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Deep Co-Space: Sample Mining Across Feature
Transformation for Semi-Supervised Learning

Ziliang Chen, Keze Wang, Xiao Wang, Pai Peng, Ebroul Izquierdo, and Liang Lin

Abstract—Aiming at improving performance of visual clas-
sification in a cost-effective manner, this paper proposes an
incremental semi-supervised learning paradigm called Deep Co-
Space (DCS). Unlike many conventional semi-supervised learning
methods usually performing within a fixed feature space, our
DCS gradually propagates information from labeled samples to
unlabeled ones along with deep feature learning. We regard
deep feature learning as a series of steps pursuing feature
transformation, i.e., projecting the samples from a previous space
into a new one, which tends to select the reliable unlabeled
samples with respect to this setting. Specifically, for each unla-
beled image instance, we measure its reliability by calculating
the category variations of feature transformation from two
different neighborhood variation perspectives, and merged them
into an unified sample mining criterion deriving from Hellinger
distance. Then, those samples keeping stable correlation to their
neighboring samples (i.e., having small category variation in
distribution) across the successive feature space transformation,
are automatically received labels and incorporated into the model
for incrementally training in terms of classification. Our extensive
experiments on standard image classification benchmarks (e.g.,
Caltech-256 [1] and SUN-397 [2]) demonstrate that the proposed
framework is capable of effectively mining from large-scale unla-
beled images, which boosts image classification performance and
achieves promising results compared to other semi-supervised
learning methods.

Index Terms—Cost-effective model, Visual Classification, Deep
Semi-supervised Learning, Incremental Processing, Visual Fea-
ture Learning.

I. INTRODUCTION

RECENTLY, tremendous advancements have been made
in the field of vision by convolutional neural networks

(CNNs), including classification [3], object detection [4], scene
and human parsing [5], [6] and image caption generation [7].
The successes on these vision applications have exhibited
impressive performances with ample well-annotated images
for training. Though label information plays such a crucial role
in those applications, the establishment of large scale dataset is
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too expensive to affordable under a practical scenario. Besides,
annotating by human labor also tends to bring in certain noisy
labels caused by the limitation of knowledge background from
the ordinary subjects.

As the growing demand of improving the usage of exist-
ing label information to reduce the annotation cost, semi-
supervised learning (SSL) obtains increasing attention. By
ingeniously bridging the connection among unlabeled data and
labeled information, SSL can performs well with a limited
number of labeled samples. Its semi-supervised manner of
learning and cost-effective property make it always in the
forefront of computer vision and machine learning research.
Currently, the progress of deep learning focuses on two
branches for SSL algorithms, i.e., feature-fixed and feature-
learnable SSL. The former usually refers to a variety of
conventional SSLs (e.g., Graph-based SSL [8]–[10]), which
consider samples in a handcrafted feature space during the
whole training process. Differently, the latter additionally
focuses on learning representation according to SSL configura-
tion. Through learning both feature representation and training
model parameter simultaneously, this branch usually pays
close attention to the exploration about nonlinear functional
approximation via semi-supervised metric learning [11] and
newly rising deep learning [12], [13].

In spite of achieving remarkable successes in visual recog-
nition, these two branches still face several limitations. In
specific, conventional feature-fixed SSLs heavily rely on the
feature engineering, which tends to strengthen some informa-
tion illustrated in statistics and discard other information in
visual aspect as a return. This leads to its failure under task-
orientated scenario, which requires accurate feature represen-
tation to be adaptive to different visual understanding tasks.
In respect to feature-learnable SSLs, though seeking overall
distribution in feature space [14] under an end-to-end network
training regime, it cannot be progressively optimized in such
an incremental way due to the ignorance of modeling the
local relationship among samples [15]. As discussed in [16],
[17], these aforementioned limitations are still arousing wide
concern in research.

Attempting to overcome these limitations from another point
of view, we introduce an innovative sample mining strategy,
which incrementally explores the related local structure for
each unlabeled sample within two different feature spaces.
More specifically, assuming that each couple of deep learning
models being fine-tuned before/after can be viewed as two
successive yet different feature spaces, we define the one-one
nonlinear correspondence for each sample from the previous
feature space to a new one as “feature transformation”. As
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Fig. 1. The pipeline of the proposed Deep Co-Space framework. At the beginning, we have limited labeled data and infinite unlabeled data for training.
The labeled data would be used to fine-tune a pre-trained CNN-based deep model and results in a new one. After that, all labeled and unlabeled data will
be extracted by the old and new models to construct two successive feature space (Co-Space) respectively. We measure the distribution variation of labeled
neighbors for each unlabeled sample in Co-Space, and assign those samples having stable structures with pseudo-labels. Then these selected samples are
employed to update the model for the next iteration.

feature space transforming, according to low density sepa-
rability assumption [18], samples in the same category tend
to cluster together, keeping locally compact and semantically
coherent, then those in different classes are inclined to diverge
to corresponding categories, which leading to its labeled
neighbors apparently to change. More precisely, with regard
to each unlabeled sample in the transformed feature space,
its labeled neighbors tend to form a locally stable distribution
for a certain category. This inspires us that some unlabeled
samples, remaining stable labeled neighbor distribution in the
two successive feature spaces, can be employed by assigning
them pseudo-labels to augment labeled dataset and improve
the performance.

