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Abstract 

 

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in 

the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin’s physiological role is 

largely unknown, its sequence domains suggest a molecular chaperone or protein quality control 

function. Consequences of its loss include neurofilament network abnormalities, specifically 

accumulation and bundling of perikaryal and dendritic neurofilaments. 

 

To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of 

vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was 

reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-

like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were 

displaced to the periphery of vimentin accumulations. 

 

Reorganisation of the vimentin network occurs in vitro under stress conditions, including when 

misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the 

autophagy-lysosome pathway proteins Lamp2 and p62 relocalised to the area of the vimentin 

accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin 

proteasome system was not impaired. There was evidence for alterations in the autophagy-

lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while 

levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was 

increased in ARSACS HDFs under starvation conditions. 

 

These data show that loss of sacsin effects the organisation of intermediate filaments in multiple 

cell types, which impacts the cellular distribution of other organelles and influences autophagic 

activity. 
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Introduction 

 

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative 

disease associated with progressive loss of Purkinje neurons [1, 2]. It is a childhood onset 

condition that is characterised by cerebellar ataxia, pyramidal spasticity and peripheral neuropathy. 

At the genetic level, ARSACS is caused by mutations in the SACS gene [3]. This encodes the 

extremely large (4579 amino acid) modular protein sacsin, which from its N- to C-terminus is 

composed of a ubiquitin-like domain that binds to the proteasome [4], three large sacsin repeat 

regions (SRR) that may have an Hsp90-like function [5, 6], a J-domain that binds HSP70 [4, 5] and 

a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that can dimerise [7]. 

Based on the presence of these conserved domains, some of which are present in molecular 

chaperones and components of the ubiquitin proteasome system, it is a possibility that sacsin may 

function in proteostasis. 

 

It is unclear if a molecular chaperone role for sacsin would be consistent with findings from cellular 

and mouse models of ARSACS, where cytoskeletal and mitochondrial abnormalities have been 

identified. Specifically, in the Sacs-/- mouse we have shown that loss of sacsin results in abnormal 

neurofilament accumulations in the somatodendritic regions of several neuronal populations as 

early as 14 days after birth [8]. Furthermore, in cultured hippocampal neurons where sacsin was 

targeted with shRNA, and in spinal motor neurons and dorsal root ganglion neurons cultured from 

Sacs-/- mice, a similar redistribution of neurofilament was observed. These abnormal neurofilament 

accumulations were demonstrated to contain the hypo-phosphorylated form of neurofilament 

heavy chain protein (NFH) [8]. In addition to intermediate filament defects, loss of sacsin altered 

mitochondrial morphology, dynamics and distribution. Mitochondrial length is increased [2, 8, 9], 

consistent with reduced mitochondrial recruitment of the fission factor dynamin related protein 1 

(Drp1) contributing to this phenotype [9]. In agreement with others, we have also demonstrated 

that the morphological alterations in mitochondrial networks are accompanied by impaired 

oxidative phosphorylation and increased oxidative stress [2, 9, 10]. Mitochondrial motility was 

impaired in motor neurons cultured from Sacs-/-  mice [8]. Together these data indicate that loss of 

sacsin causes problems with both the intermediate filament cytoskeleton and mitochondria 

function, phenotypic aspects that are not mutually exclusive given the importance of the 

cytoskeleton in regulating mitochondrial dynamics [11, 12]. 

 

As we had observed impaired mitochondrial function in human dermal fibroblasts (HDFs) from 

ARSACS patients [2, 9, 10], we hypothesised that these cells may also exhibit cytoskeletal 

changes. Thus, we investigated the organisation of the vimentin intermediate filament network in 

human dermal fibroblasts (HDF) derived from skin biopsies of ARSACS patients (vimentin being 

the major intermediate filament protein in fibroblasts). In a proportion of ARSACS cells, 
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intermediate filaments were bundled and collapsed as a cage-like structure around the microtubule 

organising centre (MTOC) rather than radiating from the nucleus towards the plasma membrane, 

as in control cells. These vimentin structures were reminiscent of the ‘cage’ of the vimentin 

intermediate filaments that surround aggresomes. Aggresomes form when misfolded protein 

aggregates are trafficked in a retrograde manner to the MTOC, where they accumulate prior to 

clearance by the autophagy-lysosome machinery [13, 14]. Thus, we investigated the distribution 

and function of the proteostasis machinery in ARSACS fibroblasts, observing components of the 

cellular proteostasis machinery relocalised within the accumulations of vimentin. Moreover, 

aspects of the phenotype were recapitulated in primary neurons from the Sacs-/- mouse. In 

combination, our data show that loss of sacsin impacts on intermediate filament organisation 

leading to changes in the cellular distribution of proteostasis system components and altered 

autophagy. 
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Results 

 

The vimentin intermediate filament cytoskeleton is disrupted in ARSACS patient fibroblasts 

We primarily report on ARSACS HDF lines from four patients that are compound heterozygous 

(p.Q4054* & c.2094-2A>C; p.R2002fs & p.Q4054*; p.F2780C & p.S3892*; p.K1715* & p.R4331Q) 

and one patient that is homozygous (p.2801delQ) (Figure S1A). Cell lines from two further 

compound heterozygous patients, sharing two variants in cis on one allele (p.R3636Q:p.P3652T) 

and a different frameshift on the other allele (p.L3745Rfs or p.C72Cfs) [15], plus two patients 

homozygous for the 8844delT mutation, the major founder mutation in Québec, were also 

investigated (Figures S1C, D). Using an antibody directed to the C-terminus of sacsin, immunoblot 

showed that levels of the protein were similar in control HDFs and the HDF line with the 

p.2801delQ mutation. Some sacsin was also detected in HDFs from the ARSACS patient with the 

p.R3636Q:p.P3652T:p.C72Cfs mutations (Figure S1). Sacsin was not conclusively detected in cell 

lines from patients with the other mutations investigated. 

