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Abstract

Superconducting artificial atoms are remarkably attractive to study quantum

optics phenomena. The artificial atoms are nano-scale electronic circuits that

can be fabricated using well-established techniques and can therefore be easily

scaled up to larger systems. Their energy levels can be engineered as desired,

and strong coupling can be achieved with resonators and transmission lines.

This greater control of parameters is a huge advantage over natural atoms and

allows to reach regimes that would otherwise be unattainable.

In this thesis, we report on quantum optics phenomena on chip and their

emerging devices for present and future applications with a focus on quantum

wave mixing (QWM) effects.

First, we study continuous wave mixing on a quantum object and ob-

serve a symmetric spectrum with an infinite number of side peaks. Then, we

investigate two regimes of QWM: Coherent wave mixing and quantum wave

mixing with non-classical superposed states. In the former, two pulsed waves

with frequencies slightly detuned from each other are scattered on the single

artificial atom resulting in a symmetric spectrum with an infinite number of

side peaks. The amplitude of each of these peaks oscillates in time according

to Bessel functions with the orders determined by the number of interacting

photons. In the latter regime, a time delay between the two pulses is intro-

duced causing a striking difference in the spectrum, which now exhibits a finite

number of narrow coherent emission peaks. Furthermore, the spectrum in the

latter regime is asymmetric with the number of positive frequency peaks (due

to stimulated emission) always exceeding by one compared to the negative
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frequency peaks (due to absorption).

Then, we investigate a coherent frequency conversion scheme with a sin-

gle three-level artificial atom. The scheme is based on three-wave mixing,

which utilises the quantised energy levels of the artificial atom. We drive the

three-level atom with two continuous drives corresponding to two transition

frequencies of the atom and measure the coherent emission at the sum or dif-

ference frequency. The device may be used as a quantum router, coherently

interconnecting quantum channels, in prospective quantum networks.

Another part of the thesis addresses the challenge of measuring the abso-

lute power of a microwave signal in a transmission line at cryogenic tempera-

tures which is critical for applications in quantum optics, quantum computing

and quantum information. We demonstrate that a two-level system strongly

coupled to the open space can act as a quantum sensor of absolute power. We

realise the quantum sensor using a superconducting flux qubit that is strongly

coupled to the environment. The quantum sensor is independent of dephasing

of the two-level system.
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Chapter 1

Introduction

1.1 Overview of the thesis

First, I introduce basic concepts that are important in the field of quantum op-

tics. I briefly cover superconductivity, circuit theory, superconducting qubits,

and artificial atoms. Then, I discuss methods of describing the dynamics of

open quantum systems.

This is followed by a chapter dedicated to experimental principles. I dis-

cuss design considerations of experimental sample chips and explain the fab-

rication process in detail. I present a typical measurement set-up and briefly

discuss their components. Finally, I dedicate one sub-chapter to qubit charac-

terisation.

Then, we move on to the main results obtained during my doctoral re-

search: quantum wave mixing (QWM), coherent wave mixing on a three level

atom, and the development of an absolute power sensor.

Wave mixing on a nonlinearity is a classical effect, that is well described

in text books [6, 7]. However, once the classical nonlinearity is replaced by a

single quantum scatterer, effects beyond classical physics are revealed.

First, we study continuous wave mixing on a quantum object and ob-

serve a symmetric spectrum with an infinite number of side peaks. Then, we

investigate two regimes of QWM: Coherent wave mixing and quantum wave

mixing with non-classical superposed states. In the former, two pulsed waves
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with frequencies slightly detuned from each other are scattered on the single

artificial atom resulting in a symmetric spectrum with an infinite number of

side peaks. The amplitude of each of these peaks oscillates in time according

to Bessel functions with the orders determined by the number of interacting

photons. In the latter regime, a time delay between the two pulses is intro-

duced causing a striking difference in the spectrum, which now exhibits a finite

number of narrow coherent emission peaks. Furthermore, the spectrum in the

latter regime is asymmetric with the number of positive frequency peaks (due

to stimulated emission) always exceeding by one compared to the negative

frequency peaks (due to absorption).

Then, we investigate a coherent frequency conversion scheme with a sin-

gle three-level artificial atom. The scheme is based on three-wave mixing,

which utilises the quantised energy levels of the artificial atom. We drive the

three-level atom with two continuous drives corresponding to two transition

frequencies of the atom and measure the coherent emission at the sum or dif-

ference frequency. The device may be used as a quantum router, coherently

interconnecting quantum channels, in prospective quantum networks.

Another part of the thesis addresses the challenge of measuring the abso-

lute power of a microwave signal in a transmission line at cryogenic tempera-

tures which is critical for applications in quantum optics, quantum computing

and quantum information. We demonstrate that a two-level system strongly

coupled to the open space can act as a quantum sensor of absolute power. We

realise the quantum sensor using a superconducting flux qubit that is strongly

coupled to the environment. The quantum sensor is independent of dephasing

of the two-level system.

I conclude with a summary and a brief outlook.



Chapter 2

Basic concepts

2.1 Superconductivity and the Josephson Ef-

fect

Over 100 years ago, in 1911, superconductivity was discovered by Heike Kamer-

lingh Onnes who investigated the properties of matter at low temperatures [8].

Onnes found that the electrical resistance of some metals dropped abruptly

to zero at a material-dependent critical temperature TC as illustrated in

Fig. 2.1(a). This was confirmed by experiments with persistent currents in

superconducting rings [9]. It was observed that currents through a super-

conducting ring placed inside a magnetic field and cooled below its critical

temperature Tc persist to flow. Thus, perfect conductivity was achieved - a

prerequisite for many applications such as high-current transmission lines or

high-field magnets for example.

In 1933, Walther Meißner and Robert Ochsenfeld discovered another prop-

erty of superconductivity, perfect diamagnetism [10]. They found that not

only a magnetic field cannot enter a superconductor, but also would be ex-

pelled from the superconductor as it is cooled through TC . This is known as

the Meißner effect. Since it is a reversible effect, it implies that supercon-

ductivity will be destroyed by a critical magnetic field HC , which is related

thermodynamically to the free-energy difference between the normal and su-

perconducting states in zero field.
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These two basic properties of superconductivity, perfect conductivity and

perfect diamagnetism, were well described by Fritz and Heinz London in

1935 [11]. However, their theory was phenomenological and lacked to ex-

plain its fundamental origin. The next break-through in understanding su-

perconductivity was the establishment of the existence of an energy gap ∆,

of order kTC , between the ground state and the quasi-particle excitations of

the system. Measurements of the specific heat of superconductors [12] and of

electromagnetic absorption in the region of ℏω ∼ kTC [13, 14] led Bardeen,

Cooper, and Schrieffer (BCS) to formulate a pairing theory of superconductiv-

ity [15]. In BCS theory electrons pair into Cooper pairs with zero total spin

and momentum and are condensed into a single macroscopic state described

by a wavefunction ψ(r, t) (where r is the spatial variable, and t is time). The

minimum energy Eg = 2∆(T ) to break a Cooper pair into two quasi-particle

excitations was predicted by the BCS theory (Fig. 2.1(c-d)). Moreover, the

theory stated that the energy gap ∆(T ) should increase from zero at TC to

Eg(0) = 2∆(0) = 3.528kTC for T << TC (where k is the Boltzmann constant).

These predictions not only matched the measurements of the gap widths but

also agreed with the measurements of the shape of the absorption edge above

ℏωg = Eg.

Both the London equations and BCS theory failed to include spacial varia-

tions of the properties of the material. Ginzburg and Landau considered this in

their theory which they first proposed in 1950, even before the BCS theory, but

the Ginzburg-Landau theory did not receive its deserved attention until it was

shown that it could be derived from a generalised BCS theory [16]. Ginzburg

and Landau introduced ψ (describing the superconducting electrons) as a com-

plex order parameter linking the superconducting electrons to the local density

of superconducting electrons nS in the material via nS = |ψ(x)|2 [17]. Their

theory also introduced the coherence length ξ, which characterises the length

scale over which ψ(r) can vary without excessive energy increase.

The finite coherence length ξ means that at the interface of a supercon-



2.1. Superconductivity and the Josephson Effect 28

Figure 2.1: Superconductivity and the Josephson effect. (a) The resistance of some
metals drops abruptly to zero at the critical temperature. (b) Leakage
and interference of macroscopic wavefunctions of two superconductors
in an SIS junction (c) Formation of Cooper pairs in BCS theory. (d)
The electron spectrum: (on the left) in normal metals at T = 0 and (on
the right) in superconductors at T << Tc with the superconducting
gap 2∆.

ductor (S) and a normal metal (N) or insulator (I), some Cooper pairs will pen-

etrate through the non-superconducting material. Moreover, when a very thin

N- or I-layer is sandwiched between two superconductors, macroscopic wave-

functions of the two superconductors would interfere as schematically shown in

Fig. 2.1(b). In 1962, Brian Josephson [18] predicted that Cooper pairs tunnel

through such a junction, a Josephson junction, even at zero voltage difference,

giving rise to a supercurrent

Is = ICsin(δ). (2.1)

where IC is the maximum supercurrent the junction can sustain and δ is the
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phase difference between the two superconductors. In the presence of a voltage

difference V between the superconductors, the phase difference δ evolves with

time according to

δ̇ =
2eV

ℏ
=

2πV

Φ0

, (2.2)

so that the current oscillates with frequency ω = 2eV/ℏ. Here e is the mag-

nitude of the electron charge and Φ0 is the magnetic flux quantum arising

from the periodic boundary conditions causing ψ(r, t) = |ψ(r)|eiϕ(r) to be sin-

gle valued. After switching off the magnetic field, the magnetic flux ϕ in a

closed superconducting ring - maintained by the circulating persistent current

- is quantised in integer values of the flux quantum Φ0 = h/2e ≈ 2.07x10−15

Tm2. This was experimentally verified in 1961 [19]. Equations 2.1 and 2.2

are known as first and second Josephson equations, respectively and imply

that the Josephson junction is intrinsically a nonlinear inductance. This can

be seen by differentiating Eq. 2.1 with respect to time giving İ = I0cos(δ)δ̇

and substituting Eq. 2.2 to give İ = (2πV I0cos(δ))/Φ0. Comparing this result

with Faraday’s law V = Lİ leads to the Josephson inductance

LJ =
Φ0

2πI0cos(δ)
. (2.3)

The energy stored in a Josephson junction can be derived from UJ =
∫
IsV dt

and using Eqns. 2.1, 2.2 to yield

UJ(δ) = EJ [1− cos(δ)], (2.4)

with the Josephson energy EJ = ℏIc/2e and where the constant of integration

was chosen such that UJ(δ) has a minimum of 0 in the case of a vanishing phase

difference (in bulk superconductors). This is known as the washboard potential

shown in Fig. 2.2(b). Since a Josephson junction geometrically resembles a

plate capacitor, the total energy stored in the junction must also include the
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Figure 2.2: (a) Current biased Josephson junction denoted as an X and (b) its
washboard potential UJ(δ) = EJ [1− cos(δ)].

electrostatic energy

T =
Q2

2C
= EC(Nc −Ng)

2, (2.5)

where EC = 4e2/2C is the charging energy describing the Coloumb energy of

a single Cooper pair with charge 2e stored on the capacitor, NC is the integer

number of pairs that tunnel through the junction and Ng is an externally

applied charge bias through a gate. The total Hamiltonian of the Josephson

junction can be written as

H = T + U =
Q2

2C
+ EJ [1− cos(δ)]. (2.6)

Comparing Eq. 2.6 with the classical Hamiltonian Hclassical =
1
2m
p2 + U(x), it

can be seen that the charge Q (or the number of Cooper pairs N) is analogoues

to momentum p and the capacitance C acts like a massm. And since the charge

is related to the voltage by Q = CV = CΦ̇ = C2 Φ0

2π
δ̇, the Hamiltonian can

be rewritten as H = CΦ̇2

2
+ EJ [1 − cos(δ)]. Comparing this to the classical

Hamiltonian Hclassical =
m
2
ẋ2+U(x), one can see that the flux Φ (or the phase

difference δ across the junction) corresponds to the classical position x. From

this comparison, the commutator relations

[Φ̂, Q̂] = iℏ (2.7)
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[δ̂, N̂ ] =
2π

Φ0

[Φ̂, Q̂]
1

2e
= i (2.8)

where the phase operator δ̂ = 2π
Φ0
Φ̂, the number operator N̂ = Q̂

2e
, and the flux

quantum Φ0 = h/2e was substituted and the operators

Q̂ = −iℏ ∂

∂Φ
(2.9)

N̂ = −i ∂
∂δ

(2.10)

follow. This representation considers flux (Φ) and flux motion (Φ̇ = Q/C) in

electric circuits. If we instead consider charge (Q) and the motion of charges

(Q̇ = Φ/L) in electric circuits and comparing it with the classical Hamiltonian,

we find that charge Q, flux Φ, inductance L may also be the analog of position

x, momentum p, and mass m respectively.

2.2 Qubits and quantum computing

Quantum bits, or in shorthand notation qubits, are the building blocks of

quantum computers - an idea first introduced by Richard Feynman in 1982 [20].

Different to classical bits, a qubit cannot only be in two states, |0⟩ or |1⟩, but

in an arbitrary state |ψ⟩ that can be any linear superposition of the two basic

states |0⟩ and |1⟩,

|ψ⟩ = α |0⟩+ β |1⟩ , (2.11)

where α and β are complex numbers satisfying the normalisation condition

|α|2 + |β|2 = 1. If we tried to determine the state of the qubit we would

either measure |0⟩ with probability |α|2, or |1⟩ with probability |β|2. It is

instructive to think of a sphere with radius 1, the Bloch sphere, since the

normalisation condition can be interpreted geometrically as a unit vector in a

two-dimensional complex vector space. Eq. 2.11 may be rewritten as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕsin

θ

2
|1⟩ , (2.12)
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Figure 2.3: Bloch sphere. Any arbitrary qubit state can be represented as a point
on the unit sphere.

where θ and ϕ are polar and azimuthal angles in spherical coordinates respec-

tively defining a point on the Bloch sphere [21], as shown in Fig. 2.3. The two

basis states |0⟩ and |1⟩ are at the north and south pole respectively. Points on

the Bloch sphere can be used to represent any pure state |ψ⟩ while any points

inside the Bloch sphere represent mixed states.

The Bloch sphere serves as an excellent tool to visualise single qubit oper-

ations. Any point on the unit sphere can be transferred to any other point by

rotation about the n = [sinθcosϕ, sinθsinϕ, cosθ] axis by angle γ, described

by the unitary 2x2 matrix

R̂n(γ) = e
iγ
2
n·σ, (2.13)

where σ = [σx, σy, σz] are the Pauli matrices. This represents an arbitrary

transformation of a single qubit that is often referred to as a gate in analogy

with classical computing. A gate transforms the initial qubit state |i⟩ to the

final state |f⟩ = R̂ |i⟩. Similar to classical computing, information is stored in

string of bits, but here we speak about quantum information stored in string

of qubits. Unfortunately, there is no simple generalisation of the Bloch sphere

for multiple qubits.

The wave function of N qubits is a superposition of the basis states |j⟩
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and scales with 2N independent complex components fj such that

|f⟩ =
2N−1∑
j=0

fj |j⟩ ; with
∑
j

|fj|2 = 1. (2.14)

Performing certain quantum algorithms [22, 23] using N-qubit gates or a com-

bination of single - and two-qubit gates can lead to speed-ups compared to

classical computing. This is highly motivating to implement a quantum com-

puter. Di Vincenzo formulated criteria for a successful implementation of

quantum computing [24]. This includes the realisation of a qubit that is

long-lived, controllable and scalable. Qubits have been demonstrated in NMR

systems [25, 26], trapped ions [27, 28], photons [29, 30], and in electrical cir-

cuits [31].

2.3 Superconducting qubits

Superconducting qubits are fabricated on chip using well established lithog-

raphy techniques allowing for energy levels to be engineered. Multiple qubits

can be printed on one chip and integrated on a solid-state platform. This po-

tential scalability of superconducting qubits is one of their biggest advantages

over other systems. Another benefit of the superconducting circuit platform

is that the strong coupling regime can be easily achieved [32], since they are

operating in one-dimensional space.

There are several different approaches of implementing a qubit with su-

perconducting circuits [33, 34, 35, 31, 36, 37]. In most of them Josephson

junctions are used as a nonlinear element to provide anharmonicity.

2.3.1 Charge based qubits

The simplest design of a superconducting qubit, known as the Cooper pair

box (CPB), was first theoretically described by M. Büttinger [38] in 1987

and experimentally realised for the first time in 1997 by the NEC and Saclay

group [39, 40]. Quantum dynamics in the time domain of the Cooper pair box

was first observed by the NEC group in 1999 [31].
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The Cooper pair box consists of a superconducting island with capaci-

tance C connected to a reservoir of Cooper pairs through a Josephson junc-

tion. Cooper pairs can tunnel between the island and reservoir through the

Josephson junction. If a voltage gate Vg is added to the circuit capacitatively

through Cg, then the tunneling can be modulated. A typical Cooper pair box

is shown schematically in Fig. 2.4(a).

