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We introduce a double power series method for finding approximate analytical solutions for sys-
tems of differential equations commonly found in cosmological perturbation theory. The method
was set out, in a non–cosmological context, by Feshchenko, Shkil’ and Nikolenko (FSN) in 1966,
and is applicable to cases where perturbations are on sub–horizon scales. The FSN method is
essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding
approximate analytical solutions for ordinary differential equations. The FSN method we use is ap-
plicable well beyond perturbation theory to solve systems of ordinary differential equations, linear
in the derivatives, that also depend on a small parameter, which here we take to be related to the
inverse wave–number.

We use the FSN method to find new approximate oscillating solutions in linear order cosmological
perturbation theory for a flat radiation–matter universe. Together with this model’s well known
growing and decaying Mészáros solutions, these oscillating modes provide a complete set of sub–
horizon approximations for the metric potential, radiation and matter perturbations. Comparison
with numerical solutions of the perturbation equations shows that our approximations can be made
accurate to within a typical error of 1%, or better. We also set out a heuristic method for error
estimation. A Mathematica notebook which implements the double power series method is made
available online.

PACS numbers: 98.80.Jk, 02.30.Mv, 04.25.Nx, 95.30.Sf

I. INTRODUCTION

A hundred years after Einstein published his theory
of General Relativity, there are still only a fairly lim-
ited number of exact solutions to the field equations
known. In order to solve the governing equations, the
community is relying on approximate solution schemes,
like perturbation theory, which are then solved numeri-
cally. However, there is still room for approximate ana-
lytical solutions of the perturbed equations. These can
test numerical solutions, increase efficiency if numerical
solutions are computationally costly or provide input for
non–linear perturbation equations. Approximate analyt-
ical solutions also provide insight which can be difficult
to gain from numerical results. For example, analytical
approximations can highlight that certain perturbation
equations have both oscillating and non–oscillating short
wavelength (sub–horizon) modes.

Arguably, the most familiar approximate analytical
result is that a sub–horizon matter perturbation in
an Einstein–de Sitter universe has a growing mode
proportional to the scale factor, a, and a decaying
mode proportional to a−3/2 [1, 2]. In the Einstein-de
Sitter universe, it is also possible to write down an
exact analytical expression for these perturbations,
which does not depend on the sub–horizon approxi-
mation. Approximate analytical results are also useful
in the more complicated setting of a radiation–matter
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universe — as reviewed in Ref. [3], for example. For
more information on sub–horizon non–oscillating modes
in such a universe see, for example, Refs. [4–6]. For
the sub–horizon oscillating modes, see, for example,
Refs. [2, 6]. Analytical approximations have also been
used in the context of other models of the Universe —
for example, Refs. [7, 8] derive results for non–oscillating
modes in a ΛCDM universe, while Refs. [9, 10] consider
WKB–type approximation of perturbations during
cosmic inflation.

In this paper, we concentrate on oscillating modes in
a flat radiation–matter universe, focusing on improving
the accuracy of approximate analytical solutions to the
perturbed governing equations. The matter component
is pressureless dust, and our perturbation equations treat
both radiation and matter as perfect fluids. As we shall
see, the double power series method we use provides a
considerable improvement in accuracy of modelling the
gravitational interactions over leading order approxima-
tions. We believe our method is new to the cosmological
literature.

More specifically, we derive approximate analytical so-
lutions to linear scalar cosmological perturbation equa-
tions. Our analytical solutions only involve simple func-
tions such as polynomials and exponentials. They are
valid in the sub–horizon approximation — that is for
perturbations with co–moving wave–number significantly
larger than the conformal Hubble parameter.

Section II introduces the double power series method.
It was first set out in Ref. [11], in a non–cosmological
context. The double power series method is based on
constructing an approximate solution as the product of
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a first power series with the exponent of a second power
series — this is set out below in Eq. (2.2). The exponen-
tiated power series enables the method to deal effectively
with oscillating solutions. Before employing the method
in a cosmological context, we illustrates its use for a sim-
ple Bessel equation. Appendix A goes through the details
of the underlying calculation.

In Section III, we look at a model where the energy
density of the universe is due only to radiation and pres-
sureless matter. This model reflects the make up of the
actual Universe from the time of decoupling onwards, un-
til the much later epoch when dark energy becomes sig-
nificant. Using the formalism of Ref. [12], we set out the
equations which govern radiation and pressureless matter
perturbations in the longitudinal gauge. We choose to fo-
cus on a pair of second order differential equations for the
metric potential and radiation perturbations. The use of
this pair of equations neatly captures that there are four
independent solutions, or modes, for the perturbations.
We also note in Appendix B that, in a precise sense, the
oscillating modes are driven by radiation pressure, while
the growing and decaying modes are associated with pres-
ence of pressureless matter.

In Section IV, we review the leading order approxima-
tions to both oscillating and non-oscillating modes, de-
riving them using the second order differential equations
of Section III. For the oscillating modes, this is a leading
order Wentzel-Kramers-Brillouin (WKB) approximation,
along lines found in Ref. [2] — our use of the double power
series method extends these approximations to higher or-
ders. The leading order growing and decaying mode ap-
proximations are the Mészáros solutions [4, 5]. When we
describe an approximation as nth order, this should not
be confused with the order of the perturbation theory
as described in, for example, Ref. [12]. It refers instead
to the order of approximation in solving the differential
equations.

Our main focus in this paper is on the oscillating
modes — to the best of our knowledge, our higher order
results are not found in the literature. Section V puts the
linear perturbation equations in the most helpful form for
applying the double power series method, expressing the
key pair of equations from Section III explicitly in terms
of conformal time and then presenting them as a single
2 × 2 matrix equation. Next, in Section VI, we use the
double power series method to derive our approximate
oscillating solutions. We use the method directly to ap-
proximate the radiation perturbation δr and the scalar
potential perturbation ψ. We then derive the correspond-
ing approximation for δm. The approximate solution to
third order is calculated in detail in Appendix B and set
out in Eq. (6.9). Appendix C presents the solution to
seventh order. For perturbations which are sufficiently
sub–horizon, we can get approximations accurate to a
typical error of 1% or better compared with the exact
numerical solution of the perturbation equations. The
order of double power series needed to get this level of
accuracy depends mainly on the wave–number of the per-

turbation and the range of times which are of interest.
Section VII sets out a heuristic method for estimat-

ing the error without calculating the numerical solution.
This heuristic also provides a method of identify the op-
timal order of approximation for a given wave–number
and conformal time.

Section VIII concludes the paper. It summarises the
results and provides a brief discussion. We note that,
while the leading order WKB approximation suggests the
oscillating modes have a constant period, in fact this pe-
riod decreases with time. The conclusion also sets out
some ideas on further use of the double power series
method in cosmology.

A Mathematica notebook which executes the double
power series method automatically is available online at
Ref. [13]. It enables all the double power series in this
paper to be calculated in at most a few seconds on a stan-
dard PC. The template can be easily adapted for use with
similar systems of second order differential equations.

II. THE DOUBLE POWER SERIES METHOD

In this section we introduce the double power series
method. We explain briefly its motivation and give an
example of its use for a simple ordinary differential equa-
tion of Bessel type.

Systems of differential equations in cosmological per-
turbation theory tend to contain coefficients involving
quantities such as the conformal Hubble parameter H
and the co–moving wave–number. (For example, see
Eqs. (3.11) and (3.13) below.) These quantities provide
two different timescales for the evolution of perturba-

tions. We will write the wave–number as k̆, with the
accent (a “breve”) indicating that this is a dimensionful
quantity — soon we will normalise this to a dimensionless

number. We focus on the sub–horizon case, k̆ � H. k̆
and H then define timescales (k̆c)−1 and (Hc)−1, where c
is the speed of light, which, as is conventional, we will set
to be equal to 1. The sub–horizon condition that implies

the timescale associated with k̆ is much shorter than the
timescale associated with H.

There are various methods to deal with multiple
timescales. The usual approach is reviewed in the
standard reference work [14]. An alternative method
which we found useful for cosmological perturbation
theory is set out in Ref. [11, Chapter 2]. To the best
of our knowledge, this paper represents the first time
Ref. [11]’s method has been used in cosmology.

To explain the method, it is convenient to express the
system of equations as a single matrix equation,

Af ′′(τ̆) + Cf ′(τ̆) + Bf(τ̆) = 0 , (2.1)

where we have used τ̆ for the time variable since in this
paper we will work in conformal time, and because, as
for the wave–number we will subsequently choose a nor-
malised dimensionless conformal time (a “dash” indicates
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as usual differentiation with respect to the independent
variable). The matrices A,C and B depend on H ∼ τ̆−1
and k̆. The approximation relies on the equations involv-
ing two very different rates of change, a slow rate of

change, of order H ∼ τ̆−1, and a fast rate of change k̆. In
terms of the cosmological perturbation theory equations,
these rates are, respectively, associated with the rela-
tively slow expansion of the Universe, associated with H,
and the relatively fast fluctuation of sub–horizon waves,

associated with k̆. The fast rate of change dominates os-
cillating solutions to the equations, and we will find that
an approximate solution can be derived order by order
in descending powers of the wave–number.

In our approximation, we will choose some reference
conformal time τc (see especially Eq. (5.3) below) and

define dimensionless parameters τ = τ̆ /τc and k = k̆τc
with k � τ−1, and hence k−1 being a small parameter in
the sense that k−1 � τ. The double power series method
of Ref. [11, Chapter 2] finds a series approximation for f ,

f(τ) =



∞∑

j=0

k−j pj(τ)


 exp

[ ∞∑

n=0

∫
k−n+1 ωn(τ) dτ

]
,

(2.2)
where pj(τ) and ωn(τ) are independent of k, and are
assumed to have slow rates of change like τ−1 � k. The
notation of Ref. [11] is superficially different to ours, and
a comparison between them is provided in Table I.

