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Abstract 
 

This research explores the possibility of reproducing mixing decisions of a skilled audio 

engineer with minimal human interaction that can improve the overall listening experience of 

musical mixtures, i.e., intelligent mixing. By producing a balanced mix automatically 

musician and mixing engineering can focus on their creativity while the productivity of music 

production is increased. We focus on the two essential aspects of such a system, frequency 

and dynamics. This thesis presents an intelligent strategy for multitrack frequency and 

dynamics processing that exploit the interdependence of input audio features, incorporates 

best practices in audio engineering, and driven by perceptual models and subjective criteria.  

 

The intelligent frequency processing research begins with a spectral characteristic analysis of 

commercial recordings, where we discover a consistent leaning towards a target equalization 

spectrum. A novel approach for automatically equalizing audio signals towards the observed 

target spectrum is then described and evaluated. We proceed to dynamics processing, and 

introduce an intelligent multitrack dynamic range compression algorithm, in which various 

audio features are proposed and validated to better describe the transient nature and spectral 

content of the signals. An experiment to investigate the human preference on dynamic 

processing is described to inform our choices of parameter automations. To provide a 

perceptual basis for the intelligent system, we evaluate existing perceptual models, and 

propose several masking metrics to quantify the masking behaviour within the multitrack 

mixture. Ultimately, we integrate previous research on auditory masking, frequency and 

dynamics processing, into one intelligent system of mix optimization that replicates the 

iterative process of human mixing. Within the system, we explore the relationship between 

equalization and dynamics processing, and propose a general frequency and dynamics 

processing framework. Various implementations of the intelligent system are explored and 

evaluated objectively and subjectively through listening experiments.  
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Chapter 1 

1 Introduction 
 

 

 

1.1 Motivation 
 

Music mixing is a process in which multitrack material is balanced, treated and combined 

into a multichannel format, most commonly two-channel stereo or single channel mono 

(Izhaki, 2013). Mixing is often regarded as a creative art form. However, mixing entails 

technical aspects too. Achieving balance in frequency and dynamics domains remains the 

most challenging, technical task, which requires adequate knowledge in acoustics, signal 

processing and years of practice. In fact, much of the initial, non-artistic mixing work follows 

established rules and best practices (Reiss, 2011). Some modern audio production tools are 

able to apply pre-sets to the signal. However they lack the ability to make intelligent mixing 

decisions (Reiss, 2011). The complexity of the software interface and mixing desk often 

discourage non-experts too. 

 

On the other hand, nowadays amateur or bedroom musicians can create music using digital 

production tools with an access to a laptop. However, a mixing engineer is still needed in 

order to produce a well-balanced mix. Having a mixing engineer behind the mixing desk is 

essential to live performance due to problems such as feedback, imbalance, room resonances 

and poor equipment. Unfortunately, it is not always affordable especially for small venues. 

(Reiss & De Man, 2013)  

 

To address these requirements, the concept of intelligent multitrack mixing systems is 

proposed (Moorer, 2000). The word “intelligent” suggests that such a system must be able to 

analyze the signals, dynamically adapt to audio signals, automatically derive mixing 

parameters based on best practices, subjective evaluation and perceptual criteria (Reiss, 2011). 

With the intelligent mixing system, musician and mixing engineering can focus on their 
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creativity while the productivity of music production is increased, and smaller music venues 

are free of hiring professional mixing engineers. (Reiss & De Man, 2013). 

 

1.2 Scope of the Research 
 

The thesis contributes to the field of intelligent mixing with a focus on frequency and 

dynamics aspects. Frequency equalization and dynamics processing dominate exclusive 

domains. Equalization influences amplitude in the spectral domain, while dynamics 

processing influences amplitude in the time domain. However, the operational nature of the 

two processors gives insight into a manner in which they may be combined into a general 

frequency and a dynamic processing framework. Such a general tool can act as an inclusive 

superset of an equalizer and dynamic processor, where the functionality of the two disparate 

processors is intuitively combined yet their standalone versatility is retained (Wise, 2009).  It 

creates a larger control space and more detailed adjustments to the audio environment, 

providing invaluable advantages in intelligent mixing. 

 

Furthermore, high levels of cognition dictate the way in which sound is perceived. For a true 

intelligent mixing system to prevail, it is rational to hypothesize that a signal analysis chain 

that considers properties of the hearing system would be beneficial. Therefore this thesis is 

also targeted towards a perceptual understanding of the mixing process and harnessing this 

understanding to optimize the auditory experience of the musical mixture.  

 

Perceptual models establish a bridge between the objective physical domain and the 

subjective domain of human hearing. When equipped with auditory models capable of 

predicting psychoacoustic phenomena, an opportunity arises in which one can investigate 

auditory aspects of music production and employ them to perform automatic mixing 

operations that are influenced by perception, such as equalization and dynamics compression.  

 

1.3 Aim and Objectives 
 

The aim of this thesis is to develop a novel intelligent system for multitrack frequency and 

dynamics processing, exploiting the interdependence of the input audio features, 
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incorporating best practices in audio engineering, and driven by perceptual models and 

subjective criteria. This will be achieved by fulfilling the following objectives: 

 

• Investigate spectral characteristics of the musical mixtures. 

• Propose and evaluate intelligent mixing strategies for frequency manipulation to 

achieve spectral balance. 

• Investigate audio features to describe the dynamic behaviour of musical signals. 

• Develop and evaluate intelligent multitrack dynamic range compression algorithms.  

• Evaluate existing computational hearing models in order to propose and apply 

perceptual models pertaining to properties that are fundamental to the context of 

mixing multitrack audio, such as auditory masking. 

• Integrate previous findings in perception studies, frequency and dynamics processing 

into an intelligent system for mix optimization, and evaluate the system performance. 

 

1.4 Thesis Structure 
 

• Chapter 2 presents the background upon which this thesis will be developed. The 

physiology of the human hearing system is discussed, with an emphasis on the 

concepts of masking, critical bands and auditory filters. Several psychoacoustics-

inspired loudness and masking models are reviewed as the perceptual criteria basis of 

our intelligent mixing studies. The process of multitrack mixing with a focus on 

frequency and dynamics aspects was discussed. This chapter is concluded by 

reflecting upon how the state of the art in the field of intelligent mixing bears upon 

our choice of approaches. 

• Chapter 3 investigates the frequency aspect of intelligent mixing. A spectral 

characteristic analysis of popular commercial recordings is presented first. A 

consistent leaning towards a target equalization spectrum that stems from practices in 

the music industry is discovered. A new approach for automatically equalizing audio 

signals towards the observed target spectrum is then described and evaluated.  

• Chapter 4 investigates the dynamics aspect of intelligent mixing. A fully automated 

multitrack dynamic range compression algorithm is introduced, in which we 

investigate and propose various audio features to better describe the transient nature 

and spectral content of the signals. A method of adjustment experiment is described 

to investigate the relationship between human preference for ratio and threshold. 
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The results of this inform the choices for our intelligent algorithms. Subjective 

evaluation of the system is presented in the form of a multiple stimulus listening test. 

And lastly a personalized compressor, which can adapt to the real-time noise 

environment, is presented.  

• Chapter 5 focuses on the studies of masking in multitrack audio, offering a 

perceptual understanding of the mixing process. An equal loudness matching 

experiment is first described to evaluate the performance of existing loudness model 

on musical signals. Parameter modification of the loudness model that yields better 

compliance with the human perception of masking is proposed. The outcome of this 

experiment is then integrated into the development of several psychoacoustics-

inspired, cross-adaptive multitrack masking metrics to describe the masking 

behaviour within the musical mixture.  

• Chapter 6 integrate all previous findings in spectral manipulation (Chapter 3), 

dynamic processing (Chapter 4) and auditory masking (Chapter 5), into one 

intelligent masking minimization system built upon an optimization framework that 

replicates the iterative process of human mixing. Within the system, we also explore 

the relationship between the two essential signal processing operations: equalization 

and dynamic processing, and proposes a general frequency and dynamics processing 

framework. Various implementations of the intelligent system are explored and 

evaluated objectively and subjectively through a listening experiment. 

• Chapter 7 concludes the thesis. Research findings are discussed and the prospects for 

future research were considered.  

1.5 Contributions 
 

• Chapter 3: A comprehensive spectral characteristic study of a large commercial 

recording dataset from 1950 to 2010.  

• Chapter 3: A novel equalization algorithm based on Yule-Walker filter design to 

match any desired frequency response. 

• Chapter 4: A fully automated multitrack dynamic range compression algorithm.  

• Chapter 4: A novel Web Audio API based approach to compress an unprocessed 

broadcasting signal based on dynamically varying environmental noise level. 

• Chapter 5: Novel psychoacoustics-inspired cross-adaptive masking metrics capable of 

quantifying the amount of masking occurring in multitrack audio.  
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• Chapter 6: An optimization-based approach to autonomous minimization of 

masking in multitrack audio. 

 

1.6 Associated Publications 
 

Conference 

 

The spectral characteristics analysis of commercial recordings presented in Chapter 3 was 

published as: 

• Pestana, P., et al. "Spectral characteristics of popular commercial recordings 1950-

2010." Audio Engineering Society Convention 135. Audio Engineering Society, 2013. 

This was done in a close collaboration with Pedro D. Pestana during the author’s academic 

visit to Catholic University of Oporto, Porto, Portugal. The author of the thesis collected the 

large part of the dataset and did the core analysis of the spectral features in terms of yearly 

evaluation and genre differences. Pedro D. Pestana proposed the methodology to compare 

the spectrums and did the analysis of the overall average spectrum. The author was co-author 

on the paper. He wrote large part of Section 2, 3 of the paper. Pedro D. Pestana wrote the 

large part of the introduction, Section 1 and 4. All other authors had an editing and 

supervising role. 

 

The novel approach to equalize audio signals toward a target spectrum curve described in 

Chapter 3 was published as: 

• Ma, Z., et al. "Implementation of an intelligent equalization tool using Yule-Walker 

for music mixing and mastering." Audio Engineering Society Convention 134. Audio 

Engineering Society, 2013. 

The author of the thesis wrote and did the main research. All other authors had an editing 

and supervising role. 

 

The web-based personalized compression presented in Chapter 4 was published as: 

• Mason, A., et al. "Adaptive Audio Reproduction Using Personalized Compression." 

Audio Engineering Society Conference: 57th International Conference. Audio 

Engineering Society, 2015. 

The author’s main contribution was the design and implementation of the core dynamic 

processing algorithm. He wrote the initial technical report of the research together with Nick 
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Jillings. Nick Jilling’s main contribution is the HTML5 realization of the dynamic processing 

algorithms. The author of the thesis wrote the initial content in the introduction and section 

2, 3 of this paper. Nick Jillings wrote the initial content in Section 1, 4. Andrew Mason, the 

first author of this paper, is the industrial supervisor on this project who wrote the final paper 

based on the technical report based on the technical report. 

 

The loudness matching experiment described in Chapter 5 was published as: 

• Ma, Z., et al. "Partial Loudness in Multitrack Mixing." Audio Engineering Society 

Conference: 53rd International Conference: Semantic Audio. Audio Engineering Society, 

2014. 

The author of the thesis wrote and did the main research. All other authors had an editing 

and supervising role. 

  

Journal 

 

The largest part of Chapter 4 on intelligent multitrack dynamic range compression 

algorithms was published as:  

• Ma, Z., et al. "Intelligent multitrack dynamic range compression." Journal of the Audio 

Engineering Society 63.6 (2015): 412-426. 

The author of the thesis wrote and did the main research. The second author Pedro D. 

Pestana provided insight into the rules used in the dynamic range compression automation in 

Section 2 of the paper. The third author Brecht D. Man provided insight into the testing 

methodology and the audio content in Section 5. All other authors had an editing and 

supervising role. 

 

The largest part of Chapter 6, together with portions from Chapter 5 on masking modeling, 

were submitted as:  

• Ma, Z., Reiss, J. D. "Autonomous Minimization of Masking in Multitrack Audio." 

Submitted to IEEE Transactions on Audio, Speech, and Language Processing, 2015. 

The author of the thesis wrote and did the main research. All other authors had an editing 

and supervising role. 

 

Patent 

 

Intelligent multitrack mixing algorithms developed from Chapter 3 and 4 were published as: 
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• Reiss, J. D., Mansbridge, S., Clifford, A., Ma, Z., Hafezi, S. and Jillings, N. "System 

And Method For Autonomous Multi-Track Audio Processing." U.S. Patent 

20,150,117,685, issued April 30, 2015.  
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Chapter 2 

2 Background 
 

 

 

We start by discussing the physiology of the human hearing system with an emphasis on the 

concepts of masking, critical bands and auditory filters. Several psychoacoustics-inspired 

loudness and masking models as the perceptual basis of our intelligent mixing studies are 

then reviewed. The process of multitrack mixing and related mixing techniques with a focus 

on the frequency and dynamic domains is also discussed. The chapter is concluded by 

reviewing the state of the art in the field of automatic mixing. 

 

2.1 The Physiology of the Human Hearing System 
  

There are three principal parts of the auditory system: the outer ear, the middle ear, and the 

inner ear. The auricle that has the responsibility of sound localizing, spectral shaping and 

overall loudness intensification, is located in the outer ear. Sound travels through the auditory 

canal and reach the eardrum that vibrates. Next to the eardrum are three smallest bones in 

the body, the malleus, incus and stapes (known collectively as the ossicles) (Moore, 2012). 

Ossicles are assisting the vibration transmission through middle ear to inner ear. The inner 

ear consists of the cochlea and the vestibular nerve. The cochlea is the sensory organ for 

hearing. Inside the cochlea is the basilar membrane which is tonotopic and each frequency 

has a characteristic place of resonance along it (Goldstein, 2013).  

 

2.2 Critical Bands, Auditory Filters and Masking 
 

The frequency resolution limitation of the human auditory system is often termed “frequency 

selectivity”. When presented with two sinusoidal stimuli of frequencies that are close enough. 

One believes to be hearing a single frequency that is the exact average of both, oscillating in 

amplitude at a rate that is equal to the absolute value of the frequency difference. As the 
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frequency difference grows apart, amplitude change discrimination starts becoming 

impossibility and a sense of roughness is heard instead. Raising the frequency difference even 

further will make it come to a threshold above which the two sinusoidal tones can be clearly 

distinguished (Howard & Angus, 2009). 

 

The threshold mentioned defines the critical bandwidth for a certain central frequency. 

Harvey Fletcher (Fletcher, 1940), in a very famous experiment, measured the shift in 

threshold for detecting a sinusoidal signal for different bandwidths of band-pass noise 

maskers, where noise power density was constant. He found out that for small bandwidths 

the detection threshold would increase rapidly, but after a certain point it would completely 

cease to increase. These are now termed “Auditory Filters”, and the idea of critical bandwidth 

defines he spectral length of an auditory filter. Fletcher provided a definition of critical 

bandwidth (CB) as “the bandwidth at which the signal threshold ceased to increase” 

(Fletcher, 1940). 

 

The shape of the auditory filters can be determined in several different ways, all of them 

necessarily slightly flawed, as we are measuring auditory response to a signal in the presence 

of a masker, whereas the physiological auditory filter will respond to signal alone. As it is 

non-linear, the presence of the masker will necessarily bias our measurement.  

 

Critical bands have different bandwidths up and down the spectrum. They are naturally 

smaller in absolute terms at low center frequencies, due to the log-lin behavior of frequency 

perception, but if one thinks of relative bandwidth (bandwidth divided by center frequency), 

they will actually be bigger at low frequencies, indicating worst tone-discrimination. In 

literature, critical bands are usually approximated by one-third octave filters or, alternatively, 

by what is called an Equivalent Rectangular Bandwidth (ERB), a rectangular function that 

covers the exact same area as a critical band would. The equation for ERB is shown in 

Equation (0.0). 

 

   ERB = 24.7(0.0437 f +1)   (0.0) 

 

The distribution of activity evoked by that sound as a function of the characteristic frequency 

is called the excitation pattern (Moore, 2012). Excitation patterns are usually asymmetric, 
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being less steep on the high-frequency side. The asymmetry increases with increasing sound 

level.  

 

Auditory masking is an auditory phenomenon we experience in our everyday life. In 

psychoacoustics masking is defined as “the process by which the threshold of audibility for 

one sound (the maskee) is raised by the presence of another sound (the masker)” (ANSI, 

1994). Simultaneous masking or frequency masking occurs in the time domain while non-

simultaneous masking or temporal masking occurs in the time domain. 

 
 

Figure 2.1 Simultaneous masking example of a 150 Hz tone signal masking an adjacent 

frequencies by increasing the threshold of audibility around 150 Hz. 

 

Simultaneous masking may occur when two or more stimuli are simultaneously presented to 

the auditory system. An example of a 150 Hz tone signal masking adjacent frequencies is 

shown in Figure 2.1. A simplified explanation is that the presence of a strong signal creates a 

sufficient excitation strength on the basilar membrane to block the detection of the weaker 

signal at its CB location (Moore, 2012). Temporal masking happens when sounds are 

imperceptible due to maskers before or even after the presence of the sounds as shown in 

Figure 2.2.  
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Figure 2.2 Regions of backward masking, simultaneous masking and forward masking. Note 

that backward masking uses a different time origin than forward masking and simultaneous 

masking. 

 

2.3 Perceptual Models 
 

The purpose of auditory modeling is to establish a bridge between the objective physical 

domain and the subjective domain of human hearing, which can offer a perceptual 

understanding of the mixing process. Perceptual models capable of quantifying both 

subjective loudness and auditory masking (two useful psychoacoustic properties that play an 

important role in mixing) are highly valued. For this reason, the development of popular 

loudness and masking models is presented next, followed by an overview of additional areas 

within the field of perceptual modelling. 

 

2.3.1 Loudness Models 
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Loudness is defined as a psychological term used to describe the magnitude of an auditory 

sensation in (Fletcher & Munson, 1933). 

 

Single band loudness models are very popular for describing program material e.g. broadcast 

material, primarily because of their practicality, and provide a general picture of loudness 

using direct measures of sound pressure. However, traditional volume unit meters such as the 

Peak Program Meter (PPM), as still used today, provide only a crude indication of loudness 

(Lund, 2005), requiring audio specialists to apply rule-based correction factors based on the 

type of input material (Emmett & Emmett, 2003). In response to this issue, (Soulodre, 2004) 

investigated the correlation between each of ten potential loudness meters and an additional 

two basic loudness algorithms, and the results of a series of loudness matching listening tasks 

involving typical program material. Though findings signified that a simple frequency 

weighted averaged energy measurement, known as Leq(RLB), outweighed the success of its 

competitors, companies TC Electronic and Dolby announced internal experiments, implying 

their own models were superior (Lund, 2005). Leq(RLB) became the BS.1770 standard (ITU, 

2012a) which covers mono, stereo and 5.1 surround formats. Following this, TC Electronic 

proposed two supplementary loudness descriptors to the standard for characterizing 

properties of the audio material (Skovenborg & Lund, 2008). This led to three suggested 

descriptors as part of the EBU recommendation (EBU–Recommendation, 2011). 

 

 

Multiband loudness models are often inspired by the psychoacoustics properties of human 

hearing system (Nielsen & Skovenborg, 2004). The fundamental models incorporating a 

common assumption that loudness is related to the total neural activity evoked by a sound 

(Moore, 2012) have been proposed by (Fletcher & Munson, 1933), (El Zwicker, 1958), 

(Eberhard Zwicker, 1977; Eberhard Zwicker & Scharf, 1965). It has been extended in the 

more recent work of (Glasberg & Moore, 2002, 2005; Moore & Glasberg, 1996; Moore, 

Glasberg, & Baer, 1997), as well as the Dynamic Loudness Model of (Chalupper & Fastl, 

2002).  

 

A true loudness model that accounts for influences of phase on loudness would require a time 

domain filterbank, such as the Gammatone (De Boer, 1975), compressive Gammachirp filter 

(Irino & Patterson, 2001), in either parallel or cascaded form (Unoki, Irino, Glasberg, 

Moore, & Patterson, 2006) or the dual resonance nonlinear (DRNL) filter (Lopez-Poveda & 

Meddis, 2001). (Chen, Hu, Glasberg, & Moore, 2011) demonstrated how excitation patterns 
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and loudness can be calculated directly via parallel filter structure i.e., the double-roex filter 

model. Though no time domain filter was designed, this research demonstrates a promising 

direction for the development of loudness models that lie closer to cochlear physiology. 

 

Models for predicting the loudness of time-varying sounds have also been developed 

(Chalupper & Fastl, 2002; Glasberg & Moore, 2002; Eberhard Zwicker, 1977). The general 

goal is to model temporal integration in a way that corresponded with empirical data such as 

post-masking. Unlike other models, (Chalupper & Fastl, 2002) applied temporal smoothing 

to the specific loudness patterns prior to final integration. As demonstrated in (Rennies, 

Verhey, & Fastl, 2010), the slow decay of specific loudness patterns is necessary to account 

for loudness summation of non-synchronous tone pulses at different frequencies; the model 

of (Glasberg & Moore, 2002) cannot account for this. Though the model of Moore et al. 

(Moore et al., 1997) has been extended to account for the time-varying partial loudness of a 

signal in noise (Glasberg & Moore, 2005), it still does not account for temporal masking. On 

the other hand, since the partial loudness model calculates a masked threshold for a signal in 

noise, it can also be viewed as a model of simultaneous masking. Furthermore, Glasberg and 

Moore recently modified their previous work to account for binaural inhibition (Moore & 

Glasberg, 2007), but this was only verified for steady-state sounds. 

 

2.3.1.1 Loudness and Partial Loudness Model of Glasberg and Moore 

 

The loudness model of Glasberg and Moore (Glasberg & Moore, 2002; Moore et al., 1997) 

is one of the key perceptual models we evaluate, adapt and apply to our intelligent mixing 

system in the later chapters. The block diagram in Figure 2.3 illustrates the simplified stages 

involved in the model that account for three important processes in the human auditory 

system: the outer/middle ear transformations, basilar membrane processing and the cochlear 

hair cells firing signals to the brain. The procedure to derive the loudness and partial loudness 

of an audio signal (when presented with a masker signal) is described as follows. Equations 

used in this section are adapted from the original papers (Glasberg & Moore, 2002; Moore et 

al., 1997) and descriptions are adapted from (Simpson, Terrell, & Reiss, 2013). 
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Figure 2.3 Block diagram of the model of Glasberg and Moore to derive loudness and partial 

loudness.  

 

Stage 1: Outer and Middle Ear Transformations 

 

The first stage of the model is to approximate the transformations that take place in the 

outer/middle ear. The signal is passed through an experimentally determined transfer 

function (implemented as a 4097 coefficient FIR filter) that models the frequency response of 

the sound pressure transmission through the outer and middle ear towards the cochlea.  

 

Stage 2: Calculation of Running Spectrum and Excitation Pattern 

 

The original model calculates six Hanning-windowed  FFTs in parallel, using signal segment 

durations that decrease with increasing center frequency (Moore, 2012).  Each spectral frame 

is filtered by a bank of level-dependent roex filters. Such spectral filtering represents the 

displacement distribution and tuning characteristics across the human basilar membrane.  

 

The excitation pattern E is then calculated as the output of the auditory filters as a function 

of the center frequency spaced at 0.25 ERB intervals. Detailed excitation pattern calculation 
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can be found in (Moore & Glasberg, 1996). To account for partial masking when presented 

with a masker signal, two excitation patterns, the target input signal Et and the masker signal 

Em, are calculated. 

 

Stage 3: Specific Loudness and Partial Specific Loudness 

 

To reflect the production of neural signals in response to inner hair cell displacement caused 

by excitation of the basilar membrane, the excitation pattern is then transformed from 

excitation level into specific loudness N’ (loudness per ERB) according to three possible 

conditions regarding the values of Et and EQ, which represents the threshold excitation in 

quiet and is frequency dependent. Detailed calculation can be found in (Moore et al., 1997) 

or (Simpson et al., 2013). 

 

To account for partial masking due to the excitation pattern of the masker signal Em, the 

model calculates partial specific loudness Np
’ instead, by considering four conditions regarding 

the values of Et, EQ and Em. Detailed calculation can be found in (Moore et al., 1997), or 

(Simpson et al., 2013).  

 

 

Stage 4: Summation and Smoothing 

 

The summation of N’ and N’p across the whole ERB scale produces the total unmasked and 

masked instantaneous loudness I, Ip respectively using Equation (0.0) and (0.0). ERB bands, 

  
bERBmin

and 
  
bERBmax

may be calculated from center frequencies of 50 and 15,000 Hz respectively, 

using Equation (0.0). 

 

 
  
I = N '(bERB )

bERBmin

bERBmax

∑   (0.0) 

 
  
I p = N p

' (bERB )
bERBmin

bERBmax

∑   (0.0) 

 

To account for the temporal integration of loudness due to the time-response of the auditory 

hearing system, the decaying value of loudness at time t is smoothed and calculated as short-

term loudness, IST(t) or long-term loudness, ILT(t) with an exponential sliding window: 
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   I ST (t ) = (1−α )I (t )+α I ST (t − Δt )   (0.0) 

   I LT (t ) = (1−α )I ST (t )+α I LT (t − Δt )   (0.0) 

 

where α  is the smoothing coefficient given by, 

 

   α = e−Δt /τ .   (0.0) 

 

 Δt  is the time step of the model and τ is the time constant that represents the decay of 

loudness. The value of τ is conditional depending on whether the functions are in the attack 

or release phase as shown in Equation (0.0) (Simpson et al., 2013): 

 

 

  

τ =

22   for I (t ) > I ST (t − Δt )
50   for I (t ) < I ST (t − Δt )
100 for I ST (t ) > I LT (t − Δt )
2000 for I ST (t ) < I LT (t − Δt )

⎧

⎨
⎪⎪

⎩
⎪
⎪

.   (0.0) 

 

And finally, IST(t) or ILT(t) is averaged across all time frames into scalar perceptual loudness 

measures, L ( LST or  LLT ). The same smoothing, summing and averaging operations are 

applied to Ip(t) to derive the overall partial loudness of the input signal, P ( PST  or  PLT ). 

 

2.3.2 Masking Models 

 

Perceptual models capable of predicting masking behavior have received much attention over 

the years, particularly in fields such as audio coding (Bosi et al., 1997; Gersho, 1994; 

Johnston, 1988b; Schroeder, Atal, & Hall, 1979), where the masking threshold of a signal 

was approximated to inform a bit-allocation algorithm. Similar models were used in sound 

quality assessment (Karjalainen, 1985; Thiede et al., 2000), where nonlinear time-domain 

filterbanks were used to allow for excitation patterns to be calculated whilst maintaining good 

temporal resolution. More advanced signal processing masking models that lie closer to 

physiology include (Dau, Püschel, & Kohlrausch, 1996). This initial single-band model 

accounts for a number of simultaneous and non-simultaneous masking experiments. A 

“modulation filterbank” was subsequently added to analyze the temporal envelope at the 

output of a gammatone filter whose output is half-rectified and lowpass filtered at 1kHz, 
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simulating the frequency to place transform across the basilar membrane, and receptor 

potentials of the inner hair cells (Dau, Kollmeier, & Kohlrausch, 1997). Building upon the 

proposed modulation filterbank, a masking model called the Computation Auditory Signal-

Processing and Perception (CASP) model was presented that accounts for various aspects of 

masking and modulation detection (Jepsen, Ewert, & Dau, 2008).  