Figure 2.4: (a) Schematic circuit and (b) electrostatic energies of the Cooper pair
box (CPB).

The charging energy EC = 4e2/2(C + Cg) and the Josephson energy

EJℏIc/2e characterise the system’s Hamiltonian

H = EC(Nc −Ng)
2 − EJcos(δ) (2.15)

where NC is the integer number of pairs that tunnel through the junction and

Ng is an externally applied charge bias through the voltage gate Vg. Introduc-

ing the N̂ - and phase operator δ̂

N̂ =
∑
N

|N⟩ ⟨N | , (2.16)

eiδ̂ =
∑
N

|N + 1⟩ ⟨N | ,

e−iδ̂ =
∑
N

|N − 1⟩ ⟨N |
(2.17)

and expressing the cosine in the exponential form allows to rewrite the Cooper
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pair box Hamiltonian (eq. 2.15) to

H =
∑
N

[
EC(Nc −Ng)

2 |N⟩ ⟨N |−EJ

2

(
|N + 1⟩ ⟨N |+ |N − 1⟩ ⟨N |

)]
. (2.18)

In the charging regime EC >> EJ , Eq. 2.18 can be truncated to a two-level

system

H = −ϵ(Ng)σz −
EJ

2
σx (2.19)

where ϵ = Ec(Ng − 1/2) and the Pauli matrices σz = |0⟩ ⟨0| − |1⟩ ⟨1|,

σx = |0⟩ ⟨1|+ |1⟩ ⟨0| are defined in terms of the two basis states corresponding

to zero and one extra Cooper pair in the box. Figure 2.5 shows the energy

spectrum of the Cooper pair box for different ratios of EJ/EC . The transmon

Figure 2.5: Energy spectrum of the Cooper pair box for the ratio (a) EJ/EC = 0.1,
(b) EJ/EC = 4, and (c) EJ/EC = 50.

qubit [41, 42] is a Cooper pair box with a large capacitance in parallel to the

Josephson junction. This reduces the charging energy EC , such that the device

is operating in the flux regime EJ >> EC . As can be seen in Fig 2.5(c) the

energy bands become flat in this regime. This means the charge sensitivity

of the device is low, increasing coherence times of the qubit. However, an-

harmonicity is reduced in this regime (EJ >> EC) increasing the chance of

driving errors of the qubit.

2.3.2 The RF-squid

In the RF-squid the Josephson junction with capacitance C is connected

through a superconducting loop with inductance L as schematically shown

in Fig. 2.6(a). Compared to the CPB, the RF-squid has a large inductance,
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Figure 2.6: (a) Circuit diagram of the RF-Squid. (b) Energy spectrum of the first
four levels of the RF-squid with EL/h = 70 GHz, EJ/h = 30 GHz,
and EC/h = 100 GHz. (c-d) Potential of the RF-squid for δext = π
and δext/2π = 0.3 respectively with the first few energy levels.

whose energy EL is comparable to EJ and EC (which was neglected in the

CPB). The potential energy of the RF-squid is given by

U = −EJcos(δJ) +

(
Φ0

2π

)2
δ2L
2L

(2.20)

where the first term is associated with the energy stored in the Josephson

junction and the second term describes the inductive energy. Here δJ and

δL are the phase differences across the junction and inductance respectively.

Instead of a voltage gate in the CPB, the RF-squid is biased by an external

flux Φext such that ΦJ +ΦL = Φext. Recalling the flux-phase relation Φ = Φ0

2π
δ,

we can substitute δL = δext − δJ and EL =

(
Φ0

2π

)2
1
2L

into eq. 2.20 to obtain
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the full Hamiltonian

H = −Ec
∂2

∂δ2J
− EJcos(δJ) + EL(δext − δJ)

2, (2.21)

where the kinetic energy term Q2

2C
is expressed in terms of the phase difference

δJ across the junction by substituting Q = 2eN̂ , N̂ = −i ∂
∂δ

(eq. 2.10), and

EC = 4e2

2C
.

The potential has a parabolic shape with cosine oscillations and is gen-

erally asymmetric unless Φext = Φ0/2. At this point, the two lowest energy

levels are degenerate, and are symmetric (|+⟩) and anti-symmetric (|−⟩) com-

binations of the wavefunctions localised in each well. The energy splitting (∆)

between the the two states can be interpreted as the coupling through the

potential barrier between the two wells. Slightly detuned from Φext = Φ0/2 or

equally δext = π, the energy difference between the two lowest states (located

at δJ = 0 and δJ = 2π) can be defined as ϵ = E1 − E0 = 4πEL[δext − π] and

an approximate two-level Hamiltonian may be written

H ≈ − ϵ

2
σz −

∆

2
σx. (2.22)

Fig. 2.6(c-d) show the potential together with the first few energy levels, which

have been experimentally observed for the first time in 1999 [43].

2.3.3 The flux qubit

The flux qubit is based on the RF-squid and consists of a superconducting loop

interrupted by one [44], three [45] or four [32] Josephson Junctions (JJ). Al-

though these designs operate similarly, I will concentrate on the four-junction

flux qubit which I predominately work with. In this device, three JJs are made

identical to each other, while the fourth one, called α-junction, is a fraction

(α) smaller in the area overlap and has therefore smaller critical current than

the remaining three. The ratio of EJ

EC
>> 1 is typically much larger than unity.

This means that the magnetic flux (Φ) or the phase difference (δ) in the loop is
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the relevant quantum variable. The two lowest eigenstates of the flux qubit are

naturally expressed via superpositions of two states with persistent current, Ip,

circulating clockwise or counterclockwise in the loop. The qubit is represented

by a double-well potential, which is generally asymmetrical. The two states

are coupled by quantum-mechanical tunnelling of the phase difference through

the barrier separating the wells, giving rise to the superposition of the two

basis states.

Figure 2.7: Schematic circuit representation of a four junction flux qubit capaci-
tatively coupled through a capacitance Ck to a transmission line.

In electrical circuit theory it is useful to work with node fluxes Φi(t) =∫ t

∞ Vi(t
′)dt′ and node charges Qi(t) =

∫ t

∞ Ii(t
′)dt′ where each node i carries the

current Ii(t) and causes a voltage drop Vi(t). Most superconducting circuits

can be modelled by various combinations of capacitive and inductive elements.

Recalling the relation Φ = Φ0

2π
δ andQ = −2eN , each node can also be expressed

in terms of the superconducting phase δi and integer charge ni as indicated on

the schematic circuit representation of a 4-JJ flux qubit in Fig 2.7. Similar to

the RF-squid, the 4-JJ flux qubit is biased by an external flux Φext =
Φ0

2π
δext
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such that δext = δ01 + δ12 + δ23 + δ30 where eiδij = ei(δi−δj) are the phase

differences between the nodes. The total potential energy comes from all four

JJ’s

U = EJ [3 +α− cosδ01 − cosδ12 − cosδ23 −αcos(δext − δ01 − δ12 − δ23)]. (2.23)

The potential landscape of a 4-JJ flux qubit is shown in Fig. 2.8(a-b), in

which we can identify a double-well potential. The height of the potential

barrier is determined by α as shown in Fig. 2.8(c) while the external flux

Φext determines the shape of the potential as seen in Fig 2.8(d). When the

externally applied magnetic flux is half flux quantum, the double-well potential

becomes symmetrical, and the two eigenfunctions become symmetrical (|+⟩)

and asymmetrical (|−⟩) superpositions of the two basis states.

To calculate the energy levels of an arbitrary 4-JJ flux qubit that is cou-

pled capacitavely to the transmission line schematically shown in Fig. 2.7, the

Schrödinger equation has to be solved. We may start by writing down the

Hamiltonian H = T +U where U is the potential energy, that we have already

found (see eq. 2.23), and T = QV
2

is the electrostatic energy. It is useful to

construct a capacitance matrix

C =


C01 + C12 −C12 0

−C12 C12 + C23 −C23

0 −C23 C23 + C30 + Ck

 (2.24)

for the system that links a given integer number charge vector n⃗ with a po-

tential vector V⃗ via

n⃗ =
CV⃗

2e
, (2.25)

where

n⃗ =


n1

n2

n3

 , V⃗ =


V1

V2

V3

 , (2.26)
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Figure 2.8: Potential of four-JJ flux qubit U/EJ (a-b) for α = 0.7, δ23 = δ12
at δext = π, (c) for α ranging from 0.3 to 0.9 at δext = π where
δ = δ01 = δ12 = δ23, (d) for δ = δ01 = δ12 = δ23, α = 0.7 at δext/2π
ranging from 0.3 to 0.7.

since the charge can be expressed in terms of the number of Cooper pairs

tunnelling from one node to another Q = 2en⃗ or in terms of the charge on a

capacitor Q = CV⃗ . The kinetic energy term can then be written as

T =
QV

2
=

1

2
(2en⃗T )(2eC−1n⃗) (2.27)

leading to the full 4-JJ flux qubit Hamiltonian

H =
1

2
(2e)2n⃗TC−1n⃗+EJ [3+α−cosδ01−cosδ12−cosδ23−αcos(δext−δ01−δ12−δ23)].

(2.28)

To solve the Schrödinger equation H |Ψ⟩ = E |Ψ⟩, it is instructive to rewrite
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the Hamiltonian (eq. 2.28) in the charge basis n

H =
4e2

2

∞∑
n1,n2,n3

−→n TC−1−→n |n1, n2, n3⟩ ⟨n1, n2, n3|

− EJ

2

∞∑
n1,n2,n3

[
|n1 − 1, n2, n3⟩ ⟨n1, n2, n3|+ |n1 + 1, n2, n2⟩ ⟨n1, n2, n3|

+ |n1 + 1, n2 − 1, n3⟩ ⟨n1, n2, n3|+ |n1 − 1, n2 + 1, n3⟩ ⟨n1, n1, n3|

+ |n1, n2 + 1, n3 − 1⟩ ⟨n1, n2, n3|+ |n1, n2 − 1, n3 + 1⟩ ⟨n1, n2, n3|

+ |n1, n2, n3 + 1⟩ ⟨n1, n2, n3 − 1| ⟨n1, n2, n3|
]

(2.29)

where I have used the N̂ - (eq. 2.16) and phase operators (eq. 2.17) to express

the cosine terms in exponential form. The Hamiltonian (eq. 2.29) in matrix

form is

H =



. . .
...

...
...

...
...

...
...

· · · T (−1, 0, 0) −EJ

2
0 −EJ

2
0 0 0 · · ·

· · · −EJ

2
T (0,−1, 0) 0 −EJ

2
0 0 0 · · ·

· · · 0 −EJ

2
T (0, 0,−1) −αEJ

2
−EJ

2
0 0 · · ·

· · · −EJ

2
−EJ

2
−αEJ

2
T (0, 0, 0) −αEJ

2
−EJ

2
−EJ

2
· · ·

· · · 0 0 0 −αEJ

2
T (0, 0, 1) −EJ

2
0 · · ·

· · · 0 0 0 −EJ

2
−EJ

2
T (0, 1, 0) 0 · · ·

· · · 0 0 0 −EJ

2
0 0 T (1, 0, 0)

...
...

...
...

...
...

...
. . .


(2.30)

where the diagonal terms are T (n1, n2, n3) =
4e2

2

∑∞
n1,n2,n3

−→n TC−1−→n |n1, n2, n3⟩ ⟨n1, n2, n3|.

To calculate the eigenenergies for an arbitrary four-JJ flux qubit numerically,

we need to truncate the Hamiltonian to a finite size with number of charge

states Nch. This corresponds to summing up to Nch instead of infinity in

eq. 2.29. The diagonal terms can be simplified by noting that three JJ are

equal, and therefore have equal capacitances such that CJ = C01 = C12 = C23,
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whereas the fourth JJ is by α smaller in overlap and therefore its capacitance

is by α smaller, such that C30 = αCJ . Fig. 2.9 shows the numerically sim-

Figure 2.9: (a) First three energy bands and (b) first transition energy of a 4-JJ
flux qubit with EJ/h = 50GHz, CJ = 5fF , α = 0.5 as a function of
external flux numerically simulated in Matlab.

ulated energy levels and the transition energy f12 of a 4-JJ flux qubit with

EJ/h = 50GHz, CJ = 5fF , α = 0.5 as a function of external flux. At

Φext/Φ0 = 0.5, where the double-well potential is symmetric, the splitting of

the energy levels of the ground and first excited state is ω0. Away from the

degeneracy point (Φext/Φ0 ̸= 0.5), the energy difference is δE = ℏ
√
ω2
0 + ϵ2

where ϵ = 2Ip
ℏ (Φext − Φ0

2
) is the energy bias controlled by the external flux

and proportional to the persistent current Ip in the flux qubit loop. If the

qubit parameters are chosen such that the excitation energies of the third and

higher eigenstates are much larger than δE, the Hamiltonian can be truncated

to a two-level system H = δE
2
σz =

ℏωa

2
σz where ωa =

√
(ω2

0 + ϵ2) is the atomic

transition frequency.

2.4 Artificial atoms

From the previous sections, we have learned that the energy bands of super-

conducting qubits can be engineered by tuning their design parameters, such

as the charging energy EC , the Josephson energy EJ , or the difference in junc-

tion overlap α for example. This means that we not only can fabricate an

effective two-level system, but in fact can also engineer multi-level systems us-
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ing superconducting circuits. For this reason, these superconducting circuits

are often called artificial atoms.

2.5 Quantum dynamics of open systems

Quantum dynamics of any isolated or closed system is governed by unitary

evolution of the Schrödinger equation. Here, however, we are interested in

the quantum dynamics of an atom that is not isolated but in open space or

equivalently an artificial atom coupled to a one-dimensional transmission line.

2.5.1 The transmission line

A microwave transmission line can be treated as a perfectly conducting wire

with inductance per unit length l and capacitance per unit length c as shown

in Fig. 2.10. At position x and time t, there are left- and right- propagating

Figure 2.10: Schematic circuit representation of a transmission line modelled as a
chain of inductances L and capacitances C.

voltage and current modes in the transmission line

V±(x, t) = V0e
±ikx−iωt,

I±(x, t) = I0e
±ikx−iωt,

(2.31)

which are related to each other via the complex impedance Z± =

V±(x, t)/I±(x, t). Substituting eqns. 2.31 into the Telegraphers equations

∂V

∂x
= −l ∂I

∂t
,

∂I

∂x
= −c∂V

∂t
,

(2.32)
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we can see that Z0 =
√
l/c and differentiating eq. 2.32 leads to

∂2V

∂x2
=

1

1/lc

∂2V

∂t
, (2.33)

where 1/
√
lc is the wave phase velocity. If we ground one end of the trans-

mission line (x = 0), we can impose the boundary condition I(0, t) = 0 and

arrive to the analog of a mirror in open space. A microwave resonator can be

created by introducing two gaps in the transmission line (x = 0, x = L) with

boundary conditions I(0, t) = I(L, t) = 0.

2.5.2 The density matrix formalism

In open systems, the atom constantly interacts with the quantum fluctuations

of the environment. Due to these interactions the quantum system may become

entangled with the environment and therefore the density matrix formalism is

required. A general density operator of a system consisting of n states |ψj⟩

with probability pj can be written

ρ =
n∑
j

pj |ψj⟩ ⟨ψj| , (2.34)

or in terms of an orthonormal basis vectors |ϕj⟩

ρ =
∑
j,k

ρj,k |ϕj⟩ ⟨ϕk| (2.35)

where ρj,k = ⟨ϕj| ρ |ϕk⟩ are the matrix elements of the matrix representation.

The density matrix evolves under unitary transformations (ρ(t) = U(t)ρU(t)†).

Every density operator ρ is hermitian (ρ = ρ†), has unit trace (Tr(ρ) = 1), and

is a positive operator (ρ ≥ 0). Using the density matrix formalism the expec-

tation value for an operator Ô is given by ⟨Ô⟩ =
∑
Tr(Ôρ). The formalism

also classifies pure and mixed states. Taking the trace of the squared density

matrix is a measure of purity. For pure states Tr(ρ2) = 1, while for mixed
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states Tr(ρ2) < 1. Calculating the expectation values of the Pauli matrices

⟨σz⟩ = Tr(σzρ) = ρ00 − ρ11,

⟨σx⟩ = ρ01 + ρ10,

⟨σy⟩ = i(ρ01 − ρ10),

⟨σ+⟩ =
⟨σx⟩+ i⟨σy⟩

2
= ρ10,

⟨σ−⟩ =
⟨σx⟩ − i⟨σy⟩

2
= ρ01,

(2.36)

helps to understand the link to the Bloch sphere (Fig. 2.3), that was introduced

in section 2.2. Since every density operator has unit trace, we can express

ρ00 =
1 + ⟨σz⟩

2
,

ρ11 =
1− ⟨σz⟩

2
.