As illustrated in Fig. 1, an innovative incremental sample
mining framework based on the intuition above, is proposed
for deep semi-supervised learning. Since the progressive sam-
ple mining seems like a sequence of steps pursuing feature
space transformation via gradually polishing a deep model,
we name our framework as Deep Co-Space (DCS), namely,
there are two CNN models with the same architecture at
each step in our framework. Note that, the second CNN has
been fine-tuned based on the first one via the updated labeled
data pool, then the training phase is performed as follows.
Firstly, we extract feature representation for all labeled and
unlabeled samples based on these two CNN models. Thus,
we have obtained two successive feature spaces (Co-Space);
Secondly, we launch our sample mining strategy to select those
unlabeled samples which has locally stable neighbor distribu-
tions in the Co-Space and automatically annotate them with
pseudo-labels. More specifically, for each unlabeled sample,
we measure its reliability by calculating the category variations
of its K nearest neighbors in Co-Space. In order to resist
semantic drift [19], the variation needed to be considered
from two points of views, i.e., neighborhood intrinsic variation
and neighborhood category variation. Neighborhood intrinsic

variation represents the intrinsic structure non-consistency of
unlabeled samples via feature transformation in the Co-Space,
while neighborhood category variation denotes the transform-
ing variation of covariances among local labeled samples
related to different categories. Then, we merge them into an
unified sample mining criterion, which is based on Hellinger
distance. Finally, given samples selected by this criterion, we
augment labeled data pool in the image database and further
fine-tune the CNNs. In this way, the updated CNN leads to a
new Co-Space for sample mining at the next iteration.

The main contributions of this paper are in three-fold: i) To
the best of our knowledge, DCS is the first incremental semi-
supervised learning framework attempting to progressively
propagate information from labeled samples to unlabeled ones
along with a sequence of steps, which aims at leveraging
feature transformation in a two successive feature space;
ii) We present sufficient discussions and clarifications about
how to incorporate the neighborhood intrinsic and category
variation into an unified sample mining criterion deriving
from Hellinger distance; iii) Extensive experiments on two
public visual classification benchmarks, i.e., Caltech-256 [1]
and SUN-397 [2], demonstrate the effectiveness of our DCS
in SSL not only on the vanilla Alexnet [3] and VGG [20], but
also on the recent DSSL network architecture [14].

The rest of the paper is organized as follows. Sect. II
presents a review of approaches related to DCS. Sect. III
overviews the a complete model about DCS, including defini-
tion, pipeline, and some theoretical discussion. The experimen-
tal results, comparisons and component analysis are presented
in Sect. IV. Finally, Sect. V concludes the paper.

II. RELATED WORK

In this section, we will give a brief review of some feature-
fixed SSL approaches related to our framework, and the SSL
methods related to neural network are exhibited in Sect. II-A.



IEEE TRANSACTIONS CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

Since our DCS shares some properties of multi-view learn-
ing, then the comparability and difference between them are
discussed in Sect. II-B.

A. Semi-supervised Learning

1) Feature-fixed SSL: The most aged SSL method starts
from self-training [21], which was invented to train a classifier
with small amount of labeled data to annotate unlabeled data,
then retrain the classifier with labeled and unlabeled data
iteratively. The method is straightforward both in intuition and
formulation, but always beset by semantic drift. It has been
extended into many variants [22] [23] to prevent this problem,
and most of them rely on knowledge from fixed feature space.

Probabilistic graphical model plays an important role in the
development of SSL. For instance, Ji et al. [24] merges the
supervised and unsupervised hidden Markov models into an
associated estimation problem as a set of fixed point equations;
Mao et al. [25] explores new latent topic in LDA (Latent
Dirichlet Allocation) with labeled hierarchical information. All
of them utilize all data to model the joint probability distri-
bution in generative process with discriminative information.
They are well-defined in theory, but suffer from high variance
in generative process when the assumption of prior distribution
is inappropriate. Besides, compared with deep learning, pure
graphical models rely on features with high-level semantics
in statistics, which makes those methods more preferable in
addressing problems about natural language processing.

Graph based semi-supervised learning draws attention of
many researchers both in transductive and inductive learning
settings, such as label propagation [18], manifold regular-
ization [26], Planetoid [27] e.t.c. The problem is usually
formulated as

min
f

λ f (X)T∆ f (X) + L( f (X), Y )

where ∆ =
[
Luu Lul

LT
ul

Lll

]
is a matrix about unlabeled and

labeled dataset, and is related to the finite weighted graph G =
(V, E,W). Specifically, G consists of a set of vertexes V based
on all data, and can be provided from external knowledge or
pre-definition. The edge set E and its specified weights W are
formulated with non-negative symmetric function. Note that ∆
is also determined before optimizing. When G is required for
calculation, we will interpret the W(i, j) as a local similarity
measure between the vertexes xi and xj . Then based on K
nearest neighbor graph (Knn), the element of weighted matrix
∆ is denoted as:

∆(i, j) = W(i, j)∑
xk ∈Knn(xi )W(i, k) (1)

s.t . W(i, j) =


h( ρ(xi,x j )2

µσ2 )∑
xk ∈Knn(xi )

h( ρ(xi,xk )2
µσ2 )

xj ∈ Knn(xi)

0 otherwise

where h is a function with exponential decay at infinity, which
is often exp(−x). ρ is a distance measurement between two

given samples. µ and δ are both hyper-parameters. Moreover,
δ can be calculated by mean distance to Knn of xi [28]. In
the case of transductive learning, f is always denoted as:[
fu
fl

]
, in which fl and fu are label probabilities for labeled

and unlabeled data respectively.
As the Sect. I exhibits, DCS aims at searching unlabeled

samples that have kept stable correlations with its neighbors
during feature space transformation by measuring intrinsic
variation and category variation. Transductive GSSL is an
ideal bridge to estimate the intrinsic structure among unlabeled
samples. In the implementation of our DCS, we employ label
propagation for transductive label inference (Please see more
details in Sect. III.

2) Feature-learnable SSL (DSSL): DSSL for visual classi-
fication is usually categorized into two classes: reconstruc-
tion model and generation model. The former focuses on
training deep model with reconstruction architecture in SSL
manner [14]. It has a mirror architecture with encoding and
decoding pathways like auto-encoder, and makes discrimina-
tion and unsupervised reconstruction for all data during the
training phase. On the contrary, generation model achieves
semi-supervised learning through creating data to classify. The
generation model based methods start from deep generative
network [29], and have received a great success with the
development of generative adversarial network (GAN) [30],
[31] and variational auto-encoder [32] . In fact, the idea of
generation model is close to semi-supervised graphical model
as we have mentioned above. In other words, both of them
make inference and generation with discrimination. However,
unlike pure graphical model, generation model shows more
promising in generating data in continuous space (image and
video).