 

Confocal imaging revealed that a large proportion of cells in all of the ARSACS patients HDF lines 

investigated had a grossly abnormal vimentin cytoskeleton. In contrast to wild-type control cells, 

where vimentin was distributed throughout the cytoplasm, vimentin filaments were bundled in 

perinuclear accumulations in patient cells (Figure 1A, B and S2). This phenotype was highly 

penetrant with 79.6±1.9% of ARSACS HDFs (Figure 1B and S2A) having a disorganised vimentin 

network, relative to just 8.5±1.2% of control cells. Vimentin filaments were also disrupted in the 

ARSACS lines that still have detectable sacsin protein, with sacsin being localised to the area of 

filament accumulation, rather than being distributed throughout the cytoplasm in wild-type control 

cells (Figure 1C). 

 

Transmission electron microscopy (TEM) revealed that in ARSACS HDFs cytoplasmic organelles 

were localised peripherally to a perinuclear region of uniform electron density (Figure 1D). Higher 

magnification imaging indicated this region contained significant amounts of approximately 10 nm 

filamentous material, consistent with the size of intermediate filaments. The region of filamentous 

material accumulation frequently contained vesicular structures and vacuoles. 

 

Sacsin knockdown disrupts vimentin intermediate filament organisation in wild-type cells  

To further confirm that loss of functional sacsin results in altered vimentin organisation, siRNA-

mediated knockdown was used to deplete sacsin in wild-type HDFs, using previously validated 

siRNAs [4, 9] A significant increase (p<0.01) in the percentage of sacsin knockdown HDFs that 

exhibited a perinuclear accumulation of vimentin was observed relative to controls, with vimentin 

bundles visible in some cells (Figure 2A). We also made a HEK293 sacsin knockout line using 

CRISPR/Cas9 genome editing. These cells did not express detectable levels of sacsin and also 
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exhibited perinuclear collapse of the vimentin network (Figure 2B, C). In these cells, we were able 

to rescue the vimentin phenotype by transfection of a plasmid for expression of full-length sacsin-

GFP (Figure 2B, C). 

 

Vimentin accumulates around the MTOC and disrupts the distribution of organelles in 

ARSACS patient cells 

As cytoskeletal elements are interlinked we used confocal analyses to investigate if the actin 

filament and microtubule networks were disrupted in ARSACS HDFs. We observed no gross 

abnormalities in actin microfilament (not shown) or microtubule organisation. However, labelling 

with anti-tubulin did reveal that the abnormal accumulations of vimentin formed in close proximity 

to the MTOC (Figure 3A and S3A). 

 

Collapse of the vimentin network would be expected to have consequences for the distribution of 

organelles, as the cytoskeleton organises the intracellular space. Indeed, confocal imaging showed 

displacement of mitochondria to areas peripheral to the abnormal accumulations of vimentin in 

ARSACS patient cells (Figure 1A). Disruption of the intermediate filament cytoskeleton has also 

been reported to interfere with Golgi organisation [16, 17]. Confocal imaging of HDFs 

immunolabeled with the Golgi protein, GS28, revealed a fragmented Golgi stack, with cisternae 

displaced around an area of cytoplasm where mitochondria where also absent (Figure 3B and 

S3B). With available antibodies, it was not possible to double-label cells with antibodies to vimentin 

and GS28, but it is likely that fragmented Golgi was displaced around areas of vimentin 

accumulation. Distribution of the endosome marker, EEA1, was also altered in ARSACS HDFs. 

Relative to wild-type controls, endosomes were less evenly distributed throughout the cell (Figure 

S3C), distributing with displaced mitochondria. 

 

Components of the cellular proteostasis machinery relocalise to the region of abnormal 

vimentin accumulation in ARSACS patient cells 

The combination of perinuclear accumulation of vimentin around the MTOC, disrupted 

mitochondrial network organisation and Golgi fragmentation have been linked to aggresome 

formation in cultured cells. Aggresomes are juxtanuclear accumulations of misfolded proteins that 

form through a regulated process when cellular protein-degradation systems become 

overwhelmed, a common phenomenon in neurodegenerative disorders [18-20]. To look for 

evidence of disrupted proteostasis in ARSACS HDFs, cells were immunolabeled with an antibody 

that detects both constitutive (HSPA8) and inducible (HSPA1) isoforms of the molecular chaperone 

HSP70, which interacts with misfolded proteins and can localise to aggresomes [21, 22]. In control 

HDFs, HSP70 labelling was distributed throughout the cytoplasm, while in patient cells HSP70 was 

frequently enriched in the region with abnormal accumulation of vimentin (Figure 4A and Figure 

S4A). Confocal z-stack images indicated HSP70 was surrounded by a ‘cage-like’ bundle of 



 7 

vimentin, with some HSP70 also interspersed within the abnormal accumulation of vimentin. 

HSP70 labelling appeared reduced in other regions of the cytoplasm. This relocalisation of HSP70 

in ARSACS HDFs was not accompanied by an increase in overall cellular levels of HSPA8 or 

expression of HSPA1, as determined by immunoblot (Figure 4E, F). 

