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Abstract 

 

Immunomodulatory drugs (IMiDs) could enhance both direct anti-tumour and graft-versus-

tumour effects after allogeneic haematopoietic stem cell transplantation (AHSCT). However, 

clinical experience with IMiDs after AHSCT using adult peripheral blood (APB) as a stem-cell 

source has been limited by graft-versus-host disease. Characterization of the mechanisms by 

which IMIDs modulate alloresponses of T cells and identification of differential effects on T cells 

from different cell sources could facilitate more effective use of these drugs in the setting of 

AHSCT. Using in vitro modelling, multi-parameter flow cytometry and gene expression analysis, 

I have determined the impact of the widely used IMiD lenalidomide on alloresponses of APB and 

umbilical cord blood (UCB)-derived T cells. 

 

Lenalidomide-treatment potentiates net alloproliferation of APB-derived T cells by selectively 

enhancing proliferation of CD8+ T cells. These CD8+ T cells have enhanced effector memory 

differentiation, are enriched for polyfunctional effectors, have enhanced direct-cytotoxicity 

against heamatopoietic target-cells and have a distinct gene expression profile with altered 

expression of key immunoregulatory-genes and depletion of cellular ikaros.  

 

Importantly, while effects on CD8+ T cells derived from UCB are similar, lenalidomide has 

contrasting effects on allospecific proliferation of APB and UCB-derived CD4+ T cells. While 

lenalidomide-treatment has no effect on alloproliferation of APB-derived CD4+ T cells, it reduces 

alloproliferation of UCB-derived CD4+ T cells. The reduction in UCB-derived CD4+ T cell 

alloproliferation is accompanied by selective expansion of CD4+CD25+FOXP3+ regulatory T cells 

(Treg), resulting in an overall reduction in UCB-derived T cell alloproliferation.  

 

These findings demonstrate that lenalidomide has a differential impact on alloresponses of T 

cells from different cell sources; alloresponses of APB-derived T cells are increased via selective 

expansion of polyfunctional CD8+ effectors, while alloresponses of UCB-derived T cells are 

limited by expansion of tolerogenic Treg. These findings have important implications for the 

future use of IMiDs in the setting of AHSCT. 
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PD1 Programmed death 1 

PE Phycoerythrin 

PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 

PMA Phorbol 12-myristate 13-acetate 

PMCH Pro-melanin concentrating hormone 

PMT Photomultiplier tube 

PNAd Peripheral node addressin 

PTCy Post transplant cyclophosphamide 

QC Quality control 

qRT PCR Quantitative reverse transcriptase polymerase chain reaction 

RIC Reduced intensity conditioning 

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute 

RQ Relative quantity 

RT Room temperature 

S1P Sphingosine 1 phosphate 

SEE Staphyloccocal enterotoxin e 

sIL2 R Soluble interleukin 2 receptor 

siRNA Small interfering RNA 

SLO  Secondary lymphoid organ 

SOCS2 Suppressor of cytokine signalling 2 

SSC Side scatter 

T cell T lymphocyte 

TCD T cell depletion 

TCR T cell receptor 

Teff T effector cells 

TEMRA Terminal effector memory re-expressing RA 

Th1 T helper 1 lymphocyte 

Th2 T helper 2 lymphocyte 

TIM 3 T cell immunoglobulin domain and mucin domain 3 

TNF Tumour necrosis factor alpha 

TNFR2 Tumour necrosis factor receptor 2 

Treg T regulatory cells 
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UCB Umbilical cord blood 
UCBT Umbilical cord blood allogeneic haematopoietic stem cell 

transplant 

VCAM 1 Vascular cell adhesion molecule 1 

VEGF Vascular endothelial growth factor 

WT1 Wilms tumour antigen 1 
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Chapter 1 - Introduction 

 

1.1 Allogeneic haematopoietic stem cell transplantation 

 

1.1.1 The process of allogeneic haematopoietic stem cell transplantation 

Allogeneic haematopoietic stem cell transplant (AHSCT) is a potentially curative treatment for a 

range of haematological cancers that would otherwise not respond to chemotherapy or 

radiotherapy. Although there is a high degree of heterogeneity in how an individual AHSCT is 

performed, the success of the treatment in terms of tumour eradication is dependent on an 

immunological phenomenon known as the graft-versus-tumour effect (GvT). This beneficial GvT 

is intimately linked with pathological graft-versus-host disease (GvHD) and it has been the goal 

of basic and clinical AHSCT research for many decades to maximise GvT and minimise GvHD1. 

 

While the exact components of the transplant process may vary from patient to patient and 

centre to centre, the process can be broadly categorised as follows:  

 

I. Pre-transplant conditioning 

II. Infusion of donor cells collected from a different individual 

III. Post-transplant immunoprophylaxis 

 

Figure 1.1 Shows a schematic representation of AHSCT 

 

Pre-transplant conditioning serves a number of purposes; firstly it may contribute to the 

eradication of residual tumour, secondly it serves to suppress the immune system of the 

transplant recipient in order to prevent rejection of the donor graft and thirdly it may also 

contribute to GvHD prevention by modulation and depletion of antigen presenting cells (APC)2. 

A combination of chemotherapy and radiotherapy may be used as conditioning and there are 

myriad protocols used depending on patient characteristics, disease characteristics and 

physician/transplant centre preference3.  



 

 

2
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Figure 1.1 
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Figure 1.1 Schematic representation of allogeneic haematopoietic stem cell transplantation 

(AHSCT) 

This figure depicts the major stages of AHSCT. Patients undergo treatment for their underlying 

haematological malignancy to induce remission, conditioning therapy then prepares the patient 

for the donor graft. Once the donor cells have been infused there is a gradual recovery of 

haematopoiesis with potential for allo-activation of infused donor T cells that may exert graft-

versus-host disease (GvHD) or graft-versus-tumour effects (GvT). Donor lymphocyte infusions 

(DLI) may be administered after AHSCT to augment the alloresponse. Haematopoietic stem cells 

in the graft home to the bone marrow and give rise to de novo myeloid and then lymphoid 

lineages.  

 

Adapted from Krenger et al. 2011 4 

 

APC = Antigen presenting cell, HSC = Haematopoietic stem cell, BM = Bone Marrow, DLI = Donor 

lymphocyte infusion 
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Conditioning protocols can be categorised as full intensity conditioning (FIC) or reduced intensity 

conditioning (RIC). FIC protocols aim to maximise tumour eradication, but as a consequence 

completely eradicate the recipient’s bone marrow function and allow for full donor 

engraftment. Reduced intensity conditioning (RIC) aims for sufficient immunoablation to allow 

engraftment of donor cells but is less toxic and commonly results in the formation of a bone 

marrow chimera, with recovery of haematopoiesis arising from both residual recipient and 

donor cells (Figure 1.1) 3. 

 

The source, composition and degree of tissue-type-matching (with the recipient) of donor cells 

can vary widely. Historically one of the major barriers to the success of AHSCT was a lack of 

understanding of the fundamental biology of self/non-self recognition, leading to frequent graft 

rejection. One of the most important leaps forward in AHSCT was the characterisation of the 

Human Leukocyte Antigen (HLA) system and the genes of the Major Histocompatibility Complex 

(MHC) that encode this highly polymorphic group of cellular antigens (Figure 1.2) 5. This enabled 

donors to be HLA-matched with recipients. As HLA-typing techniques have improved, donors 

and recipients can now be matched at an allele level, leading to improved AHSCT outcomes 6. 

 

Donor cells may now be sourced from an HLA-identical sibling, an HLA-matched unrelated donor 

(MUD), an HLA-mismatched unrelated donor, an HLA-haploidentical donor (usually a parent) or 

from HLA-matched or mismatched umbilical cord blood (UCB) 7. In addition where the graft is 

collected from a related or unrelated donor the collection methods may vary. Haematopoietic 

stem cells, progenitor cells and mature cells may be harvested from the bone marrow directly, 

or from the peripheral blood following stem-cell-mobilisation using agents such as granulocyte 

colony stimulating factor (G-CSF) and corticosteroids. The cellular composition of the graft can 

be affected by the method of collection itself 8 or due to manipulation of the cellular 

components of the graft after collection. Particular cell types, for example T cells may be 

removed from the graft completely, or in some cases removed engineered and then returned 

to the graft 9.  



 

 

2
5 

Figure 1.2 
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Figure 1.2 Structure of the human major histocompatibility (MHC) locus 

(A) Arrangement of MHC Class I, II and III alleles on chromosome 6. Due to the arrangement on 

one chromosome human leucocyte antigen (HLA) haplotypes are inherited en-bloc from each 

parent, with each sibling having a 25% probability of being HLA-identical.  

 

(B) Due to the highly polymorphic nature of the MHC locus, the probability of finding an 

unrelated HLA-matched donor for the purposes of allogeneic haematopoietic stem cell 

transplantation (AHSCT) is many magnitudes lower than for a sibling. This has made matching of 

donor and recipient for rare HLA alleles a significant challenge for AHSCT. 

 

Adapted from Erlich et al 2001 5 

 

Prots = proteins 
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Following infusion of donor cells, haematopoietic stem cells and precursors are known to home 

to the bone marrow where they can begin to reconstitute normal haematopoiesis, this process 

is known as engraftment. During this time immunosuppression is vital to prevent graft rejection 

and also to reduce the risk of GvHD 10.  

 

1.1.2 The alloresponse – Graft-versus-Tumour effects and Graft-versus-Host Disease 

 

Pioneering work by Rainer Storb and Hans Kolb in the 1960s and 1970s identified that the 

‘secondary disease’ observed in mouse models of AHSCT, which came to be known as GvHD was 

mediated by the T lymphocyte (T cell) component of the donor graft 11-15. It is now understood 

that both GvHD and GvT are a consequence of the immunological processes of allo-(non-self) 

recognition and alloreactivity. This is predominantly but not exclusively a T cell mediated 

phenomenon. Other specialised immune and in some cases non-immune cells may also 

contribute to the immunobiology of the alloresponse (reviewed by Blazar et al 16). 

 

The presence of endogenous antigens presented in the context of unique MHC class I molecules 

on almost all cells in the human body, and MHC class II on specialised haematopoietic cells mark 

them out as ‘self’ to the autologous immune system. When immune cells from a genetically non-

identical individual are introduced, as in AHSCT, these cells can recognise differences in the MHC 

itself, in the endogenous peptides (minor histocompatibility antigens or mHags) or a 

combination of both (Figure 1.3). This process is known as allorecognition and if the stimulus to 

the donor immune cells is sufficient can result in activation and proliferation of the 

alloresponsive cells leading to alloreactivity 17. 

 

Alloreactivity against non-self MHC, mHag or tumour antigens in the recipient may be directed 

against residual tumour cells and thus lead to GvT. In some cases this same process is directed 

against healthy non-tumour tissues; in particular towards the skin, liver or gut causing harmful 

acute GvHD 16. 
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Figure 1.3 
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Figure 1.3 Direct and indirect pathways of allo-antigen presentation and T cell receptor (TCR) 

allo-activation 

Allogeneic donor T cells are capable of directly recognising foreign major histocompatibilty 

(MHC) molecules on recipient antigen presenting cells (APC) either due to polymorphic epitopes 

on the MHC itself or due to a complex of recipient MHC and recipient-derived self-peptide. This 

process is known as direct-allorecognition. 

 

Donor APC, either infused with the donor graft itself or arising later after transplant as a result 

of donor haematopoiesis can engulf and process recipient derived proteins and present non-self 

peptide in the context of self-MHC to also stimulate donor T cell alloresponses. This process is 

known as indirect-allorecognition.  

 

Adapted from Abbas et al. 201418 

 

TCR= T cell receptor 
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GvHD was historically categorised as acute or chronic. Acute GvHD (aGVHD) was previously 

defined as occurring before day 100 after infusion of the donor graft and presents clinically as 

an acute inflammatory syndrome typically affecting the skin, gut and liver. Chronic GvHD 

(cGvHD) was defined as occurring after day 100 and presenting with clinical features more 

typical of autoimmune disease. Due to changes in transplant practice, including RIC and donor 

lymphocyte infusions (DLI) these arbitrary time-points are now felt to be unhelpful in regards to 

classifying GvHD and the clinical features, regardless of time from transplant are used to make 

a diagnosis19.  

 

Despite the harmful effects of GvHD numerous studies have shown that it is often associated 

with GvT, with individuals who experience GvHD having lower rates of relapse of their primary 

tumours. In fact, this observation was partly responsible for the recognition that a GvT effect 

existed. However, while there is a close link between GvT and GvHD, the occurrence of GvHD is 

not absolutely necessary for cure, and neither does it guarantee cure after AHSCT1. 

 

1.1.3 Evidence for GvT 

 

In the early days of AHSCT the purpose of the donor graft was largely to provide a source of cells 

that could re-populate the bone marrow and rescue the recipient from the effects of 

myeloablative doses of chemotherapy and radiotherapy. Allogeneic cells also had the benefit of 

being guaranteed to be free of tumour cells and thus superior to an autologous graft. Only 

subsequently was it observed that the introduction of another individual’s immune cells had an 

effect on reducing relapse over and above facilitating higher doses of chemotherapy and 

radiotherapy1. 

 

Initial observations were that recipients of grafts from identical twins, while not suffering the 

harmful effects of GvHD, experienced the highest rates of relapse compared with other graft 

sources and that those recipients who experienced GvHD had lower rates of relapse than those 

who did not. This suggested that a degree of immunological disparity resulting in GvHD also 

facilitated recognition and control of residual tumour (Figure 1.4)1. 
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Figure 1.4 
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Figure 1.4 Effect of graft-versus-host disease (GvHD) on probability of relapse after 

allogeneic haematopoietic stem cell transplant (AHSCT)  

(A) Actuarial probability of relapse after AHSCT for leukaemia according to type of graft and 

development of GvHD. 

(B) Fold increase and decrease in risk of relapse and treatment failure after AHSCT for leukaemia 

among patients with both acute and chronic GvHD as compared to patients without GvHD. 

Because no patients with severe GvHD relapsed the fold decrease could not be accurately 

estimated. 

Reproduced from Horowitz et al. 1. (T depletion= T cell depletion, aGvHD= acute GvHD, cGvHD= 

chronic GvHD). 
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Following the discovery that the T cell component of the graft is important in the development 

of GvHD there was a movement to T cell deplete grafts prior to infusion 20. While effective at 

reducing the incidence of GvHD it was quickly recognised that this approach also led to increased 

rates of relapse, proving that T cells are important for long-term disease control 21-23. 

 

Further evidence for the importance of T cells for disease control after AHSCT was provided by 

the fact that delayed infusions of T cells, so called donor lymphocyte infusions (DLI) after AHSCT 

are able to re-induce remission in individuals with evidence of disease relapse 24-27 and the 

finding that donor tumour-antigen-specific T cells can be identified in the peripheral blood of 

AHSCT and DLI recipients 28,29. 

 

Although in the majority of AHSCT T cells are the dominant cells in GvT reactions, it has now 

been shown that they are not the only immune cells capable of exerting GvT. In the context of 

haploidentical-AHSCT where rigorous T cell depletion (TCD) is necessary to prevent severe 

aGvHD (due to the 50% HLA disparity between donor and recipient), natural killer (NK) cells can 

provide tumour control 30. 

 

NK cells are a subset of lymphocytes important in the innate immune system recognition of 

virally infected cells. NK cells have surface killer immunoglobulin-like receptors (KIR) that 

recognise specific MHC class I molecules. When there is a mismatch or a loss of cognate MHC 

sequences NK cells no longer receive inhibitory signals and a change in the balance of activating 

and inhibitory KIR signalling leads to killing of cells with missing-self via the perforin/granzyme 

pathway 31.  

 

In vitro studies have shown that inhibitory KIR mismatch with MHC class I molecules on tumour 

cells leads to tumour cell killing, and recipients of haploidentical KIR-mismatched AHSCT have 

lower rates of relapse compared to KIR-matched. Interestingly there is no evidence, either in 

animal models or in clinical trials that NK cells cause aGvHD. In fact they seem to be protective 

against aGvHD. This is thought to be due to the missing-self effect being restricted to the 

haematopoietic compartment and to NK cell killing of recipient APC, thus preventing their 

interaction with and activation of donor T cells 32-34. 
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1.1.4 Immunobiology of GvHD & GvT 

 

In 1966 Billingham described 3 criteria necessary for the development of GvHD 35.  These were: 

 

 The graft must contain immunocompetent cells. 

 The recipient must express tissue antigens that are not present in the donor. 

 The recipient must be incapable of mounting an effective response to eliminate the 

transplanted cells. 

 

Once these criteria are fulfilled the immunobiological processes that lead to tissue damage can 

be split into 3 phases: the initiation phase, T cell recruitment and activation phase and tissue 

damage phase. The tissue damage that results leads to further release of immunoactive 

substances that lead to further activation and proliferation of T cells and further tissue damage. 

Thus aGvHD is often described a vicious cycle (reviewed by Ferrara et al. 36, Figure 1.5). 

 

Active research into each step in the process of aGvHD has aimed to ameliorate or prevent tissue 

damage. Much effort has focused on the T cells, however T cells are also vital for GvT effects. 

Other important factors influencing the T cell alloresponse include: activation of APC, the 

cytokine milieu, T cell trafficking to target organs and immunoregulatory mechanisms. 

 

The immunobiology of cGvHD is distinct from that of acute. It is felt that cGvHD arises due to a 

failure of thymic selection of emerging naïve T cells derived from donor HSC, whereas aGvHD is 

due to alloreactivity of T cells that are infused with the donor graft (reviewed in Jamil et al. 37). 

As investigation of metrics relating to cGvHD is outside of the scope of this thesis from this point 

on GvHD refers to aGvHD alone. 



 

 

3
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Figure 1.5 
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Figure 1.5 Schematic representation of the cycle of aGvHD 

Damage to recipient tissues leads to release of pro-inflammatory mediators such as damage 

associated molecular patterns (DAMPS), pathogen associated molecular patterns (PAMPS) and 

cytokines (interleukin (IL) 1 and 6), as well as inducing translocation of gut commensals and 

lipopolysaccharide (LPS). These activate recipient antigen presenting cells (APC) and cells of the 

innate immune system that in turn secrete pro-inflammatory cytokines such as IL1 and tumour 

necrosis factor (TNF) that attract donor T cells and lead to donor T cell alloreactivity.  

Alloreactive donor T cells and activated cells of the innate immune system then exert tissue 

damage inducing target cell apoptosis both via direct and indirect mechanisms (interferon 

gamma (IFN), TNF and IL1). Further tissue damage leads to further release of PAMPS, DAMPS 

and pro-inflammatory cytokines and further activation of donor T cells. Thus leading to a ‘vicious 

cycle’. 

 

Adapted from the classic model of immune-pathogenesis of GvHD originally proposed by J. 

Ferrara 36. 

 

NK = Natural killer cell, Treg = T regulatory cell, Th1 = T helper 1 cell. 
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1.1.5 T cell subsets: GvT & GvHD 

 

There is ongoing debate over the relative contributions of CD4+ versus CD8+ T cells to GvHD 38. 

Although CD8+ T cells are generally held to be responsible for causing tissue damage, due to 

their MHC class I restriction and capacity for cell killing (which is also likely to be important for 

GvT) this may be an oversimplified view 39,40. CD4+ T cells play an important role in the initiation 

of GvHD by providing help to CD8+ T cells and may also exert tissue damage 41-43. Some 

investigators have attempted to resolve this issue by separating the two subsets. A strategy of 

CD8+ T cell depleted DLI has been shown to result in reduced rates of post-DLI GvHD 44,45, 

whether a GvT effect is retained is less clear 46. Evidence from animal models suggests that 

depleting CD4+ T cells may diminish GvT 47. 

 

Within the CD4+ T cell population there are further subdivisions including T helper type 1 (Th1) 

and T helper type 2 (Th2) cells. It would appear that Th1 responses, characterised by production 

of interleukin 2 (IL2) and gamma interferon (IFNγ) are the more important in the pathogenesis 

of aGvHD 48,49, while Th2 are less important. However a clinical study of Th2-polarised DLI did 

not show a significant reduction in GvHD 50, in line with other work suggesting that both Th1 and 

Th2 cells are important 51. 

 

T cells also vary in their degree of antigen experience and therefore how rapidly and vigorously 

they can respond to antigenic stimulation. Naïve T cells are antigen inexperienced and require a 

greater degree of T cell receptor (TCR) and co-stimulatory signalling than memory T cells, which 

are ‘primed’ for rapid recall responses 52. There is evidence that T cells responsible for GvHD 

reside predominantly in the naïve T cell compartment and that memory T cells, due to their 

existing specificity for pathogens do not cause GvHD 53, but do contribute to immune 

reconstitution and may exert GvT effects by cross-reactivity with tumour antigens 54. However 

concern has been raised that clinical strategies using selected memory T cells may result in 

compromised GvT effects as naïve T cells also exert more potent GvT 55. In the setting of AHSCT 

for immunodeficiency where GvT is not required, depletion of naïve cells from HLA-mismatched 

grafts has successfully resulted in low rates of GvHD 56. A clinical trial in the US is currently 

evaluating the maximal tolerated dose of naïve T cell depleted DLI after AHSCT for 

haematological malignancy (NCT01627275). 
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The other major T cell subset that has been recently recognised as playing an important role in 

AHSCT is the CD4+ T regulatory cell (Treg). It has been shown that the relative proportion of Treg 

and T effector (Teff) cells is important in determining the risk of GvHD, with increased numbers 

of Treg relative to Teff in both the donor graft 57-59, in recipient peripheral blood soon after 

transplant 60 and in DLI 61 being associated with a lower risk of GvHD 62. 

 

1.1.6 Antigen presenting cells and the alloresponse 

 

To become activated T cells require 2 signals, signal 1 occurs on engagement of the TCR by 

cognate antigen in the context of MHC, and signal 2 is provided by the activation of co-

stimulatory receptors such as CD28 by their cognate ligands. In order to appropriately restrict T 

cell responses to prevent the development of autoimmunity, the ability to deliver these signals 

to T cells is largely restricted to specialised ‘professional’ APC such as dendritic cells (DC), 

although there are other cell types that can take on an APC-like role given appropriate conditions 

(endothelial cells, lymph node stromal cells and epithelial cells, as reviewed by Kambayashi and 

Laufer 63).  

 

APC play an important role as the afferent arm of the alloresponse, as while CD8+ T cells can 

directly recognise tumour cells, the efficiency of anti-tumour responses is much improved if 

tumour associated antigens are presented to both CD4+ and CD8+ T cells by professional APC. 

The relative contribution of recipient and donor derived APC to the alloresponse after AHSCT 

has been the subject of a number of studies.  Experiments in mice have shown that certain 

recipient APC are rapidly depleted after conditioning; (particularly FIC) such as circulating DC 

and those in lymphoid organs, while tissue resident DC such as Langerhan's cells are more 

resistant to chemo and radiotherapy 64,65. Conditioning leads to the activation of any remaining 

recipient APC, priming them to activate donor T cell alloresponses. Therefore complete removal 

of recipient APC would seem a good strategy for prevention of GvHD. In support of this, Merad 

et al. demonstrated that if recipient DC in the skin are eradicated prior to transplant, skin GvHD 

is almost completely prevented 65. 

 

In contrast, Reddy et al. have highlighted the importance of recipient APC for GvT. This group 

demonstrated that recipient APC are better at stimulating GvT responses than donor APC, 

indicating that direct allorecognition after AHSCT is important for anti-tumour effects. This is 

also supported by the observation that more potent GvT effects are exerted when DLI are given 

to patients with mixed donor chimerism (indicating that recipient cells persist) than full donor 
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chimerism. When tumour burden is low or the tumour slowly progressive processing of tumour 

antigen and presentation by donor APC may make a more important contribution to GvT 66. 

 

Counter-intuitively it appears that in vivo post-AHSCT the onset of severe acute GvHD is 

associated with low numbers of circulating DC in peripheral blood 67, this may be due to 

increased retention in inflamed tissues. However this also highlights a potential limitation of 

many studies of GvHD. While it is practically easier to examine changes in peripheral blood, this 

does not necessarily inform as to changes at the tissue level where T cell priming and end-organ 

damage actually takes place.  

 

1.1.7 The role of cytokines in GvT & GvHD 

 

Cytokines play an important role in the pathogenesis of GvHD and as such have been the focus 

of many studies and therapeutic strategies. The cytokines widely accepted to be most important 

will be briefly considered here: 

 

Tumour necrosis factor alpha 

Tumour necrosis factor alpha (TNF) is released in large amounts by activated APC during the 

initiation phase of GvHD, co-stimulating donor T cells that in turn secrete further TNF that 

mediates target-cell apoptosis. A study by Middleton et al. examined genetic polymorphisms in 

the TNF gene of AHSCT recipients and determined that the d3 homozygous allele of the TNFd 

microsatellite was associated with severe GvHD 68. This suggests that recipients carrying this 

variant of the TNF gene may be more susceptible to cytokine activation during pre-transplant 

conditioning. Serum levels of TNF after AHSCT also correlate with likelihood of and severity of 

GvHD 69. For these reasons anti-TNF antibody therapy has been trialled as an option for 

treatment of steroid refractory aGvHD, with some success 70.  

 

Interferon gamma 

IFN is known to promote donor T cell activation and differentiation. High levels of IFN after 

AHSCT are generally felt to be detrimental, skewing the donor T cell response towards a Th1 

phenotype and driving aGvHD 71. IFN has been shown to exacerbate gut GvHD in particular, by 

increasing production of other inflammatory cytokines in the gut 72.  
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However there is evidence that also supports a role for IFN in preventing GvHD by promoting 

contraction of donor effector T cells, modulation of expression of immunoregulatory molecules 

on recipient tissues and generation of Treg. In support of this, IFN knockout (KO) murine models 

have shown that in the absence of IFN severe and lethal GvHD still occurs (reviewed in Wang 

et al. 73).  

 

IFN also has important roles in GvT, acting to promote the proliferation and cytotoxic potential 

of donor CD8+ T cells as well as via an independent direct anti-tumour effect 73.  

 

Interleukin 1 

Interleukin 1 (IL1) is an important inflammatory cytokine that has a role in a range of 

inflammatory disorders including GvHD. One of the roles of IL1 is to increase the expression of 

a number of genes implicated in the pathogenesis of GvHD including: TNF, interleukin 6 (IL6), 

interleukin 12 (IL12) and the receptor for interleukin 2 (reviewed in Dinarello 1996 74). 

Interestingly, although IL1 would seem to make a good target for GvHD treatment a phase III 

study of IL1 blockade failed to show a benefit 75. 

 

Interleukin 6 

IL6 is known to play a role in inflammatory responses of B cells and T cells. The role of IL6 in 

GvHD is less clear, but there is evidence from mouse models that IL6 may exacerbate GvHD 76. 

Human studies also suggest a role for this cytokine as IL6 levels in serum have been found to be 

increased in AHSCT recipients who experience GvHD 77. Based on these findings the humanised 

IL6 receptor blocking antibody tocilizumab has been used to treat severe steroid refractory 

GvHD with some patients appearing to respond, although not durably 78. 

 

Interleukin 12 

IL12 is produced by activated APC and promotes Th1 differentiation of CD4+ T cells and 

proliferation of CD8+ T cells 79. This may be expected to promote GvHD, but studies have shown 

no association between IL12 levels and human GvHD. Furthermore, high levels of IL12 in the 

serum are in fact associated with reduced risk of relapse 80. A murine study of exogenous IL12 

administration has also demonstrated a protective effect of IL12 against GvHD, but 

unfortunately associated with significant toxicity 81. This toxicity has also been observed in 

human studies in other settings 82, which has dampened enthusiasm for use of IL12 after AHSCT. 
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Interleukin 2 

IL2 is the major autocrine cytokine for activated T cells, supporting proliferation and survival and 

thus an important cytokine in the immunobiology of both GvHD and GvT. In a study by Tanaka 

et al. cytokine gene expression levels, including IL1, IL2, IL6, IFN and TNF in mixed lymphocyte 

cultures were assessed for their predictive value on AHSCT outcome. Increased IL2 in culture 

media predicted severe GvHD 83, leading the authors to conclude that this in vitro assay could 

be useful in determining the prognosis of AHSCT or in selecting donors. 

 

Given the importance of IL2 for donor T cells, anti-IL2 receptor antibodies have been of interest 

in the treatment of GvHD. The advantage of targeting the receptor, rather than the cytokine is 

that this should eliminate only alloreactive T cells (that will have upregulated the IL2 receptor) 

rather than the whole T cell compartment. One of these antibodies, basiliximab has been used 

relatively successfully in a phase II study for the treatment of steroid refractory GvHD 84. 

 

Importantly, IL2 also plays a critical role in the expansion of Treg that help to control GvHD. For 

this reason some groups have explored the administration of low doses of recombinant IL2 in 

conjunction with donor lymphocytes, reporting successful expansion of Treg with no excess 

toxicity from GvHD 85. 

 

1.1.8 Role of T cell trafficking in GvT & GvHD  

 

In the normal immune system T cells re-circulate between the blood and the secondary 

lymphoid organs (SLO) where they are brought into contact with APC. APC interact with naïve 

and central memory T cells in the T cell zone of the lymph node. If a T cell with the cognate TCR 

for antigen presented is encountered the T cell will become activated, proliferate and 

differentiate, leave the lymph node and migrate to the site of infection or inflammation. Tissue 

resident effector memory T cells that have previously encountered antigen may respond to 

tissue resident APC and become activated locally to the site of infection, leading to a more rapid 

immune response 86. 

 

It has been recognised that in order to exert GvT or GvHD, donor T cells must be able to migrate 

to APC for priming and also migrate to target organs. This has led T cell migration to become 

regarded as the ‘4th Billingham Criterion’, necessary for the pathogenesis of GvHD 87. 
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Investigators have begun to consider whether factors involved in T cell migration could therefore 

provide a therapeutic target to separate GvT and GvHD effects, especially in view of the fact that 

sites of GvT and GvHD are usually anatomically distinct. There are 3 major classes of migratory 

receptors that influence T cell movements and could be targeted: selectins, integrins and 

chemokine receptors (Figure 1.6). 

 

Broadly speaking selectins are critical for the tethering and rolling of T cells along endothelium 

that facilitates the egress of T cells into tissues, while integrins are expressed at endothelial cell 

junctions and on extracellular matrix and are felt to play a role in directing T cells through 

endothelial junctions and tissues. These molecules tend not to display particular tissue 

specificity and therefore do not present an attractive therapeutic target for the prevention of 

GvHD (reviewed in Marelli-Berg et al. 88). 

 

In contrast the chemokine – chemokine receptor axis that is involved in directing T cells towards 

the anatomical site of infection or inflammation presents a more attractive therapeutic target 

as certain chemokines (CC) and their receptors such as c-chemokine receptor 9 (CCR9) direct T 

cells in an organ specific manner, in this case to the gut 89. 

 

Further evidence that the CC-CCR axis could be used to modulate the alloresponse is provided 

by the observation that naïve T cells, thought to be the primary mediators of GvHD are c-

chemokine receptor 7 (CCR7) positive, whereas their memory counterparts, thought not to 

cause GvHD are CCR7-negative 55. However it has been shown experimentally that CCR7 KO 

naïve T cells retained the ability to cause GvHD and effector memory cells with enforced lymph 

node homing (due to enforced CD62-ligand expression) remained unable to cause GvHD.  As 

CCR7 directs migration to secondary lymphoid organs (SLO), this indicates that priming of 

alloreactive T cells can occur outside of the SLO 90. In addition a major disadvantage of restricting 

donor T cell migration through SLO ( and therefore access to professional APC) may be that GvT 

responses could be detrimentally affected. 

 

Good targets for manipulation of the CC-CCR axis might be CCR2, CCR5, CCR9 and CCR10. There 

is some evidence for the involvement of each of these receptors in the pathogenesis of GvHD. 
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Figure 1.6 Mechanisms of T cell migration 

Schematic depicting processes involved in T cell migration from the circulation into tissues. T 

cells are induced to tether and roll on the endothelial surface by interaction of endothelial 

adhesion molecules such as peripheral node addressin (PNAd) with selectins on T cells. 

Activation of migratory receptors occurs due to interactions of endothelial bound chemokines 

such as CC type chemokine ligand 21 (CCL21) with their cognate receptors on T cells (CC 

chemokine receptor 7). This activation leads to up-regulation and activation of integrins on the 

T cell such as leucocyte functional antigen 1 (LFA1) that binds to intercellular adhesion molecule 

1 (ICAM1) on endothelial cell junctions and promotes T cell extravasation. Chemokine gradients 

both inside the vessels and outside guide T cells to sites of inflammation. 

 

Adapted from Masopust et al. 91. 
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CCR2 

CCR2 is the receptor for CCL2 (previously known as monocyte chemo-attractant protein 1, 

MCP1), a chemokine released from inflamed tissues in a non-tissue specific manner, and known 

to be released in tissues affected by GvHD 92. CCR2 KO CD8+ T cells have been shown to be less 

able to cause GvHD, while retaining GvT effects in a murine model 93. 

 

CCR5 

CCR5 is the receptor for CCL5 (previously known as RANTES), another chemokine released from 

inflamed tissues in a non-tissue specific manner and implicated in the pathogenesis of GvHD. It 

has been demonstrated that recipients of AHSCT with deletional-mutations in CCR5 (leading to 

defective CCR5) have a significantly reduced risk of GvHD 94. A study in mice has shown that 

recipients of CCR5 KO donor T cells had reduced rates of GvHD, although the effect appeared to 

be dependent on the conditioning used prior to adoptive transfer 95. In addition a Phase I/II study 

of an oral CCR5 antagonist, maraviroc in combination with standard GvHD prophylaxis in high-

risk AHSCT recipients has shown promising results in terms of GvHD prevention, without any 

apparent impact on relapse rates at 1 year 96.  

 

CCR9 

CCR9 and its ligand CCL25 have been shown to be specifically and highly expressed in small 

intestinal T cells and small intestinal mucosa respectively, with almost no expression in other 

tissues 89. Recently the retinoic-acid-signalling pathway that leads to the up-regulation of CCR9 

on T cells has been implicated in the pathogenesis of gastro-intestinal GvHD in murine models 

97,98. At present the role of CCR9 T cells and retinoic acid in human GvHD is unknown, however 

the possibility of targeting CCR9 is appealing as specific oral inhibitors to CCR9 are already in 

clinical trials for the treatment of inflammatory bowel disease and have shown promising results 

99. 

 

CCR10 

A number of signals have been implicated in driving migration of T cells into the skin including: 

cutaneous lymphocyte-associated antigen, CCR4, CCR10 and CCR10 ligand CCL27 100. Studies 

support a role for CCR10 in the pathogenesis of aGvHD. Elevated levels of CCL27 were found in 

paediatric patients suffering from acute skin GvHD and correlated with elevated numbers of 

CCR10-positive T cells in both the skin and peripheral blood.  Importantly infiltration of these T 

cells was restricted to the skin and not found at other sites of GvHD 101. 
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1.1.9 Prevention of GvHD 

 

Significant improvements in the prophylaxis and management of acute GvHD have been made 

since the early years of transplant when GvHD seemed an almost insurmountable barrier to the 

field. A huge leap forward was made when the HLA-MHC system was recognised and classified, 

allowing for the first time for matching of donors and recipients 102. Since that time 

improvements have been more incremental, and clinicians remain better at preventing GvHD 

than treating it when it occurs, however an increased understanding of the immunobiology of 

GvHD has provided some new avenues for investigation. 

 

1.1.9.1. Immunoprophylaxis 

The second major breakthrough in the prevention of GvHD, following the implementation of 

HLA-typing was the use of potent immunosuppressant drugs prior to, during and for variable 

lengths of time following AHSCT with the aim of suppressing donor T cell activation. As with 

other indiscriminate anti-T cell therapies an undesirable consequence of this may be blunting of 

GvT, in support of this it has been shown that in patients who relapse after AHSCT a proportion 

will respond to withdrawal of immunosuppression 103. 

 

Pharmacological agents used alone or in combination as immunoprophylaxis are summarised in 

Table 1.1 based on the review by Gatza et al. 104. 
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Table 1.1 Agents used as immunoprophylaxis following AHSCT 

 

Drug Target 

In routine clinical 

use 

Ciclosporin Inhibits T cells: Cyclophilin-calcineurin 

Methotrexate Inhibits T cells: Dihydrofolate reductase 

Mycophenolate mofetil 
Inhibits T cells: Inosine monophosphate 

dehydrogenase 

Tacrolimus Inhibits T cells: FKBP12-calcineurin 

Sirolimus 
Inhibits T cells: FKBP12- mammalian target 

of rapamycin (mTOR) 

Developmental 
Pentostatin 

Inhibits lymphocytes: Adenosine 

deaminase 

Bortezomib Inhibits lymphocytes: 26s proteasome 

Vorinostat 

APC (reducing pro-inflammatory 

cytokines) and enhances Treg: Histone 

deacetylases 

Atorvastatin 
Modulation of T cells and APC: HMG Co-A 

reductase 
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1.1.9.2 Use of reduced intensity conditioning 

The realisation that GvT leads to long-term control of primary tumours caused a paradigm shift 

in the approach to AHSCT. The ability to use lower doses of immunosuppressive rather than 

myelosuppressive chemotherapy has made AHSCT a treatment option that can now be offered 

to older and frailer patients. A major advantage of RIC AHSCT regimens is that as a consequence 

of reduced tissue damage and inflammation caused by conditioning, the activation of host APC 

and release of DAMPs and PAMPs that can drive donor T cell activation is also reduced. This has 

resulted in RIC leading to reduced rates of severe GvHD 105. 

 

1.1.9.3 Selective depletion of alloreactive cells 

 

Ex vivo depletion based on activation markers 

One desirable strategy for controlling and eliminating GvHD is the selective depletion of only 

alloreactive cells. This would leave pathogen-specific immunity intact and could potentially 

allow reductions in immunosuppressive prophylaxis. At present a technology to identify 

alloreactive cells prior to allogeneic stimulus has not been developed, therefore donor T cells 

must be allostimulated and then subsequently identified based on either their expression of 

activation induced surface proteins or by their proliferation which can be assessed by various 

methods.  