 

However, all mentioned models only produce masking threshold as a measurement of 

masking, and only consider the situation when signal (typically, a test-tone) is fully masked. 

(Glasberg & Moore, 2005) explored partial loudness of mobile telephone ring tones in a 

variety of ‘everyday background sounds’ e.g. traffic based on previous psychoacoustic loudness 

models (Glasberg & Moore, 2002; Moore et al., 1997). By comparing the excitation patterns 

(computed based on (Glasberg & Moore, 2002; Moore et al., 1997)) between maskee and 

masker, (Vega & Janer, 2010) introduced a quantitative measure of masking in multitrack 

recording. Similarly, a Masked-to-Unmasked Ratio corresponding to the original loudness of 

an instrument to its loudness in the mix was proposed in (Aichinger, Sontacchi, & 

Schneider-Stickler, 2011). However, no temporal masking considered and no formal 

evaluations were provided in both (Aichinger et al., 2011; Vega & Janer, 2010). 

 

(Plack, Oxenham, & Drga, 2002) incorporated the DRNL filter with a well-known model of 

temporal masking called the temporal-window model (Plack & Moore, 1990). In (Plack et 

al., 2002), the combination of a nonlinear filter based on response measurements of the 

basilar membrane with a leaky integrator was used to feed a decision device. (Hafezi & Reiss, 

2015) introduced a simplified measure of masking based on best practices in sound 

engineering. However it might not correlate well with the perception of human hearing, as 

evidenced by the evaluation. 
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2.3.2.1 Psychoacoustic Model in MPEG Audio Coding 

 

             
Figure 2.4 Simplified block diagram of the psychoacoustic model used in MPEG audio 

coding. 

 

“The objective of audio coding algorithms is to represent the signal with a small number of 

bits while maintaining its perceptual quality such that it is indistinguishable from the 

original” (Thiagarajan & Spanias, 2011). The basic ideas behind perceptual audio coding 

involves first decompose a signal into separate frequency bands by using a filter bank; analyse 

the signal energy in different bands and determine the total masking threshold of each band 

because of signals in other band/time; quantise samples in different bands with accuracy 

proportional to the masking level. Any signal below the masking threshold does not need to 

be coded and signal above the masking threshold are quantized with a quantization step size 

according to the masking threshold and bits are assigned across bands so that each additional 

bit provides maximum reduction in perceived distortion. 

 

The psychoacoustic model is the key element to the compression algorithm. The MPEG 

psychoacoustic model (ISO, 1993) computes the masking thresholds as a function of scaled 

frequency by analysing the signal and considering basic hearing properties. The simplified 

block diagram in Figure 2.4 illustrates the stages involved in the psychoacoustic model. The 

procedure and equations to derive masking thresholds adapted from (Thiagarajan & Spanias, 

2011) are summarized as follows.  

 

Step 1: Computation of Energy and Unpredictability in Threshold Partitions 
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A standard FFT is applied to the input signal to compute the complex spectrum. The polar 

representation of the spectrum is then used to compute the measure of unpredictability. The 

spectral components are grouped into threshold partitions (Thiagarajan & Spanias, 2011) to 

reduce the computational cost for following steps. The energy and unpredictability as 

functions of the threshold partitions are computed through integration.  

 

Step 2: Computation of Spreading Function, Excitation Pattern and Tonality Index 

 

The model applies a spreading function to account for the smearing effect of masking in the 

same critical band and neighbouring bands. The spreading function, sf (measured in dB) used 

in this model is given by 

 

 

  
s f (i, j ) =

0 B(z) ≤ −60

10
(x+B (dz ))

10 else

⎧
⎨
⎪

⎩⎪
,   (0.0) 

 

where the calculation of B(dz) can be found in (Bosi et al., 1997). dz is the bar distance 

between maskee and masker (Thiagarajan & Spanias, 2011). Conversion between bar scale 

and frequency Hz can be approximated by 

 

   z( f ) = 13arctan(0.00076 f )+ 3.5arctan ( f / 7500)2( ).   (0.0) 

 

The spreading function is then convolved with the partitioned, renormalized energy to derive 

the excitation pattern in threshold partitions. The unpredictability measure is convolved with 

the spreading function to take the spreading effect into account (Thiagarajan & Spanias, 

2011).  A tonality index to measure the degree of tone-like or noise-like is then derived from 

the energy and unpredictability of the signal in threshold partitions. 

 

Step 3: Calculation of Masking Threshold in Threshold Partitions 

 

The masking threshold is determined by providing an offset to the excitation pattern, where 

the value of the offset strongly depends on the nature of the masker (Thiagarajan & Spanias, 

2011). The values for the offset are interpolated based on the tonality index of a noise masker 

to a frequency-dependent value defined in the audio coding standard (ISO, 1993) for a tonal 

masker (Thiagarajan & Spanias, 2011). 
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Step 4: Pre-echo Detection and Window Switching 

 

Pre-echoes is a common artefact where the sound occurs before it happens due to the 

quantization errors in audio compression algorithm. Pre-echo is controlled by switching to 

shorter windows using perceptual entropy (Johnston, 1988a) as an indicator (Thiagarajan & 

Spanias, 2011). 

 

Step 5: Estimation of MSR 

 

The energy in each scale-factor band, Esf(sb) and the threshold in each scale-factor band, 

T(sb) are calculated as described (Bosi et al., 1997) in a similar way. Thus the final Masker-

to-Signal Ratio (MSR) in each scale-factor band is defined by 

 

 
  
MSR(sb) = 10 log10

T (sb)
Esf (sb)

⎛

⎝
⎜

⎞

⎠
⎟ .   (0.0) 

 

 

2.3.3 Perceptual Models Summary 

 

Most sophisticated, multiband models of masking and loudness are typically verified by 

experiments involving “laboratory stimuli” consisting of stationary sounds such as pure tones, 

broadband and narrowband noise, and time-varying sounds such as amplitude modulated 

sinusoids or sequences of noise bursts. The single band approach only loosely estimates 

auditory temporal integration, intensity scaling and approximations of outer-middle ear 

filtering, and thus cannot capture additional aspects of loudness perception such as spectral 

summation. 

 

From reviewing the literature on perceptual models, it is clear that the incorporation of 

psychoacoustic principles into the signal analysis stage presents an attractive prospect. Various 

perceptual measures are being integrated as part of the analysis chain, and more established 

models are beginning to be explored, particularly those that predict masking phenomena and 

loudness perception of time-varying sounds. As discussed previously, under certain 

conditions, the models themselves are limited in performance, requiring either modifications 



 33 

to account for psychophysical data or more sophisticated processing techniques based on 

human physiology to improve results if the application requires. 

 

2.4 Multitrack Mixing 

2.4.1 Mixing Process Overview 

 

A typical (though not mandatory) signal processing workflow for mixing is shown in Figure 

2.5.  

 

          
 

Figure 2.5 A typical (though not mandatory) signal processing workflow of mixing. 

 

In general, the first stage of mixing process is to scale the input signal with a certain “gain” 

value. The fader is the most straightforward tool for coarse level adjustment in the mixing 

arsenal. Panning is the distribution of a sound signal into a new stereo or multichannel sound 

field through the use of amplitude differences between channels. Frequency domain 

processing involves using equalization and filtering to alter the spectral content of the audio 

signal. Equalization is one of the most important aspects of mixing (Izhaki, 2013). Dynamic 

domain processing as a nonlinear effect, involves the manipulation of the dynamic 

characteristics of the signals. Time domain processing, which is often classified into two 

classes: delays and artificial reverberation, is performed on the time axis (Izhaki, 2013).  

 

Returning to the overall picture of the mixing process. Mixing can benefit from an iterative 

coarse-to-fine search (Izhaki, 2013) as illustrated in Figure 2.6. In a way, mixing is a 

equivalent optimization problem (Dennis Jr & Schnabel, 1996; Gill & Murray, 1974), which 

can shed some light on how to automate the mixing process (M. Terrell, Simpson, & 

Sandler, 2014). Given a certain set of controls of a multitrack, a mixing output can be 
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thought of as the optimal solution to a system of equations that describes the quality of the 

multitrack mixture, such as the amount of masking.  

 

                       
 

Figure 2.6 The iterative search process of mixing. 

 

2.4.2 Frequency and Dynamic Domains 

 

Achieving frequency balance is a prime challenge in most mixes (Izhaki, 2013). (Katz, 2007) 

proposed that the tonal balance of a symphony orchestra is an ideal reference for the 

frequency balance of music. The equalizer is the conventional tool to manipulate the spectral 

characteristics of the audio signal to achieve frequency balance. The filters used within 

equalizers is categorized as pass, shelving and parametric filters. 

 

Dynamic range is often defined as the difference between the quietest and loudest sounds 

that an audio signal or a system can accommodate (Izhaki, 2013). Dynamic range processors 

including tools like compressors, limiters, gates, expanders and duckers, are tools to control 

the level variation and dynamic envelope of the signal. Among them, dynamic range 

compressor is one of the most important tools in mixing, which defines much of the sound of 

contemporary mixes.  
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Figure 2.7 General form of compressor’s transfer characteristic with different ratio values, 

hard or soft knee, and without make-up gain. 

 

A typical set of dynamic range compressor parameters includes threshold, ratio, knee, attack, 

release and make-up gain. Figure 2.7 shows the basic transfer characteristic of the 

compressor. Threshold defines the level above which compression starts. Signals exceeding 

the threshold will be reduced in level. Ratio controls the amount of compression applied. It 

defines a drop in level above the threshold. The knee width controls the transfer characteristic 

around threshold.  A sharp transition is called a “hard knee”, and a smooth one, where the 

ratio gradually grows from 1:1 to a final value over a transition region spanning both sides of 

the threshold, is called a “soft knee” (Giannoulis, Massberg, & Reiss, 2012a). Softening the 

knee reduces the production of audible artefacts. The soft knee is shown in green in Figure 

2.7. The attack and release times define how long it takes for the compressor to change its 

gain by 10dB towards the level determined by the ratio when the signal exceeds the 

threshold, and back again when it has stopped doing so. 

 

Dynamic range compression (DRC) is commonly used in audio production, noise 

management, broadcasting, and live performance applications. However, it is arguably the 

most misused and overused effect in audio mixing (Izhaki, 2013). If used excessively, the 

dynamic range compressor suppresses musical dynamics, producing lifeless recordings 
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deprived of their natural character (Giannoulis et al., 2012a). Inappropriate parameter 

settings also produce artefacts such as pumping and breathing (Izhaki, 2013).   

 

2.4.3 Equalization vs. Dynamic Processing 

 

                                 
Figure 2.8 Separated control domains of equalization and dynamic range compression.  

 

Equalization and dynamics processing are two essential signal processing operations in audio 

engineering. Equalization and dynamics processing often dominate exclusive domains, as 

shown in Figure 2.8. Equalization allows for the control of amplitude in the spectral domain, 

whereas dynamics processing allows for the control of amplitude in the time domain, 

especially in regard to the input level.  

 

There have been many variants of systems combining the two operations, that is, time-

domain control of amplitude over one or multiple spectral bands. Most of these variants 

address specific functionality such as gates, maximizers, or de-essers, and as such have limited 

configurability beyond their applications. Many problems, for example removing problematic 

frequencies, in audio production can be addressed by using combinations of filtering and 

dynamics processing. And previous research (Ma, 2015; Pestana, 2013; Pestana & Reiss, 

2014) has shown that it is good practice to set compressor parameters based on the frequency 

content in the signal.  
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Figure 2.9 Control characteristics of a two-band compressor captured in the 3D space of 

frequency, input level and output (gain) level. 

Multiband compressor operates differently and independently on different frequency bands of 

a signal, offering more precise adjustment of dynamics than single band compressor. 

Unwanted gain changes or artefacts (such as pumping and breathing) are avoided when 

applying compression on one frequency band. The crossover frequencies are often adjustable. 

The compression effect on each frequency band is controlled by its own compression 

parameters. The output signals of each frequency band are then combined as a final step. The 

control characteristics of multiband compression can be captured in the 3D space of 

equalization and dynamic processing as shown in Figure 2.9. 

 

Dynamic equalizer (Reiss & McPherson, 2014) provides the ballistic control of a compressor 

like threshold, attack and release, to the conventional equalizer allowing time-varying 

adjustment of equalization curve. In other words, the equalization stage is able to respond 

dynamically to the input signal level.  The control characteristic of a 3-band dynamic 

equalizer is shown Figure 2.10. 
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Figure 2.10 Control characteristics of a 3-band dynamic equalizer captured in the 3D space 

of frequency, input level and output (gain) level. 

Many of these dynamic equalizer implementations are often used for noise reduction in audio 

restoration (Godsill, Rayner, & Cappé, 2002), hearing-loss correction (Lindemann, 1997), 

and compliance with broadcasting regulations. Other dynamic equalizers employ automatic 

gain adjustment of a fixed FIR or IIR filter. The modulation can be gated, as in de-hum and 

de-ess processors (Zolzer, 2011). Still other dynamic equalizers allow the filter to be 

configurable in the band it operates on. The dynamics that most of these systems offer to the 

engineer are constrained to the point that not all of the details are controllable. Yet dynamic 

equalizer is the closest design currently available to the concept of a general frequency and 

dynamics tool. Aassuming all parameters are configurable, the dynamic equalizer can be 

configured to a conventional equalizer, dynamic range compressor or multiband compressor.  
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Figure 2.11 Control characteristics of a general frequency and dynamics processing tool in a 

3D space of frequency, input level and output (gain) level. 

 

“The operational nature of the equalizer and dynamic processors gives insight to a manner in 

which they may be combined into a general processor. This integrated processor can perform 

as the equivalent of a standalone dynamics processor or parametric equalizer, but can also 

modify the boost and/or cut of an equalizer stage over time following a dynamics curve” 

(Wise, 2009). Such idea of a general processor that utilizes the equalization and dynamic 

processing operations offers larger, unprecedented control over dynamics of specific 

frequencies of the audio as shown in Figure 2.11. 

 

2.5 State of the Art: Intelligent Mixing 
 

(Moorer, 2000) proposed the arrival of intelligent assistants, allowing computer programs to 

“take over the mundane aspects of music production, leaving the creative side to the 

professionals, where it belongs”, in other words, intelligent mixing. Adaptive digital audio 

effects (A-DAFx), time-varying effects for controlling specific mix parameters automatically 

based on feature extraction (Zolzer, 2011), have been developed as processing devices 
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commonly employed by engineers to fulfill such requirements. However, the sound features 

propelling such effects are at the forefront of research for music mixing applications. In the 

pursuit of replicating human mixing, an important cross-adaptive digital audio effect (CA-

DAFx) framework is proposed (Reiss, 2011; Zolzer, 2011), allowing for a more sophisticated 

system in which the sound features are extracted from multiple channels. In this section, we 

start with an introduction of the CA-DAFx framework, upon which most of our researches 

are built. And then we present a comprehensive review on the state of the art of the 

intelligent mixing techniques from various aspects: level, frequency, dynamics and beyond. 

 

2.5.1 Cross-Adaptive Digital Audio Effects 

                        

Figure 2.12 depicts the aforementioned CA-DAFx framework, an important breakthrough 

for intelligent mixing systems. Both the feature extraction stage and cross-channel analysis 

feed information to a decision device, which subsequently processes each of the incoming 

channels, resulting in sonic improvement. As stated in (Reiss, 2011), a CA-DAFx is an inter-

channel dependent effect and the signal processing of one individual source is the result of 

the relationships between all involved sources. The actual cross-adaptive processing can be 

informed and constrained by a set of constrained rules from mixing best practices, perceptual 

models and subjective evaluation (Reiss, 2011). 
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Figure 2.12 Block diagram of the cross-adaptive digital audio effect architecture with N 

multitrack inputs and outputs. 

 

2.5.2 Level 

 

In terms of the mixing domains of overall level or loudness, (Mansbridge, Finn, & Reiss, 

2012) improved (Perez-Gonzalez & Reiss, 2009) by the use of the loudness measure, with a 

cross-adaptive process to bring each track to a time-varying loudness average measured by 

EBU loudness standard (EBU–Recommendation, 2011). A hysteresis loudness gate and 

selective smoothing were also introduced to prevent the unwanted artifacts. (Ward, Reiss, & 

Athwal, 2012) again adapted the equal loudness mixing concept, using a more sophisticated 

psychoacoustic loudness and partial loudness models (Glasberg & Moore, 2002; Moore et al., 

1997). (M. J. Terrell & Reiss, 2009) presented a model to improve the monitor mix 

experienced by different musicians in a live performance tailored to their own listening 

condition and requirement where feedback prevention, SPL contraints were the main 

concerns. 

 

(Kolasinski, 2008) introduced a method for balancing the multitrack level using timbral 

classification and genetic optimization. (J. Scott, Prockup, Schmidt, & Kim, 2011) developed 

a system can derive the mixing parameters through least-squares estimation. However the 

proposed system required prior knowledge of the instrumentation and was limited to very 

specific instruments. (J. J. Scott & Kim, 2011) improved the system with the introduction of 

acoustic features constraints. 

 

(Ward et al., 2012) applied a partial loudness model (Glasberg & Moore, 2002; Moore et al., 

1997) to adjust the levels of tracks within a multitrack in order to counteract masking. Based 

on the same model, (M. Terrell et al., 2014) developed an optimization theory treatment of 

the problem of level adjustment.  
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2.5.3 Frequency 

 

Intelligent mixing techniques related to frequency processing are relatively unexplored. 

(Tsingos, 2005; Tsingos, Gallo, & Drettakis, 2004) applied perceptual audio coding to cull 

irrelevant sound sources to accelerate the rendering of complex virtual environments. 

 

 (A. Kleczkowski & Kleczkowski, 2006; P. Kleczkowski, 2005) proposed a novel multitrack 

mixing technique by removing non-dominant parts from the time-frequency space to 

improve the clarity of the multitrack mixture. (Tsilfidis, Papadakos, & Mourjopoulos, 2009) 

followed this idea and proposed a method to maintain only perceptually relevant elements of 

the audio signals according to the calculated minimum masking threshold. (Hafezi & Reiss, 

2015) designed a simplified measure of masking based on best practice, and proposes an 

automatic multitrack equalization to reduce masking.  

 

(Reed, 2000) proposed a simple machine learning based equalization system to replicate the 

human process. (Sabin & Pardo, 2009) described an equalizer with intuitive controls by 

mapping an individual’s descriptive term onto equalization setting from a user’s subjective 

preference. The method was extended and improved in (Pardo, Little, & Gergle, 2012) by 

training the system with a prior knowledge database of experts.  

 

2.5.4 Dynamics 

 

Automatic dynamic range compression research has a diverse history (Tyler, 1979). An RMS 

estimation was used to automate the release parameter in (McNally, 1984). In (Aichinger et 

al., 2011) the time constants were automated based on the difference between the peak and 

RMS levels of the signal fed into the side-chain. More relevant research can be found in 

(Giannoulis et al., 2012a; Giannoulis, Massberg, & Reiss, 2012b) where a series of DRC 

parameter automation methods derived from side-chain feature extraction were presented. 

However, in this system, the threshold was still manually chosen, with ratio set to infinity 

and an automated soft knee determining the amount of compression based on spectral flux. A 

new linear DRC technique that reduced the peak amplitude of transient signals using golden 

ratio allpass filters was introduced in (Parker & Valimaki, 2013). In (Wilmering, Fazekas, & 

Sandler, 2012) a new class of adaptive digital audio effects that mapped semantic metadata to 

control parameters was proposed. However, the system assumed that the metadata already 



 43 

exists, either from a prior process or manual configuration and might be invoked on demand. 

The automation was performed using a fairly simple mapping between metadata and static 

compression presets. No subjective evaluation was provided.  

 

Perhaps the most relevant previous work is (Maddams, Finn, & Reiss, 2012), which 

described an off-line method for automating multitrack DRC based on loudness and 

loudness range. The control strategy was to reduce the difference between the highest and 

lowest loudness range of the multitracks and sound sources where a higher loudness range 

requires greater amounts of DRC. However, the parameter automation of transforming the 

three controls (threshold, ratio and knee) into a single control could have a significant effect 

on the final result. The evaluation results in (Maddams et al., 2012) were inconclusive 

regarding the sonic improvement of the mixes. 

 

2.5.5 Other Approaches 

 

(Bocko, Bocko, Headlam, Lundberg, & Ren, 2010) proposed an automatic mixing system 

that applied probabilistic graphical model to best practices in audio engineering to produce 

mixing decisions based on audio features. (Sánchez, 2009) suggested that most mixing 

parameters can be derived from masking as they are all frequency dependent. 

 

Reverse engineering offer another interesting aspect of intelligent mixing. Two different least 

squares optimization based methods were presented in (Barchiesi & Reiss, 2010) to derive 

the mixing parameters such as gains, delays, filters and panning setting when the unprocessed 

multitrack and the final mix are at hand. However, the system does not incorporate any form 

of perceptual analysis, as the goal was to retrieve effect parameters from a target mix. 
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Chapter 3 

3 Frequency Processing 
 

 

 

This chapter investigates the frequency aspect of intelligent mixing. We first present a 

spectral characteristic analysis of popular commercial recordings. We discover a consistent 

leaning towards a target spectrum that stems from practices in the music industry. A new 

approach for automatically equalizing audio signals towards the observed target spectrum is 

then described. 

 

3.1 Introduction 
 

Previous research on the frequency aspect of intelligent mixing has been reviewed in the 

Background Section 2.5.3. Evaluation results often appear to be inconclusive. Indeed, 

applying equalization to achieve a balanced spectral distribution is the most challenging task 

in mixing.  

 

An efficient and stable filter design that can resemble any desired frequency response offers 

great value for the intelligent equalization techniques. Finite impulse response (FIR) filter 

design based on the least-squares method provides a quick solution (Ahmad & Wang, 1989; 

Algazi, Suk, & Rim, 1986; Friedlander & Porat, 1984; Kobayashi & Imai, 1990; Lim, Lee, 

Chen, & Yang, 1992; Pei & Shyu, 1994; Sunder & Ramachandran, 1994). But there are 

caveats with FFT convolution methods, to do with loss of precision, computational 

complexity, quantization, dither and the effects of the inevitable FIR windowing when 

filtering the input signal with FIRs. IIRs can avoid many of these disadvantages. But an IIR 

filter is a complex feedback network. There is a dearth of good methods to design these once 

moving away from classic filter transfer functions. (Lee, 2008) described a method of fitting 

infinite impulse response (IIR) filters to an arbitrary frequency response using Singular Value 

Decomposition (SVD). However, evaluation showed that this method also lacked accuracy in 
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the lower frequencies and not suitable for low-pass, high-pass and band-pass filters with 

classic response shapes. The Yule-Walker method of Autoregressive Moving Average 

(ARMA) spectral estimation (Friedlander & Porat, 1984) was found to provide a better 

spectral accuracy, where the computational cost was reasonable.   

 

A few commercial plug-ins are capable of matching the spectrum of one piece of audio to 

another, such as Logic Pro’s Match EQ, iZotope’s Ozone, DUY’s MagicSpectrum. However, 

none of them are truly real-time. A learning process of the spectral content of both input and 

source file is needed before actual filtering. In most cases, a single equalization curve (time-

constant) is calculated and applied to the whole signal using either FIR filters or parametric 

filters to fulfil the roles.  

 

In this chapter, we first present spectral characteristics analysis of popular commercial 

recordings in Section 3.2. The long-term spectral contours of a large dataset are analyzed. 

Overall spectrum trends, spectral feature evolution in years and in genres are analyzed. We 

discover that there is a consistent leaning towards a target spectrum. Based on the analysis, a 

new approach for automatically equalizing an audio signal towards the observed spectrum is 

presented in Section 3.3. The algorithm is based on the Yule-Walker method and designs 

recursive IIR digital filters using least-squares fitting to any desired frequency response. 

Objective evaluation is provided in Section 3.4, where the output frequency spectra are 

compared against the target spectrum and those produced by an alternative equalization 

method. 

 

3.2 Spectral Characteristics of Popular Commercial Recordings 

3.2.1 Dataset  

 

The dataset contains almost half the number-one singles (either in the UK or US chart) over 

the last 60 years according to OCC, Billboard and Wikipedia. We chose these criteria in 

order to be consistent with public preference. It has a good representation of both genre and 

year of production.  

 

All the songs in our dataset are uncompressed and, while we tried to find un-remastered 

versions, it was not always possible. This means that we gave extra prominence to current 
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standards of production and the differences we present should be even greater than that 

which our data suggests. Table 3.1 shows the number of songs we had, divided by decade and 

genre. 

 

 

Table 3.1 Number of songs per decades in the dataset. 

Years Number of Songs Genre Number of Songs   

50s 71 Pop 178   

60s 156 Rock 102   

70s 129 Electronic 64   

80s 193 Hip-hop 79   

90s 96 Folk 48   

After 2000 127 Disco 52   

  R&B 

Soul 

112 

89 

  

 

 

3.2.2 Overall Average Spectrum of Commercial Recordings 

 

Our main analysis focused on the monaural, average long-term spectrum of the 

aforementioned dataset. In order for spectra to be comparable, we first make sure that all 

songs are sampled at the same frequency (44.1 kHz being the obvious candidate for us, as 

most works stemmed from CD copies), and that we apply the same window length (4096 

samples) to all contents, so that the frequency resolution is consistent (≈ 10 Hz). Let: 
 

 

  

X (k,τ ) = x(n)e− j 2π k n
N

n=τwlen

(τ+1)wlen−1

∑ ,

k = {0,1,...,212 −1},τ = {0,1,..., xlen
wlen

⎡

⎣
⎢

⎤

⎦
⎥},

  (0.0) 

 

where k is the frequency bin and τ the time window number. xlen and wlen are the song and 

window lengths, respectively. And we then consider the integrated spectral response to be the 

mean magnitude over τ: 
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X (k) =
X (k,τ )

τ
∑

xlen
wlen

⎡

⎣
⎢

⎤

⎦
⎥ +1

.   (0.0) 

 

Equation (0.0) loses the 1 in the denominator whenever mod(xlen,wlen)=0. 