 

Misfolded proteins that cannot be refolded by chaperones are normally targeted for degradation by 

ubiquitination. Thus, we next compared localisation of ubiquitin in wild-type and ARSACS HDFs. 

Similar to HSP70, we observed ARSACS HDFs where ubiquitin labelling was redistributed to the 

area of vimentin accumulations, rather than being dispersed as in control cells (Figure 4B). The 

percentage of cells with this ubiquitin phenotype (143%) was low relative to the those that 

relocalised HSP70 (852%) and there was no significant change in level of ubiquitinated proteins 

in ARSACS HDFs relative to wild-type HDFs. Immunoblots indicated this was the case, both in 

cells cultured under normal conditions and in cells treated with MG132 to inhibit proteasome 

activity (Figure 4G). Together these data indicate that although proteostasis-linked proteins are 

relocalised in response to loss of sacsin, the ubiquitin-proteasome system does not appear 

compromised. 

 

Lamp2 and other components of the autophagy-lysosome pathway are relocalised to the 

region of abnormal vimentin accumulation in ARSACS patient cells and have altered 

cellular levels 

Separate to aggresome formation, vimentin deficiency is associated with juxtanuclear 

accumulation of lysosomes [23]. To ascertain if lysosome localisation was altered in ARSACS 

HDFs, control and patient cells were immunolabeled for vimentin and lysosomal-associated 

membrane protein 2 (Lamp2). Lamp2 was distributed throughout the cytoplasm in control HDFs. In 

a significant (p<0.01) percentage of patient cells Lamp2 positive puncta were clustered within the 

region of vimentin accumulation, here it was both interspersed with the vimentin and localised 

within the vimentin ‘cage’ (Figure 5A, C band S5). Similar to Lamp2, the ubiquitin-binding 

autophagic adaptor protein p62 (also known as SQSTM1), which is required for autophagic 

clearance of ubiquitinated proteins [24, 25], was also relocalised within the vimentin cage (Figure 

5B, D). Immunoblot showed a small, but statistically significant, increase in Lamp2 levels in 

ARSACS HDF relative to controls (1.19-fold increase, p<0.05) (Figure 5E, F). Contrastingly, levels 

of p62 were reduced in ARSACS HDFs relative to controls (0.5-fold decrease, p<0.05). This was of 

particular interest as p62 has been identified as one of the specific substrates that is degraded 

through the autophagy-lysosome pathway [26-28]. 

 

Autophagic flux is altered in ARSACS patient cells 

We next considered whether autophagosomes accumulated in the region of the vimentin cage. 

Ultrastructural analyses of ARSACS patient cells reveals accumulation of filamentous material are 
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interspersed with components of the autophagy-lysosome system, including autophagosomes 

(Figure 6A). The presence of autophagosomes within the filament accumulations and the 

immunolabeling of lysosomes within the vimentin ‘cage’ (Figure 5A) are consistent with autophagic 

clearance happening at this location. 

 

To ascertain if there was increased activation of the autophagy-lysosome pathway in ARSACS 

HDFs, the number of LC3 positive puncta were quantified from confocal images of immuolabeled 

patient and control cells (Figure 6B, C). The number of LC3 positive puncta was not significantly 

different between ARSACS HDFs and control cells under basal conditions. In contrast, induction of 

autophagy by nutrient starvation only resulted in an increase in LC3 positive puncta in control cells 

(p<0.001). This indicates that either LC3 positive puncta are not forming in response to nutrient 

starvation in ARSACS HDFs or their turnover is increased. Since generation of LC3-II from its 

precursor, LC3-I, correlates with autophagosome formation, levels of LC3-I and LC3-II were 

assessed by immunoblotting (Figure 6D, E). Under basal conditions, levels of LC3-I were similar in 

ARSACS patient and controls, but LC3-II was not detectable at quantifiable levels. When 

autophagy was induced by nutrient starvation LC3-II levels increased in starved cells, and 

importantly, significantly more LC3-II accumulated in controls than patient cells. To understand 

why less LC3-II accumulated in ARSACS HDFs relative to controls, we inhibited lysosomal 

degradation using bafilomycin A. In nutrient starved cells treated with bafilomycin A, levels of LC3-

II were not significantly different between ARSACS and control HDFs. The same result was 

observed when autophagy was inhibited with 3-Methyladenine (Figure 6D, E).  These data suggest 

that LC3 is more rapidly degraded and that autophagic flux is increased under conditions that 

induce autophagy in ARSACS HDFs. 

 

Neurofilament bundling, organelle displacement and relocalisation of ubiquitin occurs in 

Sacs-/- primary neurons 

We previously reported abnormal bundling of neurofilaments in primary spinal motor and sensory 

neurons cultured from Sacs-/- mouse embryos [8]. In 4-week-old dissociated spinal cord cultures, 

bundling of neurofilaments was detected in the soma of Sacs-/- motor (85.4±4.9%) and sensory 

neurons (73.5±8.5%) by immunolabeling with antibody against the high molecular weight 

neurofilament protein (NFH), as previously described [8] (Figure 7A). In motor neurons, the normal 

neurofilament network courses through the cell body into the dendritic processes, whereas dorsal 

root ganglion (DRG) sensory neurons lack dendrites. In Sacs-/- motor neurons, neurofilaments 

coalesce into linear bundles, whereas in DRG neurons, they can form a juxtanuclear ball 

reminiscent of vimentin bundles in fibroblasts. Peripheral displacement of the nucleus was 

particularly visible in DRG sensory neurons with a collapsed neurofilament network (Figure 7B, C). 