 

For this reason an important consideration in the ex vivo approaches to alloreactive T cell 

depletion has been selection of appropriate stimulator cells; these must be capable of initiating 

a robust response and they must not express tumour associated antigens, as the loss of T cells 

responding to these would negatively impact GvT. Both haematopoietic and non-

haematopoietic cells such as skin fibroblasts have been previously used as stimulator cells 106,107. 

 

Removal of donor T cells that express CD25 (the alpha subunit of the IL2 receptor) following 

allostimulation has been explored by a number of groups using a variety of techniques. In vitro 

data was supportive of a significant reduction in alloreactive T cells with retained pathogen and 

tumour immunity 108 and a Phase I/II study of CD25 allodepleted DLI following haploidentical-

AHSCT has shown promise 109. A potential disadvantage of CD25 depletion strategies is that 

these will also deplete Treg, as Treg constitutively express high levels of CD25 110.  

An alternative target, CD69 has also been assessed as a potential marker of alloreactive T cells 

for depletion. A study by Hartwig et al. demonstrated that depletion of CD69 positive responder 
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T cells following allostimulation could not completely abrogate secondary alloresponses. 

However this strategy did spare Treg that do not up-regulate CD69 on activation 111,112.  

 

In vivo depletion using high dose cyclophosphamide 

Cyclophosphamide is an alkylating agent that has particular activity in rapidly proliferating cells. 

Importantly HSC and Treg contain high levels of aldehyde dehydrogenase that converts the 

active metabolite of cyclophosphamide, phosphoramide mustard to an inactive form making 

them resistant to the drug. Cyclophosphamide is therefore attractive as a therapy that can lead 

to selective apoptosis of alloreactive donor T cells proliferating early after AHSCT without 

impairing haematopoietic reconstitution. This strategy may also allow reductions in, or 

avoidance of long-term immunosuppression (reviewed by Al-Homsi et al. 113). The question 

remains as to whether donor T cells that would exert GvT are also deleted at this point 114. 

 

The majority of clinical trials utilising this approach have been in the haploidentical-AHSCT 

setting, where as previously mentioned the risk of GvHD is high if TCD is not undertaken. A large 

retrospective multi-centre study from an Italian collaboration found that post-transplant 

cyclophosphamide (PTCy) in combination with two other immunosuppressive drugs could 

provide good protection from GvHD, with a 22% incidence of grades II-IV aGvHD. However the 

cumulative incidence of relapse of 24% at 1 year made relapse the main cause of death 115. 

 

A similar study of haploidentical-AHSCT in an adult cohort showed very similar results. In this 

case in addition to PTCy the recipients received single agent long-term immunoprophylaxis. The 

incidence of grade II-IV aGvHD was 24% and the risk of relapse-related death at a median follow 

up of 313 days was 23% 116. 

 

A phase II study of PTCy as single agent GvHD prophylaxis in an adult RIC-AHSCT cohort with, in 

the majority of cases a HLA-matched donor the results were more disappointing. Incidence of 

grade II-IV aGvHD was 45% and relapse-free-survival at 2 years only 34% 117. A further multi-

centre study in a similar adult cohort following FIC resulted in rates of grade II-IV aGvHD of 51% 

and disease free survival at 2 years of 62% 118. These studies indicate that single agent PTCy may 

not be adequate to control GvHD and may negatively impact on GvT, especially in the RIC setting. 
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‘Suicide’ T cells 

An exciting approach pioneered at the San Raffaele Scientific Institute has been the engineering 

of donor T cells to express an inducible suicide-switch. The insertion of a herpes simplex virus 

thymidine kinase (HSV-TK) suicide gene into the donor T cells confers sensitivity to the anti-viral 

drug ganciclovir, leading to DNA damage and cell death. If following infusion of HSV-TK T cells 

the patient develops signs of acute GvHD these cells can be reliably and quickly eliminated by 

administration of intravenous ganciclovir 119. 

 

HSV-TK T cells administered as DLI to patients suffering relapsed disease after AHSCT have been 

shown to expand and persist in recipients. In 35% of recipients administration of HSV-TK DLI led 

to complete remission from relapsed disease, with the best anti-tumour responses achieved in 

cases where the greatest expansions of cells were seen. GvHD developed in 25% of recipients 

and was successful treated by ganciclovir 120.  

 

A phase I/II multi-centre study used HSV-TK T cells as pre-emptive DLI following haploidentical-

AHSCT for high-risk leukaemia. In this study 79% of recipients obtained HSV-TK T cell 

engraftment and 45% developed GvHD requiring ganciclovir treatment. Although in all patients 

GvHD resolved following ganciclovir, 6 of these 10 patients required additional 

immunosuppression with steroids 121. At present the long-term impact of deletion of HSV-TK 

cells on GvT responses is unclear. 

 

There are some disadvantages of the HSV-TK T cell approach. A major disadvantage is the use of 

ganciclovir as a trigger for the suicide-switch as ganciclovir is often used for the treatment of 

cytomegalovirus (CMV) infection, which is a common complication of AHSCT 122. It is therefore 

likely that patients who do not have GvHD but are suffering from CMV will receive ganciclovir 

and as a consequence also undergo depletion of their HSV-TK T cells, potentially negatively 

impacting on GvT. Another disadvantage is that these cells are also potentially immunogenic as 

they contain viral elements 123.  

 

T cells engineered with an alternative suicide-switch based on inducible caspase 9 (iCas9) have 

also been tested in a phase I study. This switch is activated by the administration of an otherwise 

bio-inert small molecule AP103 that causes dimerisation and activation of the inducible caspase 

9 leading to apoptotic cell death. Following haploidentical-AHSCT, DLI of iCas9 T cells led to GvHD 

in 30% of recipients. Administration of AP103 was able to successfully deplete circulating T cells 
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leading to resolution of symptoms 124, however long-term follow-up has shown a high rate of 

relapse in patients who received AP103, suggesting this approach has a detrimental effect on 

GvT effects 125. 

 

Alloanergisation 

Another strategy to deplete alloresponsive T cells while sparing pathogen-specific and tumour 

immunity takes advantage of a fundamental principle of T cell biology; the requirement for co-

stimulatory signalling in combination with specific TCR-MHC interaction to achieve activation of 

T cells. This co-stimulatory signalling is often referred to as ‘signal 2’ and it is accepted that after 

binding of MHC and cognate antigen to the TCR initiating ‘signal 1’ a lack of ‘signal 2’ results in 

T cell anergy. This state of anergy means that the T cell will fail to respond to re-stimulation with 

the same antigen even when co-stimulatory signals are present 126.  

 

Allostimulation in the presence of co-stimulatory blockade in the form of anti-CD80 and anti-

CD86 antibodies was shown to induce allo-anergy; significantly reducing alloproliferative 

responses to re-stimulation with alloantigen while retaining alloproliferative responses to viral 

pathogens and tumour associated antigens 127. In a phase I study of haploidentical-AHSCT using 

allo-anergised BM grafts, 38% of recipients developed clinical evidence of GvHD that responded 

to treatment, while cumulative incidence of relapse was 17% at 10 years; indicating that this 

strategy for alloanergisation could not completely prevent GvHD, but that the manipulated T 

cells retained GvT activity 128. 

 

1.1.9.4 CD4+ T regulatory cells 

Treg are known to play an important role in controlling immune responses (reviewed in 

Roncarolo et al.129). In murine models of AHSCT Treg have been shown to be protective against 

lethal GvHD while preserving GvT, even in MHC-mismatched mice 130 62. Studies in human AHSCT 

have shown that increasing proportions of Treg in the donor graft 57 or following AHSCT 131 are 

associated with reduced risk of GvHD. In a small study of patients who received Treg DLI 

following UCB-AHSCT (UCBT) rates of GvHD were reduced compared to historical controls 132,133. 

However the effect of Treg DLI on GvT remains unclear, one study by Hicheri et al. raised concern 

that DLI with higher proportions of Treg were associated with increased risk of relapse, 

indicating that high frequencies of Treg in DLI may compromise the GvT effect 61. 
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The use of low doses of IL2 in vivo has also been proposed as an alternative to the ex vivo 

expansion of Treg. This strategy capitalises on the fact that Treg constitutively express high levels 

of the high affinity IL2 receptor  subunit (CD25) and therefore will be preferentially stimulated 

by low doses of IL2 when compared to Teff. In a phase II clinical trial aimed at treatment of 

cGvHD (rather than aGvHD), the administration of low dose IL2 daily for 12 weeks led to 

improvement in cGvHD in 61% of patients and was associated with significant expansion of Treg 

in peripheral blood 134. Whether this approach could be used in the treatment or prevention of 

aGvHD remains unknown. 

 

1.1.10 Strategies to augment GvT 

 

Strategies to maximise beneficial GvT have been and remain an active area of AHSCT research, 

with a particular focus on therapies that can separate this effect from GvHD. Most of the 

clinically relevant methods proposed are based on adoptive cellular therapies that select cellular 

subsets with well-defined roles in anti-tumour responses or those that can promote in vivo 

expansions of these subsets. 

 

1.1.10.1 T cell manipulation 

T cells are simultaneously, the most beneficial cells and the cells that pose the greatest risk in 

AHSCT, mediating both beneficial GvT and harmful GvHD. The first attempts at T cell 

manipulation involved simply removing them, either using polyclonal anti thymocyte globulin 

(ATG) or more recently monoclonal antibodies 135,136 or magnetic bead technology 137. The major 

barrier to the success of T cell depletion (TCD) is that this strategy also negatively impacts on 

GvT 21,22,138 as well as increasing the risk of post-AHSCT infective complications 139. 

 

In order to maintain GvT while reducing GvHD various other strategies to redirect or refine the 

T cell alloresponse have been attempted. Most of these rely on ex vivo expansion and 

manipulation of donor T cells to generate tumour-antigen-specific T cells. This can be achieved 

by two approaches; either by stimulating donor T cells with leukaemia associated antigens or 

recipient derived tumour cells in the presence of optimal conditions to promote proliferation of 

a large number of cells that can then be re-infused for a specific patient 140, or by directly 

genetically modifying the donor T cells to confer specificity 141. The first approach is laborious 

and limited by the fact that not all recipients’ tumours express antigens capable of eliciting a 

robust T cell response.  
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Genetic modification may provide a more widely applicable approach to generate tumour-

specific T cells. Two main strategies exist, the first is the transfer of a high affinity tumour antigen 

specific TCR into donor T cells, an approach that has proven effective in some solid cancers 142, 

but requires complex processes to silence the endogenous TCR to prevent immune cross-

reactions 143. The second is the generation of T cells containing a chimeric-antigen-receptor 

(CAR) that confers new specificity, independent of HLA-restriction and with higher affinity and 

avidity than the endogenous TCR. These cells are known as CAR T cells (reviewed in Maus et al. 

141). 

 

An alternative method to boost tumour antigen-specific donor T cell responses in vivo is to use 

cancer vaccines after AHSCT to enhance tumour antigen presentation by host or donor APC and 

thus GvT but not GvHD 144. Animal models have demonstrated that vaccination of donors prior 

to stem-cell collection results in expanded populations of tumour-antigen specific T cells that 

can be infused as part of the donor graft and exert GvT in recipients. The ethics of this approach 

in human volunteer donors might be problematic 145,146. However, even without donor 

vaccination a small study of recipient vaccination with Wilms tumour antigens following AHSCT 

demonstrated that antigen-specific T cell responses can be induced, although as yet there is no 

evidence of a significant improvement in patient outcome 147,148. 

 

1.1.10.2 Donor lymphocyte infusions (DLI) 

DLI describes the delayed infusion of un-manipulated or manipulated T cells after AHSCT. This 

delayed dose of beneficial donor T cells is particularly important for those patients who have 

received TCD-AHSCT. The greatest successes of DLI have come in a subgroup of recipients who 

have undergone AHSCT as treatment for chronic myelocytic leukaemia (CML). In CML, DLI have 

been associated with regression of minimal residual disease and cure from relapsing disease 25. 

Unfortunately results in other settings have not been as good. It has become apparent that a 

number of variables influence the success of DLI, these include: the timing of DLI, the underlying 

tumour and the relative donor-recipient chimerism status. 

 

Timing of DLI can be vitally important; too soon after transplant and there is an increased risk of 

DLI-induced GvHD due to an ongoing inflammatory milieu, too late and co-stimulatory cytokines 

required for optimal APC-T cell interactions are reduced resulting in sub-optimal GvT effects. 

The amount of tumour present is also likely to increase with time if not adequately controlled in 

the immediate post-AHSCT period. In most cases DLI cannot control overt relapse of disease, 
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necessitating further chemotherapy prior to DLI. While chemotherapy prior to DLI can increase 

the efficacy of DLI, this also leads to release of inflammatory mediators that will again increase 

the risk of GvHD 26. 

 

Donor-recipient chimerism provides a measure of the degree to which haematopoiesis is 

derived from the recipient’s own remaining HSC and how much from donor-derived HSC, and is 

usually measured in nucleated-cells derived from the peripheral blood or bone marrow. In 

recipients of T cell-replete grafts and/or those who have converted to full donor-chimerism, DLI 

have been shown to be less effective than following TCD-AHSCT or in recipients with mixed-

chimerism 9. This may be due to either of two factors; insufficient antigen-presentation and/or 

allostimulation to elicit a donor T cell response, or failure of the donor T cells to respond to 

allostimulation.  

 

Insufficient allostimulation in the context of full donor-chimerism may be due to the conversion 

of tissue-resident APC to donor-origin. Evidence suggests that indirect antigen-presentation by 

donor-derived APC is less efficient at stimulating donor T cell responses 149. Therefore where 

relapse occurs due to failure of donor T activation by donor-derived APC, further donor T cells 

alone are likely to be ineffective 150. 

 

A study by Porter et al. explored ex vivo activation of DLI with anti-CD3 and anti-CD28-coated 

beads as a strategy to overcome failure of donor T cell responses to allostimulation. Patients 

with evidence of disease-relapse following AHSCT and standard-DLI, received escalating doses 

of ex vivo activated-DLI. While it appeared that GvHD occurred earlier after activated-DLI than 

conventional DLI, this was not felt to be a limiting toxicity and 8 of 18 recipients achieved a 

complete response. Unfortunately this response was not durable in 50% of patients 151. 

 

1.1.10.3 Natural killer cell therapies 

Natural killer (NK) cells are the first lymphocyte population to reconstitute following AHSCT 152 

and have well described roles in both pathogen and tumour immunity (reviewed in Della Chiesa 

et al. and Choi et al. 31,153). Importantly there is evidence in vivo that NK cells can exert GvT after 

AHSCT without contributing to GvHD 154,155. Findings from animal experiments also indicate that 

protection from GvHD can be mediated by NK cell lysis of host APC 156 and NK cells may also 

contribute to control of alloreactive donor T cells 157. 
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The process of allorecognition in NK cells is distinct from that of T cells and relies on recognition 

of ‘missing self’ via a number of surface activatory and inhibitory receptors that bind to 

polymorphic determinants of MHC class I such as HLA-Cw1. The major families of receptors are 

those characterised by lectin-like heterodimers such as CD94-NKG2A and those composed of 

immunoglobulin-like (Ig) domains known as killer cell inhibitory receptors (KIR). As KIR genes in 

particular vary between individuals this leads to the likelihood that in AHSCT donor and recipient 

may be KIR-mismatched 31,158. (Figure 1.7) 

 

The benefits of NK cell alloreactivity have been best realised in the setting of haploidentical-

AHSCT. In this instance stringent TCD required due to the high degree of MHC-mismatch and risk 

of graft rejection is overcome by administering very high doses of HSC 159. Rates of GvHD are low 

but consequently risk of relapse is high and outcomes are best when there has been 

demonstrated to be an inhibitory KIR mismatch between recipient and donor 160-162.  

 

A further strategy to improve outcome in the haploidentical-AHSCT setting has been the infusion 

of NK cell DLI to augment the NK GvT effect, at present there is no evidence to show these 

significantly improve outcome 163. In an effort to improve the activity of NK cell DLI several 

groups have attempted to augment NK cell activity using IL15 (an important homeostatic 

cytokine for NK cells) and the co-stimulatory molecule 4-1BBL (4-1BB ligand). Unfortunately this 

strategy was associated with acute-severe GvHD 164. A similar phase I/II study of IL15 stimulated 

NK cells without the addition of 4-1BBL following haploidentical-AHSCT for solid tumours did not 

observe an excess of GvHD, which may implicate the 4-1BBL as the cause of this toxicity 165.  

 

There remains some uncertainty regarding the relative contribution of NK cell-mediated GvT 

outside of the haploidentical-AHSCT setting, where the immunodominant effect of the T cell 

response may overshadow that of the NK alloresponse. Some authors argue that NK cell KIR-

mismatch may confer additional benefit 166, while others argue that while NK cell numbers in 

donor grafts can improve outcomes, KIR-mismatch has no additional impact. 167. It has also been 

argued that mismatches in activating KIR could lead to increased rates of GvHD in this setting 

168,169. 
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Figure 1.7 

 

 

Figure 1.7 Natural killer cell receptors and activation 

 

Natural killer (NK) cells can directly recognise and destroy target cells such as virally 

transformed and malignant cells. Activation versus tolerance of NK cells is induced by the 

balance of activating and inhibitory signals delivered via activating and inhibitory NK cell 

receptors. 

Classically, in the alloresponse recipient cell incompatibility for major histocompatibility (MHC) 

molecules recognised by inhibitory receptors on NK cells, leads to loss of inhibitory signalling 

and the cell is destroyed as if it were virally-transfomed. 

Based on Della Chiesa et al. 31 
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1.1.10.4 Immune checkpoint blockade 

The recent success of immune checkpoint blockade in the treatment of advanced solid tumours 

has fuelled enthusiasm for the use of these agents in the treatment of haematological 

malignancy. By blocking inhibitory signalling by tumour cells to T cells the immune response can 

be re-engaged against the tumour. The two targets that have at present been explored in clinical 

trials are cytotoxic T lymphocyte associated protein 4 (CTLA4) and programmed death 1 (PD1). 

 

There is some evidence that T cell exhaustion, characterised by increasing expression of PD1 in 

conjunction with other exhaustion related markers such as T cell immunoglobulin domain and 

mucin domain 3 (TIM3) is associated with relapse of leukaemia after AHSCT 170. This is likely due 

to a late failure of donor mediated GvT. Evidence that reversing this pattern could result in 

improvements in GvT is provided by the observation that DLI can reduce the expression of 

exhaustion related genes such as PD1 in patients who respond to favourably to DLI 171. There of 

course remains a concern as to whether removing the ‘brakes’ from the donor T cell 

alloresponse could result in GvHD as well as GvT. 

 

A recent publication by Davids et al. has shown that ipilimumab, an anti-CTLA4 monoclonal 

antibody could be delivered safely after AHSCT, although some GvHD was observed. The authors 

report durable disease responses in a proportion of the patients 172. The anti-PD1 monoclonal 

antibody, nivolumab has also been used successfully in at least one case of relapsed Hodgkin 

lymphoma following AHSCT 173. Trials of ipilimumab (NCT00060372/NCT01919619) and 

nivolumab alone or in combination (NCT01822509) after AHSCT are ongoing. 
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1.2 Lenalidomide 

 

Lenalidomide (Revlimid® Celgene) was initially developed following the success of its parent 

compound, thalidomide in the treatment of myeloma. Subsequently the immunomodulatory 

properties of thalidomide and its derivatives have broadened the potential uses of these agents 

and there is considerable interest in whether they could be employed to augment 

immunotherapy approaches such as AHSCT. 

 

1.2.1 Lenalidomide: Structure and pharmacokinetics. 

 

Lenalidomide (3-(4’-amino-1 oxo 1,3-dihydro-2H-isoindol-2-yl) piperidine-2,6-dione) is a 

derivative of thalidomide with anti-neoplastic, anti-angiogenic and immunomodulatory 

properties. The chemical structure of lenalidomide (C13H13N3O3) differs only slightly from the 

parent compound by the addition of an amine-group and the loss of an oxo-group from its 

phthaloyl ring, but this modification confers hundred-several thousand-fold more potent 

immunomodulatory properties than observed with thalidomide 174,175.  

 

In healthy individuals and those with normal renal function lenalidomide displays linear 

pharmacokinetics, with plasma levels in proportion to the amount administered up to an oral 

dose of 400mg. Lenalidomide is well absorbed orally (≥90% of dose) and maximum plasma levels 

are achieved within 1 hour of administration 176,177. Approximately 84% of the oral dose is 

excreted unchanged in the urine within 12 hours and the drug does not accumulate with 

multiple dosing. The rapid speed of renal elimination of the drug is felt to indicate that both 

active and passive renal clearance mechanisms are involved, however a candidate renal 

transporter has not yet been identified 178. The mean terminal half-life in vivo has been 

demonstrated to be 3 to 4 hours in the clinically relevant dose range (5-50mg) and is increased 

by 6-12 hours in varying degrees of renal impairment 179.   

 

Lenalidomide distributes equally between the intracellular and plasma components of the 

blood. The drug has low plasma protein binding (≤40%) with a small percentage of the drug 

being metabolised to 5-hydroxy-Lenalidomide (approximately 3%) and N-acetyle-Lenalidomide 

(approximately 4%) by plasma enzymes. Both of these metabolites are also eliminated in the 

urine. An estimate of the possible in vitro half-life has been given as 8 hours 176,179. 



Caroline Besley  Chapter 1 - Introduction 

 59 

1.2.2 Anti-neoplastic properties of lenalidomide 

 

An in depth discussion of the anti-neoplastic actions of lenalidomide is beyond the scope of this 

thesis, however they will be outlined in brief. 

 

Following the observations that the bone marrow of myeloma patients displays a high degree 

of neo-vascularisation and that thalidomide has potent anti-angiogenic properties, trials of 

thalidomide in refractory and multiply relapsed myeloma were undertaken and have 

demonstrated thalidomide has potent anti-myeloma activity 180,181. However the effects of the 

drug were found to be more complex than initially expected. In fact treatment with thalidomide 

did not appear to have a significant effect on the vascularity of the tumour 180 and has since been 

found to exert an anti-tumour effect via a number of different immunomodulatory and 

molecular mechanisms 181. 

 

Lenalidomide is a member of a class of immunomodulatory drugs (IMiDs®, Celgene) that were 

developed from the parent compound thalidomide to have enhanced anti-neoplastic actions 

with decreased toxicity. Lenalidomide has been shown to have activity not only against multiple 

myeloma 177,181 but also against a range of other haematological malignancies including: 5q- 

myelodysplastic syndromes (MDS) 182, chronic lymphocytic leukaemia (CLL) 183-185 , B cell non 

Hodgkin lymphomas 186-188, mantle cell lymphoma 189,190 and T cell lymphoma 191,192 as well as 

some solid cancers such as melanoma 193,194 and prostate cancer 195,196. 

 

The mechanisms underlying the direct cytotoxicity of lenalidomide on myeloma cells have been 

well described and include: inhibition of secretion of IL6, insulin like growth factor 1 (IGF1) and 

vascular endothelial growth factor (VEGF) as well as generation of pro-apoptotic signals by up-

regulation of caspase 8 and down-regulation of apoptosis inhibitors ((cellular inhibitor of 

apoptosis protein 2, FLICE inhibitory protein, interferon regulatory factor 4 (IRF4) and nuclear 

factor-κB (NFκB)) 181,197,198. 

 

IMiDs have also been shown to disrupt support from the bone marrow microenvironment to 

myeloma cells. One interesting feature of this disruption is the down-regulation of cell surface 

adhesion molecules such as intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion 

protein 1 (VCAM1) and E-selectin 199. Importantly despite this effect on the bone marrow 

stroma, lenalidomide has not been demonstrated to have deleterious effects on the growth and 
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survival of normal bone marrow progenitors and CD34+ HSC, in fact one study has reported a 

dose dependent increase in total numbers of CD34+ cells exposed to lenalidomide following 6 

days of culture 200. 

 

1.2.3 Immunomodulatory properties of lenalidomide 

 

The first described immunomodulatory use of IMiDs was the use of thalidomide to treat 

erythema nodosum leprosum patients, where it was found that treatment led to decreased 

levels of TNF in the plasma and healing of painful skin lesions. The mechanism underlying this 

effect is common to all IMiDs and is inhibition of TNF production by monocytes and 

macrophages 174,175,201. The investigation of IMiDs in other inflammatory and immunological 

disorders has gone on to reveal a range of other immunomodulatory properties including effects 

on T cells, NK cells, B cells and APC. 

 

1.2.3.1 Lenalidomide effects on T cells 

A number of studies have now described the effects of lenalidomide on mitogen-stimulated T 

cell function in vitro (summarised in Table 1.2). These include: increased activation (as measured 

by CD25, HLA DR or CD40 ligand expression), proliferation, immune synapse formation, 

secretion of pro-inflammatory cytokines (IL2, TNF, IFN,) chemotaxis (stimulated by S1P and 

CCL21) and cytotoxicity (measured by expression of CD107a and perforin as well as apoptosis of 

target cells) by healthy CD4+ and CD8+ T cells 174,202-206. In addition lenalidomide exposure 

decreases the amount of antigenic peptide required to elicit a T cell response 207, reduces T cell 

expression of PD1 208 and increases ‘repair’ of T cell defects due to aging, HIV or tumour-induced 

inhibition of function 186,206,209-211.  

 

Lenalidomide-treatment of myeloma, solid tumour and CLL patients has also been 

demonstrated to have effects on T cells in vivo including: expansion of CD8+ T cells 212,213, 

particularly those with a central memory (CM) and effector memory (EM) phenotype 214,215, 

increased numbers of circulating activated T cells (identified by HLA DR or CD69 expression) 

215,216, increases in inflammatory cytokines in plasma (IL2, TNF, IFN and IL6)193,217 and increases 

in both CD4+ and CD8+ cytokine producing T cells at early time-points following initiation of 

treatment (IL2, IFN and TNF) 212.  
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The effects of lenalidomide on Treg are less clear.  In vitro studies using IL2 to expand Treg from 

PBMC in culture suggest that the addition of lenalidomide significantly reduces the expansion of 

Treg compared to addition of IL2 alone, with no effect on cell death 218. However Grygorowitz et 

al. report that despite in vitro down-regulation of Treg proliferation lenalidomide enhanced the 

suppressive capacity of the cells 219. The results from limited in vivo data are also conflicting, the 

majority of papers suggest that lenalidomide treatment is associated with a decrease in 

circulating Treg 212,213,216,220 while one group report an increase 221. 

 

1.2.3.2 Lenalidomide effects on the T cell alloresponse 

Thalidomide has been shown to potentiate the human CD8+ T cell alloresponse to purified 

allogeneic DC in the absence of CD4+ T cell help 222. The effect of newer IMiDs, such as 

lenalidomide on the T cell alloresponse is unknown. One study by Luptakova et al. examined the 

effect of lenalidomide on proliferative T cell responses of 3 unique donors to purified allogeneic 

DC, demonstrating an increase in T cell alloproliferation above control. Further characterisation 

of the lenalidomide-treated alloresponse was not undertaken and therefore the effect on 

specific T cell subsets and their functions remains unknown 208. 
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Table 1.2 Effects of lenalidomide on immune cell subsets 

Cell 
Type 

Source Stimuli Used 
Dose of 

Lena  
Effect of Lenalidomide treatment Ref 

T cell 

PBMC 

Healthy human 
PBMC 

LPS 

aCD3 Ab 

0.01-
100µM 

1. Decreased TNF production from LPS stimulated PBMC 

2. Increased proliferation of aCD3 Ab stimulated T cells (H-thymidine) 

3. Decreased IL-1β, IL12 and IL6 production by LPS stimulated PBMC (ELISA) 

4. Increased IL10 production by LPS stimulated PBMC (ELISA) 

5. Increased IFNγ production by aCD3 Ab stimulated T cells (ELISA) 

6. Increased IL2 production by aCD3 Ab stimulated PBMC (ELISA) 

7. Increased CD40L expression on aCD3 Ab stimulated T cells 

174 

T cells Healthy PBMC 

Patient serum 
(receiving 

Lenalidomide 
treatment) 

aCD3 Ab 

LPS 

10µg/ml 1. Decreased expression of TNFR2 on aCD3 Ab stimulated CD4+ and CD8+ T cells 

2. Increased expression of CD25 on aCD3 Ab stimulated CD4+ and CD8+ T cells 

3. Increased production of IL2 and sIL2 R by aCD3 Ab stimulated PBMC 

4. Increased proliferation of aCD3 Ab stimulated PBMC (H-thymidine) 

5. Increased IL2 and sIL2 R in serum of patients receiving Lenalidomide treatment 

202 

T cells Healthy PBMC 

HIV patient 
PBMC 

Ag pulsed 
autologous DC 

1µM 1. Increased IFNγ, IL2 and TNF positive CD8+ T cells from both healthy and HIV infected 
patients (intracellular FACS) 

2. Increased CD8+ T cell lysis of Ag pulsed DC (Cr release) 

3. Effect on CD8+ cells was independent of CD4+ cells 

223 

T cells Healthy PBMC 

Jurkat T cells 

aCD3 Ab 

SEE 

0.001-10 
µM 

1. Increased IL2 production by aCD3 Ab stimulated CD4+ and CD8+ T cells (ELISA and mRNA) 

2. Increased IL2 and IFNγ production by aCD3 Ab stimulated Th1 T cells and IL5 and IL10 by Th2 
T cells 

3. Increased IL2 production by SEE stimulated Jurkat cells 

203 
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T cells Healthy PBMC aCD3 Ab 10 µM 1. Increased IFNγ production by aCD3 Ab stimulated CD4+ and CD8+ T cells (cytokine capture) 

2. Increased G1-S phase transition in aCD3 Ab stimulated T cells 

3. Increased T cell proliferation in response to aCD3 Ab, immature and mature DC 

4. Overcomes B7-CD28 blockade by inducing CD28 phosphorylation and NFκB activation 

204 

T cells Healthy PBMC 

CLL patient 
PBMC 

sAg 0.5µM 

1. Increased immune synapse formation between autologous T cells and tumour cells 

209 

T cells Healthy PBMC PMA + 
Ionomycin 

0.001-10 
µM 

1. Increased IL2 production by PBMC 
205 

T cells Healthy PBMC aCD3 Ab & 
aCD28 Ab 

0.01 - 100 
µM 

1. Increased IFNγ, IL2 

2. Decreased IL17 

3. Increased proliferation 

4. Increased chemotaxis 

206 

T cells Healthy PBMC Ag pulsed 
autologous DC 

10 µM 1. Increased IFNγ production and granzyme B expression of CD8+ T cells (ELISA) 

2. Increased expansion of Ag specific CD 8+ T cells 

3. Decreased CD45RA expression on CD4+ and CD8+ T cells 

224 

T cells HIV patient 
PBMC 

Ag pulsed 
autologous DC 

0.1 & 0.5 
µM 

1. Increased IFNγ and TNF production by CD8 T+ cells (intracellular cytokine staining) 

2. Increased proliferation of CD8+ T cells (intracellular cytokine staining) 

3. Increased perforin and CD107a expression by CD8+ T cells (intracellular cytokine staining) 

4. Increased CD8+ T cells with polyfunctional cytokine capacity (intracellular cytokine staining) 

5. Increased breadth of antigen recognition and responses at lower peptide concentrations by 
CD8+ T cells 

207 

T cells Healthy PBMC & 
HIV patient 

PBMC 

aCD3 Ab & 
aCD28 Ab 

0.01 - 1 
µM 

1. Increased IFNγ & IL2 production (intracellular cytokine staining) 

2. Increased chemotaxis (to S1P & CCL21) 

3. Restoration of HIV T cell function to level seen in healthy control T cells 

210 
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T cells Healthy PBMC aCD3 & aCD28 
Ab 

1 or 10 µM 
1. Decreased TNFR2 expressing CD4+ T cells 

220 

T cells MDS patient 
PBMC 

aCD3 Ab & 
aCD12 Ab 

PMA & 
Ionomycin 

5 µM 1. Increased proliferation on CD4+ and CD8+ cells (BrdU) 

2. Increased Th1 cytokine production (intracellular cytokine staining) 

3. Decreased IL4 production (intracellular cytokine staining) 

4. In vivo increased in naïve and CM CD8+ T cells with decreased EM CD8+ T cells in PB of MDS 
patients following treatment 

225 

T cells Myeloma 
patients 

Pneumococcal 
vaccination 

25mg/day 1. Increase in T cell vaccine responses in patients receiving treatment at time of vaccination 
compared with those receiving vaccine prior to treatment 

226 

T cells Relapsed 
Colonic Cancer 
patients PBMC 

 25mg/day 1. Decreased % naïve CD4+ T cells 

2. Increased % activated (HLA DR+) CD4+ T cells 

3. Increased % activated (HLA DR+) CD8+ T cells 

4. Decreased EM CD4+ T cells 

5. Decreased EM CD8+ T cells 

6. Decreased Treg 

215 

T cells Healthy PBMC & 
Myeloma 

patient PBMC 

Autologous 
DC/MM fusion 
Allogeneic DC 

aCD3 Ab & 
aCD28 Ab 

1 µM 1. Increased IFNγ production by T cells (aCD3/28 Ab) 

2. Decreased expansion of Treg (aCD3/28 Ab) 

3. Decreased PD1 expression on healthy and myeloma T cells 

4. Increased proliferation on allogeneic DC stimulation 

5. Increased IFNγ production on autologous DC/MM stimulation 

6. Decreased Treg expansion on autologous DC/MM stimulation 

7. Increased MM cell lysis by CTL following DC/MM stimulation (granzyme B) 

208 

Treg Healthy PBMC IL2 10 µM 1. Decreased expansion and proliferation of Treg from activated PBMC (flow 
CD4+CD25highCTLA-4+ cells) 

2. Inhibition of suppressive capacity 

3. Decreased FOXP3 expression 

4. Decreased OX40 expression 

218 
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T cells 

DC 

Murine 
splenocytes and 

bone marrow 

Autologous Ag 
pulsed DC 

10 µM 1. Increased endocytic activity of DC (fluorescent bead uptake) 

2. Increased expression of MHC I and CD86 on DC 

3. Increased TNF and MIP1α expression on DC 

4. Greater proliferative responses of CD8+ T cells stimulated by treated DC than untreated 

5. Greater production of IFNγ and perforin by CD8+ T cells stimulated with treated DC than 
untreated (intracellular cytokine staining) 

227 

T cells 

NK cells 

MDSC 

Murine A20 
lymphoma 

model 

Idiotype 
vaccine against 

A20 murine 
lymphoma 

5mg/kg 1. Improved outcome response to vaccine (decreased tumour bulk, increased OS) 

2. Increased IFNγ producing CD8+ T cells 

3. Improved response to vaccine is mainly CD8+ T cell dependent 

4. Decreased splenic MDSC 

5. Increased splenic NK cell numbers 

228 

T cells 

NK cells 

Healthy human 
PBMC 

Myeloma 
patient PBMC 

aCD3 Ab 

Autologous DC 

0.1 – 
10µg/ml 

1. Increased proliferation of patient and healthy aCD3 Ab stimulated T cells (H-thymidine) 

2. Increased IFNγ and IL2 production by aCD3 Ab stimulated T cells (ELISA) 

3. Increased lysis of MM cell lines (HS Sultan, Raji and K562) by healthy PBMC (Cr release) 

4. Increased lysis of autologous myeloma cells by patient PBMC (when IL2 also added) (Cr 
release) 

229 

T cells 

NK Cells 

Healthy PBMC K652, MM.1S, 
U266, ARH-77 

cell lines 

.25 to 5 
µmol/L 

1. Increased PBMC cytotoxicity against target cell lines (Cr release) 

2. Increased ADCC of PBMC against target cells (Cr release) 

3. Cytotoxicity and ADCC were significantly reduced with IL2 R blockade or CD56 depletion 

4. Increased binding of NFAT and AP-1 to IL-1 promoter in T cells 

230 

NK cells Murine NK cells Lymphoma 
model 

2.5 - 40 
µg/ml 

1. Increased circulating NK cells 

2. Depletion of NK cells abrogated anti-tumour effect of treatment 

231 

NK cells Healthy PBMC IL2, IL12 and 
IL18 

5 µM 1. Decreased IFNγ production 

2. Increased CD56 expression 

3. Decreased inhibitory KIR expression 

232 
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NK Cells Healthy PBMC IL2 0.1 – 10  
µM 

1. Increased ADCC against multiple solid tumour cell lines 
233 

NK cells 

DC 

Murine NK cells Murine DC 5µg/ml 1. Increase in generation of murine DC from bone marrow cells in in vitro culture 

2. Increased CD11c and MHC class II expression 

3. Increased production of IFNγ, TNF and MCP1 by DC 

4. Increased NK ADCC 

5. Increased NK cell infiltration of tumour bed in tumour bearing mice 

234 

NK cells 

Monocyte 

Healthy PBMC IgG and IL2 0.0032 - 25 
µM 

1. Increased IFNγ production by NK cells (ELISA) 

2. Increased ADCC of NK and Monocytes against B cell lymphoma cell lines (Nawalma, Farage, 
Raji) 

3. Increased NK cell production of chemokines including IL6, IL8, RANTES, MIP1α & β, MCP1 
and GM-CSF (ELISA) 

4. Increased expression of FasL on NK cells 

235 

NKT cells Healthy PBMC 

Myeloma and 
MDS 5q- patient 

PBMC 

Ag pulsed 
autologous DC 

1µM 1. Increased expansion of NKT cells 

2. Increased numbers of IFNγ positive NKT cells (intracellular cytokine staining) 

3. Increased numbers of circulating NKT cells found in peripheral blood of patients receiving 
treatment 

236 

NKT cells Healthy PBMC 

Myeloma 
patient PBMC 

Ag pulsed 
autologous DC 

2 µM/L 
1. Increased INF, IL2 (ELISA) of both healthy and patient NKT cells 

2. Decreased IL4 (ELISA) of both healthy and patient NKT cells 

237 

Myeloid 
NLC 

PBMC from CLL 
patients 

Autologous CLL 
cells 

10 µM 1. Decreased CLL survival due to decreased support from NLC due to: Increased secretion of 
IL10 and decreased HLA DR expression 

238 
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Ref = reference, aCD3 Ab = anti-CD3 antibody, LPS = lipopolysaccharide, TNFR2 = Tumour 

necrosis factor receptor 2, IL2 R = interleukin 2 receptor, sIL2 R = soluble interleukin 2 

receptor, IL = interleukin, IFN = interferon, TNF = tumour necrosis factor, SEE = staphylococcal 

enterotoxin e, Ag = antigen, DC = dendritic cells, CLL = chronic lymphocytic leukaemia, S1P = 

sphingosine 1 phosphate, MDS = myelodysplasia, CCL = chemokine c ligand, CM = central 

memory, EM = effector memory, Treg = T regulatory cells, MM = multiple myeloma, CTL = 

cytotoxic T lymphocytes, MDSC = myeloid derived suppressor cells, ADCC = antibody 

dependent cellular cytotoxicity, NLC = Nurse like cells, Lena = Lenalidomide, HIV = Human 

immunodeficiency virus, ELISA = Enzyme linked immunosorbent assay, NKT = Natural killer T 

cell, GM-CSF = granulocyte macrophage colony stimulating factor, MCP-1 = monocyte 

chemoattractant protein 1, MIP 1= macrophage inflammatory protein 1, Cr = chromium, AP-

1 = activating protein 1, NFAT = Nuclear factor of activated T cells, PB = peripheral blood, KIR 

= killer immunoglobulin-like receptor. 
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1.2.3.3 Lenalidomide effects on APC 

There are a small number of in vitro studies that have examined the effect of lenalidomide on 

the afferent arm of the T cell response. These indicate that lenalidomide potentiates APC 

function in a number of ways including: increased expression of MHC Class II, CD86 and CD11c, 

increased secretion of the pro-inflammatory cytokines (IFN, TNF and CCL2 by murine DC) 234 as 

well as increased endocytic capacity 227. Henry et al. also report that lenalidomide-treated DC 

were more efficient initiators of CD8+ T cell responses in a murine ovalbumin-specific model 227, 

this may be due to the fact that lenalidomide has been shown to enhance immune synapse 

formation 186,209. 