The introduction of the exponential factor is the key
element of the method. In the first term of Eq. (2.2) only
zero and negative powers of k occur, while in the expo-
nent, a power k1 also occurs. This is because, as noted
before Eq. (2.2), k−1 is a small parameter, in the sense
that k−1 � τ. The n = 0 term of

∑∞
n=0

∫
k−n+1 ωn(τ) dτ

is proportional to k and gives the leading order of the fre-
quency of f . The n > 0 terms give smaller corrections to
the frequency. Starting instead from n = 1, would give
only low frequency oscillations, whereas in this paper we
are principally interested in rapidly oscillating solutions.

The decomposition set out in Eq. (2.2) is widely appli-
cable to differentiable functions which depend on some
parameter k. The success of the FSN method depends
on the coefficient functions pj(τ) and ωn(τ) being slowly
varying in τ, and the whole series being sufficiently well
behaved, at least for low enough j and n. A successful de-
composition approximates the function f(τ) sufficiently
closely for a suitable range of conformal times τ. As we
shall see in Section VII, for some values of τ the decom-
position may be convergent, for others, uncontrollably
non-convergent, and, for yet other values, have an in-
termediate property of being asymptotically convergent.
Asymptotic convergence is extensively discussed in, for
example, Ref. [14].

In passing, we note that a related, and more gen-
eral, FSN method, discussed in Ref. [11, Chapter 3],
can be used to solve systems of differential equations.
This can include systems of coupled oscillators with dif-
fering frequencies. However, for our present purposes,

this is not necessary: our oscillators have only a single
(complex) frequency, associated at time τ with ω(τ) =∑∞
n=0

∫
k−n+1 ωn(τ) dτ.

The method now consists of substituting Eq. (2.2)
into Eq. (2.1) and equating coefficients of powers of
k. This is most easily explained by illustrating the
approach for a simpler equation of the same form.

The matrices A,C and B of Eq. (2.1) are now replaced
by scalar functions A,C and B with

A = 1, C =
1

τ
and B = k2 +

1

τ2
. (2.3)

The equation can be solved analytically — it is equiv-
alent to one of the well known Bessel equations (see,
for example, 10.2.1 in the online reference manual [15]).
To show this equivalence, we substitute Eq. (2.3) into
Eq. (2.1) and multiply by τ2 to get

τ2f ′′(τ) + τf ′(τ) +
(
(kτ)2 + 1

)
f(τ) = 0. (2.4)

Now, writing η = kτ, and noting that d
dτ = k d

dη , we have

η2
d2f

dη2
+ η

df

dη
+
(
η2 + 1

)
f = 0. (2.5)

This is the standard form of the Bessel equation of order
i =
√
−1. As set out in Ref. [15], for example, the exact

solution is therefore

f(τ) = CJJi(kτ) + CY Yi(kτ), (2.6)

where CJ and CY are arbitrary complex constants and
Ji and Yi are the Bessel functions with index i of the first
and second kind respectively.

We now re–write Eq. (2.4) as

f ′′(τ) +
1

τ
f ′(τ) +

(
k2 +

1

τ2

)
f(τ) = 0 (2.7)

and apply the double power series method using the one–
dimensional version of Eq. (2.2),

f(τ) =



∞∑

j=0

k−j pj(τ)


 exp

[ ∞∑

n=0

∫
k−n+1 ωn(τ) dτ

]
.

(2.8)

For convenience, write

p =

∞∑

j=0

k−j pj(τ), ω =

∞∑

n=0

k−n+1 ωn(τ) (2.9)

and

E = exp

[∫
ω(τ) dτ

]

= exp

[ ∞∑

n=0

∫
k−n+1 ωn(τ) dτ

]
. (2.10)
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Table I. The notation used in this paper compared with the notation introduced in Chapters 1 and 2 of Ref. [11]. Since our
differential equations are all homogeneous — in the sense that a multiple of a solution is also a solution — so we use the
“non-resonance” case from Ref. [11].

This paper τ̆ and τ k η = kτ f A B−2 B0 C ω f A B−2 B0 C p

Ref. [11] τ ε−1 t x a0 b0 b2 c0 D + iΩ x A0 B0 B2 C0 Π

The terms p, ω and E all depend on both τ and k, and
we will regard k as a fixed parameter. We then have

f = pE, (2.11)

f ′ = (p′ + pω)E, (2.12)

and f ′′ =
(
p′′ + 2p′ ω + pω′ + pω2

)
E , (2.13)

where the dashes denote differentiation with respect to
τ.

Using the approximation Eq. (2.8) in our Bessel equa-
tion Eq. (2.7), and dividing through by E, we get

(
p′′ + 2p′ ω + pω′ + pω2

)

+
1

τ
(p′ + pω) +

(
k2 +

1

τ2

)
p = 0 . (2.14)

Using k � τ−1, the leading order part of Eq. (2.14)
consists of the terms with the highest positive order r
of k, which is k2, coming from the pω2 term and the
k2p term. We therefore start by equating coefficients of
k2. Feeding these results back into Eq. (2.14) gives us an
equation with the leading order part being of order k. We
equate coefficients of k, and again feed the results of that
into Eq. (2.14). We continue this process for coefficients
of 1 = k0, then k−1 and so on. We stop the procedure
after equating coefficients of k2−smax for whatever value
of smax ≥ 0 we choose: this value smax is the order of our
approximation.

The overall algorithm is set out in more detail in Fig-
ure 1. We work through this algorithm in Appendix A.
We have also put a Mathematica notebook which exe-
cutes this method on Github at Ref. [13], which can be
used to calculate double power series approximations eas-
ily.

From the calculations set out in Appendix A, we get
the third order approximation to be

f(3)(τ) =
1√
τ

exp

[
ikτ − 5i

8kτ
− 5

16k2τ2

]
, (2.15)

or its complex conjugate. If we want real solutions, we
take the real and imaginary parts of Eq. (2.15), giving us
the two real independent solutions we expect for a second
order differential equation with real coefficients.

Note that, in this example, the p power series of
Eqs. 2.8 and 2.9 is simply p = 1. Because we have two

The Bessel equation algorithm

1 Set the number of iterations to run the algorithm for by choosing
smax ≥ 0.

2 Substitute the double power series Eq. (2.8) into the Bessel Eq. (2.7) to
get Eq. (2.14).

3 Set p0 = 1 and pj = 0 for j > 0.

Comment: In the one–dimensional case, we keep the first of the
two power series very simple, with p = 1.

4 Set s = 0.

5 Expand Eq. (2.14) in powers of k and equate coefficients of k2−s for
s = 0 in order to calculate ω0. There will be two possible choices of ω0

corresponding to a pair of square roots. Choose one of these and stick
to it for the remainder of the algorithm. This gives us our lowest order
approximation result

f(0)(τ) = exp

[
k

∫
ω0(τ) dτ

]
.

6 Increase s by 1.

7 Equate coefficients of k2−s in Eq. (2.14). Using ω0, ..., ωs−1 calculated
earlier in the algorithm, calculate ωs.

8 The algorithm’s approximation result at iteration s is

f(s)(τ) = exp

[
s∑

n=0

∫
k−n+1 ωn(τ) dτ

]
.

The complex conjugate of f(s) provides the second independent solution,
corresponding to the value of ω0 we discarded. For the two independent
real solutions take the real and imaginary parts of f(s).

9 If s < smax, then GOTO 6 .

Figure 1. The double power series algorithm for approximate
solutions to the Bessel Equation (2.8)

power series, p and ω, we needed an additional constraint
to fully determine the terms pj and ωn of Eq. (2.8). To
see this, note that when we take an order smax approx-
imation, the terms pj for j = 0, 1, ..., smax and ωn for
n = 0, 1, ..., smax occur in our equations of coefficients.
This means that we have 2smax + 2 such terms to de-
termine from the smax + 1 equations coming from equat-
ing coefficients of k2, k, ..., k2−smax . We therefore have to
choose how to further constrain our choice of pj and
ωn terms in order to determine our approximation fully.
Since we are approximating oscillating functions, we want
the ω series to do as much of the work as possible. For
a problem, such as this in the current example, in which
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there is only one underlying differential equation, we
therefore simply set p0 = 1 and all the other pj = 0. If
we choose different pj for j > 0, this makes the approx-
imation expression more complicated, and, for plausible
examples we have tested1, makes virtually no difference
to the accuracy of the approximation. Essentially, the
change in the p–terms is more or less balanced by conse-
quent changes in the ω–terms, in the range of τ for which
the approximation is useful.

This can be better understood looking more generally
at cases, such as for the cosmological perturbation prob-
lem in subsequent sections, where we have more than
one coupled differential equation (Eqs. 3.11 and 3.13 for
the cosmological perturbation problem). When we have
a number d of coupled differential equations, we see
there are d(smax + 1) of the pj terms and (smax + 1) of
the ωn terms to be determined, giving (d+ 1)(smax + 1)
terms in total. These need to be determined from
(smax + 1) coupled sets of d equations, in other words
from d(smax + 1) equations in total. Looked at in terms
of Eq. (2.2), we have the pj now being d–dimensional
vectors pj , which in general, for a given k and τ, will be
constrained to lie in a (d − 1)–dimensional hyperspace
of Cd. As discussed in Appendix B, in the paragraph
preceding Eq. (B8), we choose p0 to be a suitable
eigenvector associated with the coupled set of equations,
and this then constrains all but one degree of freedom —
parallel to that eigenvector — for each subsequent
pj . As suggested in Ref. [11], the remaining degree of
freedom will be chosen by setting so far undetermined
terms equal to zero, in order to keep the expression for
the approximation as simple as possible. As for the
case of a single differential equation, discussed following
Eq. (2.15), more complicated rules lead to more com-
plicated approximations of essentially the same accuracy.