Mitochondria were excluded from the region of the neurofilament accumulations (Figure 7D). 

Moreover, ubiquitin had a more perinuclear distribution in Sacs-/- neurons compared to controls 
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(Figure 7G, H); this was statistically significant in both motor neurons (p<0.05) and DRG sensory 

neurons (p<0.05) (Figure 7E, H). In contrast to ARSACS patient HDFs, there was no significant 

redistribution of the autophagy-lysosomal proteins Lamp2 or p62 in Sacs-/- neurons (not shown). 
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Discussion 

 

Here we present evidence that organisation of the vimentin cytoskeleton is dramatically altered in 

ARSACS HDFs with a range of sacsin mutations and in cellular models where sacsin has been 

depleted. This is in agreement with our previous findings that abnormal accumulations of 

neurofilament occur in Sacs-/- primary neurons [8]. Importantly, these data indicate that loss of 

sacsin impacts on more than one type of intermediate filament, suggesting sacsin function may be 

broadly required for normal intermediate filament organisation.  

 

Cells lacking functional sacsin also exhibit abnormalities in organelle distribution, such as 

fragmentation of the Golgi in ARSACS HDFs and asymmetrical positioning of nuclei in Sacs-/- 

neurons. This is consistent with intermediate filaments playing a role in intracellular organelle 

distribution [29, 30] and may be relevant to the pathogenesis of ARSACS. We have previously 

shown recruitment of the fission factor Drp1 to mitochondria is impaired in sacsin null cells, 

proposing this partly explains the alterations in mitochondrial dynamics and function observed in 

cellular models of ARSACS [9]. Displacement of mitochondria at the periphery of vimentin 

accumulations in ARSACS HDFs suggests that disrupted organelle distribution may also impact 

mitochondrial network organisation and potentially function. Interestingly, in HDFs transiently 

transfected with siRNA targeting sacsin, there was not an obvious alteration in mitochondrial 

localisation compared to that which we observed in ARSACS patient HDFs. We speculate that this 

difference is likely due to partial knockdown of sacsin and/or that the time after transfection (48 

hours) was not sufficient to induce this aspect of the loss of sacsin phenotype. 

 

Collapse of the vimentin network around the MTOC occurs when mechanisms regulating 

intermediate filaments are disrupted and as well as in response to stress conditions such as the 

accumulation of misfolded protein aggregates [18, 23, 31]. We did not see any direct evidence for 

accumulation of protein aggregates in ARSACS patient HDFs by TEM, or find the UPS to be 

compromised (i.e. no accumulation of ubiquitinated proteins). This suggests that the altered 

vimentin network in sacsin deficient cells is not the result of a problem with clearance of 

ubiquitinated proteins. Although ubiquitinated proteins did not accumulate in ARSACS HDFs, 

multiple components of the proteostasis machinery were relocalised to the pericentriolar region of 

vimentin accumulation. These included HSP70 and components of the autophagy-lysosome 

machinery. Interestingly, levels of p62 were decreased in ARSACS fibroblasts, while Lamp2 levels 

were elevated. p62 is degraded by autophagy and Lamp2 promotes fusion of autophagosomes 

with lysosomes [28, 32]. We analysed LC3 levels to determine if autophagy was activated in 

ARSACS HDFs, demonstrating autophagic flux was increased under conditions of nutrient 

starvation. These data suggest that the relocalisation of lysosomes in ARSACS HDFs is 

associated with functional changes in the autophagy-lysosome pathways. This would be in 
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agreement with juxtanuclear clustering of lysosomes being associated with increased 

autophagosome-lysosome fusion rates [33, 34]. 

 

The phenotypes observed in ARSACS HDF and primary neurons from the Sacs-/- mouse only 

partially recapitulated each other. For example, while vimentin is organised as a ‘cage’ in some 

ARSACS HDFs, neurofilaments form bundles, especially in dendrites, reflecting a difference in the 

organisation of the cytoarchitecture. Moreover, we did not see any evidence for relocalisation of 

components of the autophagy-lysosomes pathway in primary neurons from the Sacs-/- mouse, but 

did see perinuclear accumulation of ubiquitin in neurons from the Sacs-/- mouse. This ubiquitin 

staining may represent ubiquitinated proteins that are destined for removal by the autophagy-

lysosome pathway, although we did not see any evidence for relocalisation of lysosomes or 

autophagy proteins in primary neurons. These differences between neurons and fibroblasts may 

reflect cell-specific aspects of cytoskeleton or proteostasis regulation. Indeed, previous reports 

show that common inducers of autophagy in non-neuronal cells fail to stimulate autophagy in 

primary neurons, highlighting that autophagy in neurons is regulated by mechanisms that may 

differ from those in non-neuronal cells [35, 36]. 

 

The sequence of events that lead to neuronal cell death in ARSACS is unknown but most of the 

evidence supports that the cytoskeletal disorganisation is an early phenomenon [8]. Altered 

proteostasis, mitochondrial dysfunction and cytoskeletal abnormalities are all features observed in 

other neurodegenerative diseases. These components of molecular pathology frequently occur in 

combination with multiple complex links between them. For ARSACS, based on the presence of 

domains linking to molecular chaperones and the UPS it would be reasonable to speculate sacsin 

has a role in protein quality control, most likely for a specific client or family of client proteins. If this 

is the case it would suggest that loss of sacsin function would result in altered levels or function of 

these clients at an early stage in the molecular pathogenesis of the disease. Our data may suggest 

that these clients will be linked to proteins involved in regulation of intermediate filaments or could 

even be intermediate filament proteins. 

