed to

provide approximate solutions to problems of the form (4.1). It produces a time inhomogeneous

Markov chain (Φk)k∈N which is a random walk in Θ, with steps proposed according to a Markov

transition kernel Q. The walk is designed to converge towards a global minimiser θ∗ for the

function f .

(a) Algorithm

The SA algorithm is summarised by the following pseudocode, or informal description:

Pseudocode, simulated annealing:

Input: An objective function f , a decreasing sequence T1 ≥ T2 ≥ T3 . . . converging to 0, an

initial state θ0 ∈Θ, a Markov transition kernel Q on Θ and a stopping rule for the

termination of the algorithm.

Output: A random sequence (Φk)k∈N ⊂Θ, designed to converge to an optimal parameter

θ∗ solving (4.1).

(I) Set Φ0 = θ0;

(II) Given Φk simulate a proposal Ψk+1 ∈Θ according to the distribution Q(Φk, dθ);

(III) Evaluate the acceptance probability

α(Φk, Ψk+1, Tk) :=min

(

1,
πk(Ψk+1)

πk(Φk)

)

=min

(

1, exp

(

f(Φk)− f(Ψk+1))

Tk

))

. (4.2)

Throw an independent coin with probability α(Φk, Ψk+1, Tk) of heads. In case of heads

accept the proposal and set Φk+1 = Ψk+1. Otherwise reject the proposal and set Φk+1 =Φk;

(IV) If the stopping rule is not reached, increase k to k + 1, decrease Tk to Tk+1, go back to

step (II) and repeat.

It is appropriate to use pseudocode at this point since, as mentioned in Section 2(c), SA is

a general stochastic optimisation framework rather than a formal algorithm. This is because

the stopping rule, cooling schedule (that is, the decreasing sequence T1 ≥ T2 ≥ T3 . . . ) and the

Markov kernel Q should ideally be tailored to each particular problem. In Section 4(b) below and

in the case study of Section 5 we highlight particular considerations for the procurement problem

under study.

SA is in fact an adaptation of the well-known Metropolis-Hastings algorithm (see [8] and

references therein). That is, its goal is to obtain a sequence of random samples from a probability

distribution from which direct sampling is computationally challenging. The particular idea in

SA is that the mode(s) of these distributions are the minimiser(s) of the objective function f , and

hence the resulting samples will tend to be located in parts of the parameter space which are

approximately optimal.

Note from (4.2) that a proposed move to a smaller f value is always accepted. A proposed

move to a larger f value, in contrast, is accepted with a probability which depends on Tk (and

which converges to zero as Tk ↓ 0). The constants Tk are chosen to decrease to 0 at an appropriate

speed. In fact Tk may be called the temperature at time k, and the name ‘simulated annealing’ arises

from an analogy between the algorithm and the controlled cooling used in the annealing process

in metallurgy.

There are two main questions of interest regarding simulated annealing:

(i) Does the Markov chain (Φk)k∈N converge to an optimal parameter θ∗?

(ii) How quickly does this convergence take place?

The first question of convergence can be answered theoretically in certain specific cases. The

papers [5,10] present sufficient conditions under which SA converges on a finite parameter space.

Page 10 of 19

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

11

rs
ta

.ro
ya

ls
o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
.

A
0
0
0
0
0
0
0

..................................................................
There are also results about convergence in the case of a continuous parameter space (see [3]). In

general, however, establishing convergence is a challenging mathematical problem. Nevertheless

simulated annealing has been applied successfully to a wide range of optimisation problems,

many where no theoretical guarantee is available, and has thus proved itself to be of undisputed

practical value (see for instance [26] and references therein).

Even in settings with provable convergence, though, very little has been established about the

second question of the speed of convergence. Indeed the number of iterations needed to guarantee

a certain level of near-optimality is usually prohibitively large for real applications (see e.g. [1]).

Hence in practice SA is typically terminated long prior to any level of theoretical near-optimality

through the use of a heuristic stopping rule with the aim of obtaining a good working solution.