 

It is still necessary to tackle the problem of different spectral distributions having potentially 

different overall power values. Strict normalization is not the answer, as spurious radical peaks 

in the frequency distribution might cause overall lower power levels, and the comparison 

would yield results that showed a variability that was greater than the real variability (one 

could take, as an example, a comparison between a white noise spectrum and one that adds a 

single sinusoid at 1000 Hz to the same white noise — if the sinusoid is greater in magnitude, 

a normalization process would bring all other bins in the second spectrum down and lead us 

to conclude that the spectra were very different, while in actuality they are not). There are 

several available solutions, but we opted to scale all spectral distributions so that the bin sum 

would be 1, followed by averaging the cumulative distribution function. This means 

normalizing according to: 
 

 

   
X (k) = X (k)

X (k)
k
∑ ,   (0.0) 

 

and accumulating over the bins: 
 

 
   
X c (k) = X (i)

i=0

k
∑ .   (0.0) 

 

We then compute a mean calculation of each point in the cumulative distribution Xc(k). The 

average spectrum is computed from the differences between adjacent bins, and multiplying by 

the average magnitude of all songs. This is basically an inversion of the process described 

above, and it is shown in the following equation: 
 

 
   
X AV (k) =

X (k)
k
∑

N (X c (k)− X c (k −1)),   (0.0) 
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where N is the total number of songs.  

 

                 
Figure 3.1 Average spectrum of all available data. 

 

The result of averaging the spectra of all songs in the dataset is shown in Figure 3.1, along 

with a plot that overlaps all the individual distributions. The trend seen in the average 

spectrum is consistent with what can be observed for the individual distributions and the 95% 

confidence interval indicated are so narrow that they are not perceptible on the shown scale. 

The average standard deviation for the normalized cumulative values is 0.044, which is a 

well-behaved value across frequency bins (though averaging 2048 standard deviations drowns 

out the larger values in the low-end frequency region). All the subsequent analysis follows 

this averaging scheme.  
 

3.2.3 Yearly Evolution of Spectra and Spectral Features 

 

Figure 3.2 shows the average spectrum evolution through time, along with some decade-by-

decade snapshots of revealing frequency ranges.  
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Figure 3.2 Average spectra on a yearly base (top) and frequency region details per decade 

(bottom), from left to right: 40−200 Hz, 1−4 kHz and 7−20 kHz. Darker colors represent 

later decades in the bottom plot. 

 

An interesting feature is the raggedness of the mid-distribution (detailed in Figure 3.3), and 

particularly its evolution. When we look at the comb-like shape of the line representing the 

most recent decade, we are seeing peaks in every note of the dodecaphonic scale in equal-

tempered western tuning. Looking back in time we see that raggedness emphasizes some 

notes over others, which may well indicate predominance of certain tonalities over others. 
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This is particularly clear during the 50s and 60s. While this is an interesting point, if we are 

concerned with equalization practices on the engineering and production side we should 

discard tonal features and concentrate on the broad spectral contour. 

 

    

Figure 3.3 Detail of the emphasis on tonal frequencies for the decades where the difference is 

more accentuated. Actual fundamental frequencies are shown as vertical black lines. 

 

There are some additional spectral features whose evolution might be interesting to look at, 

detailed in Figure 3.4. Spectral centroid is defined in (Peeters, 2004): 

 

 
  
µ = kp(k)

k
∑ ,   (0.0) 

 

where k is the frequency bins k of the DFT. And the magnitude of the normalized spectral 

envelope p(k), is given by  

 

 

  
p(k) = X (k)

X (k)
k
∑ .   (0.0) 

 

Spectral crest uses the equation given in (Krippendorff, 2012) defined in 

 

 
  
σ 2 = k2 p(k).

k
∑   (0.0) 
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We simplified the spectral slope measure, in that it is simply the slope of the log-log 

regression of the data points between 100 Hz and 10000 Hz (  i = k ∈(100,1000) hz ): 

 

 

  

λ = 1
p(i)

i
∑

N p(i)k(i)− p(i) k(i)
i
∑

i
∑

i
∑

N k2(i)− k(i)
i
∑⎛⎝⎜

⎞
⎠⎟

2

i
∑

.   (0.0) 

 

Finally, the spectral peak is purely a measure of the log magnitude of the bin whose value 

represents the global maximum.  

 

Spectral centroid, as a common approximation of brightness, is maintained roughly around 

900 Hz throughout all time. This suggests that popular commercial recordings have a 

dominant preference on the overall brightness no matter which decade the recordings were 

produced. The peak frequency decreases dramatically from 1950 to 1980 then slows down 

until 2003, from where it starts to increase slightly. Similar behavior (with different direction) 

can be seen from the results of peak magnitude. There is significant increase in peak 

magnitude from 1950 to around 1975. During the period of 1975 to 1990, the peak 

magnitude exhibits less sharp deviation. However from 1990 onward, it starts to increase 

dramatically again until it reaches the peak at 2005. Then it starts to show a trend of 

decreasing.  The significant changes in peak frequency and magnitude could due to the audio 

world undergo the “switch” from analogue to digital. And during the modern digital era, the 

average magnitude peak and overall magnitude are increasing, and the spectrum (as spectral 

crest and spectral slope results suggest) tends to become flatter, partly due to the increasing 

amount of compression, see (Vickers, 2011). 
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Figure 3.4 Yearly evolution of low-level spectral features: spectral centroid, peak frequency, 

peak magnitude, spectral crest and spectral slope. 

 

3.2.4 Differences Stemming from Genre 

 

Genre differences can also yield interesting results, and these are shown in Figure 3.5. We 

took our data from Wikipedia primarily, with tags from EchoNest and LastFM (when tags 

from Last.fm disagreed with Wikipedia, the data from Wikipedia is used). The extremely 

extended low-end response of electronica and hip-hop is unmistakable, whereas, as expected, 

R&B and jazz have a lighter bottom. The prominence of the top-end also yields differences 

in excess of 10 dB, which are meaningful even in the light of the overall magnitude increase 

of the brighter genres. The brightest mixes seem to be hip-hop ones, followed by electronic 

and disco. Here, however, this enhanced top end is negligible when considering that there is 

an overall enhancement (due to higher loudness specifications). On the dull side, folk and 

jazz genres suggest that there is natural top-end decay on more acoustic endeavours, whereas 

electronic ones allow and benefit from bigger frequency extensions. 
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Figure 3.5 Average spectra by genre for a selection of genres. 

On the middle-part of the spectrum, it is interesting to observe that pop and rock seem to be 

more openly harmonic in nature (again, raggedness in the frequency response), with no 

preference of tonality. Hip-hop in contrast, seems to have fewer harmonicas, which may be 

due to the prominence of rhythmic elements. Note that there might be a bias induced by the 

number of songs in each genre. The domination of pop and rock in the charts may possibly 

enhance a more even distribution of tonal content, as there are more songs in more varied 

keys. We chose not to go into sub-genres, as the academic consensus is very low in terms of 

genre definition, let alone sub-genres. The genre divisions are much less clear-cut, and the 

only region with no confidence interval overlap is the low-end. 
 
Table 3.2 shows the difference in the low-level descriptors mentioned above. These reinforce 

the observations above in that genre differences are significant in terms of spectra. However, 

genre-popularity shifts over time. Thus, hip-hop’s more prominent loudness and extended 

bass response is evidently related to the fact that post-2000 songs share the same tendency. 
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Table 3.2 Values of low-level spectral features compiled by genre. 

Genre Spectral Centroid 

(Hz) 

Spectral Crest Spectral Slope Peak Magnitude 

(dB) 

Pop 868 0.0158 -0.9433 -30.58 

Rock 858 0.0153 -0.9793 -30.66 

Electronic 845 0.0194 -0.7461 -27.7 

Hip-hop 662 0.0265 -0.8141 -22.52 

Jazz 785 0.0141 -1.2929 -35.58 

Folk 603 0.0191 -1.1824 -32.54 

Disco 963 0.0148 -0.8042 -30.31 

R&B 811 0.0149  -1.0336 -33.87 

Soul 760 0.0157 -1.0303 -32.94 

 

 

3.3 Intelligent Equalization Algorithms 

3.3.1 Target Equalization Spectrum 

 

The average spectrum of all songs in the dataset is shown in Figure 3.1. Popular commercial 

recordings appear to share a consistent trend, which can be described as a linearly decaying 

distribution of around 5 dB per octave between 100 and 4000 Hz, becoming gradually steeper 

with higher frequencies, and a severe low-cut around 60 Hz. 

 

The average spectra can be used as a frequency balance reference as a “best practices” 

approach. We use a smoothed version of the average spectra as the target equalization 

spectrum. A 17-point moving average filter is applied to the original spectra. We only 

perform the smoothing mechanism on frequencies higher than 200 Hz, so that the peak 

frequency and peak magnitude on lower frequency are preserved, while higher frequency bin 

values are smoothed to filter out the raggedness (comb-like shape) of the mid-distribution. 

The smoothed, target equalization curve is illustrated in Figure 3.6. 
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Figure 3.6 Smoothed target equalization spectrum. 

 

3.3.2 System Workflow 

 

After the target equalization spectrum has been found, the next stage is to design an 

algorithm to filter the input audio signal so that its spectrum matches the target. The overall 

block diagram of the full system is shown in Figure 3.7. In summary, the filtering process is 

first controlled by a noise gate, which determines from a frame’s energy whether it can be 

considered to be active. Only active frames enter the filter design stage. For inactive frames, 

the filter curve is kept stationary. The spectrum of the active frame is then analysed and 

matched against the target, creating a filter curve using the Yule-Walker method. Filter 

curves are smoothed within and between frames to minimize the artifacts.  

 

Implementations of the algorithm have been developed in both Matlab and C++. Both 

operate on a frame-by-frame basis, but the C++ implementation uses a sample-based 

approach to realize real-time, low latency processing for practical use. The C++ version 

deploys a host/plug-in structure, where the host defines the frame size. 
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Figure 3.7 Block diagram of the intelligent equalization system. 

 

3.3.3 Hysteresis Noise Gate 

 

We adapt the noise gate with hysteresis algorithm in (Mansbridge et al., 2012) to classify the 

input frames to be either active or inactive based on their loudness estimated by the R-128 

loudness measure (ITU, 2012a).   

 

We assume that a frame must be active to contribute to the next stage, where the filter curve 

is created and applied to match the target equalization spectrum. If inactive, the same filter 

curve that was applied on the previous active frame will be applied. Hysteresis thresholds 

(Filanovsky & Baltes, 1994), Topen=-25 LUFS and Tclose=-30 LUFS are chosen to prevent 

inappropriate state switching as shown in Figure 3.8. 

x[n] Stereo Input

Audio Buffer

Hysteresis 
Noise Gate

Active Frame Inactive Frame

Spectral Analysis

Yule-Walker Filter 
Design

Applying 
Filter

Target Equalization 
Curve

Applying Previous 
Filter

y[n] Stereo Output
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Figure 3.8 Noise gate with hysteresis operation. 

 

3.3.4 Spectral Analysis 

 

A 4096-point sliding FFT with Hanning windows was performed. Since the host itself 

defines the frame size and it’s usually less than 4096 samples, we need to create a buffer of 

4096 samples to store enough samples. The FFT was only performed on the active frames in 

order to cut down the computational cost and achieve a low latency.  

 

Since the calculated magnitude spectrum will act as a denominator in a later analysis stage to 

obtain the desired transfer function (filter curve), a problem could arise if the amplitude 

values at one or more frequency components are too small. As a result, we end up with a 

transfer function with unreasonable peaks, which is difficult to estimate and produces 

unpleasant sound artifacts. It may also make the IIR filter highly unstable. To avoid this, a 

simple threshold technique is applied. We opt to use a threshold of -40 dB to filter the 

magnitude spectrum. Values less than -40 dB are usually found only at very high frequencies. 

So the thresholding mechanism will have an insignificant effect on the accuracy of the filter 

design. Later, we normalized the spectra by dividing the magnitudes by the maximum 

magnitude for spectrum comparison. 

 

3.3.5 IIR Filter Design 

 

The design of an IIR filter with arbitrary magnitude response using the Yule-Walker least-

squares approach is described in this section.  

State

Loudness

open

closed

Tclose Topen
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Step 1: Obtain Desired Magnitude Response 

 

Let X(w) denote the thresholded, normalized magnitude spectrum of the active frame, and 

T(w) denote the target equalization spectrum.  Therefore, the desired transfer function Hd(w) 

can be simply obtained from the equation: 

 

 
  
Hd (w) = T (w)

X (w) .   (0.0) 

 

The values of Hd(w) are calculated at every 1/3 octave center frequency, which is closely 

approximate the perception of sound by human hearing system. 33 frequency bands are large 

enough to capture the transition of the impulse response with an arbitrary shape while the 

computational cost is reduced significantly compared with the one of using 2048 linear-

spaced frequency points. Afterwards, we normalize Hd(w) into the range (0,1) to prevent 

overshooting. 

 

In the practical implementation, the actual values of T(w) are weighted values between the 

target spectrum and magnitude spectrum of the processed frame defined as follow: 

 

   T '(w) =T (w)a + (1− a)X (w)   a ∈[0,1].   (0.0) 

 

The weighting factor a is left as one of the user control parameters: increase the value of a to 

match the target spectrum more or decrease it to preserve the original spectral content more, 

based on their personal listening evaluation.  

 

Step 2: Filter Curve Smoothing 

 

As the algorithm produces time-varying filter curves operating on audio signals, variable 

smoothing on desired IIR filters’ magnitude responses within a single frame and between 

adjacent frames is necessary to avoid sound artifacts. Since the intelligent equalization tool 

runs in real-time with a sample-based approach, an efficient and reliable long-term average 

measure is necessary throughout to produce useful and smoothly varying data variables. 

Exponential moving average (EMA) filters are used extensively to fulfill this role. The EMA 

filter is a first order IIR filter described by the general difference equation: 
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   X
'(t ) =αX '(t −1)+ (1−α )X (t ),   (0.0) 

   α = e−1/(τ f s ).   (0.0) 

 

fs is the sample rate of the input signal, and α  determines the degree of filtering between 

adjacent samples: the higher the value the less the rate of decay. 𝜏 corresponds to the time 

that takes the system to reach (1-1/e) of its final value. Let W denote the window size, which 

is decided by the host itself. Then the actual processing frequency rate becomes:  
 

 
  
fW =

f s
W .   (0.0) 

 

EMA filters are first applied to the desired magnitude response Hd(wn) of the filter curve 

within one active frame as follows:  

 

   H 'd (wn ) =α1H 'd (wn−1 )+ (1−α1 )Hd (wn ).   (0.0) 

 

In this case,   α1 = e−1/(τ1 fW )  and  τ1  is set to 0.5 (ms) based on empirical experiments. 

 

EMA filters are also applied to smooth the overall variations of filtering curves between 

consecutive frames: 

 

   H 'm(w) =α 2H 'm−1(w)+ (1−α 2 )Hm(w),   (0.0) 

 

where   α 2 = e−1/(τ 2 fW )  and H’m(w) corresponds to the new value of Hm(w) for current frame m. 

H’m-1(w) denotes the transfer function value for previous frame (m-1). New filter curves are 

calculated once every frame.  τ 2  is set to 1.28 (s) for a typical frame size W=64, to prevent 

filter curves from changing wildly from frame to frame.  

 

The choices of the time constant (  and ) for the filter curve smoothing mechanism 

within one active frame and between consecutive frames are particularly important to tackle 

the potential inter-frame spectral variation, which might produce undesired artefacts. 

Listening evaluation of the algorithm on various songs with different time constants suggests 

 τ1  τ 2
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that the time constant for consecutive frames smoothing (  > 1 s) can prevent such 

unpleasant artefacts in most cases. Furthermore, in the real-time implementation of the 

algorithm, time constants are set to the optimal values as mentioned. However, they are user-

controllable. User can adjust the time constants to tailor the algorithm for each individual 

song.  

 

Step 3: Obtain IIR Filter Coefficients Using Yule-Walker 

 

We adapt the Yule-Walker method to perform a least-squares fitting to the desired frequency 

response Hd(w) to find a causal stable rational function: 

 

 
  
H (z) = B(z)

A(z) ,   (0.0) 

 

which best approximates Hd(w). The Yule-Walker method finds the p-th order recursive 

filter coefficients B and A such that the filter: 

 

 
  

B(z)
A(z)

= b(0)+ b(1)z−1 + ...+ b( p)z− p

1+ a(1)z−1 + ...+ a( p)z− p ,   (0.0) 

 

where {b(0), …, b(p)}, {a(0), …, a(p)} are the denominator and numerator coefficients of the 

desirable IIR filter, and a(0) equals to 1. The denominator coefficients are calculated by the 

modified Yule Walker equations (MathWorks, 2015) using correlation coefficients computed 

by inverse Fourier Transformation of the specified frequency response Hd(w). The Yule 

Walker method is summarised as follow, the detailed calculation of the numerator can be 

found in (MathWorks, 2015): 

 

• Step 1: A numerator polynomial corresponding to an additive decomposition of the 

power frequency response is computed.   

• Step 2: The complete frequency response corresponding to the numerator and 

denominator polynomials is evaluated.   

• Step 3: A spectral factorization technique is used to obtain the impulse response of 

the filter.   

 τ 2
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Step 4: The numerator polynomial is obtained by a least-squares fitting to this 

impulse response.   

 

p is set to 16 based on listening evaluation of the quality of the mixes produced by the 

algorithm with different p values by the author, and objective evaluation (see Section 3.4). 

IIR filter of a slightly high order gives us a good approximation and does not cause any 

latency problems.  

 

3.3.6 Filter Applying 

 

We filter the audio samples with an IIR filter described by its denominator coefficients {b(0), 

…, b(p)} and numerator coefficients {a(0), …, a(p)}. The filtering process is implemented as a 

difference equation: 

 
  
y(n) = b(1)x(n)+ b(2)x(n −1)+ ...+ b( p)x(n − p)
          − a(2) y(n −1)− ...− a( p) y(n − p),   (0.0) 

 

where x(n) is the current input audio sample, y(n) is the current output. Since the deployed 

host/plug-in structure operates on frame-by-frame basis. Two audio buffers, one to store 

previous values of x(n-1) to x(n-16), another to store previous values of y(n-1) to y(n-16), are 

needed to realize the filtering process across consecutive frames.  

 

3.4 Results and Evaluation 
 

A straightforward objective evaluation to compare of the before-and-after magnitude 

spectrums of the signal is presented.  
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Figure 3.9 Before-and-after magnitude spectrums of a white noise signal compared with the 

target spectrum. 

 

First, we applied our equalization algorithm to a white noise signal. The result is shown in 

Figure 3.9. Overall, it shows that the algorithm is able to match the spectrum of the white 

noise signal to the target equalization curve. However, notable errors are appeared at low 

frequencies. 

 

We also tested on an uncompressed musical signal at a typical 44.1 kHz sampling rate. The 

musical signal (Elvis Presley’s "It's Now or Never") is one of the commercial songs used in 

Section 3.2. 20s segment of the song was extracted and tested. The result is presented in 

Figure 3.10. The result shows the output spectrum matches to the target equalization curve 

roughly.  The effect of the algorithm is particularly obvious at high frequencies. The order p 

of the IIR filter is set to 16, and  τ1 ,  τ 2  are set to optimal values for both tests.  
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Figure 3.10 Before-and-after magnitude spectrums of a musical signal compared with the 

target spectrum. 

To choose the optimal IIR order for real time implementation, we evaluate the performance 

of the algorithm briefly with different IIR orders. Same musical signal as previous experiment 

was used. The before and after spectrum results in terms of different IIR orders are shown in  

Figure 3.11. 
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Figure 3.11 Results of IIR orders with 8, 16 and 32 respectively from top to bottom. 

The results suggested that IIR order choice of 16 has similar performance as higher order 32, 

and much accurate spectrum matching ability comparing to low order of 8. 

 

We also compared our approach against an alternative target equalization implementation 

provided by Landr, Ltd. In brief, the alternative equalization applies 9-band FIR filters with 

each sub-band gains computed by comparing the target spectrum and the input spectrum at 

each sub-band. The time-varying alternative algorithm is based on traditional fixed-band 

equalizers. First, the same white noise signal was fed into both plug-ins. All control 

parameters are set to optimal values. The results are depicted in Figure 3.12. 

 

                    
Figure 3.12 Output spectrums obtained from the proposed target equalization approach and 

an alterative equalization approach against the original spectrum of a white noise signal. 
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The spectrum curve obtained from the alternative target equalization shows relatively sharp 

peaks around 250 Hz and 10 kHz with an up-climbing slope at the high end possibly owing 

to the fact that it uses fixed frequency bands equalization method. The spectrum curve 

produced by our target equalization approach sustains a flat response at middle range and 

constant exponential decrease at both low and high end. Regarding spectrum matching 

toward a specific target, the Yule-Walker method shows its advantage over fixed frequency 

bands limitation. 

 

Following the same process, a musical signal was also tested. The results are presented in 

Figure 3.13. The averaged output spectrums of the song after being processed by both 

approaches appear to lie close to each other in general. The zoom-in difference between these 

two approaches is depicted in Figure 3.14. We can see irregular variations across the whole 

frequency range. 

 

            
Figure 3.13 Output spectrums obtained from the proposed target equalization approach and 

an alterative equalization approach against the original spectrum of a musical signal. 

 

102 103 104
−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

 

 

Orginal
Target EQ
Other Target EQ



 66 

             
Figure 3.14 The difference between the spectrums obtained from the proposed target 

equalization approach and the alternative equalization approach. 

 

3.5 Conclusions 
 

A spectral characteristic analysis was performed on a dataset is comprised of almost half the 

number one recordings over the past 60 years. It showed that the spectra of these popular 

commercial recordings share a consistent trend, which can roughly be described as a linearly 

decaying distribution of around 5 dB per octave between 100 and 4000 Hz, becoming 

gradually steeper with higher frequencies, and a severe low-cut around 60 Hz. It also 

suggested that the shapes of the spectra are dependent on genre and on the year of 

production. However the analysis was performed on monaural content. The difference 

exhibited between the left and right channels is another interesting topic yet to be explored. 

Analysis on the spectral difference between the original songs and their modern remastered 

versions is another direction for future work, which can offer a comprehensive insight into 

modern mixing technique. In general, the broad statistical analysis of successful commercial 

recordings shows a lot of promise for knowledge that could be useful for intelligent mixing 

system.  

 

We then proposed a novel time-varying equalization approach to match the spectral 

distribution of the input signal to a target equalization curve (such as the common curve 
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obtained from the spectral characteristic studies) or any desired frequency response, based on 

the Yule-Walker IIR filter design method. Objective evaluation of the algorithm showed that 

the algorithm is able to fulfill the objective with appropriate ballistics setting. 

 

The limitation of this equalization approach is that it applies IIR filters on the mix rather 

than the individual tracks. Therefore, this approach is more applicable to audio mastering 

than mixing at its current state. Future work to explore how to apply Yule-Walker IIR filter 

to individual tracks to achieve a target spectrum is desirable.   
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Chapter 4 

4 Dynamic Processing 
 

 

4.1 Introduction 
 

Chapter 3 dealt with the frequency aspect of intelligent mixing, in which we have proposed 

an intelligent equalization technique to manipulate the spectral content of audio signals to 

match a target spectrum discovered from analysis of a large dataset of successful commercial 

recordings. In this chapter we proceed to the dynamics aspect of intelligent mixing.  

 

Dynamic range compression (DRC) in multitrack mixing has been discussed in Section 

2.5.4. The rich history of automatic DRC research has been reviewed in Section 2.5.4. To a 

large extent, DRC defines much of the sound of contemporary mixes. However, it is arguably 

the most misused and overused effect in audio mixing (Izhaki, 2013). If used excessively, the 

dynamic range compressor suppresses musical dynamics, producing lifeless recordings 

deprived of their natural character. Inappropriate parameter settings also produce artifacts 

such as pumping and breathing. Furthermore, conventional use of a static set of compressor 

parameters might not be optimal when the dynamic characteristics of the signal vary 

significantly over time. Parameter automation of a dynamic range compressor using 

computerized signal analysis can provide advantages to audio amateurs or musicians who lack 

expert knowledge in signal processing. Such tools are capable of producing intelligent mixing 

decisions that speed up the routine work and the trial-and-error process of avoiding 

inappropriate sonic artifacts.” 

 

In this chapter, we propose a fully automated multitrack DRC algorithm exploiting the 

interdependence of the input audio features and incorporating best practices as control rules. 

Section 4.2 provides control assumptions to automate the system and the rationale as to why 

the proposed features explored in Section 4.3 are relevant. A method of adjustment 

experiment is described in Section 4.3 to explore the subjective preference for ratio and 
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threshold parameter setting, and multiple linear regression models are then applied to the 

results to derive the ratio and threshold automations. Finally, the intelligent multitrack DRC 

algorithms are presented in Section 4.4 followed by a subjective evaluation in the form of a 

listening test and discussion. The procedure is illustrated in  

 

 
Figure 4.1 The development of the automatic multitrack DRC algorithm. 

4.2 DRC Control Assumptions 
 

DRC control assumptions, derived from the literature and analysis to automate the 

compressor parameters are listed and discussed. 

 

• Assumption 1: A signal with a high degree of level fluctuations should have more 

compression. 

• Assumption 2: A signal with more low frequency content should have more 

compression. 

• Assumption 3: Attack and release time should be dependent on the transient nature 

of the signal. 

• Assumption 4: Knee width should depend on the amount of compression applied. 

• Assumption 5: Make-up gain should be set so that output loudness equals input 

loudness. 

• Assumption 6: There is a maximum and optimal amount of DRC that depends on 

sound source features. 

 

Regarding Assumption 1, in a survey about the main reasons to apply DRC (Pestana, 2013; 

Pestana & Reiss, 2014),  most professional mixing engineers who participated stated that 

their main intention was to ‘stabilise erratic loudness range’. They often compress 

instruments that have high note-to-note level variations, such as vocals or drum tracks, so 

that their relative levels are more consistent. A number of dynamics features have been 

proposed recently that measure the degree of level fluctuation, including EBU loudness range 

(ITU, 2012a) and dynamic spread (Vickers, 2001), which is simply the p-norm of the signal. 

Yet subjective listening test results in (Boley, Danner, & Lester, 2010) suggested none of the 
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metrics accurately predict the perceived dynamic range of a musical track. In (Pestana, Reiss, 

& Barbosa, 2013), the authors proposed some parameter alterations of (ITU, 2012a) that 

might yield better results for multitrack material. Alternatively, the crest factor, calculated, as 

the peak amplitude of an audio waveform divided by its RMS value, can also be a coarse 

measurement of dynamic range. 

 

Assumption 2 is based on analysis of mixes in (Pestana, 2013; Pestana & Reiss, 2014), which 

showed that ‘Compression takes place whenever headroom is at stake, and the low-end is 

usually more critical’.  Thus spectral features of the source audio signal such as spectral 

centroid, spectral spread, and brightness are worth exploring to reveal the degree of frequency 

dependence and low-end sensitivity of DRC. 

