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Abstract

Macroscopic friction coefficients observed in experiments are the result of various types of com-

plex microscopic interactions between sliding surfaces, from atomistic length scales to macroscopic

ones. Thus, there are several ways to modify the friction coefficients depending on the physi-

cal phenomena involved, including lubrication, polishing and smoothing. Recently, it has been

demonstrated that peculiar surface structures at micrometric scales can be used to tune friction

properties, and effects due to artificial patterning have been investigated. In this paper, we show

how the global friction coefficients can be also manipulated by texturing the sliding surface in re-

gions with different types of roughness, i.e. by combining geometrical effects with the modification

of local friction coefficients. We show that a remarkable reduction of static friction can be achieved

by introducing a hierarchical arrangement of different local roughness values, or by introducing

controlled material stiffness variations, such as a linear grading of the Young’s modulus.
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I. INTRODUCTION

The constitutive laws of friction appear to be very simple at the macroscopic scale,

indeed they were already formulated by Leonardo da Vinci, and later introduced in the

context of classical mechanics with the so called Amonton’s-Coulomb law: the friction force

is proportional to the applied normal load and is independent of the apparent contact surface

and of the sliding velocity [1]. The proportionality constants are called friction coefficients,

which are different in the static and the kinetic sliding phase. Although some violations have

been observed [2], this is a good approximation of the macroscopic frictional force between

two solid sliding surfaces [3].

However, the origin of this behaviour turns out to be much more complicated, since the

friction coefficients are pure numbers, enclosing all the interactions occurring from atomic

length scales, involving “dry” or chemical adhesion forces, to macroscopic scales, involving

forces due to solid deformation and surface roughness. Indeed, friction coefficients are not

a specific feature of the single material, rather they are the result of a complex interplay

between the contact surfaces occurring at various length scales and involving different basic

physical mechanisms [4][5]. Thus, in order to modify the macroscopic emergent behaviour,

one can intervene on the single mechanisms involved. For example, it is possible to modify

the interactions at the microscopic level by means of lubrication between surfaces, so that

solid-solid molecular forces are switched to liquid-solid interactions and friction is reduced.

At the macroscopic level, friction can be reduced by means of smoothing or polishing pro-

cedures, in order to remove surface asperities hindering relative motion. Thus, problems

related to friction, which is a complex multiscale phenomenon, can be addressed with dif-

ferent methodologies, from a practical and theoretical point of view [6].

Another way to modify frictional properties is to manufacture sliding surfaces with artifi-

cial patterning, from micrometric to millimetric scales, e.g. grooves and pawls perpendicular

to the direction of motion. The effects of these structures have been studied both numeri-

cally [7] and experimentally [8], and recently their hierarchical arrangement has also been

investigated by means of numerical simulations [10]: the result is that by changing only

the architecture of the contact surface the global static friction coefficients can be tuned

without changing the chemical or physical properties of the material. This is because by

exploiting patterning we can influence mesoscopic features, i.e. the effective contact area
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and the stress concentrations in the static phase, providing a way to modify the macroscopic

friction coefficients.

In this paper, we show that this approach can be combined with the local variation of

friction coefficients, corresponding to a local change of material properties or of local surface

roughness, in order to reduce static friction. We consider only roughness modifications

occurring at the mesoscopic scale, allowing for a statistical description based on a one-

dimensional version of the spring-block model. This approach allows to address the problem

of friction in composite materials, which are widely used in practical applications [11]-[15]

but whose frictional behavior is still scarcely studied from a theoretical and numerical point

of view. Moreover, we consider local hierarchical arrangements of surface properties on

different characteristic length scales. This allows us to highlight the main mechanisms

taking place in the presence of different length scales, which could be exploited to design

artificial surfaces with specific tribologic properties.

Finally, we also consider a composite material with varying elastic properties along the

material, i.e. the elastic modulus is characterized by a linear grading. This can be found

in functionally-graded composite materials, i.e. inhomogeneous materials whose physical

properties are designed to vary (stepwise or continuously) through the material [16][17]

to manipulate the global properties such as elasticity, thermal conductivity, hardness etc.