 

In conclusion, this study shows that loss of sacsin effects organisation of intermediate filament 

networks with consequences for intracellular architecture. In fibroblasts, these include repositioning 

of components of the autophagy-lysosome pathway and subsequent alterations of autophagic 

activity. 

 



 12 

 
Materials and Methods 

Cell culture and sacsin knockdown 

ARSACS patient fibroblasts were a gift from Dr Sascha Vermeer at Radboud University Nijmegen 

Medical Centre (Nijmegen, Netherlands) and Dr Paola Giunti at UCL Institute of Neurology 

(London, UK). The cells were collected as part of a project approved by the Medical Ethics 

Committee of the Radboud University (CMO-nr 2014/155), and Giunti has ethical approval for 

dermal fibroblast collection through a European integrated project on spinocerebellar ataxias (REC 

Ref - 04/Q0505/21). Written informed consent to participate in this study was obtained from all 

patients. Control and ARSACS HDF lines used in this work were not closely age or sex matched, 

but were all between passage 3 and 8. HDFs were cultured in DMEM supplemented with 10% FBS 

and 50U/ml penicillin and 50μg ml-1 streptomycin (final concentration in media 1%). All cells were 

kept in a constant humidified atmosphere of 5% CO2 at 37ºC. Cell culture reagents were from Life 

Technologies (Paisley, UK). 

 

SH-SY5Y cells were from the American Type Culture Collection and were grown in Dulbecco’s 

Minimum Eagle Medium (DMEM) at a 1:1 ratio with Ham’s F12 medium. Cells were maintained in 

medium supplemented with 10% heat-inactivated foetal bovine serum (FCS) containing 100U ml-1 

penicillin and 100 mg ml-1 streptomycin. 

 

For sacsin knockdown, a combination of three previously validated siRNAs targeting exons 7 

(sense: GGAUGAUCCUCUGAAGGUC), 8 (sense: GCGGCCGAAUUCUAUAAAG) and 10 (sense: 

CGUAAGAUUUCUAGAUGAC) of SACS were used [2, 4]. These siRNAs were at a concentration 

of 10nM each and were transfected in combination using Lipofectamine 3000 (ThermoFisher 

Scientific, UK), according to the manufacturer’s instructions. A negative control siRNA that has no 

significant sequence similarity to human gene sequences was used as a control at a concentration 

of 30nM. 

 

Generation of CRISPR/Cas9 SACS-/- Flp-In T-REx HEK293 cells was performed following the 

manufacturers protocol for the sacsin double nickase plasmid (SantaCruz Biotechnology, cat. no. 

sc-404592-NIC). For inhibition of the proteasome MG132 was added to cells at a final 

concentration of 10µm for 3 hours. For inhibition of autophagy, Bafilomycin was added to cells at a 

concentration of 100nm for 3 hours and 3-MA at a concentration of 5mM for 3 hours. 

 

Sacs-/- primary neurons were cultured from the Sacs-/- mouse as described previously [2, 8]. 

 

Immunofluorescent detection and staining 

Immunofluorescent labeling was as described previously [2]. Briefly, cells cultured on glass 

coverslips were fixed with 4% formaldehyde for 15 minutes and then permeablised for 5 minutes 
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with 0.2% Triton-X 100. Cells were incubated with primary antibodies for 2 hours in 0.02% Triton-

X100, 1% bovine serum albumin and 10% normal goat serum, prior to washing and incubation with 

fluorescently labelled secondary antibodies (Alexa Fluor 488-conjugated goat anti-rabbit or anti-

mouse, Alexa Fluor 543 conjugated goat anti-mouse or anti-rabbit, or Alexa Fluor 647-conjugated 

goat anti-mouse or anti-rabbit (ThermoFisher Scientific). Cells were then counterstained with DAPI 

and coverslips mounted for microscopy. Primary antibodies were used at the following titres; 1:100 

for rabbit monoclonal anti-vimentin (Abcam, UK), 1:100 for mouse monoclonal anti-vimentin 

(Abcam), 1:100 for rabbit monoclonal anti-sacsin (Abcam), 1:500 for mouse monoclonal anti-GS28 

(Enzo Life Sciences, UK), 1:100 for mouse monoclonal anti-EEA1 (BD Biosciences, UK), 1:100 for 

mouse monoclonal anti-HSP70 (Sigma, Poole, UK), 1:100 for rabbit polyclonal anti-ubiquitin 

(Abcam), 1:100 for mouse monoclonal anti-Lamp2 (Santa Cruz, USA), 1:100 for mouse 

monoclonal anti-p62 (Abcam) and 1:100 for rabbit polyclonal anti-LC3 (Abcam). For staining of 

mitochondria with MitoTracker (ThermoFisher Scientific) the stock solution was diluted to a 

concentration of 100nM in cell culture media prior to addition to cells for 30 minutes at 37ºC in 5% 

CO2 atmosphere.  After the incubation period, cells were washed twice in cell culture media prior to 

live imaging or fixation. Confocal microscopy was performed using a LSM510 or an LSM880 

(Zeiss) with a 63x objective. Quantification of incidence of cells with perinuclear localisation of 

HSP70, ubiquitin, Lamp2 and p62 was performed blind to experimental status. Incidence of LC3 

punctae were quantified from confocal Z-stacks using a combination of the Surpass module and 

MeasurementPro modules of Imaris (Imaris 7.6.1 Bitplane, Concord, USA). Surface rendered 3D 

images were generated, with thresholding for punctae size and intensity consistent between 

images and experimental conditions. 