 

As for Assumption 3, attack times usually span between 5 ms and 250 ms and release times 

are often within the 5–3000 ms range. It is generally accepted that attack and release time 

parameters are employed to catch the transient nature of the sound (Izhaki, 2013; Kraght, 

2000). Some commercial compressors offer a switchable auto-attack or auto-release, which 

are mostly based on measuring the difference between the peak and RMS levels of the side-

chain signal. In academia, (Aichinger et al., 2011) automate attack and release times based on 

the crest factor of the multitrack. More recently, (Giannoulis et al., 2012b) improved the 

subject based on either modified crest factor or modified spectral flux. The outcome was used 

in (Maddams et al., 2012). Previous research shares a general idea: if a signal is highly 

transient or percussive, shorter time constants are preferred. 

 

Regarding Assumption 4, a soft knee enables smoother transition between non-compressed 

and compressed parts of the signal, and thus yields a more transparent compression effect. In 

order to produce a natural compression effect in an automatic mixing system, the knee width 

should be adaptively configured based on the estimated amount of compression applied on 

the signal (Reiss, 2011). The amount of compression applied largely depends on the 

relationship between threshold and ratio. 

 

Assumption 5 can be regarded as a direct consequence of the definition of make-up gain. 

Automatic make-up gain based on the average control-voltage is commonly used in 

commercial DRC products. However, (Izhaki, 2013) pointed out that this often produces a 

perceived loudness variation in practice. Subjective evaluation in (Giannoulis et al., 2012b) 



 71 

showed that the EBU loudness-based make-up gain produced a better approximation of how 

professional mixing engineers would set the make-up gain. 

 

As for Assumption 6, quantitative descriptions about the amount of compression that should 

be applied on different instruments can be found in the literature (Huber & Runstein, 2013; 

Thiele, 2005). Both (Giannoulis et al., 2012b) and (Foudi, 2012) separated between transient 

and steady state signals as they are assumed to need a different treatment. 

 

4.3 Compressor Parameter Adjustment Experiment 
 

Ratio and threshold are the most crucial parameters in determining the amount of DRC. 

Assumption 1 and 2 (Section 2.2) suggest that audio features that describe the dynamic and 

spectral content of the signal might have a high degree of correlation with the preferred 

amount of DRC. We propose a method of adjustment experiment to uncover how subjects 

set the ratio and threshold. Several feature candidates are proposed and their correlations 

with the subjective results are analysed. We apply a least-squares based multiple linear 

regression model to formulate the relationship between the identified features and the test 

results, and finally to derive the ratio and threshold parameter automation. 

 

4.3.1 Method of Adjustment Experiment  

 

Four multitrack songs of different genres (Song 1: Rock; Song 2: Pop; Song 3: Alternative; 

Song 4: Folk) were selected for testing. 20-second excerpts were extracted from the chorus of 

each song for use in the test. Each excerpts consisted 6 or 7 different instrument stems (a 

sub-mix of the tracks that represent the same instrument in the process of mixing), all in 

mono and running at a typical sampling rate of 44.1 kHz. The loudness of the songs were 

normalised manually based on subjective listening rather than objective loudness 

measurement, by a group of professional mixing engineers as suggested in (ITU, 2003). This 

is to ensure that all songs are perceived equally loud when they were played at the same 

playback system (around 80 dB SPL playback level) used in the adjustment experiment. In 

this case, gains were applied to the overall mix rather than each individual instrument to 

achieve equally loudness between songs. No peak normalisation processes were applied for 

each individual instrument track. Different gains values have to be applied to each track with 
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the objective to achieve peak normalization. However, this will produce unpleasant level 

balance between instruments (professional mixing engineers rarely perform peak normalise to 

achieve level balance). And ill-balanced mixes introduce psychological bias and interference 

for subjects to correctly perform subjective evaluation of the dynamics of the songs. The 

specifications such as instrumentation, RMS levels and etc. of the testing audios can be found 

in Table 4.3. All songs used in this experiment can be accessed from the Open Multitrack 

Testbed at multitrack.eecs.qmul.ac.uk (De Man, Mora-Mcginity, Fazekas, & Reiss, 2014). 

This experiment is to explore the participants’ subjective preference of threshold and ratio 

settings when presented with various signals that have different feature characteristics. 

Therefore signals with wider range of audio feature (such as crest factors, RMS, dynamic 

spread, spectral centroid, spectral spread, brightness and etc. See Table 4.3) are selected for 

the tests.  

 

Fifteen participants, all of whom have audio engineering experience, two of whom are 

professional mixing engineers, were recruited to perform a DRC ratio and threshold 

adjustment experiment. Related information about the participants is shown in Table 4.1. 

 

Table 4.1 Related information about the participants. 

Gender Male 10 

Female 5 

Critical listening skill No experience 0 

Moderate 11 

Professional training 4 

Hearing impairment?  No 15 

Yes 0 

Mixing background Audio Researcher 8 

 Amateur mixing engineer  5 

 Professional mixing engineer 2 

 

The author is aware that audio experience does not guarantee best practice for compression 

tasks. Especially compression requires training and professional experience. The result can be 

improved with more recruitment of professional mixing engineers to validate the result as 

“best practice”. 
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All tests were performed in a soundproof listening room with the same headphone set-up, 

where the environmental noise is minimized. Participants were allowed to adjust the playback 

level during the experiment in order to evaluate the dynamics efficiently. Participants were 

asked to adjust the ratio and threshold parameters for each instrument track of each song 

until they were satisfied with the amount of DRC applied to the mix.  A solo function to play 

back an individual track with or without compression was provided in the experiments. 

However, subjects were advised to listen to the mix when setting the parameters for each 

individual track.  

 

The digital compressor model design employed in the experiment is a feed-forward 

compressor with smoothed branching peak detector (Giannoulis et al., 2012a). The ratio and 

threshold values were hidden from participants to prevent bias resulting from common 

practices. Other compressor parameters were automated as described in Section 4.4.  The 

interface used for this experiment is shown in Figure 4.2. 

 

 
 

Figure 4.2 Interface for the ratio and threshold adjustment experiment. 

The normality of the result is checked with Lilliefors test (Lilliefors, 1967), which has a 

statistic:  

 

 
  
L = sup

x
scdf (x)− cdf (x) ,   (0.0) 

where scdf is the empirical sample-based estimation of the cumulative distribution function 

and cdf is the normal cumulative distribution function with mean and standard deviation 

equal to those of the sample. This is an appropriate approach for unknown specifications of 

the null distribution, which is our case.  
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The results of the normality test for each instrument of each song, together with the p-value 

are shown in Table 4.2. The results suggest that more than half of test cases (37 out of 52) do 

not reject the null hypothesis (p>0.05).  

 

Table 4.2 Normality test results for each instrument of each song with p-value included, h is 

the hypothesis test result (h = 1 to indicate rejection of the null hypothesis that the 

experiment results come from a distribution in the normal family, at the 5% significance 

level; h=0 to indicates a failure to reject the null hypothesis at the 5% significance level). 

    

 

Threshold Ratio 

Song  Genre  Instrument h p-value h p-value 

1 

 Bass 0 0.2982 0 0.5 

 Drum 1 (Drum set) 0 0.1997 1 0.0016 

 Drum 2 (Drum set room) 0 0.2591 0 0.0506 

 Guitar 1 (Electric) 0 0.3333 0 0.4212 

 Guitar 2 (Electric) 0 0.118 1 0.0267 

Rock Vocal (Male) 1 0.0029 1 0.0329 

2 

 Bass 0 0.5 0 0.3491 

 Drum 1 (Drum set) 0 0.1792 1 0.0055 

 Drum 2 (Drum set room) 0 0.1214 0 0.5 

 Guitar 1 (Acoustic) 1 0.002 0 0.288 

 Guitar 2 (Acoustic) 0 0.2187 0 0.5 

 Percussion 0 0.5 1 0.0015 

Folk Vocal (Female) 0 0.5 0 0.3174 

3 

 Bass 1 1.00E-03 1 0.0081 

 Drum 1 (Drum set) 1 0.4133 0 0.4963 

 Drum 2 (Drum set room) 0 0.1713 1 1.00E-03 

 Guitar 1 (Electric) 0 0.0699 0 0.5 

 Guitar 2 (Electric) 0 0.5 0 0.1731 

 Keyboard 1 1.00E-03 1 0.0243 

Indie Vocal (Male) 0 0.1239 1 0.0057 

4 

 Bongo 1 0.0081 1 0.0088 

 Guitar 1 (Electric) 0 0.394 0 0.5 

 Guitar 2 (Acoustic) 0 0.5 0 0.5 

 Percussion 0 0.1706 0 0.1587 

 Vocal-M 0 0.2254 0 0.3866 
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Pop Vocal-F 0 0.4094 1 0.0011 

 

 

The specification for MUSHRA (ITU, 2003) codec quality tests, which are quite similar to 

ours, offers the simplification that no overlap in the confidence intervals for two conditions 

means one is significantly better than the other. We will follow this idea whenever it is clear, 

presenting the standard plots. The average mean results of the 15 participants for ratio and 

threshold for each track, along with 95% confidence interval, together with the standard 

boxplots results are shown in Figure 4.2.  The small variations in results were unexpected 

since dynamic range compression is often assumed to be an art, with varying tastes in its 

application. However, we can also see from Figure 4.2 that different tracks have differing 

variation sizes, suggesting that DRC parameter setting is track dependent. We further note 

that half of the participants are from the same UK research group, and thus might share a 

similar taste in compression that could potentially bias the results. 
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Boxplot of the threshold results 

 
Boxplot of the ratio results 

 

 
               (b) 

 

Figure 4.3 (a) Ratio and threshold adjustment results with 95% confidence interval, dotted 

vertical lines separate results between songs. (b) Boxplots of the ratio and threshold 

adjustment results. 

4.3.2 Feature Correlations 

 

Several dynamic and spectral features are proposed, extracted and analysed based on the 

subjective results. First, the RMS level as a rough dynamic feature is defined by, 

 

 
  
xRMS = 20 log10

1
N x2(n)

n=0

N −1
∑ ,   (0.0) 

 

where N is the window length. 

 

EBU loudness range (LRA) is defined as the difference between the 10th percentile and the 

95th percentile on the histogram after a dual gating process (ITU, 2012a). 
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Dynamic spread (Vickers, 2001) is given by 

 

 
  
d = 1

N xdB (n)− xRMS
n=0

N −1
∑ ,   (0.0) 

 

where xdB is the input signal in digital full scale (dBFS). 

 

The spectral centroid is the barycentre of the spectrum, calculated by 

 

 

  

µ =
f (k)X (k)

k=0

K −1
∑

X (k)
k=0

K −1
∑

,   (0.0) 

 

where X(k) represents the spectral magnitude of signal x(n), of bin number k, and f(k) 

represents the centre frequency at that bin. 

 

Spectral spread represents the spread of the spectrum around its mean value is defined as 

 

 
  
σ s

2 = (X (k)− µ)2 f (k)
k=0

K −1
∑ .   (0.0) 

 

The practical calculation of the features mentioned before can be found in (Lartillot, 

Toiviainen, & Eerola, 2008). We also propose two new, cross-adaptive audio features called 

percussivity weighting and low-frequency weighting. 

 

Percussivity weighting describes the cross-adaptive relationship amongst all the input signals 

regarding the degree of level fluctuations and is based on the crest factor values. First, the 

average value of the crest factor over all tracks is computed as 

 

 
  
xcrest =

1
M

xcrest (m)
m=1

M

∑   (0.0) 
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where m is the index of the track number and M is the total number of input tracks. The 

average crest factor  xcrest  is then used as an adaptive threshold for the percussivity weighting 

wp(m) calculation. The mapping between wp(m) and  xcrest  is formulated using a modified 

Gaussian distribution centred around  xcrest by 

 

   g(x) = ae
(xcrest −xcrest )2

2σ 2 ,   (0.0) 

 
where σ  is the standard deviation controlling the width of the ‘bell’ shape. wp(m) is 

formulated empirically as follows, 

 

 

  

w p(m) = e
(xcrest (m)−xcrest )2

2σ 2 , xcrest (m) ≤ xcrest

2− e
(xcrest (m)−xcrest )2

2σ 2 , xcrest (m) > xcrest

⎧

⎨
⎪⎪

⎩
⎪
⎪

,   (0.0) 

 

σ  is set to 2 based on informal testing. Equation (0.0) shows that   w p(m)∈(0,2) . The larger 

the wp(m) value, the more percussive the track m is. Equation (0.0) guarantees that most 

values of wp(m)  are centred on the adaptive reference  xcrest . 

 

Low-frequency weighting is introduced to describe the relative amount of low-frequency 

energy of each signal compared to the average low frequency ratio. A Fast Fourier Transform 

(FFT) with Hanning window is performed on each signal frame to obtain the spectral 

distribution, X(m,k) of track m at frequency bin k. Xlow(m,k) is the spectral distribution of low-

pass filtered version of input signals with cut-off frequency set to 1 kHz, the cross-adaptive 

low-frequency weighting, wf(m) is defined by Equation (0.0), 

 

 

  

w f =

X low (m,k)
X (m,k)k=0

K −1
∑

1
M

X low (m,k)
X (m,k)k=0

K −1
∑

m−1

M
∑

.   (0.0) 

The values of each described feature are extracted from each multitrack and shown in Table 

4.3. 
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Table 4.3 Selected feature values of tested multitrack songs. 

 
 

 

 

Song Track Percussivity 
weighting 

EBU 
loudness 
range 
(LU) 

Dynamic 
Spread 

RMS 
(dB) 

Low-
Frequency 
weighting 

 

Brightness Spectral 
Centroid 
(Hz) 

Spectral 
spread 
(Hz) 

1 Bass 0.36 1.17 1.31 -15 1.37 0.026 373.1 1315.8 

 Drum1 0.86 1.69 8.09 -17.5 1.38 0.539 3479.7 3906.4 

 Drum2 1.52 2.09 3.39 -18.4 0.85 0.694 4394.7 3973.4 

 Guitar1 1.15 0.47 0.88 -14.6 0.75 0.458 1762.1 1697.7 

 Guitar2 1.07 0.77 0.97 -17.2 0.56 0.549 2140.9 1987.3 

 Vocal-M 0.67 3.54 8.08 -19.8 0.72 0.592 4313.2 4219.6 

2 Bass 0.52 1.88 2.47 -16.8 1.13 0.049 476.5 1331.6 

 Drum1 0.93 3.91 10.65 -26.3 1.35 0.360 1927.8 2834.3 

 Drum2 0.99 4.85 9.79 -25.6 0.93 0.440 2051.3 2665.5 

 Guitar1 0.34 7.80 3.88 -13.6 1.03 0.196 836.5 1358.3 

 Guitar2 0.36 0.65 2.02 -12.4 0.58 0.257 1087.3 1378.8 

 Percussion 1.98 0.77 3.19 -31.9 1.29 0.997 3082.4 4115.7 

 Vocal-M 0.63 6.08 8.38 -21.2 0.62 0.429 3354.7 4376.5 

3 Bass 0.6 3.02 6.14 -17.2 1.38 0.105 683.7 1922.6 

 Drum1 0.64 5.41 12.04 -25.1 1.63 0.488 3512.2 4245.3 

 Drum2 0.97 6.83 10.58 -24.3 0.94 0.525 3563.6 4396.2 

 Guitar1 0.99 2.00 1.26 -22.1 0.88 0.365 1458.2 1648.4 

 Guitar2 1.13 3.67 1.96 -21.2 0.48 0.597 1987.3 1778.5 

 Keyboard 1.01 3.91 2.67 -15.6 0.41 0.317 1573.1 2258.3 

 Vocal-M 0.96 10.20 17.92 -21.6 0.79 0.305 1908.5 2628.4 

4 Bongo 0.98 1.61 13.93 -26.2 0.92 0.222 1473.9 2406.1 

 Guitar1 1.01 2.97 2.50 -30.5 0.93 0.170 1216.7 2691.3 

 Guitar2 1.31 4.52 6.33 -18.3 1.25 0.390 2459.7 3695.1 

 Percussion 0.76 3.22 26.98 -30.5 1.22 0.388 3082.4 4412.0 

 Vocal-M 1.12 4.94 2.80 -25.4 0.88 0.224 1507.0 2798.0 

 Vocal-F 0.7 9.30 10.44 -20.1 0.72 0.340 2581.7 4061.4 

!
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The cross-correlation coefficient between each feature and the averaged ratio and threshold 

values across 15 participants is calculated as follows, 

 

 

  

rxy =
(xi − x )

i=1

M
∑ ( yi − y )

(xi − x )2 ( yi − y )2

i=1

M
∑

i=1

M
∑

,   (0.0) 

 

where xi is the feature value, yi is the observed ratio or threshold value of each multitrack, and 

 x ,  y  are the respective means.  The coefficients are listed in Table 4.4.  

 

Table 4.4 Feature correlations against the averaged ratio and threshold values. 

 Feature Ratio Correlation Threshold 
Correlation 

Dynamic Feature Percussivity 0.4954 -0.6019 

 LRA -0.1499 -0.1275 

 Dynamic Spread 0.2486 0.3294 

 RMS level -0.4871 0.6659 

Spectral 

Feature 

Low-Frequency 0.6351 -0.248 

 Spectral Centroid 0.3592 -0.2031 

 Spectral Spread 0.4996 -0.3571 

 Brightness 0.3791 -0.3926 

 

 

As Table 4.4 shows, spectral features generally exhibited higher correlation with ratio 

parameter than dynamic features. This is in agreement with Assumption 2. The proposed 

low-frequency weighting shows the highest correlation with the ratio parameter. The RMS 

level shows the strongest correlation with threshold. However, in the spectral feature 

subgroup, all correlations are relatively weak, indicating that dynamic features play a more 

significant role in setting the threshold parameter than spectral features.  
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Notice that the perception-based EBU LRA has the lowest correlation coefficients with both 

ratio and threshold. First, EBU loudness is designed for broadcast material rather than 

individual tracks in multitrack content. Second, the 3s integration window length is too long 

to capture small level fluctuations in terms of dynamics. 

 

4.3.3 Curve Fitting 

 

Multiple linear regression techniques are applied to model the relationship between the 

proposed features and the ratio and threshold experiment results (Lattin, Carroll, & Green, 

2003). Combinations of different audio features and various modelling functions are 

investigated to obtain the best fit by assessing their Goodness-Of-Fit (GOF) statistics, 

confidence interval and residual plots with validation data.  

 
We investigate various modelling functions with all the feature combinations considered. 

Ratio curve fits with significant Goodness-Of-Fit are presented in Table 4.5. Insignificant 

fits are not depicted in the table. 

 

The Sum of Squares due to Error (SSE) is the total deviation of the response values from the 

fit to the response values, or simply the sum of squares of residuals, calculated as  

 

 
  
SSE = ( yi − ŷi )2

i=1

n
∑ ,   (0.0) 

 

where yi is the ith response value from the fit,   ŷi  is response value and n is the number of 

observations. SSE is a measurement of the discrepancy between the data and an estimation 

model. Generally speaking, smaller SSE suggests a good model fit to the data. 
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Table 4.5 Ratio curve fitting results with Goodness-Of-Fit statistics. 

 
  

Feature Selection Modelling Functions  
f(x,y) 

Coefficients Goodness-Of-Fit  

X data Y data 
SSE R-square 

Adjusted 
R-square RMSE 

Low-
Frequency 

  =0.7411; =1.51 2.101 0.4034 0.3785 0.2959 

Percussivity   =0.5077; =1.762 2.657 0.2454 0.214 0.3327 

Percussivity Low-
Frequency !!  =0.969;  =1.342 2.45 0.3043 0.2753 0.3195 

Percussivity Low-
Frequency !!

 =0.968;  =0.554 

=0.783 
1.078 0.6939 0.6673 0.2165 

Percussivity Low-
Frequency 

!! =0.540; =0.764 1.079 0.6935 0.6807 0.2121 

Percussivity Low-
Frequency !!

=1.108; =0.122 

=1.257;  =1.108 
1.84 0.4776 0.4063 0.2892 

Percussivity Low-
Frequency 

!!

 

 
 

=0.933; =0.222 

=1.325; =-0.182 

 =0.008;  =0.008 

0.915 0.7401 0.6752 0.2139 

Percussivity Low-
Frequency !! =0.4508; =0.6694 1.337 0.6202 0.6044 0.2361 

LRA Low-
Frequency !!

=1.57; =-0.013 

=0.731 
2.07 0.4121 0.361 0.3 

Dynamic 
spread 

Low-
Frequency !

=1.5; =0.052 

=0.714 
2.077 0.4101 0.3588 0.3005 

Dynamic 
spread 

Low-
Frequency 

!!
=1.283; =0.043 

=0.972; =-0.003 

=0.017; =-0.159 

1.86 0.4719 0.3398 0.3049 

RMS Low-
Frequency  

=1.117; =0.023 

=0.6.34 
1.724 0.5103 0.4677 0.2738 

Percussivity Spectral 
Spread  

=1.516; =0.3844 

=0.0001 
2.196 0.3762 0.322 0.309 

Percussivity Spectral 
Spread !!

=0.754; =0.3546 

=0.7768 
2.206 0.3735 0.319 0.309 

Percussivity Spectral 
Centroid !

=1.31; =0.4502 

=0.1546 
2.621 0.2557 0.191 0.3376 

Percussivity Brightness 
 

=1.761; =0.4647 

=0.105 
2.651 0.2472 0.1817 0.3395 

!

  p1x + p2   p1   p2
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  p01
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  p01   p11

   

p00 + p10x + p01y + p20x2

…+ p11xy + p02 y2

  p00   p10

  p01   p11

  p20   p02

  p12x + p2 2 y

  p1   p2

  p00 + p10x + p01y   p00   p10

  p01

  p00 + p10x + p01y   p00   p10

  p01

   

p00 + p10x + p01y + p20x2

…+ p11xy + p02 y2

  p00   p10

  p01   p11

  p20   p02

  p00 + p10x + p01y   p00   p10

  p01

   

p00 + p10x + p01y + p20x2

…+ p11xy + p02 y2
  p00   p10

  p01

  p00 + p10x + p01 log( y)   p00   p10

  p01

  p00 + p10x + p01 log( y)   p00   p10

  p01

  p00 + p10x + p01y   p00   p10

  p01
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The coefficient of determination R2 provides a measure of how well the data are represented, 

as the proportion of variance, explained by the model. R2 ranges from 0 to 1, with a value 

closer to 1 indicating that the model accounts for a greater proportion of variance. The 

general definition of the coefficient of determination is given by 

 

 
  
R 2 = 1− SSE

SST ,   (0.0) 

 

where SST is the total sum of squares proportional to the sample variance, defined as 

 

 
  
SST = ( yi − yi )

i=0

n
∑   (0.0) 

 

where  yi  is the mean of yi. 

 

Degrees of Freedom  Radjusted
2  is generally the preferred indicator to compare two models that 

are nested. Like R2, it ranges from 0 to 1, and is given by 

 

 
  
Radjusted

2 = 1− SSE(n −1)
SST (v) ,   (0.0) 

 

where v=n-m, v is the number of independent points involving the n data points that are 

required to calculate the sum of squares and m is the number of fitted coefficients estimated 

from the response values (Walker, 1940).  

 

Root-Mean-Square Error (RMSE) estimates the standard error of the regression, as defined 

by 

 

 
  
RMSE =

( yi − ŷi )
2

i=1

n

∑
n

.   (0.0) 

 

We found that the combination of percussivity and low-frequency weighting generates the 

best fit regardless of the modelling function evaluated. In general, the modelling functions 

using percussivity and low-frequency weighting yield an SSE smaller than 1.5 and RMSE 
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smaller than 2.5, while others show a SSE larger than 2 and RMSE larger than 3. The results 

agree with the feature correlation coefficients obtained in Section 4.3.2.  

 

Four models, f(x,y)=p00+p10x+p01y, f(x,y)=p10x+p01y+1, f(x,y)=p00+p01y+…+p02y2 and 

f(x,y)=p12x+p22y  performed a better fit based on the Goodness-Of-Fit statistics. By 

comparing the Goodness-Of-Fit produced by the first order polynomial f(x,y)=p00+p10x+p01y 

with f(x,y)= p10x+p01y, both use the percussivity and low-frequency weighing features, we see 

that SSE decreases by more than half and RMSE decreases by roughly 0.1. This means the 

accuracy of the model improves. Moreover, since the two models are nested, the adjusted R2 

increases significantly from 0.2753 to 0.6673 when adding the additional constant term p00, 

implying the latter performs better again. The model f(x,y)=p00+p10x+p01y also outdoes 

f(x,y)=p12x+p22y with lower SSE and RMSE.  The adjusted R2 of the model f(x,y)= p10x+p01y+1 

is larger than the one of f(x,y)=p00+p10x+p01y, indicating that it excels the latter in the 

performance of model prediction. 

 

 

 
 

Figure 4.4 Residual plots of the first (left) and second (right) order polynomial models, 

where proposed low-frequency weighting and percussivity weighting feature are denoted as 

FW and PW respectively. 
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Figure 4.5 Prediction bounds (grey surface) with 95% confidence interval of the first (left) 

and second (right) order polynomial models. 

 

Although the second-degree polynomial model has slightly larger RMSE, SSE is smaller and 

R2 is larger. Since they are not nested, we cannot pick the best fit based on their adjusted R2 

coefficients. Therefore, we plot residuals and prediction bounds to assess both models 

graphically. The residual plots of the two models are shown in Figure 4.4. Neither residual 

plot provides exhibits structure, suggesting that both models fit the data to an acceptable 

extent. The prediction bounds with 95% confidence level are presented in Figure 4.5. The 

prediction bounds for the first-degree polynomial model with 1 as constant term indicate that 

the model can be predicted with a small uncertainty (less than 0.8). As for the case of the 

second-degree polynomial model, it has wider prediction bounds in the area where not 

enough data exists, suggesting that there is not enough data to estimate the second-degree 

polynomial terms accurately. In other words, a second order polynomial model overfits the 

data. 

 

With all criteria considered, f(x,y)= p10x+p01y+1 using percussivity and frequency weighting 

performs the best curve fit. This modelling function is highlighted in Table 4.5.  
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Table 4.6 Threshold curve fitting results with Goodness-Of-Fit statistics.  

 
 

We perform the same analysis procedure for the model fitting of threshold. The Goodness-

Of-Fit statistical results for the threshold curve fitting are presented in Table 4.4. Again, only 

modelling functions with relatively good degree of fit are listed here. Analysis based on Table 

4.4 shows that models using a feature combination of RMS and percussivity weighting 

employing first and second order polynomial functions outperform others, with lowest SSE 

of 259.6, 246.1 and highest R2 of 0.5565, 0.5796 respectively. Furthermore, second order 

polynomial models have a slightly better fit than first order in terms of SSE and R2. 