These types of composite materials are widely used in practical applications, so that it is

useful to investigate their friction properties. Linear grading of elastic properties can be also

combined with the local change of surface roughness surface in order to exploit both effects.

II. SPRING-BLOCK MODEL

Figure 1. Schematic of the spring-block model with the notation used in the text.

In order to study the effect of varying local friction coefficients on a surface, we adopt the
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one-dimensional spring-block model [18][19], which is schematically represented in figure 1:

the material is discretized in N blocks of mass m along the direction of motion, connected

by means of springs of stiffness Kint and rest length lx. Each block is also attached by

means of shear springs of stiffness Ks to a slider which is moving at constant velocity v.

A normal pressure P is applied uniformly to the surface, so that the same normal force is

acting on all blocks. A viscous force with damping coefficient γ in the underdamped regime

is also added, in order to eliminate artificial block oscillations. Despite its simplicity, this

model has already been used in many studies to investigate the friction properties of elastic

materials [20]-[29].

The blocks, representing the microscopic asperities upon the surface of the materials, are

in contact with an infinitely rigid plane. Friction at the block scale is introduced through the

classical Amontons-Coulomb (AC) friction force: each block is characterized by microscopic

static and dynamic friction coefficients, respectively µsi, µdi, extracted from a Gaussian

statistical dispersion. In the following, we will drop the subscripts s or d of the friction

coefficients every time the considerations apply to both the coefficients. The probability

distribution is p(µi) = (
√

2πσ)−1 exp [−(µi − (µ)m)2/(2σ2)], where (µ)m is the average mi-

croscopic coefficient and σ is its standard deviation. This distribution is adopted for both

the coefficients but with different parameters. The global friction coefficients, obtained from

the sum of all the friction forces on the blocks, will be denoted with M , i.e. (µ)M .

Thus, the forces acting of each block are: the shear elastic force due to the slider uniform

motion, Fs = Ks(vt+ li−xi), where xi is the position of the block i and li is its starting rest

position; the internal elastic restoring force between blocks Fint = Kint(xi+1+xi−1−2xi); the

normal force Fn = P lxly and the viscous force Fd = −mγẋi; finally, the AC friction force

Ffr: if the block i is at rest, the friction force is equal and opposite to the resulting moving

force, up to the threshold Ffr = µsi Fn. When this limit is exceeded, a constant dynamic

friction force opposes the motion, i.e. Ffr = µdi Fn. Thus, the equation of the motion for

the block i along the sliding direction is mẍi = Fint + Fs −mγẋi + Ffr. The overall system

of equations can be solved numerically with a fourth-order Runge-Kutta algorithm. Since

the friction coefficients of the blocks are randomly extracted at each run, the final result of

any observable consists on an average of various repetitions of the simulation. Usually, we

assume an elementary integration time step of h = 10−4 ms and we repeat the simulation

about twenty times for statistical reliability.
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The values of the parameters can be assigned by relating them to the macroscopic prop-

erties of the material, such as the Young’s modulus E, the shear modulus G, the mass

density ρ, the transversal dimensions ly, lz and the total length Lx = Nlx. The stiffnesses

are Kint = E · (N − 1)lylz/Lx and Ks = G · lylx/lz, the mass is m = ρ lxlylz. We choose

the global shear modulus as G = 5 MPa, the Young’s modulus E = 15 MPa, the mass

density ρ = 1.2 g/cm3, which are typical values for a rubber-like material with Poisson ratio

ν = 0.5. The other parameters are fixed to ly = 1.0 mm, lz = 0.05 mm, lx = 0.05 mm,

N = 480, γ = 100 ms−1, v = 0.05 cm/s, P = 0.1 MPa. The microscopic friction coefficients

are specified for each considered case.