Some researchers focus on combining neural networks
and conventional methods. Liang et al. [33] formulated an
incremental semi-supervised learning framework to train a
network-based object detector via transferring knowledge from
video. The incremental active learning technique by Lin [34],
achieving an cost-effective labor in manual labeling, has
recently received great attentions in the deep CNNs area for
visual recognition. Weston et al. [16] invented deep semi-
supervised embedding (DSSE) in the perspective of training
neural network with graph-based regularity. Incorporating the
graph relationship as a balancing loss into parameter updating,
DSSE receives positive results with different configurations
of network structure in many semi-supervised classification
tasks. The approach can be treated as a GSSL variant in deep
learning. Nevertheless, the relational graph describing locality
among data, must be pre-defined before training. This premise
is common in social network analysis [35]. However, in visual
classification problem, delivering total relation information
among all samples is actually a strong supervision and not
an usual case.

B. Mult-view Learning (MVL)

Multi-view learning is a family of learning algorithms deriv-
ing from Co-Training [22], and focuses on exploiting data with
multi-representation. For example, a cartoon character can
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be represented by different views of the character like color
histogram, skeleton and contour [11], and the views helps to
select reliable samples and label them in supplementary way.
The recent MVLs have extended to many kinds of application,
e.g., clustering [36], reconstruction [37] and representation
learning [38]. It is interesting that the design about Co-Space
is similar to two views learning, which both views come from
data feature extracted before and after the network fine-tuning.
Both of them make the decision about labeling according to
both views together. Nevertheless, the MVL usually results in
two classifiers, which are implemented in the SSL case. In
contrast, DCS proposes to perform sample mining via feature
transforming in the chain of Co-Spaces. Those Co-Spaces
come from a single neural network with different parameters,
which are fine-tuned from an image database incrementally.
Besides, in MVL setting, each view has to be independent
to other views [39], but both views in Co-Space apparently
correlate with each other in some way instead.

III. DEEP CO-SPACE

In this section, we discuss the formulation of our proposed
framework. In Sect. III-A, we introduce the pipeline of DCS,
then the concept about Co-Space and feature transformation
are defined. We leverage the feature transformation to for-
mulate the sample mining strategy in Sect. III-B, which is
most important part in DCS. Finally, further analysis about
the strategy is discussed in Sect. III-C.

A. DCS architecture and Co-Space

In the context of visual classification, suppose that we have
n samples taken from m classes for training. They are raw
image data and we denotes the image database as D = {xi}ni=1.
Then one-hot vector yi = {yk}mk=1 represents the label for xi
and the Y is category set. In the setting of semi-supervised
learning, only parts of images in D are labeled. For the
simplicity in further discussion, we denote DL as labeled
images and DU as unlabeled images respectively.

A CNN-based model fθ is introduced to attain visual clas-
sifier and deep feature learning jointly, which f is the network
architecture and θ means its parameter. The CNN model
has been pre-trained by some large scale visual recognition
database, which contributes some of visual semantics to the
initial f . As the description about DCS in Sect. I, feature for
each image is extracted iteratively and utilized to calculate
the category consistency in feature transformation. Then the
feature for image x, which extracted from the network f in
iteration t, is denoted as fθt (x). (The output of x in fθ is a
result of classification. Since we don’t use the classification
result to explore sample in DCS, the fθ (x) is treated as the
output feature map/vector for x which extracted from fθ in
our formulation.)

We use θ0 to present the pre-trained f parameter, and after
the fine-tuning with D, fθ0 leads to an updated model fθ1 in
the first iteration. In analogy, fθt is the updated model in the
t-th iteration, which have been fine-tuned from the model fθt−1

with renewed dataset augmented by sample mining result in

Fig. 2. We consider unlabeled instance xi and x j according to their
neihborhoods. Area in dotted lines denotes the intrinsic structure around
them. As we can see, instance xi changes a lot in intrinsic structure, and its
labeled neighbors also varies in transformation; and vice versa for instance
x j . Eventually, instance x j is selected and labeled.

previous iteration. Here we obtain the definition of Co-Space
as follows:

Definition 1. (Co-Space) Suppose fθ (D) is a feature set for
dataset D, which extracted from model fθ . The couple of
feature sets < fθt−1 (D), fθt (D)>, is defined as the Co-Space
of dataset D in the iteration t.

Notice that in the definition above, Co-Space is generally
interpreted as the construction in the t-th iteration. When t
equals 1, a Co-Space is obtained as the description above; as
DCS works, a set of unlabeled samples will be selected as
pseudo-labeled candidates and used to retrain the f from θ1
to θ2, which leads to the next Co-Space < fθ1 (D), fθ2 (D)>, and
then following this process of deduction. As we notice, dataset
D is non-specific, which means D also representing any subset
in the whole possible data space.

Using Co-Space, the feature transformation is defined as
below:

Definition 2. (Feature Transformation) Provided dataset D,
< fθt−1 (D), fθt (D)> is a corresponding Co-Space in the itera-
tion t. For all x belong to D, the projection FD

t : fθt−1 (x) →
fθt (x) denotes the feature space transformation in the iteration
t; and given specific sample x, the feature transformation
denotes as Ft (x) =< fθt−1 (x), fθt (x) >.

Obviously, Ft (x) is an one-to-one matching feature relation
in Co-Space, thus for each x, there is only one Ft (x) acting
as response. As for each unlabeled sample x, DCS launches
sample selection according to Ft (x), which promising given
an unlabeled sample x, there is single one decision in sample
mining.
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Algorithm 1 Label Propagation with Knn [18]
Require:

Labeled dataset DL and unlabeled dataset DU ; The label
set Y L corresponding to labeled dataset DL; δ; µ; max
iteration T .