 

Immunoblotting 

Proteins were size-fractionated using precast 4-12% gradient NuPAGE Bis-Tris gels (Life 

Technologies) and transferred to nitrocellulose membranes (Whatman). Membranes were blocked 

in either 5% (w/v) non-fat milk powder or 5% (w/v) bovine serum albumin (BSA) before probing 

with the specified antibodies. Primary antibodies were used at the following titres; 1:1600 for rabbit 

monoclonal anti-sacsin (Abcam), 1:5000 for mouse monoclonal anti-HSP70 (Sigma) 1:5000 for 

mouse monoclonal anti-Lamp2 (Santa Cruz), 1:3000 for rabbit polyclonal anti LC3 (Abcam) 

1:10000 for mouse monoclonal anti-β-actin (Sigma), 1:5000 for rabbit polyclonal anti-GAPDH 

(Abcam), 1:1000 for mouse monoclonal anti-p62 (Abcam), and 1:3000 for rabbit polyclonal anti-

LC3 (company).  Immunoreactive products were visualised and quantified, after labelling with 

species-specific infrared secondary antibodies (1:5000, LI-COR Biosciences, UK), using the 

Odyssey imaging system (LI-COR). Apparent molecular masses were estimated using the Novex 

Sharp Pre-stained Protein Standard (Life Technologies) or HiMark Pre-stained Protein Standard 

(Life Technologies) and the band sizing application in Odyssey software (LI-COR Biosciences). 

Images of the immunoblots were also quantified using the Odyssey software.  
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Transmission electron microscopy 

Cells were grown on glass or Thermanox cover-slips and fixed overnight in cold (4°C) Karnovky’s 

fixative (2% paraformaldehyde and 2.5% glutaraldehyde in 0.08M cacodylate buffer). They were 

then washed 3 times in phosphate buffer and osmicated with 1% osmium tetroxide in ddH2O for 1 

hour. Samples were then washed 3 x 10 minutes in ddH2O and dehydrated with a series of 

alcohols: 30%, 50%, 70%, 90%, 3 x 100% and 2 x propylene oxide (at least 20 minutes in each). 

They were infiltrated with 50% propylene oxide: 50% araldite resin overnight and with several 

changes of 100% resin the next day. Resin blocks were cured at 60°C overnight. Sectioning was 

done using a Leica Ultracut UCT microtome. Sections were counter-stained Reynold’s lead citrate 

and were viewed on a JEOL 1010 TEM (JEOLUSA, USA). 

 

Statistical analyses 

All data are expressed as means ± SEM, unless otherwise stated. Statistical significances were 

determined using Mann-Whitney U tests or unpaired Student’s t-tests as appropriate. 
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Figure Legends 

 

Figure 1. Abnormal accumulations of vimentin intermediate filament in ARSACS patient 

HDFs. 

(A) Representative confocal images of five ARSACS patient HDFs and a wild-type (WT) control 

HDF line (further patient and control lines are shown in Figure S2) that were stained for 

mitochondria (MitoTracker) and immunolabeled for vimentin. Cells were also stained with DAPI to 

detect nuclei. Arrows indicate areas of abnormal perinuclear vimentin accumulation. Scale bars = 

10 μm. (B) The percentage of cells with a collapsed vimentin network was then quantified for each 

cell line. This was done blind to experimental status with >120 cells scored per cell line. Results 

are expressed as mean ± SEM for each control and patient cell line. (C) Representative confocal 

images of HDFs from a homozygous ARSACS patient with the mutation p.2801delQ and a wild-

type control line. HDFs were processed for immunofluorescent detection of sacsin and vimentin, 

and were counterstained with DAPI for nuclei. Localisation of sacsin to the area of perinuclear 

vimentin accumulation is indicated by an arrow. Red dotted line indicates the edge of the cell. 

Scale bars = 10 μm. (D) Representative transmission electron micrographs (TEM) of a HDF cell 

from a wild-type control and ARSACS patient (p.R2002fs & p.Q4054*). Boxes delineated by white 

lines indicate position of zoomed images shown in panels i and ii. Red dotted line indicates the 

approximate boundary of the area of accumulation of filamentous material.  Examples of filaments 

are indicated with arrows. Scale bar = 5 μm. 

 

Figure 2. Abnormal accumulations of vimentin intermediate filament in sacsin knockdown 

cells. (A) Representative confocal images of wild-type HDFs cotransfected with mitoDSRed and 

either a non-targeting siRNA or siRNA targeting sacsin (SACS). 48 hours after transfection, cells 

were processed for immunofluorescent detection of vimentin and counterstained with DAPI for 

nuclei. Scale bars = 10µm. (B) Representative confocal images of CRISPR generated SACS-/- 

HEK293 cells and SACS-/- HEK293 transfected with a plasmid for expression of full-length sacsin-

GFP. Cells were processed for immunofluorescent detection of vimentin and counterstained with 

DAPI. (C) The percentage of cells with a collapsed vimentin network was then quantified for each 

condition. This was done blind to experimental status with >45 cells scored per condition. Results 

are expressed as mean ± SEM. (D) Sacsin immunoblot of total lysates from control and SACS-/- 

HEK293 cells. β-actin was used as a loading control. 