III. FRICTION ON UNIFORM SURFACES

The spring-block model described in section II requires that microscopic friction coeffi-

cients be assigned to each block, extracting them from a statistical distribution, while the

global friction coefficients are deduced by solving the equation of motion of the whole sys-

tem. In this section, we investigate how the global friction coefficients are affected by these

microscopic distributions of the friction coefficients, while other parameters are unchanged

from section II. This is useful to derive the behaviour of the model as a benchmark for the

next sections, where more complex statistical distributions are introduced for the blocks.

Moreover, here and in the next sections we will focus on the static friction coefficient, while

the dynamic one have already been studied in [10].

In general, the numerical simulation of static friction is similar to that of a fracture

mechanics problem [30]. The static friction coefficient distribution, corresponding to the

threshold forces for block motion, are analogous to the thresholds for breaking bonds in

fiber bundle or lattice spring models [31][32]. Hence, we expect the global friction coefficient

to decrease with a wider static statistical distribution, since the presence of weaker elements

can trigger avalanche ruptures leading to a macroscopic sliding event. This is confirmed by

numerical simulations in figure 2a: for narrow statistical distributions, the relative reduction

from (µs)m to (µs)M depends only on the ratio between microscopic static and dynamic

coefficients. For a larger variance this is correct only as first approximation. This behaviour

is taken as references for the cases considered in the following, when variations of the local

coefficient distributions are introduced along then surface to model a spatially varying surface
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roughness. Figure 2b shows that the local dynamic coefficient influences the global static

coefficient only for large variance value of the local static coefficients. This is because the

macroscopic detachment phase (i.e. when some blocks are already in motion while others are

still attached to the substrate) is longer with larger variances, so that the dynamic friction

forces due to the moving blocks influence the total friction.

Figure 2. a) Global static friction coefficients (µs)M as a function of the statistical dispersion of the local

ones σµs
(with a fixed ratio between microscopic static and dynamic values (µd)m and (µs)m, respectively).

At first order the results do not depend on the value itself of the local static coefficients. b) Global static

coefficients as a function the local dynamic coefficient (with a fixed local static one). For small variance

values, the global static coefficient becomes insensitive to the local dynamic coefficient value.
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IV. FRICTION ON VARIABLE-ROUGHNESS PATTERNED SURFACES

For the sake of simplicity, let us assume that our system can have two types of surface

roughnesses (figure 3): for simplicity we will call them “rough” and “smooth” regions,

although both have non negligible friction. In the rough regions of the surface the local

friction coefficients are extracted from a probability distribution with (µs)m1 = 1.0(1) and

(µd)m1 = 0.60(4), while in the smooth ones (µs)m2 = 0.50(5) and (µd)m2 = 0.30(2). The

global friction coefficients for a uniform surface with these coefficients are (µs)M1 = 0.788(2),

(µd)M1 = 0.616(4) for rough regions, and (µs)M2 = 0.398(2), (µd)M2 = 308(3) for smooth

ones. As expected from section III, their ratio is about one half.

Let us consider pattern of alternating rough and smooth regions with a characteristic

length lg, as depicted in figure 3. All other parameters of the system are fixed. In this

configuration half of the surface is rough, and half is smooth. The number of blocks in a

length lg is indicated as ng, so that lg = nglx. Thus, the number of blocks in a rough zone

nr or a smooth one ns are nr = ns = N/(2ng).

Figure 3. Example of a pattern alternating rough and smooth zones of length lg, with local friction

coefficients respectively (µ)m1, (µ)m2.

The structure considered in figure 3 is similar to a patterned surface with grooves, in which

the friction coefficient is assumed to be zero. In this case, it is known both from numerical

studies [7] and experimental results [8] that static friction decreases with the width of the
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grooves. In our previous work [10] we have also shown that this is due the increase of the

shear stress concentrations at the edge of the grooves. In the present situation, instead, the

whole surface is in contact with the rigid substrate, but the mean value of the static friction

coefficient varies periodically along the slider.