Ensure:
Soft labels YU for unlabeled dataset.

1: Utilize Eq. (1) to initiate transition matrix P with DL , DU ,
δ and µ;

2: Initiate soft label set Y0 = [Y L
0 ;YU

0 ], which YU = 0;
3: for t = 1 to T do
4: [Y L

t ;YU
t ] = P ∗ [Yt−1;Yt−1];

5: Y L
t = Y L;

6: end for
7: YU = YU

T .

Both of the definitions compose the basis of our sample
mining strategy. As an overview in brief, Fig. 2 demonstrates
how to select reliable samples via feature transforming in Co-
Space. In specific, sample xi and xj are both unlabeled samples
we considering to select. In the definition, they have two
feature expressions in Co-Space, corresponding to their feature
transforming respectively. After the transformation, as for xi ,
the correlation between xi and its neighbors largely change (
intrinsic structure varies as the change of unlabeled neighbors;
labeled local sample covariance varies as the change of labeled
neighbors ). In contrast, the category of xj and its local
samples keeps relatively stable. According to this leaked
information, xj is more preferable as a reliable candidate.

Specifically in each iteration, we use initial training set or
training set augmented by pseudo-labeled sample, to update
the model and obtain a new Co-Space. The Co-Space brings
about feature transforming in dataset, which leading to the
sample selection decision for each unlabeled samples. Then
those selected samples are plugged into labeled data pool to
replay the progressively semi-supervised learning process.

B. Sample Selection via Transforming Features

In the previous discussion, the change about local samples
via feature transformation plays an important role to select
reliable unlabeled samples. We attribute the change into two
different variations. Firstly, as an off-the-shelf tool, label
propagation algorithm is provided in Co-Space to assign a
couple of soft labels for each sample. And the otherness
between them, named as neighborhood intrinsic variation,
is used to measure the change about intrinsic structure around
each unlabeled sample. Secondly, we take a consideration
in the labeled neighbors of unlabeled samples. The situation
about local samples belong to each class are estimated in
statistic, and its discrepancy in transformation is interpreted
as neighborhood category variation. Finally, we incorporate
both variations into an unified criterion to screen data.

1) Neighborhood Intrinsic Variation: In this subsection,
neighborhood intrinsic variation will be formulated as the dis-
cussion below. We introduce the label propagation algorithm
(LP), which is a key part of calculating the variation. As a

wrapper algorithm, Eq. (1) in Sect. II is utilized to construct
the transition matrix P. Then an original LP algorithm with
Knn graph is demonstrated as Algorithm 1.

Algorithm 2 Neighborhood Intrinsic Variation
Require:

Labeled Co-Space < fθb (DL), fθa (DL)> and unlabeled Co-
Space < fθb (DU ), fθa (DU )>, where θb and θa correspond-
ing to mode parameter before/after updating; The label set
Y L corresponding to Co-Space < fθb (DL), fθa (DL)>; δ; µ;
max iteration T .

Ensure:
Soft labels YU

θb
and YU

θa
for unlabeled dataset; low dimen-

sional feature sets fθb (D) and fθa (D) for D = DU ∪ DL .
1: Obtain fθb (D) = fθb (DL) ∪ fθb (DU );
2: Obtain fθa (D) = fθa (DL) ∪ fθa (DU );
3: Construct transition matrix Pθb (D) with fθb (D) by Eq. (1);

4: Construct transition matrix Pθa (D) with fθa (D) by Eq. (1);
5: Initiate soft label set Yθa (0) = Yθb (0) = [Y L;0];
6: for t = 1 to T do
7: Yθb (t) = Pθb (D) ∗ Yθb (t − 1),

Yθa (t) = Pθa (D) ∗ Yθa (t − 1);
8: Y L

θb
(t) = Y L

θa
(t) = Y L;

9: end for
10: YU

θb
= YU

θb
(T), YU

θa
= YU

θa
(T);

In the configuration we discuss, it needs some revision for
Algorithm 1 to adapt to DCS. Firstly, since LP is a kind of
fixed-feature transductive learning algorithm, D in Algorithm
1 has been default as an extracted feature set for data. As for
our framework, CNN extract features on the fly, and is also
updated in the progressively training process. It motivates us
to use fθ (D) instead of D. Secondly, the algorithm is launched
in Co-Space, which need two feature spaces to attain two label
propagation outputs for comparison. Using < f̃θb (D), f̃θa (D)>
as input, the adaptive LP in Co-Space is shown in Algorithm
2.

As the illustration in Algorithm 2, Co-Space leads to a
couple of transition matrices <Pθb (D), Pθa (D)> to predict soft
label sets YU

θb
and YU

θa
. Suppose normalized vector yθb (x) ∈ Rm

belongs to YU
θb

and normalized vector yθa (x) ∈ Rm belongs
to YU

θa
. The non-consistency between yθb (x) and yθa (x), is

performed as the neighborhood intrinsic variation in the trans-
formation of sample x, composing the sample mining criterion
about to mention. (in the iteration t, the θb , θa refer to θt−1,
θt ). Since soft label is assigned through the intrinsic structure,
which provided by an approximated manifold embedded in
feature space [18] according to Knn graph. It implies that
in neighborhood intrinsic variation, the change about local
samples closer to x are more concerned.

2) Neighborhood Category Variation: Different in perspec-
tive about intrinsic variation, neighborhood intrinsic variation
prefers to the change of category information. In specific,
neighborhood category variation aims to find out which class
with similarity changing most in statistic, through calculating
the change in density of its labeled neighbors via feature
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transforming. As for the sake of further discussion, we firstly
introduce local labeled sample covariance matrix.