(2.37)

The density matrix may also be expressed in terms of the Bloch vector r⃗,

ρ =
I+ r⃗ · σ⃗

2
, (2.38)

with |r⃗| ≤ 1. Then any point on the surface of the Bloch sphere (|r⃗| = 1)

represents a pure state |ψ⟩ while any vector within the Bloch sphere (r⃗ < 1)

represents a mixed state.

2.5.3 The master equation

One method to treat open quantum systems is the master equation approach,

which assumes a Markovian evolution. This means that the evolution of the

system only depends on its reduced state at time t. From the definition of the

derivative

ρ̇(t) = lim
δt→0

ρ(t+ δt)− ρ(t)

δt
, (2.39)

and in the limit of δt→ 0

ρ(t+ δt) = ρ(t) + ρ̇(t)δt, (2.40)
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which shows that an evolution in the form of eq. 2.40, only depends on ρ(t),

the state of the system immediately before. Such type of evolution is called

Markovian. To derive the master equation, we also assume that the transfor-

mation from ρ(0) to ρ(δt) has a Kraus decomposition and the derivative of the

density matrix can be written as

ρ(δt) =
∑
j

Kj(δt)ρ(0)K
†
j (δt). (2.41)

Comparing ρ(δ) = ρ(0) + δtρ̇(0) with eq. 2.41, it can be seen that for them

to be equal the one Kraus operators must be of the form K0 = I + δA and

the remaining of the form Kj =
√
δtLj where A and Lj are linear operators.

Substituting these Kraus operators into eq. 2.41 and neglecting higher order

terms gives

ρ(δt) = ρ(0) + δt

(
Aρ(0) + ρ(0)A† +

∞∑
j+1

Ljρ(0)L
†
j

)
. (2.42)

Comparing eq. 2.42 with ρ(δ) = ρ(0) + δtρ̇(0), we can read off an expression

for ρ̇(0). If we assume the evolution is constant in time and decomposing the

operator A into A = − i
ℏH +M where H and M are Hermitian, we can find

an expression for

M = −1

2

∞∑
j=1

L†
jLj, (2.43)

and rewrite eq. 2.42

ρ̇(t) = − i

ℏ
[Heff , ρ(t)] +

∞∑
j=1

L†
jLj, (2.44)

where Heff = H − iℏ
2

∑∞
j=1 L

†
jLj. This is the Markovian master equation in

Lindblad form. If Lj = 0, then eq 2.44 reduces to the Von Neumann equation

(ρ̇ = − i
ℏ [H, ρ(t)]) which describes the evolution of an isolated system. There-

fore, Heff can be interpreted as the Hamiltonian representing the system alone,

without any interaction, and Lj operators (or jump operators) describe pro-
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cesses associated with the interaction with the environment, such as relaxation

Γ1 and dephasing Γ2.

2.5.3.1 Two-level atom interacting with a classical field

We may rewrite the master equation (eq. 2.44)

ρ̇(t) = − i

ℏ
[H, ρ(t)] + L[ρ], (2.45)

and start by writing down the Hamiltonian of a two-level system with a clas-

sical interacting field H = Ha+Hint where Ha is the time-independent Hamil-

tonian of the atom and Hint is the time-dependent atom field interaction. As

we have shown before in eq 2.21, the Hamiltonian of a two-level system is

Ha = ℏωa

2
σz where ωa is the atomic transition frequency. We consider the

atom interacting with a sinusoidal field, and write the interaction Hamiltonian

in the dipole approximation as Hint = ℏΩcos(ωt−ϕ)σx. The total Hamiltonian

is given by

H = −ℏωa

2
σz +

ℏΩ
2
σx

(
e−i(ϕ−ωt) + ei(ϕ−ωt)

)
. (2.46)

Applying a unitary transformation U(t) = exp[−iωt/2] to the Hamiltonian

H ′ = UHU † − iℏUU̇ † (2.47)

and removing all fast oscillating terms leads to the Hamiltonian in the rotating

wave approximation (RWA)

H =
ℏδω
2
σz +

ℏΩ
2
(σ+e

iϕ + σ−e
−iϕ), (2.48)

where the detuning is defined as δω = ω − ωa.

If a two-level atom is excited it will inevitably relax from the excited state

to the ground state after some time T1 = 1/Γ1 (relaxation time), causing ρ00

to increase and ρ11 to decrease. The probability of the system being in an

excited state decays exponentially with time as exp(−t/T1). The dephasing

time T2 = 1/Γ2 is the time over which information of the phases are lost.
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Here, relaxation rate Γ1 and dephasing rate Γ2 are in units of s−1. The jump

operators of a two-level system can therefore be written as

L[ρ] =

 Γ1ρ11 −Γ2ρ01

−Γ2ρ10 −Γ1ρ11

 . (2.49)

Finally, we have arrived to the master equation for a two-level atom in-

teracting with a classical field (eq. 2.45) with the Hamiltonian in the rotating

wave approximation ( 2.48) and Lindblad operator (eq. 2.49).

2.5.4 The Bloch equations

We have now seen how to obtain a master equation for a two level system

interacting with a classical field. The Bloch equations, that were first developed

for a spin 1/2 particle in a magnetic field [46], are a method for analysing the

master equation.

Computing the evolution of the expectation values of the Pauli matrices

∂⟨σ⟩
∂t

= Tr[σρ̇] = Tr

[
− i

ℏ
σ[H, ρ] + σL

]
(2.50)

for H = ℏΩ
2

(
σ+eiϕ + σ−e−iϕ

)
, and L = Γ1ρ11σz − Γ2ρ01σ

− − Γ2ρ10σ
+ leads to

the equations of the form

∂⟨σx⟩
∂t

= −Γ2(ρ01 + ρ10) + (ρ00 − ρ11)Ω sin(ϕ)

= −Γ2⟨σx⟩ − Ωsin(ϕ)⟨σz⟩
∂⟨σy⟩
∂t

= −iΓ2(ρ01 − ρ10)− (ρ00 − ρ11)Ω cos(ϕ)

= −Γ2⟨σy⟩ − Ωcos(ϕ)⟨σz⟩
∂⟨σz⟩
∂t

= −(ρ01 + ρ10)Ω sin(ϕ) + i(ρ01 − ρ10)Ω cos(ϕ) + 2Γ1ρ11

= Ωsin(ϕ)⟨σx⟩+ Ωcos(ϕ)⟨σy⟩ − Γ1⟨σz⟩ − Γ1

(2.51)

where the relation between the Pauli matrices and elements of the density

matrix (see eq. 2.36) have become useful. Eqns. 2.51 are called the optical
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Bloch equations and can be expressed more compactly as

dσ⃗

dt
= Bσ⃗ + b⃗ (2.52)

where

B =


−Γ2 0 −Ω sinϕ

0 −Γ2 −Ωcosϕ

Ω sinϕ Ωcosϕ −Γ1

 , b⃗ =


0

0

−Γ1

 , σ⃗ =


⟨σx⟩

⟨σy⟩

⟨σz⟩

 .

We can find the general solution by substituting the Ansatz (σ⃗ = eBtA⃗) into

the Bloch equation

∂

∂t
(eBtA⃗) = BeBtA⃗+ b⃗

BeBtA⃗+ eBt ˙⃗A = BeBtA⃗+ b⃗

eBt ˙⃗A = b⃗

(2.53)

and integrating yields A⃗ = −B−1e−Bt⃗b+ c⃗ where c⃗ is a constant of integration.

Substituting A⃗ into the Ansatz gives σ⃗ = −B−1⃗b+ eBtc⃗. To find an expression

for the constant of integration c⃗, we choose t = 0 and obtain c⃗ = σ⃗0 + B−1⃗b

giving the solution

σ⃗ = −B−1⃗b+ eBt(σ⃗0 +B−1⃗b). (2.54)

The vector σ⃗ can be represented on the Bloch sphere. States |0⟩, |1⟩ corre-

spond to σ⃗ = {0, 0, 1}, σ⃗ = {0, 0,−1} respectively and any maximally super-

posed state (ρ00 = ρ11) corresponds to σ⃗ = {sinϕ, cosϕ, 0}, where the phase ϕ

controls the axis of rotation, i.e. ϕ = 0 (ϕ = π/2) causes rotations around σx

(σy)-axis.

Fig. 2.11 shows the time evolution of a two-level atom, initially in its

ground state |0⟩, under a resonant drive with amplitude Ω and phase ϕ = 0

resulting in the state rotating around the σx-axis. In Fig. 2.11(a), we see that

the state is oscillating with time. These oscillations are called Rabi oscillations.
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Figure 2.11: Evolution of a two-level atom (Γ2 = Γ1/2 = 0.5 arb. u.), initially in
its ground state σ⃗0 = {0, 0, 1}, under a resonant drive with amplitude
Ω = 8 arb. u. and phase ϕ = 0. a) Rabi oscillations. σ⃗x,σ⃗y,σ⃗z as
a function of time. b) Evolution visualised on the Bloch sphere. c)
Evolution as a function of σz and σy.

2.5.5 Quantum regression theorem

With the master and Bloch equations we can calculate single time-dependent

expectation values. However, to obtain products of operators evaluated at two

different times a solution of the density matrix is generally insufficient. We are

particularly interested in first- and second-order correlation functions since

they are needed to calculate the spectrum of the field and give insight into

photon statistics respectively. In the Markovian approximation, the quantum

regression theorem, attributed to Lax [47, 48], allows to determine the two-time

correlation function from a single-time correlation function. In other words, it

can be shown that the Bloch equations, i.e. the equations of motion for expec-

tation values of system operators (one-time averages), are also the equations of

motion for correlation functions (two-time averages). The quantum regression

theorem states, that if expectation values of the column vector of operators
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⟨Â⟩ obey a set of linear equations coupled through the evolution matrix M

⟨ ˙̂A⟩ = M⟨Â⟩, (2.55)

then, it can be shown for τ ≥ 0

d

dτ
⟨Ô1(t)Â(t+ τ)⟩ = M⟨Ô1(t)Â(t+ τ)⟩,

d

dτ
⟨Â(t+ τ)Ô2(t)⟩ = M⟨Â(t+ τ)Ô2(t)⟩,

d

dτ
⟨Ô1(t)Â(t+ τ)Ô2(t)⟩ = M⟨Ô1(t)Â(t+ τ)Ô2(t)⟩,

(2.56)

where Ô(t) can be any system operator. A derivation of the quantum regression

theorem can be found in textbooks [49, 50].

2.5.6 Emission spectra

With the quantum regression theorem in hand, and following the procedure

of optical spectra calculations in textbooks [49, 50], we can now calculate the

spectrum

S(ω) =
1

2π

∫ +∞

−∞
⟨V̂ −(0)V̂ +(τ)⟩sseiωτdτ, (2.57)

of our specific system, a capacitatively coupled artificial two-level atom. The

spectrum eventually decomposes into a coherent and incoherent part

S(ω) = Scoh(ω) + Sinc(ω). (2.58)

First we need to define Voltage operators V̂ . We consider a flux qubit

capacitatively coupled to a one-dimensional transmission line (at x = 0) and its

dipole interaction with the external field of incident wave V0(x, t) = V0e
(ikx−iωt)

(where ω is the frequency and k is the wavenumber). The artificial atom

scatters waves in both directions Vsc(x, t) = Vsce
(ik|x|−iωt) and the net wave

in the transmission line V (x, t) = (V0e
ikx + Vsce

ik|x|)e−iωt satisfies the one-
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Figure 2.12: Schematic of an artificial atom coupled through a capacitance Ck to
a 1-D transmission line. The incident wave indicated by the green
arrow is scattered in both directions (red arrows).

dimensional wave equation

∂2V

∂x2
− 1

v2
∂2V

∂t2
= lδ(x)

∂2⟨Q⟩
∂t2

(2.59)

where v = 1/
√
lc is the wave phase velocity with inductance l and capacitance

c per unit length. Note the resemblance of eq. 2.59 to the wave equation

introduced in sec. 2.5.1. The only difference is the term on the right hand side

of eq. 2.59, that appears due to the induction of current oscillating in the loop

under the external drive. Integrating both sides with respect to x

∂V

∂x
= lδ(x)

∂2⟨Q⟩
∂t2

2ik
Vsc
2

= −lω2qp⟨σ−⟩
(2.60)

where qp is the matrix transition element due to induced charge (playing the

role of atomic polarisation), substituting l = Z0k/ω where Z0 is the impedance

of the transmission line (here 50Ω), and assuming that the relaxation of the

two-level atom, Γ1 = ωZ0q
2
p/ℏ, is solely caused by the quantum noise of the

transmission line as derived in sec. 2.5.7, we rearrange eq. 2.60 to obtain

V ±
sc (x, t) = i

ℏΓ1

qp
⟨σ∓⟩eik|x|−iωt. (2.61)
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and the operator

V̂ ±
sc (x, t) = i

ℏΓ1

qp
σ∓eik|x|−iωt. (2.62)

follows. Here, we have explicitly derived the expression for the scattered waves

for the case of capacititatively coupled qubits. For qubits coupled through

mutual inductance, the expression for the scattered waves has already been

derived in reference [32]. Substituting eq. 2.62 into eq. 2.57 gives

S(ω) =
ℏωZ0Γ1

2π

∫ +∞

−∞
⟨σ−(0)σ+(τ)⟩sseiωτdτ, (2.63)

where ⟨σ+(0)σ−(τ)⟩ss = lim
t→∞

⟨σ+(t)σ−(t + τ)⟩ and the subscript (ss) of the

correlator denotes the stationary solution. From the solutions of the Bloch

equations (eq. 2.52), we see that the atom with initial state σ⃗0 = {0, 0, 1}

decays into the steady state

⟨σ∓⟩ss = ±ie
∓iϕ

2

Γ1Γ2Ω

Γ1Γ2
2 + Γ2Ω2

,

⟨σz⟩ss = − Γ1Γ2

Γ1Γ2 + Ω2
.

(2.64)

Fluctuations away from this steady state are described by the operators

∆σ∓ = σ∓ − ⟨σ∓⟩ss,

∆σz = σz − ⟨σz⟩ss,
(2.65)

and by introducing these fluctuations in operators σ±, we expand Eq. 2.63 to

S(ω) =
ℏωZ0Γ1

2π

∫ +∞

−∞
(⟨σ+⟩ss⟨σ−⟩ss + ⟨∆σ+(0)∆σ−(τ)⟩ss)eiωτdτ, (2.66)

where the first term describes the coherent, and the second term the incoherent

part of the spectrum. Using the steady state solutions to the Bloch equations
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(eq. 2.64) it is straightforward to calculate the coherent spectrum

Scoh(ω) =
ℏωZ0Γ1

2π

∫ +∞

−∞
⟨σ+⟩ss⟨σ−⟩sseiωτdτ

=
ℏωZ0Γ1

4

(
Γ1Γ2Ω

Γ1Γ2
2 + Γ2Ω2

)2

δ(ω − ωa).

(2.67)

To calculate the incoherent part of the spectrum

Sinc(ω) =
ℏωZ0Γ1

2π

∫ +∞

−∞
⟨∆σ+(0)∆σ−(t)⟩sseiωtdt, (2.68)

we need to solve for ⟨∆σ+(0)∆σ−(t)⟩ss using the Bloch equations and the

quantum regression theorem. We may start by deriving the set of linear equa-

tions

⟨⃗̇s⟩ = M⟨s⃗⟩+ m⃗ (2.69)

from the master equation as we did in sec. 2.5.4 or find a matrix to the pre-

viously derived Bloch equations ( 2.52) that converts to the frame where the

vector of operators is s⃗ = {σ−, σ+, σz}, such that

M =


−Γ2 0 Ω

2
ieiϕ

0 −Γ2 −Ω
2
ie−iϕ

iΩeiϕ −iΩe−iϕ −Γ1

 , m⃗ =


0

0

Γ1

 .

Since, we are interested in the fluctuations away from the steady state, we

replace the vector of operators in eq. 2.69

⟨∆⃗̇s⟩ = M⟨∆s⃗⟩, (2.70)

and according to the quantum regression theorem

d

dτ
⟨∆σ+(0)∆s⃗(τ)⟩ss = M⟨∆σ+(0)∆s⃗(τ)⟩ss. (2.71)
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The initial conditions (τ = 0) are given by


⟨∆σ+∆σ−⟩ss
⟨∆σ+∆σ+⟩ss
⟨∆σ+∆σz⟩ss

 =


(σ+ − ⟨σ+⟩ss)(σ− − ⟨σ−⟩ss)

(σ+ − ⟨σ+⟩ss)(σ+ − ⟨σ+⟩ss)

(σ+ − ⟨σ+⟩ss)(σz − ⟨σz⟩ss)



=


1
2
(1 + ⟨σz⟩)− ⟨σ+⟩ss⟨σ−⟩ss

−⟨σ+⟩2ss
−⟨σ+⟩ss(1 + ⟨σz⟩ss)


(2.72)

since σ+σ− = 1
2
(1+σz), and σ

+σz = −σ+. The correlation we’d like to solve is

the first component of the vector ⟨∆σ+(0)∆s(τ)⟩ss. Substituting the solutions

of the one-time averages (eq. 2.64), we obtain

⟨∆σ+∆s⟩ss =
1

2

Y 2

(1 + Y 2)2


1 + Y 2 + 1

2
( e

iϕΩY
Γ2

)2

1
2
( e

iϕΩY
Γ2

)2

ieiϕΩY 2

Γ2

 , (2.73)

where Y = Ω/
√
Γ1Γ2 and eq. 2.71 can be solved

⟨∆σ+(0)∆s(τ)⟩ss = ⃗V −1 exp (Λt)V⟨∆σ+∆s⟩ss (2.74)

where Λ = VMV−1 is a diagonal matrix containing the eigenvalues of M, and

the matrix V is formed from the eigenvectors of M.