 

Figure 3. ARSACS HDFs show characteristics of aggresome formations, including 

accumulation of vimentin around the MTOC and Golgi fragmentation. (A-B) Representative 

confocal images of two ARSACS patient HDFs lines (heterozygous mutations c.2094-

2A>G/Q4054* and the homozygous mutation p.2801delQ) and a wild-type (WT) control (further 

patient and control lines are shown in Figure S3). Cell were stained with MitoTracker before being 
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processed for immunofluorescent detection of (A) vimentin and -tubulin, or (B) GS28, a 

membrane protein of the cis-Golgi. Cells were counterstained with DAPI for nuclei. White boxes 

are shown as zoomed images in the right-hand panels. Arrows indicate areas of mitochondrial 

network disruption. Scale bars = 10 μm. 

 

Figure 4. Components of the cellular proteostasis machinery localise to the vimentin cage 

that forms in ARSACS patient HDFs. (A-B) Representative confocal images of two ARSACS 

patient HDFs lines (heterozygous mutations c.2094-2A>G/p.Q4054* and the homozygous mutation 

p.2801delQ) and a wild-type (WT) control (further patient and control lines are shown in Figure 

S4). Cells were immunolabeled for (A) HSP70 and vimentin, or (B) ubiquitin and vimentin, as well 

as mitochondria (MitoTracker) and nuclei (DAPI). White arrows indicate perinuclear accumulation 

of HSP70 or ubiquitin. White boxes in merged panels are shown zoomed. Scale bars = 10 μm. (C-

D) The incidence of cells with perinulear localisation of (C) HSP70 or (D) ubiquitin was quantified. 

For ubiquitin, quantification was performed in cells cultured under control conditions (vehicle only) 

or treated with the proteasome inhibitor MG132 for 3 hours. Results are expressed as mean ± 

SEM. (E) Immunoblot analysis of total cell lysates from five ARSACS patient and five WT control 

HDFs probed with an anti-HSP70 antibody. GAPDH was used as a loading control. (F) 

Densitometric analyses were performed and mean relative HSP70 protein levels calculated for the 

five WT and five patient cell lines. Data were normalised to GAPDH. (G) Immunoblot analysis of 

total cell lysates from five ARSACS patient and five WT control HDFs cultured for 3 hours in the 

presence of MG132 or vehicle only control, probed with an anti-ubiquitin antibody. GAPDH was 

used as a loading control. 

 

Figure 5. Components of the autophagy-lysosome pathway localise to the vimentin cage 

that forms in ARSACS patient HDFs. (A-B) Representative confocal images of two ARSACS 

patient HDFs lines (heterozygous mutations c.2094-2A>G/p.Q4054* and the homozygous mutation 

p.2801delQ) and a wild-type (WT) control (further patient and control lines are shown in Figure 

S5). Cells were stained for mitochondria (MitoTracker) and then immunolabeled for (A) LAMP-2 

(lysosome-associated membrane protein 2) and vimentin, or (B) p62/SQSTM1. Cells were also 

stained with DAPI to detect nuclei. White boxes in the merged panels are shown zoomed in the 

right-hand panels. Arrows indicate areas of LAMP-2 or p62 accumulation. Scale bars = 10 μm. (C-

D) The incidence of cells with perinulear localisation of (C) Lamp2 or (D) p62 was quantified. (E-F) 

Immunoblot of total cell lysates from five ARSACS patient and five WT control HDFs probed with 

an anti-Lamp2 antibody and subsequent densitometric analyses. (G-H) Immunoblot of total cell 

lysates from five ARSACS patient and five WT control HDFs probed with an anti-p62 antibody and 

subsequent densitometric analyses. Data were normalised to GAPDH.  

 

Figure 6. Autopahgic Flux is increased in ARSACS patient HDFs upon nutrient starvation. 
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(A) Representative EM image of autophagosomes (arrowheads) in the area of intermediate 

filament (arrows) accumulation in an ARSACS HDF. Scale bar = 1μm. (B) Representative confocal 

images of two ARSACS patient HDFs lines (heterozygous mutations c.2094-2A>G/p.Q4054* and 

the homozygous mutation p.2801delQ) and a wild-type (WT) control immunolabeled for 

endogenous LC3. Scale bar = 10 μm. (C) Quantification of the number of LC3 puncta in ARSACS 

and control HDF lines under basal conditions and after induction of autophagy by nutrient 

starvation. Puncta were quantified in 12 cells per line/treatment. Results from five control and five 

patient cell lines were combined to give an overall mean ± SEM,***p<0.001. (D) Immunoblot 

analysis of total cell lysates from ARSACS patient and WT control HDFs probed with an LC3 

antibody to detect LC3-I and LC3-II. Cell lysates were collected from untreated cells, nutrient 

starved cells, and cells that were nutrient starved and treated with either bafilomycin A or 3-

Methyladenine (3-MA). Actin was used as a loading control. (E) Densitometric analyses were 

performed and mean LC3-I and LC3-II levels relative to actin were calculated for each treatment in 

control and ARSACS HDFs (n= 4).  