Specifically, we have a sample x and f (x) is the correspond-
ing feature. N( f (x)) the neighborhood around x, then the local
sample covariance matrix for f (x) is interpreted as follows:

Σ f (x) =

∑
x′∈N ( f (x))

(x ′ − µ f (x))T (x ′ − µ f (x))

|N( f (x))| − 1
.

where |N( f (x))| denotes how many local samples in N( f (x)),

and µ f (x) =

∑
x′∈N ( f (x))

x′

|N ( f (x)) | is the mean for local samples in N(x).
Considering different class belong to different distribution, we
assume x is classified as y. Then f (x)’s labeled neighbors
belong to class y denote as Ny( f (x)) and the mean value
in the neighborhood about class y is rewrited to µ

y
f
(x) =

k f (x)+ ∑
x′∈Ny ( f (x))

x′

|Ny ( f (x)) |+k . The local labeled sample covariance matrix
of class y neighbors around f (x) is defined as:

Σ
y
f (x) =

k( f (x) − µyx )T ( f (x) − µ
y
x ) +

∑
x′∈Ny ( f (x))

(x′ − µyx )T (x′ − µ
y
x )

|Ny( f (x))| + k − 1
.

where f (x) is arranged as one part of its labeled neighbors,
and we treat it as class y when covariance matrix Σy

f (x) is
considered. k is a weight to balance the importance between
f (x) and its y labeled neighbors.

The covariance matrix Σy
f (x) captures the local geometry

density and statistic about labeled samples, which in the area
around x and belong to class y. After that, transformation
distance is leveraged to measure the similarity between labeled
neighbor in different classes. More specifically, for a sample
x given class y, there is a Gaussian local distribution py( f (x))
presenting as N( f (x); 0, Σy

f(x)
); then providing feature transfor-

mation Ft (x), transformation distance deriving from Hellinger
distance, is calculated as follows:

ρ(Ft (x), y; fθ ) ≡ H(py( fθt−1 (x)), py( fθt (x)))

=

√√√√√
1 −

2D/2 |Σy
fθt−1 (x)

|1/4 |Σy
fθ( t )(x)

|1/4

|Σy
fθt−1 (x)

+ Σ
y

fθt (x)
|1/2

(2)

where D is the dimensionality of the feature space, and the
|Σy

f (x) | means the determinant of matrix Σy
f (x).

In the formulation above, a major problem comes from the
computational complexity, which increasing in pace with the
size of class number m. But thanks to the locality, we are
just interested in an area around x and unnecessary to take all
classes into account. In specific for image x, we choose the
intersection of its labeled neighborhoods before/after trans-
formation. The major top-s categories in the intersection are
considered by Eq. (2), and the top-s category set for image x
denotes as:

Y(Ft (x), s) ⊂ Y

Heuristically in implementation, we only choose a few
classes (s less than 5, case by case) as the consideration in

labeled neighborhood, then for other categories, the related
Hellinger distances are set as infinity. We use h to denote
exponential decay function exp(−x) in DCS, then for a specific
class y , Eq. (2) is reformulated to κ as:

Algorithm 3 Neighborhood Category Variation
Require:

Unlabeled data DU , Co-Space < fθt−1 (D), fθt (D)>, s.
Ensure:

Transformation matrix set {Mfθ (Ft (x))|x ∈ DU }.
1: for i = 1 until |DU | do
2: Obtain Y(Ft (xi), s), where xi ∈ DU and Ft (xi) ∈

< fθt−1 (D), fθt (D)>
3: for k = 1 until s do
4: For yk ∈ Y(Ft (xi), s), obtain Σyk

fθt−1 (xi )
and Σyk

fθt−1 (xi )
5: Obtain ρ(Ft (xi), yk ; fθ ) via Eq. (2) from step 4
6: end for
7: Obtain {κ(Ft (xi), y; fθ )|y ∈ Y} via Eq. (3).
8: Obtain Mfθ (Ft (xi))
9: end for

κ(Ft (x), y; fθ )=


h(ρ(Ft (x), y; fθt ))∑

y′∈Y(Ft (x),s)
h(ρ(Ft (x), y′; fθ ))

y ∈Y(Ft (x), s)

0 otherwise
(3)

3) Sample Mining Criterion: In transformation about x,
the neighbors variation is estimated from two aforementioned
points of view. Further, we assemble both variations into one
criterion. We have a feature transformation matrix deriving
from Eq. (3) as:

Mfθ (Ft (x)) =

κ(Ft (x),1; fθ ) 0 · · · 0

0 κ(Ft (x),2; fθ ) ·· · 0
...

...
. . .

...
0 0 · · · κ(Ft (x),m; fθ )

 (4)

where each row (column) in the matrix refers to a specific
class in Y, and the workflow shows in Algorithm 3.

Appending the result in Algorithm 2, we obtain the confi-
dence function R(x; θt ) below, scoring the reliability for each
unlabeled image x:

R(x; θt ) = rb(x; θt )T ra(x; θt ) (5)

s.t . x ∈ DU
t

rb(x; θt ) =
√

Mfθ (Ft (x))yθt−1 (x)
|
√

Mfθ (Ft (x))yθt−1 (x)|
;

ra(x; θt ) =
√

Mfθ (Ft (x))yθt (x)
|
√

Mfθ (Ft (x))yθt (x)|
;

which implies the cosine similarity between vectors rb(x; θt )
and rb(x; θt ). Those samples with high score in Eq. (5) will
be chosen, and get annotation by the rule as:

L(x; θt ) = argmax
y
{v(x; θt )} (6)
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s.t . v(x; θt ) = rb(x; θt ) · ra(x; θt )

where · is the dot product for matrices (vectors) with same
dimensions, argmax{v} choose the biggest scalar value from
the entries of vector v .