The shape of the incoherent spectrum (eq. 2.68) behaves drastically dif-

ferent depending on the strength of the drive and it is therefore usually solved

for either the weak or strong regime. In the strong driving limit (Ω >> Γ1),

the spectrum consists of three Lorentzian components,

Sinc(ω) ≈
1

2π

ℏωΓ1

8

(
γs

(δω + Ω)2 + γ2s
+

2γc
δω2 + γ2c

+
γs

(δω − Ω)2 + γ2s

)
(2.75)

where γc = Γ2 and γs = (Γ1 + Γ2)/2 [32]. In literature it is often referred

to as the resonance fluorescence or Mollow triplet, named after B. R. Mollow
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who first calculated the power spectrum of light scattered by two level systems

in 1969 [51]. In 1975, it was experimentally observed for the first time in an

atomic beam of sodium [52] and more recently in artificial atoms [53, 32].

Eq 2.75 is the spectral density in one of the two directions (see Fig. 2.12)

under strong drive and was published in reference [32].

2.5.7 Relaxation

Relaxation is a process which results in the de-excitation of the artificial atom.

Fluctuations in some environmental parameter M (such as the flux Φ or voltage

V ), can be treated as a perturbation to the qubit Hamiltonian. The noise that

leads to relaxation occurs at the qubit frequency ωq. To find the relaxation

rate, we take the two-level atom in its excited state and look at the decay into

the ground state. The derivation of the relaxation rate below is based on [54].

Relaxation can be induced by a number of noise processes, including flux

fluctuations, quasiparticle tunnelling, and dipolar radiation. However, for the

artificial atom where the environment is usually carefully impedance matched

(usually to 50Ω) the most dominant noise process is due to voltage noise. We

may write the perturbation U due to voltage noise V (t) as

U = qpV (t)σx, (2.76)

where qp is the dipole moment that couples the field amplitude V (t) and the

driving amplitude Ω according to ℏΩ = qpV . Strictly speaking V (t) is a

quantum operator, however, here for simplicity, we may treat it as a classical

variable. We express the state of our two-level artificial atom as

|ψ(t)⟩ =

 α0(t)

α1(t)

 . (2.77)

First-oder time-dependent perturbation theory in the interaction picture gives

|ψI(t)⟩ = |ψ(0)⟩ − i

ℏ

∫ t

0

V (τ) |ψ(0)⟩ dτ. (2.78)
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Suppose the two-level atom is prepared in its excited state, then the amplitude

to find it in the ground state at time t is

α0 ≈ − iqp
ℏ

∫ t

0

⟨0| qpV (τ)σx |1⟩ dτ

≈ − iqp
ℏ

∫ t

0

V (τ)e−ω10tdτ.

(2.79)

where we have used the fact that the wavefunction of state |1⟩ evolves with

phase e−iω10t. Then the probability to find the two-level atom in the ground

state is

p0(t) ≡ |α0|2 =
q2p
ℏ2

∫ t

0

∫ t

0

e−iω10(τ1τ2)V (τ1)V (τ2)dτ1dτ2 (2.80)

and since we only need to consider the average time evolution of the system,

we find

p̄0(t) ≈
q2p
ℏ2

∫ t

0

∫ t

0

e−iω10⟨V (τ1)V (τ2)⟩dτ1dτ2. (2.81)

Changing variables in the integrals, τ = τ1 − τ2 and T = (τ1 + τ2)/2, yields

p̄0(t) ≈
q2p
ℏ2

∫ t

0

∫ B(T )

−B(T )

⟨V (T − τ/2)V (T + τ/2)⟩e−iω10τdτdT (2.82)

where

B(T ) = T if T < t/2

= t− T if T > t/2.
(2.83)

Assuming that the noise correlation function is time translation invariant and

has a finite but small autocorrelation time τf , we can set the integration bound

B(T ) to infinity giving

p̄0(t) ≈
q2p
ℏ2

∫ t

0

∫ B(T )

−B(T )

⟨V (0)V (τ)⟩e−iω10τdτdT. (2.84)
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Introducing the zero-temperature voltage spectral density

SV (ω) =

∫ +∞

−∞
eiωτ ⟨V (t)V (0)⟩dτ, (2.85)

we find the probability to be in the ground state increasing linearly with time,

p̄0(t) ≈
q2p
ℏ2
SV (ω10)t. (2.86)

The time derivative of the probability gives the transition rate

Γ1 =
q2p
ℏ2
SV (ω10). (2.87)

It is known that the voltage quantum noise from the effective impedance Z is

SV (ω) = 2ℏωZ = ℏωZ0, (2.88)

where Z0 is the characteristic impedance of the transmission line (usually

matched to 50Ω) [54], and the relaxation rate is thus given by

Γ1 =
q2pω10Z0

ℏ
. (2.89)

2.5.8 Dephasing

In the Bloch sphere visualisation, dephasing or decoherence corresponds to

the length of the Bloch vector shortening in the longitude direction, i.e. on

the equatorial plane, and can therefore also be interpreted as the decay of

off-diagonal density matrix elements. The off-diagonal elements of a density

matrix must obey |ρ01|2 ≤ ρ00ρ11 where equality is reached for pure states

only. Relaxation causes ρ00 to increase, ρ11 to decrease, and the coherence to
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decrease. We may write

δ|ρ01| ≤
√
ρ00(ρ11 + δρ11)−

√
ρ00ρ11

≤ √
ρ00ρ11(

√
1− Γ1dt− 1)

≈ √
ρ00ρ11(−

Γ1

2
dt)

≈ −|ρ01|
Γ1

2
dt

(2.90)

where we have used δρ11 = −ρ11Γ1dt. This means that the decay of the off-

diagonal terms cannot be slower than Γ1/2. However, other processes also

contribute to dephasing. In particular, low-frequency noise interacting with

the qubit will result in fluctuations to the qubit transition frequencies. The

dephasing rate therefore decomposes into two parts

Γ2 = Γ1/2 + Γϕ (2.91)

where Γ1 is the relaxation rate and Γϕ is the pure dephasing rate [55]. Sources

that may contribute to the pure dephasing rates are charge and flux fluctu-

ations. Noise and decoherence in superconducting qubits have been studied

theoretically [56, 57, 55, 58] and experimentally [59, 55, 60].

To measure relaxation and dephasing rates, several single [61] and mul-

tipulse [62, 63] techniques have been established within the field of nuclear

magnetic resonance (NMR) [63] that can be used in experiments with super-

conducting qubits [64].

For example, to determine the relaxation rate Γ1 in an experiment, one

needs to measure population. Preparing the atom in the excited state by a

π-pulse brings the pseudospin to the z-axis of the Bloch sphere. After a time

delay, during which the population of the atom decays, a π/2-pulse is applied

rotating the pseudospin from the z- to the y-axis. Then, the emission can be

measured as function of the time delay and can be fit with an exponential

decay to obtain the relaxation rate.

The dephasing rate Γ2 is related to the linewidths of the atom. Applying
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a π/2-pulse brings the pseudospin onto the y-axis of the Bloch sphere. The

emission decays exponentially with time determining the dephasing rate.

The technique presented above, which allows to separately measure Γ1

and Γ2, has been carried out experimentally in [64].



Chapter 3

Experimental principles

3.1 Sample design considerations

Prior to fabrication the behaviour of a flux qubit is numerically simulated

using Matlab to facilitate the choice of design parameters. For details of the

numerical simulations refer to section 2.3.3. The inputs of the Matlab script

are the charging energy EC and the Josephson energy EJ of a single Josephson

junction, the fraction α smaller the α-junction is in area overlap compared to

the standard junction, and the coupling constant.

The charging energy is given by

EC =
(2e)2

C
, (3.1)

where C is the junction capacitance and mainly depends on the geometry of

the circuit. The junction can be modelled as a parallel plate capacitor with

area A, separation d, and capacitance C = ϵϵ0A/d where ϵ0 is the permittivity

of space and ϵ is the relative permittivity of the dielectric material between the

plates (here ϵ ≈ 10 for aluminium oxide). Thus, the typical capacitance for a

junction size of 100 × 100 nm2 with dielectric thickness d ≈ 2 nm is 0.5 fF.

Our standard sized junction is 200 × 800 nm2 resulting in a charging energy

for a single junction of EC/ℏ ≈ 19 GHz.
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The maximal Josephson energy,

EJ =
Ic
2π
ϕ0, (3.2)

is directly proportional to the critical current, Ic, where ϕ0 = h
2e

is the flux

quantum. The critical current is described by [65]

IcRn =
π∆(T )

2e
tanh

(∆(T )

2kBT

)
, (3.3)

where Rn is the normal resistance of the Josephson junction. As the temper-

ature goes to zero, equation 3.3 simplifies to IcRn = π∆
2e
. Substituting this

relation into equation 3.2 gives

EJ =
Rq

Rn

∆(0)

2
(3.4)

where Rq = h
4e2

≈ 6.4 kΩ is the quantum resistance. Since the normal re-

sistance of the Josephson junction depends on the oxygen pressure and the

oxidation time during the formation of the tunnelling barrier, the oxidation

process has to be fine tuned. Figure 3.1 shows the resistance of multiple test

tunnel junctions normalised to our standard area of 200× 800 nm2 that have

been oxidised for 10 minutes under different oxygen pressures at room temper-

ature. Note that the charging energy is not sensitive to small changes in the

thickness of the dielectric whereas the junction resistance, and therefore the

Josephson energy is.

Fig. 3.4 shows an example of a sample chip design featuring seven flux

qubits coupled to the transmission line via interdigitated capacitors. Since the

width of the transmission line on chip, between the bonding pads, is smaller

than the wavelength, it works as a point contact and we can therefore choose

its width and length arbitrarily. The only formal requirement is that the trans-

mission line on chip should have less inductance than the transmission line off

chip, i.e. ZL = |iωL| << Z0. From the numerical simulations, we know the
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desired coupling capacitance. To translate the desired capacitance value into

the geometry of the interdigitated capacitance, we follow the analytical model

presented in [66]. The interdigitated capacitance depends on the dielectric per-

mittivity of the materials, the finger length and width, the gap width between

fingers and the number of fingers.

Figure 3.1: Normal resistance RN (normalised to a junction area of 200×800 nm2)
of several Al/Al2O3/Al Josephson junctions plotted against oxygen
pressure. All test tunnel junction were oxidised for 10 minutes under
different oxidation pressures at room temperature. The variation of
the thickness distribution of Al/AlOx/Al tunnel junctions with oxygen
pressure and oxidation time has been studied in [2, 3].

3.2 Fabrication

Qubit fabrication is a key element in all experiments presented in this thesis.

Reliability and reproducibility can only be achieved with a robust and care-

fully conducted fabrication process. All samples presented in this thesis were

fabricated in the clean room facilities at Royal Holloway, University of London.

We usually start with a 2- or 3-inch wafer (undoped Silicone or Sapphire).

The production of a nano-electronic device on this wafer often requires several
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lithography steps. Lithography is a process that patterns part of the surface of

the substrate. These patterns are subsequently used to define metal structures

or etched areas to gradually build the device up.

In our devices, we use both photolithography and electron-beam lithogra-

phy, where light or electrons pattern the substrate respectively. The smallest

feature we can pattern with our photolithograph (limited by its wavelength and

tooling factor) is ∼ 4 µm and it is therefore used for patterning metal contacts

for bonding, ground planes, and markers for subsequent electron-beam lithog-

raphy. Photolithography acts as bridge connecting nano-sized to macro-sized

circuit elements.

The nano-sized structures are patterned using electron-beam lithography.

The resolution of the electron-beam lithograph is limited by its beam size and

stability, as well as the mechanical stability of the sample stage. All samples

presented in this thesis were fabricated using a JEOL 6460 Scanning Electron

Microscope with a resolution of ∼ 30 nm adopted for e-beam lithography and

controlled by NanoMaker.

Below, we explain the fabrication process in more detail.

3.2.1 Photolithography

Wafer preparation

We do not grow wafers ourselves but they can be purchased. To remove organic

contaminants the wafer is immersed into acetone on a hot plate at 55◦ for

around 20 minutes. Then, the wafer is cleaned with isopropanol (IPA) and

blown dry using a nitrogen gun. This is followed by etching the wafer with

oxygen plasma for 2-4 minutes.

Resist spinning

First, a layer of LOR-5B lift-off resist is spun with 3000 rpm to obtain a

thickness of 400 nm. The wafer is then baked at 150◦ for 5 minutes. The

second layer of resist (S1813 photoresist) is spun with 4500 rpm to achieve a

thickness of 1200 nm and baked at 90◦ for 5 minutes. The baking temperature
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is important as it defines the development range for LOR5B. Care should

be taken to spin the resist evenly since during photolithography the mask is

brought into physical contact with the wafer and bumps would distort the

projected pattern.

Photolithography

The wafer needs to be well aligned with the photomask. The photomask

consists of many elements, each of them acting as a chip later on. The design

of a single element of the photomask is shown in Figure 3.2(a). Using our

in-house built photolithograph box containing a mercury lamp the wafer is

exposed for 4 minutes. During this process the resolution (∼ 4 µm) is limited

by the wavelength of the light source (λ ≈ 436 nm).

Figure 3.2: (a) Design of one building block of the photomask. On the top, there
are eight fields for test structures. The field for the nano circuitry is
located in the centre (main field). (b) A sapphire wafer cut into half
after photolithography.

Development

The wafer is immersed into the Microposit developer MF319 for 110 seconds.

The bottom of the exposed layer develops at a faster rate than the top layer

creating a large undercut in the resist.

Etching and evaporation

To ensure good adhesion the wafer is etched with Oxygen plasma for 20 seconds

before thermal evaporation. An adhesion layer of Ni/NiCr of 10 nm, followed
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by a 80 nm layer of gold is evaporated onto the wafer.

Lift-off

To remove the bulk of the resists the wafer is immersed into Microposit 1165

remover and placed onto a hot plate at 65◦. After 20 minutes the remover is

replaced and the wafer is soaked for another 20 to 40 minutes to dissolve the

residuals of the resist. To cease the lift-off the wafer is flushed with deionised

water and dry blown using a nitrogen gun.

Figure 3.2(b) shows a sapphire wafer cut into half after photolithography.

3.2.2 Electron beam lithography

Fig. 3.3 illustrates the fabrication steps for electron-beam lithography.

Figure 3.3: Fabrication steps for electron-beam lithography. a) Copolymer of
thickness 0.7µ m is spun on the undoped silicone or sapphire sub-
strate. b) After baking, a 60 nm layer of ZEP520A is spun on top
of the first layer and baked. c) Electron beam lithography of qubits.
d) Development of the exposed resist. e) Evaporation of aluminium.
f) Oxidation of aluminium. g) Shadow evaporation technique [4]. h)
Resist liftoff. Figure adapted from [5].

Resist Spinning

Two layers of resist are spun directly onto the wafer. The first layer is copoly-

mer (13%) with a thickness of 700 nm. The wafer is then baked for two minutes

at 160 ◦C on a hot plate prior to depositing a 60 nm layer of ZEP520A (1:2)

directly on top of the copolymer layer. This is followed by baking both layers

for another 2 minutes on the hot plate.



3.2. Fabrication 67

Chip preparation

Suitable wafers with markers are cut into chips of size 2.5 × 5 mm. Similar

to any clean room process, it is paramount to remove contamination from

the chips. This is particularly true for thin film Josephson junctions since

their critical current can strongly be influenced by the surface roughness of

the substrate [5]. The chips are rinsed with isopropanol (IPA) in an ultrasonic

bath and are blown dry using a nitrogen gun.

Electron beam lithography

Electron beam lithography is a technique allowing to form arbitrary two-

dimensional patterns down to the nanometer scale. It involves the exposure

by a highly focused electron beam to dramatically modify the solubility of a

resist material during subsequent development [67].

A typical Electron beam lithography (EBL) system has a filament that

acts as an electron source. The electron beam is accelerated and highly focused.