The solution Eq. (2.15) can be obtained easily using
our Mathematica notebook, which we can also use to go
to higher orders. For example, for the tenth order ap-
proximation, we get

f(10)(τ) =
1√
τ

exp

[
ikτ − 5i

8kτ
− 5

16k2τ2
+

145i

384k3τ3

+
85

128k4τ4
− 1545i

1024k5τ5
− 25

6k6τ6

+
3097125i

229376k7τ7
+

205525

4096k8τ8
− 165425425i

786432k9τ9

]
. (2.16)

1 Setting pj to be τ−j times a random complex number with real
and imaginary part each uniformly and independently drawn in
the range −1 to 1.

We want now to quantify the error in the approxima-
tion f(s), for each particular value of s. One way to try to
do this would be to take the analytical solution f and cal-
culate the ratio

∣∣(f(s) − f
)
/f
∣∣ . However, this runs into a

difficulty. Since f is oscillating and repeatedly takes zero
values, unless there is no error at all at these zeros, the
ratio

∣∣(f(s) − f
)
/f
∣∣ will repeatedly become infinite.

We therefore adapt this approach in order to avoid
this difficulty. Broadly speaking, we estimate the typical
error compared with the amplitude of oscillation. To
do this we first decide a target degree of accuracy, 1%
say. We then draw a graph with a logarithmic scale to
compare a plot of the error

∣∣f(s) − f
∣∣ with a plot of the

target accuracy, here 1% × |f | . Both plots will usually
spike downwards towards zero repeatedly. We consider
that the approximation is accurate to within 1% if, spikes
when f = 0 aside,

∣∣f(s) − f
∣∣ ≤ 1% × |f | . The will show

on the graph as the plot of
∣∣f(s) − f

∣∣ being level with, or
below, the plot of 1%× |f | (except near f = 0 spikes).

Figure 2 follows this approach for f(s), with s =
1, 2, 3, 10. The error is small relative to the exact solution
once kτ is sufficiently large. For larger kτ, the error asso-
ciated with f(s) decreases as s increases. That rule does
not necessarily apply for smaller τ — for example, f(10)
does not work as well as f(3) for kτ . 2.5. Section VII
explores this issue further for the cosmological perturba-
tion approximations which are the main subject of this
paper.

We have shown how to use the double power series
method to get good analytical approximate solutions to
a second order differential equation of the form we are
interested in in the following. This approximation to
the Bessel function is a new form of an approximation
which can be found at 10.17.5 in Ref. [15]. Note that, in

Ref. [15], Ji + iYi is written as H
(1)
i .

III. THE PERTURBATION EQUATIONS

We now study linear perturbations in a flat
Friedmann–Robertson–Walker model with two non–
interacting perfect fluids — radiation and dust (pressure-
less matter). The conformal time Friedmann equation for
such a model is given by

H2 =
8πG

3
a2 (ρr + ρm) , (3.1)

where H is the conformal Hubble factor, a is the scale
factor, ρr the homogeneous radiation and ρm the homoge-
neous matter density. As usual, the radiation and matter
densities obey

ρr ∝ a−4 and ρm ∝ a−3, (3.2)

implying their rates of change with respect to conformal
time are

ρ′r = −4Hρr and ρ′m = −3Hρm. (3.3)
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Figure 2. The solid lines on this graph show the absolute er-

rors in the approximations as log10

∣∣∣Re
(
f(s)(τ)− f(τ)

)
/
√
k
∣∣∣ ,

where f is the exact solution. The function values are
in units of

√
k. For comparison, the dashed line shows

log10

∣∣∣Re f(τ)/
√
k
∣∣∣ . The spikes in the lines represent periodic

points where the numerical solution, or the absolute error,
becomes zero. A graph of the imaginary parts shows broadly
similar features.

We focus on two second order differential equations,
which contain only the metric potential and the radia-
tion perturbations, and derive them from the standard
system of perturbation equations. They will be useful to
us as they form a system of the sort which is tractable
with the double power series method. Once we solve
those equations, an additional constraint equation gives
the pressureless matter perturbation directly from the
potential.

As noted in the introduction when, in the following,
we describe a solution as nth order, we mean that it
is a double power series approximation to nth order of
coefficients in the double power series. This should not
be confused with the order of the perturbation theory as
described in, for example, Ref. [12].

We also refer to Ref. [12] for the underlying pertur-
bation equations and discussion of gauges. We use the
longitudinal gauge, and study only linear order scalar
perturbations. The line element is then given by

ds2 = a2
(
− (1 + 2φ)dτ̆2 + (1− 2ψ)δijdx

idxj
)
, (3.4)

where a is the scale factor and dependent only on the con-
formal time τ̆ , while φ, ψ and other perturbations are de-
pendent on both τ̆ and the co–moving spatial co-ordinate
x.

In the longitudinal gauge, for perfect fluids and no
anisotropic stresses, we have

φ = ψ . (3.5)

The trace of the spatial components of the Einstein equa-
tions gives the evolution equation

ψ′′ + 3Hψ′ +
(
2H′ +H2

)
ψ − 4πGa2δP = 0 , (3.6)

where a dash indicates a partial derivative with respect to
the conformal time and δP is the pressure perturbation.

We supplement this evolution equation with the en-
ergy and momentum conservation equations for a radia-
tion fluid obeying the standard relationship between its
pressure, Pr and its density, ρr,

Pr =
1

3
ρr . (3.7)

Equation (3.7) relates the background radiation pressure
to the background radiation density: the same propor-
tionality relation holds between the radiation pressure
and density perturbations. From Ref. [12], we have the
energy and momentum conservation equations for radia-
tion:

0 = δρ′r + 3H (δρr + δPr)− 3(ρr + Pr)ψ
′ + (ρr + Pr)∇2Vr

= δρ′r + 4Hδρr − 4ρrψ
′ +

4

3
ρr∇2Vr

(3.8)

and

0 = V ′r + ψ +
δPr

(ρr + Pr)

= V ′r + ψ +
δρr
4ρr

.

(3.9)

We now replace all our density perturbations, δρα,
with density contrast perturbations,

δα =
δρα
ρα

, (3.10)

where α represents the fluid, here either radiation or pres-
sureless matter. We also replace the co–moving space co–
ordinates x by their Fourier conjugates, the co–moving

wave–numbers k̆. The Fourier transform substitutes −k̆2
for ∇2.

In our radiation and pressureless matter model, the
pressure perturbation in Eq. (3.6) comes purely from ra-
diation. Written using density contrast perturbations,
and Fourier transformed, that equation becomes

ψ′′ + 3Hψ′ +
(
2H′ +H2

)
ψ =

4πG

3
a2ρrδr. (3.11)

Using density contrast perturbations, and Fourier trans-
formed, Eqs. (3.8) and (3.9) become

δ′r − 4ψ′ − 4

3
k̆2Vr = 0 and V ′r + ψ +

1

4
δr = 0 . (3.12)

Vr can be eliminated between these two conservation
equations giving

4ψ′′ − 4k̆2

3
ψ = δ′′r +

k̆2

3
δr . (3.13)
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We will apply the double power series method to the pair
of second differential equations, Eqs. (3.11) and (3.13).
Although the form of the Eq. (3.13) may look a little
unconventional, with two double derivatives, the method
works without the need to diagonalise the equations —
that is without the need to bring them to forms with only
a single, and distinct, double derivative in each equation.

As noted above, we need a further equation to give us
the matter perturbation in terms of ψ. From Ref. [12], we
have, as the (0, 0) component of the Einstein equations,
the constraint equation

3Hψ′+ 3H2ψ+ k̆2ψ+ 4πGa2(ρrδr + ρmδm) = 0 , (3.14)

where the δm is the fractional matter density perturba-
tion and ρm the background matter density.

Note that there are four independent solutions, or
modes, in our system of equations. Equations (3.11)
and (3.13) are a pair of simultaneous second order differ-
ential equations in two variables, δr and ψ. They therefore
have four modes.

IV. LEADING ORDER SOLUTIONS

As mentioned in Section I, there are known analytical
leading order approximations for perturbations in a flat
radiation–matter model of the Universe. Those for the
oscillating modes arise from a form of the well known
Wentzel-Kramers-Brillouin (WKB) method for finding
approximate analytical solutions to ordinary differential
equations, see, for example, Refs. [14, 16]. WKB solu-
tions have been known for a long time to be relevant
for cosmological perturbation theory — see, for example,
Refs. [2, 6]. The solutions for the non–oscillating modes
are different in character. They were originally derived,
ignoring radiation perturbations completely, in Ref. [4].

The leading order oscillating modes can be readily de-
rived from Eqs. (3.11) and (3.13) of the previous section.
To do this, we start by making an assumption — which
we will verify below — that there are modes in which the
partial derivative of potential perturbations with respect

to the conformal time are of order |∂ψ/∂x| ∼ k̆ψ, and
its double partial derivative with respect to conformal

time is of order |∂2ψ/∂x2| ∼ k̆2ψ, and we are working

in the sub–horizon approximation, H � k̆. With these
assumptions, Eq. (3.11) gives us approximately

ψ′′ =
4πG

3
a2ρrδr , (4.1)

since Hψ′ and H2ψ can be neglected by the sub–horizon
assumption. From the Friedmann equation Eq. (3.1), we
also have

4πG

3
a2ρr ≤

4πG

3
a2 (ρr + ρm) =

H2

2
, (4.2)

while, by assumption, we have that ψ′′ is of order k̆2ψ.
Putting these together, and neglecting factors of order

unity, gives us that ψ is of order at most H2δr/k̆
2. Equa-

tion (3.13) can then be approximated as

0 = δ′′r −
k̆2

3
δr , (4.3)

because the left–hand side of Eq. (3.13), having terms like

k̆2ψ and ψ′′, is of order H2δr and so much less than its

right–hand side, which is of order k̆2δr. Solving Eq. (4.3),
this gives us the leading order WKB approximation for
δr.