Function R is used to measure the consistency in unlabeled
samples via feature transformation, in which each class in label
set is considered and contributes to the confidence score in
Eq. (5). If the value is more than a pre-defined threshold, the
unlabeled sample will be selected and labeled as a class with
largest contribution in Eq. (5).

There are M samples chosen for each iteration at most, and
threshold th promise confidence score always bigger than a
constant. The candidates with pseudo labels are used to enrich
the labeled data pool and the cycle repeats as the progressive
process in DCS.

C. Further Discussion about DCS

We discuss how the consistency is estimated through the
criterion. As a careful observation in Eq. (5), reliability
function R calculates the cosine distance between a couple
of class re-weighted label propagation results in Co-Space,
and the rebalanced weights for each classes, is provided by
feature transformation matrix Mfθ (Ft (x)). Our intuition comes
from the noninformative problem about LP [40]. Regardless of
feature transformation matrix, Eq. (5) degenerates to a simple
cosine similarity between the couple of soft label in Co-Space,
showing extremely unstable results in incrementally features
transforming setting in our experiment. This is explained by
the continuous augmentation of large scale training data, which
triggering the noninformative problem. Feature transformation
matrix helps the sample mining strategy focus on a few classes
mainly acting on a provided sample, and restrain the redundant
class information propagated through unstable relationship
structure, which constructed from unlabeled samples repre-
sented by immature features.

In another point of view, we explain the strategy as mea-
suring "micro-structure and "macro-structure around data. In
"micro-structure about data in semi-supervised learning, data
present as a manifold where their classes change smoothly
[41]. Intrinsic structure about data presenting by knn, captures
the local property around the considered data instance x. In
case of that, we use a couple of soft labels to contrast the
category change across intrinsic structures in different spaces.
Differently, "macro-structure assuming data belong to same
class should cluster together [42]. We use local labeled sample
covariance of each class to perceive the geometric property
change around x (density, shape and so on), and the class
with steady geometric property is more preferable.

In the implementation of DCS, fθ (D) as CNN-based fea-
tures, are inappropriate as a direct input to calculate transition
matrix Pθ (D). Due to in visual classification, fθ (D) often com-
ing from fully connected layer, the extracted feature is high-
dimensional. Referring to the analysis in [40], GSSL algorithm
applied in high-dimensional scenario inevitably runs into a
common problem, leading to the value of label function for
unlabeled sample constant almost everywhere in feature space.

Algorithm 4 Deep Co-Space (DCS) Sample Mining
Require:

Labeled image dataset DL and unlabeled image dataset
DU ; The label set Y L corresponding to dataset DL; CNN-
based model f with a pre-trained parameter θo, pre-setted
max iteration M.

Ensure:
well-trained CNN-based model fθ∗ ; pesudo-labeled image
set D∗.

1: initiate f by θo and obtain fθ0 ; DL
0 = DL and Y L

0 = Y L;
DU

0 = DU ; D0 = {DL
0 ,Y

L} ∪ DU
0 ; D∗ = ∅;

2: Obtain θ1 via fine-tuning fθ0 with D0;
3: for t = 1 until M do
4: Obtain Co-Space < fθt−1 (D), fθt (D)> through feature

extraction by fθt−1 and fθt ;
5: Utilize LargeVis [43] to < fθt−1 (D), fθt (D)> , Obtain

Co-Space < f̃θt−1 (D), f̃θt (D)>;
6: Runs Algorithm 2 to obtain soft label sets YU

θt−1
and YU

θt
for DU

t ;
7: Runs Algorithm 3 to obtain feature transformation

matrix set for DU
t ;

8: Use Eq. (5) to select the top M samples with highest
scores and annotate them in the principle of Eq. (6);

9: DL
t = DL

t−1 ∪ Ds , Y L
t = Yt−1 ∪ Ys , DU

t = DU
t−1/Ds ,

Dt = {DL
t ,Y

L
t } ∪ DU

t ;
10: Fine-tune CNN fθt−1 with Dt , obtain θt ; D∗ = Ds ∪D∗;
11: end for

An alternatives to compromise the problem is dimensionality
reduction. However, linear reduction methods [44] decompose
the local correlation among samples, and when we choose to
preserve the locality [45], the computational complexity will
be demanding. In the up-to-date related researches, LargeVis
[43] is an ideal option in balance. As an innovative approach
to make data visualization, LargeVis can also be treated as
a locality preserving technique for dimensionality reduction.
The computational complexity of LargeVis is O(lMn) (n is
the number of images we are about to cope with; M and l
are the dimensionality of the original space and target space
respectively.), keeping sample mining strategy computationally
feasible in the incremental processing setting.

Then we discuss the computational complexity about DCS.
Since DCS is an incremental learning framework to gradually
process large scale data, we only observe one iteration in the
cycle. The LargeVis achieves dimensionality reduction with
complexity of O(lMn), which linearly related to sample size
n. Using LP algorithm within Co-Space in the generic style,
the graph construction and propagation have a total time cost
as O(2n2). Afterwards, in order to attain feature transformation
matrix M , we runs Algorithm 3. It seems complicated but the
total computation cost is O(ns(N+k)), where N is the maximal
number of labeled neighbors for each unlabeled sample and
k is the balancing weight in the calculation of Σy

f (x). As
the discussion regardless of considering feature extraction
and the fine-tuning model, the bottleneck in complexity is
the graph construction for LP. Actually, there exists a more
scalable alternative to build relational graph [46] in linear n
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Fig. 3. Samples of images about Caltech-256. We selected 22,746/6,612 of
RGBs for training and testing respectively.

Fig. 4. Samples of images about SUN-397. We chose a subset of them in
the experiment setting.

time complexity. Moreover, inversely to the progressively data
processing setting, we also sift out unlabeled samples selected
previously, which improving the speed to account relationship
between features in our DSSL experiment.