Feature Selection Modelling Functions 

 

Coefficients Goodness-Of-Fit  

X data Y data 
SSE R-square 

Adjusted 
R-square RMSE 

RMS   =0.5947; =-12.33 325.8 0.4434 0.4203 3.684 

RMS  
 

=-30.29; =1.341 

=-4.584 
319.4 0.4543 0.4069 3.727 

RMS  

 
=0.0007; =0.06706 

=-2.409; =2.676 
319.1 0.4549 0.3806 3.808 

Percussivity   =-7.954; =-17.66 373.3 0.3623 0.3358 3.944 

Percussivity  
 

=0.8318; =-9.69 

=16.88 
372.5 0.3637 0.3084 4.024 

RMS Percussivity  =0.8659; =-6.59 441.4 0.246 0.2145 4.289 

RMS Percussivity 
 

=-11.03; =0.441 

=-4.987 
259.6 0.5565 0.5179 3.36 

RMS Percussivity 

 

=-0.951; =1.684 

=1.267; =0.032 

=0.199; =-0.89 

246.1 0.5796 0.4745 3.508 

Dynamic 
Spread 

Percussivity 
 

=-14.85; =-0.3217 

=-8.614 
276.8 0.5271 0.486 3.469 

LRA Percussivity 
 

=-15.22; =-0.479 

=-8.662 
334.9 0.4279 0.3782 3.816 

RMS Brightness 
 

=-11.72; =-0.537 

=-4.691 
303.3 0.4819 0.4369 3.631 

RMS Spectral 
Spread  

=-8.551; =0.5706 

=-1.253 
324.8 0.4451 0.3968 3.758 

RMS Spectral 
Centroid  

=-7.162; =0.5589 

=-1.815 
320.2 0.4529 0.4054 3.731 

!
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However, when comparing the R2
adjusted and RMSE values, first order appears to be the right 

choice.  

 

Residual plots of each modelling are shown in Figure 4.6. Neither residual plot provides 

evidence for choosing the best fit. Therefore, prediction bounds with 95% confidence level 

are further considered, as shown in Figure 4.7. The second order polynomial model has a 

wider prediction bounds and tends to over-fit the data.  

 

 
 

Figure 4.6 Residual plots for first (left) and second (right) polynomial models. 

   
Figure 4.7 Prediction bounds (grey surface) with 95% confidence level of the first (left) and 

second (right) order polynomial models. 

 

With all criteria considered, the first order polynomial model using RMS and percussivity 

weighting in Table 4.4 performs the best data fit. 
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4.4 Intelligent Multitrack Dynamic Range Compression Algorithm 

         
 

Figure 4.8 System block diagram of the cross-adaptive intelligent multitrack compressor. 

The proposed intelligent multitrack compressor is based on the cross-adaptive digital audio 

effect architecture (Reiss, 2011; Zolzer, 2011). The system workflow is depicted in Figure 

4.8.  

 

The ratio and threshold automation is derived from the previous curve fitting process 

described in Section 4.3.  
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For ratio automation we choose the model of f(x,y)= p10x+p01y+1  with percussivity and 

frequency weighting features which performs the best curve fit. The final ratio automation for 

track m is 

 

   R(m) = 0.54w p(m)+ 0.764w f (m)+1.   (0.0) 

 

Similarly, the threshold automation follows the first order polynomial model, 

f(x,y)=p00+p10x+p01y with RMS level and percussivity weighting. The threshold automation is  

 

   T (m) = −11.03+ 0.44xRMS (m)− 4.987w p(m).   (0.0) 

 

Learning from Assumption 3, we adapt the algorithms for attack and release automation in 

(Giannoulis et al., 2012b) using crest factor as a short term signal measure to describe the 

transient nature of the input signals.  

 

To obtain the average RMS values sample by sample, we apply an Exponential Moving 

Average filter, 

  

   xRMS[n] = (1−α )x2[n]+αxRMS
2 [n −1].   (0.0) 

 

The sample-by-sample average peak magnitude of the signal is calculated as 

 

   x peak[n] = max(x2[n],(1−α )x2[n]+αx peak
2 [n −1]).   (0.0) 

 

Since the peak detector’s and RMS detector’s smoothing constants α  are equal, the release 

envelopes of both detectors are guaranteed to be the same, and the peak detector’s output is 

no less than the detected RMS output (Giannoulis et al., 2012b). The crest factor  xcrest  of 

the signal is defined as 

 

 
  
xcrest [n] = x peak[n]

xRMS[n] .   (0.0) 

 

Based on (Giannoulis et al., 2012b), the attack and release time constants are calculated by 
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τ A[n] = 2τ A−max
xcrest

2 [n]
τ R[n] = 2τ R−max

xcrest
2 [n]

,   (0.0) 

 

where the maximum attack time   τ A−max  is set to 80 ms and the maximum release time   τ R−max  

is set to 1000 ms (Giannoulis et al., 2012b). 

 

According to Assumption 4, we set the knee width to half the absolute value of the 

automated threshold value for a soft knee configuration as 

 

 
  
W (m) = T (m)

2 ,   (0.0) 

 

which ensures that a lower threshold results in a wider knee width. 

 

Following Assumption 5, make-up gain is set so that output loudness equals input loudness. 

The make-up gain is simply the loudness difference between the input and output of the 

DRC, measured following the ITU/EBU loudness standard (ITU, 2012a), 

 

   G(m) = Lin(m)− Lout (m).   (0.0) 

 

where Lin and Lout are the input and output loudness values of individual track m, before and 

after the compression block. In automatic mixing, the loudness setting is usually done post-

compression.  

 

 

4.5 Results and Evaluation 

4.5.1 Evaluation Method 

 

Subjective evaluation of the intelligent multitrack compression algorithm was performed in 

the form of a multiple stimulus (MUSHRA) listening test (ITU, 2003) to assess the 
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performance of the automatic DRC algorithm against raw mixes, two semi-professional 

mixes and an alternative automatic DRC implementation (Maddams et al., 2012). 

 

Two mix engineers were master students of the MMus in Sound Recording at the Schulich 

School of Music at McGill University. They were asked to use Avid’s Pro Tools with built-in 

dynamic range compression effect (with automatic make-up gain applied). Same headphone 

was used for both engineers. However they were allowed to mix the song with preferred 

playback level as their own. Editing, rerecording, the use of samples or any other form of 

adding new audio was not allowed. Analysis and evaluation of audio features of these semi-

professional mixes used can be found in (Brecht De Man, King, & Reiss, 2014). 

 

The automatic control strategy of the alternative approach (Maddams et al., 2012) is based 

on the a priori hypothesis that the fundamental role of DRC in multi-track audio mixes is to 

reduce the difference between the highest and lowest individual track LRA, and that sound 

sources with higher LRAs require greater amounts of DRC. This hypothesis was 

substantiated empirically by examining the post-DRC changes in LRA achieved when an 

experienced mix engineer chose the compressor settings manually.  

 

We aim to evaluate the performance of the automatic algorithm regardless of the choices of 

genres, instrumentation and different loudness ranges. Therefore when selecting the songs for 

evaluation, the objective is to chose songs with various genres, different instrumentation and 

relatively wider range of loudness range (measured using the ITU/EBU loudness standard 

(ITU, 2012a)). Six different unprocessed multitrack songs (20 seconds segments, not used in 

the ratio and threshold adjustment experiment) in were selected. The specification of these 

songs is shown in Table 4.7. All songs used in this work can be accessed from the Open 

Multitrack Testbed at multitrack.eecs.qmul.ac.uk (De Man et al., 2014). 

 

In all mixes, the only parameter modified was the dynamic range compression to minimise 

the perceptual bias caused by other audio effects as much as possible. The loudness of the 

final mixes were normalised manually by a group of professional mixing engineers (ITU, 

2003), as done on the same playback system as the subjective evaluation. The order of mixing 

versions and songs presented to each participant was randomised by a pseudorandom number 

generator algorithm in Matlab. Participants were encouraged to take as much time as needed. 
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Table 4.7 The specification of the songs used in the evaluation. 

Song 
Number 

of track 
Genre 

Loudness 

Range 

(LU) 

Instrumentation 

1 3 Rock 5.8  Bass; Electric Guitar; Drum set 

2 4 Jazz 11.1 Bass; Piano; Cello; Female vocal 

3 6 Folk 14.9 Percussion; Bass; Drum; Acoustic guitar; Electric 

guitar; Keyboard 

4 7 Pop 7.3 Bass; Keyboard; Retro synth; Pad; Female vocal; 

Piano; Electric drum set 

5 7 Rock/Indie 11.1 Bell (synth); Bass; Male backing Vocal; Male lead 

vocal; Juno (synth); Piano; Drum set 

6 5 Indie 16.5 Bass; Electric Guitar; Acoustic Guitar; Male vocal; 

Synth 

 

 

All tests were performed in a soundproof listening room with the same headphone set-up, 

where the environmental noise is minimized. Participants were allowed to adjust the playback 

level during the experiment in order to evaluate the quality of the mixes efficiently. Sixteen 

participants with strong audio engineering experience, seven of whom were from the same 

group of people used in the previous ratio and threshold adjustment experiment, were asked 

to rate the mix versions according to four specific criteria/questions on a scale of five 

descriptors: “Bad (0 -20)”, “Poor (20 - 40)”, “Fair (40 - 60)”, “Good (60 - 80)” and “Excellent 

(80 - 100)”: 

 

• Q1: According to the appropriateness of the amount of dynamic range compression 

applied to each individual sound source in the mix. 

• Q2: In terms of the degree of any imperfection such as pumping, breathing artefacts, 

level imbalance etc. 

• Q3: According to the ability to stabilise the erratic level fluctuation within the mix. 

• Q4: According to participants’ own overall preference. 
 

Since DRC can be relatively subtle, we chose different songs for different questions to 

maximise the difference. Six songs were tested in Q1 and Q4 while four songs were tested in 

Q2 and Q3. For Q1, a no-compression mix of each song was also presented as a ‘reference’. 
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However, it does not serve as objectively high quality reference or objectively low quality 

anchor, which was explained to the participants in advance. The order of the songs as well as 

the order of the versions of each individual song was randomised when presented to each 

participant for each question.  

 

4.5.2 Evaluation Results 

 

Lilliefors tests were used for normality check of the evaluation results. The specification for 

MUSHRA (ITU, 2003) codec quality tests, which are quite similar to ours, offers the 

simplification that no overlap in the confidence intervals for two conditions means one is 

significantly better than the other. We will follow this idea whenever it is clear, presenting 

the standard plots. In (Sporer et al. 2009) it suggests that box-and-whisker plots should be 

presented to look at possible skewness and outlier behavior. Though we have always followed 

their recommendation when looking at data, none of these plots are presented here. As for 

our cases, they proved not to give any new insights.  

 

The Friedman test (Mosteller & Rourke, 1973) is an alternative to ANOVA with repeated 

measures when normal distribution of the data is not assured. It is appropriate in our cases to 

use such statistics method to evaluate whether there is significant difference between the 

different mix types. We perform this test on a song per song basis, and also under the 

hypothesis that all songs have similar behavior, so that a subject’s evaluation of a condition 

can be averaged over the total number of songs. Furthermore we can the Wilcoxon signed-

rank to evaluate the paired-wise difference between mix types of interests. 

 

Q1: Appropriateness of the Amount Of DRC 

 

In Q1, participants were asked to rate the mixes in terms of the appropriateness of the 

amount of dynamic range compression applied in the mix.   Table 4.8 shows the 

results of the Lilliefors normality tests. h=1 indicates non-normal distribution; h=0 indicates 

normal distribution. 
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  Table 4.8 Normality test result for each song and mix type (Q1). 

Mix type Song h p-value 

No Comp 

1 0 0.1214 

2 0 0.4537 

3 0 0.0635 

4 0 0.5 

5 0 0.2286 

6 0 0.3903 

Auto 

1 1 1.00E-03 

2 1 0.0017 

3 0 0.5 

4 1 0.0377 

5 0 0.5 

6 0 0.0754 

Eng. 1 

1 0 0.103857362 

2 0 0.145547214 

3 1 0.030137838 

4 0 0.414332628 

5 0 0.140889223 

6 0 0.5 

Eng. 2 

1 1 0.002775508 

2 1 0.001 

3 0 0.096041157 

4 0 0.092483186 

5 0 0.052718565 

6 1 0.022573089 

Alt-Auto 

1 1 0.001 

2 1 0.001 

3 1 0.001 

4 1 0.001 

5 0 0.259078408 

6 1 0.004329057 

 

 

Figure 4.9 showing the mean, grouped by mix type, with error bars displaying 95% 

confidence interval and standard boxplots of the results. No compression mix, automatic mix, 
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two semi-professional mixes and alternative automatic mix are notated as ‘No Comp’, ‘Auto’, 

‘Eng. 1’, ‘Eng. 2’ and ‘Alt-Auto’ respectively. The ‘Eng. 1’ and ‘Auto’ mixes rate consistently 

high throughout. The ‘Alt-Auto’ mixes rate consistently low with the exception of Song 5 

and 6. 

 

 
(a) 

 
(b) 

 

Figure 4.9 (a) Averaged results of Q1: amount of DRC with 95% confidence interval, 

grouped by mix type. (b) Boxplots of Q1 results. 

Table 4.9 shows the results of the Friedman test within each song for the overall data. ‘SS’ 

indicates the Sum of Squares (SS) due to each source; ‘df’ indicates the degrees of freedom 

(df) associated with each source; ‘MS’ indicates the Mean Squares (MS), which is the ratio 

SS/df; ‘Chi-sq’ indicates Friedman's chi-square statistic; ‘Prob>Chi-sq’ indicates the p value 

for the chi-square statistic. All p-values are extremely small, confirming that the mix type 

affects the evaluation scores significantly.  
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Table 4.9 The results of Friedman test (Q1). 

Song 1: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 76.1333 4 19.0333 30.4533 3.96E-06 

Error 73.8667 56 1.319   

Total 150 74    

Song 2: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 103.0667 4 25.7667 41.5034 2.11E-08 

Error 45.9333 56 0.82024   

Total 149 74    

Song 3: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 93.7333 4 23.4333 37.4933 1.43E-07 

Error 56.2667 56 1.0048   

Total 150 74    

Song 4: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 97.4 4 24.35 39.2215 6.27E-08 

Error 51.6 56 0.92143   

Total 149 74    

Song 5: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 68.5667 4 17.1417 27.5184 1.56E-05 

Error 80.9333 56 1.4452   

Total 149.5 74    

Song 6: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 74.6 4 18.65 30.0403 4.80E-06 

Error 74.4 56 1.3286   

Total 149 74    

All songs: Friedman's ANOVA Table 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 90432.9667 4 22608.2417 190.636 3.87E-40 

Interaction 24609.8 20 1230.49   
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Error 95579.7333 420 227.5708   

Total 210622.5 449    

 

Furthermore, the results for the paired Wilcoxon signed rank test comparing ‘Auto’ against 

‘No Comp’ and ‘Eng. 1’ respectively are shown in Table 4.10. h=1 (when comparing with ‘No 

Comp’) indicates the test rejects the hypothesis that evaluation data for ‘Auto’ and ‘No 

Comp’ have no significantly difference. h=0 (when comparing with ‘Eng. 1’) confirmed again 

that automatic mixes can compete with professional mixing engineer 1. 

 

Table 4.10 The Results of the Wilcoxon signed rank test when comparing 'Auto' against 'No 

Comp' and ''Eng. 1" (Q1). 

‘Auto’ 

against 

h p-value 

No Comp 1 2.74E-10 

Eng. 1 0 0.0524 

 

 

Q2: Degree of Imperfection 

 

Table 4.11 Normality test result for each song and mix type (Q2). 

Mix type Song h p-value 

No Comp 1 1 0.037121269 

2 0 0.5 

3 0 0.5 

4 0 0.208110736 

Auto 1 0 0.219525994 

2 0 0.335537323 

3 0 0.5 

4 0 0.374052005 

Eng. 1 1 0 0.5 

2 1 0.007376429 

3 0 0.33209403 

4 1 0.00387977 

Eng. 2 1 0 0.34033747 

2 0 0.5 
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3 1 0.001474582 

4 0 0.374931973 

Alt-Auto 1 0 0.177734237 

2 1 0.009146054 

3 1 0.001782132 

4 0 0.137639666 

 

Q2 investigates the degree of sound artefacts or imperfection. Table 4.11 shows the results of 

the Lilliefors normality tests. The results of the evaluation are presented in Figure 4.10. It can 

be seen that all ‘No Comp’, ‘Auto’, ‘Eng. 1’, ‘Eng. 2’ mixes are all rated above the middle 

score, with only the exception of ‘Eng. 2’ in Song 2, which suggests these mixes do not have 

obvious artefacts. ‘Alt-Auto’ rates the lowest (<20 for most cases) implying significant 

artefacts are produced in the mixes.  

 

 
(a) 

 
(b) 
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Figure 4.10 (a) Averaged results of Q2: degree of imperfection with 95% confidence interval, 

grouped by mix type. (b) Boxplots of Q2 results. 

Table 4.12 shows the results of the Friedman test within each song for the overall data. All p-

values are extremely small, confirming that the mix type affects the evaluation scores 

significantly in Q2.  

 

Table 4.12 The results of the Friedman test (Q2) for mix types within each song and across 

all songs. 

 Chi-sq p-value 

Song 1 41.4411 2.18E-08 

Song 2 50.4482 2.91E-10 

Song 3 36.3525 2.45E-07 

Song 4 27.3579 1.68E-05 

All songs 153.8026 3.12E-32 

 

Similarly, the results for the paired Wilcoxon signed rank test comparing ‘Auto’ against ‘No 

Comp’ and ‘Eng. 1’ respectively are shown in Table 4.13. h=1 (when comparing with ‘No 

Comp’) indicates that ‘Auto’ and ‘No Comp’ have significantly difference. h=0 (when 

comparing with ‘Eng. 1’) confirms again that automatic mixes can compete with professional 

mixing engineer 1 (no significant difference). 

 

Table 4.13 The Results of the Wilcoxon signed rank test when comparing 'Auto' against 'No 

Comp' and ''Eng. 1" (Q2). 

‘Auto’ 

against 

h p-value 

No Comp 1 1.3145e-04 

Eng. 1 0 0.7829 

 

 

Q3: Ability To Stabilize Erratic Level Fluctuation 

 

Table 4.14 Normality test result for each song and mix type (Q3). 

Mix type Song h p-value 
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No Comp 1 1 0.041580352 

2 1 0.043873169 

3 0 0.065945109 

4 0 0.289679973 

Auto 1 1 0.014310713 

2 1 0.001 

3 1 0.019291953 

4 1 0.023391155 

Eng. 1 1 1 0.002069075 

2 0 0.5 

3 0 0.5 

4 0 0.214834354 

Eng. 2 1 0 0.5 

2 0 0.5 

3 1 0.007914252 

4 1 0.001 

Alt-Auto 1 1 0.00424392 

2 1 0.001 

3 0 0.365520367 

4 0 0.239473609 

 

 

This question was designed to make the participants focus on how well the mixes can 

stabilise the level fluctuations. Table 4.6 shows the results of the Lilliefors normality tests. 

The results of the evaluation are shown in Figure 4.11. ‘Eng. 1’ performs best followed by 

‘Auto’ except for Song 3. ‘Eng. 2’ performs well in Song 2 and 3, while it is the worst in Song 

4. 
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(a) 

 
(b) 

 

Figure 4.11 (a) Averaged results of Q3: level stabilising with 95% confidence interval, 

grouped by mix type. (b) Boxplot of Q3 results. 

 

Table 4.16 shows the results of the Friedman test within each song for the overall data. All p-

values are extremely small, confirming that the mix type affects the evaluation scores 

significantly in Q3. 

 
Table 4.15 

Table 4.16 The results of the Friedman test (Q3) for mix types within each song and across 

all songs. 

  Chi-sq p-value 

Song 1 39.3067 6.02E-08 

Song 2 38.8629 7.44E-08 

Song 3 23.9467 8.19E-05 
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Song 4 102.8627 2.42E-21 

All songs 152.445 2.12E-32 

 

Similarly, the results for the paired Wilcoxon signed rank test comparing ‘Auto’ against ‘No 

Comp’ and ‘Eng. 1’ respectively are shown in Table 4.17. h=1 (when comparing with ‘No 

Comp’) indicate the test rejects the hypothesis that evaluation data for ‘Auto’ and ‘No Comp’ 

have no significantly difference. h=0 (when comparing with ‘Eng. 1’) confirmed again that 

automatic mixes can compete with professional mixing engineer 1. 

 

Table 4.17 The results of the Wilcoxon signed rank test when comparing 'Auto' against 'No 

Comp' and ''Eng. 1" (Q3). 

 
‘Auto’ 

against 

h p-value 

No Comp 1 1.1132e-07 

Eng. 1 0 0.2992 

 

 

Q4: Overall Preference 

 

Q4 was designed to study participants’ overall preference for the DRC. Normality test results 

are shown Table 4.17. 

 

Table 4.18 Normality test result for each song and mix type (Q4). 

Mix type Song h p-value 

No Comp 1 0 0.5 

2 0 0.5 

3 0 0.365017838 

4 0 0.5 

5 0 0.5 

6 0 0.116165672 

Auto 1 1 1.00E-03 

2 0 0.157743218 

3 0 0.5 
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4 0 0.107853639 

5 0 0.5 

6 0 0.263648177 

Eng. 1 1 1 0.034947922 

2 1 0.026026837 

3 1 0.0115311 

4 0 0.5 

5 1 0.03110281 

6 1 0.043838815 

Eng. 2 1 0 0.5 

2 0 0.11399382 

3 0 0.200539442 

4 0 0.5 

5 0 0.5 

6 1 0.006440728 

Alt-Auto 1 0 0.5 

2 1 0.001809799 

3 0 0.182683108 

4 1 0.001 

5 0 0.060639306 

6 0 0.107412693 

 

The results are shown in Figure 4.12. Participants generally prefer ‘Auto’ and ‘Eng. 1’ mixes 

throughout all the songs. ‘Eng. 2’ has a strongly varying rating depending on the songs.  
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(b) 

Figure 4.12 (a) Averaged results of Q4: overall preference with 95% confidence interval, 

grouped by mix type. (b) Boxplots of Q4 results. 

 

Table 4.19 The results of the Friedman test (Q4) for mix types within each song and across 

all songs. 

 Chi-sq p-value 

Song 1 38.7023 8.03e-08 

Song 2 41.8255 1.81e-08 

Song 3 37.1505 1.68e-07 

Song 4 27.84 1.34e-05 

Song 5 30.9699 3.11e-06 

Song 6 26.6133 2.38e-05 

All songs 178.0795 1.93e-37 

 

Table 4.19 shows the results of the Friedman test within each song for the overall data. All p-

values are extremely small, confirming that the mix type affects the evaluation scores 

significantly in Q3. 

 

Table 4.20 The results of the Wilcoxon signed rank test when comparing 'Auto' against 'No 

Comp' and ''Eng. 1" (Q4). 

‘Auto’ against h p-value 

No Comp 1 1.4204e-06 

Eng. 1 0 0.2944 

 

Similarly, the results for the paired Wilcoxon signed rank test comparing ‘Auto’ against ‘No 

Comp’ and ‘Eng. 1’ respectively are shown in Table 4.20. h=1 (when comparing with ‘No 
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Comp’) indicate the test rejects the hypothesis that evaluation data for ‘Auto’ and ‘No Comp’ 

have no significantly difference. h=0 (when comparing with ‘Eng. 1’) confirmed again that 

automatic mixes can compete with professional mixing engineer 1. 

 

 

Overall performance 

 

To give a clearer depiction of the overall performance of each mix type, the averaged mean 

results with 95% confidence interval across all participants and songs are displayed in Figure 

4.13. Normality tests for different mix types suggest non-normal data distribution 

considering inter-song differences to be irrelevant.  

 .  

 

 
Figure 4.13 Overall mean results with 95% confidence interval for Q1-Q4 grouped by mix 

type. 

Figure 4.13 shows the proposed ‘Auto’ performs best in Q1: the appropriate amount of 

DRC. ‘Auto’ also performs quite well in terms of stabilising the erratic level fluctuation in 

Q3. More importantly, the proposed automatic mixes are the participants’ favourite in Q4, 

the overall preference. The no compression version is preferred to ‘Eng. 2’ in Q1, Q2 and 

Q4, suggesting that people sometimes dislike the use of compression. The ‘Alt-Auto’ is 

clearly the worst overall performer. The mean results in Q2 show that the Alt-Auto causes 
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obvious sound artefacts or unpleasant effects. ‘Alt-Auto’ uses pre-processing to equalise the 

loudness (measured by EBU loudness standard) of multitracks before compression, which is 

likely to make the percussive instrument much louder than other instruments, resulting in an 

unpleasant listening experience. The same issue was addressed in (Mansbridge et al., 2012). 

This could be the reason that the ‘Alt-Auto’ performs poorly. Notice that although Auto and 

Eng. 1 perform similarly in the subjective evaluation, results also show participants’ 

preference is song dependent. For example in Figure 4.11, Song 3 is rated the highest for 

Auto, while the same song is rated the lowest for Eng. 1. 

 

Overall, the results show that the proposed automatic compression has very good 

performance based on various criteria. However, since the algorithm uses relative measure of 

the audio feature such percussivity factors, it might tend to overlook the amount of 

compression needed when every track in the mix has a similar percussivity factors. It should 

be regarded as the limitation of the automatic multitrack dynamic range compression and to 

be investigated as future work.  

 

Furthermore, when performing feature correlation analysis to perform curve fitting for 

threshold and ratio automations, results (see Table 4.4) show most features seem to exhibit 

low to medium correlation against the subjective results. Although the automatic algorithm 

combines two or three features that have the highest correlation based on control 

assumptions to tackle the relatively low correlation (see Section 4.2). It would be beneficial to 

extend the selection of features to include high-level or more perceptual features as future 

work to improve the performance of the algorithm. 

 

4.6 Conclusions 
 

In this chapter we have proposed a novel intelligent multitrack dynamic range compression 

algorithm. The algorithm utilises the CA-DAFX processing architecture (Reiss, 2011; 

Zolzer, 2011), exploits the interdependence of the input audio features and incorporates best 

practices as well as subjective evaluation results to produce the optimal amount of dynamic 

range compression for multitracks.  

 

To the best of the authors’ knowledge, this presented the first fully automated multitrack 

dynamic range compressor where all classic parameters of a typical compressor (ratio, 
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threshold, knee, attack and release) are dynamically adjusted depending on extracted features 

and control rules.  

 

In the pursuit of intelligent algorithms, two new audio features, namely percussivity 

weighting and low-frequency weighting, were proposed to describe the transient nature and 

spectral content of the signal. A method of adjustment experiment was conducted to 

investigate the relationship between human preference for ratio and threshold. We applied 

multiple linear regression models to the subjective results to formulate the ratio and threshold 

automations that follow the choices of the human operators.  