δr(τ̆) = exp

[
ik̆τ̆√

3

]
. (4.4)

To find the corresponding approximation for ψ, note that
the functions, a and ρr on the right-hand of Eq. (4.1) vary
only slowly with respect to conformal time: a′ = Ha and,
from Eq. (3.3), ρ′r = −4Hρr. Substitute Eq. (4.4) into
Eq. (4.1) and then solve Eq. (4.1), regarding a and ρr as
approximately constant, to get

ψ(τ̆) = −4πGa2ρr

k̆2
exp

[
ik̆τ̆√

3

]
. (4.5)

This provides a solution to Eq. (4.1), neglecting terms

of order k̆H or H2. We can also see this by substitut-
ing Eqs. 4.3 and 4.5 into each of Eqs. 3.11 and 3.13 and
noting that the approximations hold to zeroth order in
H. Eq. (4.5) also justifies our underlying order of magni-
tude assumptions about ψ′ and ψ′′, confirming the self–
consistency of those assumptions.

Using Eq. (3.14), we can also provide a corresponding
approximation for the matter perturbation δm. The first
try of this would be to retain only the leading order terms
of Eq. (3.14), and substitute in the expressions for δr and
ψ from Eqs. (4.4) and (4.5). However, this gives us

− k̆2 4πGa2ρr

k̆2
exp

[
ik̆τ̆√

3

]

+ 4πGa2

(
ρr exp

[
ik̆τ̆√

3

]
+ ρmδm

)
= 0 , (4.6)

which would imply δm = 0. We therefore seek the next
order of approximation, which is given by also retaining
the 3Hψ′ term from Eq. (3.14), which has one more factor

of k̆ than the unused 3H2ψ term. Using the 3Hψ′ term
gives us

δm = 3iH 4πGa2ρr

4πGa2ρmk̆
√

3
exp

[
ik̆τ̆√

3

]

=

√
3iHaeq
k̆a

exp

[
ik̆τ̆√

3

]
. (4.7)
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The real and imaginary parts of Eqs. (4.4), (4.5)
and (4.7) provide the leading order WKB approxima-
tions for the two oscillating modes.

Leading order approximations to the other two
modes — the Mészáros solutions [4, 5] — can be de-
rived in a similar fashion. δr can be eliminated between
Eqs. (3.11) and (3.14) giving

ψ′′ + 4Hψ′ +
(

2H′ + 2H2 +
k̆2

3

)
ψ

= −4πG

3
a2ρmδm . (4.8)

We can also obtain the energy and momentum conserva-
tion equations for matter from Ref. [12]: they are

δ′m − 3ψ′ − k̆2Vm = 0 (4.9)

and

V ′m +HVm = 0 . (4.10)

Eliminating Vm from these equations gives

δ′′m +Hδ′m = 3ψ′′ + 3Hψ′ − k̆2ψ . (4.11)

We now outline the derivation of the Mészáros solu-
tions, starting by assuming ψ′ is of order Hψ and ψ′′ of
order H2ψ. Equations (4.8) and (4.11) then give us the
Mészáros equation [4],

δ′′m +Hδ′m − 4πGa2ρmδm ≈ 0 . (4.12)

The Mészáros equation has two solutions, one growing
and one decaying over time. Ref. [4] gives the growing
solution to Eq. (4.12) as being proportional to

δm = 1 +
3

2
y , (4.13)

where y = a/aeq, where aeq is the scale factor of
radiation–matter equality — the moment when ρr = ρm.

The decaying solution of Eq. (4.12) can be expressed
in analytical terms [5] as

δm =

(
1 +

3

2
y

)
log

[√
1 + y + 1√
1 + y − 1

]
− 3
√

1 + y . (4.14)

For either the growing or the decaying solution, we can
also use Eqs. (4.8) and (4.11) to get

ψ = −4πG

k̆2
a2ρmδm (4.15)

and

δr = −4ψ . (4.16)

By substituting these solutions back into Eqs. 3.11
and 3.13, we can check that these approximations, known
as the Mészáros solutions, are valid to zeroth order in H.
Note that for each of these solutions, the ψ and δr per-

turbations are suppressed by a factor of k̆2 relative to the
matter perturbation δm. They are approximate solutions
to the full perturbation equations of Section III: and they
provide two of the four independent solutions. The other
two solutions are the oscillating modes.

V. SOLVING THE PERTURBED EQUATIONS
USING THE DOUBLE POWER SERIES

METHOD

We need to some preparation for using the double
power series method. For definiteness, we make explicit
the dependence of terms in Eqs. (3.11), (3.13) and (3.14)
on the conformal time τ̆ . We also put the first resulting
equations into matrix form.

A. Background equations

Using conformal time makes the k̆2 term of Eq. (3.13)
slightly simpler (in cosmic time, it would instead be a

k̆2/a2 term). Using conformal time also enables us to get
a much simpler Friedmann solution for a flat radiation–
matter universe than would be possible for cosmic time.

The relevant Friedmann equation was set out in
Eq. (3.1). This can be written as

H2 =
H2

eq

2

(
a4eq
a2

+
a3eq
a

)
, (5.1)

where Heq is the value of the conformal Hubble parame-
ter at radiation–matter equality.

As noted in, for example, Ref. [3], integrating Eq. (5.1)
gives the conformal time expression for the scale factor

a(τ̆) = aeq

(
τ̆

τc
+

τ̆2

4τ2c

)
, (5.2)

where

τc =

√
2

Heq
. (5.3)

In Eq. (5.2), the conformal time τ̆ is a non–negative num-
ber, with a = 0 corresponding to τ̆ = 0.

As mentioned near the start of Section II, in the fol-
lowing we will normalise the conformal time to the di-
mensionless quantity τ = τ̆ /τc giving us

a(τ) = aeq

(
τ +

τ2

4

)
. (5.4)

The conformal time τeq of radiation–matter equality is
then found by setting a(τ) = aeq in Eq. (5.4), which
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gives us

aeq = aeq

(
τeq +

τ2eq
4

)
, (5.5)

for which the (τ > 0) solution is

τeq = 2(
√

2− 1) ≈ 0.828 . (5.6)

Using the cosmological parameters provided in
Ref. [17] we find

Heq = 0.0103 a0Mpc−1 . (5.7)

The central estimate leads to

τc =

√
2

Heq
= 448 a−10 Myr . (5.8)

Recalling from Eq. (5.6) that τeq ≈ 0.828, we find a value

in conventional units of τ̆eq ≈ 371 a−10 Myr.

We normalise the co–moving wave–number, k̆, on the

same basis as we normalised τ̆ , setting k = k̆τc. A value
of k = 1 is equivalent to a co–moving wave–number

τ−1c =
Heq√

2
=

a0
137 Mpc

, (5.9)

where, as is conventional, we have expressed the wave–
number in units of inverse distance.

From Eq. (5.4), the conformal Hubble parameter is
given by

H(τ) =
2 (2 + τ)

τ (4 + τ)
(5.10)

and its derivative is

H′(τ) = −2
(
τ2 + 4τ + 8

)

τ2(τ + 4)2
. (5.11)

For the sub–horizon case we have k̆ � H, corresponding
to (kτ)−1 � 1 and k � τ−1. For a given co–moving
wave–number, k, the time τk such that

H(τk) =
2 (2 + τk)

τk (4 + τk)
= k (5.12)

is known as the horizon–crossing time for k. For
the radiation–matter model, the “horizon” H is always
shrinking with time, so we will sometimes refer to the
crossing time as horizon entry.

In Section VI, we will use the example of k = 100 to
compare our approximate solutions with numerical re-
sults. It is worth noting, from Eq. (5.8), that k = 100
corresponds to a present day distance scale of 1.37 Mpc.
The (normalised) co–moving wavelength associated with
k is

λ =
2π

k
. (5.13)

This implies the co–moving wavelength associated with
k = 100 is 8.64 a−10 Mpc — at the present day, roughly
the same order of magnitude in size as clusters of galax-
ies (see Ref. [18], for example). So k = 100 perturbations
represent a scale similar to that of the largest gravita-
tionally bound structures in the present day Universe.

From Eq. (5.12), we see that k = 100 perturbations
enter the horizon at τ ≈ 0.01, when the scale factor is a ≈
0.01aeq. This implies that k = 100 perturbations enter
the horizon when ρr/ρm ≈ 100, deep in the radiation–
dominated epoch.

It is also useful to note when radiation and baryons
fully decouple. From that time onwards, until the much
later time when dark energy becomes significant, our flat
radiation–pressureless matter model reflects the make
up of the actual Universe. Ref. [17] gives the rele-
vant redshift — the end of the baryon drag epoch —
as zdr = 1060. Note that, at this redshift, radiation and
matter are both significant constituents of the Universe’s
overall energy budget, with 23.9% of the energy density
being radiation. We also note that the conformal time at
zdr is τdr = 1.73.

B. Perturbations

We now express Eqs. (3.11) and (3.13) as matrix equa-
tions, along the lines of Eq. (2.1),

Af ′′(τ) + Cf ′(τ) + Bf(τ) = 0 . (5.14)

We have

f =

(
ψ
δr

)
, A =

(
1 0
−4 1

)
, (5.15)

C =

(
3H 0
0 0

)
(5.16)

and

B =

(
2H2 + 2H′ − 4πG

3 a2ρr
4k2

3
k2

3

)
. (5.17)

We can write B = B−2 k2 + B0, where

B−2 =

(
0 0
4
3

1
3

)
(5.18)

and

B0 =

(
2H2 + 2H′ − 4πG

3 a2ρr
0 0

)
. (5.19)

Our subscripts on the Bs correspond to the powers of
k−1 associated with the matrices in equation Eq. (2.1).
As set out in Eq. (B7), the negative index will assist us in
keeping track of terms that arise in applying the double
power series method.
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We therefore have

Af ′′ + Cf ′ +
(
B−2 k

2 + B0

)
f = 0 , (5.20)

with A, B−2, B0 and C all independent of k, but de-
pending on τ .