The work flow of DCS thoroughly shows in Algorithm 4

IV. EXPERIMENTS

We evaluate our DCS in two different semi-supervised
learning settings to validate its effectiveness in Sect. IV-A.
Moreover, we further analyze the components of our DCS to
clarify their contributions in Sect. IV-B.

A. Empirical Study

Experimental Setting Thanks to be independent of any
specific network architecture, our DCS can be easily grafted to
many different deep convolution-based models, and improve
their performances in visual classification aided by large scale
unlabeled images. To justify this, we conduct two experiments
to evaluate DCS with two sorts of deep semi-supervised learn-
ing strategy. The first one is deep semi-supervised learning
model (DSSL), in which the convolutional network archi-
tecture is invented to receive labeled images and unlabeled
images in parallel. while the second one is standard supervised
neural network model (SSNN), namely, the network must be
trained with full supervision. Accordingly, we utilize labeled
information to initiate SSNN models, then fine-tune them with
an augmented labeled image set in a progressive style. Then
in each iteration of DCS, the labeled image pool will be
enriched by reliable pseudo-labeled samples, leading to an
updated CNN for next iteration. We set the upper limit of
labeled data augmentation as 1000 and the initial base learning
rate as 0.001, then, all CNNs are updated via stochastic
gradient decent algorithm with the momentum 0.9 and weight
decay 0.0005. After the dimensionality reduction by LargeVis,
the dimension in Co-Space is reduced to 15 before label
propagation.

Fig. 5. Samples of web images that collected by the search engine. They are
full of noise and we treat them as unlabeled images to expand the Caltech-256.

Since Co-Spaces are sequentially constructed in DCS, it
requires the scalability about the LP algorithm in DCS. In our
empirical experiment, δ is set 0.9 and the algorithm runs 50
times for each iteration. Besides, in k nearest labeled neighbors
setting in Eq. (2), the closest 300 local labeled samples are
considered and top 5 classes with most samples number will
be selected to compute class-specific Eq. (6).

1) The Experiment of DSSL: The experiment is conducted
on public object recognition benchmark Caltech-256 [1],
which includes 30,607 images in total (Please see Fig. 3
for more details). We randomly select 80% images of each
class as training data and the rest 20% images are treated as
testing data, then there is 29,358 RGB images, which contain
22,746/6,612 for training and testing respectively.

Since the training data is insufficient in DSSL experiment,
we construct an unlabeled dataset to address this issue. Specif-
ically, we utilized python-tools web-crawler to collect images
based on the keywords as all categories in Caltech-256, and
images of which size less than 50*70 or larger than 500*700
are screened out (Please see Fig. 5 for more details). We select
100 candidates as unlabeled images for each class in the rest,
and there are 25,600 images in total to expand the original
Caltech-256. As for semi-supervised training, 40% samples in
original Caltech-256 are selected as an initial labeled images
pool, and the rest and web-crawled images are treated as
unlabeled data in the progressive learning framework.

Implementation Details: we leverage stacked what-where
auto-encoder (SWWAE) [14] as the architecture in implemen-
tation. Considering the mirror architecture in SWWAE, we
take 16-layer VGG network as the encoding pathway. As for
the decoder, we initiate decoding layers with Gaussian random
noise, then make deep unsupervised learning to pre-train whole
the architecture with ImageNet ILSVRC 2012 dataset (the
encoder is fixed). In the pre-training and fine-tuning phase of
DCS, spatial batch normalization [49] layers are leveraged to
enhance the network performance for faster convergence. The
balance weights in all reconstruction losses are coincident to
0.2, and the weight of discriminator loss is set 1.

Comparison and Analysis: We compare our SWWAE-based
DCS with the original SWWAE. Besides, VGG sharing the
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TABLE I
COMPARISON OF OUR RESULTS WITH SEVERAL COMPARISON METHODS ON CALTECH-256-VGG (DCS AND SWWAE HAVE BEEN AUGMENTED WITH

WEB IMAGES)

Methods VGG (100%labeled) VGG-SWWAE VGG-SWWAE-DCS
Percentage of labeled data 100% 18.8% 18.8%
Error rates 23.47% 29.42% 26,73%

TABLE II
COMPARISON OF OUR RESULTS WITH SEVERAL COMPARISON METHODS ON SUN-397-80-VGG

SUN-397(40% labeled) SUN-397(45% labeled) SUN-397(50% labeled)
labeled-data-CNN 60.65% 67.89% 73.07%
ASL [47] 59.95% 66.62% 68.47%
YA [48] 47.77% 57.80% 64.80%
DSSE [16] 51.24% 57.48% 67.97%
DCS 61.78% 69.66% 74.56%

TABLE III
COMPARISON OF OUR RESULTS WITH SEVERAL COMPARISON METHODS ON CALTECH-256-ALEXNET (NO AUGMENTATION WITH WEB IMAGES)

Caltech-256(40% labeled) Caltech-256(45% labeled) Caltech-256(50% labeled)
labeled-data-CNN 60.05% 63.87% 68.98%
ASL [47] 60.96% 62.22% 65.59%
YA [48] 57.98% 64.80% 69.10%
DSSE [16] 52.22% 63.48% 69.24%
DCS 59.12% 64.18% 69.86%

configuration with the encoding pathway in SWWAE, has also
been adopted for comparison. This VGG is trained with 100%
labeled samples in Caltech-256 without web images augmen-
tation. Such experimental setting raise a question, whether
we can improve the performance of deep semi-supervised
learning model by adding unlabeled image samples. Table I
includes the ratio of labeled/unlabeled images for training the
corresponding models, and illustrates the comparison results
based on error rates.

As one can see from Table I, DCS outperforms SWWAE,
and even is close to the fully-supervised learning perfor-
mance. This demonstrates that the performance of deep semi-
supervised neural network can be enhanced by our DCS with
unlabeled data. In further discussion, we note that unlabeled
images from the Internet are often full with intra-class vari-
ation of the visual appearance, which tends to bring mild
negative effects to the original SWWAE, which employs auto-
encoder to reconstruct all unlabeled images to learn a latent ex-
pression. Besides, benefiting from the proposed sample mining
criterion for reconstruction, SWWAE-based DCS shows the
resistance of intra-class variation, and also reassuringly brings
about more category information to obtain a clear performance
gain.