 

The output mix produced by the proposed algorithm has an outstanding performance in the 

final subjective evaluation when compared against a raw mix, two semi-professional mixes 

and a previous automatic compression approach. The results showed that the algorithm is 

able to compete with or outperform the semi-professional mixes in terms of four different 

perceptual criteria: the appropriateness of the amount of DRC applied, the degree of 

imperfection, ability to stabilise the erratic level fluctuations and overall preference. Subjective 

evaluation results also have shown that spectral content plays an important role in the pursuit 

of an intelligent solution to dynamic processing.   
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Chapter 5 

5 Multitrack Masking Metrics  
 

 

 

5.1 Introduction 
 

Chapter 3 and 4 investigated the frequency and dynamics aspects of intelligent mixing, and 

proposed various intelligent mixing algorithms to achieve optimal balance in spectral and 

dynamics characteristics. However, no perception models were applied to the system to 

inform the mixing decisions.  

For a true intelligent mixing system to triumph, it will be beneficial to equip the signal 

analysis chain with perceptual models that considers properties of the hearing system. 

Therefore this chapter explores the auditory aspects of intelligent music production. 

 

Masking remains one of the most challenging issues entailed in the mixing process. The mix 

can sound confusing or underwhelming, and have a lack of clarity as a result of untreated 

masking. Previous perceptual models capable of predicting auditory masking have been 

discussed in Section 2.3.2. The loudness model of Glasberg and Moore (Glasberg & Moore, 

2002; Moore et al., 1997) and the psychoacoustic model used in MPEG audio coding (ISO, 

1993; Johnston, 1988a, 1988b) are the main concerns of this chapter. As the loudness model 

of Glasberg and Moore has the ability to predict the partial loudness, it can be viewed as a 

model of masking. However, the model has never been evaluated with musical signal.  

In this chapter, we first present an equal loudness matching experiment to evaluate the 

performance of existing loudness models Moore (Glasberg & Moore, 2002; Moore et al., 

1997) on musical signals in Section 5.2. We analyze the underlying features and propose a 

parameter modification of the model that can yield better compliance with the human 

perception of masking (Moore, 2012). The outcome of this experiment is then integrated 

into the development of several psychoacoustics-inspired, cross-adaptive multitrack masking 
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models to quantify the masking behaviour within the musical mixture in Section 5.3 and 5.4. 

Overall discussion and conclusion are outlined in Section 5.5. 

 

5.2 Loudness Matching Experiment 

5.2.1 Evaluated Multitrack Loudness Model 

 

The evaluated multitrack loudness model adapts the loudness models of Glasberg and Moore 

(Glasberg & Moore, 2002; Moore et al., 1997) to estimate the loudness and partial loudness 

of multitrack where each track may be masked by the combination of every other track.  The 

structural overview of the model is depicted in Figure 5.1. System calibration is crucial and 

performed by measuring the sound pressure level of a 1kHz full-scale tone at eardrum. The 

same headphone was used during all experiments.  

 

                   
Figure 5.1 Block diagram of the cross-adaptive multitrack loudness model with N input 

signals, adapting the loudness models of Glasberg and Moore. 
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The procedure to derive the loudness Ln and partial loudness Pn of track n from a multitrack 

with N tracks is similar to the model of Glasberg and Moore (Glasberg & Moore, 2002; 

Moore et al., 1997) as described in Section 2.3.1.1, but adapting a cross-adaptive architecture 

(Zolzer, 2011) to address the multitrack scenario. To account for partial masking occurring in 

every track, two excitation patterns, the target track Et,n with respect to each track sn, are 

computed. The masker s’n here, related to track sn is the supplementary sum of the other 

tracks in the multitrack mixture: 

 

 
  
sn

, = si .
i=1,i≠n

N

∑   (0.0) 

 

The transformations from the excitation pattern Et,n to the specific loudness N’n and partial 

specific loudness N’p,n are based on Section 2.3.1.1.  

 

And then the operations of summation, smoothing and averaging described Section 2.3.1.1 

are performed on N’n and N’p,n to obtain the final loudness measures of input signal sn: 

loudness Ln and partial loudness Pn (due to the presence of other tracks in the multitrack 

mixture). 

 

5.2.2 Stimuli 

 

Four multitrack songs of different genres were selected. 10s segments of each song were 

extracted from the uncompressed waveform signals. Each consisted 4 or 5 different 

instrument stems (a sub-mix of the tracks that represent the same instrument in the process 

of mixing), all in mono and running at a typical sampling rate of 44.1 kHz. The specifications 

of the testing samples are presented in Table 5.1. 
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Table 5.1 The specification of the testing samples in terms of genre, instrumentation and 

RMS level. The reference level for the RMS measurement is the lowest possible sample is for 

16 bit audio in digital full scale: 96 dBFS.  

 

 Genre Instrumentation Level (dB) 

Song 1 Classical Bassoon 64 

Clarinet 64 

Saxophone 67 

Violin 68 

Song 2 Metal Bass 67 

Electric Guitar 70 

Drum set 65 

Vocal 70 

Song 3 Punk Bass 60 

Electric Guitar 73 

Drum set 54 

Vocal 67 

Song 4 Alternative rock /Electronic Bass 52 

Drum set 65 

Acoustic Guitar 64 

Vocal 71 

Piano 62 

 

 

The author chose these audio samples that vary from different genres and different 

instruments to test whether the proposed masking model can correctly describe the amount 

of masking perceived by the subjects. The temporal and spectral characteristics of the songs 

are taken into account regarding to the degree of masking. We select songs with various 

amount of masking that can be perceived.  

 

5.2.3 Subjects 

 

 

In total 12 participants whose age ranged from 21 to 32 had taken part in the experiment. 

Before commencing, subjects were asked to complete a personal information questionnaire. 
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The summary is displayed in Table 5.2. The results show that the majority of subjects had at 

least some experience in critical listening, and no one has hearing impairment. 

 

Table 5.2 Results of the informational questionnaire. 

Gender Male 9 

Female 3 

Critical listening skill? / Listening tests experience? No 2 

Some 2 

Yes 8 

Hearing impairment?  No 12 

Yes 0 

 

 

 

5.2.4 Procedure 
 

A preliminary listening test was performed before the actual loudness matching experiment. 

Subjects were required to listen to all the mixes and identify every instrument contained in 

each mix. Subjects need to pass this preliminary test in order to continue to the next formal 

experiment. 

 

All tests were performed in a soundproof listening room with the same headphone set-up, 

where the environmental noise is minimized. Participants were allowed to adjust the playback 

level during the experiment in order to evaluate the masking efficiently. For each loudness 

matching trial, both solo stem (stem that is played separately) and mixed stem (stem that is 

played in a mixture together with other stems) were presented in a regular alternation with 

two seconds silent intervals between successive sounds played through the same calibrated 

headphone. The order of the trials was randomized for every subject to minimize the bias 

that subjects become familiar with the song and judge the loudness based on memory.  

Within a given trial, either the solo stem or the mixed stem level was fixed as the reference 

stem, and the level of the other as the target stem, was varied to reach the level corresponding 

to equal loudness in perception. By varying the level of the mixed stem, we mean subjects 

were only allowed to adjust the same instrumental stem in the mix while the levels of other 
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stems in the mix were kept unchanged. The starting level of the variable stem was chosen 

randomly from within a range of  ±10 dB, around the level of the reference stem.  

 

The loudness matching experiment was designed using the method of adjustment 

methodology used in (Moore, Vickers, Baer, & Launer, 1999). The difference between the 

target stem and the reference stem was recorded after each trial, which was expressed as the 

Root-Mean-Square level (RMS). The average difference for each stem across subjects was 

then calculated as a measure of partial masking. Model predictions were computed in both 

conditions in a similar way. 

 

5.2.5 Subjective Results 

 

All 12 subjects successfully passed the preliminary tests suggesting that subjects were able to 

identify and judge the partial loudness of an instrument stem when mixed with other stems. 

To present the results, the level difference between the solo stem and the mixed stem at the 

point of equal loudness are calculated as follows: 

 

   ΔR = Rm − Rs ,   (0.0) 

 

where Rm, Rs are the RMS levels of the mixed stem and the solo stem respectively. Positive 

level difference  ΔR  indicates that mixed stem require a larger level increment to reach the 

point of equal loudness as the solo stems. This agrees with the concept of partial masking:  

the loudness of an audio signal is generally reduced in the presence of other sounds. However, 

unusual negative values of  ΔR  are also found and considered an error due to subjects’ 

mistakes in the experiment or the sensitivity limit of human ears, which is generally within ± 

2 dB. 

 

The Lilliefors tests are performed for normality check of the subjective results for each 

instrument cases of each song in both mix varied and solo varied cases. Results (see Table 5.3) 

suggest the evaluation results are mostly normal (28 out of 34).  
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Table 5.3 Normality test result, h=0 indicates normal; h=1 indicate non-normal data. 

 

  

Instrument h (Mix)  h (Solo) 

Song 1 

Bassoon 0 0 

Clarinet 0 1 

Saxophone 0 0 

Violin 0 0 

Song 2 

Bass 0 0 

Guitar 0 0 

Drum Set 0 0 

Vocal 0 0 

Song 3 

Drum 0 0 

Bass 0 1 

Guitar 0 0 

Vocal 0 0 

Song 4 

Bass 0 1 

Drum 0 0 

Guitar 0 1 

Vocal 1 1 

Piano 0 0 

 

 

The mean subjective results of the loudness matching experiments across all the subjects, as 

well as the standard boxplots of the same results are shown in Figure 5.2. Results are plotted 

separately for the case where the mixed stem is varied and the case where the solo track is 

varied. 

 

As Figure 5.2 shows, the evaluation results for both cases share a good degree of consistency 

(p=2.51e-4). There is a very small bias related to whether the mixed stem or the solo stem 

was varied, indicating that subjects tend to assign a lower level to the solo stem when 

matching loudness against the mixed stem. Also larger standard errors are observed for the 

cases of varying the solo stems comparing to the case of varying the mixes, suggesting that it’s 
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more difficult for participants in such condition. This can possibly due to the difficulty to 

evaluate the loudness of an individual instrument out of the mixture correctly. The mean of 

the consistent bias across all conditions and subjects is about +1.2 dB.  

 

 

 

 

 

 

 

 

(a) 

 
(b) 

 
(c) 

Figure 5.2 (a) The measured results plotted separately for the case where the mixed stem is 

varied (with 95% confidence intervals), the case where the solo track is varied, and the mean 

values of both cases. (b) Boxplot for the case where the mix stem is varied. (c) Boxplot for the 

case where the solo stem is varied. 

 

Discounting the bias by looking at the mean for both cases. All values are positive, which 

means that at the point of equal loudness the RMS level of mixed stems are higher than the 
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solo stems. It implies that partial masking occurs. The level difference  RΔ  at the point of 

equal loudness could be seen as a measurement of partial loudness.  

 

We can also observe some variations across different instrument stems within each song. The 

drum set stem in song 3 scored the highest level-difference of 7.4 dB while the vocal tracks in 

song 2 and song 4 have the lowest average of variation of 0.8 dB and 1.2 dB respectively. It 

means some instruments suffer less partial masking while other instruments suffer significant 

partial masking resulting larger loudness reduction. It also confirmed that masking is source 

dependent. The level and frequency interactions between the masker and masked sounds 

decide the degree of simultaneous masking. 

 

5.2.6 Model Prediction 

 

We apply the proposed multitrack loudness model on the testing signals to obtain the level 

difference at the point of equal loudness predicted by the model, in a similar way as in the 

previous experiment. Theoretically, the point of equal loudness for the model prediction is 

the point when the loudness Ln equals to its partial loudness Pn in the mix: 

 

   Ln = Pn .   (0.0) 

 

Model predictions are calculated for both cases as in the loudness matching experiments. For 

instance, the optimization-like process to derive the model prediction for the case of varying 

the level of the solo stem: the partial loudness of the mixed stem, Pn is first calculated as a 

loudness reference. A loudness of the solo stem is then calculated and compared against Pn. 

Iterations of applying boost or attenuation (in dB scale) to the solo stem are conducted. The 

iteration process continues until the equal loudness condition is fulfilled as given by: 

 

 
  
Pn − Ln(ΔR' ) ≤ e,   (0.0) 

 

where the tolerance of error e, equals to 1.5 phons.   Ln(ΔR' )  is the new loudness value of the 

solo stem with the boost or attenuation,  ΔR' (dB). The value of   ΔR'  is then recorded as the 

model prediction for the level different at the point of equal loudness. A similar scenario is 

performed for the case of varying the mixed stem. 
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Table 5.4 presents the level difference predicted by the proposed model, compared against 

the measured mean results from the loudness matching experiments. The final column lists 

the prediction errors (  ΔR' − ΔR ) of the model.  

 

As Table 5.4 shows, although the model prediction values correlate well with the overall 

trend of the subjectively perceived level differences, the model predictions are much higher 

than the observed subjective results. Prediction errors are significantly larger than the 

minimum perception sensitivity of human hearing system of loudness variations.  

 

 

 

 

 

 

Table 5.4 Level differences predicted by the proposed model compared against the measured 

results from the loudness matching experiments with prediction errors. 

 Instrument Measured Level 

Difference 

(dB) 

Model Prediction 

(dB) 

Prediction 

Error (dB) 

Song 1 Bassoon 5.7 11.5 5.8 

Clarinet 5.2 12 6.8 

Saxophone 2.7 9.5 6.8 

Violin 2.7 5.5 2.8 

Song 2 Bass 6.1 13 6.9 

Guitar 3.5 7 3.5 

Drum Set 6.7 13 6.3 

Vocal 0.7 5 4.3 

Song 3 Drum 7.3 15 7.7 

Bass 6.2 16 9.8 

Guitar 1.6 5 3.4 

Vocal 2.8 9 6.2 

Song 4 Bass 6.8 12 5.2 

Drum 2.3 8 5.7 

Guitar 6.3 12 5.7 
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Vocal 1.2 6 4.8 

Piano 7.1 13 5.9 

 

 

Overall, evaluation results suggest that the proposed multitrack loudness model over-

estimated the loudness reduction due to partial masking. One possible reason could be that 

the loudness models of Glasberg and is not well applicable to music signals as discussed in 

Section 2.3.1. Unlike laboratory stimuli such as tones and noises, music signals contain 

distinct spectral components, rhythm pattern and melody structures, which could make it 

easier to distinguish from other sound sources. As a result, it reduces the effect of partial 

masking in the mix. The errors could also arise from the partial loudness calculation. The 

partial loudness estimation in the model of Glasberg and Moore does not take into account 

the fact that the audibility of a signal may be improved when the masker contains amplitude 

fluctuations that are correlated in different frequency regions. Assuming Ln corresponds well 

to perception, all errors are positive indicating that the partial loudness Pn, predicted by the 

model is lower than the actual loudness subjects perceived. That is, the partial loudness model 

underrates the loudness of musical signal in the presence of other sounds.  

 

5.2.7 Modification of the Loudness Model 

 

Following the evaluation results and discussion about the possible causes of the significant 

prediction errors, we investigate the partial loudness estimation of the model and search for 

possible modifications to the model, in order to have a better compliance with the human 

perception.  

 

K Parameter in the Partial Loudness Estimation 

 

A parameter K, defined as the signal-to-noise ratio at the output of the auditory filter 

required for threshold at high masker levels, was introduced in the process of transformation 

of the excitation pattern to a specific partial loudness pattern in (Moore et al., 1997). The 

parameter K has a crucial influence on the calculation on partial loudness. The lower the 

values of K, the higher the predicted partial loudness value. However, the values of K as a 

function of frequency were estimated by pooling data from relatively old research work 
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(Moore et al., 1997). Nevertheless, there were no estimates of K for centre frequencies below 

100 Hz, K values from 50 to 100 Hz were based on extrapolation. 

 

Adjustment of the K Parameter  

 

In (Aichinger et al., 2011), threshold detection experiments using an adaptive two-alternative 

forced-choice task to adjust the partial loudness model were performed. The results showed 

that if K was reduced by 5 dB the compliance of the prediction and the measurement is 

improved. However, the stimuli used in the experiment were laboratory tones and noise 

rather than musical signal. For this reason, model adjustment based on K is further explored 

on musical signal here. We perform the same model prediction process using different partial 

loudness calculations with different K values of 0 dB, -5 dB, -10 dB and -15 dB attenuation. 

The results of the different model predictions are compared against the evaluation results 

obtained from the loudness matching experiments, as shown in Figure 5.3. 

 

 
 

Figure 5.3 Comparison of different model predictions of different K parameter values 

against subjective results plotted with standard deviation. 
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In Figure 5.3, the blue diamond indicates the mean result obtained from the loudness 

matching experiment with error bars corresponding to the standard deviation across all 

subjects. Blue circle, red square, green triangle and purple cross indicate the model 

predictions with -15 dB, -10 dB, -5 dB, 0 dB attenuation respectively.  

 

The model predictions of the original K values, -5 dB K values are all above the upper 

standard deviation of the obtained subject’s data, implies that these two model modifications 

still overestimate the effect of partial masking. The -15 dB K modification, however, 

underrates the effect of partial masking as its results fall below the subjective average. Overall, 

the -10 dB K modification has the best compliance, as most model predictions values (19 out 

of 21) are within the standard deviation range of the empirical results.  

 

Detailed comparison of the -10 dB K modification with the subjective results is shown in 

Table 4. It shows that the prediction errors are within 0 - 1.5 dB variation for most cases (17 

out of 21), which are barely perceivable by the human hearing system, suggesting that the -10 

dB K  modification is appropriate.  

 

Table 5.5 Level differences predicted by the -10 dB K modification, compared against the 

results from the loudness matching experiments with prediction errors. 

 

 Instrument Measured 

Level 

Difference 

(dB) 

-10 dB Model 

Prediction 

(dB) 

Prediction 

Error (dB) 

Song 1 Bassoon 5.7 7 1.3 

 Clarinet 5.2 7 1.8 

 Saxophone 2.7 4.5 1.8 

Violin 2.7 2 -0.7 

Song 2 Bass 6.1 7 0.9 

 Guitar 3.5 3.5 0.0 

 Drum Set 6.7 8.5 1.8 

 Vocal 0.7 1.5 0.8 

Song 3 Drum 7.3 9.5 2.2 

 Bass 6.2 10 3.8 

 Guitar 1.6 1.5 -0.1 
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 Vocal 2.8 4.5 1.7 

Song 4 Bass 6.8 7.5 0.6 

 Drum 2.3 4 1.7 

 Guitar 6.3 7 0.7 

 Vocal 1.2 2 0.8 

 Piano 7.1 7.5 0.4 

 

In summary, with a -10 dB modification to the K parameter in the calculation of partial 

loudness, the proposed multitrack loudness model based on (Glasberg & Moore, 2002; 

Moore et al., 1997) yields a better model compliance with the human perception of masking. 

 

5.3 Masking Metrics Based on Glasberg and Moore’s Loudness Models 
 

We propose two cross-adaptive masking metrics adapting the multitrack loudness model 

described in Section 5.2.1, incorporating the parameter modification we discovered from the 

loudness matching experiment. 

 

Metric I: Cross-Adaptive Multitrack Masking Metric  

 

Metric I is a cross-adaptive multitrack masking metric that makes use of the loudness and 

partial loudness estimations of the multitrack loudness model directly. It quantifies the 

amount of masking as the loudness deduction due to the presence of the accompanying tracks 

in the mix. Let Mn denote the approximated amount of masking of track n. Mn therefore can 

be calculated using Equation (0.0): 

 

 
  
Mn =

Ln − Pn
Ln

.   (0.0) 

 

Unlike previous masking models discussed in Background Section 2.3.2, which only consider 

the situation when audio signal is completed masked by using masking threshold as a 

measurement of masking, Metric I is able to take partial masking into account. 

 

Table 5.6 The amount of masking occurred in each instrument track of a 7-track song, 

measured by the masking Metric I. The masker signal is listed in the first row, the maskee 
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signal is listed in the first column. So each value (apart from the last “Mix” columns) can be 

read as the amount of masking occurring in each instrument track masked by a related 

masker signal (0 - no masking; 1 – fully masked). The last column is the standard Mn 

regarding the accompanying sum as the masker signal. 

 Bass Beat Cocotte Guitar 1 Guitar 2 Keyboard Voice Mix 

Bass * 0.49 0.31 0.44 0.55 0.29 0.48 0.79 

Beat 0.16 * 0.11 0.24 0.26 0.13 0.26 0.48 

Cocotte 0.32 0.41 * 0.47 0.55 0.31 0.48 0.70 

Guitar 1 0.25 0.44 0.23 * 0.50 0.33 0.58 0.87 

Guitar 2 0.17 0.26 0.15 0.27 * 0.19 0.33 0.55 

Keyboard 0.22 0.43 0.24 0.60 0.52 * 0.59 0.82 

Voice 0.20 0.36 0.18 0.40 0.40 0.24 * 0.66 

 

We apply Metric I on a selected multitrack song to informally evaluate its performance. The 

amount of masking occurring among a 7-track multitrack song estimated by Metric I, is 

listed in Table 5.6. We can see that the Guitar 1 track has the largest masking problem, 

Mn=0.87. Beat, Guitar 2, and Voice generate more masking effect on others since they are set 

to have higher sound levels and themselves have smaller masking values of 0.48, 0.55, 0.66. It 

is reasonable because they are the most important tracks in the mix. When we investigate the 

table horizontally, we can see that the Bass track is masked by Guitar 2 and Beat tracks by 

0.55 and 0.49, respectively. However, the Beat track is masked only a small amount by the 

Bass track, 0.16.  

 

The multitrack was mixed manually by the author with the objective to minimize the amount 

of masking. The masking model was then applied to the processed multitrack, to evaluate 

whether the masking behaviour captured by the model can reflect manual processing of 

masking reduction informally. The author processed the mix in Logic Pro with built-in fader 

and equalizer. More specifically: a -2.5 dB gain was applied to the bass track; a -3dB cut at 

centre frequency of 1200 Hz and Q-factor of 4.5. A 3.2 dB; 1.7 dB boost on 670 Hz and 

2000 Hz respectively on Guitar 1; A overall gain of 1.2 dB applied on Keyboard track. The 

new masking result of the processed multitrack is shown in Table 5.7 

 

Table 5.7 The amount of masking occurring in every instrument track of the “re-mixed” 7-

track song measured by Metric I.  
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  Bass Beat Cocotte Guitar 1 Guitar 2 Keyboard Voice Mix 

Bass  * 0.45 0.29 0.38 0.52 0.29 0.45 0.77 

Beat  0.17 * 0.11 0.26 0.24 0.14 0.26 0.49 

Cocotte  0.34 0.41 * 0.46 0.53 0.33 0.48 0.70 

Guitar 1  0.24 0.40 0.20 * 0.39 0.31 0.54 0.79 

Guitar 2  0.21 0.28 0.17 0.30 * 0.22 0.34 0.59 

Keyboard  0.22 0.39 0.21 0.56 0.43 * 0.54 0.76 

Voice  0.22 0.36 0.18 0.44 0.37 0.27 * 0.69 

 

As Table 5.7 shows, there is no masking value larger than 0.8 in the “Mix” column, which 

means that the masking effect has been decreased in the overall mix. Furthermore, the 

amount of masking is generally smaller than pervious results, especially for the Guitar 1 track 

where the value drops from 0.87 to 0.79.  

 

Metric II: Masking Metric Adapting the Method Of Vega Et Al. 

 

Alternatively, we can quantify the amount of masking by investigating the interaction 

between the excitation patterns of the track, Et,n and the supplementary sum of the other 

tracks Em,n, adapting the method of Vega et al (Vega & Janer, 2010). The masking 

measurement, Mn thus can be defined as the masker-to-signal ratio (MSR) based on 

excitation pattern integrated across ERB scale and time, is given by 

 

 

  
Mn =

Em,n
bERB
∑

Et ,n
bERB
∑ .   (0.0) 

 

As Equation (0.0) suggests, Metric II is based on excitation patterns of the masker and 

maskee rather than more perceptual measurement such as loudness. 

 

5.4 Masking Metrics Based on MPEG Psychoacoustic Model  
 

As discussed in Background Section 2.3.2, The MPEG psychoacoustic model plays a central 

role in the compression algorithm. This model produces a time-adaptive spectral pattern that 
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emulates the sensitivity of the human sound perception system. The model analyzes the 

signal, and computes the masking thresholds as a function of frequency (ISO, 1993; 

Johnston, 1988a, 1988b). The procedure to derive masking thresholds has been summarized 

in Section 2.3.2.1 together with a block diagram (see in Figure 2.4) illustrated the estimation 

stages involved in the psychoacoustic model. The mechanism behind the psychoacoustic 

model gives insight into a manner in which it can be adapted into masking metrics to 

describe the masking behavior for multitrack audio. 

 

In addition to the Glasberg and Moore’s Loudness Model based Metric I and II, we also 

propose two other masking metrics adapting and expanding the psychoacoustic model in 

MPEG audio coding. 

 

Metric III: MPEG Masking Metric Derived From the Final Mix 

 

We can measure the amount of masking by looking at the masking threshold of the final 

stereo mix directly. This approach assumes that when there is more masking in the 

multitrack, there will be more masking within the final mix, and more efficient MPEG audio 

coding can be applied to the final mix. The masking measurement of the mixture, Mmix then 

becomes 

 

 
  
Mmix =

MSR(sb)
Tmaxsb⊂Esf <T

∑ ,   (0.0) 

 

where Tmax is the predefined maximum amount of distance between the energy of the mix in 

each scale-factor band Esf(sb), and measured masking threshold in each scale-factor band, 

T(sb).  MSR(sb) is the Masker-to-Signal Ratio (MSR) in each scale-factor band. Esf(sb), T(sb) 

and MSR(sb) are derived from the psychoacoustic model used in MPEG audio coding as 

described in Section 2.3.2.1. 

 

As Equation (0.0) suggests, Metric III is not a cross-adaptive masking metric as it derives the 

masking measurement directly from the summed mix rather than the relationship between 

multitrack. Notice the notation Mmix is used for the set of a multitrack, rather than Mn for 

each track.  
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Metric IV: Cross-Adaptive Multitrack MPEG Masking Metric  

 

Next, we adapt the masking threshold algorithm from MPEG audio coding into a multitrack 

masking metric based on a cross-adaptive architecture (Reiss, 2011; Zolzer, 2011). The 

flowchart of the system is illustrated in Figure 5.4. 

 

                              
Figure 5.4 System flowchart of the proposed MPEG cross-adaptive multitrack masking 

model of N input signal.    