(b) Discussion

Some clarifications are in order regarding the above pseudocode. Step (II) could be called

proposing a neighbour: the transition kernel Q is simply a mathematical way to encode a rule

that governs how, given the current location Φk = θ of the random walk, the proposed next

step Ψk+1 ∈Θ is generated. Although almost any such rule may be used it is advantageous

if the proposal is computationally inexpensive to evaluate (there are additional considerations

including exploration and exploitation of the parameter space, which are discussed below). If the

parameter set Θ was continuous, for instance R
d, then a centred uniform or normal random

variable could for example be added to the current location to generate a proposal. In our present

context with a discrete parameter set, if Θ can be regarded as the set of vertices of a graph (as

is the case with the permutations ρ treated in this paper) then a common proposal is to choose

another vertex, among the vertices that are connected to Φk by an edge, uniformly at random.

Running example, Part 4. Given the current permutation ρ=Φk, we give three methods for proposing

the next step ρ′ =Φk+1 of a random walk over permutations. We will work with the second one in this

example and with a mixture of all three in the Case Study.

(i) Random permutation. Pick ρ′ uniformly at random among all permutations.

(ii) Random transposition. Pick two numbers i, j from {1, 2, . . . , N} independently and uniformly

at random and then exchange ρ(i) and ρ(j) to obtain ρ′.

(iii) Random neighbouring transposition. Pick a number i from {1, 2, . . . , N − 1} uniformly at

random and then exchange ρ(i) and ρ(i+ 1) to obtain ρ′. For instance, if ρ= (5, 4, 3, 2, 1) and

i= 2 then ρ′ = (5, 3, 4, 2, 1).

The second and third methods use different concepts of a ‘neighbouring’ permutation. Here the

representation of Θ as a graph, as illustrated in Figure 1, is helpful. The neighbouring transposition

corresponds to moving along a single edge in this graph and so provides the most local move. Thus if

the current position of the random walk is not a local optimum, the third method is typically effective in

proposing an improvement when contrasted with the first method, which may easily propose an absurd

permutation with significantly higher cost. Conversely the third method is incapable of improving upon a

local optimum. In this case the first method, which ignores the structure of the parameter space, and also

the second method which offers a compromise between the first and third, offer the opportunity to propose a

better permutation and hence for the walk to escape from a local minimum.

A random mixture of all three methods thus provides a balance between exploration of the whole

parameter space and exploitation of the current position of the random walk, this balance depending on

the relative frequencies with which the three methods are applied.

Step (III) of the SA algorithm is the accept-reject step, in which the proposed next location Ψk+1

of the random walk is considered. The interpretation of (4.2) is that if Ψk+1 improves upon Φk then

the walk moves there, otherwise the proposed next location Ψk+1 is accepted according to the toss

of a biased coin. The sequence (Tk)k∈N of temperatures is called the cooling schedule. It governs
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these biased coin probabilities by influencing the balance between exploration and exploitation

as the random walk progresses on the parameter set Θ. It is common to use a sequence (Tk)k∈N

which decreases to zero, so that exploration gives way progressively to exploitation. A cooling

schedule often used in the theoretical literature that we will also use here is of the form Tk = h
log k

for some constant h (see [5]). The choice of cooling schedule is an interesting topic which is beyond

the scope of this paper and the interested reader is referred to, for example, section 9 of [1]. We

note that a systematic approach to choosing the constant h in the cooling schedule Tk = h
log k is

described in [4] and references therein.

The starting value for the random walk, specified in step (I), is typically chosen either

heuristically or randomly.

Running example, Part 5. Initially we sort the potential customers by their unit cost of capacity, as

measured by the ratio (Ai + Ei)/Ci. Given the parameters specified in Part 1, the random walk thus

begins at the initial permutation Φ0 = (5, 4, 3, 2, 1). We specify the cooling schedule Tk = 1
20 log(k)

.