 

1.2.3.4 Lenalidomide effects on NK cells 

Lenalidomide-induced augmentation of NK cell activity is believed to be responsible for some of 

the anti-neoplastic action of lenalidomide. Evidence for this comes from in vitro studies showing 

that exposure to lenalidomide leads to: expansion of NK cells in cultured PBMC, enhanced 

expression of activating receptors (NKp30 and NKp46), reduced expression of inhibitory KIR 

(NKAT2 and NKB1) 232, increased production of cytokines and chemokines (TNF, CCL2 and 

CCL5)233, enhanced antibody dependent cellular cytotoxicity (ADCC) 214,235,239 as well as direct 

cellular cytotoxicity against cancer cell lines 230. These effects on NK cells appear to be as a 

consequence of enhanced cytokine production (particularly IL2) from T cells also present in the 

cultures rather than by cell-intrinsic effects as it can be abrogated by anti-IL2 receptor antibodies 

or by purification of NK cells 230,232,239.  

 

In vivo data support the in vitro data showing expansion of NK cell numbers in peripheral blood 

of patients treated with lenalidomide for solid cancer, 215 myeloma 229 and CLL where this was 

associated with improved response to therapy 240. In a murine model of B cell lymphoma IMiD 

treatment of mice also resulted in increased NK cell infiltration of tumours 234. 
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1.2.4 Molecular mechanism underlying the actions of lenalidomide  

 

IMiDs had long entered routine clinical use before the molecular mechanisms underlying their 

action were fully understood. In a landmark paper in Science, Ito et al. identified that the intra-

cellular target of thalidomide was cereblon. Binding of thalidomide to this protein, which forms 

the substrate receptor of an E3 ubiquitin ligase was found to mediate the teratogenic effects 

that thalidomide can cause in embryos 241. Further in vitro studies have shown that the presence 

of cereblon is required for the anti-myeloma activity of thalidomide and lenalidomide 242, for 

increased TNF and IL2 production by T cells 243 and for improved immune synapse formation 211. 

In vivo studies support these in vitro findings; high gene expression of cereblon is associated with 

good response to IMiD therapy and good prognosis in myeloma 244,245. Conversely the acquisition 

of inactivating mutations in cereblon results in acquired drug resistance 246.  

 

In the last 2 years it has become apparent that the binding of IMiDs to cereblon enhances the 

activity of the E3 ubiquitin ligase, resulting in greater ubiquitination and thus degradation of 

selected substrates (Figure 1.8). In particular the transcription factor ikaros has been shown to 

become depleted via this mechanism in myeloma cell lines 247 and T cells 248. Low levels of ikaros 

gene expression in patients have also been demonstrated to result in poorer responses to IMiD 

treatment 249.  

 

Ikaros is member of a family of zinc finger endo-nucleases, known as the Ikaros transcription 

factors including aiolos, helios, ios and pegasus. The best described of these is ikaros, which has 

roles as both a tumour-suppressor gene and master regulator of lymphocyte differentiation. The 

important role of ikaros in lymphocyte development is underlined by the finding that ikaros-null 

mice fail to develop B cells or NK cells and have an abnormal CD4+-skewed T cell repertoire 250. 

Binding of ikaros to CD8 regulatory elements leading to activation of the gene may explain why 

CD8 expression is selectively lost in the absence of ikaros 251.  

 

In mature T cells ikaros has been reported to have a number of roles. Mouse models with 

heterozygous deletion of ikaros have been found to invariably develop T cell malignancy. This is 

likely due to a lower threshold for entry in to the cell cycle in response to TCR engagement and 

accelerated G1-S phase transition in response to signalling via the IL2 receptor 252. During T cell 

activation and TCR signalling ikaros is seen to localise in toroids in the nucleus that co-localise 

with areas of DNA replication and cyclin proteins, this change in the nuclear staining pattern is 
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blocked by inhibitors of TCR signalling, (including inhibitors of Lck, Fyn, protein kinase C and 

phosphoinositide 3 kinase and mTOR) which demonstrates that this change is TCR dependent 

252.  

 

As well as influencing the strength of signalling through the IL2 receptor ikaros has been shown 

to play an important role as a repressor of IL2 gene transcription with a role in anergy induction. 

Investigators have used chromosome immunoprecipitation (ChIP) to demonstrate ikaros binding 

to the IL2 promoter and small interfering RNA (siRNA) for ikaros RNA to show that in the absence 

of ikaros activity IL2 levels were increased 253,254. Naïve T cells were shown to have an increased 

susceptibility to ikaros due to the distal region of the IL2 promoter already having an open 

chromatin conformation facilitating ikaros binding compared to other subsets. Finally ikaros loss 

can release T cells from their dependence on co-stimulatory signalling via CD28, whereas under 

normal conditions the loss of signal 2 would result in T cell anergy 254. This effect on co-

stimulation is in agreement with a paper by LeBlanc et al. who demonstrated that lenalidomide 

treatment could overcome co-stimulatory blockade with CTLA4-chimeric antibodies 204. 

 

Ikaros also plays an important role in recruiting histone deacetylases (HDAC) and in mediating 

chromatin remodelling of discreet regions of DNA that promote differentiation to a Th2 

phenotype (including transcription factors GATA3, cmaf, Tbet and STAT1), with loss of ikaros 

leading to secretion of Th1 cytokines even when cells are cultured in Th2 skewing conditions 255. 

The downstream effects of ikaros depletion described could explain the increased activation and 

proliferation of T cells demonstrated in vitro. 
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Figure 1.8  

 

 

 

 

Figure 1.8 Schematic representation of lenalidomide modulation of cereblon activity  

Lenalidomide binds to cereblon (CRBN), which acts as the substrate receptor for a cullin-ring E3 

ubiquitin ligase complex (other parts of the complex include ring box protein 1 (Roc1), DNA 

damage binding protein 1 (DDB1) and cullin 4 (CUL4)). Binding of lenalidomide enhances the 

activity of cereblon leading to increased ubiquitination of targets (including Ikaros (IKZF1)) 

resulting in their increased degradation at the proteasome and releasing transcriptional 

repression on target genes such as the interleukin 2 (IL2) promoter 

Based on findings of Gandhi et al. 248 
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1.2.5 Clinical trials of lenalidomide after AHSCT 

 

Following on from in vitro and in vivo data demonstrating lenalidomide’s potential to improve T 

cell responses to tumour in the autologous setting a number of small clinical trials have provided 

some insight into the effect of the drug in the allogeneic setting. As the most extensive use of 

lenalidomide has been in myeloma, it has been logical that the majority of these trials have 

sought to exploit both the anti-myeloma cytotoxic effect of lenalidomide to eradicate minimal 

residual disease after AHSCT as well as possible T cell allostimulatory effects to boost GvT (Trials 

are summarised in Table 1.3). A common concern of these trials has been an association 

between the administration of lenalidomide and the onset or severity of GvHD observed 256,257. 

 

Drawing firm conclusions from the results of these studies is difficult due to the heterogeneity 

of the patient population, the differences in exclusion criteria, the differing treatment regimes 

for lenalidomide administered (some including dexamethasone and in combination with DLI), 

the different timing after AHSCT of commencement of lenalidomide-treatment and the small 

numbers of patients enrolled. However it would appear that the risk of GvHD is higher in those 

studies where lenalidomide-treatment was started within 6 months of AHSCT. In the study by 

Coman et al. the authors reported that the risk of GvHD was higher in patients who had 

previously experienced GvHD, had active GvHD at time of initiation of lenalidomide, who 

received lenalidomide as their first salvage therapy after AHSCT and in those who had recently 

stopped immunosuppression 258.  

 

Limited data from concurrent peripheral blood immunomonitoring of patients in 3 trials 

indicates that lenalidomide was associated with increased HLA DR expression on CD4+ and CD8+ 

T cells (particularly CD8+ T cells) as well as an increase in the proportion of activated 

(NKp44/NKp30 positive) NK and CD56dim NK cells that may represent a shift towards a more 

cytotoxic phenotype. However there was no significant increase in IFN producing cells and no 

change in Treg at any early time-point, although in those patients who continued therapy there 

was a significant late increase in Treg 256,259,260. In the study by Wolschke et al., NK cells harvested 

from the peripheral blood of AHSCT recipients treated with lenalidomide demonstrated 

increased lytic activity against a myeloma cell line ex vivo. However in none of these studies 

were the authors able to demonstrate an association between any of these immune parameters 

and outcome.  
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Due to the small numbers enrolled, lack of a control cohort and the relatively short follow up of 

many of these trials, it is difficult to assess the contribution of lenalidomide to GvT, especially in 

view of the direct cytotoxicity of lenalidomide against myeloma. However, good response in 

terms of eradication of minimal residual disease after lenalidomide therapy was often 

associated with improvement in donor chimerism 261 and in the study by Coman et al. there was 

an association between occurrence of GvHD and overall response rate (hazard ratio 2.33, p 0.03) 

258.  

 

There are also case reports in the literature describing cases of lenalidomide-induced remission 

of relapsed haematological malignancy after AHSCT. These include: complete cytogenetic 

remission of relapsed 5q- AML following 3-6 cycles of 10mg of lenalidomide, with a concurrent 

increase to 87% donor chimerism in bone marrow in one case 262,263, complete remission of 

relapsed plasma cell leukaemia after AHSCT associated with conversion to full donor chimerism 

264, complete remission of relapsed CLL after AHSCT (in association with development of GvHD) 

265 and partial response of relapse Hodgkin lymphoma relapsing following AHSCT 266. The last 2 

cases are particularly interesting as single agent lenalidomide might not be expected to have as 

strong a direct cytotoxic effect on CLL and Hodgkin lymphoma as in 5q- syndromes and plasma 

cell derived malignancies.  

 

There is very little in vitro or in vivo data to indicate the mechanisms by which lenalidomide 

exerts effects after AHSCT. In most cases the rationale for the use of the drug in this setting has 

been for its direct anti-tumour effect or extrapolated from data in artificially stimulated T cells. 

There has been a recent cooling of enthusiasm for further studies in this area due to the 

perceived risk of GvHD, but a deeper understanding of the immunological changes induced may 

present new strategies allowing safer and more effective use of IMiDs after AHSCT. 
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Table 1.3 Clinical trials of lenalidomide after AHSCT 

Study Design No Pts Dose 
(mg) 

+ Dex DLI Timing 
of Lena 

(mo) 

Median 
No cycles 

Response OS/PFS GvHD Organ 
GvHD 

Reason for 
discont 

Alsina 2014 
267 

P, M, R, 
Ph IIa, 
maint 

30 10 N N 3 Max 12, 
46% 

discont 
after 2 

33% ORR PFS 63% 
OS 78% 
18mo 

47% 
Gd II-IV 

30% 
Gd III-IV 

17% 

Skin 
Gut 

37% 
GvHD 
11% 

Neutropenia 
5% infection 

5% rash 

Kroger 2009 
268 

P, S, 
maint 

32 
(2 Lena) 

15 N Y 
(2) 

NG 4 59% CR NG 43% NG NG 

Kroger 2013 
269 

P, S, 
rel/ref 

33 5 N Y 5.5 6 46% CR 
48% PR 

PFS 52% 
OS 79% 
3yr est 

34% 
Gd II-III 

NG 46% PD 
23% GvHD 
31% Other 

Kneppers 
2011 256 

P, M, 
maint 

30 10 N N 3 3 37% ORR OS 94% 
61% PFS at 2 

yrs 

37% 
Gd II-IV 

Skin 
Liver 
Gut 

17% PD 
43% GvHD 
17% Other 

Wolscke 
2013 260 

P, S, Ph 
I/II, 

maint 

24 5 (75%) 
10 (15%) 

N N 4.5 NG ORR 42% OS 79% 
PFS 61% 
At 2yrs 

38% 
Gd I-IV 

Liver 
Gut 

29% GvHD 

Sockel 2012 
257 

P, M, Ph 
II, maint 

10 10 N N 2.5 5 CR 40% OS 50% at 
331 days 

60% 
Gd III-IV 

Skin 
Gut 

40% PD 
40%GvHD 

Bensinger 
2014 270 

P, S, rel 18 25 1 N 12 12 ORR 56% 
CR 28% 

OS 56% at 
35mo 

11% 
 

NG 56% PD 
11% GvHD 
6% Other 
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El-Cheikh 
2012 271 

P, S, 
rel/ref 

12 10 ref 
25 rel 

N Y 6 5 75% ORR 
25% CR 

OS 69% 
PFS 50% at 

2yrs 

8% 
Gd II 

Skin 
Gut 

17% PD 
8% GvHD 

Lioznov 2010 
259 

R, S, rel 24 25 (83%) 
15 (17%) 

Y Y 
(18) 

11 5 66%ORR 
8%CR 

Med PFS 
9.7months 

16% 
Gd II 

Skin NG 

Coman 2013 
258 

R, M, rel 52 25 (79%) 77% 19% 24 6 83% ORR 
(29% CR) 

Med PFS 
18months 

58% NG 29% PD 
15% GvHD 
22% Other 

Blum 2010 
261 

P, S, Ph I, 
rel 

31 (7 
post allo 
for AML) 

50 MTD N N NG 1 16% CR NG 100% in 
responders 

Skin 43% PD 
29% GvHD 

Mimmema 
2009 272 

P, S, rel 16 25 Y 
(8 pts) 

Y (11 
pts) 

>3 6 ORR 46% 
87% +Dex 

Median 0S 
395 days 
PFS 328 

days 

31% 
Gd II-IV 

NG NG 

S = single centre, M = Multi-centre, P = Prospective, R = Retrospective, PH = Phase, maint = maintenance, ORR = overall response rate, PFS = progression free 

survival, OS = overall survival, Gd = Grade, NG = Not given, CR = complete response, PR = partial response, VGPR = very good partial response, Y = Yes, N = 

No, PD = progressive disease, Lena = lenalidomide, mo = months, pts = patients, rel = relapse, ref = refractory, GvHD = graft versus host disease, Allo = 

allogeneic haematopoietic stem cell transplant, AML = acute myeloid leukaemia, Max = maximum, Discont = discontinued, MTD = maximum tolerated dose. 
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1.3 Rationale 

 

The outcome for patients who relapse following AHSCT is poor. Data from St Bartholomew’s 

Hospital shows that 80% of patients transplanted for acute myeloid leukaemia/MDS with 

evidence of failed alloreactivity will relapse within 2 years of AHSCT 273. 

 

Cellular therapies such as DLI are available to some patients following AHSCT, but in many cases 

it is not possible to re-access donors, this is particularly true in cases of UCBT. 

 

Alternative therapies that can enhance donor T cell alloresponses are urgently required for 

these patients. IMiDs such as lenalidomide may be useful in this scenario, however in order to 

use these drugs safely and effectively a greater understanding of the effect of lenalidomide on 

human T cell alloresponses is required. 
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1.4 Hypothesis 

 

 

Characterisation of the cellular and sub-cellular mechanisms by which lenalidomide can 

modulate the human T cell alloresponse may facilitate more effective use of lenalidomide and 

other IMiDs to improve the outcome of AHSCT. 
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1.5 Aims 

 

1. To comprehensively characterise changes in the in vitro human T cell alloresponse 

caused by lenalidomide exposure during allostimulation including: 

 Identifying which subsets of T cells are affected 

 Phenotypic changes of alloreactive T cells that may facilitate identification in 

vivo 

 Changes in cytokine production and effector/regulatory cell ratios of 

alloproliferative cells 

 

2. To determine whether lenalidomide exposure causes differential effects on in vitro 

alloresponses of human T cells from different graft sources: 

 To compare alloresponses of APB and UCB-derived T cells exposed to 

lenalidomide 

 

3. To determine whether lenalidomide exposure has any differential effects that could 

predict selective GvHD and/or GvT responses: 

 Potential of T cells to migrate to target organs of GvT/GvHD 

 Cytotoxicity against haematopoietic target cells 

 

4. To identify sub-cellular mechanisms underlying the effect of lenalidomide on the human 

T cell alloresponse: 

 Identify whether different exposure strategies alter effects of lenalidomide on 

the alloresponse 

 Identify whether mechanisms underlying known actions of lenalidomide in 

mitogen-stimulated T cell responses are also involved in modulation of the 

alloresponse after lenalidomide exposure 

 Identify any additional mechanisms unique to the alloresponse 
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Chapter 2 - General materials and methods 

 

2.1 Human cells 

 

PBMC from leucocyte cones from healthy adult blood donors, and UCB mononuclear cells from 

donated units were isolated by density-gradient centrifugation. Additional PBMC samples from 

HLA-matched allogeneic transplant recipients and their sibling donors were sourced from the 

tissue bank maintained by the Centre for Haematology-Oncology, Barts Cancer Institute, 

London, UK. The study was approved by the London Research Ethical Committee (05/Q0605/140 

and 06/Q0604/110) and was conducted in accordance with the Declaration of Helsinki.  

 

2.2 Isolation and cryopreservation of PBMC 

 

Leucocyte cones were obtained from NHS Blood and Transplant. These contain 10-20 millilitres 

(ml) of leucocyte rich blood from healthy donors collected as a waste product during platelet-

pheresis. Contents were washed from the cone using phosphate buffered saline (PBS) via a wide 

bore (16 gauge) sterile needle and 20ml sterile syringe into a sterile 50ml falcon tube and made 

up to a total volume of 50ml with PBS.  Ten ml of the cell suspension was then layered over 5ml 

LymphoprepTM (Fresenius-Kabi) and the PBMC separated by density gradient centrifugation as 

per the manufacturers protocol. 

 

The PBMC layer was extracted from the sample-LymphoprepTM interface using a Pasteur pipette 

and transferred to a fresh sterile 50ml falcon tube. PBMC were washed twice (with PBS after 

centrifugation at first 350g and then 500g for 5 minutes (mins) at room temperature (RT) to 

pellet with supernatant discarded) and residual red cells removed by incubation for 7 mins in 

10ml of red cell lysis buffer (Biolegend). PBMC were then washed (as above with centrifugation 

step at 500g) and counted (using a Vicell-XRTM cell viability analyser, Beckman-Coulter) before 

being resuspended in supplemented media (RPMI 1640 Aq media containing 10% fetal bovine 

serum (FBS) and 1% penicillin streptomycin) at a concentration of 10x107 cells per ml. UCB cells 

from collections that would otherwise be discarded were processed in the same way as 

leukocyte cones. Volume of UCB received varied from 20ml to 200ml. 
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A 20% dimethyl sulfoxide (DMSO) freeze-mix was made up using DMSO (Fisher Scientific) and 

foetal bovine serum (FBS). Five hundred µl of freeze-mix and 500µl cell suspension were 

pipetted into 1.8ml cryovials (Corning) to give a final concentration of 10% DMSO and 

5x107cells/ml. Cryovials were then transferred to a CoolCell® and frozen down at approximately 

-1°C/min to -80°C before transfer to liquid nitrogen storage. 

 

2.3 Lenalidomide stock solution preparation 

 

Lenalidomide powder was provided as a gift by Celgene. A 10mM stock solution was made by 

dissolving lenalidomide powder in DMSO and vortex mixing. A small amount of lenalidomide 

powder was weighed out and volume of DMSO was calculated using the equation:  

 

Volume (L) = Mass (g) / (Molar Mass (g/mol) x Molarity (mol/L). 

 

The molar mass of Lenalidomide is 259.6g/mol.  

Fifty µl aliquots of the solution were pipetted into 500µl sterile eppendorf tubes, frozen down 

and stored at -80°C. 

 

2.4 Detection and absolute quantification of lenalidomide in biological samples 

 

2.4.1 Validation of stock solution and standard curve 

 

My thanks to Dr Essam Ghazaly and Miss Chathunissa Gnanarajan for help with the design, 

performance and analysis of these tandem mass spectrometry and ultra-high performance 

liquid chromatography (MS/MS UHPLC) experiments. The protocol used was adapted from Iqbal 

et al. 274. 

 

A 50µl aliquot of Lenalidomide stock solution was thawed and diluted in 30% Acentonitryl and 

1% Formic Acid solution to give a 1µM solution. One hundred µl of this solution and a 500ng/ml 

solution of carbamazepine (the internal standard) was then analysed using an ultra-

performance liquid chromatography system (Accela UPLC, Thermo Scientific, UK) equipped with 

an Acquity UPLC BEH C18, 1.7 µm, 100 × 2.1 mm column (Waters) and a mobile phase consisting 

of a mixture of water containing 0.1% formic acid (A), and acetonitrile containing 0.1% formic 

acid (B). The mobile phase gradient was employed, comprising: buffer A = 90% at 0 - 1 min, from 
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90 to 20% over 2 minutes, held at 20% for 2 mins, from 20 to 90% over 0.1 mins, ending with 

90% for 2.9 minutes, all at a flow rate of 250 µl/min.  

 

Eluting compounds of interest were detected using triple stage quadrupole Vantage mass 

spectrometry system (Thermo Scientific) equipped with an electrospray ion source. Samples 

were analysed in the Multiple Reaction Monitoring (MRM), positive ion modes at a spray voltage 

of 3500 V. Nitrogen was used as sheath and auxiliary gas at a flow rate of 30 and 10 arbitrary 

units, respectively. Argon was used as collision gas with pressure of 1.5 mTorr. The optimum 

transitional daughter ions mass and collision energy of each analyte were as follows: 

Lenalidomide 260.0  149.2 (collision energy 16 V) and Carbamazepine 237.1  194.3 (collision 

energy 20 V) (Figure 2.1). 

 

Fresh calibration standards (0-10 µg/ml) were prepared by diluting the stock solution (10 µg/ml) 

in 10% acetonitrile. High and low control samples (5 and 0.5 µg/ml) were also prepared. The 

standard curve generated using linear regression analysis (by plotting lenalidomide 

concentration versus area ratio (lenalidomide area divided by the internal standard area) could 

then be used to calculate lenalidomide concentration in culture media and cells. 

 

2.4.2 Preparation of media and cells for MS/MS UHPLC analysis 

 

One hundred µl of medium was taken from experimental flasks and transferred to an eppendorf 

tube. Three hundred µl of ice-cold methanol (containing 500ng/ml of the internal standard) was 

added to the tube and vortex mixed for 1 min. The tube was then kept on ice for 30 mins, 

centrifuged at 750g for 10 mins at 4°C and the supernatant then transferred to a fresh eppendorf 

tube. After methanolic evaporation to dryness, tubes were stored at -80°C until analysis, at 

which time dried extracts were reconstituted in 10% acetonitrile solution and injected into the 

UHPLC-MS/MS system. 

 

Cells taken from experimental flasks were counted and an aliquot containing approximately 1 

million cells was transferred to an eppendorf tube. Tubes were centrifuged at 750g for 5 mins 

at 4°C to pellet cells. Supernatant was completely removed using a pipette. The cell pellets were 

then stored at -80°C. On thawing 300µl of ice cold methanol was added to the cell lysates and 

extraction proceeded as above. Tubes were again stored at -80°C until analysis. 
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Figure 2.1 

 

Figure 2.1 Identification of Lenalidomide by MS/MS UHPLC 

Lenalidomide and the Internal Standard (carbamazepine) were identified based on time of 

flight and characteristic fragmentation pattern of ions. Coloured lines represent abundance of 

product ions of fragmentation. The blue line represents the main breakdown product.  
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2.5 One-way primary allogeneic co-cultures 

 

One way primary allogeneic co-culture (otherwise known as primary mixed lymphocyte 

culture/reaction) allows assessment of in vitro alloresponses. In this model, stimulator PBMC 

are inactivated, by either irradiation or mitomycin C, allowing only the responder lymphocytes 

to proliferate in response to foreign histocompatibility antigens. Historically incorporation of 

radio-labelled thymidine was used as a measure of responder proliferation, more recently 

carboxyfluorescein diacetate succinimidyl ester (CFSE) and novel cell-tracker dyes have allowed 

more sensitive assessment of proliferation and cell subset-specific kinetics of cell division 275-278. 

Although this model has been criticised in the past for the variability of responses 279 and cannot 

be used clinically to predict GvHD, it has shown some correlation with graft-rejection and other 

clinical outcomes 280-282 and is the most widely used in vitro model to study alloresponses 

(reviewed in Mehrotra et al.283). 

 

Healthy PBMC were selected from liquid nitrogen storage and defrosted in a 37°C water bath, 

transferred to a 50ml sterile tube with a sterile Pasteur pipette and washed twice with PBS 

(centrifugation at 500g for 5 mins at RT to pellet with supernatant discarded) before counting 

(Vicell-XRTM), resuspension in supplemented RPMI at a concentration of 2x106 cells per ml and 

resting overnight (12-16 hours). 

 

The following day one healthy donor was assigned as responder, PBMC were counted and 

stained with CFSE (as described below). Remaining individual donor stimulator PBMC were 

counted and transferred to 50ml sterile falcon tubes, pelletted by centrifugation at 500g for 5 

mins at RT, supernatant discarded and resuspended in warmed supplemented media at 10x106 

cells/ml. Falcon tubes were then immediately irradiated at 40Gray (Gy) using a RS2000 biological 

irradiator (RadSource Technologies). 

 

Allogeneic responder PBMC and single donor stimulator PBMC were then mixed at a 1:1 ratio in 

paired upright 25cm2 sterile cell culture flasks (as previously described 127) as depicted in Figure 

2.2. Three biological replicates (unique donor-responder pairs) plus an autologous co-culture as 

an internal negative control were set-up simultaneously.  



Caroline Besley  Chapter 2 - Materials & Methods 

 84 

Figure 2.2 

 

 

 

 

Figure 2.2 Schematic of allogeneic co-culture 

Randomly assigned responder PBMC are stained with CFSE, while allogeneic and autologous 

stimulator PBMC are irradiated at 40 Gray (Gy). Responders and stimulators are co-cultured 

in a 1:1 ratio and alloresponses measured at a pre-defined time-point. 
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Lenalidomide at a final concentration of 1µM, or 1µl/10ml vehicle control (DMSO) was added to 

one flask of each paired allogeneic and autologous co-culture. Flasks were then incubated at 

37°C in humidified air with 5% carbon dioxide (CO2) in sterile incubators for 7-11 days.  A flask 

of unstained responder cells and CFSE labelled responder cells was also kept and incubated.  

 

2.5.1 Proliferation dye labelling of responder PBMC 

 

To allow assessment of proliferation, responder cells were labelled with proliferation dyes: CFSE 

(or for a limited number of experiments Cell Tracker Violet) (both Invitrogen). Cell Tracker Violet 

staining was as per manufacturer’s protocol. CFSE staining was adapted from the protocol and 

therefore is detailed below. 

 

Responder PBMC were washed (after centrifugation at 500g for 5 mins at RT to pellet with 

supernatant discarded) and resuspended in PBS in a 15ml sterile tube at a concentration of 

10x106 cells per 250µl. A working dilution of 1µM CFSE was made by diluting a 1mM stock 

solution (CellTraceTM, Invitrogen) 1:1000 in PBS. Working dilution CFSE was then added in 1:1 

volume to cell suspension to give a final concentration of 0.5µM CFSE.  The tube containing the 

cells was then incubated at RT in the dark for 8 mins with brief vortex mixes approximately every 

90 seconds.  Staining was quenched by adding an equal volume of ice-cold FBS and incubating 

at RT for 4 mins.  Cells were then washed with supplemented media twice (after centrifugation 

at 500g for 5 mins at RT to pellet with supernatant discarded) before counting and resuspension 

in supplemented media at a concentration of 1x106/ml. 

 

2.6 Magnetic cell separation 

 

In some experiments specific subsets of PBMC were isolated either prior to, or after allogeneic 

co-culture by magnetic bead-based sorting, using Miltenyi technology. Negative magnetic cell 

separation (MACS) allowed isolation of untouched target cells by depletion of non-target cells, 

minimising activation of target cells caused by the separation process. Non-target cells are 

labelled with a biotin-conjugated monoclonal antibody cocktail and then bound by anti-biotin 

antibody coated micro-beads. Cells coated with micro-beads are then depleted by retaining 

them within a MACS® column in the magnetic field of a MACS separator. All reagents and 

consumables for separation were purchased from MACS® Miltenyi Biotec. 
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Cells for separation were prepared as per the manufacturers protocol. Briefly cells were washed 

with PBS (as above) passed through a cell strainer (Fisher Scientific) to remove clumps of cells, 

centrifuged at 500g for 10 mins at RT to pellet cells and supernatant completely aspirated using 

a pipette. The cell pellet was resuspended in cold MACS buffer at a concentration of 40l buffer 

per 107 cells. Biotin antibody cocktail (10l per 107 cells) was then added and cells incubated for 

5 mins at 4C. Following this 30l cold MACS buffer per 107 cells was added, followed by micro-

bead cocktail (20l per 107 cells) and cells incubated for a further 10 mins at 4C. 

 

During this time cell separation columns were attached to a QuadroMACS® magnetic separator 

and 3ml of cold MACS buffer added to each column. Flow though was collected into 15ml sterile 

falcon tubes. After incubation cell suspension was added to the columns and flow through 

collected in the same 15ml falcon tubes. After flow though of cell suspension the columns were 

washed with a further 3ml of cold MACS buffer. Falcon tubes were then centrifuged at 500g for 

10 mins at 4C, supernatant discarded and washed with PBS (as above). Cells were then counted, 

an aliquot reserved for evaluation of purity and cells used for further experiments.  

 

For experiments where large numbers of samples required MACS separation the AutoMACS 

automatic cell separator was used. Cells were prepared as above prior to labelling and then 

loaded into the AutoMACS machine along with required reagents. The machine then performs 

automatic labelling and separation as per manufacturers pre-defined protocol. Separated cells 

from the AutoMACS were then processed in the same way as following manual separation. 

 

2.7 Flow cytometric assessment of alloresponses 

 

Flow cytometry, also referred to as FACS (Fluorescence activated cell sorting, FACS®, Beckton 

Dickinson) is a method that can be used to identify, characterise and isolate populations of cells. 

FACS is based on principles of light scattering by particles (in this case cells) passing across a 

beam of light and/or laser, in combination with additional information about the particles 

obtained using fluorochromes attached to specific cellular target molecules and induced to emit 

fluorescence. 

 

Cells in suspension, that have been labelled with fluorochrome-conjugated monoclonal 

antibodies are aspirated into the flow cytometer and forced into a single cell stream. This stream 

then passes the cells individually through beams of light and lasers. As the cell passes through 
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the beam of light, light scattered in the forward direction and sideways is captured and focused 

to a detector which converts this information into a digital readout of that particular ‘event’ (i.e. 

cell) for the parameters known as forward scatter (FSC) and side scatter (SSC). FSC gives 

information as to cell size, while SSC gives information as to the granularity of the cell. Using 

these parameters alone it is possible to distinguish different populations of PBMC. 

 

As cells continue pass to through laser beams, certain fluorochromes will become excited and 

emit light at a particular wavelength. This emitted fluorescence is captured and split into specific 

colours by optical filters and directed to photomultiplier tubes (PMT) where the signals are 

converted to digital readouts that are displayed as events. The software displays cumulative 

data for a number of events as dot-plots or histograms. 

 

Depending on the numbers of lasers and optical filters a flow cytometer contains, multiple 

combinations of fluorochromes can be used to identify co-expression of a number of cellular 

targets simultaneously and therefore to identify rare subsets of cells (reviewed in Bendall et 

al.284). 

 

It is also possible to sort individual cells into separate populations, based on pre-defined sort 

criteria using electrostatic charge. Application of charge to form droplets within the cell stream 

encapsulates target cells that can then be deflected from the main stream and collected. 

 

2.7.1 Surface marker labelling of responder cells for flow cytometry and flow cytometric 

sorting 

 

Cells of interest were transferred to 5ml round bottom tubes or 96 well u-bottom/v-bottom 

sterile culture plates, centrifuged at 500g for 5 mins at RT to pellet with supernatant discarded 

and washed in FACS buffer.  

 

A master mix of fluorochrome-conjugated monoclonal antibodies (fluorescent antibodies) was 

made up for surface markers of interest in FACS buffer or fixable viability dye where necessary 

(see below for fixable viability dye). 
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Master mix was added to samples at 100l/million cells and incubated in the dark at RT for 15 

mins. Additional single stained samples were prepared as compensation controls using 

UltraComp eBeadsTM (eBioscience) as well as single CFSE and viability dye-stained responder 

cells and unstained responder cells. 

 

Following incubation cells were washed with FACS buffer (as above) and resuspended in 1:2000 

4', 6-diamidino-2-phenylindole (DAPI) in FACS buffer for viability staining (provided fixable 

viability dye had not been previously added) and kept on ice before acquisition on a LSR Fortessa 

Analyser (Beckton Dickinson). 

 

For flow cytometric sorting cells were incubated in the dark at 4C for 30 mins after addition of 

master mix, with intermittent vortex mixing every 10 mins. Sorting was performed in liaison with 

core flow facility staff at Barts Cancer Institute on a FACS Aria Fusion cell sorter (Beckton 

Dickinson). Sorted cells were collected into sterile 20% FBS in PBS. 

 

Fluorescent antibodies used for FACS analysis and sorting are listed in Table 1A Appendix A. 

 

2.7.2 CD107a and intracellular target labelling for flow cytometry 

 

CD107a or lysosomal-associated membrane protein 1 (LAMP1) can be used as a surrogate 

marker of cytotoxicity. This protein is expressed on the cell surface as lysosomes containing 

granzymes and perforin fuse with the cell membrane and release their contents. CD107a 

expressing cells have been shown to mediate cytotoxicity in an antigen specific manner 

(reviewed in Zaritskaya et al. 285). 

 

Cellular production of cytokines can be assessed following inhibition of protein secretion by cells 

to allow cytokines to accumulate within the cell and therefore enable detection. Cells are then 

fixed and permeabilised to allow fluorescent antibodies to access intracellular proteins 286. 

Similarly fixation and permeabilisation of cells allows fluorescent antibodies to bind to other 

intracellular targets such as transcription factors and signalling molecules. 

 

Cells were counted before transfer to 5ml round bottom tubes or 96 well u-bottom/v-bottom 

sterile culture plates. Anti-CD107a fluorescent antibody and protein transport inhibitor 

(containing Brefeldin A and Monensin, Invitrogen) was added to the cells (as per manufacturer’s 
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protocol) and cells were incubated at 37°C in humidified air with 5% CO2 for 6 hours. An 

additional positive control was set up using cells from the autologous untreated co-culture in 

the same way but in addition to the protein inhibitor cocktail cell stimulation cocktail (containing 

PMA and Ionomycin, eBioscience) was added prior to incubation. 

 

Following incubation cells were centrifuged at 500g for 5 mins at RT to pellet with supernatant 

discarded, washed with PBS to remove residual protein transport inhibitor, and resuspended in 

1:500 diluted fixable viability dye (Zombie yellow, Biolegend) containing fluorescent antibody 

master mix (as above). Cells were then washed in FACS buffer (as above), fixed and 

permeabilised using Fixation and Permeabilisation Buffers (Biolegend) as per manufacturers 

protocol.  

 

A master mix of fluorescent antibodies was made up for intracellular cytokines of interest in 

permeabilisation buffer. Single stains were also prepared (as above) as were fluorescence minus 

one (FMO) controls using cells from a lenalidomide-treated allogeneic co-culture. Cells were 

then incubated in the dark at RT for 30 mins, before washing twice in permeabilisation buffer 

(after centrifugation at 350g for 5mins at RT with supernatant discarded) and acquisition on the 

flow cytometer. 

 

Nuclear factor staining was carried out in the same way but using nuclear factor fixation and 

permeabilisation buffer (Biolegend) as per manufacturers protocol. Isotype controls were also 

prepared. 
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2.7.3 Flow cytometry data analysis 

 

Each individual fluorochrome will be excited by and emit fluorescence over a range of 

wavelengths of light. This means that spectral overlap or spillover can occur when multiple 

fluorochromes are used simultaneously in one experiment. To adjust for this compensation is 

applied to remove signal from a given fluorochrome from all neighbouring channels where it is 

also detected (Figure 2.3). The compensation values detected can then be applied to all the 

data. 

 

Compensation for spectral overlap was performed using single stained UltraComp eBeads 

(eBioscience) or single stained cells using BD FACSDivaTM automated compensation software. 

PMT voltages were optimised and compensation performed prior to acquisition of experimental 

samples for each experiment to ensure that settings were optimal for that experiment. 

Compensated flow cytometry standard (FCS) files were then loaded into FlowJo version 7/10 

(Treestar) software for further analysis. 
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Figure 2.3 Compensation for spectral overlap of two fluorochromes 

Bandpass filters capture and modulate the emitted pulse of fluorescent light from 

fluorochromes to minimize signal to noise. Despite this some fluorescence from 

fluorochromes with overlapping emission spectra is detected by ‘adjacent’ filters. The 

intensity of this pulse is lower than that of the ‘target’ and therefore compensation allows 

subtraction of this overlap while retaining the ‘signal’ for target events. 