2) The Experiment of SSNN: Under this experiment set-
ting, we evaluate our DCS on two public visual classification
databases: SUN-397 [2] and the original Caltech-256 [1]
(no web image augmentation). SUN-397 is a large scale of
images for scene categorization, whose image number across
categories varies from 100 to over 2000. SUN-397 contains
397 classes and 108,754 images in total (Please see Fig. 4 for
more details). Note that we only use its subset, which includes
80 classes for training and testing. All the datasets are split as

training set and test set with a ratio 4:1 in all the following
experiments. We account for 40%, 45% and 50% in the
proportion of database as initial training samples respectively.
To avoid only few samples for the certain category, we ensure
the number of samples in any class more than 20.

Implementation Details: As for the network architecture,
Vanilla Alexnet is implemented in the experiment about
Caltech-256 without web images expansion, while VGG is
applied in the subset of SUN-397. The corresponding param-
eters obtained on ImageNet ILSVRC 2012 dataset are used to
initiate these two networks.

Comparison and Analysis: We compare our DCS with other
incrementally SSL training frameworks: i) Yarowsky algo-
rithm (YA) [48]. On the purpose of a significant comparison
with this methods, we utilize deep learning architecture in
YA same as DCS; ii) Deep learning via semi-supervised em-
bedding (DSSE) [16]. DSSE tends to build the deep network
with the relationship between samples. It is regrettable that no
existing relation information is provided except for partially
labeled data. Therefore, we make the modification of the DSSE
and adapt the algorithm to the incremental learning experiment
setting. Specifically, each couple of images with same label is
viewed as a close relationship; then some unlabeled samples
with high confidence (small entropy loss) at each iteration are
assigned a corresponding label. The modification promises all
unlabeled samples without relationship given are taken into
consideration for training. Similarly, we use the convnet with
the same configuration as DCS. 3). Adaptive semi-supervised
learning (ASL) [47]. ASL is not a deep learning algorithm,
yet still keeps well-performed in some visual recognition
benchmarks. We take it as a conventional feature-fixed method
for comparison, and let an aforementioned CNN models to
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Fig. 6. The diagram above demonstrates the result of component analysis
about the results with/without transformation matrix. Axis x and y denote how
many times of the iteration and the corresponding label prediction accuracy
of the selected unlabeled images. Red/Blue line comes from DCS/Eq. (7) in
the DSSL experiment

extract features as input. Finally, labeled samples have been
used to train a baseline model, which named "labeled-data-
CNN" in the tables.

In the experiment of SUN-397 dataset, the results are shown
in Table II. As we can see, when initial labeled images for each
class is sufficient, DCS out-performs all the compared meth-
ods. This justifies the effectiveness of the our DCS. However,
according to the results from Table III for the experiment with
Caltech256, DCS obtains an unstable improvement (around
0.5% to 1.4%) in the comparison with the other methods. We
explain the result in two reasons. Firstly, Caltech-256 shares
some categories with ImageNet ILSVRC 2012 which have
been used to pre-trained the deep model in the supervised
learning style. It makes the performance of those classes stuck
in bottleneck and constrain the whole dataset performance.
Secondly, according to Eq. (2), each unlabeled sample has a
feature transformation matrix based on its labeled neighbors.
Small proportion of each class leads to less labeled neighbors
for each unlabeled sample, and increases the variance in the
calculation of transformation matrix. The setting with 50%
labeled data expand the labeled neighbors, which relieve the
problem and helps the model achieve a performance better
than the other algorithms.

B. Component Analysis

The feature transformation matrix is a core in our DCS
framework. For further demonstration of its contribution, we
revise Eq. (5) and Eq. (6), and design a relevant component
analysis with a new sample selection criterion as below:

R(x; θt ) =
yθt−1 (x)Tyθt (x)
|(yθt−1 (x))T | |yθt (x)|

(7)

s.t. x ∈ DU
t

L(x; θt ) = argmax
y
{v(x; θt )} (8)

s.t . v(x; θt ) = yθt−1 (x) · yθt (x)

Specifically, the feature transformation matrix Mfθ (Ft (x))
is replaced by identity matrix, meaning the new criterion
with Eq. (7) and Eq. (8) chooses unlabeled samples only
considering the consistency of soft labels in transformation.

The result has been demonstrated in Fig. 6. There seems no
distinction between the two criteria at the first iteration. Both
strategies achieve high accuracy in label prediction of selected
samples, and the transformation matrix merely enhances the
accuracy about 1%. But in the second iteration, the prediction
accuracy in accordance with Eq. (7) rapidly decreases to 68%;
and drastically falls down to 19% at the fourth iteration. In
comparison, the DCS regularized by Eq. (5) remains accuracy
above 80% till the fifth iteration. The phenomenon illustrates
transformation matrix Mfθ (Ft (x)) helps to maintain the selec-
tion quality and defer the semantic drift problem.

V. CONCLUSION

This paper proposes a novel semi-supervised learning
framework named Deep Co-Space (DCS) to improve deep
visual classification performance via an incrementally cost-
effective manner. Considering deep feature learning as a se-
quence of steps pursuing feature transformation, DCS proposes
to measure the reliability of each unlabeled image instance
by calculating the category variations of the instance and its
nearest neighbors from two different neighborhood variation
perspectives, and merged them into an unified sample mining
criterion deriving from Hellinger distance. Extensive exper-
iments on standard image classification benchmarks demon-
strate the effectiveness of the proposed DCS. In the future,
we will pay more attention to extend our DCS to other vision
tasks (e.g.,object detection and segmentation)
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