As discussed above, the objective function f = E[Vρ(B, D)] is approximated by sampling. At each

iteration of step (III) nMC = 500 independent Monte Carlo simulations of B and D (denoted by

Bn and Dn, 1≤ n≤ nMC ) are generated. The empirical distribution of this sample is then used

to approximate the objective function as follows. We compute VΦk
(Bn, Dn), VΨk+1

(Bn, Dn) and

take 1
nMC

∑nMC

n=1 VΦk
(Bn, Dn) and 1

nMC

∑nMC

n=1 VΨk+1
(Bn, Dn) instead of f(Ψk+1) and f(Φk)

respectively. This formulation of the accept-reject step follows the treatment in, for example, [17,18].

Step (IV) terminates the algorithm using the stopping rules, which is typically derived from

heuristics about the optimisation problem at hand. A common choice is to fix numbers nR and

nS and to stop either when the last nR proposals have all been rejected, or when nS steps have

been taken, whichever is earlier.

Running example, Part 6. We apply the following heuristic for the stopping rule. Suppose that DSR is

readily available (that is, suppose that if all potential DSR customers were contracted then the total capacity

would be large compared to H , and the contracting probabilities pi are not small). Then variations towards

the end of the permutation ρ would tend to have little effect on the objective function, since in this setting

the corresponding customers would be relatively unlikely to be approached at time 0. Indeed this heuristic

can frequently be exact in all 500 Monte Carlo samples so that

500
∑

n=1

|VΦk
(Bn, Dn)− VΨk+1

(Bn, Dn)|= 0.

Since the proposal is accepted in such cases, it may take an unacceptably long time to reject nR consecutive

proposals for any moderately large nR. Hence we modify the stopping rule by excluding such instances, as

follows. We take nR = 50 and stop when the last nR proposals, satisfying

500
∑

n=1

(

VΦk
(Bn, Dn)− VΨk+1

(Bn, Dn)
)

6= 0,

have all been rejected (or when the total number of steps reaches nS = 2000). The choice nR = 50 is

based on the following heuristic concerning the set of ‘neighbouring’ parameters ρ. There are 10 possible

transpositions available in proposal method (ii) above. If there is a transposition that would lower the cost,

we wish the probability that this transposition goes untried before stopping to be limited to 0.5%. With

nR = 50 this probability equals the chance of not choosing one particular transposition (from these 10) in

50 consecutive attempts, that is
(

10−1
10

)50
= 0.950 = 0.0051≈ 0.5%.

The SA algorithm thus has the following implementation:

(I) Set Φ0 = (5, 4, 3, 2, 1), n= 0 and k= 0;

(II) Given Φk pick distinct numbers i, j uniformly at random from {1, 2, 3, 4, 5} and denote by Ψk+1 the

permutation equal to Φk with Φk(i) and Φk(j) interchanged;
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(IIIa) For each n∈ {1, 2 . . . , 500} simulate independent realisations of the random variables Dn and coin

tosses Bn = (Bn
1 , B

n
2 , . . . , B

n
5 );

(IIIb) For each n∈ {1, 2 . . . , 500} determinine LΦk
(Bn) and LΨk+1

(Bn) as in Subsection 3(c) and

evaluate VΦk
(Bn, Dn) and VΨk+1

(Bn, Dn) as in (3.2) by cycling through all subsets of LΦk
(Bn) and

LΨk+1
(Bn) respectively;

(IIIc) Set

α(Φk, Ψk+1) :=min

(

1, exp

(

20 log(k)

500

500
∑

n=1

VΦk
(Bn, Dn)− VΨk+1

(Bn, Dn)

))

. (4.3)

Throw an independent coin with probability α(Φk, Ψk+1) of heads. In case of heads accept the proposal, set

Φk+1 = Ψk+1 and set n= 0. Otherwise reject the proposal, set Φk+1 =Φk and increase n by one;

(IV) If n< nR = 50 and k < nS = 2000, increase k to k + 1, decrease Tk to Tk+1, go back to step (II) and

repeat. Otherwise stop.