 

Figure 7. Primary neurons from the Sacs-/- mouse have abnormal neurofilament 

organisation, altered cellular architecture and abnormal ubiquitin localisation. (A) 

Representative maximum intensity projections of confocal Z-stacks of primary neurons from 4 

week old dorsal root ganglia and spinal cord culture. Motor (MN) and sensory neurons (SN) from 

Sacs-/- (Sacs KO) or wild-type (WT) mice were immunolabeled for NFH. Arrows indicate bundled 

NFH intermediate filaments. (B) Nuclear positioning in DRG sensory neurons revealed by DAPI 

(blue) staining for the nucleus and immunostaining for tubulin (red) to identify the soma in the 

Sacs-/- sensory neuron. (C) Quantification of the percentage of sensory neuron with eccentric 

nuclear localisation. Eccentric localisation of nucleus was determined by the ratio of r1:r2, where r1 

is the longest and r2 is the shortest distance between the nuclear membrane and the closest 

plasma membrane. Cells where r1/r2 was 1.1 (10% deviation from a centrally positioned 

nucleus) were scored as having an eccentric nuclear localisation (D) Representative confocal 

images of motor (MN) and sensory neurons (SN) from Sacs-/- (Sacs KO) or wild-type (WT) mice 

were immunolabeled for Tom20. Arrows indicate areas where mitochondria were absent. (E) 

Representative confocal images of motor neurons from Sacs-/- (Sacs KO) or wild-type (WT) mice 

immunolabeled for ubiquitin. (F) Quantification of the number of motor neurons (MN) showing a 

perinuclear localisation of ubiquitin. (G) Representative confocal images of sensory neurons from 

Sacs-/- (Sacs KO) or wild-type (WT) mice immunolabeled for ubiquitin. (H) Quantification of the 

number of sensory neurons (SN) showing a perinuclear localisation of ubiquitin. Arrows show 

areas of ubiquitin accumulation. A white asterisk indicates the location of a glial cell. Scale bars 

=10µm. Error bars are ± SD, *p<0.05. N= between 30 and 70 neurons per experiment. 
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Figure S1. ARSACS HDF lines used in this study. (A) Table detailing the disease associated mutations present 
in sacsin for each ARSACS patient cell line used in this study. Amino acid change to an * indicates a truncated 
protein, fs indicates a frameshift and del indicates a deletion. For the column ‘sacsin detection by immunoblot’ it 
should be noted that the anti-sacsin antibody available recognises an epitope between amino acids 4100-4200 of 
sacsin. (B) Immunoblot to detect sacsin in total cell lysates from wild-type control and ARSACS HDFs with the muta-
tions p.Q4054*/c.2094-2A>G, p.R2002fs/p.Q4054*, p.F2780C/p.S3892*, p.2801delGln, and p.K1715*/p.R4331Q. 
β-actin was used as a loading control. (C-D) Immunoblot to detect sacsin in cell lysates in additional ARSACS HDFs 
with the mutations p.R3636Q/p.P3652T/p.L3745Rfs, R3636Q/P3652T/C72Cfs, and c.8844delT. 
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Figure S2. Abnormal accumulations of vimentin intermediate filament are present in HDFs from ARSACS patients with 
a range of different mutations. (A) Representative confocal images of five ARSACS patient HDFs and five wild-type (WT) 
control HDF lines that were stained for mitochondria (MitoTracker) and immunolabeled for vimentin. Cells were also stained with 
DAPI to detect nuclei. Scale bars = 10 μm. (B) Analyses of vimentin localisation in additional ARSACS HDFs with the mutations 
c.8844delT, p.R3636Q/p.P3652T/p.L3745Rfs, and p.R3636Q/p.P3652T/p.C72Cfs. (C) The percentage of cells with a collapsed 
vimentin network was quantified in the two patient cell lines that are homozygous for the c.8844delT mutation. This was done 
blind to experimental status with >120 cells scored per cell line. Results are expressed as mean ± SEM for wild-type and patient 
cell lines. (D) The percentage of cells with a collapsed vimentin network was quantified in the ARSACS HDFs with the mutations 
p.R3636Q/p.P3652T/p.L3745Rfs and p.R3636Q/p.P3652T/p.C72Cfs. This was done blind to experimental status with >120 
cells scored per cell line. Results are expressed as mean ± SEM for wild-type and patient cell lines. **p<0.01.
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Figure S3. ARSACS patient HDFs have accumulations of vimentin in the region of the MTOC as well as 
altered localisation of the Golgi apparatus and early endosomes. (A-C) Representative confocal images of five 
ARSACS patient HDFs lines and a wild-type (WT) control. Cell were stained with MitoTracker before being 
processed for immunofluorescent detection of (A) β-tubulin and vimentin, (B) GS28 membrane protein of the 
cis-Golgi, or (C) EEA1, membrane-associated protein to early endosomes. Cells were counterstained with DAPI for 
nuclei. White boxes are shown as zoomed images in the right-hand panels. Scale bars = 10μm.
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Figure S4. ARSACS patient HDFs localise components of the cellular proteostasis machinery to a vimentin 
cage structure. (A, B) Representative confocal images of dermal fibroblasts from ARSACS patient or wild-type 
(WT) control. Cells were stained with 100μM MitoTracker for 30 minutes prior to fixation and permeabilisation. Cells 
were incubated with antibodies to (A) HSP70 and vimentin, or (B) ubiquitin and vimentin. Confocal analysis showed 
accumulation of HSP70 and ubiquitin in perinuclear regions in all ARSACS patient cells. White boxes in merged 
panels are shown zoomed. Scale bars = 10 μm.
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Figure S5. Accumulation of LAMP-2 and p62/SQSTM1 in ARSACS patient HDFs. (A) Representative confocal 
images of dermal fibroblasts from ARSACS patients or wild-type (WT) control. Cells were stained with 100μM 
MitoTracker for 30 minutes prior to fixation and permeabilisation. Cells were incubated with antibodies to (A) 
LAMP-2 and vimentin, or (B) p62/SQSTM1. Confocal analysis showed perinuclear accumulation of LAMP-2 and 
p62/SQSTM1 in ARSACS patient cells. White boxes in the merged panels are shown zoomed in the right-hand 
panels. Scale bars = 10 μm.
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