 

Figure 2.3 
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2.7.4 Cell phenotype analysis 

 

Cellular subsets of interest within the total population can be resolved based on characteristic 

FSC and SSC as well as expression of surface markers and/or intracellular markers. For 

identification of important alloresponder cell subsets the following algorithm was applied to all 

samples: A region of interest was assigned based on the low FSC and SSC characteristics of 

lymphocytes. Boolean gating was then used to refine this population to single cells and live cells 

(based on DAPI or Zombie Yellow negativity). Following this further Boolean gates were applied 

to identify particular T cell or NK cell subsets, an example for CD4+ and CD8+ T cells is shown in 

Figure 2.4. Table 2.1 Shows gates applied to identify T cell and NK cell subsets of interest. 

 

Where isotype and FMO controls were included to aid assessment of expression of markers with 

continuous patterns of expression (i.e. ikaros), these were used to set gates (Figure 2.5).   

 

2.7 5 Allospecific cytokine production 

 

To determine the allospecific production of cytokines from background the following formula 

was used: 

 

% cytokine-positive cells in allogeneic co-culture - % cytokine-positive cells in corresponding 

autologous co-culture 

 

2.7.6 Rare-event analysis 

 

Intracellular cytokine producing cells were rare-events in T cell populations of interest, occurring 

at a frequency of <5% of the total population. In order to minimise errors in detection a 

minimum of 50 positive events were acquired to give a coefficient of variance of <14% based on 

the calculation described by Allan and Keeney 2010 287: 

 

CV= 100/n 

 

Where n=the number of positive events  
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Table 2.1 Markers used to identify lymphocyte subsets 

Cell subset Cell surface markers 

T helper CD3+CD4+ 

T cytotoxic CD3+CD8+ 

T regulatory CD3+CD4+CD25highFOXP3+ (CD127-) 

T effector 
CD3+CD4+CD25+FOXP3- or 

CD3+CD8+CD25+FOXP3- 

Naïve CD3+CD4+/CD8+CCR7+CD45RA+ 

Central Memory CD3+CD4+/CD8+CCR7+CD45RA- 

Effector Memory CD3+CD4+/CD8+CCR7-CD45RA- 

TEMRA CD3+CD8+CCR7-CD45RA+ 

NK CD3-CD56+ 

Cytotoxic NK CD3-CD16+CD56+ 
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Figure 2.4 Gating strategy for analysis of flow cytometric data 

(A) Lymphocytes were identified based on characteristic forward scatter area (FSC-A) and 

side scatter area (SSC-A). Doublets and dead cells were excluded.  

(B) T cells were then identified as CD3+ cells, which were then divided into CD4+ and CD8+ 

subsets by positivity for CD3 and CD4/8. 

Figure 2.4 
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Figure 2.5 Gating based on FMO or isotype controls  

For markers with continuous expression on cells, positive populations were defined 

according to fluorescence minus one (FMO) controls (A) or Isotype controls (Isotype) (B).  

Figure 2.5 
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2.7.7 Dye dilution for assessment of proliferation by flow cytometry 

 

Proliferation dyes bind to cytosolic components within cells in a non-toxic manner. Each time 

the cell divides the fluorescent dye is apportioned equally between the daughter cells and thus 

the fluorescence intensity halves. This allows identification of cells that have divided (in this case 

alloproliferative cells), as well as cells that have not responded to stimuli and divided. It is also 

possible to resolve serial rounds of cell division and calculate the proportion of cells that have 

been stimulated to divide (for my experiments the “alloproliferative precursor frequency”) from 

a given starting population 288-290. 

 

FlowJo version 7 (Treestar) software contains a mathematical model that utilises fluorescence 

histograms to perform a ‘best fit’ analysis of number of rounds of cell division a population of 

cells has undergone. The model is also able to determine the alloproliferative precursor 

frequency for a population of cells (Figure 2.6). This analysis was performed and produced 

comparable values to the formula described by Martins et al. to manually mathematically 

calculate these values: 

 

APF (%) = 100c/(2n+c)-(2nxc) 

 

where c = number CFSEdim/neg responders / number CFSEdim/neg responders + number CFSEbright 

responders) and n = log2[b/a], with a= median fluorescence intensity CFSEdim/neg responders and 

b = median fluorescence intensity CFSEbright responders 

 

In order to be consistent with published literature the calculation method from Martins et al. 

was used throughout data presented in this thesis. The same formula was applied for Cell 

Tracker Violet. 

 

2.7.8 Calculation of alloproliferative fraction 

 

To determine allospecific proliferation from background the following formula was used: 

 

% CFSEdim cells in allogeneic co-culture - % CFSEdim cells in corresponding autologous co-culture 
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Figure 2.6 

 

 

Figure 2.6 CFSE dye dilution assessment of proliferation 

(A) Undivided or non-alloproliferative CFSE+ cells are identified by retained bright 

fluorescence while divided or alloproliferative cells are identified by dim CFSE fluorescence.   

(B) FlowJo software models rounds of cell division based on CFSE fluorescence histograms. 

(C) Proliferation kinetic analysis allows calculation of alloproliferative precursor frequency 

(here described as % divided) based on proportions of cells in each round of cell division and 

numbers of undivided cells. 
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2.8 General statistical analysis 

 

With the exception of qRT-PCR and GeneChip® data all other statistical analysis was conducted 

using Graphpad Prism version 7 (Graphpad Software). The D’Agostino-Pearson test of normalilty 

was applied and data presented in this thesis assessed to be non-normally distributed. Therefore 

non-parametric statistical tests were applied in all cases. 

 

Statistical significance of differences in responses between untreated and lenalidomide-treated 

cells were determined using the Wilcoxon matched pairs signed rank test in all cases where 

paired samples were available and Mann Whitney test where samples were not paired or paired 

samples were missing for technical reasons. Where comparison between groups or serial time-

points was made the Kruskal-Wallis test was used, with Dunn’s post-test correction for multiple 

comparison. 
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2.9 General reagents 

 

 

Table 2.2 Details of general reagents  

General Reagent Details & Manufacturer 

FBS 
Fetal Bovine Serum (Heat Inactivated),Gibco® by 

Life technologiesTM 

RPMI 
Roswell Park memorial Institute (RPMI) 1640 

AQMediaTM, Sigma® Life Sciences 

PBS 
Dulbecco’s Phosphate Buffered Saline, Sigma® 

Life Sciences 

Penicillin Streptomycin 
10,000 units Penicillin and 10mg Streptomycin 

per ml, Sigma® Life sciences 

Supplemented media 
RPMI with the addition of 10% FBS and 1% 

Penicillin Streptomycin  

FACS buffer 1ml FBS added to 49ml PBS  

MACS buffer 
PBS with the addition of 0.5% FBS and 2mM 

EDTA 

Nuclease free water 
Nuclease free water (not DEPC treated), Ambion 

by Life technologies 
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Chapter 3 – The impact of lenalidomide on cellular T cell alloresponses of 

adult peripheral blood-derived T cells 

 

3.1 Introduction 

 

The T cell alloresponse is absolutely critical to the success or failure of AHSCT. By exerting GvT 

effects donor T cells provide effective and long lasting immune control of haematological 

malignancy. There is ample evidence that T cells are required for the GvT effect: the efficacy of 

DLI in CML, the fact that T cell depletion of donor grafts results in increased relapse and that 

withdrawal of immunosuppression can result in re-induction of remission. The precise 

immunobiology of GvT responses is still unclear and is likely to involve complex interactions 

between multiple cell types as well as cytokine and chemokine signals, not to mention the 

influence of the tumour cells.  

 

Evidence from experimental animal models has provided evidence that both CD4+ and CD8+ T 

cell subsets are required for optimal GvT 47 and that naive T cells can give rise to more potent 

GvT than their memory counterparts 55. T cells mediate GvT via a number of mechanisms 

including: cytokine mediated cytotoxicity, Fas:Fas-ligand (FasL) induced apoptosis or perforin 

and granzyme cytotoxicity. It appears that CD4+ T cells contribute to GvT mainly by secretion of 

cytokines while CD8+ T cells contribute more by perforin and granzyme direct cell cytotoxicity 

291.  

 

The immunomodulatory drug lenalidomide has been demonstrated both in vitro and in vivo to 

enhance T cell responses to synthetic stimuli and to be associated with the clinical onset of GvHD 

when used early following AHSCT. Given the close link between GvHD and GvT this could also 

lead to reductions in relapse. However the exact mechanisms by which lenalidomide influences 

the human alloresponse remain unknown and this gap in knowledge has limited safe and 

effective clinical use of the drug in the setting of AHSCT. 
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3.2 Aim 

 

To characterise the effect of lenalidomide exposure on cellular components of the human adult 

peripheral blood-derived T cell alloresponse. 
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3.3 Specific materials and methods 

 

3.3.1 TCR V subfamily distribution analysis by flow cytometry 

 

The human T cell repertoire can be divided into 2 subpopulations based on the type of T cell 

receptor (TCR) they express. Ninety to 99% of T cells express  and the remainder express  

TCRs 292. The  heterodimers form the antigen recognising portion of the TCR, for this reason 

a high degree of diversity in these proteins is generated by somatic genetic recombination 

during thymic maturation of T cells. Part of this recombination involves the 65 described variable 

(V)  segments of the gene; these can be grouped into 25 sub-families based on a high degree 

of homology at the nucleotide level 293,294.  

 

In a normal healthy individual one can therefore expect a ‘normal’ distribution of V subfamilies 

in peripheral blood T cells. In cases where an antigenic stimulus has been experienced and T 

cells with the TCR corresponding to that specific antigen have responded there will be a clonal 

expansion of T cells with that specific TCR resulting in skewing of the V subfamily distribution 

295. 

 

The IOTest® Beta Mark kit (Beckman Coulter) can identify T cells bearing 70% of normal TCR V 

subtypes. This kit uses combinations of fluorescein isothiocyanate (FITC) and phycoerythrin (PE) 

labelled monoclonal antibodies to identify TCR V subfamilies. The specificities of the antibody 

mixes supplied are shown in Table 3.1. 
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Table 3.1 Fluorochrome combinations IOT Beta Mark kit 

Vial TCR V Subfamily Fluorochrome 

A 

5.3 

7.1 

3 

PE 

PE+FITC 

FITC 

B 

9 

17 

16 

PE 

PE+FITC 

FITC 

C 

18 

5.1 

20 

PE 

PE+FITC 

FITC 

D 

13.1 

13.6 

8 

PE 

PE+FITC 

FITC 

E 

5.2 

2 

12 

PE 

PE+FITC 

FITC 

F 

23 

1 

21.3 

PE 

PE+FITC 

FITC 

G 

11 

22 

14 

PE 

PE+FITC 

FITC 

H 

13.2 

4 

7.2 

PE 

PE+FITC 

FITC 
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Cells from unstained responder PBMC (as a baseline), in addition to cells from corresponding 

standard Cell Tracker Violet labelled lenalidomide-treated (1M) and untreated co-cultures 

were transferred to 5ml round bottom tubes and prepared for surface labelling (as per Chapter 

2). In addition to labelling for surface T cell markers CD4, CD8 and viability staining with Zombie 

Yellow each tube was labelled with monoclonal antibody mix from one of the vials provided in 

the IOTest® Beta Mark kit and incubated in the dark at RT for 20 mins, as per the manufacturers 

recommendations. An unstained control was included as were single stained controls. 

 

Following acquisition on the BD Fortessa II flow cytometer and analysis using FlowJo V10.1 

(Treestar) software (as per Chapter 2) it was possible to assign the V subfamily distribution for 

the CD4+ and CD8+ T cells. It was then possible to compare the V subfamily distribution of 

responder cells at baseline and following 9 days of allostimulation in the presence or absence of 

lenalidomide. Representative flow plots are shown in Figure 3.3. 

 

3.3.2 Allogeneic co-cultures with purified CD4+ and CD8+ T cell subsets 

 

CD4+ and CD8+ T cells from CFSE-labelled responder PBMC were isolated using negative 

magnetic selection (CD4 T cell and CD8 T cell isolation kits, Miltenyi biotec) as described in 

Chapter 2. 

 

Following isolation CFSE-labelled purified CD4+ or CD8+ T cells were co-cultured in a 1:1 ratio 

with allogeneic irradiated stimulators for 9 days in the presence or absence of 1M lenalidomide 

to examine cell subset intrinsic effects of lenalidomide. In addition CD4+ cells were mixed with 

CD8+ T cells in a 2:1 ratio, to recapitulate the normal CD4:CD8 T cell ratio in healthy peripheral 

blood and co-cultured with allogeneic stimulators as above. Finally a standard co-culture (as per 

Chapter 2) using un-sorted PBMC from corresponding responders was also included to allow 

comparison of responder T cell proliferation in each scenario. A schematic of the experimental 

design is depicted in Figure 3.1. 
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Figure 3.1 Schematic of allogeneic co-cultures using purified T cell subsets as allogeneic 

responders 

Responder PBMC were labelled with CFSE and then either co-cultured with irradiated 

allogeneic stimulator PBMC in a 1:1 ratio or magnetically sorted to isolate pure populations 

of CD4+ and CD8+ T cells which were then also co-cultured with the same stimulator PBMC in 

a 1:1 ratio. Cells from isolated CD4+ and 8+ T cell populations were mixed in a 2:1 ratio and 

then also co-cultured with the same stimulator in a 1:1 ratio. In each case the number of cells 

in the co-culture was kept equal. 
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3.4 Results 

 

3.4.1 Lenalidomide potentiates adult peripheral blood derived T cell alloresponses by 

selectively increasing the proliferation of allospecific CD8+ T cells 

 

I first examined the effect of lenalidomide on allospecific proliferation. Using an in vitro model 

of HLA-mismatched stimulator and responder PBMC from healthy adult donors I measured 

responder proliferation by CFSE dye dilution at serial time points in untreated allogeneic co-

culture. The proportion of CFSEdim proliferative cells increased over the time course with a 

maximum proliferation seen at day 9 of co-culture (median 22% compared to 72%, p<0.001 

Figure 3.2, A). This was also true when allospecific proliferation was calculated as % CFSEdim 

responders (allogeneic co-culture) - % CFSEdim responders (autologous co-culture) (median 17% 

compared to 47%, p<0.01) as shown in Figure 3.2, A. Addition of 1µM lenalidomide on day 0 of 

allogeneic co-culture led to a greater increase (p<0.05) in allospecific proliferation compared to 

untreated co-cultures on day 9 (Figure 3.2, B). The time point of day 9 was therefore chosen for 

all further experiments. 

 

I then went on to assess T cell proliferation. The addition of lenalidomide (1µM) to allogeneic 

co-cultures resulted in significantly greater responder CD3+ T cell proliferation than untreated 

co-cultures (median 47% compared to 34%, p<0.001, Figure 3.2, C). This effect was due to a 

selective increase in proliferation of CD8+ T cells (median 43% (untreated) versus 58% 

(lenalidomide-treated) p<0.001) (Figure 3.2, D). In contrast, lenalidomide had no significant 

effect on proliferation of CD4+ T cells (median 30% (untreated) versus 34% (lenalidomide-

treated) (Figure 3.2, E).  

 

The effect of lenalidomide on CD8+ T cell alloproliferation was dose-dependent with a plateau 

in proliferation seen at concentrations of 1µM (Figure 3.2, F). A 1µM concentration 

corresponds to plasma levels in patients after oral doses of approximately 7.5mg/day 176. This 

dose is comparable to doses used in clinical trials of lenalidomide after AHSCT, therefore a 

lenalidomide concentration of 1µM of was used for all subsequent experiments. 
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Figure 3.2 
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Figure 3.2 Lenalidomide enhances CD8+ T cell alloresponses 

(A) Mean (+/- SD) alloproliferation (%CFSEdim) at sequential time-points of primary allogeneic 

co-culture of mononuclear cells. Results are shown for 6 unique donor-responder pairs. ** = 

P<0.01, *** = P<0.001. Abs prolif = absolute proliferation, Adj prolif = adjusted proliferation. 

(B) Mean (+/- SD) alloproliferation (%CFSEdim) at sequential time-points of primary allogeneic 

co-culture of mononuclear cells in the absence (Allo) or presence of lenalidomide (Allo + L). 

Results are shown for 9 unique donor-responder pairs. * P<0.05. 

(C) CD3+ T cell proliferation (% CFSEdim) following primary allogeneic co-culture of 

mononuclear cells in the absence (Allo) or presence of lenalidomide (Allo + L). Horizontal 

lines and adjacent numbers are medians. Results are shown for 40 unique donor-responder 

pairs. *** = P<0.001. 

(D) CD8+ T cell proliferation following primary allogeneic co-culture in the absence (Allo) or 

presence of lenalidomide (Allo + L). Horizontal lines and adjacent numbers are medians. 

Results are shown for 40 unique donor-responder pairs. *** = P<0.001. 

(E) CD4+ T cell proliferation following primary allogeneic co-culture in the absence (Allo) or 

presence of lenalidomide (Allo + L). Horizontal lines and adjacent numbers are medians. 

Results are shown for 40 unique donor-responder pairs. ns = not significant.  

(F) APB CD8+ T cell proliferation following primary allogeneic co-culture with increasing 

starting concentrations of lenalidomide. Box (interquartile range) and whisker (maximum 

and minimum) plots are shown. Horizontal lines are medians. Results are shown for 9 unique 

donor-responder pairs. * = P<0.05, ** = P<0.01, *** = P<0.001. 
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Lenalidomide increases alloproliferation of CD8+ T cells by increasing the alloproliferative 

precursor frequency without affecting the specificity of the alloresponse 

 

Having demonstrated that lenalidomide increases the proportion of responder CD8+ T cells that 

have divided after a given time in allogeneic co-cultures, I next sought to identify whether this 

was a result of more rapid alloreactive T cell division or recruitment of greater numbers of 

alloreactive T cells to proliferate. I used proliferation kinetic analysis of CFSE-labelled responder 

cells to determine the number of cell divisions and the proportion of starting populations 

entering cell division (the alloprecursor frequency, APF). 

 

Alloproliferative CD8+ T cells had undergone a median of 4 rounds of cell division by day 9 in 

both untreated and lenalidomide treated allogeneic co-cultures (Figure 3.3, A). In contrast the 

CD8+ T cell APF in lenalidomide treated co-cultures increased nearly three-fold (from median 6% 

(untreated) to 17% (lenalidomide-treated), p<0.0001), consistent with lenalidomide recruiting a 

greater proportion of the responder CD8+ T cell pool to divide during allostimulation (Figure 3.3, 

B). In agreement with there being no significant increase in CD4+ T cell proliferation in 

lenalidomide treated co-cultures, there was no effect on the CD4+ APF (Figure 3.3, C). 

 

As lenalidomide treatment recruited a larger proportion of CD8+ T cells to proliferate after 

allostimulation, I next asked whether lenalidomide had an effect on the specificity of 

alloproliferative CD8+ T cells. To examine this I determined the TCR Vβ subfamily distribution of 

alloproliferative CD8+ T cells after allostimulation with and without lenalidomide. In untreated 

allogeneic co-cultures alloproliferative CD8+ T cells demonstrated oligoclonal expansion of 

several TCR Vβ subfamilies when compared to subfamily distribution of baseline CD8+ T cells. 

Importantly, lenalidomide exposure resulted in further expansions of the same TCR Vβ 

subfamilies rather than expansions of additional TCR Vβ subfamilies (Figure 3.3, D-E).  
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Figure 3.3 
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Figure 3.3 Lenalidomide increases alloproliferation of CD8+ T cells by increasing the 

alloproliferative precursor frequency without affecting the specificity of the alloresponse 

(A) Histograms depicting APB CD8+ T cells after allostimulation in the absence (Allo) or 

presence of lenalidomide (Allo+L). Undivided cells and populations of cells that have 

undergone one or more cell divisions are resolved based on CFSE dye dilution. Numbers 

above peaks represent the hierarchical number of cell divisions each peak has undergone. 

Representative data is shown from one of 37 unique allogeneic co-cultures. 

(B) CD8+ T cell alloproliferative precursor frequency (APF) in allogeneic co-cultures in the 

absence or presence of lenalidomide. Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 37 unique 

donor-responder pairs. *** = P<0.001. 

(C) CD4+ T cell alloproliferative precursor frequency (APF) in allogeneic co-cultures in the 

absence or presence of lenalidomide. Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 37 unique 

donor-responder pairs. ns = not significant. 

(D) Representative flow plots depict flow cytometric assessment of TCR Vβ repertoire at 

baseline, after allogeneic co-culture (Allo) and lenalidomide-treated allogeneic co-culture 

(Allo + L) showing expansion of CD3+CD8+ T cells within TCR subfamily Vβ 14. 

(E) Histogram depicting overall TCR Vβ subfamily distribution of CD8+ T cells at baseline and 

after allogeneic co-culture (Allo) and lenalidomide-treated allogeneic (Allo + L) co-culture. 

Result of one representative experiment (of 3) is depicted. 
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3.4.2 Lenalidomide exposure during antigen-priming is sufficient to potentiate the 

alloresponse 

 

In the allogeneic co-culture system used, the majority of irradiated stimulator PBMC are lost 

from the co-culture by day 3 (Figure 3.4, A), during this time the stimulator PBMC interact with 

responder PBMC via direct alloantigen presentation to elicit an alloresponse. After day 3 

allospecific responder T cells begin to proliferate and differentiate. I first aimed to determine 

how long lenalidomide, added at initiation of the co-culture was detectable in co-culture media 

and cells. This would determine whether drug was present during the antigen priming and/or 

the expansion phases of the T cell alloresponse. Therefore informing whether the changes in T 

cell phenotype observed at day 7 and day 9 were potentially due to an early effect of the drug, 

that altered T cell differentiation programs or due to potentiation of later expansion of specific 

subsets during alloresponder proliferation. 

 

Using tandem mass-spectrometry and ultra-high performance liquid chromatography (MS/MS-

UHPLC) I determined that lenalidomide was detectable in allogeneic co-culture media and cells 

at high levels until 48 hours of co-culture following which levels declined rapidly (Figure 3.4, B). 

This suggests that lenalidomide acted early during the priming phase of the alloresponse and is 

in agreement with my earlier data demonstrating that the CD8+ T cell alloproliferative precursor 

frequency is increased in lenalidomide treated co-cultures. Therefore it is likely that 

lenalidomide acts to decrease the threshold for allospecific T cell recruitment, rather than by 

augmented proliferation of T cells already involved in alloproliferative responses. 

 

3.4.3 Lenalidomide is required during allostimulation for optimal potentiation of CD8+ T cell 

alloproliferation 

 

Having determined that the downstream effects on alloproliferative T cell phenotype induced 

by lenalidomide were due to changes induced during antigen priming I next asked whether this 

was due to actions on the stimulator cells or the responder cells, or both.  

 

Most of the available in vitro data would suggest the effect is likely to be due changes in the 

responder T cells, as responses to synthetic T cell stimuli are enhanced by lenalidomide. 

However our group has previously shown that pre-treatment of both the T cells and tumour cells 

with lenalidomide is required to enhance formation of immune synapses between autologous T 
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cells and tumour cells 209, and there is evidence that demonstrates enhanced in vitro APC 

function after lenalidomide treatment 227. 

 

I therefore went on to perform allogeneic co-cultures using stimulator and responder APB-

derived PBMC that had been pre-treated for 24 hours alongside lenalidomide treated and 

untreated co-cultures, as previously described. Pre-treatment of stimulator or responder cells 

with lenalidomide for 24 hours had no effect on CD8+ T cell alloproliferation, whereas pre-

treatment of both modestly increased alloproliferation of CD8+ T cells compared to untreated 

co-cultures, although this did not reach statistical significance (Figure 3.4, C). 
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Figure 3.4 
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Figure 3.4 Lenalidomide acts early during antigen-priming of CD8+ T cell alloresponses 

(A) Histograms depicting APB PBMC on day 3 of allogeneic co-culture, percentages of 

remaining viable stimulator cells are indicated based on negativity for CFSE fluorescence. 

Representative data is shown from 3 unique allogeneic co-cultures. 

(B) Mean (+/- SD) of lenalidomide (Lena) concentration (conc) in media and cells at serial 

time-points during allogeneic co-culture. Results are shown for 4 unique donor-responder 

pairs. 

(C) APB CD8+ T cell proliferation following primary allogeneic co-culture (Allo); with 24 hours 

of pre-treatment (P) of stimulators (S), responders (R) or both or addition of 1M of 

lenalidomide to co-cultures (Allo+L). Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 7 unique 

donor-responder pairs. ** = P<0.01. 



Caroline Besley    Chapter 3 - Results 

 117 

3.4.4 Allostimulation in the presence of lenalidomide results in expansion of CD8+ effector T 

cells  

 

I next further characterised the effect of lenalidomide during allostimulation by assessing the 

proportions of CD4+ and 8+ responder T cells with naïve, central memory (CM), effector memory 

(EM), or T effector memory cells re-expressing RA (TEMRA) phenotype identified by co-expression 

patterns of CCR7 and CD45RA (as per Sallusto et al.296)(Figure 3.5, A). Allostimulation without 

lenalidomide resulted in an increase in the proportion of CD8+ T cells with an effector memory 

phenotype compared to baseline frequencies (median 48% versus 20%). Lenalidomide exposure 

during allostimulation resulted in a significant further increase in the proportion of responder 

CD8+ T cells with an effector memory phenotype (median of 59% (lenalidomide-treated) versus 

48% (untreated), p<0.001). This was accompanied by a significant decrease in the proportion of 

CD8+ T cells with naïve and central memory phenotypes, consistent with lenalidomide 

promoting differentiation of alloreactive CD8+ T cells from naïve and central memory cells to 

effector cells (Figure 3.5, B). Similarly, allostimulation led to an increase in CD4+ cells with an EM 

phenotype and a decrease in naïve phenotype. However, in contrast with CD8+ T cells, there was 

no additional effect on the proportion of CD4+ T cells with a naïve, CM or EM phenotype 

following lenalidomide exposure (Figure 3.5, C). 

 

The surface expression of CD25 (the IL2 receptor alpha subunit (IL2 R)) is a well-accepted 

marker of activated T cells (reviewed in 297), additionally co-expression of CD25 and CD127 (the 

IL7 receptor alpha subunit (IL7R)) can distinguish between clonally expanded short-lived CD8+ 

effector populations and CD8+ T cells that will go on to develop a memory phenotype 298. I 

therefore went on to measure the expression of CD25 and CD127 on T cells allostimulated in 

the presence or absence of lenalidomide. 
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Figure 3.5 
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Figure 3.5 Allostimulation in the presence of lenalidomide expands CD8+ effector memory T 

cells 

(A) Representative plots depicting C-C chemokine receptor 7 (CCR7) and CD45RA co-

expression patterns of CD8+ T cells after allogeneic co-culture in the absence  (Allo) or presence 

of lenalidomide (Allo+L). Percentages of naïve, central memory (CM), effector memory (EM) 

and T-effector memory cells re-expressing RA (TEMRA) subsets are indicated.  

(B) Percentages of naïve, CM, EM and TEMRA cells subsets within CD8+ T cells in baseline cells 

and after allogeneic co-culture in the absence or presence of lenalidomide. Box (interquartile 

range) and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. 

Results are shown for 11 unique donor-responder pairs. * = P<0.05, *** = P<0.001. 

(C) Percentages of naïve, CM, EM and TEMRA cells subsets within CD4+ T cells in baseline cells 

and after allogeneic co-culture in the absence or presence of lenalidomide. Box (interquartile 

range) and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. 

Results are shown for 11 unique donor-responder pairs. ns = not significant. 
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In agreement with the enhanced CD8+ T cell effector-differentiation after allostimulation with 

lenalidomide, there was a significant increase in the proportion of alloproliferative CD8+ T cells 

expressing CD25 compared to untreated (from median 20% (untreated) to 38% (lenalidomide-

treated), p<0.01). Within the CD8+CD25+ alloproliferative subset there was also a significant 

decrease in the proportion of CD127neg cells (which were also FOXP3 negative, and therefore not 

CD8+ Treg) due to an increase in the proportion of CD127+FOXP3neg cells (Figure 3.6, B). This 

indicates that lenalidomide exposure during allostimulation results not only in an expansion of 

effector CD8+ T cells, but that it confers a greater potential on the cells to retain immunological 

memory.  
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Figure 3.6 
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Figure 3.6 Allostimulation in the presence of lenalidomide increases activation markers and 

expands memory precursors of CD8+ T cells while reducing CD4+ T regulatory cells 

(A) Percentage of CD25+ CD8+ T cells in non-alloproliferative (NP) and alloproliferative (P) 

fractions after allogeneic co-cultures in the absence (Allo) or presence (Allo+L) of lenalidomide. 

Box (interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal 

lines are medians. Results are shown for 12 unique donor-responder pairs. ** = P<0.01. 

(B) Percentage of alloproliferative CD25+ CD8+ T cells with CD127+/- FOXP3neg phenotype. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 15 unique donor-responder pairs. **= P<0.01, 

***+P<0.001. 

(C) Percentage of CD25+ CD4+ T cells in non-alloproliferative (NP) and alloproliferative (P) 

fractions from allogeneic co-cultures in the absence or presence of lenalidomide. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 12 unique donor-responder pairs. *** = P<0.001.are 

shown. 

(D) Proportion of CD4+ T cells with a Treg phenotype in non-alloproliferative (NP) and 

alloproliferative (P) fractions after allogeneic co-culture in the absence or presence of 

lenalidomide. Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 18 unique donor-responder pairs. 

** = P<0.01. 
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3.4.5 Lenalidomide increases the proportion of alloproliferative CD8+ T cells with a 

polyfunctional effector phenotype 

 

To determine whether the increased proliferation and effector differentiation after 

lenalidomide exposure was accompanied by an increase in effector function, I next measured 

cellular production of pro-inflammatory cytokines and expression of the lysosomal-associated 

membrane protein CD107a on alloproliferative CD4+ and CD8+ T cells on day 7 of allogeneic co-

culture (Figure 3.7, A). Day 7 was chosen (rather than day 9) based on existing data 

demonstrating the kinetics of cytokine production by responder cells in allogeneic co-culture 

from Martins et al. 290.  

 

Following lenalidomide exposure, significantly greater proportions of alloproliferative CD8+ T 

cells had capacity to secrete IFNγ, TNF, and IL2 and expressed the surrogate marker of 

degranulation CD107a (Figure 3.7, B). Despite no significant change in CD4+ T cell proliferation, 

within the proliferative fraction of CD4+ T cells there was a significant increase in cells with the 

capacity to secrete IFNγ, TNF, and IL2, as well as an increase in cells expressing CD107a (Figure 

3.7, C). CD4+ T cells with this cytotoxic phenotype have been described a playing important roles 

in responses to chronic viral infection 299,300. In the context of the T cell alloresponse it is possible 

that exposure to lenalidomide, while not increasing alloproliferation of CD4+ T cells could confer 

an enhanced helper and cytotoxic functional phenotype to this cell subset. 

 

Importantly, lenalidomide also significantly increased the percentage of alloproliferative CD8+ T 

cells with a polyfunctional effector phenotype (those with capacity to up-regulate two or more 

of these effector molecules) (Figure 3.7, D-F). Cells with this phenotype have been attributed 

with potent cytotoxic capacity 301 and shown to be important in improved anti-tumour 

responses to solid cancers 302. 
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Figure 3.7 
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Figure 3.7 Lenalidomide exposure during allostimulation increases the proportion of CD8+ 

T cell with polyfunctional cytokine capacity 

(A) Representative dot plots depict cytokine-accumulating cells after allogeneic co-culture in 

the absence (Allo) or presence of lenalidomide (Allo + L).  

(B) Mean (+/- SD) frequencies of cytokine-accumulating and CD107a-expressing cells within 

CD8+ CFSEdim T cells after allogeneic co-culture in the absence or presence of lenalidomide. 

Results are shown for 12 (IL2), 18 (CD107a) and 21 (TNF and IFN) unique donor-responder 

pairs * = P<0.05, ** = P<0.001. 

(C) Mean (+/- SD) frequencies of cytokine-accumulating and CD107a-expressing cells within 

CD4+ CFSEdim T cells after allogeneic co-culture in the absence or presence of lenalidomide. 

Results are shown for 12 (IL2), 18 (CD107a) and 21 (TNF and IFN) unique donor-responder 

pairs ** = P<0.01. *** = P<0.001, **** = P<0.0001. 

(D) Representative dot plots depict dual positive cytokine-accumulating cells after allogeneic 

co-culture in the absence (Allo) or presence of lenalidomide (Allo + L). 

(E) Mean (+/- SD) frequencies of polyfunctional cytokine-accumulating and CD107a-

expressing cells within CD8+ CFSEdim T cells after allogeneic co-culture in the absence or 

presence of lenalidomide. Results are shown for 12 (IFN/TNF + CD107a) 21 (TNF + IFN) 

unique donor-responder pairs. ** = P<0.01. *** = P<0.001. 

(F) SPICE (simplified presentation of incredibly complex evaluations) charts depict different 

effector cell populations within CFSEdim CD8+ T cells after allogeneic co-culture in the absence 

or presence of lenalidomide. Aggregate data from 21 unique donor-responder pairs are 

depicted. 



Caroline Besley    Chapter 3 - Results 

 126 

3.4.6 Lenalidomide can influence CD8+ T cell alloresponses in the absence of CD4+ T cell help. 

 

In order to better understand whether the effects of lenalidomide observed on CD4+ and CD8+ 

T cell subsets were due to cell-intrinsic effects, I went on to perform allogeneic co-cultures using 

sorted CD4+ and CD8+ responder populations to assess whether the effect on alloproliferation 

observed in a mixed co-culture could be recapitulated. Interestingly although the magnitude of 

CD8+ T cell alloproliferation was decreased when CD4+ responders were removed, exposure to 

lenalidomide still significantly increased the proportion of alloproliferative CD8+ T cells in the 

absence of CD4+ cells (Figure 3.8). This is evidence that a CD8+ subset specific effect exists 

independently and in addition to enhanced CD4+ T cell ‘help’ by augmented production of Th1 

type cytokines. This also supports an effect on CD8+ T cells that is, at least in part independent 

of responder APC. 
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Figure 3.8 

 

 

 

Figure 3.8 Lenalidomide exposure during allostimulation increased CD8+ T cell 

alloproliferation in the absence of CD4+ T cell help. 

Mean (=/- SD) proportion of alloproliferative (CFSEdim) cells in untreated (Allo) or 

lenalidomide treated (Allo+L) allogeneic co-cultures using sorted CD4+, CD8+, CD4+CD8 T cells 

(in a 2:1 ratio) and unsorted PBMC as responders. *=P<0.05, **=P<0.01 
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3.4.7 Allostimulation in the presence of lenalidomide results in an increase in the CD4+ T 

effector cell to regulatory cell ratio 

 

Studies have demonstrated that the net outcome of T cell alloresponses are influenced by the 

relative proportions of functionally distinct Teff and Treg CD4+ T cells 133,303. Although earlier 

experiments showed lenalidomide exposure did not significantly impact on alloproliferation of 

CD4+ T cells, I therefore chose to also characterise the effect of lenalidomide exposure during 

allostimulation on Teff and Treg subsets within the responder CD4+ T cell pool. CD4+ Teff cells 

were defined as CD4+CD25+FOXP3neg and Treg as CD4+CD25+FOXP3+ (as per Rezvani et al.57). Cells 

with a Treg phenotype were also assessed for expression of CD127, to ensure low or absent 

expression (data not shown for simplicity). 

 

Allostimulation in the presence of lenalidomide increased the proportion of CD4+CD25+FOXP3neg 

Teff and decreased the proportion of CD4+CD25+FOXP3+ Treg, resulting in a significant increase 

in the Teff:Treg ratio (Figure 3.9, B-C). This was due to both a significant increase in the 

proportion of alloproliferative CD4+ T cells with an effector phenotype as well as a significant 

decrease in the proportion of alloproliferative CD4+ T cells with a Treg phenotype (Figure 3.9, C-

D). Importantly, these results demonstrate that although lenalidomide does not impact on net 

alloproliferation of CD4+ T cells, it has a qualitative effect on the CD4+ T cell alloresponse in 

addition to increasing proliferation of alloreactive CD8+ T cells.  
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Figure 3.9 
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Figure 3.9 Allostimulation in the presence of lenalidomide increases the CD4+ T effector to 

T regulatory cell ratio 

(A) Co-expression patterns of CD25 and FOXP3 were used to identify CD25hiFOXP3+ CD3+CD4+ 

T regulatory (Treg) and CD25hiFOXP3neg T effector (Teff) cells. Representative dot plots depict 

cells after allogeneic co-culture in the absence (Allo) or presence of lenalidomide (Allo+L).  

(B) Proportion of CD4+ T cells with a Treg phenotype after allogeneic co-culture in the 

absence or presence of lenalidomide. Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 18 unique 

donor-responder pairs. * = P<0.05. 

(C) Ratio of CD4+ Treg and Teff cells after allogeneic co-culture in the absence or presence of 

lenalidomide. Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 18 unique donor-responder pairs. 

** = P<0.01. 
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3.4.8 Lenalidomide exposure increases alloproliferation of NK cells 

 

While the focus of this thesis is the characterisation of the impact of lenalidomide on the human 

T cell alloresponse, there are other cell types that can contribute to human alloresponses. NK 

cells have the capacity to exert GvT effects, particularly in the setting of haploidentical-AHSCT, 

without causing GvHD.  

 

There is evidence that lenalidomide has immunostimulatory effects on NK cells in vitro 230,232 and 

in vivo 229 from a number of studies in the autologous setting. Therefore it is important to assess 

the effect of lenalidomide on NK cell alloresponses that could lead to enhanced GvT effects. 

 

Conventionally CD56+ NK cells are categorized as CD56bright and CD56dim, with CD56bright NK cells 

regarded as cells with poor cytotoxic ability and enhanced cytokine production compared to 

CD56dim for which the converse is true. In vivo CD56bright NK cells also generally lack expression 

of CD16, the fragment crystallisable (Fc) gamma receptor III (FCRIII) (reviewed in Bjorkstrom et 

al 304) that enables NK cells to exert ADCC.  