In a single run of the above SA algorithm this stopping rule was achieved after 135 steps. The final

permutation was (2, 5, 1, 4, 3), with approximate cost 131.74. A second independent run took 458 steps

and returned the same permutation with an approximate cost of 127.90.

5. Case study application

In the absence of general theoretical guidelines regarding the choice of Markov transition kernels

for proposals or the choice of stopping rules, the implementation details of the SA algorithm

should typically be tuned in order to achieve reasonable results with computational efficiency.

A particular feature of the optimisation problem under study is the nonlinear structure of the

parameter space, since the set Θ of permutations instead has the more general structure of a

graph. Our aim in this section is therefore to present a case study implementation.

(a) Utilisation scenarios and DSR procurement

As in the above example we take C0 = 15.45, γ = 5000 and β = 3. We now take 3 scenarios for

utilisation and 9 potential DSR customers, which are as follows:

Utilisation scenarios:

• means: µ1 = 16.0, µ2 = 15.6, µ3 = 15.5;

• standard deviations: σ1 = 0.1, σ2 = 0.1, σ3 = 0.1;

• probabilities of occurrence: q1 = 0.2, q2 = 0.6, q3 = 0.2.

This results in the threshold H =max1≤i≤3(µi + 3σi) = 16.3.

Potential DSR customers:

• C = [0.5, 0.45, 0.4, 0.3, 0.275, 0.25, 0.25, 0.2, 0.2];

• A= [40, 35, 32, 23, 22, 24, 21, 20, 18];

• E = [15, 15, 13, 12, 12, 6, 8, 8, 7];

• p= [0.7, 0.6, 0.8, 0.5, 0.9, 0.5, 0.8, 0.8, 0.7].

(b) SA algorithm implementation

• Initialisation: Heuristically a reasonable initial location for the random walk is the

permutation which puts customers in increasing order according to their cost per unit

capacity (A+ E)/C. That is, we take Φ0 = (1, 2, 3, 7, 4, 6, 5, 9, 8).

• Random walk: recalling the above example, we use the following mixture of methods to

propose the next permutation in the random walk:

– with 5% probability choose a random permutation;

– with 15% probability choose a random transposition;
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– with 80% probability choose a random neighbouring transposition.

Independently of the cooling schedule, the above frequencies themselves emphasise

exploitation rather than exploration by weighting more highly the more local proposal

methods, as discussed in part 4 of the above example. The accept-reject step is again

evaluated using nMC = 500 independent Monte Carlo simulations of utilisation D and

contract success B; the cooling schedule Tk = 1
50 log k is used; and the stopping rule

is as described above with nR = 50 and nS = 1000. This choice of nR is again based

heuristically on ensuring a very low probability that an improvement via a local move is

missed prior to stopping. In contrast to the running example, however, here we interpret

‘local move’ as a neighbouring transposition, since the latter is now both the most

frequent and most local type of proposal.

(c) Results

Since simulated annealing is a stochastic algorithm, over multiple independent runs several

different approximately optimal permutations are returned. As our parameter space Θ of

permutations has a nonlinear structure, which may instead be represented by a graph, the

question of how to represent the set of results is of interest.

The case study was repeated independently 100 times (each initialised with a different seed for

random number generation). Figure 1 shows the set of most commonly returned permutations in

these 100 runs, together with their graph structure as permutations. Mathematically they form a

cyclic graph which is generated by two (non-adjacent) transpositions, namely the transposition

(4, 6) which exchanges 4 and 6, and the transposition (7, 9).

(3, 2, 1, 9, 7, 5, 8, 4, 6) (3, 2, 1, 9, 7, 5, 8, 6, 4)

(3, 2, 1, 7, 9, 5, 8, 4, 6) (3, 2, 1, 7, 9, 5, 8, 6, 4)

(4,6)

(7,9) (7,9)

(4,6)

Figure 1. The subgraph of most commonly returned approximately optimal permutations. These permutations are related

by two non-adjacent transpositions, namely (4, 6) and (7, 9).