A pattern can be generated by blanking and deflecting the beam.

Prior to loading the sample into the JEOL 6460 SEM Scanning Electron

Microscope, the resist on the chip is deliberately scratched directly underneath

the main field in the centre of the chip and underneath each test field (see

Fig. 3.2(a)). This is to facilitate focusing on the scratches.

The design of the qubit structure are loaded onto the Nanomaker software.

An electron accelerating Voltage of 30 kV is provided. We set the working

distance to 10 m and the beam current to 10 pA by adjusting the spot size of

the beam.

One method to test the size of the beam is to ”burn” a hole into the

resist. This is done by zooming into the maximum magnification (300000×),

and switching into the ”spot regime”, where the beam is no longer scanned, for

30 seconds. We found that our beam spot size for our system on the undoped

Silicone substrate is ∼ 50 nm.

Another method to test the beam spot size is to perform an α-test [68].

Here α is the beam spot and one of the proximity parameters (α, β, η) for
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the ”fitting before measurement” procedure [69]. The pattern for the α-test

consists of many isolated vertical lines with increasing width from left to right,

and increasing dose from bottom to top. After exposing this test pattern for

varying α, we expect the top row(s) to be underexposed and the bottom row(s)

to be overexposed. However, for the correct value of α the boundary between

overexposed and underexposed areas will form a straight horizontal line. We

also obtain a beam spot size of α ≈ 50 nm for our system (undoped Silicone

substrate) using the α-test. The beam size is the limiting size of the structures

we can reliably fabricate.

We chose a base dose of 70 µCcm−2 derived from a dose test for our

structures. In a dose test, the development time is fixed (to 30 seconds in our

case), and then the test structure is exposed multiple times with varying dose.

After the whole fabrication cycle, the test structures are inspected using the

SEM, and the best base dose is determined.

The proximity distance determined by electrons backscattered in the sub-

strate, β, is the limiting margin for distortions. For undoped Silicone, an

accelerating Voltage of 30 keV, and our resist, β is 4.2 µm [68]. Structures

that are larger than β, in our case the transmission line and contact pads,

need to be proximity corrected. The dose of structures that are smaller than

β still has to be fine tuned due to the nature of the two Gaussians of the beam

(formed by primary and backscattered electrons). As illustrated in Fig. 3.4

finer elements of the design are given a greater dose. We assign a dose of

181% for the qubit line’s containing Josephson junctions, a dose of 166% for

the leads to the qubit, and a dose of 121% for the capacitors.

Before exposure, we find features on a test chip, that has been loaded

together with the sample chip. We begin with low magnification and focus on

the features, and then gradually increase the magnification and refocus.

Then, to check the aperture alignment we select the ”OL Wobbler”-tool

on the menu bar of the SEM software. If the image wobbles we adjust the

X/Y direction fine adjustment knobs on the Objective aperture to minimise
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Figure 3.4: Chip design with a base dose of 70 µCcm−2 (dark blue). Seven qubits
are capacitatively coupled to a transmission line. The transmission
line and contact pads have been proximity corrected. A dose of 181 is
assigned to the qubit lines containing Josephson junctions (in red). A
dose of 166 is assigned to the qubit lines (in orange). A dose of 121 is
assigned to the coupling capacitors (in green).

the image shift.

To correct for astigmatism we find a round feature. We focus and defocus

on this object to check whether the feature goes out of focus evenly or stretches

when out of focus. If there is astigmatism present we correct it by activating

the ”STIG”-button and adjust the X/Y knobs on the control panel to obtain

the sharpest image.

Being in focus is critical during the EBL process. Thus, we fine tune the

focus on the scratches on the sample chip before every exposure. Alternatively,

we can use the ”hole burning” method (described above) if no scratches or

other features are visible for focusing. Eight test fields are exposed including

Josephson junctions, test wires and a structure imitating our qubit geometry

before exposing the central field with the final design geometry.

For an insulating substrate such as sapphire, we need to spin PE-
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DOT:PSS [70] or evaporate a thin layer of aluminium (10 nm) prior to e-beam

lithography to avoid electrostatic charging effects that can cause distortions or

shifts in the exposed patterns. This PEDOT:PSS or aluminium layer ensures

quick discharge of the deposited electrons during exposure. Before develop-

ment, this layer of PEDOT:PSS or aluminium has to be removed again.

PEDOT:PSS is removed by immersing the chip into warm deionised water

and placing it onto a heat plate at 45◦ for 3 minutes. While on the hot plate,

we flush the chip using a pipette. Once we are convinced the PDOT is fully

removed we blow dry the chip using a nitrogen gun.

The aluminium layer is removed at room temperature with photoresist

MF3-19. We wash the chip with deionised water and blow dry with a nitrogen

gun.

I recommend to use the layer of aluminium as a discharge layer, because

PEDOT:PSS looks rather grainy when imaging.

Development

After the EBL process, the exposed lower molecular weight resist is removed

chemically. The first layer is developed using P-Xylene. The development is

ceased after 30 seconds by rinsing the sample in IPA. The chip is then blown

dry using a nitrogen gun before the 2nd layer is developed by immersing the

sample in an IPA : H2O mixture (93:7) for 10 minutes. The chip is rinsed in

IPA and blown dry.

Evaporation and Oxidation

The shadow evaporation technique (Fig. 3.3) is an established process known

and used for many years [4]. We use an electron beam evaporator from Plassys.

The sample is mounted onto the sample holder. Good alignment is crucial

since we evaporate at two angles. After loading the sample the loadlock

chamber is vacuum pumped. Plassys can run fully automatically by follow-

ing programmable recipes. Typical steps of such a recipe include: Pumping

chamber and loadlock, evaporating a 20nm layer of high purity aluminium

(purity= 99.999%) at a chosen angle (typically +12 ◦), dynamic or static ox-
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idation (purity= 99.9999%), pumping loadlock, evaporating a 30nm layer of

aluminium (purity= 99.999%) at the chosen angle (typically −12 ◦), and static

caping.

Lift-off

The resist is dissolved by baking the sample at 55 ◦C in acetone for 10 minutes.

Using a pipette the sample is flushed and all metal that was in direct contact

with the resist is removed. Ideally, the aluminium comes off in one piece due

to the large undercut and a comparably large resist thickness. The chip is then

briefly immersed in IPA and blown dry using a nitrogen gun.

3.3 Room temperature characterisation

We inspect the chip using a microscope. After successful fabrication, we mea-

sure the resistance of the test structures using a probe station at room tem-

perature. This is important because we would like to know whether we hit our

desired Josephson energy or not.

We measure the resistance of the test tunnel junctions, take the average

and subtract the resistance of the structure imitating our qubit structure to

obtain the true resistance of the Josephson junction. We can then calculate

the expected Josephson energy using Eq. 3.4. It is known that the resistance

of Josephson junctions changes at cryogenic temperatures. To quantify this

change, we have measured a Josephson junction at room and cryogenic tem-

peratures and found that the Josephson junction resistance increases by ∼ 10%

at 15 mK. We take this change in resistance into account when estimating the

Josephson energy.

Additionally we measure the resistance of the test wire and the transmis-

sion line to ensure it is not open or shortened. We also check that our main

structure is not connected to the ground planes. Since our samples are sensi-

tive to static discharge, we ground ourselves, turn on an air ioniser and place

the sample chip on an anti static foam.

It is known that Josephson junctions age, their resistance increases with
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time. Junction ageing is often attributed to the junction oxidising further

when exposed to air, particularly around the edges of the junction. This can be

prevented by storing the samples in an evacuated desiccator [71]. In addition,

the AlOx insulator layer is believed to only slowly stabilise to the stable AlO3

by a diffusive mass transport from the sandwiched oxygen rich surface (AlOx)

to the aluminium layers [72]. Thus, if the sample has to be stored for some

time, it is recommended to measure the test Josephson junctions again before

loading it into the cryostat for measurement.

3.4 Wire bonding

When satisfied with the obtained Josephson energy and the quality of our

sample, we take a printed circuit board (PCB) that has been screwed on a

copper stand. The PCB interconnects the sample chip with the rest of the

measurement circuit. We glue the sample chip into the space holder of the

PCB and onto the copper stand. It is easier to bond when the sample chip

is levelled with the PCB. Depending on the thickness of the PCB and sample

chip, it is sometimes necessary to use a spacer to level them.

Once the glue (varnish) has dried we bond the sample with aluminium

wires of thickness ∼ 25 µm using the Westbond wire bonder 7476E. The thick-

ness of the bonding wire determines the limiting size of the bonding pads on

chip. For our bonding wire (∼ 25 µm), bonding pads smaller than 100 µm

would make bonding very difficult. We connect the transmission line (or res-

onator) with 3 bonds on each side. The ground plane of the PCB is bonded to

the ground plane of the sample chip, with ∼ 6 bonds along the sample chips

width and ∼ 15 bonds along its length as seen in Fig. 3.5(b). In addition, we

connect separated segments of the ground of the PCB (Fig.3.5(a)) to avoid

spurious resonances.

3.5 Measurement setup

Typical transition energies of artificial atoms are in the GHz range. This

frequency range is convenient since microwave equipment is already well es-
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Figure 3.5: Photograph of sample holder assembly. (a) Printed Circuit Board
(PCB). (b) Aluminium wire bonds connecting the sample chip with
the PCB. The transmission line on chip is connected to the impedance
matched line (50Ω) on the PCB with 3 bonds on each side. The ground
plane of the PCB is bonded to the ground plane of the sample chip,
with ∼ 6 bonds along the sample chips width and ∼ 15 bonds along
its length. (c) PCB with bonded sample chip on copper stand. A
copper anti-spacer is screwed on top of the PCB to minimise room for
standing waves avoiding parasitic resonances.

tablished due its extensive use in telecommunication applications. Here, we

study coherent effects on the level of a single quantum scatterer. The chal-

lenge is to control and analyse microwave signals at extremely low powers

P ∼ ℏωΓ1 < 10−18 W.

In addition to careful microwave engineering, experiments with artificial

atoms require cryogenics. 1 GHz corresponds to a temperature of 50 mK

(T ≈ hf
kB
). We therefore have to cool the artificial atoms below < 50 mK to

suppress thermal excitations. In addition, we have to cool below the critical

temperature Tc of the superconducting material we use for our nano-electronic

circuits; (for aluminium Tc ≈ 1.3K).
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Figure 3.6: Photograph of Blue Fors cryostat insert layout. (a) From top to bot-
tom: 50K flange, quasi-4K flange, still flange, cold plate, and mixing
chamber flange. (b) Coil assembly for flux qubits. (c) Additional stage
for flux qubit sample holders. The coil assemblies are shielded by a
Cryoperm shield.

3.5.1 Cryogenic Environment

Experiments are performed using a BlueFors liquid helium free cryostat shown

in Fig. 3.6 reaching a base temperature of 15mK.

There are two different types of wiring in the cryostat: RF and DC. The

RF lines require a high bandwidth but carry low power leading to a different

kind of noise consideration. At GHz frequencies Johnson noise generated by

the thermal motion of charge carriers in the conductor, is the dominant noise

source. The power spectral density can thus be estimated to be linear with

temperature T and the resistance R as Sv2 = 4kBTR∆f where ∆f is the

bandwidth in Hertz. Since RF signals require a large bandwidth, we do not

filter them but pass through attenuators to suppress noise. The DC lines can

be filtered using low pass filters and thermal coax since the signal and noise

do not coincide in the band.

Thermal conductivity significantly decreases at low temperatures. On the

one hand, this is advantageous since it lowers the heat load on the cold stages,

but on the other hand it means that good care has to be taken in thermally

anchoring all components. As seen in Fig. 3.6, the lines inside the cryostat are

not perfectly fitted in length but feature ”springs” or ”piggy tails” to allow for
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thermal expansion/contraction.

We have installed sample holders, for DC-, and for RF-measurements,

in the cryostat. The RF sample holder depicted in Fig. 3.5(c) is attached

to the coil assembly (Fig. 3.6(b)) and then shielded using a Cryoperm shield

(Fig 3.6(c)). Fig. 3.7 shows the drawing of the sample holder assembly. The

copper stand with the PCB slides into a cylindrical compartment featuring

eight through-holes for SMP microwave connectors. The blue region in Fig. 3.7

of the compartment indicates the groove into which a superconducting coil is

wound. The superconducting solenoid is wound with a Cu 30Ni/NbTi wire

of diameter 0.11mm. The coil consists of ∼ 3500 turns around the sample

compartment and is used to bias the qubits. The compartment is attached to a

rod that is suspended from either the mixing chamber flange or the bottommost

stage of the cryostat. The whole sample holder assembly is protected from

external magnetic fields by a shield purchased from Cryoperm.

Figure 3.7: Drawing of sample holder assembly.

We connect the PCB (with the sample chip) through two SMP connec-

tors to the input and output lines inside the cryostat. The input line inside

the cryostat is attenuated by 10dB at 4K, and 30dB at 15mK and the line
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itself attenuates ∼ 10dB. The RF output line features a 1 − 12 GHz cryo-

genic amplifier from Low Noise Factory (Model LNF-LNC1 12A s/n 330B or

LNF-LNC1 12A s/n 337B) with a gain of ∼ 35dB at 4K and one cryogenic

isolator from Quinstar Technology at ∼ 15mK. The isolator allows signal to

be transmitted in one direction with negligible attenuation but attenuates the

signal by ∼ 18dB along the opposite direction. Hence, this microwave element

will ensure that the noise from the amplifier does not reach the artificial atom.

3.5.2 Microwave engineering

To control the artificial atoms we need to apply classical phase coherent mi-

crowave signals. As a microwave source we either use a Rohde & Schwarz

Vector Network Analyser (Model ZNB20, 100kHz - 20GHz) or a Rohde &

Schwarz microwave signal generator (Model SMB 100A, 100kHz-20GHz).

For pulsed measurements, we use Keysight’s pulse function arbitrary gen-

erator (81160A) that generates envelope pulses on two independent channels

and allows to modulate the amplitude of the microwave signals with nanosec-

ond resolution. Pulses are shaped with ”choppers” that consist of two IQ

modulation mixers from Marki (M80420LS), a Mini-circuits splitter (ZFRSC-

42-S+), a Mini-Circuits low pass filter (SLP-1200+), and some attenuators.

Fig. 3.8 shows a circuit schematic and photograph of a chopper. The classical

coherent microwave signal is fed into one of the mixers, the envelope pulse is

fed into the other, and both signals are added using the splitter (in reverse).

We check the shape of pulses with Tektronix’ digital phosphor oscilloscope

(DPO 72304DX).

To tune the transition frequencies of our artificial atoms we apply an

external field through a superconducting coil that is biased by the Yokogawa

DC Voltage/Current Source (GS200) in the current source mode. Currently,

we have three qubit sample cells installed in the cryostat with superconducting

coils that produce ∼ 0.144, ∼ 1.65, and ∼ 1.56 Gauss per mA allowing us to

tune across many flux quanta for each qubit.

Outside the cryostat, we add another 1−15 GHz amplifier from Low Noise
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Factory (Model LNF-LNR1 15A) with a gain of 37dB into the output line.

The Vector Network Analyser (VNA), the microwave signal generator

(MWG), and the pulse function arbitrary generator are synchronised to each

other.

Depending on the measurement, we either read the signal with the VNA

or a Spectrum Analyser (SPA) from Anritsu (MS2830A, 9kHz-13.5Ghz).

Figure 3.8: (a) Circuit schematic and (b) photograph of a chopper consisting of
two mixers, one splitter, a low pass filter and attenuators.

3.6 Qubit characterisation

Once the qubits have been fabricated and cooled down to 15 mK, we start by

characterising our sample before moving on to more elaborate experiments.

As an example, we present here the characterisation of the first super-

conducting qubit (Fig. 3.9(a)) in the UK. We fabricated six qubits in series,

each of them coupled through a shared segment of the transmission line (10

squares). As seen in Table 3.1 and Fig. 3.9(b), the area of the loop and α, the

area overlap of the α-junction, is systematically decreased from qubit to qubit.

3.6.1 Spectroscopy

The transition frequencies of the artificial atom(s) coupled to open space (or

transmission line) are revealed through transmission spectroscopy. Fig. 3.10
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Figure 3.9: The first UK qubits. (a) False-coloured scanning-electron micrograph
(SEM) of a flux qubit coupled to a 1D transmission line. The flux
qubit consists of a macroscopic superconducting loop interrupted by
four Josephson junctions that are inductively coupled to the line. (b)
Six flux qubits with varying loop area inductively coupled to the trans-
mission line. Colour-code: Yellow, blue and violet correspond to gold,
aluminium and the Si substrate respectively

Qubit ID Loop Area (µm2) α Area ratio
1 33.06 0.48 0.707
2 27.65 0.45 0.845
3 23.37 0.42 1.000
4 19.48 0.39 1.199
5 16.57 0.36 1.410
6 14.15 0.33 1.652

Table 3.1: Design parameters of six flux qubits inductively coupled to the trans-
mission line. The area of the loop is decreased from qubit to qubit. α
quantifies how much the area overlap smaller the α-junction is compared
to the standard Josephson junctions.

shows the experimental setup. A Vector Network Analyser provides the mi-

crowave signal that is attenuated by 60dB at room temperature, 10dB at 4K,

and 30dB at 15mK before reaching the transmission line on chip. The arti-

ficial atom is either coupled inductively or capacitatively to the transmission

line and is biased through an external field provided by a superconducting

coil. The output line features an isolator, a cryogenic amplifier at 4K, and an

additional amplifier at room temperature.