We can use our convention that
√

2/Heq = 1 to show
that

4πG

3
a2ρr =

1

2

(aeq
a

)2
(5.21)

and

4πG

3
a2ρm =

1

2

(aeq
a

)
. (5.22)

Using Eqs. 5.21 and 5.22, together with the expressions
for a from Eq. (5.4) and for H from Eq. (5.10), we find
that

B0 = − 8

τ2 (4 + τ)
2

(
2 1
0 0

)
(5.23)

and

C =
6 (2 + τ)

τ (4 + τ)

(
1 0
0 0

)
. (5.24)

This gives us the matrix equations explicitly in τ which
we need to use the double power series method.

From Eq. (3.14), we find that, in terms of τ,

6(τ + 2)

τ(4 + τ)
ψ′ +

12(τ + 2)2

τ2(4 + τ)2
ψ + k2ψ

+
24

τ2(4 + τ)2
δr +

6

τ(4 + τ)
δm = 0 . (5.25)

Below we will use this to approximate the matter pertur-
bation, δm.

VI. OSCILLATING MODES IN A FLAT
RADIATION–MATTER UNIVERSE

We now apply the double power series method to the
matrix equation of the previous section to derive approx-
imations to the oscillating modes. Our double power se-
ries method can be viewed as an extension of the leading
order WKB approximation discussed in Section IV.

The approach is analogous to that used in Section II
for the Bessel equation — see especially Figure 1 — but
adapted to the matrix context, so that it works when
we have system of differential equations, rather than just
a single equation. The matrix algorithm is set out in
Figure 3.

As defined in Eq. (2.2), the double power series method
uses a series expansion

f =

(
ψ
δr

)

=



∞∑

j=0

k−j pj


 exp

[ ∞∑

n=0

∫
k−n+1 ωn dτ

]
, (6.1)

where f , pj and ωj are functions of τ and k is regarded
as a fixed parameter for f . The main difference from the
Bessel function calculation is with regard to the p power
series: we can now have pj 6= 0 for j > 0.

Following the Bessel example, we define

p =

∞∑

j=0

k−j pj , (6.2)

ω =

∞∑

n=0

k−n+1 ωn, (6.3)

E = exp

[∫
ω dτ

]
= exp

[ ∞∑

n=0

∫
k−n+1 ωn dτ

]
, (6.4)

obtaining

f = pE, (6.5)

f ′ = (p′ + pω)E, (6.6)

and f ′′ =
(
p′′ + 2p′ ω + pω′ + pω2

)
E. (6.7)

Substituting these expressions into Eq. (5.14), we get

A
(
p′′ + 2p′ ω + pω′ + pω2

)
+ C (p′ + pω)

+
(
B−2 k

2 + B0

)
p = 0 . (6.8)

We now apply the double power series algorithm, in
the form set out in Figure 3. As described following
Eq. (2.14) for the Bessel equation example, we equate
coefficients of powers of k, starting with coefficients of
k2, then using the results of that to equate coefficients
of k and so on, finally equating coefficients of k2−smax ,
where smax is the order to which we decide to take our
approximation. We noted after Eq. (5.11) that the sub-
horizon assumption means k � τ−1. The scale of the
fast rate of change in the problem is set by k, the wave–
number2. At least for large enough k and τ, the matrices

2 We can express the fast rate of change more precisely as the
wave–number k multiplied by the magnitude of the relevant
eigenvalue of the equation, as defined in Figure 3. If that eigen-
value was very small or large, that would affect the fast rate of
change of the problem. However, in this case, the eigenvalue is
i/
√

3, giving the fast rate of change as k/
√

3, which is itself of
order k.
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Double power series algorithm

1 Set the number of iterations to run the algorithm for by choosing
smax ≥ 0.

2 Substitute the double power series Eq. (6.1) into the matrix Eq. (5.14)
to get Eq. (6.8).

3 Set s = 0.

4 Choose a positive eigenvalue µ of A−1B−2. µ is a root of the charac-
teristic equation, det [−µA + B−2] = 0. Ensure that it is not a repeated
root.

5 Choose one of the square roots of −µ to be ω0, say ω0 = +i
√
µ.

6 Choose p0 to be an eigenvector of µ.

Comment: ω0 and p0 together satisfy the equation[
ω2
0A + B−2

]
p0 = 0.

7 We have, as our lowest order approximation result,

f(0)(τ) = p0 exp

[
k

∫
ω0(τ) dτ

]
.

8 Increase s by 1.

9 Equate coefficients of k2−s in Eq. (6.8). Using ω0, ..., ωs−1 and
p0, ...,ps−1 calculated earlier in the algorithm, calculate ωs and ps. If
ωs, or any component of ps is undetermined, set it to 0.

Comment: Ref. [11] proves it is always possible to do this, given

the assumptions in 4 .

10 The algorithm’s approximation result at iteration s is

f(s)(τ) =




s∑

j=0

k−j pj


 exp

[
s∑

n=0

∫
k−n+1 ωn(τ) dτ

]
.

The complex conjugate of f(s) provides the second independent solution,
corresponding to the value of ω0 we discarded. For the two independent
real solutions take the real and imaginary parts of f(s).

11 If s < smax, then GOTO 8 .

Figure 3. The double power series algorithm for solving ma-
trix differential equations of the form in Eq. (5.14).

A,B0 and C, as set out in Eqs. (5.15), (5.23) and (5.24),
are also all of order much less than k, and, relative to
their size, they vary in (conformal) time only at the slow
rate of change, of order τ−1. This means that the leading
order of an expression derived by our algorithm is always
found simply by counting the powers of k. This suggests
we make our approximation by equating coefficients of
powers of k.

Appendix B works through derivation of the third or-
der approximate solution for δr and ψ. We can then get
solutions for the matter perturbation δm from the con-
straint equation Eq. (5.25). Note that in Eq. (5.25) some
of the ψ terms are multiplied by a factor of k2, which can
come from the k2ψ term, but also, indirectly, from the ψ′′

term when the double derivative acts on the exponential.
This means that to get a “good” approximation for δm
to the same order as for ψ and δr, we use a higher order

solution for ψ. We have used smax = 3 for our δr and ψ,
so here we use the ψ approximation from smax = 5 to
approximate δm to third order via Eq. (5.25). The re-
sults for ψ, δr, and δm can also be calculated easily using
a Mathematica notebook at Ref. [13].

Putting this together, we have that the third order
approximate solution for the oscillating modes of linear
scalar perturbations in a flat radiation–matter universe
(assuming all matter is pressureless) are given by the real
and imaginary parts of:

δr(τ) =

(
τ

4 + τ

) i
√

3
k

exp

[
ikτ√

3
+

4i
√

3(2 + τ)

kτ(4 + τ)

]
,

ψ(τ) = − 24

k2τ2(4 + τ)2

{
1− 2i

√
3 (2 + τ)

kτ(4 + τ)

}
δr(τ),

δm(τ) = − 144

k2τ2(4 + τ)2

{
1− 5i

√
3(2 + τ)

kτ(4 + τ)

}
δr(τ) .

(6.9)

Here τ is the value of the conformal time, when measured
in units of

√
2/Heq, and k is the value of the co–moving

wave–number, when measured in units of Heq/
√

2.
We now plot this approximate solution for values of

k = 100 in Figure 4. As noted in Section V, such per-
turbations represent a scale similar to that of the largest
gravitationally bound structures in the present day Uni-
verse. Figure 4 compares our approximate solutions with
numerical solutions, derived using Mathematica, for the
perturbation equations.

Figure 5 shows the errors in our approximate solu-
tions, using a similar approach to that set out following
Eq. (2.16). For smax = 3, we get a reasonable balance of
having relatively few terms whilst being a valid approx-
imation not too long after horizon–crossing and, once it
is a valid approximation, having small errors, at least for
ψ and δr. Note that, because for some points the value of
the exact numerical solution is 0, the percentage error is
likely to grow very large at these period even if, in terms
of absolute difference, the approximation is a good one.
Therefore, the best we can expect is for approximations
to have a typical error which is less than a given percent-
age. The typical error broadly corresponds to the error
relative to the amplitude of oscillation.

Figure 6 shows the error for the leading order WKB
approximation of Eqs. (4.4), (4.5) and (4.7) . Comparison
with Figure 5 shows the improvement due to the double
power series method.
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Figure 4. The approximate solution Eq. (6.9) (solid blue line) and the numerical solution (dashed orange line) for Eqs. (3.11)
and (3.13) with k = 100. The columns show the real and imaginary parts respectively. The horizontal axes show τ. The solid
vertical line corresponds to radiation–matter equality: see Eq. (5.6). The dashed vertical lines (for these graphs very close to
the vertical axes) correspond to horizon crossing: see Eq. (5.12).
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Figure 5. The heavy solid lines show the absolute errors in the radiation–matter universe k = 100 approximations as
log10

∣∣f(3)(τ)− f(τ)
∣∣ , where f(3) is the relevant part of our approximation and f is the relevant part of the numerical so-

lution. “Relevant” means real or imaginary part of either ψ or δr as indicated in the figure. For comparison, the dashed line
shows log10 |1%× f(τ)| . Downward spikes in the lines represent some points where the numerical solution, or the absolute
error, becomes zero.
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Using Eqs. (5.4) and (5.10), we can also write a solution
proportional to that of Eq. (6.9) as:

δr(τ̆) =

(
τ̆2

a

) i
√

3

k̆

exp

[
ik̆τ̆√

3
+

2i
√

3H
k̆

]
,

ψ(τ̆) = −3

4

(Heq

k̆

)2 (aeq
a

)2
{

1− i
√

3H
k̆

}
δr(τ̆),

δm(τ̆) = −9

2

(Heq

k̆

)2 (aeq
a

)2
{

1− 5i
√

3H
2k̆

}
δr(τ̆) ,

(6.10)

noting that in Eq. (6.10) it is no longer necessary to re-
quire use of the normalised dimensionless versions of the
co–moving wave–number and conformal time, because
they always occur in contexts where the normalisation

can be disregarded — such as k̆τ̆ , H/k̆, or in determin-
ing the overall constant of proportionality for δr.