These four permutations were returned in 82 out of 100 runs (7 returns of the top left, 19 of

the bottom left, 27 of the top right and 29 of the bottom right). They have the same initial three

choices of customer, namely (3,2,1). In fact, the returned permutation started with (3, 2, 1) in 98

out of 100 runs.

By the heuristics discussed in the running example, part 6, variations at the beginning of

the permutation are likely to have the greatest effect on the objective function, and hence on

the accept-reject step of the SA algorithm. The random walk should therefore provide a clear

indication of the optimal initial order in which customers should be approached, and this heuristic

is clearly borne out in Figure 1. Conversely we may expect ambiguity over the later stages of

this order. The same argument, however, indicates that this ambiguity should not be problematic

from the point of view of economic optimisation. This is because the ambiguity arises when the

difference in the objective function is relatively small across the set of alternative solutions. Figure

1 illustrates that in our case study there is ambiguity over the relative ordering of two pairs of

customers: namely, whether customers 4 and 6 should be interchanged in the optimal solution,

and whether customers 7 and 9 should be interchanged. This suggests that the objective functions

of the four permutations in Figure 1 may be almost indistinguishable.

To investigate this point further we performed a more extensive Monte Carlo simulation

of D and B. An experiment with 105 Monte Carlo simulations confirmed the closeness of the

objective functions of the four permutations in Figure 1: indeed it yielded identical average costs
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of 99.084× 103 GBP for the two permutations on the left of Figure 1, and also identical costs

of 99.079× 103 GBP for the two permutations on its right. While these values were expected

to be close, these pairs of identical costs are striking. They may be explained by considering the

capacities specified in part (a) for customers 7 and 9. At time 0, if at least two of the customers 1, 2

and 3 (who are always approached first in the subgraph shown in Figure 1) are contracted then

the target H is reached before customers 7 and 9 are approached and so they do not influence

the cost. Alternatively if at most one of customers 1, 2 and 3 is contracted at time 0 then both

customers 7 and 9 are needed in order to reach the target H , so that the order in which they are

approached does not have an effect on cost (irrespective also of the contract success indicators

B7 and B9). Thus in Figure 1, transposing 7 and 9 has no effect whatsoever on cost. Interestingly

the latter discussion shows that part of the ambiguity illustrated by Figure 1 is inherent in the

optimisation problem of this case study and is not the result of the iterative stochastic approach

of the SA algorithm. In particular any alternative exact and deterministic approach would also be

unable to distinguish between the top and bottom rows of Figure 1.

The majority of runs (71 out of 100) of this case study were stopped before the maximum

run time length of nS = 1000 was achieved. The average number of steps needed to satisfy the

stopping rule was around 712 and the shortest run took 88 steps. Using an Intel® Core™ i7-

6700 CPU @ 3.40GHz processor an average computation time required for a run was 295.3s with

a standard deviation of 132.3s (with the fastest and the slowest run lasting 22.6s and 494.0s,

respectively). However, all of the 500 Monte Carlo simulations of utilisation Dn and contract

success Bn that are required each time an expected cost of a permutation needs to be evaluated

can be run in parallel. Thus, the algorithm can be accelerated by nearly 500 times if sufficient

computing resources are available.

In order to illustrate behaviour when termination does not occur in the first 1000 steps, Figure

2 plots the evolution of cost over a randomly selected run which reached nS = 1000 steps. The

vertical scattering in adjacent costs is due to the stochastic nature of the algorithm, as the random

variables D and B are independently resampled at each step rather than being held constant.

To estimate the evolution of the average cost we also show a linear regression of these points for

each 100 steps. It can be seen that in this run the average cost decays over the first 200 steps,

remaining almost constant afterwards at a cost of approximately 100. This example thus provides

some evidence that taking nS = 1000 steps is more than enough for SA to achieve near-optimal

solutions.