We sweep the frequency of the incident microwave in a wide range and

step in external field while we monitor the transmission using a VNA. Fig. 3.11
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Figure 3.10: Experimental setup for tranmission spectroscopy. The input line is
attenuated using 60dB at room temperature, 10dB at 4K and 30dB
at 15mK. The flux qubit is coupled through mutual inductance to
the transmission line (on chip). The output line includes an isolator
giving ∼ 20dB attenuation to prevent noise reaching the sample from
the output line. The signal is then amplified at 4K and at room
temperature. The external flux applied to the artificial atom acts as
control.

shows the transmission spectroscopy of one of the qubits.

In chapter 2, we have derived that the capacitatively coupled artificial

atom scatters waves backward and forward (see Eq. 6.3). Similarly, we can
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derive an expression for inductively coupled qubits

Isc(x, t) = i
ℏΓ1

ϕp

⟨σ−⟩ eik|x|−iωt, (3.5)

where ϕp = MIp is the dipole moment matrix element and is proportional to

the loop-line mutual inductance M (due to the shared segment of the trans-

mission line) and the persistent current Ip in the superconducting loop.

Defining reflection and transmission coefficients, r and t, as Isc = −rI0
and I0 + Isc = tI0, and therefore satisfying t + r = 1, we find an expression

from Eq. 3.5 for the reflection coefficient

r = r0
1 + iδω/Γ2

1 + (δω/Γ2)2 + Ω2/Γ1Γ2

, (3.6)

where the maximal reflection amplitude r0 = ηΓ1/2Γ2 at δω = 0 and

η is a dimensionless coupling efficiency to the line field, including nonra-

diative relaxation. We have found ⟨σ−⟩ from solving the master equation

ρ̇ = − i
ℏ [H, ρ] + L̂[ρ] for ρ̇ = 0 with H = −(ℏδωσz + ℏΩσx)/2.

At the transition frequency of the artificial atom, we detect a sharp dip in

the transmission because the wave scattered forward by the artificial atom is

interfering destructively with the incident wave (Isc = −I0 or Vsc = −V0). Out

of the six qubits, three are revealed through transmission spectroscopy with

the remaining three being out of our measurement range. Note that the wide

range of energies has been chosen on purpose for optimisation of our fabrication

parameters. We observe the systematic change of the energies according to our

expectations, indicating a 100% fabrication yield.

We determine the periodicity (in flux or current), which depends on the

area of the loop, of the three flux qubits. Comparing the ratio of the loop

areas (Table 3.1) with the ratio of the measured periods (Table 3.2), we can

thus identify which three out of the six qubits we are measuring.

The persistent current Ip is proportional to the slope of the hyperbolic
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Figure 3.11: Transmission spectroscopy of the flux qubit (Qubit ID 4). Shown
is the real and imaginary part of the reflection coefficient r as a
function of flux bias δϕ/ϕ0 and incident microwave frequency ω/2π
where δϕ = ϕext − ϕ0/2.

resonance curve (Fig. 3.11)

Ip =
1

2

ℏ∂(ϵ)
∂(δϕ)

=
e∂(f)

∂(I)
I0, (3.7)

where we have substituted δϕ = ϕ0(I/I0) with the flux quantum ϕ0 = h/(2e)

and where I0 is the period in current.

At the degeneracy point (δϕ/ϕ0 = 0 where δϕ = ϕext − ϕ0/2), the power

extinction |t|2 reaches its maximal value of ≥ 73% for all three qubits, which

suggests that they are well isolated from other degrees of freedom in the sur-

rounding solid state environment and behave as an isolated atom in open space,

coupled only to the electromagnetic fields in the transmission line.

Table 3.2 summarises the qubit characterisation through transmission

spectroscopy.

3.6.2 Smith chart representation of the microwave

transmission

The Smith chart [73] is named after its inventor, Phillip H. Smith, and used in

microwave engineering to assist to separate external from internal losses and

its elliptical (or circular) shape indicates non-linearity (or linearity).

The measurement set-up for the Smith charts is the same as for spec-
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Qubit ID Frequency, GHz Period, mA Period ratio Ip, nA |t|2
3 2.450 6.147 1.000 465 73%
4 5.216 7.370 1.199 416 88%
5 14.678 8.669 1.410 273 99%

Table 3.2: Qubit characterisation through transmission spectroscopy. From first
to last column: Qubit identification, frequency ω/2π at the degeneracy
point in GHz, period I0 in mA, ratio of periods of neighbouring qubits,
persistent current Ip in nA and power extinction |t|2 at the degeneracy
point.

troscopy since in both cases we measure direct transmission (see Fig. 3.10).

We plot real and imaginary parts of the transmission coefficient, t = 1− r (see

Eq.6.4), at the degeneracy point (ϕext = n/2 with integer n) as a function of

frequency detuning δω/2π from the resonance at ω0/2π. From fitting Eq. 6.4,

we can estimate relaxation and dephasing rates, Γ1 and Γ2 respectively. As-

suming Γ2 = Γ1/2, we find Γ1 ≈ 15 MHz for qubit ID’s 3 and 4, and Γ1 ≈ 28

MHz for qubit ID 5. As seen in Fig. 3.12, in the vicinity of the resonance Re[r]

is positive and reaches its maximum, whereas Im[t] changes its sign from posi-

tive to negative. With increasing incident power W0, the peak in the reflection

curve decreases (Fig. 3.12(b)), and the shape of the curve in the Smith chart

representation changes from a circle to an ellipse (Fig. 3.12(a)). Fig. 3.12(b)

shows that the two-level atom saturates at larger powers and can have high

power extinction only for the weak driving regime (Ω2/(Γ1Γ2) << 1).

3.6.3 Rabi Oscillations

So far we have established through spectroscopy that our qubits are functional,

but to study their dynamical behaviour we need to perform measurements in

the time domain.

The measurement circuit for Rabi oscillations is depicted in Fig. 3.15.

We drive the artificial atom at its transition frequency ωa with a microwave

pulse (denoted as P) for a time ∆tP . The incident microwave pulse P is

shaped by a chopper (Fig. 3.8) connected to a continuous microwave source

provided by a Vector Network Analyser (VNA) and a pulse envelope provided

by Keysight’s pulse function arbitrary generator (PFAG). The microwave pulse
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Figure 3.12: Elastic scattering of microwaves on the artificial atom (Qubit ID 5)
measured at driving powers −24dBm to −4dBm with a step of 4dBm.
(a) Smith chart representation of the microwave transmission for (b)
Power extinction |t|2, (c) real part of the reflection coefficient r, and
(d) imaginary part of the transmission coefficient t as a function of
frequency detuning δω/2π from the atomic transition ω0/2π = 14.678
GHz.

is then delivered to the sample chip through a coaxial cable and attenuated by

40dB at room temperature, 10dB at 4K, and 30db at 15mK before interacting

with the qubit.

During ∆tP , the state vector rotates in the y−z plane around the x axis of

the Bloch sphere with Rabi frequency Ω that is proportional to the amplitude

of the incident microwave pulse P. After time ∆tP , the state vector on the

Bloch sphere is at an angle 2πΩ∆tP to the z axis.

The output signal is amplified at 4K and at room temperature. We apply

a read out pulse for a time ∆tR that is shaped by an additional chopper

to detect the dynamics of the qubit using a VNA. A schematic diagram of

the pulse sequence is shown in Fig. 3.13(a). The measurement yields Rabi
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oscillations as a function of time (Fig. 3.13(b)). We measure the decaying

Rabi oscillations as a function of incident pulse length ∆tP and driving power

(Fig. 3.14).

Figure 3.13: Rabi oscillations (a) pulse sequence: The driving pulse P prepares
the atomic states, and the emission from the atom is detected dur-
ing the readout pulse R. (b) The measurement yields decaying Rabi
oscillations in time (at fixed driving power of −6dBm.

Figure 3.14: Intensity plot of decaying Rabi oscillations as a function of incident
pulse length ∆tP and driving power.
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Figure 3.15: Experimental setup for measuring Rabi oscillations. A microwave
pulse is formed using a chopper consisting of two IQ modulation mix-
ers, a splitter, a low pass filter, and some attenuators (see Fig 3.8).
The Vector Network Analyser (VNA) provides the continuous coher-
ent microwave, while the pulse function arbitrary generator (PFAG)
generates the pulse envelope, both of which are fed into the chopper.
The microwave pulse is then attenuated by 40dB at room tempera-
ture, 10dB at 4K, and 30dB at 15mK before interacting with the flux
qubit that is biased through a superconducting coil. The output line
features an isolator and two amplifiers, one at 4K and the other at
room temperature. A read out pulse is formed through an additional
chopper on the output line. The output signal is detected by a VNA.



Chapter 4

Quantum wave mixing and

visualisation of photonic states

In this chapter, we demonstrate that when a non-linear medium is scaled down

to a single quantum scatterer, a series of effects beyond classical physics are

revealed. In particular, Quantum Wave Mixing (QWM) is a result of elastic

scattering of electromagnetic waves on a single artificial atom.

First, we study continuous wave mixing on a quantum object and observe

a symmetric spectrum with an infinite number of side peaks. Then, we inves-

tigate two regimes of QWM: Coherent wave mixing and quantum wave mixing

with non-classical superposed states. In the former, two pulsed waves with

frequencies slightly detuned to each other are scattered on the single artificial

atom resulting in a symmetric spectrum with an infinite number of side peaks.

The amplitude of each of these peaks oscillates in time according to Bessel

functions with the orders determined by the number of interacting photons.

In the latter regime, a time delay between the two pulses is introduced causing

a striking difference in the spectrum, which now exhibits a finite number of nar-

row coherent emission peaks. Furthermore, the spectrum in the latter regime

is asymmetric with the number of positive frequency peaks (due to stimulated

emission) always exceeding by one compared to the negative frequency peaks

(due to absorption).

Thus in QWM, the spectrum of elastically scattered radiation is a fin-
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gerprint of the interacting photonic states. Moreover, the artificial atom vi-

sualises photon-state statistics, for example distinguishing coherent, one- and

two-photon superposed states in the quantum regime. Our results give new

insight into nonlinear quantum effects in microwave optics with artificial atoms

and have been partly published in Nature Communications [1].

4.1 Introduction

A plethora of quantum optical phenomena have been recently demonstrated

on chip with superconducting quantum circuits, establishing the research di-

rection of circuit quantum electrodynamics [33, 42, 74]. In particular, super-

conducting quantum circuits can be used to resolve photon number states in

harmonic oscillators [75], manipulate individual photons [76, 77, 78], generate

photon (Fock)- [79] and arbitrary quantum states of light [80], demonstrate

the lasing effect from a single artificial atom [81], and study nonlinear ef-

fects [82, 83].

Artificial atoms can also be coupled to open space (microwave transmis-

sion lines) [84] and reveal many interesting effects such as resonance fluores-

cence of continuous waves [85, 32], elastic and inelastic scattering of single-

frequency electromagnetic waves [86, 64], amplification [87], single-photon re-

flection and routing [88], non-reciprocal transport of microwaves [89], coupling

of distant artificial atoms by exchanging virtual photons [90], and superradi-

ance of coupled artificial atoms [91]. All these effects require strong coupling to

propagating waves and are thus more challenging to demonstrate in quantum

optics with natural atoms due to low-spatial mode matching of propagating

light.

Here, we focus on wave mixing effects. From textbooks, we may recall four

wave mixing, an optical effect manifesting itself in a pair of frequency side peaks

from two driving tones on a classical Kerr-nonlinearity [7, 50]. Scaling the

nonlinear medium down to a single artificial atom, that strongly interacts with

incident waves, results in time resolution of instant multi-photon interactions
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and reveals effects beyond classical physics.

We demonstrate the physical phenomena of continuous wave mixing and

quantum wave mixing (QWM) on a single superconducting artificial atom in

the open one-dimensional (1D) space (coplanar transmission line on-chip). We

show two regimes of QWM comprising different degrees of quantumness: the

first and most remarkable one is QWM with nonclassical superposed states,

which are mapped into a finite number of frequency peaks.

In another regime, we investigate the different orders of wave mixing of

classical coherent waves on the artificial atom. The dynamics of the peaks

exhibits a series of Bessel-function Rabi oscillations, different from the usually

observed harmonic ones, with orders determined by the number of interacting

photons. Therefore, the device utilising QWM visualises photon-state statistics

of classical and non-classical photonic states in the open space. The spectra

are fingerprints of interacting photonic states, where the number of peaks due

to the atomic emission always exceeds by one the number of absorption peaks.

Below, a summary of the main findings of this work: (1) demonstration

of the wave mixing effect on a single quantum system; (2) in the quantum

regime of mixing, the peak pattern and the number of the observed peaks

is a map of coherent and superposed photonic states, where the number of

peaks Npeaks is related to the number of interacting photons Nph as Npeaks =

2Nph+1. Namely, the one-photon state (in two-level atoms) results in precisely

three emission peaks; the two-photon state (in three-level atoms) results in five

emission peaks; and the classical coherent states, consisting of infinite number

of photons, produce a spectrum with an infinite number of peaks; (3) Bessel

function Rabi oscillations are observed and the order of the Bessel functions

depends on the peak position and is determined by the number of interacting

photons.
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4.2 Sample description

We study the quantum mixing effects on an artificial atom based on a su-

perconducting qubit geometry shown in Fig. 4.1. The atom is a micron-size

loop with four nanometer-scale Josephson junctions fabricated by techniques

of electron beam lithography and standard two-angle shadow evaporation in

the clean room facilities at Royal Holloway. For more details on the fabrication

process refer to section 3.2.

Figure 4.1: The device. (A) SEM image of a flux qubit coupled to the trans-
mission line through an interdigitated capacitance. (B) A schematic
circuit representation of the device consisting of a superconducting
qubit interrupted by four Josephson junctions.

The artificial atom is coupled through a capacitor to a transmission line.

The energy splitting controlled by an external magnetic field is approximated

as

ℏωa =
√
(2IpδΦ)2 +∆2, (4.1)

where Ip is the persistent current in the loop, δΦ is the magnetic flux threaded

through the loop and ∆ = ℏω0 is the tunnelling energy (where ω0 is the

transition frequency of the atom at half flux quantum). Here, we have used the

approximation that higher excitation energies of higher eigenstates are much

larger than δE, allowing to truncate the Hamiltonian to a two-level system (see

sec. 2.3.3). The atom is strongly coupled to the line with negligible dephasing

(extinction |t|2 ≥ 90%), comparing to photon emission rate Γ1/2π.
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Experiment ∆ = ℏω0 α Ip C |t|2 Γ1/2π
Continuous 6.4ℏ GHz 0.5 ∼ 50 nA 2 fF ≥ 95% 3 MHz (at ωa ≈ 6.4 GHz)
Pulsed 6.8ℏ GHz 0.45 ∼ 40 nA 3 fF ≥ 90% 20 MHz (at ωa ≈ 9 GHz)

Table 4.1: Device parameters for this chapter’s wave mixing experiments. The
artificial atoms are coupled via a capacitance C to the transmission
line. ∆ is the tunnelling energy, Ip is the persistent current in the
loop, and δΦ is the magnetic flux threaded through the loop. Sec. 4.3
is dedicated to the continuous regime, whereas sec. 4.4, 4.5, 4.6 are
devoted to the pulsed regime.

We apply coherent microwaves to drive the atom and detect the amplified

signal by a spectrum analyser (SPA). We measure in the continuous and in

the pulsed regime of the incoming coherent microwave drives. The experimen-

tal results presented in this chapter were obtained with the artificial atoms

characterised in Table. 4.1.

A transmission spectroscopy of the artificial atom used for the pulsed

experiments is shown in Fig. 4.2. At magnetic flux bias δϕ/ϕ0 ≈ ±0.035

Figure 4.2: Spectroscopy. (A) A transmission spectroscopy of the system as a
function of the normalised magnetic flux bias measured by a vector
network analyser (VNA). The red dashed curve shows calculations
of the energy ≈ ω01. An inset shows the transmission phase under a
strong drive. A transition line at ω01 crosses a line from the two-photon
transition process at ω02. The crossing takes place at a point where
ω01 = ω12. (B) A simulation of the system energies with parameters
close to our artificial atom. The red arrowed lines show two equal
transition frequencies ω01 = ω12 ̸= ω23. The insets show level schemes
at δΦ/Φ0 = ±0.035 and at δΦ/Φ0 = 0.
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transition frequency between the ground and excited state are equal. Therefore

the resonant microwave results in population of both levels, which is equivalent

to storing the two-photon state |γ⟩.