 

To account for the masking that is imposed on an arbitrary track by the other accompanying 

tracks rather than by itself, we replace T(sb) with   ′Tn(sb) , which is the masking threshold of 

track n caused by the sum of its accompanying tracks. Let H denote all the mathematical 

transformations of the MPEG psychoacoustic model (see Section 2.3.2.1) to derive the 

masking threshold. We thus can compute   ′Tn(sb)  as 

 

 
  
′Tn(sb) = H ( si

i=1,i≠n

N
∑ ).   (0.0) 
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Esf,n(sb) denotes the energy at each scale-factor band of track n. We assume masking occurs at 

any scale-factor band where   ′Tn(sb) > Esf ,n(sb) . The Masker-to-Signal Ratio in multitrack 

content becomes 

 

 
  
MSRn(sb) = 10 log10( ′Tn(sb)

Esf ,n(sb)).   (0.0) 

 

We then can define a cross-adaptive multitrack masking measurement for each track, Mn, as 

 

 
  
Mn = ( MSRn(sb)

Tmaxsb⊂Esf ,n< ′Tn
∑ ).   (0.0) 

 

5.5 Conclusions 
 

First, a loudness matching experiment on musical signals using a method of adjustment was 

conducted to evaluate the performance of proposed partial loudness model. Empirical results 

suggested the proposed loudness model over-estimated the loudness reduction due to partial 

masking. An adjustment of the parameter K in the partial loudness implementation was 

proposed that yields a better compliance between model predictions and subjective 

evaluation.  

  

We incorporated the K parameter modification into the multitrack loudness model (Glasberg 

& Moore, 2002; Moore et al., 1997). We then adapted this model into two cross-adaptive 

multitrack masking metrics to describe the amount of masking in multitrack content. We 

also adapted and extended the masking threshold algorithm of the psychoacoustic model 

(ISO, 1993; Johnston, 1988a, 1988b) used in MPEG audio coding into another two masking 

metrics. However, objective and subjective evaluations of the proposed masking metrics are 

presented in Chapter 6, where they are integrated into an autonomous masking minimization 

system built upon a typical optimization framework. 
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Chapter 6 

6 General Processing 
 

 

 

6.1 Introduction 
 

So far, we have investigated and explored the intelligent equalization techniques in Chapter 

3, intelligent multitrack dynamic range compression in Chapter 4 and a perceptual study on 

masking in Chapter 5, in which we proposed several masking metrics for multitrack mixing. 

In this chapter, we aim to integrate previous findings into one intelligent system of masking 

minimization, built upon an optimization framework that replicates the iterative process of 

human mixing. 

 

Equalization can effectively reduce masking by manipulating the spectral contour of different 

instruments to reduce interference in frequency domain. Dynamic range processing can alter 

the dynamic contour of the signals to reduce the masking over time. As discussed in Section 

2.4.3, the operational nature of the equalizer and dynamic processor gives insight into a 

manner in which they may be combined into a general frequency and a dynamic processing 

framework. It can create a larger control space and more detailed adjustments to the audio 

environment, providing invaluable advantages in our intelligent mixing system. 

 

Previous attempts to perform masking reduction for audio mixing have been discussed in 

Section 2.5. Following the discussion in Section 2.4.1, we saw that mixing is a quintessential 

optimization problem which benefits from an iterative coarse-to-fine search. This provides 

some insight regarding the methodology of automating the mixing process to perform 

masking reduction. Given a certain set of controls of a multitrack, a mixing output can be 

thought of as the optimal solution to a system of equations that describe the masking 

behaviour within the multitrack mixture. 
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In this chapter, we investigate how to use different audio processing techniques to manipulate 

the frequency and dynamics characteristics of the signal in order to reduce masking. An 

optimization framework (Section 6.2) is employed, in which we introduce a general frequency 

and dynamic processing processor. Ultimately, we propose an autonomous masking 

minimization system, where the aforementioned masking metrics (presented in Chapter 5) 

are employed to describe the objective function in Section 6.3. The automated audio effects 

proposed in this chapter are not time-varying compared to previous research. Various 

implementations of the system are explored and evaluated objectively and subjectively 

through a listening experiment.  

 

6.2 Audio Effects and Control Parameters 
 

We first investigate how to use different audio processing techniques to manipulate the 

frequency and dynamics characteristics of the signal to reduce masking in an optimization 

framework. The extracted control parameters optimized iteratively through the system are 

described in this section. 

 

6.2.1 Equalization  

 

A six-band equalizer is explored in the optimization process. Six different second-order IIR 

filters are connected in cascade to equalize the audio signal over the typical frequency range. 

The filter specification is shown in Table 6.1. 

 

Table 6.1 Six-band equalizer filter design specifications. 

 

Band No. Center Frequency (Hz) Q-factor 

1 75 1 

2 100 0.6 

3 250 0.3 

4 750 0.3 

5 2500 0.2 

6 7500 1 
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The gains of the six-band equalizer filter for each track are varied through the optimization 

procedure. The control parameters are thus given by 

 

    x = [g1,g2 ,...,gN ],   (0.0) 

 

in which for each gi (vector-valued) 

 

 
    
gi = [ g1,i g2,i  g6,i ],   (0.0) 

 

contains the six gains control for each track. 

 

6.2.2 Dynamic Range Compression  

 

The digital compressor model design employed in our approach is a feed-forward compressor 

with smoothed branching peak detector (Giannoulis et al., 2012a). A typical set of 

parameters of a dynamic range compressor (DRC) includes the threshold, ratio, knee width, 

attack, release, and make-up gain. In the case of adjusting the dynamic of the signal to reduce 

masking through optimization, the values of threshold, ratio, knee, attack and release are 

control parameters to be optimized. Since dynamics are our main focus here rather than the 

level, make-up gain of each track is set to compensate the loudness differences (measured by 

the ITU 1770 loudness standard (ITU, 2012a)) before and after dynamic processing. The 

make-up gain for each track is given by 

 

 
   
g,i = LITU ,i − ′LITU ,i ,   (0.0) 

 

where LITU,i, L’ITU,i represent the measured loudness before and after the dynamic range 

compression respectively. The control parameters in the dynamic case are given by 

 

 
   

x = [d1,d2 ,...,dN ]

di = [ Ti Ri Ki ai ri ]
,   (0.0) 
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where di is constituted of the five standard DRC control parameters for the ith track; 

threshold (Ti), ratio (Ri), knee (KI), attack (ai) and release (ri). 

 

6.2.3 General Frequency and Dynamics Processing 

 

We adapt the integrated processor concept proposed in (Wise, 2009). Conventional 

multiband compressors compress frequency bands differently through band-pass filters or 

crossover filters. The general processor utilizes this concept, but replaces crossover filters with 

parametric equalizer filters. It offers larger control over the dynamics of specific frequencies of 

the audio. 

 

The general processor can adjust the frequency, gain, and bandwidth of a filter, with controls 

common dynamic range compression controls. The attack and release determine how fast the 

dynamic EQ acts towards the defined amount of boost or cut. The characteristic of the 

processing on each frequency band (j is the frequency band index) is controlled by 4 

parameters: EQ gain (gj,i), threshold (Tj,i), attack (aj,i) and release (rj,i). The functionality of 

DRC’s ratio is replaced by the EQ gain, and knee is set to zero as default. If 6 equalization 

filters are used, then there will be 4-by-6 parameters to be optimized for each instrument 

track. The notation of the final control parameters to be optimized in the general processing 

tool is given by 

 

    x = [c1,c2 ,...,cN ].   (0.0) 

 

In this case, for each ci: 

 

 

   

ci =

g1,i g2,i ... g6,i

T1,i T2,i ... T6,i

a1,i a2,i ... a6,i

r1,i r2,i ... r6,i

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.   (0.0) 
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6.3 Optimization Method and Implementations 
 

The multitrack masking minimization process is treated as an optimization problem 

concerned with minimizing a vector-valued objective function described by the masking 

metrics. It systematically varies the input variables, which are the control parameters of the 

audio effect to be applied, and computes the value of the function until its error is within a 

tolerance value or a maximum number of iterations is reached. 

6.3.1 Objective Function 

 

Let N denote the total number of tracks in the multitrack and K denote the total number of 

control parameters, which depends on the effects to be applied. The objective function, M(x) 

can be expressed by the masking metrics as a vector-valued function of the control 

parameters, x, for each individual track: 

 

 

   

M (x) =

M1(x)

M2(x)

...
M N (x)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,   (0.0) 

 

Each component of objective function Mn(x), describes the amount of masking occurring in 

each track as a function of the control parameters x. Note that x represents the whole set of 

the control parameters for all tracks. Changes in the control parameter in one track not only 

affect the masking of that particular track but also masking of all other tracks.  

 

The derivation of Mn is from the masking metrics proposed in Chapter 5, namely, Metric I, 

II, III, and IV, as summarized in Equation (0.0): 

 



 132 

 

  

Metric I: Mn =
Ln − Pn

Ln

Metric II: Mn =
Em,n

bERB

∑
Et ,n

bERB

∑

Metric III: Mmix =
MSR(sb)

Tmaxsb⊂Esf <T
∑

Metric IV: Mn = (
MSRn(sb)

Tmaxsb⊂Esf ,n< ′Tn

∑ )

.   (0.0) 

   

Detailed descriptions of each metric to produce the masking measurements for multitrack 

mixing are presented in Section 5.3 and 5.4.  Since Metric III is a non cross-adaptive 

masking metric, it measures the amount of masking occurring in the final mix instead of the 

multitrack. Therefore when using Metric III to describe the objective function, M(x) 

becomes: 

 

    M (x) = Mmix (x)⎡⎣ ⎤⎦.   (0.0) 

 

6.3.2 Numerical Optimization Algorithms 

 

Numerical optimization theory is employed to find the optimal set of control parameters x 

that is a local minimizer to M(x) as shown in Equation (0.0). 

 

 
   
min

x
M (x)

2

2
= min

x
M1(x)2 + M2(x)2 + ...+ M N (x)2( )   (0.0) 

 

We chose to use the Levenberg-Marquardt Algorithm (LMA) (Marquardt, 1963; Pujol, 

2007) to solve this nonlinear least-squares problem. LMA lies between the Gauss-Newton 

algorithm and the method of gradient descent. LMA as a local optimization algorithm is 

more suitable than other global optimization algorithms (such as genetic and pattern search 

algorithms) for the masking minimization problem. It finds the smallest objective function 

value in some feasible neighbourhood rather than all space. Use of local minima can avoid 

possible extreme control values (which may include is the global minimum) that might cause 

unpleasant sound artifacts in the mix.   
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LMA embeds an iterative procedure like other optimization algorithms. To start the masking 

optimization process, an initial guess for the control parameters, x0 has to be provided. A 

search direction dq in the control parameters where the error is decreasing most rapidly, is 

computed at each iteration, q. In each iteration step, the control parameter, x, is replaced by a 

new estimate, x+dq. To determine the search direction, the new value of the objective 

function is approximated by the following linearization,  

 

    
M (x + dq ) ≈ M (x)+ Jdq.   (0.0) 

 

The Levenberg-Marquardt method obtains a search direction that is a solution of the linear 

set of equations: 

 

    
(J (xq )T J (xq )+ λqI)dk = −J (xq )T M (xq ).   (0.0) 

 
The damping factor λ  controls both the magnitude and direction of dq and I is the identity 

matrix. The first-order partial derivatives of the objective function give the Jacobian N-by-K 

matrix,  

 

 

   

J =

J11 J12  J1k

J21 J22  J2k

  

Jn1 Jn2  Jnk

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,   (0.0) 

 

where 

 

 
   
Jnk =

∂Mn(x)
∂xk

.   (0.0) 

 

λ  is adjustable at each iteration. The value of  decreases with a rapid reduction of M 

(similar to the Gauss–Newton algorithm), though if iteration gives insufficient reduction in 
the residual, λ can be increased (similar to the gradient descent method).  

 

λ
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6.3.3 Optimization System Variations 

 

When applying Metric I-IV (as described in Chapter 5) to the optimization system, different 

optimization constraints have to be considered in order to avoid sound artifacts. We propose 

several implementation variations (listed in Table 6.2) to investigate the best approaches for 

further evaluation. 

 

Table 6.2 List of different optimization implementations paired with different optimization 

constraints. Selected implementations (bolded and shaded) are further analysed and 

evaluated in the following section. The last column gives the notations used in the following 

section to indicate applied masking metrics. 

Masking Metric (IMP. 

ID) 

Constraints Notation with different 

effects 

I (a) - - 

I (b) 
  Ln

' = Ln
 (Maintain loudness) - 

I (c) 
  Pn

' = Pn
 (Maintain partial loudness) EQ: EQ-GM 

DRC: DRC-GM 

GE: GE-GM 

II (a) - - 

II (b) 
  Ln

' = Ln
 (Maintain loudness) - 

II (c) 
  Pn

' = Pn
 (Maintain partial loudness) - 

III (a) - - 

III (b) 
  
LITU ,mix

' = LITU ,mix  (Maintain ITU loudness of 

the mix) 

- 

IV (a) - EQ: EQ-MPEG 

DRC: DRC-MPEG 

GE: GE-MPEG 

IV (b) 
  
LITU ,n

' = LITU ,n  (Maintain ITU loudness) - 

 

 

As shown in Table 6.2, Implementation I (a) applies the Glasberg and Moore based Metric I 

without any constraint. Implementation I (b) employs Metric I with a before-and-after 

loudness constraint. That is, the control parameters are optimized at every optimization 

iteration to reduce masking and comply with a loudness condition, as given by 
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   Ln
' = Ln ,   (0.0) 

 

where Ln, L’
n are the loudness of track n before and after applying the optimized audio effects 

respectively. Implementation I (c) also uses Metric I but constrained with a before-and-after 

partial loudness condition. 

 

   Pn
' = Pn   (0.0) 

 

Implementation II follows the same logic for its constraints as Implementation I, but using 

Metric II instead. Implementation III (a) is based on MPEG Metric III with no constraint 

applied. In Implementation III (b), an equal before-and-after ITU loudness constraint of the 

mix is added, as given by 

 

   
LITU ,mix

' = LITU ,mix ,   (0.0) 

 

where LITU,mix, L’
ITU,mix are the ITU loudness of the mix at every optimization iteration, 

measured by (ITU, 2003). Implementation IV follows the same logic as III but using Metric 

IV instead. For IV (b), the optimization constraints are given by 

 

   
LITU ,n

' = LITU ,n ,   (0.0) 

 

where   LITU ,n ,   LITU ,n
'  are the ITU loudness of every track at every optimization iteration. 

 

The mix quality produced by some of the implementation variations is significantly better 

than others in terms of sound artifacts and the ability to reduce perceptual masking through 

listening evaluation. 

 

After informal listening, Implementation II (a)(b)(c) were rejected from further study since 

they produced mixes with obvious sound artifacts due to sharp EQ, heavy compression, 

compared to Implementations I (a)(b)(c). Implementation I (a) often applied attenuation on 

all frequency bands, which could be seen as decreasing the volume of each track. As a result, 

it created final mixes with quiet level, yet masking still persists in the mix. This perhaps is due 
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to the level-dependent nature of the loudness model of Glasberg and Moore. The model 

underestimates the perceived amount of masking within signals of lower level. Furthermore, 

Implementation I (c) was favoured slightly but consistently over I (b) in terms of overall mix 

quality. 

 

Implementation III exhibited limited and inconclusive masking reduction. This could due to 

the mechanism of Metric III since it only quantifies the amount of masking within the final 

mixture rather than the masking relationship between tracks.  Therefore III (a)(b) were also 

rejected from further use. Informal listening also suggested that Implementation IV (a) 

consistently had better masking reduction performance than IV (b). 

 

Thus, Implementation I (c) and IV (a) were kept for further study, as indicated in Table 6.2.  

These implementations were each paired with 3 different audio effects (described in Section 

6.2, namely, equalization (EQ), dynamic range compression (DRC) and general processing 

(GE)) in the optimization algorithm to perform masking reduction. The notations for every 

audio effect case are given in the last column of Table 6.2. Finally, DRC-GM was rejected 

since it produced significant pumping and breathing artifacts (Izhaki, 2013). 

 

 

6.4 Results and Evaluation 
 

6.4.1 Optimization Results 

 

In this section, optimization results of a 4-track multitrack recording of 20 seconds are 

presented and discussed. The rock multitrack song is the ‘Song 2’ used in the following 

subjective evaluation as shown in Table 6.3. It has 4 instrument tracks/stems (track 1: bass; 

track 2: drum set; track 3: electric guitar; track 4: Synth).  Specification of the song is shown 

in Figure 6.1. 
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Figure 6.1 Specification of the test song (the reference level is the lowest possible sample is 

for 16 bit audio in digital full scale: 96 dBFS).  

 

 

Genre Instrument Level (dB) 

Rock 

Bass 68 

Drum set 57 

Electric guitar 61 

Synth 65 

 

 

 

 

 

                
Figure 6.2 EQ curves of each track using EQ-GM, on a 4-track multitrack song. 
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Figure 6.3 EQ curves of each track using EQ-MPEG, on a 4-track multitrack song. 

The optimized EQ curves based on the EQ-GM and EQ-MPEG optimization methods on 

the same 4-track multitrack song are shown in Figure 6.2 and Figure 6.3 respectively. It 

shows that different masking metrics produce significantly different EQ results on the same 

instrument track. In particular, EQ-GM produces relatively sharper EQ curves than EQ-

MPEG. 

 

 

10-2 10-1 100 101

Frequency (kHz)

9

6

3

0

-3

-6

-9

M
ag

ni
tu

de
 (d

B)

Track 1
Track 2
Track 3
Track 4



 139 

        
Figure 6.4 Static DRC curves of each track using EQ-GM, on a 4-track multitrack song. 

        
Figure 6.5 Static DRC curves of each track using EQ-MPEG, on a 4-track multitrack song 

The optimized DRC characteristics for DRC-GM and DRC-MPEG are shown in Figure 

6.4 and Figure 6.5 respectively. As the Figures suggest, optimized threshold and ratio values 

are dependent on the masking metric. Notably, for track 3, the GM metric produces a small 
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amount of downward compression (ratio = 1.69) while MPEG metric generates an upward 

compression (ratio = 0.86) instead. 
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Figure 6.6 General processing curves based GM masking metric. 
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Figure 6.7 General processing curves of track 1 based MPEG masking metric. 
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Selected examples of the optimized GE parameters of track 1 are visualized in a three 

dimensional space in Figure 6.6 and Figure 6.7.  

 

Together, these results show that the optimized parameters of the three audio processors 

(EQ, DRC, GE) are significantly different dependent on the masking metrics (GM, 

MPEG) used. The nature of these two masking metrics could shed light on why the 

difference occurs. The MPEG metric is based on masking threshold, where the final masking 

value is a function of frequency band. But the GM metric is a function of loudness, which is 

based on the overall loudness reduction. In other words, the GM metric is only indirectly 

frequency dependent. In order to achieve the same amount of masking reduction as the 

MPEG metric, the GM metric might have to apply more severe audio effects.  

 

The computational complexity of the optimization algorithms depends greatly on which 

masking metric is used. MPEG metric requires much shorter processing time than GE 

metric (at least, 100 times less). This is due the complexity of the algorithm behind the 

Glasberg and Moore’s loudness model (mainly due the calculation of excitation pattern). 

When using the same metric, the computational performance is influenced by a number of 

factors such as the number of iterations, the numbers of variables to be optimized and the 

number of the tracks within the mix. At the current stage of the research, these optimization 

algorithms are not efficient enough to be embedded into commercial product, real-time 

processing at least. 

 

 

6.4.2 Subjective Evaluation 

 

Method 

 

We conducted a formal subjective evaluation in the form of a multiple stimulus listening test, 

similar to MUSHRA (ITU, 2003), to assess the performance of the five selected 

implementations against raw mixes and professional mixes. However, unlike MUSHRA, no 

fixed reference was available, and thus it can be considered a semantic differential test. Raw 

mix is the direct sum of the unprocessed tracks. For the professional mix, a mix engineer with 

3-year professional mixing experience and 5-year musician experience was asked to create his 

own mix with the objective of reducing the masking, using Apple’s Logic Pro software. He 
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was instructed to only use built-in dynamic range compression and equalizer. And he was 

allowed to mix the songs with preferred playback level as his own. However editing, 

rerecording, the use of samples or any other form of adding new audio was not allowed. 

 

Five multitrack recordings (20s segments) in various genres, selected from the Open 

Multitrack Testbed (http://multitrack.eecs.qmul.ac.uk) (De Man et al., 2014), were used in 

the test. The specification of the tested songs is shown in Table 6.3. 

 

Table 6.3 Specification of tested songs. 

No. 
Number of 

Tracks 
Genre Instrumentation 

1 3 Jazz Bass; Drum; Piano 

2 4 Rock Bass; Drum; Electric Guitar; Synth 

3 6 Rock Percussion; Bass; Drum; Guitar 1; Guitar 2; Keys 

4 7 Hip Hop Bell(synth); Bass; Backing Vocal; Leading Vocal; Juno(synth); 

Piano; Drum 

5 9 Punk Bass; Drum; Electric Guitar; Leading Vocal; Percussion; Sub-bass; 

Acoustic Guitar; Vibes; Backing Vocal 

 

 

The loudness of the final mixes was normalized manually by a group of professional mixing 

engineers, using the same playback system as used for the subjective evaluation. The orders of 

mix variations and songs presented to participants were randomized. All tests were performed 

in a soundproof listening room with the same headphone set-up, where the environmental 

noise is minimized. Participants were allowed to adjust the playback level during the 

experiment in order to evaluate the quality of the mixes efficiently. 

 

Eighteen participants with moderate audio engineering experience from two different audio 

research groups (Queen Mary University of London and Goldsmiths University of London) 

were recruited. Related personal information about the participant is displayed in Table 6.4, 

based on the results of the questionnaire, which was given to all participants before 

commencing the test. 
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Table 6.4 Results of preliminary questions to test participants. 

Gender Male 12 

Female 6 

Audio Group Queen Mary 8 

Goldsmiths 10 

Hearing Impairment No 18 

Yes 0 

Age Range 20 – 36 

 

 

Participants were asked to rate the mixes according to two criteria on a full scale of 0 to 100, 

split up into five descriptors: “Bad (0 -20)”, “Poor (20 - 40)”, “Fair (40 - 60)”, “Good (60 -

80)” and “Excellent (80 - 100)” as shown in Figure 6.8. The average time that participants 

spent on this experiment is about 50 minutes, including a suggested 5 minutes break between 

the two questions. 

 

• Q1: Rate the following mixes in terms of the ability to distinguish the sources (i.e., 

the lack of masking). 

• Q2: Rate the following mixes in terms of your own overall preference. 

 

 

Figure 6.8  The  evaluation interface used in the experiment. 

 

Evaluation Results 
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The result analysis follows the idea used in Section 4.5.2, using means with confidence 

intervals data visualization. We use the Lilliefors test for normality check, Friedman test and 

Wilcoxon signed rank test for significance check. However, we decide to follow the 

specification for MUSHRA (ITU, 2003) to visualize the date with mean and confidence 

intervals: no overlap in the confidence intervals for two conditions means one is significantly 

better than the other. The normality tests are performed for each song and mix types for both 

Q1 and Q2. Results are shown in Table 6.5. 

 

Table 6.5 Results of the Lilliefors tests for Q1 and Q2 (h=0 indicate normal, h=1 indicate 

non-normal). 

Mix Type Song Q1 Q2 

h p-value h p-value 

Raw 1 0 0.082105143 0 0.499190162 

2 0 0.17677317 0 0.5 

3 0 0.5 0 0.416346307 

4 0 0.055816825 0 0.408682066 

5 0 0.354705565 0 0.227950773 

EQ-GM 1 0 0.5 0 0.383944551 

2 0 0.1643441 0 0.399519164 

3 1 0.041908747 0 0.45201578 

4 0 0.5 0 0.385541187 

5 0 0.5 0 0.053795024 

GE-GM 1 0 0.1643441 1 0.036102532 

2 1 0.041908747 0 0.5 

3 0 0.5 0 0.338227581 

4 0 0.5 0 0.5 

5 0 0.5 0 0.088990345 

EQ-MPEG 1 1 0.041908747 0 0.111509779 

2 0 0.5 0 0.139270692 

3 0 0.5 0 0.5 

4 0 0.5 0 0.257015986 

5 0 0.17677317 1 0.001 

DRC-MPEG 1 0 0.5 0 0.236873714 

2 0 0.5 0 0.079271012 

3 0 0.5 0 0.5 
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4 0 0.17677317 0 0.5 

5 0 0.34511909 0 0.316400138 

GE-MPEG 1 0 0.5 0 0.283357946 

2 0 0.5 1 0.014403988 

3 0 0.17677317 0 0.484454298 

4 0 0.34511909 0 0.5 

5 0 0.267617225 0 0.122612895 

Pro 1 0 0.5 0 0.313817463 

2 0 0.17677317 0 0.37541535 

3 0 0.34511909 0 0.5 

4 0 0.267617225 0 0.5 

5 0 0.355108799 0 0.088901724 

 

 

Subjective evaluation results are summarized in Figure 6.9 and Figure 6.12. The raw mix and 

professional mix are denoted as ‘Raw’ and ‘Pro’. Notations for optimized mixes are listed in 

Table 6.2.  
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Figure 6.9 (a) Evaluation results of Q1, which are organized by mix type, showing the mean 

values (of each song) across all participants with errors bars displaying 95% confidence 

interval (t-distribution). (b) Boxplot of the same Q1 results. 

 

Figure 6.9 plots the results for Q1. As expected, ‘Pro’ performs the best on every song. 

Almost all mixes are rated higher than ‘Raw’ except song 5 where ‘Raw’ rates higher than 

EQ-GM.  

 

7 out of 10 ‘GM’ mixes are rated ‘Fair’ at masking reduction. Comparison of ‘EQ-GM’ with 

‘GE-GM’ within each song shows that the mix using the general frequency and dynamic 

processing technique reduces the masking more effectively. 

 

‘MPEG’ mixes rate consistently within the ‘Good’ scale. This suggests that the masking 

metric based on the MPEG perceptual model (EQ-MPEG, DRC-MPEG, GE-MPEG) 

has better performance than metrics based on Glasberg and Moore’s loudness models when 

describing the multitrack masking. Results also show that whether ‘EQ-MPEG’ rates higher 

than ‘DRC-MPEG’ is song dependent, and there is no clear preference.  

 

Statistical tests for the significance in terms of mix types and songs are performed are 

performed as the results are shown in Table 6.6 and Table 6.7. 

 

 

Table 6.6 Results of the one-way ANOVA of mix types within each song (Q1). 

Song p-value 

1 5.05e-24 

2 6.60e-36 

3 3.10e-35 

4 5.91e-22 

5 9.27e-39 

 

 

 

Table 6.7 Results of the one-way ANOVA for song choices within each mix type (Q1). 
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Mix type p-value 

Raw 1.2796e-05 

EQ-GM 2.0499e-14 

GE-GM 6.9453e-05 

EQ-MPEG 6.9453e-05 

DRC-MPEG 3.8140e-10 

GE-MPEG 0.1897 

Pro 0.0015 

 

Table 6.6 indicates there is strong statistical evidence that mix types have significant effect on 

the evolution scores (p-values are all extremely small). Table 6.7 also suggests song choices 

might also have certain degree of affect on evaluation scores. However p-value equals to 

0.1897 and 0.015 for ‘GE-MPEG’ and ‘Pro’ respectively indicate the otherwise.  