 

Using the same allogeneic co-culture model and CFSE dye-dilution I examined the proliferation 

and phenotype of NK cells. Proliferation of CD3negCD56+ NK cells in lenalidomide treated co-

cultures was significantly increased after 9 days of allogeneic co-culture (median of 58% 

(untreated) to 77% (lenalidomide treated) p<0.0001) (Figure 3.10, A). This was accompanied by 

an increase in CD56+16+ cells (Figure 3.10, B) and a significant increase in levels of CD56 

expression, as shown by a significant increase in the median fluorescence intensity (MFI) of CD56 

(Figure 3.10, D).  

 

CD16+ NK cells from allogeneic co-cultures had the expected dim-intermediate pattern of CD56 

expression, while those from lenalidomide treated cultures showed up-regulation of CD56 on 

CD16+ NK cells (Figure 3.10, C). This acquisition of CD16 by CD56bright NK cells has been previously 

described as being inducible in vitro by stimulation of NK cells with IL2 305. Therefore it is likely 

that both the increase in proliferation and the phenotypic changes observed in NK cells in my 

allogeneic co-cultures are a secondary phenomenon induced by the increased production of IL2 

by alloproliferative CD8+ and CD4+ T cells. 
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Figure 3.10 
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Figure 3.10 Secondary expansion of NK cell subsets in allogeneic co-cultures treated with 

lenalidomide 

(A) CD3-CD56+ NK cell proliferation (% CFSEdim) following primary allogeneic co-culture of 

adult peripheral blood (APB) mononuclear cells in the absence (Allo) or presence of 

lenalidomide (Allo+L). Horizontal lines and adjacent numbers are medians. Results are shown 

for 16 unique donor-responder pairs. *** = P<0.001. 

(B) Proportion of CD3- NK cells co-staining for CD56 and CD16 following primary allogeneic 

co-culture in the absence (Allo) or presence of lenalidomide (Allo+L). Horizontal lines and 

adjacent numbers are medians. Results are shown for 16 unique donor-responder pairs. *** 

= P<0.001. 

(C) Representative histograms depicting CD56 expression on CD3- NK cell subsets after 

allostimulation in the absence or presence of lenalidomide. 

(D) Relative expression of CD56 following primary allogeneic co-culture of mononuclear cells 

in the absence (Allo) or presence of lenalidomide (Allo+L) measured by median fluorescence 

intensity (MFI). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 13 unique donor-responder pairs. 

*** = P<0.001. 

(E) Mean (+/- SD) frequencies of cytokine-accumulating and CD107a-expressing cells within 

CD3-CD56+CFSEdim NK cells after allogeneic co-culture in the absence or presence of 

lenalidomide. Results are shown for 10 unique donor-responder pairs  ** = P<0.01. 
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However interestingly Romagnani et al. describe that CD56brightCD16+ NK cells can be isolated in 

vivo from efferent lymph suggesting that in lymph nodes where local IL2 levels may be increased 

the same phenomenon could occur.  

 

Finally I examined IFN production and CD107a expression on proliferative CD3negCD56+NK cells 

from treated and untreated allogeneic co-cultures. In the majority of allogeneic co-cultures IFN-

producing cells were below the level of detection, however in treated co-cultures there was a 

significant increase in both IFN and CD107a expressing cells. Again these results must be viewed 

in the context of the mixed co-culture system employed. In vitro,. IL2 dependent increases in 

both IFN and CD107a production by NK cells have been described in the literature 306,307. 

 

3.4.9 Lenalidomide increases alloproliferation of T cells in HLA-matched allogeneic co-cultures 

 

In the majority of AHSCT the donor and recipient are HLA-matched. The first choice donor will 

often be a HLA-identical sibling if available and if not a 10/10 HLA-matched unrelated donor, 

denoting matching at the allele level for HLA-A, B, C, DRB1and DQ will be sought. Therefore I 

went on to examine the effect of lenalidomide exposure during allostimulation using samples 

taken from patients about to undergo AHSCT at St Bartholomew’s Hospital as stimulator cells 

and cells from their HLA-identical sibling AHSCT donors as responders. 

 

I chose to use the standard allogeneic co-culture (as described in Chapter 2) without cytokine 

modification for these experiments. This ensured consistency between the experiments in the 

HLA-mismatched and HLA-matched setting. The limitation of this approach is that HLA-matched 

allogeneic co-cultures often give no read-out of alloproliferation. However I was interested to 

determine whether addition of lenalidomide to the co-cultures could increase responder 

proliferation above the threshold of detection. 
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Three matched donor and recipient pairs were tested and in each case there was a small 

increase in overall T cell proliferation in the presence of lenalidomide compared to control 

(Figure 3.11, A). Interestingly in these three samples there also appeared to be a small increase 

in CD4+ T cell proliferation in lenalidomide treated co-cultures (Figure 3.11, B). I also examined 

the effect on T cell subsets expressing CCR7 and CD45RA but was unable to detect any changes 

in these three pairs (Figure 3.11, C-D). 
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Figure 3.11 

 

 

Figure 3.11 Lenalidomide increased T cell alloproliferation in HLA-matched allogeneic co-

cultures 

(A) CD3+ T-cell proliferation (% CFSEdim) following primary allogeneic co-culture of HLA-

matched mononuclear cells in the absence (Match) or presence of lenalidomide (Match+L). 

Results are shown for 3 unique donor-responder pairs. 

(B) CD4+ T-cell proliferation (% CFSEdim) following primary allogeneic co-culture of HLA-

matched mononuclear cells in the absence (Match) or presence of lenalidomide (Match+L). 

Results are shown for 3 unique donor-responder pairs.  

(C) Percentages of naïve, CM and EM cell subsets within CD4+ T cells after HLA-matched 

allogeneic co-culture in the absence or presence of lenalidomide. Results are shown for 3 

unique donor-responder pairs. 

(D) Percentages of naïve, CM, EM and TEMRA cell subsets within CD8+ T cells after HLA-

matched allogeneic co-culture in the absence or presence of lenalidomide. Results are shown 

for 3 unique donor-responder pairs. 
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3.5 Discussion 

 

Using an HLA-mismatched in vitro model of AHSCT I have demonstrated that the addition of a 

clinically relevant concentration of the immunomodulatory drug lenalidomide results in 

significant alterations in the human T cell alloresponse. Addition of lenalidomide to allogeneic 

co-cultures resulted in a selective increase in proliferation of CD8+ T cells. These cells retained a 

similar TCR V subfamily distribution compared to untreated cells, consistent with lenalidomide 

lowering the threshold for CD8+ T cell activation and recruitment of alloreactive cells with lower 

avidity TCRs to similar immunodominant alloantigens. These expanded allospecific CD8+ T cells 

had an effector memory phenotype and were capable of enhanced polyfunctional cytokine 

production. Importantly these cells would be predicted to have increased capacity to destroy 

cellular targets and may explain the induction of GvHD 256,257 and potential GvT 265,266 observed 

in the clinical literature. I also observed an increase in allospecific CD8+ effectors that had a 

memory precursor (CD25+CD127+) phenotype after lenalidomide treatment, which could confer 

long-term immunosurveillance important for maintaining GvT. 

 

This effect on CD8+ T cell proliferation is in keeping with increased CD8+ T cell counts observed 

in the peripheral blood of patients receiving lenalidomide for haematological and solid 

malignancy 212, including increases in T cells with an EM phenotype 215. In addition the increased 

expression of CD25 is in agreement with the increased expression of an alternative marker of T 

cell activation, HLA DR observed in peripheral blood of patients who have received lenalidomide 

following AHSCT 259. 

 

I have shown using MS/MS-UHPLC that lenalidomide exposure early in the alloresponse results 

in the expansion of APB-derived CD8+ T cells by enhancing priming of allospecific T cells early in 

the process of allostimulation, rather than by augmenting the expansion of alloreactive T cells 

at a later stage. However as the allogeneic co-cultures were not re-dosed with lenalidomide over 

the course of the co-culture an additional effect on proliferating cells cannot be excluded. This 

would be an interesting additional experiment that could be conducted, in view of the fact that 

in the clinic patients generally receive several weeks of continuous lenalidomide treatment. 

 

Pre-treatment of stimulator and responder cells prior to allogeneic co-culture has provided 

interesting insight into the cellular mechanisms that may be involved in the lenalidomide 

alloresponse. The data may also help to inform clinical strategies as the experiment also models 
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(in vitro) the scenario of pre-treatment of a patient prior to transplant/DLI (pre-treatment of 

stimulators) and pre-treatment of donor cells (i.e. DLI) prior to adoptive transfer. 

 

Given that pre-treatment of stimulators alone did not result in increased CD8+ T cell proliferation 

this suggests that potentiation of direct antigen presentation by stimulator APC alone is not 

sufficient for the effect of lenalidomide on alloproliferation, and that pre-treatment of patients 

prior to T cell adoptive therapy may not be effective. However as pre-treatment of responder 

cells was also unable to recapitulate the alloproliferative response, this suggests that in the 

absence of TCR stimulation effects on responder T cells are also not sufficient for the optimal 

effect of lenalidomide.  

 

Interestingly, although the result did not reach statistical significance it appears that pre-

treatment of both stimulators and responders did result in increased alloproliferation of CD8+ T 

cells over control, suggesting that lenalidomide can have effects on both APC and T cells that 

contribute to the alloresponse, but that contact between these cells in the presence of the drug 

is required for the optimal effect of lenalidomide. 

 

However other possible reasons, inherent in the experimental design that could explain why 

pre-treatment of stimulator and responder cells did not lead to any significant effect should be 

considered. It is possible that either a longer period of pre-treatment, or a higher dose of 

lenalidomide is necessary, however I think this is unlikely based on other published data. This 

period of pre-treatment was chosen based on the findings of Ramsay et al., who showed a pre-

treatment period of 24 hours was sufficient to induce improvements in immune synapse 

formation 209. This was further supported by data from Gandhi et al. who demonstrated that 

ikaros levels drop significantly within 3 hours of lenalidomide treatment, with a significant 

reduction observed at 6 hours even at low concentrations such as 0.1M. 

 

I have also observed a decrease in the frequency of cells with a CD4+ Treg phenotype in 

allogeneic co-cultures treated with lenalidomide. This is in contrast to the only data available 

concerning CD4+ Treg counts in patients treated with lenalidomide after AHSCT 259,260 which 

suggests that Treg numbers in peripheral blood rise, but only several weeks following initiation 

of treatment. Given my results were from a day 9 time-point, this earlier fall in Treg frequency 

may not be captured in the clinical data. The late rise in Treg observed in vivo may reflect a 

counter-regulatory response to the expansion of CD8+ ‘enhanced effectors’ I have described. 
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Unfortunately the in vitro model I employed cannot be used to assess late outcomes, such as 

those that occur during immune reconstitution following AHSCT. This is a major limitation of 

currently available in vitro experimental models. 

 

The differentiation of ‘enhanced CD8+ effectors’ following lenalidomide exposure from the naïve 

CD8+ compartment is consistent with potentiation of the alloresponse in vivo, as alloreactive 

cells that contribute to GvHD and GvT are known to reside in this compartment 53,55. In order to 

definitively prove that the increase in EM cells observed is due to differentiation of naïve CD8+ 

T cells (rather than from proliferation of existing EM cells) it would be necessary to isolate naïve, 

CM, EM and TEMRA cells and use these as responders in co-culture with allogeneic stimulators. 

Unfortunately when I attempted these experiments it proved difficult to isolate sufficient 

numbers of cells and I was unable to maintain the viability of the sorted cells over the course of 

the co-culture. This may be due to the small number of cells and degree of processing, or due to 

the lack of immunostimulatory and immunoregulatory signals that these cells would normally 

receive when in a mixed cell culture. 

 

The allogeneic co-culture model presented used healthy steady state T cells as responder cells. 

However the cells that make up an allogeneic donor graft are usually G-CSF mobilised PBMC. G-

CSF mobilisation has been shown to impact on the phenotype of T cells contained in the graft, 

skewing the cells towards a Th2 phenotype 308, reducing cytokine production 309 and expanding 

populations of Treg. 310. A case could therefore be made for G-CSF mobilised peripheral blood 

as a source of T cells for my experiments. However there is good evidence to show that the 

effect of G-CSF on the genotype and phenotype of T cells is transient 311,312 and likely to have 

reversed by the time lenalidomide would be administered after AHSCT (earliest 4-6 weeks in 

published studies). On this basis, I chose to use steady state T cells rather than G-CSF mobilized 

PBMC as my primary responder cells. The use of steady state healthy APB-derived T cells for 

assessment of human alloresponses, and as a comparator to alternative graft sources 313-316 is 

also predominant in the literature and therefore allows me to more easily contextualise my data 

within the broader field of AHSCT research. 

 

The allogeneic co-cultures in these experiments were likely to be highly HLA-mismatched. This 

has the advantage of stimulating both CD4+ and CD8+ T cell responses, as mismatch would be 

expected in both class I and class II MHC in the majority of donor-recipient pairs randomly 

chosen from healthy blood donors. Additionally differences in alloproliferation and alloreactive 
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phenotype can be more easily detected due to the magnitude of the mismatched T cell 

alloresponse. However, as discussed previously the majority of clinical AHSCT is performed in 

the HLA-matched setting. In order to address this some HLA-matched co-cultures were 

performed, however due to the small number of paired donor and recipient samples available 

the number of experiments was limited.  

 

A limitation of HLA-matched co-cultures is that by their very nature these co-cultures rarely 

result in any significant alloproliferation and therefore cytokines are often required to make 

alloresponses detectable 280. This was particularly evident when trying to quantify CD8+ T cell 

proliferation, as the frequency of alloproliferative CD8+ T cells was below the threshold of 

confidence for detection. I was reluctant to alter the experimental design of the HLA-matched 

co-cultures from that of the mismatched by the addition of cytokines, as this would be a 

confounding factor when trying to determine the effect of lenalidomide. Collection of matched 

donor and recipient samples is ongoing and further HLA-matched co-cultures could be 

conducted, with or without cytokine augmentation. An alternative approach to examine the 

effect of lenalidomide in a HLA-matched setting would be to examine the phenotype of 

reconstituting T cells in sibling-transplant recipients treated with lenalidomide, to determine 

whether the phenotype described in lenalidomide-treated HLA-mismatched co-cultures is 

recapitulated in vivo.  

 

Finally, while the experiments detailed here were not designed to examine NK cell alloresponses 

I have found proliferation, IFN production and CD107a expression of NK cells to be increased 

in lenalidomide treated co-cultures. It is likely that these changes are secondary to the effect on 

T cell alloresponses via increased IL2 production. However given NK cells are known to exert GvT 

without GvHD, and therefore strategies to optimise NK cell activity following AHSCT would be 

clinically desirable, it would be very interesting to examine the effect of lenalidomide on purified 

NK cells used as alloresponders in allogeneic co-culture.  

 

As NK cells form a very small proportion of lymphoid cells in the peripheral blood, cell numbers 

may limit these experiments. It is also true that in the absence of T cells it may be difficult to 

detect NK cell alloresponses 317. Evidence from patients who have received lenalidomide after 

AHSCT has demonstrated increased expression of activating receptors on NK cells 260, indicating 

that effects on NK cells occur, but whether these occur via T cells in vivo as well as in vitro is 

unclear. While studying individual cell types in isolation can provide insight into the mechanisms 
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of action of a drug at the cellular and molecular level, when considering alloresponses it is likely 

that the net outcome is due to a complex interaction between multiple cell types. Therefore 

mixed-cell culture models may still provide relevant insight and information. 

 

In summary, I have shown that lenalidomide exposure potentiates human alloresponses by 

selectively expanding alloreactive CD8+ effector T cells. These findings are consistent with the in 

vivo effects of lenalidomide observed in clinical trials after AHSCT. Furthermore, these findings 

may also provide a phenotype to track lenalidomide responses in vivo as well as informing future 

strategies to use IMiDs to strengthen anti-tumour responses in the setting of AHSCT. 
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Chapter 4 – The impact of lenalidomide on cellular alloresponses of 

umbilical cord blood-derived T cells  

 

4.1 Introduction 

 

The last 10 years have seen a rise in the numbers of AHSCT carried out using umbilical cord blood 

(UCB) as a graft source. The first choice donor remains a HLA-identical sibling, but as 70% of 

patients lack a suitable sibling donor, and 50% will also lack a suitable matched unrelated donor 

(MUD), alternative transplant sources such as UCB are increasingly important. This is particularly 

true for patients of mixed ethnic backgrounds, for whom in only 10% of cases a MUD can be 

identified 318,319. 

 

UCB-AHSCT (UCBT) has been particularly successful in the treatment of children with 

haematological malignancy or bone marrow failure syndromes 320. However the low cell doses 

in UCB grafts mean that only 25% of adults will have an UCB unit of sufficient cell dose available. 

The recent development of ‘double-cord’ UCBT has extended the opportunity for adult patients 

to access a UCB graft and research continues into ex vivo strategies to expand UCB units for 

clinical use. 

 

UCB has some important advantages as a graft source. Rates of both acute and chronic GvHD in 

children and adults undergoing UCBT are lower than for recipients of peripheral blood or bone 

marrow derived grafts, as is the severity of acute GvHD even when UCB units are only partially 

matched (4/6 HLA match at HLA-A, B and DRB1). Despite this relapse rates do not appear to be 

increased after UCBT compared to other transplants and overall survival is comparable. The 

major disadvantages of UCBT are a greater risk of graft rejection and slower haematopoietic 

recovery than is seen for other graft sources, which means that for 4/6 (or less) HLA-matched 

grafts there is an increase in transplant related mortality (TRM) after UCBT 320,321. Important 

differences in UCB composition are likely to underpin the reduced rates of GvHD seen after UCBT 

even in cases of HLA-mismatch.  

 

UCB T cells are almost entirely found within the naïve compartment 322,323. Although this might 

be expected to increase rates of GvHD, as evidence from APB suggests GvHD inducing cells 

reside in this subset 53 it appears that the same is not true of UCB. Whether this is due to cell 
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intrinsic differences or secondary effects due to differences in other cells making up UCB grafts 

is unclear. 

 

Despite their naivety data from a number of publications show that UCB T cells are as capable, 

if not better at responding to allogeneic stimuli than APB-derived T cells in terms of 

alloproliferation 324,325. However UCB-derived T cells have reduced capacity to produce and 

secrete cytokines 325,326 and have reduced lytic capacity against allogeneic targets 324 when 

compared to APB. Interestingly in vivo data from murine models suggests that UCB-derived T 

cells may mediate superior GvT effects than APB-derived T cells despite these differences 314,327. 

Differences between APB-derived and UCB-derived T and NK cells are summarised in Table 4.1. 

 

As yet the effects of immunomodulatory drugs, like lenalidomide on UCB-derived T cell 

alloresponses are unknown. A clinical trial of pre-treatment with lenalidomide given on days -8 

to -2 prior to UCBT +/- NK cell infusion on Day -2 is currently recruiting (NCT01619761). There 

have not yet been any clinical trials using lenalidomide or other IMiDs after UCBT. Given the 

differences in T cell phenotype and function between UCB and APB-derived T cells lenalidomide 

may have differential effects on T cell alloresponses from these two graft sources. Investigation 

of differential effects will inform future clinical trials and strategies for use of IMiDs in the setting 

of UCBT. 
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Table 4.1 Differences in UCB and APB-derived T & NK cells 

 

Characteristic UCB APB 

T cell response to mitogens Modest Vigorous 

T cell response to alloantigens Vigorous Vigorous 

Proportion of naïve T cells Majority Fewer 

Production of IL2, IFN and TNF from 
activated T cells 

Low High 

Susceptibility of T cells to apotosis 
Increased compared to 

APB 
Decreased compared to 

UCB 

Perforin expression by cytotoxic T 
cells 

Low High 

Allogeneic cytotoxicity of activated T 
cells 

Low High 

Treg phenotype Predominantly naïve Predominantly memory 

Treg expansion on in vitro 
stimulation 

High Lower 

IL10 production by Treg High Lower 

NK cell phenotype 
Increase in precursor 

cells 
Increased mature cells 

NK cell activity Comparable 

 

Adapted from Brown and Bousiottis 2008 and Lucchini et al. 328,329 
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4.2 Aim 

 

To characterise the effect of lenalidomide exposure on the human UCB-derived T cell 

alloresponse and compare this with the effect observed on steady state APB-derived T cells 

alloresponses. 
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4.3 Results 

 

4.3.1 Net alloresponses of UCB-derived T cells are reduced following allostimulation in the 

presence of lenalidomide, although a selective increase in the proliferation of allospecific 

effector CD8+ T cells remains 

 

Firstly I measured the effect of lenalidomide exposure on alloproliferation of UCB-derived T cells 

using the allogeneic co-culture model (as described in Chapter 2). Consistent with previous 

studies I found that UCB-derived T cells exhibited greater alloproliferative responses than APB-

derived T cells 324,325. Importantly, in contrast to my findings in APB T cells, lenalidomide 

exposure significantly reduced the net alloproliferation of responder CD3+ T cells from UCB 

(median 58% (untreated) compared to 41% (lenalidomide-treated), P<0.05, Figure 4.1, A). 

 

I therefore next examined T cell subset specific alloproliferation. I found that lenalidomide 

exposure during allostimulation increased alloproliferation of CD8+ T cells derived from UCB 

(median 53% (untreated) versus 61% (lenalidomide-treated), P<0.05) as it had for APB-derived 

T cells (Figure 4.1, B). Similarly, as with APB lenalidomide treatment increased the 

alloproliferative precursor frequency (APF) of UCB CD8+ T cells (median 14% (untreated) to 24% 

(lenalidomide-treated) P<0.001, Figure 4.1, C), with no change in the median number of rounds 

of cell division (Figure 4.1, D).  
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Figure 4.1 
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Figure 4.1 Net alloproliferation of UCB T cells is reduced following exposure to 

lenalidomidewhile  

(A) CD3+ T cell proliferation (% CFSEdim) following primary allogeneic co-culture of umbilical 

cord blood (UCB) mononuclear cells in the absence or presence of lenalidomide. Horizontal 

lines and adjacent numbers are medians. Results are shown for 17 unique donor-responder 

pairs. * = P<0.05. 

(B) UCB CD8+ T cell proliferation following primary allogeneic co-culture of in the absence or 

presence of lenalidomide. Horizontal lines and adjacent numbers are medians. Results are 

shown for 17 unique donor-responder pairs. * = P<0.05. 

(C) UCB CD8+ T cell alloproliferative precursor frequency (APF) in allogeneic co-cultures in the 

absence or presence of lenalidomide exposure. Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 17 unique donor-responder pairs. *** = P<0.001. 

(D) Histograms depicting UCB CD8+ T cells after allostimulation in the absence or presence of 

lenalidomide exposure. Undivided cells and populations of cells that have undergone one or 

more cell divisions are resolved based on CFSE dye dilution. Numbers above peaks represent 

the hierarchical number of cell divisions each peak has undergone. Representative data is 

shown from one of 17 unique allogeneic co-cultures. 
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4.3.2 Allostimulation in the presence of lenalidomide expands CD8+ effector T cells from UCB 

 

Consistent with the effect observed on APB-derived T cells, lenalidomide exposure during 

allostimulation of UCB-derived T cells resulted in a significant increase in CD8+ T cells with an EM 

phenotype (24% (untreated) versus 43% (lenalidomide-treated) P<0.001) accompanied by a 

significant decrease in cells with a naive phenotype, consistent with lenalidomide promoting 

differentiation of naïve UCB-derived T cells to EM cells (Figure 4.2, F). 

 

Although frequencies of allospecific cytokine-secreting CD8+ T cells from UCB were significantly 

lower than in APB T cells (consistent with previous published studies 325) lenalidomide exposure 

also increased the proportion of alloproliferative UCB-derived CD8+ T cells accumulating either 

IFNγ or TNF. Interestingly, the proportion of cells expressing CD107a was decreased (Figure 4.3). 
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Figure 4.2 
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Figure 4.2 Lenalidomide increases effector differentiation of UCB CD8+ T cells. 

(A) Representative plots depicting C-C chemokine receptor 7 (CCR7) and CD45RA co-

expression patterns of UCB-derived CD8+ T-cells after allogeneic co-culture in the absence or 

presence of lenalidomide. Percentages of naïve, central memory (CM), effector memory (EM) 

and T-effector memory cells re-expressing RA (TEMRA) subsets are indicated. 

(B) Percentages of naïve, CM, EM and TEMRA cell subsets within UCB CD8+ T cells in baseline 

cells and after allogeneic co-culture in the absence or presence of lenalidomide. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 17 unique donor-responder pairs. *** = P<0.001. 
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Figure 4.3 

 

 

 

Figure 4.3 Allostimulation in the presence of lenalidomide increases cytokine production 

of UCB CD8+ T cells but decreases CD107a up-regulation 

Mean (+/- SD) frequencies of cytokine-accumulating and CD107a-expressing cells within 

UCB-derived CD8+ CFSEdim T cells after allogeneic co-culture in the absence or presence of 

lenalidomide. Results are shown for 12 unique donor-responder pairs. ** = P<0.01, *** = 

P<0.001 
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4.3.3 The differential effect of lenalidomide on alloproliferation of APB and UCB CD3+ T cells 

is due to a selective reduction in proliferation of UCB CD4+ T cells 

 

My findings that lenalidomide had opposing effects on alloproliferation of CD3+ T cells from APB 

and UCB despite a common effect of potentiating alloproliferation of CD8+ T cells suggested that 

lenalidomide may have differential effects on CD4+ T cell alloresponses of these different cell 

sources. I therefore determined the impact of lenalidomide exposure on APB and UCB-derived 

CD4+ T cell alloresponses. 

 

Lenalidomide exposure during allostimulation resulted in a significant reduction in 

alloproliferation of UCB-derived CD4+ T cells (median 58% (untreated) versus 41% (lenalidomide-

treated, p<0.01 Figure 4.4, A). This effect was not due to a reduction in recruitment of 

alloreactive CD4+ UCB-derived T cells, as the CD4+ APF was not significantly reduced after 

lenalidomide exposure (Figure 4.4, B). 

 

4.3.4 The reduction in alloproliferation of UCB CD4+ T cells after lenalidomide exposure is 

accompanied by a selective expansion of CD4+ regulatory T cells 

 

Given the finding that lenalidomide exposure resulted in significantly decreased alloproliferation 

of CD4+ T cells derived from UCB, I next determined the effect of lenalidomide on the 

proportions of CD4+ T cells with Teff or Treg phenotypes. 

 

Lenalidomide exposure during allostimulation resulted in a significantly increased frequency of 

UCB-derived CD4+ T cells with a Treg phenotype (Figure 4.4, C-D) and a significant reduction in 

the Teff:Treg ratio compared to untreated allogeneic co-cultures (Figure 4.4, E). As CD4+ Treg 

can potently suppress the proliferation of Teff, an expansion of Treg after lenalidomide exposure 

may provide a mechanism for the reduction in CD4+ alloproliferation observed in UCB T cells. 

Consistent with this mechanism, the fold-change in frequency of UCB-derived CD4+ Treg after 

lenalidomide exposure was significantly correlated with the resulting reduction in overall 

allospecific CD4+ T cell proliferation (Figure 4.4, F). These Treg were predominantly found in the 

CFSEdim fraction, indicating that they arise from either proliferation of Treg in the starting CD4+ 

population or by trans-differentiation from alloproliferative CD4+ cells. 
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I then directly compared the impact of lenalidomide on CD4+ Treg and Teff frequencies within 

the alloresponder CD4+ T cell population after allostimulation of APB and UCB T cells. 

Lenalidomide exposure resulted in a median 1.8-fold increase in the frequency of CD4+ Treg after 

allostimulation of UCB-derived T cells, compared to a median 0.6-fold decrease in the frequency 

of CD4+ Treg after allostimulation of APB-derived T-cells (p<0.01). Importantly CD4+ Treg 

frequencies were significantly greater in UCB T cells than APB T cells after allostimulation in the 

presence of lenalidomide (Figure 4.4, G). 
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Figure 4.4 

% decrease CD4+ T cell proliferation 
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Figure 4.4 Lenalidomide exposure causes a reduction in UCB CD4+ T cell alloproliferation 

while leading to a selective expansion of CD4+ regulatory T cells 

(A) UCB CD4+ T cell proliferation following primary allogeneic co-culture in the absence or 

presence of lenalidomide. Horizontal lines and adjacent numbers are medians. Results are 

shown for 17 unique donor-responder pairs. ** = P<0.01. 

(B) UCB CD4+ T cell alloproliferative precursor frequency (APF) in allogeneic co-cultures in the 

absence or presence of lenalidomide exposure. Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 17 unique donor-responder pairs. ns = not significant. 

(C) Co-expression patterns of CD25 and forkhead box p3 (FOXP3) were used to identify UCB-

derived CD25hiFOXP3+ CD3+CD4+ T-regulatory (Treg) and CD25hiFOXP3neg T-effector (Teff) 

cells. Representative dot plots depict cells after allogeneic co-culture in the absence or 

presence of lenalidomide. 

(D) Proportion of UCB CD4+ T cells with a Treg phenotype after allogeneic co-culture in the 

absence or presence of lenalidomide. Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 12 unique 

donor-responder pairs. *** = P<0.001. 

(E) Ratio of UCB CD4+ T-regulatory (Treg) and CD25hiFOXP3neg T-effector (Teff) cells after 

allogeneic co-culture in the absence or presence of lenalidomide. Box (interquartile range) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 12 unique donor-responder pairs. ** = P<0.01. 

(F) Correlation of fold-change of UCB CD4+ Treg versus % reduction in CD4+ T cell proliferation 

after allogeneic co-culture in the presence of lenalidomide. Results are shown for 15 unique 

donor-responder pairs. r=spearman’s rank correlation coefficient. 

(G) Frequencies of CD4+ T cells with a Treg phenotype after allogeneic co-culture in the 

presence of lenalidomide of UCB and APB T (PB) cells. Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 12 UCB and 18 APB unique donor-responder pairs. * = P<0.05. 
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4.3.5 Lenalidomide treatment of UCB PBMC increases alloproliferation of UCB-derived NK cells 

 

Having determined that lenalidomide exposure during allostimulation increased CD8+ T cell 

alloproliferation but decreased CD4+ T cell alloproliferation, leading to a net reduction in CD3+ T 

cell alloresponses of UCB-derived T cells. I finally went on to examine if alloresponses of NK cells 

derived from UCB were affected by lenalidomide treatment.  

 

Consistent with the effect of lenalidomide on APB-derived NK cells, proliferation of UCB-derived 

CD3negCD56+ NK cells exposed to lenalidomide was significantly increased after 9 days of 

allogeneic co-culture (median of 71% (untreated) to 84% (lenalidomide treated) p<0.001, Figure 

4.5, A). In contrast the up-regulation of CD56 expression on NK cells observed in APB was not 

recapitulated in UCB-derived NK cells (Figure 4.5, B). 
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Figure 4.5 

 

 

 

Figure 4.5 Secondary expansion of NK cells in allogeneic co-cultures treated with 

lenalidomide 

(A) CD3-CD56+ NK cell proliferation (% CFSEdim) following primary allogeneic co-culture of UCB 

peripheral blood mononuclear cells in the absence (Allo) or presence of lenalidomide (Allo + 

L). Horizontal lines and adjacent numbers are medians. Results are shown for 15 unique 

donor-responder pairs. *** = P<0.001. 

(B) Relative expression of CD56 following primary allogeneic co-culture of UCB mononuclear 

cells in the absence (Allo) or presence of lenalidomide (Allo + L) measured by median 

fluorescence intensity (MFI). Box (interquartile range) and whisker (maximum and minimum) 

plots are shown. Horizontal lines are medians. Results are shown for 12 unique donor-

responder pairs. ns = not significant. 
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4.4 Discussion 

 

The number of AHSCT utilising UCB as a cell source increases year on year (www.cibmtr.org). I 

therefore chose to examine alloresponses of UCB-derived PBMC in the presence and absence of 

lenalidomide to determine whether the phenotypic and functional changes observed after 

lenalidomide treatment of APB-derived PBMC could be recapitulated in this alternative cell 

source. 

 

Unexpectedly I found that while CD8+ T cell alloresponses of UCB recapitulate those of APB, the 

CD4+ alloresponse is significantly differentially impacted, with a reduction in net CD4+ T cell 

alloproliferation. This reduction in overall CD4+ T cell alloproliferation is associated with a subset 

specific expansion in CD4+ cells with a Treg phenotype. This is in contrast with the decrease in 

CD4+ Treg seen in allogeneic co-cultures using APB-derived PBMC treated with lenalidomide.  

 

This difference in CD4+ Treg alloreponses is likely explained by differences in the starting 

phenotype of the CD4+ Treg themselves. UCB Treg have a naive phenotype compared to APB 

Treg that are composed of both naïve and memory phenotypes 330. As alloresponses of APB-

derived CD8+ T cells appeared to be enhanced due to increased recruitment of naïve CD8+ cells, 

a similar naïve subset selective effect on Treg may occur. Proliferation of naïve Treg in UCB 

would be expected to result in a greater shift in the Treg:Teff ratio than in APB due to a 

proportional increase in naïve Treg in the starting population. 

 

Interestingly Treg from UCB are also easier to isolate than APB Treg. Single-step magnetic 

isolation of CD25+ T cells can reliably purify cells with suppressive capacity from cord blood. Cells 

isolated this way have uniform high expression of CD25 compared to APB cells isolated in the 

same way, where a broad spectrum of CD25 expression is seen. In agreement with this, following 

expansion with anti-CD3 and anti-CD28 beads in the presence of IL2, UCB-derived Treg exhibit 

potent suppression of third party alloresponses while those derived from APB are weakly and 

variably suppressive 330,331. Assessment of FOXP3 expression of CD25+ UCB-derived Treg 

determined that these cells expressed high levels of FOXP3 mRNA and protein, both immediately 

after isolation and after expansion. Corresponding CD25neg cells did not express FOXP3 

immediately after isolation, and although mRNA levels increased after expansion, FOXP3 protein 

levels remained low. Indicating that UCB-derived Treg may have a more stable phenotype than 
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APB-derived Treg. This may be due to the predominantly naïve phenotype of UCB Treg as FOXP3 

expression is thought to be more stable in CD45RA+ Treg 330,332. 

 

One limitation of the experiments presented is that I have not proven the suppressive capacity 

of the UCB-derived cells I have identified as CD4+ Treg. However based on the findings of both 

Godfrey et al. and Lin et al. 330,331 I have actually been more stringent in my identification of Treg 

(including CD4, CD25 and FOXP3 in my panel). Identification of UCB Treg based on CD25 

expression alone has proven sufficient for isolation and subsequent adoptive transfer of UCB 

Treg to patients. Therefore it is highly likely that the cells I have identified as Treg have 

suppressive capacity. However to confirm this I could isolate these cells and assess their capacity 

to suppress proliferative T cell responses in allogeneic co-culture. 

 

The question remains as to why, if the expanded Treg population in lenalidomide treated co-

cultures is responsible for limiting CD4+ T cell alloproliferation so significantly, why the increase 

in CD8+ T cell alloproliferation remains preserved. It is however interesting to note that the 

magnitude of the increase in lenalidomide treated CD8+ T cell alloproliferation was reduced in 

UCB allogeneic co-cultures (median 15% increase) compared with APB (median 33% increase) 

and expression of CD107a was reduced in UCB-derived T cells, which may indicate a degree of 

suppression of CD8+ T cell proliferation and cytotoxic capacity.  

 

NK cell alloresponses were found to be increased after lenalidomide treatment of UCB allogeneic 

co-cultures as seen in APB co-cultures. However the same up-regulation of CD56 expression on 

NK cells was not observed. This may be because of differences in UCB NK cells compared to APB. 

UCB contains more NK cells than APB, with a greater proportion of those NK cells expressing 

high levels of CD56 but with a reduced capacity to produce cytokines and lyse tumour cells than 

APB derived NK cells 333. Despite these differences there is significant interest in utilising NK cells 

expanded from UCB units as NK-cell DLI after AHSCT.  
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In summary this data suggests that the use of lenalidomide following UCBT could provide direct 

anti-tumour activity and potentiate CD8+ and NK cell driven GvT. Importantly, the potentially 

tolerogenic effect of increased Treg after lenalidomide treatment could also cause less potential 

for induction of harmful GvHD. This supports a potentially advantageous immunomodulatory 

effect of lenalidomide after UCBT and is worthy of further investigation and potential clinical 

application. 
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Chapter 5 – Characterisation of the molecular mechanisms underlying 

the effect of lenalidomide on the CD8+ T cell alloresponse 

 

5.1 Introduction 

 

Until recently the mechanism by which lenalidomide (and other thalidomide derivatives) 

exerted immunomodulatory effects on mitogen stimulated T cell responses was unknown. A 

landmark paper by Ito et al. 241 demonstrated that cereblon, a protein that acts as the substrate 

receptor for an E3-ubiquitin ligase complex is an important target of thalidomide. Further work 

by Zhu et al. 242 and Lopez-Girona et al. 243 showed that functional cereblon is required for the 

anti-myeloma activity and T cell immunomodulatory effects of lenalidomide respectively. But it 

was not until 2014 that members of the ikaros transcription factor family were identified as 

substrates of cereblon that undergo increased degradation at the proteasome in the presence 

of lenaldomide 247,249,334. 

 

As is the case with the phenotypic and functional characterisation of the alloresponse after 

lenalidomide exposure, there is no published data regarding the molecular mechanism of action 

of lenalidomide in the alloresponse. Having identified the major changes in the in vitro T cell 

alloresponse after lenalidomide treatment and that lenalidomide acts during the antigen-

priming phase of the alloresponse, I next aimed to determine the molecular mechanisms by 

which lenalidomide caused these changes. I examined whether the mechanisms described in 

other settings involving cereblon and ikaros play a role, as well as exploring whether additional 

pathways may be involved. 

 

Given the finding that lenalidomide potentiates CD8+ T cell alloresponse of both steady state 

APB-derived T cells and UCB-derived T cells I focused on the effect of lenalidomide on CD8+ T 

cells on the molecular level. 
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5.2 Aim 

 

To determine the molecular mechanisms by which lenalidomide potentiates CD8+ T cell 

alloresponses of APB and UCB. 
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5.3 Specific material and methods 

 

5.3.1 RNA extraction 

 

Cell fractions isolated by FACS/MACS were washed in PBS (as previously described), counted 

and transferred to 2ml RNAse and DNAse free, sterile eppendorf tubes. Cells were centrifuged 

at 500g at 4C for 5 mins to pellet and supernatant completely removed with a pipette taking 

care not to disturb cell pellets. 700µl of TRIzol® (Life technologies) was added to the tube and 

cell pellet homogenised in the solution by pipetting up and down gently.  Homogenised samples 

were then transferred to a -80°C freezer for storage. 