In this case, the resulting global coefficient is expected be included between the mean

values of the two areas: (µ)M2 < µM < (µ)M1. In particular one could trivially think that the

result for the global coefficient should be close to that obtained by setting as microscopic

average (µ)m3 = ((µ)m1 + (µ)m2)/2, i.e. the arithmetic mean between the microscopic

coefficients of the rough and smooth zones. Instead, as shown in figure 4, this is true only

for the dynamic coefficient, while the static one always displays a reduction with respect to

the average value. In particular, if we extract the microscopic coefficients of the blocks from

a single Gaussian distribution corresponding to the arithmetic mean, (µs)m3 = 0.75(7) and

(µd)m3 = 0.45(3), we obtain (µs)M3 = 0.592(3) and (µd)M3 = 0.462(1), while the coefficients

obtained with a pattern of rough and smooth zones are always smaller.

This effect is due to the different variance between a single Gaussian distribution for all

the surface and two separate Gaussian distributions: although the mean value is the same,

the global static coefficient is reduced when a wider statistical dispersion is present, as shown

in section III. If we extract all the local coefficients from a bimodal Gaussian distribution

(i.e. double peaked around (µ)m1 and (µ)m2), the result is (µs)MB = 0.501(2), i.e. twenty

percent less than that of a single Gaussian. This configuration corresponds to a random

arrangement of rough and smooth regions, as could be realized by a composite material,

whose two component materials have different statistically distributed frictional properties.

The resulting global friction properties are not only a matter of statistics, since there

is also an influence due to the geometry: as shown in figure 4, the size lg of the regions

influences the global static coefficient similarly to what is observed with a patterning of

grooves and pawls. The fundamental difference is that, in the present case, all blocks are

always in contact, and the normal load is equally distributed along the whole surface, but a

similar mechanism takes place: when the contact points of the surface in the smooth zones

(typically with smaller threshold forces) begin to slide, they lead to an increase in the force

exerted on the points still at rest in the rough zones, so that the static friction is reduced

with respect to (µs)M3 for any lg. Moreover, the resulting global static coefficient can be

either be tuned to be greater or smaller than (µs)MB, depending on the length lg.
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This example shows how the geometric disposition of the rough and smooth zones along

the surface allow to modify static friction. In the following, we show that by combining

this idea with a hierarchical structure, it is possible to obtain an even more consistent static

friction reduction.

Figure 4. Global friction coefficients as a function of the ratio between the widths of rough and smooth

zones ng = lg/lx. For comparison, we also show the global friction coefficients of a uniform surface, whose

microscopic coefficients are extracted from a single Gaussian distribution with mean value corresponding to

the arithmetic mean of the rough and smooth zones (the continuous lines, indicated with (µ)M3 in the text).

The dotted line indicates the static coefficient (µs)MB obtained with a bimodal Gaussian distribution.

V. FRICTION ON SURFACES WITH HIERARCHICALLY PATTERNED ROUGH-

NESS

In this section, we investigate the effects on global friction coefficients induced by hierar-

chical organization of the regions with different roughnesses, as shown for example in figure

5. This configuration is hierarchical in the sense that there are two different length scales

for the smooth regions (blue in the figure), that are included between the rough ones (red

in the figure). To compare the results with those of section IV, we choose a hierarchical

pattern in which half of the overall surface area is smooth and the other is rough, so that
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the mean value of the distributions of the microscopic coefficients is still (µ)m3.

We identify such configurations by indicating the length of the smooth zones and the

rough ones, respectively l
(i)
s and l

(i)
r , ordered with the index i increasing for the larger length

scale. For example, the configuration shown in figure 5 is characterized by the parameters

l
(1)
s , l

(2)
s and l

(1)
r , i.e. there are large smooth zones of size l

(2)
s , and then smaller rough

and smooth zones of sizes respectively l
(1)
r , l

(1)
r . We can express these quantities with the

adimensional ratios n
(i)
s ≡ l

(i)
s /lx and n

(i)
r ≡ l

(i)
s /lx, representing the number of blocks for

each region. Results for these configurations are shown in figure 6.