Figure 2 also illustrates the economic value of this optimisation procedure when compared

with the simple heuristic solution of inviting qualifying customers to join the programme in

increasing order of their total cost per unit capacity, (A+ E)/C. We recall that the latter heuristic

was used to define the starting permutation (1, 2, 3, 7, 4, 6, 5, 9, 8). Indeed this initial permutation

has an average cost (over 105 Monte Carlo simulations) of 106.01× 103 GBP, which compares

to an average cost of approximately 99× 103 GBP for the best permutations obtained by SA, as

discussed above.

6. Discussion and conclusion

(a) Implementation issues

We recall that during DSR provision at time 1, the discrete exhaustive search (3.2) is undertaken

to identify an optimal subset K. Therefore when the number of contracted DSR customers is

larger (for example 50, cf. Section 2(c)), this search also becomes computationally prohibitive. In

this case an additional layer of stochastic optimisation would have to be employed to find a near

optimal subset K ⊆Lρ(B). Note that the simple alternative of requesting capacity in the same

order as the customers were contracted is clearly suboptimal for this operational problem since

the availability payments, which are influential at time 0, are sunk economic costs at time 1 and

hence do not play a role in the minimisation problem (3.2).
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Figure 2. Evolution of estimated cost in a typical run of nS = 1000 steps and linear regression lines indicating average

growth of cost over every hundred steps.

The model assumes that the customers’ respective probabilities pi of passing the acceptance

test are known. We acknowledge that in practice basing these numbers on expert opinion or

on contract success history might not be either feasible or satisfactory. Interestingly, though,

sensitivity analysis (data not shown) indicates that precision in the values of pi is unnecessary.

That is, the near optimal permutations in which the algorithm terminates seem to be robust with

respect to changes in the values of pi, provided that the majority of them are significantly different

from 1, say at most 0.95. This can be understood in light of the discussion in Section 2(b). If

most of the values pi are very high then the uncertainty in the procurement process becomes

insignificant, and our problem of choosing an optimal permutation thus starts to collapse into

the integer programming problem of choosing an optimal subset. Conversely if the probabilities

pi are significantly lower than 1 then the optimisation must take account of randomness in the

procurement process, and the resulting solution can then be understood as a ‘wish list’ which

ranks the qualifying customers in decreasing order of their desirability to the DNO. In contrast

the average cost objective function is of course somewhat sensitive to the values of pi, since when

these probabilities are lower a greater number of costly acceptance tests tends to be required

before the procurement threshold H is reached.

(b) Extension to multiple periods

As we have noted, DSR contracts may in practice cover multiple years and we therefore

comment on potential multiple period extensions to the above framework. There are many

possible directions for such generalisations, and developing them case by case with industrial

feedback could be an interesting direction for future research. For instance different customers’

participation in the DSR programme could be planned to start in different years, or an option

could be added for each customer to withdraw from a contract after a prescribed time period

by paying a penalty fee. In the mathematical formulation of Section 2(c) the representation ρ of

candidate solutions would then need to be extended to an appropriate analogue, along with the

simulation models for procurement and provision and the associated cost model. At the level

Page 16 of 19

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

17

rs
ta

.ro
ya

ls
o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
.

A
0
0
0
0
0
0
0

..................................................................
of utilisation modelling (Section 3(a)), each utilisation scenario would then become a pathway

over the considered future time points rather than a point forecast. Although the computational

complexity of the heuristic search then increases accordingly, only relatively small numbers of

customers need to be considered in the setting of this paper. Further because of their flexibility

and relatively low capital costs, DSR programmes can be planned for a relatively small number

of years. Therefore it is not anticipated that typical extensions to multiple time periods should

cause SA to become computationally intractable, rather stochastic optimisation algorithms like

SA should remain an appropriate method for heuristic search.

Further in the case of multiple time periods there is the opportunity to apply the above

model in a ‘receding horizon’ fashion, as uncertainty gives way to additional information (see for

example [24]). That is, the optimisation may be repeated as each successive time period passes,

to verify whether any refinements should be made to the optimal policy in the light of the new

information.
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