 

Batched RNA samples in TRIzol® were thawed on ice and RNA was extracted from homogenised 

samples using the Direct-zolTM RNA Mini-prep kit as per manufacturers protocol, including an in 

column DNAse treatment step to minimise genomic DNA contamination. Eluted RNA was 

dissolved in 25µl of RNAse free water and transferred to a -80°C freezer for storage. 

 

5.3.2 RNA assessment 

 

Nanodrop 

RNA samples were assessed for concentration and quality using a Nanodrop 1000 

spectrophotometer (ND-1000, Nanodrop). RNA quantity is assessed by ultraviolet light 

absorbance at 260nm (1 optical density (OD) unit = 50g/l) and quality by the absorbance 

ratios at 260/280nm and 260/230nm. A 260/280 ratio of approximately 2 is taken to indicate 

good quality RNA and >1.8 acceptable quality. Lower 260/280 values indicate sample 

contamination by protein. All APB-derived samples were within 1.84-2.11, UCB-derived samples 

were within 1.64-2.05. Reduction in 260/230 ratios indicates other contaminants: salts, 

carbohydrates or phenols (usually guanidium thiocyanate). 

 
Agilent bioanalyser 

RNA degradation was assessed using the Agilent RNA 6000 Nano kit on the Agilent Bioanalyser 

2100 (both Agilent Technologies) as per manufacturers protocol, for all samples prior to array 

analysis and for samples prior to quantitative reverse-transcription polymerase chain reaction 

(qRT-PCR) if there was sufficient RNA. Degradation is assessed by the ratio of 18s and 28s 

ribosomal RNA bands in the total RNA as assessed by capillary electrophoresis (Figure 5.1).  In 

intact RNA the ratio should be 2:1, 28s:18s.  The Bioanalyser software generates an RNA integrity 
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numbers (RIN) for each sample based on the electropherogram, with 10 being completely intact 

and 1 completely degraded. RINs for evaluable samples were >8.6 and 28:18s ratios 1.7-2.3. 

(Methods for assessment of RNA are reviewed extensively in Fleige and Pfaffl 2006 335). 
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Figure 5.1 

 

 

Figure 5.1 Assessment of RNA integrity 

(A) Representative electropherogram for an RNA sample used for gene expression analysis. 

18s and 28s peaks are visible. The ratio of 18s to 28s in this case was 2 corresponding to an 

RNA integrity number (RIN) of 10, indicating good RNA integrity. 

 

(B) Representative electropherogram for an aRNA sample used for gene expression following 

RNA fragmentation. The reaction should produce a distribution of 35-200nt aRNA fragments 

with a peak at 100-120nt as seen. 
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5.3.3 Gene expression profiling using GeneChip® Human Genome U133 Plus 2.0 arrays  

 

Cells from allogeneic co-cultures were MACS sorted negatively isolating CD8+ T cells and then 

further purified by FACS sorting into CFSEbright non-alloproliferative and CFSEdim alloproliferative 

CD8+ cells (Figure 5.2-5.3). Purity for all samples was >95%. RNA extracted from these cells was 

then used for gene expression profiling. 

 

5.3.3.1 Sample preparation 

RNA extracted from experimental samples was thawed at 4°C and then prepared for gene 

expression analysis using 3’ IVT Express Kit (Affymetrix). One hundred ng of RNA from 

experimental samples was input (as per manufacturers recommendation). RNA was first 

amplified and transcribed to complementary DNA (cDNA) using a 16 hour incubation time 

appropriate for the amount of input RNA.  Generated cDNA was then in vitro reverse-transcribed 

and labelled with biotin. Generated amplified RNA (aRNA) was purified using manufacturers 

RNA binding beads and wash buffers prior to quantitation (by Nanodrop as above) and 

fragmentation (all as per manufacturers protocol).  Fragmentation of the RNA is required for 

optimal assay sensitivity and was assessed by Agilent Bioanalyser with satisfactory distribution 

of RNA fragments for all samples (Figure 5.1)  

 

Fragmented aRNA was then hybridised to the GeneChips® using the GeneChip® hybridisation 

oven 640 (Affymetrix).  At this point amplified labelled aRNA binds to complementary sequences 

(probes) immobilised on the microarray.  Following hybridisation chips were transferred to the 

GeneChip® fluidics station 400 (Affymetrix) for staining.  Anti-biotin antibodies conjugated to 

fluorophores then bind to biotin labelled array-bound aRNA.  Following staining chips were 

transferred to the GeneChip® Scanner 3000 7G (Affymetrix) to be read. 

 

Thanks to Tracy Chaplin-Perkins for assistance with the hybridisation, staining and reading of 

the GeneChips®. 
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Figure 5.2 

 

 

 

Figure 5.2 Sorting strategy for isolation of cells for gene expression analysis 

Alloproliferative (P) and non-alloproliferative (NP) CD8+ T cells were purified from allogeneic 

co-cultures first by negative MACS isolation of CD8+ T cells and then subsequent FACS sorting 

to fractionate alloproliferative and non-alloproliferative cells based on CFSE fluorescence. 
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Figure 5.3 
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Figure 5.3 
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Figure 5.3 Region and gating strategy for FACS purification of non-alloproliferative and 

proliferative fractions of CD8+ alloresponder T cells 

(A) CD8+ T cells isolated from allogeneic co-cultures using negative MACS selection were 

subsequently FACS sorted. Events in the lymphocyte regions were selected and doublets 

excluded. Dead cells were excluded based on positive staining for DAPI. Events in the 

CD3+CD8+ gate were then isolated based on bright or dim fluorescence for CFSE. 

(B-C) Purity checks on isolated CFSEbright and CFSEdim cells (respectively) showed >95% pure 

populations. 
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5.3.4 Analysis of GeneChip® raw-data 

 

Raw data from the GeneChip® scanner was loaded into R software version 3.1.0 (R Project for 

Statistical Computing, Wien, Austria) via Bioconductor packages (http://www.bioconductor.org) 

and arrayMvout used to perform quality control (QC) assessments of the data.  This package 

generates measures of background fluorescence, scale factors (to correct for the percentage of 

absent/marginal/positive calls), median relative log expression (RLE), mean normalised unscaled 

standard error (NUSE), actin 3’/5’ ratio, GAPDH 3’/5’ ratio and a measure of RNA degradation.  

During RNA preparation for hybridisation various control RNAs are ‘spiked’ into the samples to 

aid with these quality control steps. Any arrays that do not meet pre-defined thresholds are 

excluded from analysis.  All samples passed QC assessments. 

 

Following QC the raw data files are normalised to remove systematic biases and intra-chip 

differences including: sample preparation, variability in hybridization, scanner settings and 

experimenter bias.  This is done by GCRMA (G C robust multi-array average) algorithm that 

adjusts intensity as detected by the scanner for optical noise and non-specific binding, factoring 

in the individual probe sequences to determine expected probe affinities.   

 

Data was then filtered to decrease the false discovery rate (FDR) by removing genes with low 

overall intensity and or high variability as these genes were felt to be unlikely to carry relevant 

information to the experimental question.  Differential expression was then analysed using the 

LIMMA test (Bayesian regularised t-test) 336 and the Benjamini-Hochberg correction 337 for 

multiple testing applied to generate adjusted p values for each gene. P values <0.05 were taken 

as significant. 

 

The R package gplots was also used to generate hierarchical clustering of the differentially 

expressed genes. 

 

I am very grateful to Dr Ajanthah Sangaralingam who performed the statistical analysis from the 

raw data. 

 

 

 

 

http://www.bioconductor.org/
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5.3.4.1 Over-representation analysis of differentially expressed genes to identify deregulated 

molecular pathways 

Over-representation analysis was performed by entering relevant lists of differentially expressed 

genes into Ingenuity software version 26127183 (Qiagen) and ToppFunn (ToppGene Suite, 

Cincinnati Children's Hospital Medical Center). These software analyse whether the list supplied 

is significantly associated with a particular pathway or set of pathways, by comparing whether 

the genes in the list are more likely to appear than those from a randomly generated list of the 

same size, and therefore assign the association a p value. 

 

5.3.5 qRT-PCR of gene expression targets 

 

Genes that were identified as having roles in determining T cell phenotype and proliferation 

were chosen for further validation. APB CD8+ T cells were isolated from allogeneic co-cultures 

by MACS negative isolation of CD3+ T cells and then FACS sorting to isolate proliferative and non-

proliferative fractions of CD8+ T cells. RNA was extracted from sorted fractions using the same 

method as described above. In the case of UCB; MACS sorting alone was used to negatively 

isolate alloresponder CD8+ T cells from allogeneic co-cultures, due to the low cell count in the 

co-cultures compared to APB that did not allow for such stringent fractionation.  

 

5.3.5.1 Reverse transcription of RNA 

RNA was converted to complementary DNA (cDNA) using the Improm-II® reverse transcription 

system (Promega) as per manufacturers protocol.  Briefly, 250ng (APB-derived samples), or 

100ng (for UCB-derived samples) RNA per reaction was incubated with random hexamers at 

70°C to allow complementary binding.  A reverse transcription (RT) master mix was made up 

containing nuclease-free water, RT buffer, magnesium chloride, deoxynucleotides (dNTPs), 

RNAse and Reverse Transcriptase enzyme and kept on ice. RT master mix was added to RNA mix 

samples on ice and the samples were transferred to a thermal cycler set to 25°C for 5 mins, 42°C 

for an hour and 70°C for 15 mins.   

 

In parallel with the samples prepared as described a set of no-RT controls were prepared using 

the same protocol as above but with the omission of the reverse transcriptase enzyme, this was 

substituted with nuclease free water.  Generated cDNA was stored at -20°C. 
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5.3.5.2 qRT-PCR sample preparation and analysis 

cDNA was thawed at 4°C and an qRT-PCR master mix prepared for each sample as per 

manufacturers protocol and kept on ice. The master mix contained TaqMan® Fast Universal PCR 

Master Mix (2x), no AmpErase® UNG (Applied Biosytems®), nuclease free water and cDNA.  In 

parallel mixes were also made for no-RT controls and no-template controls in which the cDNA 

component was replaced with nuclease free water. One no-template control was included for 

each batch of samples.  The purpose of the no-RT controls was to detect any genomic DNA 

contamination and the no-template control to detect any contamination of reagents. 

 

Master mixes were then pipetted into a 96 well optical plate (Applied Biostystems) with 

experimental samples in triplicate. Fluorescein amidite (FAM) labelled probe/primers for genes 

of interest (Table 2A, Appendix A) and housekeeping genes (GAPDH and 18s) were then added 

to appropriate wells and the plates sealed. Samples were then mixed and centrifuged briefly 

before loading into the 7900HT Fast Real Time PCR System (Applied Biosytems®). The qRT-PCR 

reaction settings were as per manufacturer’s protocol: Initial HOLD at 95C for 20 seconds 

followed by 40 cycles at: 95C for 1 sec followed by 60C for 30 sec. 

 

5.3.6 Analysis of qRT-PCR data 

 

Raw data from the qRT-PCR was entered into Microsoft Excel® (Microsoft).  CT (cycle threshold) 

values were taken as the number of cycles at which the fluorescence from the probe of interest 

reached a threshold that had been pre-defined.  This threshold was set in the exponential phase 

of the reaction and was standardised for all probes and samples. 

 

An average CT value was generated from the replicates for each sample (3 unless excluded on 

the basis of a standard deviation of >0.5 from the other replicates). The CT was then normalised 

against the expression of a housekeeping gene, which should have stable expression across all 

the samples.  At this point GAPDH was excluded as a housekeeping gene as the CT for GAPDH 

appeared to change in lenalidomide treated versus untreated samples.  18s was used for 

normalisation of all samples. This gave the ΔCT. 

 

To calculate the relative quantity the ΔCT was then compared to an internal calibrator sample 

(ΔΔCT= ΔCT test sample- ΔCT calibrator sample).  In this case samples from the untreated non-

proliferative cells were used as the calibrator. For each sample set an average ΔΔCT was 
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calculated, the log2 scaled data transformed to a linear scale and used to derive the relative 

quantity (RQ) using the equation RQ = 2
CT. 

 

Several comparisons were then possible based on the samples tested.  Sample sets included 

untreated non-proliferative, untreated proliferative, treated non-proliferative and treated 

proliferative samples. Student paired t-test was used to test for statistically significant 

differences in fold-change between sample sets. Confidence intervals were calculated for the 

fold-change ratio’s using Graphpad quickcalcs (www.graphpad.com/quickcalcs). 

 

http://www.graphpad.com/quickcalcs
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5.4 Results 

 

5.4.1 Lenalidomide induces changes in the gene expression of alloproliferative CD8+ T cells 

 

Given my findings that lenalidomide potentiates CD8+ T cell alloresponses, I next asked whether 

this was the result of quantitative or qualitative difference in the CD8+ T cell alloresponse. In 

order to answer this question I examined the gene expression profiles of responder cells from 

lenalidomide treated and untreated co-cultures. I chose to focus on the CD8+ T cells as this was 

the cell subset in which I had observed the most marked phenotypic changes and I chose the 

day 7 time-point, as at this time-point I had observed significant changes in CD8+ T cell 

proliferation and cytokine production in both APB-derived and UCB-derived CD8+ T cells.  

 

Alloproliferative and non-proliferative responder CD8+ T cells were isolated from lenalidomide-

treated and untreated allogeneic co-cultures using a combination of magnetic-bead based and 

FACS sorting (Figure 5.2), resulting in 4 biologically-distinct alloresponder populations, as shown 

in Figure 5.4. 
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Figure 5.4 

 

Figure 5.4 Schematic depicting alloresponder populations generated for gene expression 

profiling 

 

Alloresponder CD8+ T cells were isolated from lenalidomide-treated and untreated 

allogeneic co-cultures by magnetic bead-based sorting. Purified CD8+ alloresponder T cells 

were then sorted into alloproliferative and non-proliferative fractions by FACS. 
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Firstly I compared the gene expression of alloproliferative CD8+ T cells against non-proliferative 

cells not exposed to lenalidomide (comparison UPvUNP) to determine the baseline gene 

expression changes that occur in the alloresponse. This revealed 2771 genes with statistically 

significantly (adjusted p value <0.05) altered gene expression. When the analysis was restricted 

to genes that showed a fold-change of ≥4 and are therefore more likely to be biologically 

relevant, this number of genes was reduced to 708 (full gene lists may be viewed at 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84251). Of the 10 “most up-

regulated” genes in this list, 9 have well described roles in promoting cellular proliferation and 

the cell cycle, which is as would be expected in a proliferative cell population (Table 5.1).  

 

As expected a high proportion of these 708 highly differentially expressed genes (539/708) were 

also found to be altered in the comparison of lenalidomide treated alloproliferative versus 

lenalidomide treated non-proliferative cells (comparison TPvTNP). (Figure 5.5, A-B). Many of the 

genes with the most altered gene expression in this comparison were also found in the top gene 

list from the UPvUNP comparison. Interestingly a number of the unique top genes from this 

comparison were for genes that code for proteins that make up integrin subunits, have roles in 

the rearrangement of the cytoskeleton or are involved in actin polymerisation (Table 5.2) and 

would be predicted to be important for immune synapse function. 

 

In order to understand whether lenalidomide was modulating the proliferative drive of these 

cells I then focused on a comparison of the alloproliferative cells from treated and untreated 

co-cultures (TPvUP comparison). As expected there was a greater overlap of genes with the 

TPvTNP comparison than the UPvUNP comparison, however there were also a number of genes 

with significantly altered expression that were unique to lenalidomide treated alloproliferative 

CD8+ T cells (Figure 5.5, C and Table 5.3). A number of these genes have roles described in the 

modulation of T cell activation or differentiation. Importantly a comparison of TNPvUNP CD8+ T 

cells revealed no significant changes in gene expression, consistent with the observation that 

the phenotypic and functional effects of lenalidomide observed have been confined to 

alloproliferative CD8+ T cells. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84251


Caroline Besley   Chapter 5 - Results 

 179 

Figure 5.5 
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Figure 5.5 Lenalidomide exposure during allostimulation causes significant changes in 

gene expression of alloproliferative CD8+ T cells 

(A) Venn diagram showing overlap in gene expression changes between lenalidomide treated 

alloproliferative (TP), treated non-alloproliferative (TNP), untreated alloproliferative (UP) 

and untreated non-alloproliferative (UNP) CD8+ T cells from allogeneic co-cultures. All genes 

with significantly altered gene expression (adjusted P value <0.05) are included. Data from 3 

unique donor-responder pairs are shown.  

(B) Venn diagram showing overlap in gene expression changes between TP, TNP, UP and UNP 

CD8+ T cells from allogeneic co-cultures. All genes with fold-change (FC) ≥4 in gene expression 

(adjusted P value <0.05) are included. Data from 3 unique donor-responder pairs are shown. 

(C) Heatmap depicting significantly dysregulated genes (adjusted P <0.05), with fold-change 

(FC) of ≥4 in high-stringency purified APB CD3+CD8+CFSEdim T cells from allogeneic co-cultures 

in the absence or presence of lenalidomide. 
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Table 5.1 Untreated Proliferative vs Untreated Non-proliferative comparison – Top genes 

Gene 
Symbol 

Gene Name Log2FC 
Adj P 
Value 

MS4A1 CD20 -6.8 <0.001 

NR3C2 Mineralocorticoid Receptor Delta -5.9 <0.0001 

DKK3 Dickkopf WNT Signaling Pathway Inhibitor 3 -5.7 <0.0001 

SCML1 Sex Comb On Midleg-Like 1 (Drosophila) -5.6 <0.001 

GPRASP1 
G Protein-Coupled Receptor Associated Sorting 

Protein 1 
-5.5 <0.0001 

ENPP5 
Ectonucleotide 

Pyrophosphatase/Phosphodiesterase 5 (Putative) 
-5.5 <0.001 

ZNF204P Zinc Finger Protein 204, Pseudogene -5.4 <0.0001 

NOG Noggin -5.2 <0.05 

SELM Selenoprotein M -5.1 <0.001 

F2RL1 Coagulation Factor II (Thrombin) Receptor-Like 1 -5.0 <0.001 

KIF14 Kinesin Family Member 14 6.0 <0.0001 

ENTPD1 Lymphoid Cell Activation Antigen  (CD39) 6.0 <0.0001 

CDC20 Cell Division Cycle 20 6.0 <0.0001 

MKI67 Marker Of Proliferation Ki-67 6.1 <0.0001 

CDT1 Chromatin Licensing And DNA Replication Factor 1 6.1 <0.0001 

CENPE Centromere Protein E, 312kDa 6.1 <0.0001 

E2F8 E2F Transcription Factor 8 6.2 <0.0001 

KIF15 Kinesin Family Member 15 6.3 <0.0001 

MCM10 
Minichromosome Maintenance 10 Replication 

Initiation Factor 
6.3 <0.0001 

DEPDC1 DEP Domain Containing 1 6.5 <0.0001 



Caroline Besley   Chapter 5 - Results 

 182 

 (Red indicates genes shared with UPvUNP list) 

Table 5.2 Treated Proliferative vs Treated Non-Proliferative comparison – Top genes 

Gene 
Symbol 

Gene Name Log2FC 
Adj P 
Value 

GPRASP1 
G protein-coupled receptor associated sorting 

protein 1 
-6.7 <0.0001 

MS4A1 
Membrane-spanning 4-domains, subfamily A, 

member 1 
-6.1 <0.001 

NR3C2 Nuclear receptor subfamily 3, group C, member 2 -6.0 <0.0001 

DKK3 Dickkopf 3 homolog (Xenopus laevis) -5.9 <0.0001 

SCML1 Sex comb on midleg-like 1 (Drosophila) -5.7 <0.001 

ENPP5 
Ectonucleotide 

pyrophosphatase/phosphodiesterase 5 (putative) 
-5.7 <0.001 

ZNF204P Zinc finger protein 204, pseudogene -5.6 <0.0001 

F2RL1 Coagulation factor II (thrombin) receptor-like 1 -5.5 <0.0001 

IL6R Interleukin 6 receptor -5.4 <0.001 

ITGA6 Integrin, alpha 6 -5.2 <0.0001 

ATP8B4 ATPase, class I, type 8B, member 4 5.1 <0.001 

LMNB1 Lamin B1 5.1 <0.001 

BCAT1 
Branched chain amino-acid transaminase 1, 

cytosolic 
5.1 <0.0001 

ITGA2 
Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 

receptor) 
5.2 <0.0001 

KIF2C Kinesin family member 2C 5.2 <0.0001 

ANLN Anillin, actin binding protein 5.3 <0.0001 

CKAP2L Cytoskeleton associated protein 2-like 5.3 <0.0001 

DEPDC1 DEP domain containing 1 5.3 <0.0001 

KIFC1 Kinesin family member C1 5.4 <0.0001 

ENTPD1 Lymphoid Cell Activation Antigen  (CD39) 5.5 <0.001 
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Table 5.3 Treated proliferative vs Untreated Proliferative comparison – Top genes 

Gene 
Symbol 

Gene Name Log2FC 
Adj P 
Value 

GNG4 
Guanine nucleotide binding protein (G protein), 

gamma 4 
-3.4 <0.05 

PMCH Pro-melanin-concentrating hormone -2.7 <0.05 

KIAA0513 KIAA0513 -2.4 <0.05 

COCH 
Coagulation factor C homolog, cochlin (Limulus 

polyphemus) 
-2.4 <0.05 

PRR5 Proline rich 5 (renal) -2.2 <0.05 

KLHL28 Kelch-like 28 (Drosophila) -2.0 <0.05 

RRN3P1 
RNA polymerase I transcription factor homolog (S. 

cerevisiae) pseudogene 1 
-1.9 <0.05 

IFNGR1 Interferon gamma receptor 1 -1.9 <0.05 

ZBTB20 Zinc finger and BTB domain containing 20 -1.9 <0.05 

SOX4 SRY (sex determining region Y)-box 4 -1.8 <0.01 

FAIM3 Fas anti-apoptotic inhibitory molecule 3 -1.7 <0.05 

RCC1 Regulator of chromosome condensation 1 2.4 <0.01 

PTGFRN Prostaglandin F2 receptor negative regulator 2.4 <0.05 

RHEBL1 Ras homolog enriched in brain like 1 2.5 <0.01 

CCNE2 Cyclin E2 2.4 <0.05 

SOCS2 Suppressor of cytokine signaling 2 2.8 <0.01 

CTDSPL2 
CTD (carboxy-terminal domain, RNA polymerase II, 

polypeptide A) small phosphatase like 2 
2.8 <0.01 

PFKFB4 
6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 4 
2.9 <0.01 

PIR Pirin (iron-binding nuclear protein) 3.1 <0.01 

BCAT1 Branched chain amino-acid transaminase 1, cytosolic 3.1 <0.01 

NUCKS1 
Nuclear casein kinase and cyclin-dependent kinase 

substrate 1 
3.9 <0.01 

(Blue indicates genes with known immunomodulatory roles) 
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5.4.2 Lenalidomide alters expression of genes with known immunoregulatory roles in 

alloproliferative CD8+ T cells 

 

Genes with ≥four-fold up/down-regulated gene expression in TPvUP CD8+ T cells with known 

immunomodulatory roles; PMCH, FAIM3, SOCS2, PFKFB4 and PIRIN were chosen for validation 

in additional samples by qRT-PCR. The direction of the fold-change in mRNA between 

lenalidomide treated and untreated alloproliferative CD8+ T cell samples was consistent with the 

array data and in the cases of SOCS2, PFKFB4 and FAIM3 reached statistical significance (Figure 

5.6, A). 

 

SOCS2 (suppressor of cytokine signalling 2) has been shown to play an important role in CD8+ T 

cell differentiation and function 338,339. It is thought to act indirectly via enhanced degradation of 

other SOCS family proteins SOCS1 and SOCS3 340 leading to enhanced IL2 responsiveness. The 

mRNA levels of SOCS2 were increased 6.8-fold in the array samples (array) and 2.3-fold in the 

qRT-PCR analysis (PCR) of lenalidomide treated alloproliferative (TP) CD8+ T cells versus 

untreated alloproliferative (UP) CD8+ T cells. This would be expected to lead to enhanced 

degradation of SOCS1 and SOCS3 and therefore increase CD8+ differentiation to the effector 

memory phenotype observed. 

 

PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4) is an enzyme component of 

the glycolytic pathway and expressed in activated T cells 341. Alterations in metabolic pathways 

in T cells are well known to be important for T cell activation, proliferation and differentiation 

(reviewed in 342), with a switch to glycolysis being important for effector CD8+ T cell generation. 

An increase in mRNA of PFKFB4 of 7.7 (array) and 3.3 (PCR) in TP versus UP cells would suggest 

that lenalidomide exposure during allostimulation results in up-regulation of metabolic 

pathways that are essential for CD8+ effector differentiation. 



Caroline Besley   Chapter 5 - Results 

 185 

Figure 5.6 

Figure 5.6 Lenalidomide alters expression of immunoregulatory genes in alloproliferative 

CD8+ T cells from both APB and UCB 

(A) Gene expression of immunoregulatory target genes was validated in purified APB-derived 

alloproliferative CD3+CD8+ T-cells from 6 unique donor-responder pairs by quantitative 

reverse-transcriptase polymerase chain reaction (qRT-PCR). Bar chart depicts fold-change 

and 95% confidence intervals. * = P<0.05, *** = P<0.001. Solid line = no change (1 fold). 

(B) Gene expression of immunoregulatory target genes was validated in purified UCB-derived 

CD3+CD8+ T-cells from 4 unique donor-responder pairs by qRT-PCR. Bar chart depicts fold-

change and 95% confidence intervals. * = P<0.05. Solid line = no change (1 fold). 
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Less is known about the function of FAIM3 (fas anti-apoptotic inhibitory molecule 3, also known 

as TOSO/FCMR) in T cells. This molecule was first described as an inhibitor of Fas mediated 

apoptosis 343, however it has since been suggested that the results observed in previous 

publications may have been due to the IgM binding capacity of this molecule, hence it’s 

renaming as FcμM Receptor. A recent paper has described that the levels of FAIM3 mRNA 

decrease significantly on T cell activation and effector memory differentiation 344, although the 

authors were unable to draw a conclusion as to what role this gene plays in the process. In my 

dataset mRNA expression of FAIM3 was decreased 3.2-fold (array) and 2.88-fold (PCR) in TP 

versus UP cells in line with the phenotypic shift towards effector memory cells. 

 

Pirin is proposed as a redox-sensitive co-factor for NFB activity by Liu et al. 345. The authors 

describe that under conditions of cellular stress Pirin becomes oxidised to its active form, binds 

NFB and promotes its actions. Others have described a role for reactive oxygen species (ROS) 

responsive proteins, such as Pirin in the differentiation of haematopoietic progenitor cells and 

in effector differentiation of CD4+ T cells 346,347. It is possible that alterations in Pirin reflect the 

up-regulation of genetic programmes that support greater expansion of effector CD8+ T cells by 

protecting cells during cellular stress. The mRNA levels of Pirin were increased 8.6-fold (array) 

and 2.9-fold (PCR) in TP versus UP cells, however in the PCR validation cohort the fold-change 

failed to reach statistical significance (P=0.06). 

 

mRNA levels of PMCH (pro-melanin concentrating hormone) were significantly decreased in TP 

compared to UP cells in my array dataset, with a decreased of 6.7-fold. This gene is of interest 

as previous work from our group has shown it plays a role in impaired T cell responses to tumour 

348. Although the PCR validation cohort showed a decrease of 4.4-fold in mRNA levels of PMCH 

in TP cells compared to UP this did not reach statistical significance (P=0.12). 

 

The observation that the expression of many of these immunoregulatory genes was also altered 

to a similar degree in lenalidomide-treated UCB-derived CD8+ T cells suggests a common 

molecular mechanism of lenalidomide action on CD8+ T cell alloresponses of APB and UCB T cells 

(Figure 5.6, B). 
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5.4.3 Lenalidomide exposure during allostimulation modulates expression of genes involved 

in T cell metabolism 

 

Gene enrichment analysis was used to further interrogate the results of the APB-derived CD8+ T 

cell gene expression analysis. A list of genes that were significantly (P≤0.05) up or down-

regulated expression and fold-change 2 from the TPvUP comparison was entered into a 

number of analysis-tools to determine cellular pathways and processes in the CD8+ T cell 

alloresponse that may be modulated by lenalidomide exposure. Over-representation analysis 

using 3 independent tools, Ingenuity Pathway Analysis (IPA, Qiagen), ToppGene Suite 

(Biomedical Informatics, Cincinnati Childrens Hospital Medical Centre) and EnrichR (Data 

Coordination and Integration Centre, Mount Sinai) consistently showed that genes involved in 

the c-Myc pathway as well as metabolic pathways such as fatty acid metabolism and amino acid 

metabolism were over-represented in the gene list (Figure 5.7, Table 5.4). 

 

IPA and EnrichR also include modules that predict top upstream regulators or transcription 

factors that target genes represented in the gene list entered. Genes with a fold-change ≥2 from 

the TPvUP list were entered. Interestingly IPA revealed ikaros (IKZF1) as a significant predicted 

upstream regulator (Table 5.5) as well as TGFB (transforming growth factor beta) family 

members. EnrichR also revealed Myc and ILF2 (interleukin enhancing binding factor 2) as 

significantly over represented transcription factors with multiple targets in the gene list (Table 

5.6). 
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Table 5.4 Pathways implicated in action of lenalidomide on alloproliferative CD8+ T cells 

Pathway 

Adj P value 

(Bonferroni/FDR 
B&H) 

Genes in analysis 
No genes 

in 
pathway 

Validated targets 
of c-Myc 

transcriptional 
activity 

<0.0001/<0.0001 

13 

(BAX, BCAT1, RCC1, NME1,HSPA4, 
HSPD1, SHMT1, BIRC5, MINA, EIF4A1, 

CDC25A, CDK4, ENO1) 

81 

Homologous 
recombination 

<0.001/<0.001 
7 

(EME1, BRCA2, RAD51, RAD51C, 
RAD51D, POLD2, RAD50) 

28 

DNA damage 
response 

<0.001/<0.0001 
9 

(BAX, BID, BRCA1, RAD51, RAD50, 
CCNE2, CDC25A, CDK2, CDK4) 

67 

Meiotic 
recombination 

<0.01/<0.001 
9 

(BRCA1, BRCA2, HIST1H3H, PSMC3IP, 
RAD51, RAD50, DMC1, CDK2, CDK4) 

87 

Biosynthesis of 
amino acids 

<0.01/<0.001 
9 

(MAT2A, PGK1, ALDOA, PSAT1, SHMT1, 
CTH, BCAT1, ENO1, TPI1) 

73 

Cholesterol 
biosynthetic 

<0.01/<0.01 
5 

(ACAT2, HMGCS1, FDPS, NSDHL, 
DHCR7) 

18 

DNA repair <0.05/<0.01 
10 

(BRIP1, ERCC8, FANCB, BRCA1, BRCA2, 
RAD51, POLD2, POLR2H, RFC2, RAD50) 

113 

Integrated 
Cancer pathway 

<0.05/<0.001 
6 

(BAX, BRCA1, RAD50, CDC25A, CDK2, 
CDK4) 

35 

Fanconi anaemia 
pathway 

<0.05/<0.01 
7 

(BRIP1, FANCB, EME1, BRCA1, BRCA2, 
RAD51, RAD51C) 

53 

E2F transcription 
factor network 

<0.05/<0.01 
8 

(PRMT5, HBP1, BRCA1, TFDP1, CBX5, 
CCNE2, CDC25A, CDK2) 

73 

FDR = False discovery rate, B&H = Benjamini & Hochberg. Top 10 (most significant adjusted (adj) 

P value) pathways from an over-representation analysis (TOPPFUNN) based on ≥2-fold (adj 

P≤0.05) dys-regulated genes in gene expression comparison of CD8+ alloproliferative cells from 

lenalidomide treated versus control allogeneic co-cultures. 



 

 

1
8
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 Figure 5.7 



Caroline Besley   Chapter 5 - Results 

 190 

Figure 5.7 Lenalidomide exposure during allostimulation modulates expression of genes 

involved in multiple important cellular signalling pathways. 

Graphical representation of over-representation analysis of differential gene expression of 

lenalidomide treated alloproliferative CD8+ cells compared to untreated alloproliferative 

cells. Genes with significantly (P<0.05) altered gene expression with fold-change ≥2 were 

included in the analysis. Results are shown for 3 unique donor-responder pairs. Generated 

using TOPPFUNN. Red line = P 0.05. 
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Table 5.5 Potential mediators of lenalidomide actions 

Upstream 

Regulator 
Adj p value 

TGFB3 <0.01 

TGFB2 <0.01 

CFTR <0.01 

IKZF1 <0.01 

EPCAM <0.01 

 

Top Upstream Regulators identified on Ingenuity pathway analysis of genes with significantly 

altered (adjusted P<0.05) and ≥2-fold-change in gene expression in lenalidomide treated 

alloproliferative cells compared to untreated alloproliferative. 

 

Table 5.6 Potential mediators of lenalidomide actions 

Upstream 

Regulator 
p value 

CCNE1 <0.01 

TP53 <0.01 

ILF2 <0.01 

MYC <0.01 

FOXP3 <0.01 

 

Transcription factors - identified on EnrichR pathway analysis of genes with significantly altered 

(adjusted P<0.05) and ≥2-fold-change in gene expression in lenalidomide treated 

alloproliferative cells compared to untreated alloproliferative. 
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5.4.4 Lenalidomide exposure during allostimulation significantly reduced frequency of ikaros+ 

CD8+ T cells 

 

Ikaros depletion via lenalidomide’s action on cereblon is an important mechanism that 

contributes to the drug’s anti-myeloma activity 247 and has also been shown to be necessary for 

immunomodulatory effects on autologous T cell responses 248. The gene expression analysis 

suggested that ikaros also plays a role in the effect of lenalidomide on the alloresponse. I 

therefore next went on to confirm that lenalidomide exposure during allostimulation of T cells 

resulted in a decrease in ikaros protein expression using intracellular flow cytometry. 

 

As predicted by the observations from my earlier MS/MS-HPLC experiments, at day 3 following 

exposure to high levels of lenalidomide in the co-culture media and cells there was a significant 

decrease in the proportion of APB-derived CD8+ T cells positive for intracellular ikaros (Figure 

5.8, A). Ikaros levels recovered to those of control co-cultures by day seven and day nine (Figure 

5.8, A).  

 

5.4.5 Lenalidomide exposure during allostimulation also significantly reduced frequency of 

ikaros in CD4+ T cells 

 

Given the observation that lenalidomide exposure during allostimulation increased 

alloproliferation of CD8+ T cells but not CD4+ T cells, I next went on to determine if this 

differential effect could be explained by differences in the expression of ikaros in these different 

T cell subsets. 

 

Interestingly in the case of CD4+ but not CD8+ T cells the proportion of ikaros positive cells 

increased significantly (Figure 5.8, B) on allostimulation in the absence of lenalidomide, 

indicating that ikaros levels may be differentially regulated in CD4+ and CD8+ T cell subsets. 

However, consistent with the effect of lenalidomide on CD8+ T cells, the frequency of ikaros 

positive CD4+ T cells was reduced in lenalidomide-treated co-cultures (Figure 5.8, B). 

 

In order to determine whether on a per-cell basis ikaros expression was altered by lenalidomide 

exposure, the median fluorescence intensity (MFI) for cells staining positive for ikaros was also 

assessed. In the case of both CD4+ and CD8+ T cells there did not appear to be any significant 

change in the level of ikaros protein expression (Figure 5.8, C). 
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Figure 5.8 
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Figure 5.8 Lenalidomide exposure during allostimulation reduced the proportion of CD4+ 

and CD8+ T cells expressing ikaros 

(A) Proportion of adult peripheral blood derived (APB) CD8+ T cells expressing ikaros at serial 

time-points of allogeneic co-culture in the absence or presence of lenalidomide. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 9 unique donor-responder pairs. * = P<0.05. 

(B) Proportion of adult peripheral blood derived (APB) CD4+ T cells expressing ikaros at serial 

time-points of allogeneic co-culture in the absence (Allo) or presence of lenalidomide 

(Allo+L). Box (interquartile range) and whisker (maximum and minimum) plots are shown. 

Horizontal lines are medians. Results are shown for 9 unique donor-responder pairs. * = 

P<0.05. 

(C) Relative expression of ikaros following primary allogeneic co-culture of APB derived PBMC 

in the absence or presence of lenalidomide measured by median fluorescence intensity. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 9 unique donor-responder pairs. 
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5.4.6 Lenalidomide exposure during allostimulation reduced the frequency and cellular 

expression of ikaros in UCB-derived CD8+ and CD4+ T cells 

 

Although no effect on APB-derived CD4+ T cell alloproliferation was observed in lenalidomide-

treated allogeneic co-cultures, a significant decrease in UCB-derived CD4+ T cell alloproliferation 

was seen. This suggested that there could be a differential sensitivity of APB and UCB-derived 

CD4+ T cells to lenalidomide, that could be explained by different frequencies of ikaros positive 

cells or altered intra-cellular expression of ikaros in these two cell sources. I therefore went on 

to determine ikaros expression in APB-derived T-cells. 

 

A direct comparison of the levels of ikaros+ CD4+ and CD8+ T cells derived from APB and UCB 

reveals that at baseline, a greater proportion of UCB-derived CD4+ T cells express ikaros 

compared to APB-derived CD4+ T cells, however by day 3 of allogeneic co-culture in the absence 

of lenalidomide frequencies of ikaros positive CD4+ and CD8+ T cells are similar in APB and UCB 

(Figure 5.9, A).  

 

I next determined the effect of lenalidomide exposure on frequency of ikaros positive CD4+ and 

CD8+ T cells in allogeneic UCB co-cultures at day 3. Consistent with the effect observed in APB, 

there was a significant decrease in the proportion of CD4+ and CD8+ T cells positive for 

intracellular ikaros (Figure 5.9, B). However, in contrast to the findings in APB, there was a 

significant reduction in the level of cellular expression (measured by MFI) of ikaros in both UCB-

derived CD4+ and CD8+ T cells on day 3 of allogeneic co-culture after lenalidomide exposure 

compared to controls (Figure 5.9, C). These data support a different level of sensitivity of UCB-

derived CD4+ and CD8+ T cells to lenalidomide compared to APB, but cannot explain the 

differential effect on CD4+ Treg. 