We can improve our approximate solutions by going
to higher orders. For example, the approximate seventh
order solution (smax = 7) is set out in Appendix C, with
the errors plotted. It provides a typical error for ψ, δr and
δm of less than 1% over a wide range of sub–horizon times
and wave–numbers, including for k = 100 and (plotted in
the appendix’s Figure 10) k = 10. We chose this smaller
value of k to exhibit the seventh order solution because
it appears that smaller k tend to produce bigger errors
than larger k, so this test was more severe.

Using the double power series approximations, we now
highlight some characteristics of the oscillating modes.
From Eq. (6.10), we note that the potential and matter
perturbations for these modes are suppressed by a factor

of (Heqaeq/k̆a)2 relative to the radiation perturbations.
Using Eq. (5.10) — and recalling the choice of units in
that equation — we can see that in the sub–horizon ap-
proximation this factor is always much less than 1.

It can be shown that the absolute value of the larger
eigenvalue of the B matrix in Eq. (5.17) is increasing with

time (tending asymptotically to ik/
√

3). This suggests
that the period of the oscillating modes should decrease
with time. We can see from our approximations that
this inference is correct. The period of oscillation may
be represented by 2π/ω, where ω is from Eq. (6.3). From
the third order approximation at Eq. (6.9) or the seventh
order approximation given in Appendix C, we note that
the oscillation period is asymptotically decreasing over
time. Take, for example, the seventh order approxima-
tion and k = 10. From τ = 1 to τ = 10 we see a decrease
in period of 6%. We also note from Figure 10 that the
typical error for δr within this range is much less than
1%, confirming that this is a genuine effect. This high-
lights the limitations of the leading order — and hence
constant period — WKB approximation.

Although not evident from the underlying perturba-
tion equations, the seventh order approximation also sug-

gests that the amplitude of the δr oscillations increases
slightly over time. The effect is small, around 0.2% for
k = 10 over the range from τ = 1 to τ = 10, with the
variation nearly all occurring while τ < 3. The typical
error in that range is 0.1% or less, and examination of
the numerical solution also suggests that this effect, while
small, is genuine.

VII. ERROR ESTIMATES

In the previous section, we estimated the errors in our
approximation by calculating numerical solutions and
making comparisons. We set out here a heuristic method
for estimating errors without using numerical solutions.

Ref. [14], for example, notes that there is a heuris-
tic method to estimate the errors in conventional power
series approximations. Consider such a series which ap-
proximates a function g(x),

g(x) ∼
∞∑

n=0

cn(x− x0)n . (7.1)

Then the heuristic rule is that the error from approxima-
tion by the Nth partial sum,

∣∣∣∣∣g(x)−
N∑

n=0

cn(x− x0)n

∣∣∣∣∣ , (7.2)

is approximately given by the absolute size of the (N +
1)th term, |cN+1(x− x0)N+1|.

For any given x, this rule also allows an estimate to
be made as to which partial sum gives the best approx-
imation to g(x). If the series converges at x, then the
terms |cN+1(x − x0)N+1| will eventually decrease indef-
initely and each approximation will be an improvement
on its predecessors. However, if the series is divergent at
x, our heuristic rule for error estimation suggests we find
the smallest term |cN+1(x−x0)N+1| for the given x, and
then

N∑

n=0

cn(x− x0)n (7.3)

gives the best approximation to g(x). This will work if
the terms, while not convergent, are sufficiently well–
behaved. Ref. [14] calls the best such approximation the
optimal asymptotic expansion.

For our double power series approximation we can pro-
ceed in a broadly similar fashion. The approach is to start
by focusing particularly on the approximation for δr, for
which the relevant component of the p-series of Eq. (6.1)
is equal to 1. We therefore focus on the ω power series,

Ω =

∞∑

n=0

∫
k−n+1 ωn(τ) dτ . (7.4)
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Figure 6. As for Figure 5, but for the leading order WKB approximation, Eqs. (4.4), (4.5) and (4.7) of Section IV. Note
that we have matched boundary conditions for the δr approximation with those used in Figure 5. The δr WKB solution then
determines the ψ and δm WKB solutions, which therefore differ from those of Figure 5, including at the boundary.

The δr component of the order s approximation, f(s), is

δr(s) = exp

[
s∑

n=0

∫
k−n+1 ωn(τ) dτ

]
≡ exp

[
Ω(s)

]
.

(7.5)
The heuristic rule is that the corresponding error is esti-
mated by the size of the (s+ 1)th term in the Ω series of
Eq. (7.4),

εs =

∣∣∣∣
∫
k−(s+1)+1 ωs+1(τ) dτ

∣∣∣∣ . (7.6)

This also gives us a heuristic rule for identifying the
best approximation. For large enough τ, our series will be
convergent and improve with each iteration. For smaller
τ, where the terms are still sufficiently well–behaved, we
look for the smallest such term,

εS =

∣∣∣∣
∫
k−(S+1)+1 ωS+1(τ) dτ

∣∣∣∣ , (7.7)

and then take the corresponding order S approximation
to be the optimal approximation. In some cases,
the best approximation might be at S − 1 or S + 1,
however, since we can assume that the error is at most
of the same order as εS , this need not be problematic.
The order S double power series approximation also
appears to give us close to optimal approximations for ψ.

We now test our heuristic method against the ap-
proach of comparison with numerical solutions used in
Section VI . Let δnumr(s) be the numerical solution corre-

sponding to the double power series approximation δr(s).

As noted in Eq. (7.5), δr(s) = exp[Ω(s)]. This suggests we
use

E(s) =

∣∣∣∣∣ loge

[
δr(s)

δnumr(s)

] ∣∣∣∣∣ =

∣∣∣∣∣Ω(s) − loge

[
δnumr(s)

] ∣∣∣∣∣ (7.8)

as our error estimate.
Table II sets out the results for k = 10, the value of k

used for the figures showing the seventh order approxima-
tion in Appendix C. In the table, τ ranges from τ = 0.25
to τ = 1. Note the for τ = 0.25, 0.5 and 0.75, our heuristic
predicts the value of s with the minimum error correctly.
For τ = 1, that value of s is out by 1, but the difference
in the accuracy of the approximation is minimal.

We have also looked at larger and smaller values of τ.
For τ < 0.25, we are approaching horizon–crossing and
the series is ceasing to be well–behaved: the minimums
of εs and E(s) need no longer closely correspond. For
τ > 1, the ninth order approximation appears to remain
the best approximation of below tenth order.

VIII. CONCLUSION

We have used a double power series method which, to
our knowledge, is new to cosmology to get sub–horizon
approximations for the oscillating modes of perturbations
in a flat radiation-pressureless matter universe. Using
Mathematica or similar packages it is quick and easy to
calculate good higher order approximations.

We approximated radiation and scalar potential per-
turbations in the longitudinal gauge. From these, we then
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Table II. Estimated and actual errors for δr with k = 10. εs and E(s) are defined in Eqs. 7.6 and 7.8. The smallest values in
each of those columns is in bold. Notice that, for each value of s and τ, we have εs ≥ E(s), as suggested by our heuristic method
for error estimation.

τ 0.25 0.5 0.75 1

s εs E(s) εs E(s) εs E(s) εs E(s)

3 0.3398 0.2819 0.0498 0.0459 0.0158 0.0092 0.0068 0.0057

4 0.6257 0.4757 0.0458 0.0358 0.0099 0.0078 0.0033 0.0027

5 0.7857 0.4341 0.0357 0.0245 0.0059 0.0045 0.0016 0.0013

6 1.2948 0.5310 0.0373 0.0228 0.0047 0.0033 0.0010 0.0008

7 3.1138 1.1122 0.0507 0.0275 0.0045 0.0030 0.0008 0.0006

8 9.6686 2.8491 0.0843 0.0403 0.0053 0.0032 0.0007 0.0005

9 0.6103 9.0526 0.1685 0.0711 0.0073 0.0040 0.0008 0.0005

got the corresponding matter perturbations. The accu-
racy of approximation, when compared with numerical
solutions of the perturbation equations, will depend on
the wave–number and on the order to which the approx-
imation is taken. Figures 5 and 10 show that the double
power series approximation can achieve typical errors of
1% or better across a wide range of sub–horizon times
for the potential, radiation and matter perturbations.

Besides being interesting in themselves analytic solu-
tions, derived with the double power series method out-
lined in this work or otherwise, have many applications.
We hope in particular that they will help to improve the
efficiency of numerical calculations which are computa-
tionally costly, if for example a large parameter space has
to be sampled. Using analytic solutions together with nu-
merical ones might increase the overall speed of the calcu-
lation without loosing accuracy. Analytical solutions can
also be used as input for non–linear governing equations.
Recent examples using cosmological perturbation theory
at second order are the generation of vorticity [19, 20],
and the generation of magnetic fields [21]. In both cases
the evolution equations for the second order quantities
are sourced by the product of two first order quantities.
It was highlighted recently in Ref. [22], that analytical
methods might indeed be more suitable for the study of
magnetic field generation on small scales than numerical
schemes.