Figure 5. Example of a surface with a hierarchical arrangement of smooth zones alternating with rough

ones. The ratio between the sizes indicated in the figure are l
(2)
s /l

(1)
s = 33, l

(1)
r /l

(1)
s = 3, where the subscript

s denotes the smooth zones and r the rough ones. The pattern is designed in such way that an exactly half

of total surface is covered by rough zones and the other half by smooth zones.

A complementary configuration to that shown in figure 5 can be obtained by exchanging

the rough regions instead of smooth ones, i.e. the subscript s with r. In this case the

statistics of the detachment thresholds for the configuration is exactly the same, but the

geometry is different. In the case of a single level of patterning, as in section IV, there is

no effect by exchanging rough and smooth zones, while with a hierarchical arrangement the

results are not symmetric and differ by up to ten percent. Since the statistics is the same,

this effect is purely geometric. Thus, we have found a peculiar feature which can be obtained

by means of hierarchical structures. We will call “data set S” that obtained with two length
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scales for the smooth regions (exactly as in figure 5) and “data set R” the complementary

one, i.e. with two length scales for rough regions.

As we can see in figure 6, there are two different regimes leading to an increase or

a decrease of the static friction with respect to the case of a uniform surface with local

coefficients extracted from the bimodal Gaussian distribution: for data set S, static friction

is greater for larger separations between length scales, i.e. for a large asymmetry between

rough and smooth regions. Hence, configurations similar to data set R are preferable to

reduce static friction and to “flatten” the transition between the static and kinetic phase.

This is because of the interplay between microscopic degrees of freedom during the transition

from static to kinetic friction, as shown in figure 7, where the total friction force as a function

of time is compared for both the data sets.

Thus, it is possible to tune the static friction by means of a hierarchical organization of

zones with different roughness, and to obtain a friction coefficient close to the lower nominal

limit (µ)M2, but with only a half of the surface smoothed. From this we can conclude that

to reduce the static friction of a material it is sufficient to smooth only part of the surface

as long as it is in a “smart” way.
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Figure 6. Global static friction coefficients for hierarchical configurations such as the one shown in figure

5, as a function of the larger length scale, that is n
(2)
s for data set S and n

(2)
r for data set R. The smaller

length scales are reported in the legends. The dashed line indicates the case of a uniform surface with local

friction coefficients (µ)MB extracted from the bimodal Gaussian distribution.
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Figure 7. Comparison of the total normalized friction force, as a function of the time, between the data set

S (case n
(1)
s = 2, n

(1)
r = 1, n

(2)
s = 25 ), data set R (case n

(1)
r = 2, n

(1)
s = 1, n

(2)
r = 25 ) and the uniform case

with the same arithmetic mean of the local friction coefficient. The difference in the structure of the local

friction coefficients of the illustrated cases cause a different qualitative transition between static and kinetic

sliding phase. On the right axis the time evolution of the number of moving blocks is reported.

VI. FRICTION ON SURFACES WITH GRADED STIFFNESS

In this section, we investigate the modification of static friction due to the introduction of

a linear grading of the elastic modulus, as occurs in a functionally graded composite material.

We consider a linear increase (or decrease) of the elastic modulus along the longitudinal

direction of the material, i.e. the sliding direction. In the spring-block model, this means that

Kint and Ks depend on the block index i. In order to compare the results, the overall stiffness

value (Ks)tot ≡
∑

i(Ks)i is fixed, and similarly for Kint. Then, we introduce the relative

maximum variation at the edges, namely ∆, so that ∆ = 0.2 means, for example, that for

both the stiffnesses the maximum difference at the edge is twenty percent above/below their

average. In symbols, (Ks)i = Ks(1 + ∆(2i/(N − 1) − 1)) where Ks is the value without

grading, and the same holds for Kint.