4.3 Stationary coherent wave mixing

We irradiate the artificial atom, described in sec. 4.2, by two continuous prop-

agating microwaves. The experimental set-up is shown in Fig. 4.3. We tune

the frequency of the qubit to its degeneracy point ω = ∆/ℏ = 6.4 GHz. The

two microwave tones at frequencies ω+ = ω+ δω and ω− = ω− δω are slightly

detuned from the resonance of the artificial atom. The detuning is chosen to

be δω = 1kHz<< Γ1,Γ2 such that both tones are in resonance with the qubit

but still spectrally well separated. Since the qubit is essentially a non-linear

system, we expect mixing effects to occur.

Naively, we may attribute these mixing effects to elastic scattering events

of photons. For example, a photon at 2ω− − ω+ is emitted as a result of

absorption of two photons from the ω+-mode and emission of a single photon

from the ω−-mode. Similarly a photon at 2ω+−ω− is created due to absorption

of two photons from the ω−-mode and emission of a single photon from the

ω+-mode. These processes are called degenerate four-wave mixing.

As long as the two driving modes consist of many propagating photons

in timescales comparable to relaxation and dephasing rates, Γ1 and Γ2 re-

spectively, higher-order processes of wave mixing will be present resulting in

emitted photons at frequencies ω±(2p+1) = (p+1)ω±−pω∓ with (2p+1) photons

involved in the process, as illustrated in Fig. 4.4(a).

The output spectrum consisting of the two driving microwaves and n side

peaks is measured by a spectrum analyser (SPA). We observe up to four side

peaks, i.e. 9-photon-processes, as shown in Fig. 4.4(c),(d). To verify that

the nonlinear scattering takes place on our single artificial atom, we tune the

magnetic field away from the qubit and demonstrate that wave mixing effects

no longer occur (Fig. 4.4(b)).
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Figure 4.3: Experimental setup for wave mixing in the continuous regime. Two
continuous microwaves slightly detuned from each other and from the
resonance of the atom are generated, added and delivered to the artifi-
cial atom (Fig. 4.1). The output is amplified twice and then measured
by a Spectrum Analyser (SPA).
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Figure 4.4: (a) Schematic of the concept and resulting spectrum of wave mixing
on a single two-level system. (b) and (c) show spectra of coherently
scattered radiation measured when the driving tones are either (b) off-
resonant or (c) resonant with the qubit, plotted as a function of the
amplitude of both drives Ω = Ω+ = Ω−. (d) An averaged trace at
fixed driving amplitude Ω measured by a spectrum analyser.

In sec. 4.7.1 we derived an analytical expression for the intensity of each

side peak

|Ωem
±(2p+1)|2 =

(
Γ1A

α
yp(Ω∓ + yΩ±)

)2

(4.2)
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with

A =
Γ1λ

2(Γ1|λ|2 + Γ2(Ω2
− + Ω2

+))
, λ = ∆ω − iΓ2, y = −

√
(1− α)

1 + α
,

α =
√

(1− β2), β =
2Γ2Ω−Ω+

Γ1|λ|2 + Γ2(Ω2
− + Ω2

+)
,

(4.3)

where we have started from the Hamiltonian of a single two-level system driven

by two microwaves with amplitudes Ω− and Ω+,

H = −ℏωa

2
σz − ℏΩ−σx cos(ωt− δωt)− ℏΩ+σx cos(ωt+ δωt). (4.4)

We measure the intensity of each spectral component with increasing driv-

ing amplitudes, Ω = Ω− = Ω+, in a wide range. The result is presented in

Fig. 4.5(a) and is well fitted by Eq. 4.2 where ∆ω = 1kHz, Γ1/2π = 2.2MHz,

Γ2 = 1.1MHz and peak order parameter p are already predefined by the ex-

perimental setting or qubit characterisation and the only fitting parameter is

driving amplitude Ω. The measured data is in agreement with our analytical

model. Note how each side peak reaches its maximum at an unique optimal

driving amplitude

Ωmax =

√
2

4

√
Γ1Γ2P (P +

√
P 2 + 4) (4.5)

where P = 2p + 1 and we have assumed equal driving tones. For an artificial

atom strongly coupled to the transmission line, we may approximate Γ2 =

Γ1/2, giving for example Ωmax = 1.11Γ1 for p = 1, Ωmax = 1.8Γ1 for p = 2,

and Ωmax = 2.5Γ1 for p = 3.

We then explore the regime of unequal driving amplitudes, we increase

Ω− by 1 dB compared to Ω+, and observe that the amplitudes of the wave

mixing pairs are no longer symmetric (Fig. 4.5(b)). Intensities at ω−(2p+1) are

significantly larger than at ω+(2p+1). Our system proves to be a promising tool

to sense relative powers; to obtain symmetric pairs in amplitude of the mixing

pattern one has to apply drives with exactly matched amplitudes.
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Figure 4.5: Side spectral components of elastically scattered radiation due to wave
mixing effects for (a) equal driving amplitudes Ω = Ω+ = Ω− and (b)
unequal driving amplitudes Ω− > Ω+ by 1dB. The ”plus”-components
are larger in power compared to the ”minus”-components demonstrat-
ing high sensitivity of wave mixing peaks to driving amplitudes.

4.4 Pulsed coherent wave mixing

To study the dynamics of wave mixing we perform measurements in the pulsed

regime. The experimental measurement circuit is shown in Fig. 4.6.

We may continue to describe the system in the semi-classical picture,

however, it does not illustrate the physical entity of QWM. In particular, it fails

to separate individual contributions of multi-photon processes into emission

and therefore does not illustrate the link to photon statistics of the emitted

light. Moreover, the semi-classical picture fails to explain the limited number of

spectral components we observe for the case of quantum mixing with delayed

pulses. Therefore, for our purposes it is instructive to calculate the same

physical quantity from an approach of second quantisation.
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Figure 4.6: Measurement set up for QWM mixing with individual pulse manipu-
lation. A vector network analyser (VNA) and a microwave generator
(Gen) are used as microwave sources. The pulse envelope is provided
by a pulse function arbitrary generator (PFAG). Pulses are shaped
with choppers (CH), added and delivered to the sample. The output
is amplified twice and measured using a spectrum analyser (SPA). Ad-
ditional cables may be added to the circuit to introduce delays between
pulses.
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4.4.1 Coherent and zero-one photon superposed state

To evaluate the system, we consider electromagnetic waves propagating in a

1D transmission line with an embedded two-level artificial atom [32] as shown

in Fig. 4.1(A), and Fig. 4.7(a).

Since we are interested in photon statistics, which will be revealed by

QWM, we consider our system in the photon basis. The coherent wave in the

photon (Fock) basis |N⟩ is presented as

|α⟩ = e−
|α|2
2

(
|0⟩+ α |1⟩+ α2

√
2!

|2⟩+ α3

√
3!

|3⟩+ ...

)
(4.6)

and consists of an infinite number of photonic states. A two-level atom with

ground and excited states |g⟩ and |e⟩ driven by the field can be prepared in

superposed state Ψ = cos θ
2
+ sin θ

2
|e⟩ and, if coupled to the external pho-

tonic modes, transfers the excitation to the mode, creating zero-one photon

superposed state

|β⟩ =
∣∣∣∣ cos θ2

∣∣∣∣(|0⟩+ β |1⟩), (4.7)

where β = − tan θ
2
(sec. 4.7.2). The superposed state comprises coherence,

however |β⟩ state is different from classical coherent state |α⟩, the latter con-

sisting of an infinite number of Fock states. The energy exchange process is

described by the operator b−b+ |g⟩ ⟨g| + b+ |g⟩ ⟨e|, which maps the atomic to

photonic states, where b+ = |1⟩ ⟨0| and b− = |0⟩ ⟨1| are creation/annihilation

operators of the zero-one photon state. The operator is a result of a half-period

oscillation in the evolution of the atom coupled to the quantised photonic mode

(see eq. 4.32) and we keep only relevant terms for the discussed case (an excited

atom and an empty photonic mode) (see Sec 4.7.2).

We discuss and demonstrate experimentally an elastic scattering of two

waves with frequencies ω = ω0 − δω and ω+ = ω0 + δω, where δω is a small

detuning, on a two-level artificial atom with energy splitting ℏω0. The scat-

tering, taking place on a single artificial atom, allows us to resolve instant

multi-photon interactions and statistics of the processes. Dealing with the fi-
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Figure 4.7: Principles of the device operation. (a) False coloured SEM image of the
device: an electronic circuit (a superconducting four Josephson junc-
tion loop), behaving as an artificial atom, embedded into a transmis-
sion line, strongly interacts with propagating electromagnetic waves.
(b) The four-wave mixing process results in the zero-one photon field
creation at ω3 = 2ω+ − ω−. In classical mixing, process a+a

†a+b
+
3

comes in a pair with the symmetric one aa†+ab
+
−3. In the mixing with

non-classical states, the time-symmetry and, therefore, spectral sym-
metry are broken. (c) In QWM, the number of spectral peaks is deter-
mined by the number of photonic (Fock) states forming the superposed
state in the atom. The state is created by the first pulse at ω− and
then mixed with the second pulse of ω+. Single-photon (Nph = 1)
state |β⟩− = B(|0⟩ + β |1⟩) can only create a peak at ω3 = 2ω+ω−
because only one photon at can be emitted from the atom. Two pho-
ton (Nph = 2) superposed state |γ⟩− = C(|0⟩+ γ1 |1⟩ + γ2 |2⟩) results
in the creation of an additional peak at 3ω+2ω, because up to two
photons can be emitted. Also two photons of ω− can be absorbed,
creating an additional left-hand-side peak at 2ω−ω+.

nal photonic states, the system Hamiltonian is convenient to present as the

one, which couples the input and output fields

H = iℏg(b+−a− − b−−a
†
− + b++a+ − b−+a

†
+), (4.8)
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using creation and annihilation operators a†± (a±) of photon states |N⟩± (N is

an integer number) and b+± and b−± are creation/annihilation operators of single-

photon output states at frequencies ω±. Here ℏg is the field-atom coupling

energy. Operators b+± and b−± also describe the atomic excitation/relaxation,

using substitutions b+± ↔ e∓iφ |e⟩ ⟨g| and b−± ↔ e±iφ |e⟩ ⟨g|, where φ = δωt

is a slowly varying phase (see Sec. 4.7.3). The phase rotation results in the

frequency shift according to ω±t = ω0t± δωt and more generally for b±m (with

integer m) the varied phase mδφ results in the frequency shift ωm = ω0+mδω.

The system evolution over the time interval [t, t′] (t′ = t + ∆t and

δω∆t ≪ 1) described by the operator U(t, t′) = exp(iH∆t/ℏ) can be pre-

sented as a series expansion of different order atom-photon interaction pro-

cesses a†±b
−
± and a±b

+
± - sequential absorption-emission accompanied by atomic

excitations/relaxations ( 4.7.3). Operators b describe the atomic states (in-

stant interaction of the photons in the atom) and, therefore, satisfy the fol-

lowing identities: b−p b
+
m = |0⟩m−p ⟨0|, b

±
j b

∓
p b

±
m = b±j−p+m, b

±
p b

±
m = 0. The excited

atom eventually relaxes producing zero-one superposed photon field |β⟩m at

frequency ωm = ω0 +mδω according to b+m |0⟩ = |1⟩m.

We repeat the evolution and average the emission on the time interval

t > δω − 1 and observe narrow emission lines. In the general case, the atom

in a superposed state generates coherent electromagnetic waves of amplitude

Vm = −ℏΓ1

qp
⟨b+m⟩ (4.9)

at frequency ωm , where Γ1 is the atomic relaxation rate and qp is the atomic

dipole moment [32, 64].

4.4.2 Elastic scattering and Bessel function Rabi oscil-

lations

To study QWM, we couple the single artificial atom (a superconducting loop

with four Josephson junctions) to a transmission line via a capacitance (sample

description 4.2). The atom relaxes with the photon emission rate found to
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be Γ1/2π ≈ 20MHz. The coupling is strong, which means that any non-

radiative atom relaxation is suppressed and almost all photons from the atom

are emitted into the line. The sample is held in a dilution refrigerator with

base temperature 15mK.

We apply periodically two simultaneous microwave pulses with equal am-

plitudes at frequencies ω− and ω+, length ∆t = 2 ns and period Tr = 100ns

(much longer than the atomic relaxation time Γ−1
1 ≈ 84ns). A typical emission

power spectrum integrated over many periods (bandwidth is 1kHz) is shown

in Fig. 4.8(a). The pattern is symmetric with many narrow peaks (as narrow

as the excitation microwaves), which appeared at frequencies ω0 ± (2k+1)δω,

where k ≥ 0 is an integer number.

We linearly change driving amplitude (Rabi frequency) Ω, which is defined

from the measurement of harmonic Rabi oscillations under single-frequency

excitation. The dynamics of several side peaks versus linearly changed Ω∆t

(here we vary Ω, however, equivalently ∆t can be varied) is shown on plots

of Fig. 4.8(b). Note that the peaks exhibit anharmonic oscillations well fitted

by the corresponding 2k + 1-order Bessel functions of the first kind. The first

maxima are delayed with the peak order, appearing at Ω∆t ∝ k + 1. Note

also that detuning δω should be within tens of megahertz (≤ Γ1). Here, we

use δω/2π = 10kHz to be able to quickly span over several δω of the spectrum

analyser (SPA) with the narrow bandwidth.

Figure 4.7(b) exemplifies the third-order process (known as the four-

wave mixing in the case of two side peaks), resulting in the creation of the

right hand-side peak at ω3 = 2ω+−ω−. The process consists of the absorption

of two photons of frequency ω+ and the emission of one photon at ω−.

More generally, the 2k + 1-order peak at frequency ω2k+1 = (k +

1)ω+ − kω−(≡ ω0 + (2k + 1)δω) is described by the multi-photon process

(a+a
†
−)

ka+b
+
2k+1, which involves the absorption of k + 1 photons from ω+ and

the emission of p photons at ω−; and the excited atom eventually generates a

photon at ω2k+1. The symmetric left hand-side peaks at ω0 − (2k + 1)δω are
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Figure 4.8: Dynamics of coherent wave mixing.(a) An example of a spectrum of
scattered microwaves, when two simultaneous periodic pulses of equal
amplitudes and frequencies ω− and ω+ are applied according to the
top time diagram. The mixing of coherent fields |α⟩±, consisting of an
infinite number of photonic states results in the symmetric spectrum
with an infinite number of side peaks, which is the map of classical
states. (b) Four panels demonstrate anharmonic Rabi oscillations of
the peaks at frequencies ω0 + (2k + 1)δω. The measured data (dots)
are fitted by squares of 2k + 1-order Bessel functions of the first kind
(solid lines). The orders are equal to the interacting photon numbers.

described by a similar processes with swapped indexes (+ ↔ −). The peak am-

plitudes from Eq. 4.9 are described by expectation values of b-operators, which

at frequency ω2k+1 can be written in the form of ⟨b+2k+1⟩ = D2k+1 ⟨(a+a†−)ka+⟩.

The prefactor D2k+1 depends on the driving conditions and can be calculated

summing up all virtual photon processes (e.g., a†+a+, a
†
−a−, etc.) not changing

frequencies (see Sec. 4.7.3). For instance, the creation of a photon at 2ω+−ω−

is described by ⟨b+3 ⟩ = D3 ⟨a+a†−a+⟩.

As the number of required photons increases with k, the emission max-

imum takes longer time to appear (Fig. 4.8(b)). To derive the depen-

dence observed in our experiment, we consider the case with initial state

Ψ = |0⟩ ⊗ (|α⟩− + |α⟩+) and α ≫ 1. We find then that the peaks exhibit

Rabi oscillations described by ⟨b2k+1⟩ = ((−1)k/2)J2k+1(2Ω∆t) (Eq. 4.53) and
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the mean number of generated photons per cycle in 2k + 1-mode is

⟨N±(2k+1)⟩ =
J2
±(2k+1)(2Ω∆t)

4
. (4.10)

The symmetric multi-peak pattern in the spectrum is a map of an infinite

number of interacting classical coherent states. The dependence from the pa-

rameter 2Ω∆t observed in our experiment can also be derived using a semiclas-

sical approach, where the driving field is given by Ωeiδωt+Ωeiδωt = 2Ω cos δωt.

As shown in Sec. 4.7.3, a classical description can be mathematically more

straightforward and leads to the same result, but fails to provide a qualita-

tive picture of QWM discussed below. The Bessel function dependencies have

previously been observed in multi-photon processes, however this was in the

frequency domain [92, 93, 94].