 

One explanation for the differential effect on UCB-derived CD4+ T cells compared to APB-derived 

CD4+ T cells could be the fundamental immunological differences in the composition of APB and 

UCB. In particular UCB contains a much higher proportion of naïve T cells than APB 349. Therefore 

I next proceeded to assess the proportion of cells expressing ikaros in naïve, EM, CM and TEMRA 

subsets. If naïve cells, for example, were more likely to express ikaros than CM this could 

significantly skew the comparison between APB and UCB ikaros. In fact, I observed a similar 

pattern of ikaros expression in CD4+ T cell subsets derived from APB and UCB. The proportion of 

ikaros+ cells decreased as cells moved from naïve to CM and EM phenotype, with a statistically 
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significant reduction in ikaros between naïve and EM subsets for both APB and UCB (Figure 5.9, 

D). The only observed difference between APB and UCB subsets was that UCB CM CD4+ T cells 

appeared to contain a significantly higher proportion of ikaros+ cells than APB CM CD4+ T cells. 
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Figure 5.9 
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Figure 5.9 Differential ikaros expression in UCB-derived T cells does not alter 

lenalidomide dependent reduction in the proportion of UCB-derived CD4+ and CD8+ T cells 

expressing ikaros  

(A) Proportion of APB and UCB-derived CD4+ & CD8+ T cells expressing ikaros in untreated 

allogeneic co-cultures. Box (interquartile range) and whisker (maximum and minimum) plots 

are shown. Horizontal lines are medians. Results are shown for 9 unique donor-responder 

pairs. * = P<0.05 

(B) Proportion of umbilical cord blood (UCB) CD4+& CD8+ T cells expressing ikaros after 3 days 

of allogeneic co-culture in the absence (Allo) or presence of lenalidomide (Allo+L). Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 11 unique donor-responder pairs. *** P<0.001. 

(C) Relative expression of ikaros following primary allogeneic co-culture of UCB derived PBMC 

in the absence or presence of lenalidomide measured by median fluorescence intensity. Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 11 unique donor-responder pairs. 

(D) Proportion of APB and UCB-derived CD4+ T cells within naïve, central memory (CM) and 

effector memory (EM) subsets. Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 5 unique 

donor-responder pairs. *** = P<0.001. 
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5.4.7 Expression of cereblon is similar in APB and UCB 

 

As the differential effect of lenalidomide on APB and UCB did not appear to be dependent on 

baseline differences in ikaros expression, I next examined expression of cereblon by qRT-PCR in 

CD4+ and CD8+ T cells isolated from healthy APB donors and UCB units using a magnetic bead-

based technique (as described in Chapter 2). Increased degradation of ikaros is dependent on 

lenalidomide binding to cereblon and enhancing cereblon activity as a substrate receptor for an 

E3-ubiquitin ligase complex 248. qRT-PCR for cereblon did not show any differences in mRNA 

levels between APB and UCB-derived CD4+ or CD8+ T cells (Figure 5.10). 
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Figure 5.10 

Figure 5.10 Cereblon expression is similar in APB and UCB 

Mean (+/- SD) for relative quantity of cereblon (CRBN) mRNA in APB and UCB, CD4+ and CD8+ 

T cells (MACS sorted). Results are shown for 3 unique APB and 3 unique UCB donors. 
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5.5 Discussion 

 

Having identified the major cellular changes in the in vitro T cell alloresponse after lenalidomide 

treatment, including the enhanced proliferation of effector CD8+ T cells. I next determined that 

lenalidomide modulates both the cellular expression of ikaros in APB and UCB-derived CD4+ and 

CD8+ T cells and the gene expression of APB-derived CD8+ T cells isolated from allogeneic co-

cultures.  

 

The depletion of intracellular ikaros observed in these experiments is consistent with the well-

described cereblon-dependent mechanism of action of lenalidomide 243,334. Therefore it is likely 

that this mechanism is at least in part responsible for both the changes I have described in T cell 

alloproliferation and phenotype in vitro, and for some of the clinical effects observed. 

Differential sensitivity or magnitude of ikaros depletion might explain differential effects on APB 

and UCB-derived CD4+ T cells. However I have not been able to detect any significant differences 

in ikaros that would account for the decreased CD4+ T cell alloproliferation or increase in Treg 

that I have seen after allostimulation of UCB-derived PBMC in the presence of lenalidomide. This 

may be because the effect on UCB-derived CD4+ Treg is independent of ikaros and possibly 

cereblon, or due to differences in ikaros expression of UCB and APB-derived CD4+ Treg that are 

not captured by examining the CD4+ population as a whole.  

 

A potential way to further dissect the role of ikaros in the lenalidomide-treated alloresponse 

would be to use responder cells in which cereblon had been knocked-down (cereblon-KO) using 

siRNA, and therefore unable to mediate the increased degradation of ikaros. Comparison of 

cereblon-KO T cell alloreponses with my current data could determine which effects were likely 

to be cereblon-ikaros dependent, and which were due to additional effects of lenalidomide. The 

caveat to this approach is that if some effects of lenalidomide on the alloresponse are due to 

enhanced degradation of other, as yet undetermined substrates of cereblon this will also result 

in loss of these effects. 

 

Exploration of gene expression changes induced in alloproliferative cells by lenalidomide 

treatment may help to answer this interesting question of whether lenalidomide is modulating 

alloresponses by additional mechanisms and pathways to ikaros depletion. The finding that 

lenalidomide exposure during allostimulation made no difference to the gene expression of non-

proliferative CD8+ T cells reinforces the data I have presented demonstrating phenotypic and 
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functional changes only in alloproliferative cells. My findings also suggest that the effect of 

lenalidomide is dependent on TCR-engagement with cognate alloantigen and therefore results 

in an enhanced alloresponse that retains allospecificity. 

 

Although, as expected ikaros was implicated as a top upstream regulator of differentially 

expressed genes in alloproliferative CD8+ T cells treated with lenalidomide, TGF2 and 3 were 

also revealed as potential mediators of lenalidomide effects. This indicates that additional non-

ikaros dependent mechanisms may be involved. TGF signalling has been shown to play an 

important role in controlling T cell activation, with a decrease in TGF resulting in enhanced 

naive T cell responses and effector differentiation, as well as a decrease in Treg (reviewed in 

Gorelik et al. 350). Therefore, while TGF has not yet been described as a target of lenalidomide 

it is plausible that TGF could be involved in some of the changes I have described in T cell 

alloresponses. Quantification of TGF levels in lenalidomide-treated alloresponders may 

therefore be informative. 

 

Over-representation analysis of differentially expressed genes also revealed that enhanced 

signalling via the Myc pathway may play a role in the effects of lenalidomide on the CD8+ T cell 

alloresponse. Myc is thought to play a critical role in initiating metabolic reprogramming of T 

cells, leading to up-regulation of a number of genes involved in the glycolysis and glutaminolysis 

pathways that support T cell as they undergo rapid proliferation to effector cells (Figure 5.11) 

351.  

 

Fine-tuning of metabolic gene expression is also achieved by the transcription factors IRF4 

(interferon regulatory factor 4) and AP4 (activating enhancer binding protein 4). Importantly the 

level of expression of these two transcription factors is fine-tuned by the strength of TCR 

signalling and levels of IL2, respectively 352,353. As I have demonstrated that following 

lenalidomide treatment CD8+ T cells appear to have a lowered threshold for TCR signalling and 

both CD4+ and CD8+ T cells have increased capability to produce IL2, this could influence the 

metabolic gene expression programmes of alloresponder T cells, impacting on functional activity 

or migratory capacity of cells 354. Interestingly both Myc and IRF4 have been implicated in the 

action of lenalidomide on myeloma cells 197,355,356. 
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Figure 5.11 

 

 

 

Figure 5.11 Metabolic regulation of T cell differentiation 

Schematic representation of signalling events occurring on TCR (T cell receptor) and interleukin 

2 (IL2) receptor ligation leading to metabolic reprogramming via changes in gene expression of 

key metabolic regulatory genes. 

 

(Based on findings of multiple reviews 342,353,357) 
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I chose to examine the gene expression profile of CD8+ T cells, as this was the T cell subset where 

I had seen the greatest phenotypic and functional changes following allostimulation in the 

presence of lenalidomide. However in view of the differential effect I have observed in UCB CD4+ 

T cell alloresponses it would also be interesting to explore the gene expression changes caused 

by lenalidomide in allostimulated APB-derived CD4+ T cells and to compare these to those in T 

cells derived from UCB. It may however be difficult to obtain adequate quantities of RNA from 

the small cell numbers obtained from UCB co-cultures to perform a similar experiment to that I 

have done with APB. An alternative approach that may be able to overcome this limitation could 

be to use RNA-sequencing. 

 

A possible limitation of the gene expression experiment is the choice of the day 7 time-point. At 

day 7 the gene expression of the cells reflects the consequences of the action of lenalidomide 

on allostimulated cells several days before, rather than the direct effects of the drug. Day 7 was 

chosen as this was the first time-point at which a significant difference in CD8+ T cell 

proliferation, CD107a expression and cytokine production was detectable. Therefore I felt that 

at this time the alloproliferative CD8+ T cells from lenalidomide-treated cultures were 

qualitatively different from those from untreated. It was also technically possible at this time-

point to purify sufficient numbers of both proliferative and non-proliferative responder cells. An 

alternative time-point that would be informative as to the direct effects of lenalidomide would 

be day 3, at which time lenalidomide is still present in the co-culture media. However it would 

be more difficult to identify and purify alloresponder and non-responder cells at this time, as it 

would be too early to expect a proliferative response. Alloresponder cells can be identified by 

the expression of activation markers such as CD25 or CD62L, however these have been shown 

to be imperfect methods for detection of alloresponsive cells with a high level of stringency.  

 

In summary I have shown that the addition of lenalidomide to allogeneic co-culture results in 

enhanced CD8+ T cell alloresponses by ikaros depletion. In addition lenalidomide appears to 

have profound and lasting effects on metabolic and immunoregulatory programmes within CD8+ 

T cells resulting in a shift in the balance of CD8+ T cell alloresponses towards a more potent 

effector phenotype. 
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Chapter 6 – Determining the impact of lenalidomide on T cell 

alloresponses that could selectively enhance GvT activity 

 

6.1 Introduction 

 

There is undoubtedly is a link between GvT and GvHD, with a wealth of evidence that the 

presence of GvHD predicts for a lower rate of relapse following AHSCT 1,273,358. However the 

question of whether the immunological mechanisms underlying GvT and GvHD are 

fundamentally different is more difficult to answer. It could be argued that GvT effects merely 

represents a subset of GvHD reactions directed against alloantigens expressed on cells of the 

haemato-lymphoid compartment, rather than at other tissues. However there is increasing 

evidence that at an individual T cell level the cells that cause GvT and GvHD may not be the same 

359. There is also evidence that GvT can contribute to elimination of tumours that exist outside 

the haemato-lymphoid system, as in the case of regression of renal cell carcinoma following 

AHSCT 360.  

 

Strategies to separate GvT and GvHD effects thus far have focused mainly on reducing the 

inflammatory drive that leads to indiscriminate T cell alloactivation, often by reducing the 

intensity of conditioning regimens 361. Another approach more focused on GvT is increasing 

tumour antigen specificity by ex vivo manipulation of donor T cells 39,362,363 or cancer vaccine 

therapy 364. However an alternative strategy might be to block the migration of alloreactive T 

cells to target organs of GvHD by blocking chemokine receptors or integrins 365-367, this would 

prevent damage to healthy tissue but not affect GvT responses. Early stage trials of drugs that 

can modulate T cell migration are ongoing 96. 

 

Having previously found that lenalidomide treatment enhances alloproliferation and effector 

functions of alloproliferative CD8+ T cells an important question remains; is there any differential 

effect on cellular parameters that might predict for differential GvHD versus GvT effects? As 

there is no single in vitro assay that can provide a simultaneous readout of GvT and GvHD a 

combination of assays was used, with the aim of comprehensively addressing this question. 
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6.2 Aim 

 

Aim: To define the impact of lenalidomide treatment during allostimulation on human APB-

derived alloresponder T cell migration and cytotoxicity against target-cells; to determine if 

treatment with lenalidomide could selectively enhance GvT or GvHD activity. 
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6.3 Specific materials and methods 

 

6.3.1 Chemokine receptor expression 

 

Chemokines are small (8-12kDa) secreted proteins, similar to cytokines that have an important 

role in cell trafficking. They can be subdivided into 4 families with the CXC or α subfamily (so 

called due to the first two cysteine residues being separated by another amino acid) and the CC 

or β subfamily (first two cysteines adjacent) most extensively characterised 368,369. Chemokine 

receptors (CCR) are a subfamily of 7 transmembrane-spanning G-protein coupled receptors 

expressed on leucocytes. Some CCR are cell type specific, while others have a broader 

distribution and similarly some direct migration in a tissue specific manner, while others direct 

migration to a range of tissue types. Multiple chemokines may bind to the same CCR (detailed 

in Table 6.1).  

 

The expression of chemokine receptors on responder T cells after allostimulation in the presence 

of lenalidomide was compared to that of untreated responder T cells to determine if 

lenalidomide treatment could alter the migratory capacity of alloresponsive T cells (cells were 

labelled and FACS analysis conducted as per the protocol detailed in Chapter 2). The Kruskal-

Wallis test with Dunn’s multiple comparisons test was used to compare chemokine expression 

at baseline and at serial time-points of allogeneic culture, Wilcoxon matched pairs signed rank 

test was used to compare treated with untreated cells, P values <0.05 were taken as significant. 
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Table 6.1 Characteristics and rationale for the choice of chemokine receptors examined.  

 

CCR Chemokines Target Cell Target 
Organ 

Potential role in 
GvHD/GvT 

CCR2 MCP 1 (CCL2) 

MCP 2 (CCL8) 

MCP 3 (CCL7) 

MCP 4 (CCL13) 

CCL16 

Th1/T TEM 

NK 

Basophils 

Monocytes 

Sites of 
inflammation 

Shown to play a role in 
liver and gut GvHD in 

murine models 93,370,371 

SNPs in CCR2 gene 
associated with GvHD 

post-AHSCT 372 

CCR5 MIP 1α (CCL3) 

MIP 1β (CCL4) 

RANTES (CCL5) 

MCP 2 (CCL8) 

CCL11 

CCL16 

Th1 

Activated-CD8 

Treg 

NK 

DC 

Monocytes 

Sites of 
inflammation 

CCR5 positive cells found 
in human GvHD biopsies 

and on human alloreactive 
cells 373 

CCR5 blocking drugs used 
in trials for GvHD 

prevention after AHSCT 96 

CCR5 polymorphisms 
influence risk of GvHD 94 

CCR7 MIP 3β (CCL19) 

CCL21 

Activated T 
cells 

DC 

Secondary 
lymphoid 

organs (SLO) 

Naïve T cells express CCR7 
and are known to be 
important in GvHD 374 

CCR9 TECK (CCL25) Activated T 
cells 

Gut (small 
bowel) 

Reducing CCR9 
expression/inhibition of 

signalling pathway in 
mouse models reduced 

GvHD 97,98 

CCR10 CTACK (CCL27) 

MEC (CCL28) 

Activated T 
cell 

Plasmablasts 

Skin Association between high 
numbers of CCR10+ cells in 

PB and incidence of skin 
GvHD after AHSCT 101 

CXCR4 SDF 1 (CXCL12) 

MIG 

Ubiquitin 

Activated T 
cells 

DC 

NK 

NKT 

Bone marrow Targeting of allogeneic 
cells to BM post-AHSCT 375 

Adapted from Luster 1998 and Zlotnik 2012 368,369 
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CCR = chemokine receptor, MCP = monocyte chemoattractant protein, MIP = macrophage 

inflammatory protein, RANTES = regulated on activation, normal T cell expressed and secreted, 

SDF = stromal-cell derived factor, MIG = monokine induced by gamma interferon, DC = dendritic 

cell, NK = natural killer cell, NKT = natural killer T cell, MEC = mucosae-associated 

epithelial chemokine, CTACK = Cutaneous T cell-attracting chemokine, TECK = Thymus-

Expressed Chemokine, BM = bone marrow, PB = peripheral blood, SNPs = single nucleotide 

polymorphisms, TEM = T effector memory, Th1 = T helper 1. 
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6.3.2 Transwell chemotaxis assays 

 

The transwell assay used is based on that of the one designed by Boyden to analyse the 

chemotactic responses of leucocytes 376. In this assay two medium containing chambers are 

separated by a porous membrane through which cells can transmigrate in a vertical direction 

into the lower chamber (usually containing a chemoattractant). Cells that have entered the 

lower chamber can then be isolated and counted by a number of techniques (reviewed in 

Kramer et al. 377). 

 

CFSE-labelled alloresponder PBMC or MACS purified alloresponder T cells and autologous 

control PBMC or T cells were isolated from untreated or lenalidomide treated allogeneic or 

autologous control co-cultures at day 9 (as per usual co-culture set up detailed in General 

methods). Cells were washed in PBS and then resuspended in RPMI 1640 Aq media (RPMI) at a 

concentration of 5x106/ml.  

 

A 96 well ChemoTx® microplate (Neuro Probe) with a 5M pore size filter and 300l capacity 

lower wells was prepared by pipetting 299l of RPMI (no chemokine controls wells), RPMI 

containing CCL2 at a concentration of 100ng/ml, RPMI containing CXCL12 at a concentration of 

100ng/ml (experimental wells) and CXCL12 at 2g/ml (positive control wells) into designated 

wells. The framed filter was then applied over the lower chambers of the microplate ensuring 

that the liquid in the lower chamber made contact with the filter to form a seal (Figure 6.1). 

 

Fifty l of cell suspension was then applied to the top of the filter within the hydrophobic ring 

to form a hemispheric drop. Each sample was prepared in triplicate. Any wells in which the 

hemispheric drop appeared smaller was excluded from analysis as it was likely that the aqueous 

seal had been broken for these cells. The plate was then covered with a plastic lid and incubated 

for 4 hours at 37C in humidified air with 5% CO2.  

 

Following incubation the filter was carefully removed from the microplate and discarded. After 

vigorous mixing 100l was taken from each well of the microplate and transferred to a fresh 96 

well culture plate. One hundred l of Guava® ViaCount Flex (Merck Millipore) reagent was then 

added to each well and the plate acquired on a Guava® easyCyte Flow Cytometer. The remaining 

200l was used for FACS analysis of migrated cells. Cell were labelled for CD3, CD4 and CD8 as 

per protocol in Chapter 2. 
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The ViaCount reagent is designed to enable counting and viability assessment of low-density 

samples on the EasyCyte flow cytometer. The cytometer was used in EasyFit mode to allow the 

software to automatically and independently assign live/dead status to cells and to provide an 

absolute cell count in each sample. Raw data was exported from the cytometer to Microsoft 

Excel (Microsoft). An average was taken of triplicate viable cell counts from each sample. This 

was then multiplied by 3 (to reflect cell count in total 300l of original well) and expressed as a 

%migration based on the number of cells in the upper chamber being 250,000 (50l of 5x106/ml 

cell suspension). The Migration Index was then derived using the formula: 

 

% cells migrated in experimental samples / % cells migrated in no chemokine control wells 

 

Autologous samples were compared with autologous control and allogeneic samples with 

allogeneic controls. Wilcoxon matched pairs signed rank test was used to compare migratory 

index of untreated versus lenalidomide treated samples, P values <0.05 were taken as 

significant. 
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Figure 6.1 

 

Figure 6.1 Transwell Migration Assay 

(A) Schematic of upper chamber of transwell formed by drop of cell suspension, and lower 

chamber filled with media containing chemokine separated by semi-permeable membrane.  

(Adapted from http://www.neuroprobe.com/product/chemo_tx/) 

(B) Photograph of ChemoTx plates used for experiments  

(Reproduced from http://www.neuroprobe.com/product/chemo_tx/) 

http://www.neuroprobe.com/product/chemo_tx/
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6.3.3 Time-lapse video microscopy chemokinesis assay 

 

Using time-lapse imaging it is possible to assess movement of single cells in culture (reviewed in 

Kramer et al. 377). The Nikon Biostation IM is a cell incubator with an integrated microscope that 

allows imaging of multiple samples simultaneously over time.  

 

Firstly Nikon HiQ4 plates were coated with ICAM1-Fc chimera (Biolegend) prepared at 3g/ml 

in sterile PBS and incubated overnight at 4C. The next day ICAM1 solution was removed and 

the plates blocked with 2% bovine serum albumin (BSA) in sterile PBS for 1 hour at 4C. The 

plates were then washed 3 times with warmed (37C) hanks buffered basic salt solution (HBSS) 

containing 20mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer 

(HBSS+20mM HEPES). Plates were kept in the incubator at 37C containing the last wash of 

HBSS+20mM HEPES until cell solution was added. 

 

Alloresponder T cells were MACS isolated from untreated or lenalidomide-treated allogeneic or 

autologous control co-cultures at day 9. Cells were washed in sterile PBS and counted before 

being resuspended in warmed HBSS+20mM HEPES containing either: no chemokine, CCL2 at 

100ng/ml or CXCL12 at 100ng/ml at 1x106cells/ml.  

 

Plates were then loaded into the incubator chamber of the Nikon Biostation IM and incubated 

at 37C with humidified air and 5% CO2. Cells were allowed to settle onto the surface of the plate 

for 20 mins. Images were then recorded from each of the 4 wells of the plate at 30 second 

intervals for 30 mins at x20 magnification. 

 

Images from the Nikon Biostation IM were imported into the NIS Elements Advanced Research 

software (Nikon) for analysis. Using the tracking module a minimum of 30 (maximum 50) cells 

were assigned for tracking in an area that was 200M from the centre of the image in all 

directions. Cells were manually tracked over the course of the time-lapse and path length (in 

pixels) derived by the software. Cells that migrated off the edge of the image were excluded 

from analysis. The average path length for the cells counted was then derived for each sample 

and the Mann Whitney test used to compare lenalidomide treated with untreated cells, P values 

<0.05 were taken as significant. 
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6.3.4 Cytotoxicity assays 

 

The end product of both GvT and GvHD responses is the killing of target cells. In practice GvT is 

directed at allogeneic cells of the haematopoietic lineage, most commonly found in the bone 

marrow or lymph nodes. In order to assess the capacity of lenalidomide treated alloresponder 

cells to kill allogeneic haematopoietic targets a co-culture cytotoxicity assay was performed as 

described in Davies et al. 127. 

 

On day 4 of the allogeneic co-culture a reserved aliquot of corresponding stimulator cells was 

thawed and cells were resuspended at 106cells/ml in supplemented media containing PHA-L at 

3g/ml and IL2 at 100IU/ml. Cells were then incubated at 37C in humidified air with 5% CO2 to 

derive PHA-blasts to act as allogeneic haematopoietic targets. 

 

CFSE-stained alloresponder MACS-purified T cells or CD8+ T cells and autologous control T 

cells/CD8+ T cells were isolated from untreated or lenalidomide-treated allogeneic or autologous 

control co-cultures at day 9. Cells were counted and then resuspended in supplemented RPMI 

at 10x106cells/ml. 

 

PHA-blasts cells were counted, transferred to a sterile 15ml falcon tube and washed in serum-

free RPMI. Cells were then centrifuged at 500g for 10 mins at RT to pellet and the supernatant 

removed completely with a pipette. PHA-blasts to be used as targets in cytotoxicity assays were 

then labelled with PKH-26 as per manufacturers protocol to allow their identification. Briefly, 

cells were resuspended in ethanolic diluent C provided and an equal volume of 2x dye solution 

(prepared by dilution of PKH 26 in diluent C) was added. Cells and dye were mixed by vigorous 

pipetting and incubated for 1 min. Staining was stopped by addition of a double volume of FBS 

and incubated for a further minute. Cells were then washed in supplemented media twice prior 

to resuspension in supplemented media at 1x106cells/ml and transferred to a fresh sterile 15ml 

falcon tube. 

 

Fifty thousand PKH-26 stained allogeneic and autologous target cells were then pipetted into 

designated wells in a u-bottom 96-well sterile culture plate. Serial dilutions of CFSE-labelled 

alloresponder T cells or CD8+ T cells were then prepared to give ratios of 20:1, 10:1 and 2:1 

effectors in 100l of supplemented media. Effectors were then added to relevant allogeneic or 

autologous target cells in the 96-well plate. All samples were prepared in triplicate. A further 
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100l of target cells was added to the negative control wells to ensure that the volume of media 

was the same in each well. 

 

The plate was then incubated for 4 hours at 37C in humidified air with 5% CO2. Following 

incubation the plate was centrifuged at 500g for 5 mins at RT to pellet the cells, supernatant was 

discarded and the cells washed in FACS buffer. Cells were resuspended in annexin V binding 

buffer containing annexin V (Biolegend) and incubated in the dark at RT for 15 mins. Cells were 

then washed in annexin V binding buffer and transferred to 1.2ml microtubes and acquired on 

the BD Fortessa flow cytometer (Beckton Dickinson). 

 

Analysis of co-staining patterns of PKH-26 and annexin V allowed identification of apoptotic 

target cells and comparison of % apoptosis in negative controls and those containing effectors 

in increasing ratios with targets. This method has been shown to be equivalent to the 

chromium51 release assay used to evaluate cytotoxicity, with the major advantage of avoiding 

exposure to radioactive isotopes (reviewed in Zaritskaya et al. 285).  

 

The average % apoptosis was calculated for each triplicate sample and the specific apoptosis 

caused by effector cell mediated cytotoxicity calculated using the formula: 

 

% apoptosis of allogeneic targets when co-cultured with effector cells - % apoptosis of targets 

when cultured alone. 

 

Wilcoxon matched pairs signed rank test was used to compared % target apoptosis in 

lenalidomide treated versus untreated samples and P value<0.05 taken as significant. 

 



Caroline Besley  Chapter 6 - Results 

 216 

6.4 Results 

 

6.4.1 Chemokine receptor expression changes during allogeneic co-culture appear to be 

dependent on the activation and proliferation status of the T cell.  

 

Using multi-parameter flow cytometry I first examined the expression of the chemokine 

receptors CCR2, CXCR4, CCR5, CCR7, CCR9 and CCR10 on APB-derived T cells allostimulated in 

the presence of lenalidomide or vehicle control (DMSO). Baseline proportions of CCR-positive T 

cells were consistent with the published literature 378.  Expression of CCR on CD4+ and CD8+ T 

cells was assessed at baseline, day 7 and day 9 of allogeneic co-culture to determine how 

expression changed over time and with allostimulation.  

 

To determine whether changes were due simply to the effect of ex vivo culture allostimulated T 

cells were compared to T cells from autologous co-culture (Figure 6.2 & 6.3). The proportion of 

CCR2 positive T cells remains static in allostimulated cells but dropped in T cells derived from 

autologous control co-cultures (Figure 6.2, A) and in contrast the proportion of CXCR4, CCR7 and 

CCR9 positive T cells decreases on allostimulation but remained static in cells from autologous 

co-cultures (Figure 6.2, C, 6.3, A-B). This indicated that the expression of CCR was modified by 

the degree to which the T cells are activated and stimulated rather than simply due to time spent 

in culture. 

 

Both at baseline and on allostimulation the proportion of CCR7 positive cells was consistently 

higher in CD4+ T cells than in CD8+ T cells (Figure 6.3, A), while in contrast the proportion of CCR5 

positive cells was consistently higher in CD8+ T cells at baseline and after allostimulation (Figure 

6.2, B).  
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Figure 6.2 
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Figure 6.2 Allostimulation alters frequencies of T cells expressing chemokine receptors 

(A) Percentages of c-chemokine receptor 2 (CCR2) positive cells within CD4+ and CD8+ T cell 

subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous control 

co-culture (Auto). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. 

* = P<0.05, ** = P<0.01. 

(B) Percentages of c-chemokine receptor 5 (CCR5) positive cells within CD4+ and CD8+ T cell 

subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous control 

co-culture (Auto). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs.  

(C) Percentages of cx-chemokine receptor 4 (CXCR4) positive cells within CD4+ and CD8+ T cell 

subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous control 

co-culture (Auto). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. 

** = P<0.01, *** = P<0.001. 
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Figure 6.3 
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Figure 6.3 Allostimulation alters frequencies of T cells expressing chemokine receptors 

(A) Percentages of c-chemokine receptor 7 (CCR7) positive cells within CD4+ and CD8+ T cell 

subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous control 

co-culture (Auto). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. 

* = P<0.05. 

(B) Percentages of c-chemokine receptor 9 (CCR9) positive cells within CD4+ and CD8+ T cell 

subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous control 

co-culture (Auto). Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. 

* = P<0.05, ** = P<0.01. 

(C) Percentages of c-chemokine receptor 10 (CCR10) positive cells within CD4+ and CD8+ T 

cell subsets at baseline and after 7 and 9 days of allogeneic co-culture (Allo) or autologous 

control co-culture (Auto). Box (interquartile range, where there are 3 biological replicates) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 6 unique donor responder pairs.  
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6.4.2 Addition of lenalidomide to allogeneic co-culture causes additional changes in CCR2, 

CCR7 and CCR10 expression on alloproliferative CD8+ T cells. 

 

Taking into account that changes in the proportion of cells in a T cell population positive for a 

given CCR may reflect the proportion of those cells that have become activated and proliferative 

(as shown by changes in CCR expression on allostimulation vs autologous stimulation), and that 

lenalidomide causes a greater proportion of CD8+ T cells to proliferate after allogeneic stimulus; 

to understand the effect of lenalidomide on CCR expression after allostimulation I next went on 

to concentrate on the expression of CCRs on alloproliferative CD4+ and CD8+ T cell subsets. 

 

The greatest change in CCR expression after lenalidomide exposure was the significant up-

regulation of CCR2 on both CD4+ and CD8+ alloproliferative T cells (23% (untreated) median 

compared to 34% (lenalidomide treated) and 20% to 36% respectively) (Figure 6.4, A). The 

proportion of CCR7+ alloproliferative CD8+ T cells was halved (4% (untreated) compared to 

median 2% (lenalidomide treated)) in keeping with my earlier finding that there is a decrease in 

naïve and CM (both CCR7+ T cell subsets) cells after lenalidomide exposure (Figure 6.5, A).  

 

The proportion of CCR10+ cells was very small in CD8+ alloproliferative cells. Exposure to 

lenalidomide halved the frequency of these cells from median 1% (untreated) to 0.4% median 

(lenalidomide treated) (Figure 6.5, C). 
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Figure 6.4 
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Figure 6.4 Allostimulation in the presence of lenalidomide leads to expansion of T cells 

expressing CCR2 

(A) Percentages of c-chemokine receptor 2 (CCR2) positive cells within non-alloproliferative 

(NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of allogeneic co-

culture in the absence (Allo) or presence of lenalidomde (Allo+L). Box (interquartile range) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 9 unique donor responder pairs. ** = P<0.01. 

(B) Percentages of cx-chemokine receptor 4 (CXCR4) positive cells within non-

alloproliferative (NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of 

allogeneic co-culture in the absence  (Allo) or presence of lenalidomde (Allo+L). Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 9 unique donor responder pairs.  

(C) Percentages of c-chemokine receptor 5 (CCR5) positive cells within non-alloproliferative 

(NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of allogeneic co-

culture in the absence (Allo) or presence of lenalidomde (Allo+L). Box (interquartile range) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 9 unique donor responder pairs. 
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Figure 6.5 
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Figure 6.5 Alloproliferation following lenalidomide exposure leads to decreased 

frequency of CD8+ T cells expressing CCR7 and 10 

(A) Percentages of c-chemokine receptor 7 (CCR7) positive cells within non-alloproliferative 

(NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of allogeneic co-

culture in the absence (Allo) or presence of lenalidomde (Allo+L). Box (interquartile range) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 9 unique donor responder pairs. ** = P<0.01. 

(B) Percentages of c-chemokine receptor 9 (CCR9) positive cells within non-alloproliferative 

(NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of allogeneic co-

culture in the absence (Allo) or presence of lenalidomde (Allo+L). Box (interquartile range) 

and whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results 

are shown for 9 unique donor responder pairs.  

(C) Percentages of c-chemokine receptor 10 (CCR10) positive cells within non-

alloproliferative (NP) and alloproliferative (P) subsets of CD4+ and CD8+ T cells after 9 days of 

allogeneic co-culture in the absence (Allo) or presence of lenalidomde (Allo+L). Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 6 unique donor responder pairs. * = P<0.05. 
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6.4.3 Addition of lenalidomide to allogeneic co-culture increases the frequency of 

alloproliferative CD8+ T cells co-expressing CCR2 and CCR5. 

 

I examined co-expression patterns of CCR and whether these were affected by lenalidomide 

exposure during allostimulation.  The only CCR that were consistently co-expressed, and of 

which the co-expression was significantly altered by exposure to lenalidomide were CCR2 and 

CCR5. The proportion of CCR2+CCR5+ CD4+ T cells was significantly higher in alloproliferative than 

non-alloproliferative cells, but the addition of lenalidomide did not increase the proportion of 

positive cells further. However, lenalidomide treatment significantly increased the proportion 

of CD8+ alloproliferative T cells showed (median 16% (untreated) compared to 30% 

(lenalidomide treated)) co-expressing CCR2 and CCR5 (Figure 6.6, B). 
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Figure 6.6 
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Figure 6.6 Allostimulation in the presence of lenalidomide leads to expansion of T cells 

co-expressing CCR2 and CCR5 

(A) Percentages of CD4+ T cells co-expressing c-chemokine receptor 2 (CCR2) and c-

chemokine receptor 5 (CCR5) within non-alloproliferative (NP) and alloproliferative (P) 

subsets after 9 days of allogeneic co-culture in the absence (Allo) or presence of lenalidomide 

(Allo+L). Box (interquartile range) and whisker (maximum and minimum) plots are shown. 

Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. ** = 

P<0.01. 

(B) Percentages of CD8+ T cells co-expressing c-chemokine receptor 2 (CCR2) and c-

chemokine receptor 5 (CCR5) within non-alloproliferative (NP) and alloproliferative (P) 

subsets after 9 days of allogeneic co-culture in the absence (Allo) or presence of lenalidomide 

(Allo+L). Box (interquartile range) and whisker (maximum and minimum) plots are shown. 

Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. ** = 

P<0.01. 
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6.4.4 Transwell migration of alloresponder PBMC to CCL2 is not significantly altered after 

allostimulation in the presence of lenalidomide. 

 

Having examined CCR expression on T cells after allogeneic co-culture and determined that the 

greatest effect of lenalidomide treatment was to increase the proportion of CCR2+ 

alloproliferative T cells, I next aimed to assess whether this change led to any functional change 

in the ability of allostimulated T cells to migrate in response to CCL2. CCL2 is an important 

chemokine in the pathogenesis of GvHD, directing T cells towards inflamed tissues where donor 

T cells encounter activated host-APC. As a comparison I also chose to examine migration to 

CXCL12 as a chemokine that mediates migration to an important site of GvT, the bone marrow.  

 

Using a transwell system I first determined optimal concentrations of chemokine to achieve 

migration of PBMC. Migration of healthy steady state PBMC of approx 50% was achieved at CCL2 

and CXCL12 concentrations of 100ng/ml, this concentration was used for all further experiments 

(Figure 6.7, A). 

 

Next migration was determined for cells that had undergone 9 days of allostimulation in the 

presence or absence of lenalidomide. As expected there was a low level of basal migration (12%) 

through the transwell in the absence of any chemokine. Migration of both autologous responder 

and alloresponder PBMC in the presence of CCL2 and CXCL12 was increased over the basal level, 

however there was no significant difference in the migratory index of responder PBMC from 

lenalidomide treated co-cultures compared to untreated co-cultures (Figure 6.7, B-C). 
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Figure 6.7 
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Figure 6.7 Allostimulation in the presence of lenalidomide does not significantly alter 

chemokine driven migration of alloresponder PBMC 

(A) Mean (+/-SD) % transwell migration of 4 healthy donor PBMC in response to increasing 

concentrations of CCL2 or CXCL12. 

(B) Mean (+/-SD) migration index (% migration in presence of chemokine/% migration in 

absence of chemokine) of autologous PBMC after 9 days of autologous co-culture in the 

absence (Auto) or presence (Auto+L) of lenalidomide. Results are shown for 3 unique 

autologous co-cultures. Dotted line represents migration of comparator group i.e. Untreated 

autologous responder cells in the absence of chemokine. 

(C) Mean (+/-SD) migration index (% migration in presence of chemokine/% migration in 

absence of chemokine) of allogeneic responder PBMC after 9 days of allogeneic co-culture in 

the absence (Allo) or presence (Allo+L) of lenalidomide. Results are shown for 9 unique 

donor-responder pairs and 2 unique positive controls. Dotted line represents migration of 

comparator group i.e. Untreated allogeneic responder cells in the absence of chemokine. 

Positive control = CXCL12 2μg/ml stimulated freshly thawed PBMC. 
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Absence of an increase in migration to CCL2 in particular is perhaps surprising given that I have 

shown the proportion of CCR2+ CD4+ and CCR2+CD8+ T cells in this population to be increased 

after lenalidomide treatment. However as these experiments used bulk PBMC responders it is 

possible that lenalidomide may be negatively impacting on migration of other cell types, such as 

myeloid cells leading to an overall reduction in PBMC migration. In order to answer this question, 

cells that had migrated into the lower well of the transwell plate (migrated cells) were collected 

and interrogated by FACS. If migration of non-T cells were negatively impacted by lenalidomide 

they would be retained in the upper chamber and therefore the relative proportion of T cells in 

the lower chamber would be increased. There was no difference in the frequency of T cells, 

between the upper chamber and that in the lower chamber of the transwell plate in either 

treated or untreated co-cultures in any condition, indicating that there does not appear to be 

either a negative impact on non-T cells or a positive impact on T cell migration following 

lenalidomide treatment. (Figure 6.8, A).  