We will show in a forthcoming paper that the double
power series method can also be used to derive good ap-
proximations for tensor perturbations in a flat radiation–

matter universe. Another paper in preparation will show
how to derive good approximations for perturbations in
a ΛCDM universe. It is also possible that the method
may be useful in other models — for example, where
the acceleration of the late Universe is modelled using a
quintessence scalar field, or for modelling inflation.

The double power series method is also applicable for
gauge choices other than the longitudinal gauge chosen in
this paper, and for approximating linear perturbations in
models of the universe with a single matter component,
but where the equation of state varies over time. For
example, Ref. [23] sets out the governing equation for a
linear matter perturbation in the co–moving gauge, in
a context where the equation of state varies over time.
Sub–horizon solutions to that equation can be analyti-
cally approximated by our method, providing the Hubble
parameter and other time–dependent terms can be inte-
grated analytically, either exactly or to a sufficiently good
approximation. This illustrates the wide applicability of
the double power series method in cosmology.
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Appendix A: The double power series
approximation for a Bessel function

In this appendix, we work out explicitly Section II’s
Bessel function solution to third order, following the
algorithm in Figure 1. Circled numbers refer to the steps
of that algorithm.

1

In this example, we take smax = 3.

2 and 3

Taking these two steps together, we put p = 1 into
Eq. (2.14) to get

(
ω′ + ω2

)
+

1

τ
ω +

(
k2 +

1

τ2

)
= 0. (A1)

4 and 5

Set s = 0. Coefficients of k2−0 = k2 in Eq. (A1) can only
come from its ω2 and k2 terms. Equating coefficients of
k2, we get

ω2
0 + 1 = 0. (A2)

So

ω0 = ±i (A3)

and we choose one of the solutions, say ω0 = +i. From
Figure 1, our lowest order approximation is therefore

f(0)(τ) = exp

[∫
ikdτ

]
= exp [ikτ ] . (A4)
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Figure 7. This figure shows real parts of the approximate
(solid lines) and exact (dashed line) analytical solutions to

Eq. (2.7). The vertical axis is in units of
√
k. The calculation

of the exact solution is explained in Figure 8. A graph of the
imaginary parts shows broadly similar features.

We choose the constant of integration to be 0: any other
choice would simply multiply f(0) by a constant.

A comparison of this solution with the exact ana-
lytical solution given by Bessel functions can be found
in Figure 7 — see the purple solid line and the black
dashed line respectively. We note that f(0) does not
match the analytical solution very well — in particular,
it does not have the latter’s decaying amplitude.

6 to 9

We increase s by 1 to get s = 1. We now equate coeffi-
cients of k2−1 = k1 in Eq. (A1), making use of ω0 = i.
This gives us

ω′0 + 2ω0ω1 +
1

τ
ω0 = 2iω1 +

1

τ
i = 0, (A5)

yielding

ω1 = − 1

2τ
. (A6)

This gives

f(1)(τ) = exp

[∫ (
ik − 1

2τ

)
dτ

]

= exp

[
ikτ − 1

2
log(τ)

]

=
1√
τ

exp [ikτ ] .

(A7)

As elsewhere in this paper, unless otherwise specified, all
logarithms are natural logarithms to the base e. Fig-
ure 7’s red line shows that this is a much better solution

than f(0), being very close to the analytical solution for
kτ & 6.

We now increase s by 1, to get s = 2. Equating coeffi-
cients of k2−2 = 1 in Eq. (A1), gives us

(
ω′1 +

[
2ω0ω2 + ω2

1

])
+

1

τ
ω1 +

1

τ2
= 0. (A8)

Using the values of ω0 and ω1 calculated above, we have

(
1

2τ2
+

[
2iω2 +

1

4τ2

])
− 1

2τ2
+

1

τ2
= 0, (A9)

giving

ω2 =
5i

8τ2
. (A10)

This gives us

f(2)(τ) = exp

[∫ (
ik − 1

2τ
+

5i

8kτ2

)
dτ

]

= exp

[
ikτ − 1

2
log(τ)− 5i

8kτ

]

=
1√
τ

exp

[
ikτ − 5i

8kτ

]
.

(A11)

Figure 7’s orange line shows that this is a further im-
provement: f(2) is very close to the analytical solution
for kτ & 3.5.

We increase s by 1, to get s = 3. Equating coefficients
of k2−3 = k−1 in Eq. (A1), gives us

(ω′2 + 2ω0ω3 + 2ω1ω2) +
1

τ
ω2 = 0. (A12)

Using the values of ω0, ω1 and ω2 already calculated, this
gives us

(
− 5i

4τ3
+ 2iω3 − 2

1

2τ

5i

8τ2

)
+

1

τ

5i

8τ2
= 0. (A13)

That results in

ω3 =
5

8τ3
, (A14)

which gives

f(3)(τ) = exp

[∫ (
ik − 1

2τ
+

5i

8kτ2
+

5

8k2τ3

)
dτ

]

= exp

[
ikτ − 1

2
log(τ)− 5i

8kτ
− 5

16k2τ2

]

=
1√
τ

exp

[
ikτ − 5i

8kτ
− 5

16k2τ2

]
.

(A15)
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The exact Bessel equation solution

To match the approximate and analytical solutions, we need to work out
what linear combination of Ji and Yi to use for the latter. It is well known —
see, for example, the online reference manual [15] — that, as η →∞,

Jα(η) ∼
√

2

πη
cos
[
η − απ

2
− π

4

]
(i)

and Yα(η) ∼
√

2

πη
sin
[
η − απ

2
− π

4

]
. (ii)

This implies that, as η →∞,

Ji(η) + iYi(η) ∼
√

2

πη
exp

[
iη +

π

2
− iπ

4

]
. (iii)

So, as τ →∞,

Ji(kτ) + iYi(kτ) ∼
√

2

πkτ
exp

[
ikτ +

π

2
− iπ

4

]
. (iv)

Note that as τ →∞, for s = 1, 2, 3,

f(s)(τ)→
1√
τ
exp [ikτ ] . (v)

Comparing Eq. (iv) with Eq. (v), we see that our approximate
solutions must correspond to the exact analytical solution

f(τ) =

√
πk

2
exp

[
−π
2
+
iπ

4

]
(Ji(kτ) + iYi(kτ)) . (vi)

Figure 8. Matching the approximate and exact solutions of
our Bessel equation.

Figure 7’s green line shows that this is yet a further im-
provement: f(3) is very close to the analytical solution
for kτ & 1.5.

Whatever value of smax we choose, we expect the ap-
proximation to fail for some small enough τ because the
approximation we have used involves a series in k−1, and
this fails once the value of k−1 gets too large relative to
τ . kτ needs to be big enough to make the power series
well behaved.

Appendix B: The double power series
approximation to third order

In this appendix, we work through the double power
series solution for Section VI explicitly to third order,
following the algorithm set out in Figure 3. Circled
numbers refer to the steps of that algorithm.

1

We take smax = 3. In terms of the discussion at the
end of Section II, this gives a reasonable balance
between simplicity — having relatively few terms —
while, as we shall see in Figures 4 and 5, being a
valid approximation not too long after horizon–crossing
and, once it is a valid approximation, having small errors.

2 to 5

Set s = 0. We have

A−1B−2 =

(
1 0
4 1

)(
0 0
4
3

1
3

)
=

(
0 0
4
3

1
3

)
. (B1)

It is easy to see that

p0 =

(
0
1

)
(B2)

is an eigenvector, with eigenvalue 1/3 and that the other
eigenvalue is 0.

The 0 eigenvalue corresponds to the Mészáros modes
and the 1/3 eigenvalue to the oscillating modes. Ac-
cordingly, as is intuitively plausible from the physics, the
Mészáros modes are particularly associated with pres-
sureless matter and the oscillating modes with radiation
pressure3.

Note that in Eqs. (3.11) and (3.13), in accordance
with step 4 , we choose our eigenvalue as µ = 1/3.

Following step 5 , we set ω0 = i/
√

3.

6

The algorithm tells us to pick p0 to be an eigenvector
of A−1B−2 corresponding to the eigenvalue 1/3. So we
choose

p0 =

(
0
1

)
. (B3)

We can also look at this same calculation in a slightly
different way, in terms of equating coefficients of k2−0 =
k2 in Eq. (6.8). Most of the terms in Eq. (6.8) do not gen-
erate coefficients of k2: only the Apω2 and the B−2 k2p
terms contribute. The resulting equation for p0 is

[
ω2
0A + B−2

]
p0

=

[
ω2
0

(
1 0
−4 1

)
+

(
0 0
4
3

1
3

)]
p0 = 0. (B4)

Solving the matrix equation, we again find we can set
ω0 = i√

3
, and that p0 can have no ψ component; it only

3 To make this notion concrete and precise, suppose that, instead
of confining ourselves to the case of radiation and pressureless
matter, we had two fluids, F1 and F2, obeying respective equa-
tions of state, P = wαρ, with wα constant for α = 1, 2. Then, we
can do calculations similar to those which resulted in Eqs. (3.11)
and (3.13) to get a pair of second order differential equations in
the F1 perturbation and ψ. It can then be shown that the eigen-
values of the resulting matrix A−1B−2 would be w1 and w2.
The F1 perturbations would be the eigenvector of these equa-
tions associated with the eigenvalue w1. Note that there is no
asymmetry between the two fluids here: we could, alternatively,
derive a pair of second order differential equations in the w2 fluid
and ψ, for which the w2 perturbation would be the eigenvector
with eigenvalue w2. As usual, the Bianchi identities guarantee
that there are only four independent modes.
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has a δr component, which we choose to be 1.