 

Two-way ANOVA test is then performed to investigate the interaction between these two 

factors (mix types and songs). Table 6.8 indicate that there is some degree of interaction 

effect between these two factors. 

 

 

Table 6.8 Two-way ANOVA result table (Q1). 

ANOVA Table 

Source SS df MS F Prob>F 

Column: Mix type 228892.7048 6 38148.7841 213.1661 1.23E-144 

Row: Song 8734.5937 4 2183.6484 12.2017 1.53E-09 

Interaction 46516.9619 24 1938.2067 10.8302 1.67E-33 

Error 106482.8333 595 178.9627   

Total 390627.0937 629    

 

 

Therefore multiple comparison tests are performed to see if different mix types and song 

choice yield significantly different evaluation scores. 
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Figure 6.10 The result plots shows multiple comparison of the means with 95% confidence 

intervals for both mix types and songs. 

Results from Figure 6.10 confirm again (see Figure 6.9) that there is significant difference 

between mix types with ‘GE-MPEG’ outperform all other mix types apart from the ‘Pro’. 

Mixes produced with ‘GM’ model are rated lower than mixes produced with “MPEG” 

model. Histograms of the evaluation scores for ‘GE-MPEG’ and ‘Pro’ are shown as in the 

figure below. 70% of the time, participants evaluated the quality of ‘GE-MPEG’ as ‘Good’ 
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(score: 60-80). As for ‘Pro’, about 65% of the time, participants think the quality of ‘Pro’ is 

“Excellent” (90-100).  

 

                 

                 
 

Figure 6.11 Score histograms for GE-MEPG and Pro (Q1). 
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(a) 

 
(b) 

Figure 6.12 (a) Evaluation results of Q2, organized by mix type, showing the mean values (of 

each song) across all participants with errors bars displaying 95% confidence interval (t-

distribution). (b) Boxplot of the same Q2 results. 

 

Evaluation results for overall preference (Q2) of the mixes are shown in Figure 6.12. 

Although the rankings of the mixes for Q1 and Q2 share a similar pattern, the particular 

ranking within each song is different. It implies that the amount of masking in the multitrack 

is strongly related to the overall preference of participants.  

 

Further statistical tests for the significance are performed. Results of the one-way ANOVA 

tests for mix types and song choices for Q2 are very similar to the result for Q1 (see Table 6.6 

and Table 6.7).  

 

Table 6.9 Results of the one-way ANOVA test within each song (Q2). 

Song p-value 

1 8.2275e-21 
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2 3.1603e-34 

3 3.2366e-32 

4 1.3495e-20 

5 2.2093e-36 

 

 

 

 

Table 6.10 Results of the one-way ANOVA test within each mix type (Q2) 

Mix type p-value 

Raw 0.5863 

EQ-GM 1.6319e-10 

GE-GM 4.3256e-06 

EQ-MPEG 0.0426 

DRC-MPEG 7.7225e-11 

GE-MPEG 0.0069 

Pro 1.6828e-08 

 

Table 6.9 indicates there is strong statistical evidence that mix types have significant effect on 

the evolution scores (p-values are all extremely small). Table 6.10 suggest it’s hard to conclude 

whether there is significant different in song choices. Two-way ANOVA test is then 

performed. Results are shown in Table 6.11. Multiple comparison tests are performed to see 

if different mix types and song choices yield evaluation scores. 

 

Table 6.11 Two-way ANOVA result table (Q2). 

ANOVA Table 

Source SS df MS F Prob>F 

Column: Mix type 242936.5714 6 40489.4286 191.504 2.22E-135 

Row: Song 9389.6603 4 2347.4151 11.1026 1.08E-08 

Interaction 47507.2063 24 1979.4669 9.3623 1.48E-28 

Error 125800.0556 595 211.4287   

Total 425633.4937 629    
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Figure 6.13 The result plots shows multiple comparison of the means with 95% confidence 

intervals for both mix types and songs. 

 

Results indicate that there is significant difference between mix types with ‘GE-MPEG’ 

outperform all other mix types apart from the ‘Pro’. Score histograms for ‘GE-MEPG’ and 

‘Pro’ are shown in Figure 6.14. Mixes produced with ‘GM’ model are rated lower than mixes 
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produced with “MPEG” model. No significant difference between ‘DRC-MPEG’ and ‘EQ-

MPEG’. Also there is no significant difference between ‘EQ-GM’ and ‘GE-GM’. 

 

                

                                          
 

Figure 6.14 Score histograms for GE-MEPG and Pro (Q2).                

 

To give a clearer depiction of the general performance of each mix type, the mean results 

across all participants and songs are displayed in Figure 6.15. The professional mix is clearly 

the best assessed in both criteria, and mixes using the masking metric based on the MPEG 

perceptual model are preferred over those using Glasberg and Moore’s loudness models. This 

is an unexpected result, since Glasberg and Moore’s loudness model is considered more 

advanced than the simple MPEG psychoacoustic model. A possible explanation could be 

found by comparing the nature of these two models. The GM masking metric is based on the 

overall loudness reduction but the MPEG masking metric is defined as a function of masked 

frequency bands. That is, the GM masking metric might not be able to capture masking 
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behaviour in the higher frequency range, since it may not decrease the overall loudness as 

much as masking in the low frequency range. 

 

 

      
Figure 6.15 Overall mean results across all songs and participants for Q1 and Q2. 

Results also suggested that applying dynamic range compression could reduce masking as 

efficiently as applying equalization. However, general frequency and dynamic processing that 

intuitively integrates both EQ and DRC functionality can achieve better results in masking 

reduction than the alternatives, and it had a high overall preference among participants.  

 

Overall, the general frequency and dynamic processing used with the MPEG masking metric 

(GE-MPEG) performed best among the proposed autonomous masking reduction 

algorithms. Subjective evaluation showed that this approach could result in a mix that can 

compete with the mix produced by professional engineer. Future study on whether the 

instrumentation within the mix or music genre has significantly effect on the performance of 

the optimization methods (especially GE-MPEG) can provide further evaluation of the 

proposed automatic mixing algorithm.  

 

6.5 Conclusions 
 

We investigated different audio effects that are commonly used to minimize masking. By 

exploring the control mechanisms and operating spaces for equalization and dynamic range 

compression, we presented an integrated, general frequency and dynamic processing 

algorithm that acts within a higher dimensional control space. We proposed an intelligent 
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system for masking minimization using numerical optimization technique. Different masking 

metrics were paired with different audio effects, whose control parameters were obtained 

iteratively through the optimization process. Finally, formal evaluation of the system was 

described. The results of the subjective listening experiment implied that our novel MPEG-

based metric is able to describe multitrack masking better than more advanced psychoacoustic 

models (Glasberg & Moore, 2002, 2005; Moore et al., 1997). A general frequency and 

dynamics processing algorithm was shown to be more powerful in masking minimization 

than equalization or dynamic range compression in this context. The best masking 

minimization performance was achieved by incorporating the general tool with the MPEG 

masking metric. 

 

It would be beneficial to further investigate sophisticated masking models that can 

appropriately modelling partial masking with ‘real world’ content.  Furthermore, perception 

of temporal masking is seldom considered in established masking models, and thus this offers 

a promising future research direction. Since the proposed autonomous masking minimization 

algorithm only considers local optimization, an interesting extension would be to explore 

other global optimization algorithms such as pattern/direct search, genetic algorithm and etc.  
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Chapter 7 

7 Conclusions and Future Work 
 

 

 

To conclude the thesis, we first summarize the contributions made in the fields of intelligent 

mixing, perception modelling and beyond. We then reflect upon possible improvements that 

can be made to improve the intelligent multitrack frequency and dynamics processing system. 

Finally we consider some potential avenues for future work. 

7.1 Conclusions 
 

In fulfilment of our aim to develop intelligent methods for multitrack frequency and 

dynamics processing, there have been four main contributions; developments in frequency 

manipulation, dynamics processing, auditory masking and finally, an integration of previous 

findings into a general, intelligent system of mix optimization based on masking reduction.  

 

Overall, we have shown that by using a cross-adaptive architecture, feature extraction and 

analysis, optimization techniques, embedding best practices as control rules and utilizing 

perceptual models, it is possible to generate intelligent mixing choices of similar quality to 

those of a skilled audio engineer. This can be achieved with minimal or no human 

intervention, and can improve the overall experience of listening to musical mixtures. 

 

Chapter 3 investigated the frequency aspect of intelligent mixing. We presented a spectral 

characteristic analysis of a large commercial recording dataset. We found that the spectra of 

commercial successful recordings share a consistent trend, which can roughly be described as 

a linearly decaying distribution of around 5 dB per octave between 100 and 4000 Hz, 

becoming gradually steeper with higher frequencies, and a severe low-cut around 60 Hz. We 

then proposed a novel time-varying equalization approach to match the spectral distribution 

of the input signal to a target equalization curve (such as the common curve obtained from 

the spectral characteristic studies) or any desired frequency response, based on the Yule-
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Walker IIR filter design method. Objective evaluation of the algorithm showed that the 

algorithm is able to fulfill the objective with appropriate ballistics setting. 

 

Chapter 4 explored the dynamics aspect of intelligent mixing. We proposed a novel 

intelligent multitrack dynamic range compression algorithm. The algorithm utilises the cross-

adaptive digital audio effect architecture again (Reiss, 2011; Zolzer, 2011), exploits the 

interdependence of the input audio features and incorporates best practices as well as 

subjective evaluation results to produce the optimal amount of dynamic range compression 

for multitracks. We presents a fully automated multitrack dynamic range compressor where 

all classic parameters of a typical compressor (ratio, threshold, knee, attack and release) are 

dynamically adjusted depending on extracted features and control rules. In the pursuit of 

better descriptors to characterize the transient nature and spectral content of the signal, two 

new audio features, namely percussivity weighting and low-frequency weighting, were 

proposed. A method of adjustment experiment was conducted to uncover how subjects set 

the ratio and threshold parameters. We applied multiple linear regression models to the 

subjective results to formulate the ratio and threshold automations that follow the preference 

of mixing engineers. The output mix produced by the proposed algorithm has an outstanding 

performance in the final subjective evaluation when compared against a raw mix, two semi-

professional mixes and a previous automatic compression approach. The results showed that 

the algorithm is able to compete with or outperform the semi-professional mixes in terms of 

four different perceptual criteria: the appropriateness of the amount of DRC applied, the 

degree of imperfection, the ability to stabilise the erratic level fluctuations and overall 

preference. Additionally, we described a demonstration system that has shown personalized 

dynamic range control can easily be achieved in a web browser (using Web Audio API), 

responding to the environment around the listener. Demonstrations to listeners showed that 

the processing was unobtrusive and very effective at adapting to changes in environment 

noise. 

 

Chapter 5 contributed to the field of auditory masking. We proposed several masking metrics 

for quantifying masking behaviour within the multitrack mixture, adapting the cross-adaptive 

digital audio effect architecture (Reiss, 2011) and expanding existing psychoacoustics models 

of Glasberg and Moore (Glasberg & Moore, 2002; Moore et al., 1997) and MPEG audio 

coding (Bosi et al., 1997; ISO, 1993). First, an equal loudness matching experiment using the 

method of adjustment (Glasberg & Moore, 2005) was conducted to evaluate the performance 

of the proposed multitrack loudness model on musical signals against human perception. We 
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found that the model over-estimated the partial masking occurring in the multitrack audio. 

We then analyzed the underlying features and proposed a modification of the K parameter in 

the implementation of the partial loudness model.  Evaluation results showed that model 

with the proposed modification yields better perceptual compliance for musical signals. The 

outcomes of the experiment were then integrated into the development of the multitrack 

masking metrics, which offer a perceptual understanding of the mixing process. Evaluations 

of masking metrics were presented later in Chapter 6, where the metrics were integrated into 

an autonomous masking minimization system built upon a typical optimization framework.  

 

In Chapter 6 we incorporated previous research outcomes in frequency manipulation 

(Chapter 3), dynamic processing (Chapter 4) and auditory masking (Chapter 5), into one 

intelligent multitrack masking minimization system. We first explored the relationship 

between the two essential signal-processing operations in mixing, equalization and dynamic 

processing. By investigating the control mechanisms and operating spaces of these two 

operations, we presented a general frequency and dynamic processing tool, capable of 

modifying the boost and/or cut of an equalization stage over time, following a dynamics 

curve. We then investigated how to employ different audio techniques (equalization, dynamic 

processing and proposed general processing) to manipulate the spectral and dynamic 

characteristics of the signals to perform masking reduction. We proposed an autonomous 

masking minimization system based on an optimization framework, where the 

aforementioned masking models (Chapter 5) were employed to describe the objective 

function. Various implementations of the system were explored and evaluated objectively and 

subjectively through a listening experiment. The results implied that our novel MPEG-based 

masking metric is able to predict the multitrack masking better than the more advanced 

psychoacoustic models based on Glasberg and Moore (Glasberg & Moore, 2002; Moore et 

al., 1997). And the general frequency and dynamics processing algorithm proved to be more 

efficient and powerful in masking reduction than using equalization or dynamic range 

compression alone.  

 

Most of these research outcomes were represented in international peer-reviewed conference 

and journal articles, as listed in Section 1.6. 

 

7.2 Future Directions 
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The concept of intelligent mixing is not new, but it is still relatively unexplored. Therefore 

there are numerous directions the future research could take. A compendium of possible 

improvements to the intelligent methods for frequency and dynamics processing, and relevant 

future research directions, are presented here. 

 

As for our spectral characteristic studies of successful commercial recordings, additional 

analysis of the difference between the original version and re-mastered of the same recording 

is a fascinating direction to achieve a better understanding of the progression of modern 

mixing techniques, as well as the evaluation of music appreciation. Subjective evaluation of 

the intelligent equalization method should be conducted as future work in the form of a 

listening test to assess and validate whether the algorithm can improve the listening 

experience of the musical mixture by matching the spectral content of the audio signal to the 

common curve pattern of successful commercial recordings. 

 

The parameter automations of the intelligent multitrack dynamic range compression 

algorithm can be improved by more sophisticated use of audio features to describe the 

spectral and dynamic characteristics of signal. Audio features proposed in the fields of 

instrument identification (Eronen, 2001) and genre recognition (Tzanetakis & Cook, 2002) 

are worth exploring. In general, the more we know about the input signals, the more 

assumptions we can make based on the best practices in audio engineering and perceptual 

criteria. As a result, the system is able to generate intelligent mixing choices that are closer to 

how professional engineers operate.  

 

There are a few limitations to the proposed multitrack masking models. Metric I & II adapt 

the loudness and partial loudness models of Glasberg and Moore calculate a short-term 

spectrum to derive an excitation pattern via a bank of level-dependent overlapping filters. 

This approach might not accurately represent the way that excitation patterns are evoked in 

the human auditory system. In particular, the model does not take into account the fact that 

the auditory filters have a phase characteristic with significant curvature. Because of this 

curvature, harmonic complex sounds with identical power spectra can give rise to waveforms 

on the basilar membrane with very different peak factors (ratio of peak amplitude to RMS 

amplitude), depending on their phase spectra. This in turn may lead to differences in 

loudness. Furthermore, the proposed Masking Metric I & II only deploy a simple smoothing 

mechanism (which resembles the way that a control signal is generated in an automatic gain 

control circuit), using conditional filter coefficients based on whether the sound is in an 
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attack or release phase, to account for the temporal integration of loudness. This means that 

forward and backward masking may not be well quantified. Masking models based on the 

psychoacoustic model of MPEG audio coding (Metric III & IV) also have the similar 

limitation on capturing temporal masking. Therefore it would be beneficial to further 

investigate auditory masking models that are more applicable to musical signals, and account 

for temporal masking as well. Research on informational masking (Moore, 2012) offers 

another interesting research direction. However it lies closer to the area of music cognition. 

And such informational masking may be wanted in a mix, i.e., a saxophone, trumpet and 

trombone are intended to be heard as a ‘horn section’. 

 

Masking reduction was performed using frequency and dynamics processing. However, 

(Wakefield & Dewey, 2015) recently showed that stereo panning of sources is often a 

preferred masking reduction technique, when compared against frequency-based alternatives. 

Hence, more effective intelligent masking reduction might be achieved by incorporating 

spatial aspects into the masking metrics and incorporating panning into the multitrack 

processing tools. 

 

These improvements mentioned above can be applied to enhance the performance of our 

final work on the autonomous minimization of masking multitrack audio. Additionally, since 

the proposed system only considers local optimization technique, an interesting extension 

would be to explore other global optimization algorithms such as pattern/direct search or 

genetic algorithms. 

 

A semantic approach (Reiss & De Man, 2013) to autonomous mixing offers another 

interesting future research direction. High-level semantic knowledge can be used to inform 

the mixing decisions. Applying machine learning techniques to intelligent mixing is also 

promising, as shown in (Pardo et al., 2012; J. Scott et al., 2011; J. J. Scott & Kim, 2011). 

However, this approach is currently limited due to the rarity of available multitrack and 

mixing settings as training data. 

 

As a final conclusion, the author believes that research on intelligent mixing has the potential 

to result in fascinating applications that can change the way we record, produce, and 

reproduce music. 
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Appendix A 

8 Appendix: BBC Web-Based 
Compression 

8.1 Web-Based Personalized Compression 
 

Research presented in this section was performed during an internship at BBC. It has close 

ties with our research on the intelligent multitrack dynamic processing but approaches it from 

a different angle. The parameter automation described in previous Section 4.4, informs this 

work on a web-based personalized compression that adapts the dynamic range of the audio 

being played according to the environmental noise around the listener. This Section also 

indirectly addresses the problem of masking, since it is concerned with how to process the 

broadcast signal (maskee) in the presence of background noise (masker).  

 

8.1.1 Introduction 

 

Dynamic range compression (DRC) has been employed to solve the problem of loudness 

variability, which affects audibility, intelligibility, comfort and overall satisfaction with the 

programme material and its delivery in broadcast audio for decades (Skovenborg & Lund, 

2009). Digital audio broadcasting (DAB) and digital television (DTV) both attempt to solve 

the problem by including a dynamic range control mechanism at the receiver side (Hoeg, 

IRT, & Jünger, 1994).  However, particularly in DAB, not all receivers support the 

technique. There is no standard for calculating the compression control data, and the systems 

are under-used. 

 

An unconventional approach is to hand over the control the dynamic range of the sound to 

the listener. This approach gains increasing support amongst broadcasters since it the listener 

who knows what, when and where they are listening, and what is listening environment 

around them.  
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Personalized compression that adapts the dynamic range of the audio being played according 

to the environmental noise around the listener is a relatively new field. However, it has its 

roots in automatic DRC research. Previous research on automatic DRC has been discussed in 

Section 2.5.4. However, none of these automation approaches were “environment aware”. 

That is, automation of parameters was made solely based on the audio to be compressed, 

independent of listening level and independent of any additional sounds in the environment.  

 

This section describes personalised compression algorithm that adapts the dynamic range of 

the audio being played according to the environmental noise around the listener, and offers 

simple control of the process to the listener. Environmental noise is picked up by the 

microphone in or attached to the phone, tablet, laptop, or PC being used, and a graphical 

user interface provides information and control. The web audio API is used as the basis of a 

player implemented in a web browser. Internet delivery of content allows much easier 

experimentation, and potentially quicker and cheaper deployment of this type of adaptation. 

The web audio API allows deployment of new techniques for audio processing without 

requiring software installation, and with independence of the platform being used. 

 

8.1.2 Automatic Dynamic Range Compression 

 

The web audio API (HTML5) provides a dynamic range compression node with threshold, 

ratio, knee width, attack time, and release time controls (Smus, 2013). We only apply 

downward compression in this application.  

 

The parameter values of knee, attack and release time of the compressor were set to optimal 

values that have been defined by informal listening, as follows: 

 

• knee width = 15 dB - a soft knee allowing smooth transition at the threshold level 

• attack time = 8 ms - short attack time to catch the transients in the audio signal 

• release time = 80 ms - moderate release time to give a smooth compression recovery 

 

The threshold and ratio parameters are continuously adjusted to adapt to changing 

programmes and environments. 

 

Compressor Threshold Automation 
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A simple RMS calculation is performed on blocks of 4096 samples, at a sampling rate of 

48kHz, on a mono down-mix (L+R)/2 of the audio signal, as shown in Equation : 

 

   (0.0) 

 

where xl(t) and xr(t) are the left and right channel sample values at time t, respectively. 

 

Due to the short block-based processing in the algorithm, an efficient and reliable long-term 

averaging process is needed to produce smoothly varying data, removing rapid changes that 

would lead to artefacts being introduced. An EMA filter is used to smooth the xrms values, 

with a time-constant of approximately 0.8 s. 

 

Listening in an environment with a high level of environmental noise requires more 

compression to make the quieter parts of the audio audible whilst not making the louder 

parts too loud. When the environmental noise level is very low less compression is needed, 

and therefore listeners can enjoy a wider dynamic range.   

 

This implies that the compressor threshold should be lower than the RMS value when 

environment noise is high, and vice versa. Based on this, the threshold value is adapted by 

weighting the RMS of the audio signal with a value that is a function of the environment 

noise level. The threshold weighting factor, cT is an altered Gaussian function of the 

environment noise level, as shown in Equation . 
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Figure 8.1 Weighting function applied to compressor threshold. 

 

The ideal shape of the function was determined by informal listening and is shown in Figure 

8.1, where b has a value of 1 and c a value of 0.7. 

 

   (0.0) 

 

The threshold is weighted as shown in Equation . 

 

   (0.0) 

 

where xrms(dB) is the RMS value from Equation  converted to dBFS. 

 

The result of applying this weighting is that the threshold is slightly lower than the RMS 

when the environment noise is higher than 60 dB (SPL), and slightly larger when it is less 

than 60 dB (SPL).  When, for example, the RMS value of the audio signal is -25 dBFS, the 

threshold varies as a function of environment noise level as shown in Figure 8.2. 
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Figure 8.2 Compressor threshold as a function of environment noise level. 

 

In the real world, the environment noise typically ranges from 30 dB (SPL) to 90 dB (SPL), 

being representative of a quiet room and traffic on a busy road.  As shown in Figure 8.2, 

within that range, the threshold value is set close to the RMS.  The purpose of the Gaussian 

curve is so that the threshold varies slowly around the RMS value within the anticipated 

environmental noise level range. 

 

When compression is being applied with a time-varying threshold, intensive variation of the 
threshold in a short time causes audible artefacts, so another EMA smoothing, with =0.95, 

is used prior to the actual setting of the compressor threshold.  This is done every 3 ms, so 

the time constant is approximately 60ms. 

 

 

Compressor Ratio Automation 

 

The adaptation of the ratio is similar to that of the threshold, but based only on the 

environment noise level.  In general, higher environment noise level demands a higher ratio.  

No compression is applied when the noise level is less than 30 dB (SPL), and the 

compression increases monotonically, but nonlinearly, in a way that matches human 

perception of the compression effect.  Here, the ratio, R, is calculated as shown in Equation , 
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where c has been chosen through informal listening experiments to be 0.003265.  This gives 

the curve shown in Figure 8.3. 

 

 

Figure 8.3 Compressor ratio as a function of environmental noise level. 

 

As with the other parameters, an EMA filter, with =0.95 (a time-constant of 60ms), is 

used prior to setting the compressor ratio.  Although very large values of ratio would not 

normally be used, no limit is applied.  Above a ratio of 10:1, the effect is that of a limiter, 

and, furthermore, the physiological effects of dangerously high environmental noise levels 

might become a problem before one needs to worry about the audible effects of extremely 

large values of ratio. 

 

8.1.3 Automatic Volume Control 

 

In addition to the automatic dynamics control, an automatic volume adjustment is also 

applied to the audio signal.  The system measures the loudness of the audio signal and of the 

environmental noise and adjusts the gain applied to the audio signal to maintain a 6 LU 

(loudness unit) signal-to-noise ratio. The rationale is that when the noise level is high and 

applying dynamic range compression is no enough to compensate the noise, an overall gain 

adjustment is needed to further improve the listening experience. 

 

The loudness LK(E) of the environment noise, and LK(P’)  of the audio signal (after 

compression) are measured according to the Recommendation ITU-R BS.1770 (ITU, 2012a) 
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with a 3 second integration time, as for a “short term” measurement according to 

Recommendation ITU-R BS.1771-1 (ITU, 2012b).   

 

The algorithm makes the measurements every block of 4096 samples (at a sampling rate of 

48kHz).  The gain being applied is updated every 3ms to adapt to changes in measured 

values.  The changes in gain are smoothed using an EMA filter to avoid jumps in response, 

but not make the adaptation to slow: 

 

   (0.0) 

 

where  is the most recent loudness value of the LK(E) or LK(P’), and ,   

are the new smoothed value and the previous smoothed value, respectively. The value of the 
smoothing factor  is set to 0.998 and to 0.9 for gain increases and decreases, respectively, 

with corresponding time constants of 1.5 s and 20 ms. 

 

The maximum gain applied is limited to 10 dB, in order to minimise the risk of damaging 

the hearing of the listener when the environmental noise is very loud.  

 

The implementation relies on microphone calibration using a white noise source at 65 dBA. 

It is anticipated that this explicit requirement will be engineered out of the system, either by 

finding reasonable assumptions, or by learning from the listener's use of any controls 

provided. 

 

To adapt the automatic gain control further the listener may indicate that they are using a 

particular style of headphone, with a corresponding typical attenuation of environmental 

noise.  Measurements made on a small selection of headphones suggest that attenuation of 10 

dB might be expected for circum-aural closed-back headphones, about 8 dB for supra-aural 

closed-back ones, and less than 1 dB for open-backed ones.  Again, manual intervention by 

the listener might be engineered out, for example in future generation of devices, which 

potentially will automatically detect the type of headphone being used.  

 

 

8.1.4 Evaluation 
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Feedback from listeners in an informal listening test conducted in the lab using open-backed 

headphones, a set of test programme material, and environmental noise from the BBC sound 

effects library played back over loudspeakers, suggested that the system was working quite 

well already: listeners reported that the system was doing very much what they wanted, and 

that its operation was unobtrusive.  

 

The choice of operating parameters appeared to have been made well, and listeners 

sometimes did not realise just what the processing had been doing until it was turned off.  A 

few comments about excessive compression being apparent on one of the items could be 

addressed by simple adjustment of the "More/Less" slider 

 

8.1.5 Section Summary 

 

This section has described a demonstration system of personalised dynamic range control in a 

browser, responding to the environment around the listener. Demonstrations to listeners 

showed that the processing was unobtrusive and very effective at adapting to changes in 

environment noise. This research project indirectly addressed the problem of masking. It 

leads into the following two chapters, which address multitrack masking reduction
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