In the spring-block model, variations of Kint turn out to be irrelevant, so that the effect
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could be studied by setting the grading only on the springs Ks. Results are shown in

figure 8. In presence of grading the static friction coefficient is considerably reduced. The

explanation for this is that in this case the local rupture/sliding thresholds are exceeded

sooner than in the case with no grading in the region where the stiffnesses are increased,

so that an avalanche of ruptures is triggered in the neighbouring contact points, until the

whole surface detaches. We observe no difference if the orientation of the grading is in the

same direction of the motion or not. The dynamic friction coefficient is left unchanged.

The exact amount of change of the static friction depends on the system parameters, but

we may expect this effect on every configuration, because the grading always induces on the

surface a type of stress distribution that favors avalanche phenomena. Indeed, a reduction of

the static friction is also observed in the case of patterning of the local surface roughness. In

these simulations only a linear grading has been considered, but similar effects are expected

with a generic functional shape. Thus, we have shown that a further reduction of the static

friction can be obtained with a grading on the elastic properties of the material, i.e. in a

composite material with a functionally-graded elastic modulus.

Figure 8. Decrease of the macroscopic static friction coefficient as a function of the grading level on the

elastic modulus for a uniform surface with microscopic coefficients (µ)m1 (red points), and for two cases of

periodic patterning of the local roughness, as in section IV, with ng = 2 (blue points) and ng = 8 (green

points).
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VII. CONCLUSIONS

In this paper we have investigated, by means of numerical simulations, the variation of

the friction coefficients of a material characterized by two distinct surface roughnesses and

local friction coefficients, as found in composite materials, or in materials whose surfaces

have different degrees of smoothing. For this purpose, we have adopted a one-dimensional

version of the spring-block model, which is particularly appropriate for parametric studies

on the frictional behaviour of a structured elastic material.

First, we have studied the effects due to statistical variations in surface roughness of a

composite surface surface: the presence of a double-peaked distribution of the local friction

coefficients implies that the variance is typically larger than for a single peak distribution,

so that static friction is reduced. This effect also occurs without any surface patterning.

Secondly, we have evaluated the influence of the geometry on these composite systems.

If the surface is divided in rough and smooth regions of the same size, the global static

friction coefficient is influenced by their length scale, similarly to the case of a surface with a

patterning of grooves and pawls. This effect is purely due to structure, since the statistics is

the same, and the patterning can be used either to reduce the static friction or to increase it

depending on the length scale of the different roughness zones. Thus, in order to considerably

reduce static friction, it is sufficient to smooth only a part surface, as long as this is done in

a “smart” way.

If, instead, we introduce different length scales for rough and smooth regions, i.e. we

adopt a hierarchical organization of the zones with different roughnesses, we obtain opposite

results depending on the ordering between rough and smooth zones. The surface is no longer

symmetric under the exchange of the smooth and rough zones, and this has an influence on

the global frictional behaviour. Thus, the geometric and multiscale arrangement is crucial to

determine measurable variations of static friction, even when the statistical properties of the

local coefficients are the same. This example suggests a possible mechanism for modifying

the static friction properties of a surface by combining different mesoscopic roughness and

geometric parameters. Additionally, it is possible to modify not only the numerical value

of the static coefficient, but also the qualitative behaviour of the transition from static to

kinetic friction.

Finally, we have considered a composite material with a graded elastic modulus by lin-
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early varying the stiffnesses in the spring-block model. Results show that this provides the

possibility of a further reduction of the static friction, both in the case of a smooth surface

and of patterning of the local roughness.

All of these results can be relevant for a large number of applications where maximization

or minimization of friction is crucial. One example could be the friction performance of

vehicle tires that are typically produced in reinforced rubber composites with various levels

of patterning or roughnesses. The large level of tunability of properties obtained exploiting

composite material composition, stiffness, roughness and patterning provide an attractive

way to reach desired properties, and the presented model a useful tool in the design of

optimal solutions.
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