7

This gives us our lowest order approximation

f(0)(τ) =

(
0
1

)
exp

[
ikτ√

3

]
. (B5)

In this approximation, ψ = 0, but δr 6= 0, so Eq. (3.11)
suggests that this does not approximate the exact
solution very well.

8 to 11

These steps are analogous to those in Appendix A for
the Bessel example, but involve vector equations. We
increase s by 1 to get s = 1. We equate coefficients
of k2−1 = k in Eq. (6.8). We use square brackets to
group together terms which come from a single term of
Eq. (6.8), and have

A
[
p02ω0ω1 + p1ω

2
0

]
+ Cp0ω0 + B−2 p1 = 0. (B6)

Note the rule that for each term

(Total of subscripts in the term)

− (Total power of ωs in the term) = s− 2. (B7)

The subscripts totalled include those for the p, ω and
also the B terms — and is the underlying motivation
for our choice of subscripts −2 and 0 for the Bs. The
rule follows from looking at coefficients of k−1 from the
double power series expression of Eq. (6.1).

It is significant that p1 occurs only in the combination
of terms

[
Aω2

0 + B−2
]
p1. Indeed, at every iteration s,

we get ps making its first appearance in the algorithm
in the combination of terms

[
Aω2

0 + B−2
]
ps. This gives

an undetermined degree of freedom for each ps which is
parallel to the original eigenvector p0, which satisfied the
equation

[
Aω2

0 + B−2
]
p0 = 0. Step 4 of our algorithm

includes the assumption that the eigenvalue −ω2
0 is not

a repeated root of the characteristic equation, and so the
eigenspace is of dimension one: in other words, there is
a single undetermined degree of freedom for each pj . In
accordance with step 9 in the algorithm, we set this
undetermined degree of freedom to zero. The rationale
for this is that the choice of this degree of freedom will not
affect the approximation, so it is best to choose the degree
of freedom to keep the expression for the approximation
as simple as possible.

In what follows, we will write, for any s,

ps =


p

(ψ)
s

p
(δr)
s


 . (B8)

Putting A, B−2, p0 and ω0 into Eq. (B6) we find




− 1
3p

(ψ)
1

− 8
3p

(ψ)
1 + 2√

3
iω1


 = 0. (B9)

Hence

p
(ψ)
1 = 0 and ω1 = 0. (B10)

We find, however, that p
(δr)
1 is undetermined, so, along

lines discussed following Eq. (2.15), and in accordance

with step 9 , we set p
(δr)
1 = 0. This gets us

p1 = 0. (B11)

Because for s ≥ 1, ps always makes its first ap-
pearance in the algorithm in the combination of terms[
Aω2

0 + B−2
]
ps, p

(δr)
s is always undetermined and there-

fore set to 0.

Because ω1 = 0 and p1 = 0, our approximation is
unchanged by this s = 1 iteration of the algorithm. We
have

f(1)(τ) =

(
0
1

)
exp

[
ikτ√

3

]
= f(0)(τ). (B12)

In accordance with step 8 , we next increase s by 1,
to get s = 2. We equate coefficients of k2−2 = k0 = 1 in
Eq. (6.8). This gives the equation

A
[
p2 ω

2
0 + p0

(
2ω0ω2 + ω2

1

)]

+ C [p0ω1 + p1ω0] + (B0 p0 + B−2 p2) = 0. (B13)

Using the values of p0, ω0, p1 and ω1 found above, this
gives us

ω2 = − 32i
√

3

τ2 (4 + τ)
2 (B14)

and

p2 =

(
− 24
τ2(4+τ)2

0

)
, (B15)

where, as noted above, p
(δr)
2 was found to be undeter-

mined, leading us to set it to 0.
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To get f(2), we now have to do the integration

∫
k−1ω2 dτ = k−1

∫
− 32i

√
3

τ2 (4 + τ)
2 dτ

= −ik−1
√

3

∫ {
2

τ2
+

2

(4 + τ)
2 −

1

τ
+

1

4 + τ

}
dτ

= −ik−1
√

3

{
−2

τ
− 2

4 + τ
− log(τ) + log(4 + τ)

}

=
4i
√

3(2 + τ)

kτ(4 + τ)
+
i
√

3

k
log

[
τ

(4 + τ)

]
, (B16)

where in the second line we have adopted the standard
approach to such integrations of splitting our original
fraction into a series of partial fractions.

We now have

f(2)(τ)

=

(
− 24
τ2(4+τ)2

1

)(
τ

4 + τ

) i
√

3
k

exp

[
ikτ√

3
+

4i
√

3(2 + τ)

kτ(4 + τ)

]
.

(B17)

We increase s by 1 again, to get s = 3.We equate coeffi-
cients of k2−3 = k−1 in Eq. (6.8). The resulting equation
has more terms than for s = 1, because we now pick up
derivative terms from Eq. (6.8): we have

A
(
2p′2ω0 + p0ω

′
2 +

[
p3 ω

2
0 + p22ω0ω1

+p1

(
ω2
1 + 2ω0ω2

)
+ p0 (2ω0ω3 + 2ω1ω2)

])

+ C [p0ω2 + p1ω1 + p2ω0]

+ (B0 p1 + B−2 p3) = 0. (B18)

The rule from Eq. (B7) is very helpful in constructing the
above expression. As before, square brackets group to-
gether terms which come from a single term of Eq. (6.8).

Substituting the results already obtained for
p0, ω0, p1, ω1, p2 and ω2 into Eq. (B18), we get — after
some algebra —

ω3 = 0 (B19)

and p3 =

(
48
√
3i(2+τ)

τ3(4+τ)3

0

)
. (B20)

This gives us the approximate solution f(3), which is

δr(τ) =

(
τ

4 + τ

) i
√

3
k

exp

[
ikτ√

3
+

4i
√

3(2 + τ)

kτ(4 + τ)

]
,

ψ(τ) = − 24

k2τ2(4 + τ)2

{
1− 2i

√
3 (2 + τ)

kτ(4 + τ)

}
δr(τ).

(B21)

Recall from Eq. (5.8) that, in the above, τ is confor-

mal time measured in units of
√

2/Heq, and k is the co–

moving wave–number measured in units of Heq/
√

2.

Appendix C: The double power series approximation to seventh order

The approximate solution set out in this appendix is derived using the same approach as in Section VI but going
to seventh order, using our Mathematica notebook available at Ref. [13]. In particular, δm is obtained by using the
ninth order δr and ψ approximations in Eq. (5.25) and dropping any powers of k−n with n > 7 from the factor in
braces in Eq. (C3).
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δr(τ) = exp

[
ikτ√

3
+
i
√

3
(
16k4 + 78k2 + 819

)

16k5
log

[
τ

τ + 4

]
+

4i
√

3(τ + 2)

kτ(τ + 4)

+
i
√

3
(
39τ5 + 390τ4 + 1144τ3 + 624τ2 − 960τ − 256

)

2k3τ3(τ + 4)3
− 288

(
11τ2 + 44τ + 16

)

k4τ4(τ + 4)4

+
3i
√

3
(
1365τ9 + 24570τ8 + 171080τ7 + 560560τ6 + 797888τ5 + 232960τ4 − 640τ3 + 928000τ2 + 814080τ + 147456

)

20k5τ5(τ + 4)5

+
432

(
987τ4 + 7896τ3 + 18320τ2 + 10112τ + 512

)

k6τ6(τ + 4)6

]
, (C1)

ψ(τ) = − 24

k2τ2(τ + 4)2

{
1− 2i

√
3(τ + 2)

kτ(τ + 4)
− 36

k2τ(τ + 4)
+

216i
√

3(τ + 2)

k3τ2(τ + 4)2

+
72
(
63τ4 + 504τ3 + 1192τ2 + 736τ + 64

)

k4τ4(τ + 4)4

− 576i
√

3
(
63τ5 + 630τ4 + 2158τ3 + 2868τ2 + 1168τ + 64

)

k5τ5(τ + 4)5

}
δr(τ), (C2)

δm(τ) = − 144

k2τ2(τ + 4)2

{
1− 5i

√
3(τ + 2)

kτ(τ + 4)
− 6

(
19τ2 + 76τ + 48

)

k2τ2(τ + 4)2

+
72i
√

3
(
13τ3 + 78τ2 + 132τ + 56

)

k3τ3(τ + 4)3
− 24

(
63τ4 + 504τ3 + 1164τ2 + 624τ + 128

)
(τ + 2)2

k4τ5(τ + 4)5

− 144i
√

3
(
294τ5 + 2940τ4 + 11183τ3 + 20058τ2 + 16776τ + 5152

)

k5τ5(τ + 4)5

}
δr(τ). (C3)

As for Eq. (6.9), here τ is the value of the conformal time, when measured in units of
√

2/Heq, and k is the value of

the co–moving wave–number, when measured in units of Heq/
√

2.
The above solutions are plotted for k = 10 in Figure 9, with the errors shown in Figure 10. Lower wave–numbers

tend to be more testing to approximate, so we chose the value k = 10 to demonstrate the accuracy of the seventh
order approximation.



22

0 2 4 6 8 10
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10
-0.05

0.00

0.05

0.10

0.15

0 2 4 6 8 10

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

0.15

Figure 9. The solid blue line is the seventh order double power series solution with k = 10. The orange dashed line is the
numerical solution. The pink vertical line shows the time of photon–baryon decoupling. Other details are as in Figure 4.
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Figure 10. This figure shows the errors in the approximations for k = 10 of Figure 9. In brief, the solid blue line is the relative
error of the seventh order double power series solution for k = 10, compared with the numerical solution. The green dashed
line is 1% of that numerical solution. See the caption to Figure 5 for more details.
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