 

Lenalidomide treatment leads to a proportional increase in activated T cells that are 

morphologically larger than their non-proliferative counterparts.  These may have more 

difficulty transitioning through the pores of the transwell plate. These activated cells may also 

be more adherent and therefore are retained in the upper chamber?  If this were the case then 

there would be proportionally fewer CFSEdim cells in the lower chamber than the upper chamber 

of the transwell plate. The frequency of CFSEdim cells was the same in both the upper and lower 

chambers of the transwell plate indicating that this is not the cause for the reduced migration 

of lenalidomide-treated cells (Figure 6.8, B-D). 
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Figure 6.8 
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Figure 6.8 Alloproliferative cells exposed to lenalidomide are able to migrate from the 

upper chamber to the lower chamber of the transwell plate 

(A) Percentages of T cells within alloresponder PBMC after 9 days of allogeneic co-cultures in 

the absence (Allo) or presence of lenalidomide (Allo+L) in the upper chamber (UC) and lower 

chamber of the transwell plate in basal conditions (no chemokine (CC)) and stimulated by 

CCL2 or CXCL12. Box (interquartile range) and whisker (maximum and minimum) plots are 

shown. Horizontal lines are medians. Results are shown for 9 unique donor responder pairs. 

Percentages of alloproliferative (CFSEdim) CD4+ and CD8+ T cells within alloresponder PBMC 

after 9 days of allogeneic co-cultures in the absence (Allo) or presence of lenalidomide 

(Allo+L) in the upper chamber (UC) and lower chamber (Mig) of the transwell plate in basal 

conditions (no chemokine (CC)) (B) and stimulated by CCL2 (C) or CXCL12 (D). Box 

(interquartile range) and whisker (maximum and minimum) plots are shown. Horizontal lines 

are medians. Results are shown for 9 unique donor responder pairs. 
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6.4.5 Allostimulation in the presence of lenalidomide alters expression of integrin VLA2 

 

Integrins are a family of surface proteins that contribute to and control T cell migration 88. I next 

examined whether allostimulation in the presence of absence of lenalidomide could impact on 

the expression of integrins on T cells in a way that could affect T cell migration. I first chose to 

examine the expression of very late antigen 2 (VLA2), following the observation that the gene 

expression of the alpha subunit of this integrin was in the top 10 significantly up/down-regulated 

genes in my gene expression data comparing treated alloproliferative cells compared to treated 

non-proliferative CD8+ T cells (Chapter 5).  

 

In both CD4+ and CD8+ T cells the proportion of cells expressing VLA2 was increased in 

alloproliferative cells compared to non-alloproliferative cells, but importantly allostimulation in 

the presence of lenalidomide led to a significantly increased frequency of VLA2+ CD4+ and CD8+ 

T cells in alloproliferative subsets. There was a 2-fold increase in the proportion of VLA2+ 

alloproliferative CD4+cells and near 3-fold increase in the proportion of VLA2+ alloproliferative 

CD8+ cells (Figure 6.9, C-D). 

 

I then assessed expression of lymphocyte function-associated antigen 1 (LFA1), as this is the 

major T cell integrin involved in T cell-endothelial and T cell-APC interactions. The proportion of 

LFA1+ CD4+ and CD8+ T cells was high (median >80%) in both non-alloproliferative and 

alloproliferative cells following allostimulation. In the case of CD4+ cells there was no change in 

the proportion of positive cells depending on proliferation status of the cells, whereas in the 

CD8+ subset the proportion of LFA1+ cells was significantly increased in alloproliferative cells, 

although lenalidomide exposure had no additional impact (Figure 6.9, A-B).  
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Figure 6.9 
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Figure 6.9 Allostimulation in the presence of lenalidomide leads to increased frequency of 

alloproliferative T cells expressing VLA2 

(A) Percentages of leukocyte functional antigen 1 (LFA1) positive CD4+ T cells in non-

alloproliferative (NP) and alloproliferative (P) subsets after 9 days of allogeneic co-culture in 

the absence (Allo) or presence of lenalidomide (Allo+L). Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 9 unique donor-responder pairs.  

(B) Percentages of leukocyte functional antigen 1 (LFA1) positive CD8+ T cells in non-

alloproliferative (NP) and alloproliferative (P) subsets after 9 days of allogeneic co-culture in 

the absence (Allo) or presence of lenalidomide (Allo+L). Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 9 unique donor-responder pairs. ** P <0.01. 

(C) Percentages of very late activation antigen (VLA2) positive CD4+ T cells in non-

alloproliferative (NP) and alloproliferative (P) subsets after 9 days of allogeneic co-cuture in 

the absence (Allo) or presence of lenalidomide (Allo+L). Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 9 unique donor-responder pairs. * P = <0.05. 

 (D) Percentages of very late activation antigen (VLA2) positive CD8+ T cells in non-

alloproliferative (NP) and alloproliferative (P) subsets after 9 days of allogeneic co-cuture in 

the absence (Allo) or presence of lenalidomide (Allo+L). Box (interquartile range) and whisker 

(maximum and minimum) plots are shown. Horizontal lines are medians. Results are shown 

for 9 unique donor-responder pairs. ** = P<0.01. 
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Other work from our group has shown that lenalidomide treatment was able to confer greater 

activity to LFA1 on T cells from CLL patients by inducing a conformational-change to a more 

active ‘extended’ form. I therefore finally assessed the expression of extended-LFA1 on cells 

allostimulated in the presence or absence of lenalidomide. Surprisingly I found that the 

proportion of CD4+ T cells expressing extended-LFA1 was very low (mean less than 0.5%) after 

allostimulation in the presence or absence of lenalidomide. The proportion was higher in CD8+ 

T cells, but was still a fraction of the number of cells that stained positive for the presence of the 

integrin (Figure 6.10, A-B). Also unexpected was the finding that the proportion of T cells staining 

positively for extended-LFA1 appeared to be reduced in cells allostimulated in the presence of 

lenalidomide compared to controls. Additionally on a per-cell basis lenalidomide treatment 

appeared to reduce extended-LFA1 expression (measured by median fluorescence intensity, 

Figure 6.10, C). Further samples are required to confirm these findings as the number of unique 

donor-responder pairs examined was limited (n=3). 
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Figure 6.10 
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Figure 6.10 Allostimulation in the presence of lenalidomide leads to decreased expression 

of extended LFA1 on alloesponder T cells 

(A) Percentages of CD4+ and CD8+ T cells expressing extended LFA1 after 9 days of allogeneic 

co-culture in the absence (Allo) or presence of lenalidomide (Allo+L). Line and whisker 

(maximum and minimum) plots are shown. Horizontal lines represent medians. Results are 

shown for 3 unique donor responder pairs. 

(B) Percentages of alloproliferative CD4+ and CD8+ T cells expressing extended LFA1 after 9 

days of allogeneic co-culture in the absence (Allo) or presence of lenalidomide (Allo+L). Line 

and whisker (maximum and minimum) plots are shown. Horizontal lines represent medians. 

Results are shown for 3 unique donor responder pairs. 

(C) Expression (median fluorescence intensity) of extended LFA1 on alloproliferative CD4+ 

and CD8+ T cells after 9 days of allogeneic co-culture in the absence (Allo) or presence of 

lenalidomide (Allo+L). Line and whisker (maximum and minimum) plots are shown. 

Horizontal lines represent medians. Results are shown for 3 unique donor responder pairs. 
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6.4.6 Chemokinesis of alloresponder T cells is not significantly altered after allostimulation in 

the presence of lenalidomide. 

 

It has been shown that lenalidomide is capable of ‘repairing’ migratory defects in T cells induced 

by contact with CLL cells 379. In experiments using time-lapse microscopy investigators were able 

to demonstrate that healthy T cells co-cultured with CLL cells had reduced motility compared to 

cells co-cultured with healthy B cells, and that lenalidomide treatment could restore motility to 

normal levels. The experiment used slides coated in ICAM1 and media containing CXCL12. 

Although this system doesn’t assess directional migration (as in the transwell assay), the 

addition of ICAM1 has the advantage of assessing two aspects of T cell migration, integrin-

dependent as well as chemokine stimulated movement. 

 

For these experiments T cells were purified from allogeneic co-cultures at day 9 prior to 

incubation on ICAM1-coated plates and acquisition of images. I could detect no significant 

difference in the chemokinesis of lenalidomide-treated T cells (compared to untreated), in 

response to ICAM1 alone, in the presence of CCL2 or in the presence of CXCL12 (Figure 6.11, A-

C). It is uncertain as to whether a change in the amount of extended-LFA1 present on 

lenalidomide treated cells had impacted on the results of these experiments. 
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Figure 6.11 
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Figure 6.11 Allostimulation in the presence of lenalidomide does not affect chemokine 

driven migration in response to ICAM1 

(A) Distance travelled by alloresponder T cells on intercellular adhesion molecule 1 (ICAM1) 

after 9 days of autologous or allogeneic co-culture in the absence (Auto/Allo) or presence of 

lenalidomide (Auto+L/Allo+L). Box (interquartile range) and whisker (maximum and 

minimum) plots are shown. Horizontal lines are medians. Results are shown for 9 unique 

donor-responder pairs and their corresponding 3 autologous controls.  

(B) Distance travelled by alloresponder T cells on intercellular adhesion molecule 1 (ICAM1) 

in the presence of CCL2 after 9 days of autologous or allogeneic co-culture in the absence 

(Auto/Allo) or presence of lenalidomide (Auto+L/Allo+L). Box (interquartile range) and 

whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results are 

shown for 9 unique donor-responder pairs and their corresponding 3 autologous controls.  

(C) Distance travelled by alloresponder T cells on intercellular adhesion molecule 1 (ICAM1) 

in the presence of CXCL12 after 9 days of autologous or allogeneic co-culture in the absence 

(Auto/Allo) or presence of lenalidomide (Auto+L/Allo+L). Box (interquartile range) and 

whisker (maximum and minimum) plots are shown. Horizontal lines are medians. Results are 

shown for 9 unique donor-responder pairs and their corresponding 3 autologous controls.  
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6.4.7 Lenalidomide treated CD8+ alloresponder T cells demonstrate increased cytotoxicity 

against allogeneic haematopoietic targets 

 

Having found no evidence that lenalidomide treatment impacted on alloresponder T cell 

migratory capacity in a way that might differentially direct T cells to sites of GvHD or GvT, I next 

went on to assess a functional parameter that could provide further insight into the capacity of 

lenalidomide-treated cells to exert GvT effects. PBMC from donors used as stimulators in 

allogeneic co-culture were incubated with PHA-L and IL2 to generate PHA-blasts for use as 

haematopoietic targets in a flow based cytotoxicity assay. The up-regulation of markers 

indicating ‘blast’ formation, CD25, CD45RO, CD69 and HLA-DR 380 was seen after 5 days of culture 

(Figure 6.12, A). 

 

I first examined whether T cells from allogeneic co-cultures treated with lenalidomide induced 

greater target cell apoptosis than those from untreated co-cultures. The % target cell apoptosis 

was calculated as: 

 

% apoptosis of allogeneic target cells when co-cultured with effector cells - % apoptosis of 

target cells when cultured alone. 

 

I observed a decrease in % apoptosis of autologous target cells when co-cultured with increasing 

numbers of effectors from lenalidomide treated and untreated autologous co-cultures (Figure 

6.12, B). This would indicate that the cells were in some way protected from apoptosis, this may 

be due to the lenalidomide or possibly simply due to the targets being protected when cultured 

together with greater numbers of cells.  

 

This may also explain why there was also a decrease in allogeneic target cell apoptosis when co-

cultured with increasing numbers of effectors from untreated allogeneic co-cultures, whereas 

one would expect an increase in apoptosis. In contrast where effectors were from lenalidomide 

treated co-cultures a gradual increase in % target apoptosis was seen as the ratio of effectors to 

targets increased, although this did not reach statistical significance it suggested that there was 

likely to be an increase in cytotoxicity exerted by lenalidomide treated T cells. 

 

I therefore went on to purify CD8+ alloresponder T cells from allogeneic co-cultures for use as 

effector cells. I chose to use CD8+ T cells alone as this is the cellular subset that I would expect 
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to exert greater cytotoxic effects against haematopoietic targets and secondly as this is the 

subset of cells in which I observed an increased in the frequency of CD107a expression and 

greater polyfunctional cytokine capacity. Therefore by removing the CD4+ T cells it should be 

possible to more easily resolve any change in target cell apoptosis. Indeed when purified CD8+ T 

cells from lenalidomide treated and untreated co-cultures were used as effectors a gradual 

increase in cytotoxicity was observed as the ratio of effector to target cells increased. 

Importantly CD8+ T cells from lenalidomide treated co-cultures demonstrated a greater degree 

of target cell killing compared to cells from untreated co-cultures at a 10:1 and 20:1 ratio of 

effectors to targets (Figure 6.12, C). 
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Figure 6.12 
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Figure 6.12 Alloresponder CD8+ T cells exposed to lenalidomide exert increased 

cytotoxicity against allogeneic haematopoietic targets 

(A) Treatment of healthy PBMC with interleukin 2 (IL2) and phytohaemaglutinin (PHA) leads 

to increased expression of CD25, CD45RO, CD69 and HLA-DR after 5 days in line with 

published literature. Mean (+/- SEM) are shown for 4 unique healthy donors. 

(B) Mean (+/- SD) percentage apoptosis of autologous and allogeneic target cells (T) in co-

culture with increasing ratios of effector T cells (E) from lenalidomide treated or untreated 

autologous and allogeneic co-cultures at day 9. Results are shown for 9 unique donor-

responder pairs. 

(C) Mean (+/- SD) percentage apoptosis of autologous and allogeneic target cells (T) in co-

culture with increasing ratios of effector CD8+ T cells (E) from lenalidomide treated or 

untreated autologous and allogeneic co-cultures at day 9. Results are shown for 9 unique 

donor-responder pairs. * = P<0.05. 
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6.5 Discussion 

 

The separation of GvT and GvHD by modulation of organ specific migration could have many 

advantages, not least that other aspects of T cell function important for GvT could be preserved. 

As with other aspects of the alloresponse, it was unknown whether the use of lenalidomide after 

AHSCT impacts on the migratory capacity of T cells. This could be anticipated in view of changes 

in cytoskeletal and migratory proteins observed in autologous T cell responses 186,209,379. 

 

The experiments detailed in this chapter demonstrate that although lenalidomide-treatment 

alters frequencies of alloproliferative T cells expressing particular CCR, it does not appear to do 

this in a pattern that would be expected to confer organ-specific migratory capacity. 

Lenalidomide treatment also did not significantly impact functional assays of T cell migration to 

chemokines demonstrated to be important for directing donor T cells to sites of GvHD (CCL2) or 

to sites of GvT (CXCL12). This would suggest that potentiation of migration is not a contributor 

to the increased GvHD observed following clinical use of lenalidomide after AHSCT. The findings 

may also explain why the GvHD observed does not appear to target any one specific organ 

system.  

 

Additionally these experiments also demonstrate that a statistically significant increase in the 

frequency of a subset of CCR positive cells does not necessarily equate to a change in the 

functional chemotaxis of a mixed population of cells. The transwell assays performed could be 

repeated with either purified T cells or purified CD8+ T cells to increase the possibility of 

detecting a change in the subset specific migratory capacity of these cells. However given that 

there was no difference observed in the time-lapse microscopy assays, in which isolated T cells 

were used I am not sure that this would provide additional useful information. 

 

The functional capacity of cells to respond to CCL2 was the focus of the functional experiments, 

as there was a significant increase in the frequency of CCR2 positive cells. However it is possible 

that while the frequency of cells expressing other CCR (i.e. CCR9) doesn’t change this does not 

necessarily equate to no difference in function. It is possible that the responses of these cells to 

chemokine could be either enhanced or repressed by factors other than the degree of receptor 

expression. Therefore it might still be informative to assess functional migratory responses to 

chemokines such as CCR9 and CCR10 that direct migration specifically to the gut and skin, 

important sites of acute GvHD. 
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The co-culture system used did not include addition of cytokines, chemokines or other pro-

inflammatory stimuli, with the aim of maximising the ability to resolve changes in the 

alloresponse due to lenalidomide treatment from changes in T cell responses to external stimuli. 

These have already been assessed in other settings (LPS, SEE, PMA, Ionomycin, IL2). However in 

vivo the levels of these cytokines and chemokines will impact on CCR expression and migratory 

responses. Therefore, an assessment of CCR expression changes or migration in the presence of 

LPS may provide additional information on lenalidomide treated alloresponses in the pro-

inflammatory environment that occurs following AHSCT. 

 

The marked expansion of a CCR2+CCR5+ population of T cells (without a corresponding increase 

in motility) is interesting. CCR2 and CCR5 have been described as markers of activation and 

effector differentiation as well as having roles in survival of T cells in addition to their roles as 

chemokine receptors. Individually CCR2 has been implicated in preventing apoptosis of 

activated CD8+ T cells during the normal contraction phase of the immune response to viruses, 

leading to a prolonged effector response and greater proliferation of responder CD8+ T cells 381, 

which is in agreement with changes observed in the lenalidomide treated alloresponse. CCR5 

has been shown to be preferentially expressed on Th1 cells versus Th2 and therefore may play 

a role in differentiation towards type 1 responses 382, however the expression of this chemokine 

alone on alloresponder cells was not altered by lenalidomide exposure. The co-expression of 

CCR2 and CCR5 is also associated with differentiation of CD4+ cells from naïve through to CM 

and EM phenotype and with acquisition of enhanced cytokine secretion and rapid recall 

responses to antigens 383. The same has not been demonstrated for CD8+ T cells but the 

experimental findings support this role in this subset. Therefore while lenalidomide modulation 

of CCR in the alloresponse may not impact on migration of cells, this is further evidence that 

lenalidomide enhances effector differentiation of alloresponder T cells. 

 

The enhanced alloresponder CD8+ effector phenotype I observed after lenalidomide-treatment 

of allogeneic co-cultures might be expected to result in enhanced target-cell apoptosis. In the 

post-transplant setting this may affect either tumour or healthy cells. My data supports an 

enhanced GvT effect, demonstrating an increased cytotoxicity of CD8+ alloresponder T cells 

against allogeneic haematopoietic targets. However I have not examined the effect on non-

haematopoietic targets. It may be possible to perform similar experiments using peripheral 

blood derived endothelial cells or skin biopsy derived fibroblasts as target cells as in Nonn et al. 

107. An alternative and validated approach would be to perform skin-explant models 384,385, to 
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allow histological evaluation of the effect of donor cells allostimulated in the presence or 

absence of lenalidomide on recipient tissue that is a common target of aGvHD. The limitation of 

this approach is that it uses only the skin as a target of GvHD, whereas aGvHD can affect multiple 

tissues that also include the gut and liver. 

 

It is currently not possible to assess GvHD and GvT alloresponses simultaneously in an in vitro 

model. For this reason the greater proportion of transplant research is conducted using murine 

models. While helpful, the results obtained from these murine systems are often limited by the 

fact that they are either measuring: murine immune responses, which are different from human 

ones or xeno-responses when human cells are transplanted into immunodeficient mice. They 

are also often restricted to measuring responses of selected CD4+ or CD8+ T cell subsets.  

 

An advantage of murine models is the ability to examine GvT and GvHD in one model system. 

However in order to simultaneously measure GvHD and GvT both tumour and responder T cells 

must be engrafted into the mouse, often leading to additional complexity as these tumours are 

often heterotopic (e.g. subcutaneous) and therefore may be inaccessible to T cells that have 

migratory programmes for other tissues (reviewed in Schroeder et al. 386). With the development 

of new murine models such as tumour-bearing Nod-SCID-gamma (NSG) mice transgenic for 

human MHC class I and II, these models may provide better insight into alloresponses 387. 

 

Although the in vitro experiments presented have limitations, they are conducted using human 

cells and with minimum manipulation of the alloresponse. Additional experiments to further 

explore the effect of lenalidomide on allostimulated T cell migration in the presence or absence 

of pro-inflammatory stimuli may reveal differences in organ specific migratory capacity that 

would be clinically relevant.  
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Importantly I have shown that cytotoxicity against haematopoietic targets, representing 

tumours of haemato-lymphoid origin is enhanced following allostimulation in the presence of 

lenalidomide. This supports the use of lenalidomide to enhance GvT effects after AHSCT, not 

restricted to myeloma alone. However an assessment of cytotoxicity against non-

haematopoietic targets is still an important area requiring investigation. 
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Chapter 7 - Final discussion and future work 

 

7.1 Final discussion 

 

AHSCT is an effective treatment for many patients with haematological malignancy and curative 

in approximately 50% of patients overall (Center for International Blood and Marrow Transplant 

Research, https://www.cibmtr.org/). Relapse of primary disease is now the major cause of 

death following AHSCT, followed by GvHD (Figure 7.1). Given the toxicity to the patient and 

expense to the healthcare budget of AHSCT, strategies to reduce the relapse rates are urgently 

needed. 

 

Cellular therapies such as DLI have been effective for some types of relapsing malignancy, 

particularly CML, but have much lower success rates in acute leukaemia and myelodysplastic 

syndrome 26,388. DLI are also associated with significant risk of acute and chronic GvHD. The 

success rates may be increased by strategies to improve the efficacy of DLI, either by selection 

of specific subsets of cells (T, Treg or NK), selection of tumour antigen specific T cells or post-

transplant vaccination prior to DLI.  

 

The availability of cells however remains a major limitation of DLI. It is usually possible to return 

to a sibling or related donor for further collection of cells but re-accessing an unrelated donor is 

more challenging and in the case of UCB units, impossible. The recent advent of CAR T cells 

bearing a modified TCR construct of high affinity and avidity that appears to bypass HLA-

dependent allorecognition may broaden the options for DLI. In case series reported to date CAR 

T cells derived from AHSCT donors have not been observed to cause acute GvHD 389. It is possible 

that in the future third-party CAR T cells could be used as an ‘off the shelf’ treatment for patients 

where DLI are otherwise unavailable. However adoptive cellular therapies are, and are likely to 

remain expensive and time-consuming and with each level of manipulation required to prepare 

the cells prior to transfer the cost and technical difficulty rises. 
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Figure 7.1 

Figure 7.1 Causes of death following AHSCT 

Reproduced from CIBMTR data registry summary slides. 



Caroline Besley  Chapter 7 - Discussion 

 254 

Pharmacological methods of boosting GvT alone or in combination with cellular therapies are 

an attractive option. Hypomethylating agents such as the DNA-methy-transferase inhibitor 

azacytidine have direct anti-tumour effects in AML and MDS and have additional 

immunomodulatory effects. Azacytidine has been shown to cause up-regulation of tumour-

associated antigens and HLA on leukaemia cells that may augment tumour recognition by donor 

T cells 390-392. However the effect on T cells may also be immunosuppressive, with reductions in 

CD8+ T cell cytotoxicity against AML blasts, increases in Treg and suppression of Th1 responses 

392,393.  

 

Trials of azacytidine as maintenance or relapse therapy, and in combination with DLI have shown 

favourable toxicity in terms of GvHD and good response rates 394,395, although durability of 

responses may be an issue, with one trial of single agent azacytidine for treatment of MRD 

reporting an 80% response rate but 65% eventual relapse 396.  

 

IMiDs such as thalidomide and lenalidomide have been used following AHSCT, with the aim of 

capitalising on both their direct anti-tumour and T cell immunomodulatory effects. However 

pre-clinical and in vitro data detailing the changes caused by lenalidomide on the T cell 

alloresponse has to date been lacking. 

 

In this study I have shown that exposure to clinically relevant concentrations of the widely used 

IMiD lenalidomide has contrasting effects on net alloresponses of T cells derived from two cell 

sources commonly used in AHSCT, APB and UCB. Lenalidomide has a common effect, 

potentiating alloresponses of cytotoxic CD8+ T cells from both APB and UCB. Importantly 

however, lenalidomide decreases alloproliferation and expands CD4+ Treg frequencies of CD4+ 

T cells from UCB but not APB, resulting in a net reduction in proliferative UCB T cell 

alloresponses. 

 

The observed changes in alloresponses of APB derived T cells are in keeping with, and help to 

explain the clinical observation of GvHD following lenalidomide treatment after AHSCT. I 

observe a general increase in effector and pro-inflammatory cytokine alloresponses by CD8+ T 

cells that are likely to mediate MHC Class I directed cytotoxicity that can affect healthy recipient 

tissue, resulting in GvHD as well as exert a GvT effect. This occurs alongside a decrease in 

counter-regulatory CD4+ Treg.  
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Importantly however, while lenalidomide increases alloproliferation and effector differentiation 

of UCB CD8+ T cells it also decreases alloproliferation of CD4+ T cells from UCB and expands CD4+ 

Treg frequencies. This results in a net reduction in overall alloproliferative UCB T cell 

alloresponses. The findings, which suggest that lenalidomide could be used to provide direct 

anti-tumour activity after allogeneic UCB transplant with less potential for induction of harmful 

GvHD have important implications for the future use of IMiDs in the post-transplant setting. 

 

Despite the clinical experience and data presented in this thesis, there still remains the question 

of whether lenalidomide can contribute significantly to GvT effects and therefore mitigate the 

accompanying risk of GvHD. The clinical trials have not been designed to detect differences in 

relapse related outcomes, although response rates were promising. There are also intriguing 

case reports where induction of remission was attributed to lenalidomide after AHSCT 262,266. 

Functional data presented in this thesis demonstrates that lenalidomide exposure during 

allostimulation results in enhanced CD8+ T cell cytotoxicity using both the surrogate marker 

CD107a and cell mediated cytotoxicity against haematopoietic target cells that would support 

enhanced GvT after lenalidomide exposure. 

 

While I believe that lenalidomide could be used to boost GvT effects mediated by donor T cells, 

and also possibly NK cells, I have thus far found no evidence that the drug intrinsically has any 

differential effects that could be expected to selectively promote GvT over GvHD. It is more 

likely, given the data presented in this thesis that it is the inherent sensitivity of the cells exposed 

to lenalidomide that results in differential effects on net alloresponses that could influence 

clinical outcomes. 

 

If a case is to be made for the use of lenalidomide after AHSCT to boost GvT, even with the 

concurrent risk of GvHD, then the next question is: what is the best scenario in which to use 

lenalidomide? In which type of transplant or type of patient? When after transplant? And finally 

at what dose? 

 

The data regarding the alloresponses of UCB-derived T cells suggests that lenalidomide may be 

used ‘more safely’ after UCBT due to expansions of tolerogenic Treg. An alternative transplant 

scenario where lenalidomide may be beneficial is following haploidentical-AHSCT. In this 

scenario where rigorous T cell depletion is required, lenalidomide could be utilised to boost NK 
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cell alloresponses, with a reduced risk of T cell mediated GvHD. However further investigation 

of NK cell alloresponses would be required to support this. 

 

In conventional AHSCT using APB-derived T cells, lenalidomide may have a place in the 

treatment of patients at high risk of relapse. In this scenario the clinical experience would 

suggest that lenalidomide used more than 6 months after transplant is less likely to result in 

induction of severe aGvHD. However in high-risk patients this may well be too late as relapse is 

likely to be early after AHSCT. As I have shown a significant impact of a single dose of 

lenalidomide on T cell alloresponses, one option therefore may be to use lenalidomide at an 

earlier time-point, but to reduce the frequency of lenalidomide dosing. A short course of 

lenalidomide administered soon after donor T cell engraftment could potentiate priming of 

donor T cells and enhance GvT alloresponses.  

 

A more conservative approach may be to consider lenalidomide as an adjunct to DLI for patients 

who have already failed to respond to one DLI. These patients have experienced a failure of 

alloreactivity and would be at relatively low risk of GvHD and very high risk of death from 

relapse. Therefore the addition of lenalidomide before and after a second DLI may potentiate 

donor T cell alloresponses and convert the recipient from non-responder to responder status. 

 

Importantly phenotypic characterisation of lenalidomide enhanced alloresponder T cells in this 

thesis provides a potential tool for immunomonitoring of lenalidomide treatment following 

AHSCT. A panel of surface markers including CD8, VLA2, CCR2 and CCR5 could identify expanded 

populations of effector CD8+ T cells responsive to lenalidomide and facilitate identification of 

response to treatment as well as decisions to withdraw treatment if required. As flow cytometry 

forms an integral part of the diagnostic and monitoring pathway for AHSCT recipients, this would 

be a feasible addition to existing management regimes. 

 

An alternative approach to treatment of transplant recipients directly with lenalidomide may be 

to use lenalidomide to augment ex vivo expansion of donor T cells for adoptive transfer. For 

example lenalidomide could augment expansion of CD8+ tumour antigen specific T cells 140, with 

potentially enhanced polyfunctional cytokine and cytotoxic capacity. Alternatively lenalidomide 

could also be used to augment existing strategies to expand Treg from UCB for prevention or 

treatment of GvHD 397. 
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The mechanism of action underlying the altered T cell alloresponse following lenalidomide 

exposure is at least in part due to ikaros depletion via enhanced cereblon activity. This is true of 

both APB and UCB-derived T cells. However as there appears to be no difference in either 

cereblon expression or ikaros expression in UCB compared to APB this cannot explain the 

differential effect of the drug on these two cell sources.  

 

In addition gene expression profiling of alloproliferative CD8+ T cells from APB revealed that 

lenalidomide treatment led to a significant change in the gene expression of these cells that 

cannot all be attributed to the actions of ikaros. Up or down regulation of a number of genes 

involved in T cell activation and proliferation as well as genes involved in pathways that govern 

T cell metabolic switches were found. This indicates that either lenalidomide acts via additional 

non-cereblon dependent pathways, or that cereblon has additional non-ikaros substrates that 

can alter alloresponses. Therefore it is interesting that a group from the Mayo clinic have very 

recently published the discovery of another cereblon binding protein, Argonaut 2 (Ago2) 398. 

 

Ago2 plays a critical role in micro-RNA (miRNA) maturation, stability and function, forming part 

of the miRNA induced silencing complex (miRISC) 399 (Figure 7.2). The authors have only 

presented data for the anti-Ago2 activity of lenalidomide in myeloma cell lines, however it is 

likely this mechanism also occurs in T cells. As a single miRNA can post-transcriptionally regulate 

a number of mRNAs, a decrease in the miRISC would lead to a profound change in the miRNA 

and mRNA milieu inside a cell. Therefore in any cell type a decrease in the miRISC is likely to 

result in pleiotropic effects on cell function, as occurs on lenalidomide treatment of T cells.  

 

In support of this, miRNA have been demonstrated to play important roles in the differentiation 

of CD8+ T cells following antigenic stimulation, with increased and decreased expression of 

miRNA such as miR-21 and miR-16 corresponding with naïve, effector and memory phenotypes 

400. The overall level of miRNA was also found to correlate with the ‘activity’ of the cells, with 

the highest levels found in quiescent naïve and memory cells and the lowest in actively dividing 

and functionally competent effectors. 
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Figure 7.2 

 

 

 

Figure 7.2 Processing and action of miRNA 

Schematic representing transcription of microRNA (miRNA) from miRNA gene by Pol II and 

processing to mature miRNA by Drosha and Dicer enzymes, prior to incorporation of single 

strand miRNA into the micro RNA induced silencing complex (miRISC) containing argonaute 2 

(Ago2). 

The miRISC then exerts post-transcriptional repression of gene expression by preventing 

translation of complementary mRNA by the ribosome. 

 

Adapted from Rana 2007 403 
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Interestingly work by Bronevetsky et al. has shown that activation induces the post-

transcriptional down-regulation of Ago2 in CD4+ T cells, by increased ubiquitination and 

proteasomal degradation 401, which would fit with a cereblon-dependent mechanism. This group 

also found that naïve T cells with reduced Ago2 differentiated more readily into cytokine 

producing cells. Finally work by Marcais et al. showed that in a model where peripheral T cells 

lack Dicer, and therefore are unable to form miRNA, CD4+ T cells were able to become activated 

in the absence of co-stimulation, and at lower levels of TCR stimulation than wild-type T cells 

402.  

 

The commonalities seen between cells with reduced levels of Ago2 and the changes I have 

observed in my experiments with lenalidomide suggests that lenalidomide induced degradation 

of Ago2 via cereblon may be another contributor to the modification of the alloresponse seen 

with lenalidomide. Importantly there are known to be differences in miRNA expression between 

UCB and APB T cells 404,405, therefore this may explain the differential effect of lenalidomide on 

UCB. miRNA are also known to be critically important to the post-transcriptional regulation of 

FOXP3 in UCB Treg 406,407.  

 

It is important to note that lenalidomide is only one of a family of IMiD drugs derived from 

thalidomide, including pomalidomide, CC-11006 and CC-122 (all Celgene). These may also have 

a potential role to play in manipulation of the human alloresponse. However it is important to 

note that none of these drugs have yet been used in this setting, and while one might anticipate 

similar actions existing data has highlighted that both potency and specific changes in immune 

parameters may be different 174,202,408-410. This is evident from the findings that pomalidomide is 

active in patients who are or have become refractory to lenalidomide therapy, and in the 

different toxicities of the two drugs 411,412. Therefore in vitro characterisation of the effects of 

these newer IMiDs on human alloresponses will help to evaluate the possible advantages or 

disadvantages of their use compared to lenalidomide following AHSCT. 

 

In summary, lenalidomide augments human alloresponses in vitro and in vivo by increasing the 

proliferation of allospecific CD8+ T cells with an enhanced capacity to produce pro-inflammatory 

cytokines and to kill their cellular targets. In addition, in APB lenalidomide treatment leads to an 

increase in the CD4+ Teff to Treg cell ratio due to a selective reduction in CD4+ Treg, thereby 

increasing CD4+ help to CD8+ T cells and reducing inhibitory effects of Treg on alloresponses. 
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Importantly in UCB lenalidomide exposure during allostimulation has a differential effect on 

CD4+ alloresponses, leading to expansion of Treg cells that may provide protection from GvHD. 

 

While the exact molecular mechanisms underlying the effect of lenalidomide on the 

alloresponse remain to be fully understood, they are at least in part due to cereblon-dependent 

ikaros degradation and require the presence of the drug during antigen-priming. However it 

appears from the gene expression data that additional pathways are involved in the effect of 

lenalidomide on CD8+ T cells. In light of the recent finding of another cereblon substrate Ago2, 

it is possible that some of these changes are due to actions via Ago2 on the miRNA environment 

in T cells but they may also be due to effects on substrates of lenalidomide-cereblon not yet 

identified. 

 

These findings can help to inform the optimum clinical use of lenalidomide following AHSCT and 

also provide additional data that can be used to design monitoring strategies and ex vivo 

strategies for cellular manipulation as well as new studies to further understand the complex 

mechanisms underlying the effect of this drug. 
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7.2 Future work 

 

1. Extended evaluation of the effect of lenalidomide on different graft sources for AHSCT 

 To further confirm that the effect of lenalidomide on HLA-matched samples is similar to 

that observed in HLA-mismatched. 

 To examine the effect on haploidentical alloresponses. 

 To confirm the suppressive capacity of expanded Treg populations from UCB. 

 

2. Investigation of the mechanism underlying the differential actions of lenalidomide on 

UCB CD4+ T cells. 

 Gene expression profiling of lenalidomide treated UCB derived CD4+ T cells versus APB 

derived. 

 Investigation of expression levels of Ago2 in APB and UCB T cells to assess for differing 

levels of expression. 

 Pathways and candidate immunoregulatory targets from gene expression data such as 

Myc pathway and SOCS2 should be validated by examining protein level expression in 

CD8+ T cells allostimulated in the presence or absence of lenalidomide. 

 

3. Further functional validation of lenalidomide-related effects on T cell alloresponses. 

 Assessment of UCB derived CD8+ T cells cytotoxicity against allogeneic haematopoietic 

targets. 

 Assessment of tumour antigen specific T cell responses of lenalidomide treated 

alloresponders using Wilms Tumour antigen as a model haematopoietic tumour-

associated antigen. 

 Assessment of collagen dependent migratory capacity of lenalidomide treated cells, in 

view of increased expression of VLA2. 

 

4. Investigation of GvHD effects of lenalidomide 

 Skin-explant model of GvHD using responder cells allostimulated in the presence or 

absence of lenalidomide.  
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Appendix A – Reagents 

 

Table 1A Monoclonal antibodies used for flow cytometry  

Target Fluorochrome Clone Manufacturer 

CD3 APC HIT3a Biolegend 

CD3 APC Cy7 SK7 Biolegend 

CD3 PerCP OKT3 Biolegend 

CD4 AlexaFluor 400 RPA-T4 Biolegend 

CD8 PE HIT8a Biolegend 

CD8 Brilliant Violet 605 RPA-T4 Biolegend 

CD16 PerCP 3G8 Biolegend 

CD25 Brilliant Violet 421 BC96 Biolegend 

CD45RA PeCy7 HI100 Biolegend 

CD56 PE MEM-188 Biolegend 

CD69 PerCP FN-50 Beckton Dickinson 

CD127 PECy5 A109D5 Biolegend 

CCR2 APC K0362C Biolegend 

CCR5 PECy7 J418F1 Biolegend 

CXCR4 Brilliant Violet 605 12G5 Biolegend 

CCR7 APC G043H7 Biolegend 

CCR9 PECy7 L053E8 Biolegend 

CCR10 PE 1B5 Beckton Dickinson 

Ikaros PE R32-1149 Beckton Dickinson 

FOXP3 PE 206D Biolegend 

IFN Brilliant Violet 421 4S.B3 Biolegend 

TNF PerCP Cy 5.5 MAb11 Biolegend 
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CD107a PECy7 H4A3 Biolegend 

IL2 PECy7 MQI-17H12 Biolegend 

HLA-DR APC L243 Miltenyi 
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Table 2A Probe/Primers used for qRT-PCR 

Gene of interest Probe/Primer 

Pirin 
TaqMan® Primer/Probe set 

Hs01125822_m1 (Life technologies) 

SOCS2 
TaqMan® Primer/Probe set 

Hs00919620_m1 (Life technologies) 

PFKFB4 
TaqMan® Primer/Probe set 

Hs00190096_m1 (Life technologies) 

PMCH 
TaqMan® Primer/Probe set 

Hs01041242_g1 (Life technologies) 

FAIM3 
TaqMan® Primer/Probe set 

Hs00193770_m1 (Life technologies) 

Cereblon 
TaqMan® Primer/Probe set 

Hs00372271_m1 (Life technologies) 

18s 
TaqMan® Primer/Probe set 

Hs99999901_s1 (Life technologies) 

GAPDH 
TaqMan® Primer/Probe set 

Hs03929097_g1 (Life technologies) 

 