4.5 Quantum wave mixing

Next, we demonstrate one of the most interesting results: QWM with non-

classical photonic states. We further develop the two-pulse technique separat-

ing the excitation pulses in time. Breaking time-symmetry in the evolution of

the quantum system should result in asymmetric spectra and the observation

of series of spectacular quantum phenomena. The upper panel in Fig. 4.9(a)

demonstrates such a spectrum, when the pulse at frequency ω+ is applied after

a pulse at ω−. Notably, the spectrum is asymmetric and contains only one side

peak at frequency 2ω+−ω−. There is no signature of any other peaks, which is

in striking contrast with Fig. 4.8(a). The background has been subtracted in

the measured spectrum shown in the lower panel of Fig. 4.9(a) and the noise

is given by kBT∆f where kB is the Boltzmann constant, T is the temperature

of the amplifier, and ∆f is the bandwidth of the spectrum analyser. Reversing

the pulse sequence mirror reflects the pattern revealing the single side peak at

2ω− − ω+ (not shown here).

The quantitative explanation of the process is provided on the left panel

of Fig. 4.7(c). The first pulse prepares superposed zero-one photon state |β⟩−
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Figure 4.9: Quantum wave mixing with non-classical states. (a) Two consecutive
pulses at ω− = ω0−δω and then at ω+ω0−δω are applied to the artifi-
cial two-level atom with δω = 1kHz, ω0 ≈ 9GHz. The plot exemplifies
the QWM power spectrum from the zero-one photon coherent state
|β⟩−. The single side peak at 2ω+ − ω− appears, due to the trans-
formation of |β⟩− (one photon, Nph = 1, from |β⟩− and two photons
from |α⟩±). (b) The peak amplitude dependences at several side-peak
positions in classical (left column) and quantum with the two-level
atom (right column) wave mixing regimes as functions of both driving
amplitudes (α±) expressed in photons per cycle. Several side peaks
are clearly visible in the classical regime. This is in striking difference
from the quantum regime, when only one peak at 2ω+−ω− is observed
and behaves qualitatively similar to the one in the classical regime.
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in the atom, which contains not more than one photon (Nph = 1). Therefore,

only a single-positive side peak 2ω+−ω− due to the emission of the ω−-photon,

described by a+a
†
−a+, is allowed. We describe the process in more detail in

sec. 4.7.4.

To experimentally prove that there are no signatures of other peaks, except

for the observed three peaks, we vary the peak amplitudes and compare the

classical and QWM regimes with the same conditions. Figure 4.9(b) demon-

strates the side peak power dependencies in different mixing regimes: classical

(two simultaneous pulses) (left panels) and quantum (two consecutive pulses)

(right panels). The two cases reveal a very similar behaviour of the right hand-

side four-wave mixing peak at 2ω+−ω−, however the other peaks appear only

in the classical wave mixing, proving the absence of other peaks in the mixing

with the quantum state.

The asymmetry of the output mixed signals, in principle, can be demon-

strated in purely classical systems. It can be achieved in several ways, e.g.,

with destructive interference, phase-sensitive detection/amplification [95], fil-

tering. All these effects are not applicable to our system of two mixed waves

on a single point-like scatterer in the open (wide frequency band) space. What

is more important than the asymmetry is that the whole pattern consists of

only three peaks without any signature of others.

This demonstrates another remarkable property of our device: it probes

photonic states, distinguishing the coherent, |α⟩, and superposed states with

the finite number of the photon states. Moreover, the single peak at ω3 shows

that the probed state was |β⟩ with Nph = 1. This statement can be gener-

alised for an arbitrary state. According to the picture in Fig. 4.7(c), adding

a photon increases the number of peaks from the left- and right-hand side by

one, resulting in the total number of peaks Npeaks = 2Nph + 1.
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4.6 Probing the two-photon superposed state

To gain deeper insight into the state-sensing properties and to demonstrate

QWM with different photon statistics, we extended our experiment to two-

photon states (Nph = 2). The two lowest transitions in our system can be

tuned by adjusting external magnetic fields to be equal to ℏω0, though higher

transitions are off-resonant ( ̸= ℏω0, see Fig. 4.2). In the three-level atom, the

microwave pulse at ω− creates the superposed two-photon state

|γ⟩− = C(|0⟩− + γ1 |1⟩− + γ2 |2⟩), (4.11)

where C =
√
1 + |γ1|2 + |γ2|2.

The plot in Fig. 4.10 shows the modified spectrum. As expected, the

spectrum reveals only peaks at frequencies consisting of one or two photons

of ω−. The frequencies are ω3 = 2ω+ − ω−, ω3 = 2ω− − ω+, and ω5 =

3ω+ − 2ω− corresponding, for instance, to processes a+a
†
−a+c

+
3 , a−a−a

†
+c

+
−3

and a+a
†
−a

†
−a+a+c

+
5 , where c

+
m and c−m are creation and annihilation operators

defined on the two-photon space (|n⟩, where n takes 0, 1 or 2). The intuitive

picture of the two-photon state mixing is shown on the central and right-hand

side panels of Fig. 4.7(c). The two photon state (Nph = 2) results in the

five peaks. This additionally confirms that the atom resolves the two-photon

state. For a more detailed description of the two-photon quantum mixing

process refer to sec. 4.7.5.

QWM can also be understood as a transformation of the quantum states

into quantised frequencies similar to the Fourier transformation. The sum-

marised two-dimensional plots with Nph are presented in Fig. 4.13. The mixing

with quantum states manifests itself in an asymmetric spectrum. Note that

for arbitrary Nph coherent states, the spectrum asymmetry will remain, giving

Nph and Nph−1 peaks at the emission and absorption sides.
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Figure 4.10: Quantum wave mixing with two-photon superposed states and sens-
ing of quantum states. The mixing spectrum with the three-level
atom consists of five peaks, which is a result of the mapping of two-
photon state |γ⟩− (Nph = 2). Comparing with Fig. 4.9, an additional
emission peak at 3ω+ − 2ω− appears, corresponding to two-photon
emission from |γ⟩−. The absorption process resulting in a peak at
2ω− − ω+ is now possible, as it is schematically exemplified. Impor-
tantly, the device probes the photonic states of the coherent field,
distinguishing classical (Fig. 4.8(a)) (Nph = ∞), one- (Nph = 1), and
two-photon (Nph = 2) superposed states.

4.7 Theoretical description

Having presented the experimental results, we provide an in-depth derivation

of the different regimes of wave mixing. My supervisor Prof. Oleg Astafiev

developed the theory with contributions from fellow PhD student Aleksei Dim-

itriev and myself. As far as we are aware, this derivation has not been done

before.
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4.7.1 Continuous wave mixing on a single two-level

atom

In chapter 2, section 2.5.5 we derived the elastic wave scattering amplitude

on a two-level system under continuous drive at a single frequency. Similarly,

we will obtain an expression for the elastic wave scattering amplitude on an

artificial two-level atom under continuous drive at two frequencies.

We start with the Hamiltonian of a two-level atom interacting with two

microwaves

H = −ℏωa

2
σz − ℏΩ−σx cos(ωt− δωt)− ℏΩ+σx cos(ωt+ δωt), (4.12)

where Ω+ and Ω− are the amplitudes of the classical coherent driving fields.

Under unitary transformation H ′ = UHU † − iℏUU̇ † with U = exp(−ωat
2
σz)

the Hamiltonian in the rotating wave approximation becomes

H ′ =
ℏ∆ω
2

σz −
ℏ
2
σ−(Ω−e

−iδωt + Ω+e
iδωt)− ℏ

2
σ+(Ω−e

iδωt + Ω+e
−iδωt), (4.13)

where ∆ω = ω−ωa. Solving the Master equation −i(H ′ρ−ρH ′)+L = 0 with

L = −Γ1σzρ11 − Γ2(σ+ρ10 + σ−ρ01), we find

ρ01 =
1

2

Γ1Ω−(∆ω − iΓ2)e
−iδωt + Γ1Ω+(∆ω − iΓ2)e

iδωt

Γ1(∆ω2 + Γ2
2) + Γ2(Ω− + Ω2

+) + Γ2Ω−Ω+(ei2δωt + e−iδωt)
. (4.14)

Recalling ⟨σ−⟩ = ρ01, we rewrite the expectation value of the atomic σ− oper-

ator

⟨σ−⟩ = A
Ω−e

−iδωt + Ω+e
iδωt

1 + β
2
(ei2δωt + e−i2δωt)

, (4.15)

where

A =
Γ1λ

2(Γ1|λ|2 + Γ2(Ω2
− + Ω2

+))
, β =

2Γ2Ω−Ω+

Γ1|λ|2 + Γ2(Ω2
− + Ω2

+)
, (4.16)

with λ = ∆ω − iΓ2. In general, if two waves with frequencies slightly detuned

from each other (ω−δω, ω+δω) propagate within the single quantum scatterer
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(Γ1 >> δω), acting as a non-linear medium, we expect the waves to ”mix” and

peaks to appear. To find analytic expressions of the peaks, we need to find

a series expansion of Eq. 4.15 and collect the frequency terms. Let x = eiδωt,

and expand the term

1

1 + β
2
(x2 + x−2)

=
∞∑
k=0

(
− β

2

)k

(x2 + x−2)k

=
∞∑
k=0

(
− β

2

)k k∑
m=0

k!

(k −m)!m!
x2k−2mx−2m

=
∞∑
k=0

(
β

2

)2k 2k∑
m=0

(2k)!

(2k −m)!m!
(x2)2k−2m

−
∞∑
k=0

(
β

2

)2k+1 2k+1∑
m=0

(2k + 1)!

(2k −m)!m!
(x2)2k−2m+1.

(4.17)

For even exponents 2p = 2k − 2m the first term of Eq. 4.17 simplifies to

∞∑
k=0

(
β

2

)2k 2k∑
m=0

(2k)!

(2k −m)!m!
(x2)2k+2m

→
∞∑

k=|p|

(
β

2

)2k
(2k)!

(k + p)!(k − p)!
(x2)2p =

1

α
y2|p|x4p

(4.18)

where α =
√
1− β2 and y = −

√
1−α
1+α

. For odd exponents 2p+1 = 2k+1−2m

the second term of Eq. 4.17 simplifies to

−
∞∑
k=0

(
β

2

) 2k∑
m=0

(2k + 1)!

(2k + 1−m)!m!
(x2)2k+1+2m

→
∞∑

k=|p|

(
β

2

)2k+1
(2k + 1)!

(k + p+ 1)!(k − p)!
(x2)2p+1 =

1

α
y|2p+1|x4p+2.

(4.19)

Combining even and odd cases we rewrite

1

1 + β
2
(x2 + x−2)

=
1

α

p=∞∑
p=−∞

y|p|x2p. (4.20)
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Substituting Eq. 4.20 into the expectation value of the σ− operator

⟨σ−⟩ =
A

α
(Ω−e

−iδωt + Ω+e
iδωt)

∞∑
p=−∞

y|p|ei2pδωt

=
A

α

[
Ω−

∞∑
p=−∞

y|p|ei(2p−1)δωt + Ω+

∞∑
p=−∞

y|p|ei(2p+1)δωt

]

=
A

α

[
Ω−

0∑
p=−∞

y−pei(2p−1)δωt + Ω−

∞∑
p=1

ypei(2p−1)δωt

+ Ω+

−1∑
p=−∞

y−pei(2p+1)δωt + Ω+

∞∑
p=0

ypei(2p+1)δωt

]

=
A

α

[
Ω−

∞∑
p=0

ypei(−2p−1)δωt + Ω−

∞∑
p=0

yp+1ei(2p+1)δωt

+ Ω+

∞∑
p=0

yp+1ei(−2p−1)δωt + Ω+

∞∑
p=0

ypei(2p+1)δωt

]

=
A

α

∞∑
p=0

yp
[
(Ω− + yΩ+)e

−(2p+1)δωt + (yΩ− + Ω+)e
i(2p+1)δωt

]
.

(4.21)

The corresponding emission amplitudes in Ω’s are

Ωem = iΓ1⟨σ−⟩ = iΓ1
A

α

∞∑
p=0

yp
[
(Ω− + yΩ+)e

−(2p+1)δωt + (yΩ− +Ω+)e
i(2p+1)δωt

]
(4.22)

Voltage amplitudes in case of capacitive coupling with dipole moment qp, which

couples voltage amplitude V and Ω according to ℏΩ = qpV , are given by

V em =
iℏΩ1⟨σ−⟩

qp
=
iℏΓ1

qp

A

α

∞∑
p=0

yp
[
(Ω−+yΩ+)e

−(2p+1)δωt+(yΩ−+Ω+)e
i(2p+1)δωt

]
.

(4.23)

The analytic expression for the intensity of each side spectral component is

therefore given by

|V em
±(2p+1)|2 =

(
ℏ
qp

Γ1A

α
yp(Ω∓ + yΩ±)

)2

. (4.24)
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4.7.2 Elastic scattering of electromagnetic waves on an

artificial atom

So far, in sec. 2.5.3.1, 4.7.1, we have described a two-level system interacting

with a classical field or fields. Now, we consider a two-level atom with ground

and excited states |g⟩ and |e⟩ and energy splitting ∼ ℏω0, interacting with a

quantised field at frequency ω with the Hamiltonian

H = iℏg(a†σ−eiδωt − aσ+e−iδωt), (4.25)

in the interaction picture, where ∼ g is the coupling energy, δω = ω − ω0 is

small detuning, σ+ = |e⟩ ⟨g| (σ− = |g⟩ ⟨e|) is the rising (lowering) operator of

the atomic states and a† (a) is the creation (annihilation) operator of photon

states |n⟩ at frequency ω = ω0 + δω (n is an integer number larger than or

equal to zero) [50, 96].

An evolution of the system in a short time interval ∆t≪ δω−1 is described

by operator U(t′, t) = exp(− i
ℏHt∆t), where Ht is the Hamiltonian at time t,

∆t = t′ − t. It can be expanded into an infinite series according to

U(t, t′) = 1 + η(a†s− − as+)− η2

2!
(aa†se + a†asg)−

η3

3!
(a†aa†s− − aa†as+) + ...,

(4.26)

where η = gδt and s± are time dependent operators s+(t) = σ+e−iδωt and

s−(t) = σ−eiδωt. The evolution operator can be simplified to

U(t, t′) = cos(η
√
a†a)sg+cos(η

√
aa†)se−

as+√
a†a

sin(η
√
a†a)+

a†s−√
aa†

sin(η
√
aa†),

(4.27)

where se = s+s− and sg = s−s+ and can be further rewritten as

U(t, t′) =
∞∑
n=0

[
cos(η

√
n) |n⟩ ⟨n| sg + cos(η

√
n+ 1) |n⟩ ⟨n| se

− |n− 1⟩ ⟨n| s+ sin(η
√
n) + |n+ 1⟩ ⟨n| s− sin(η

√
n+ 1)

]
.

(4.28)
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Particularly for initial state Ψ(t) = |g, n⟩, the evolution results in Ψ(t′) =

cos(η
√
η) |g, n⟩ − e−iδωt sin(η

√
n |e, n− 1⟩.

When Ψ(t) = |g, α⟩, the evolution is simplified to

Ψ(t′) ≈ cos
θ

2
|g, α⟩ − eiδωt sin

θ

2
|e, α′⟩ , (4.29)

where θ = 2ηα, α =
√
⟨n⟩ and |α′⟩ =

(
1− e−|α|2

)−1/2 ∑∞
n=1 |n− 1⟩ ⟨n|α⟩. It

is interesting that for α ≫ 1, which happens under strong coherent radiation

|α⟩, one photon absorption does not effectively change the state: α′ ≈ α. We

can rewrite the state in Eq. 4.29 as Ψ(t′) ≈ (cos θ
2
|g⟩ − e−iδωt sin θ

2
|e⟩) ⊗ |α⟩.

After switching off the pulse, the photon states of the driving field collapse to

zero (|α⟩ → |0⟩) and the system state becomes

Ψ′ =

(
cos

θ

2
|g⟩ − ie−iδωt sin

θ

2
|e⟩

)
⊗ |0⟩ (4.30)

and

⟨s+⟩ = − i

2
sin θ. (4.31)

The superposed system (at θ ̸=Mπ, where M is an integer number) acquires

phase δωt from the incident coherent wave [32, 64] and then generates a

superposed single-photon state. It is instructive to analyse the evolution of

Ψ′ (from Eq. 4.30) under the operator from Eq. 4.28. When the accumulated

angle η = π/2,

Uap = |0⟩ ⟨0|σ−σ+ − ieiδωt |1⟩ ⟨0|σ− (4.32)

and the atomic superpositions are converted into the superposition of a single-

photon field at frequency ω according to

Uap

[(
cos

θ

2
|g⟩ − ie−iδωt sin

θ

2
|e⟩

)
⊗ |0⟩

]
= |g⟩ ⊗

(
cos

θ

2
|0⟩ − sin

θ

2
|1⟩

)
.

(4.33)

We introduce single-photon creation operator b+ = |1⟩ ⟨0| at frequency ω and
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then

⟨b+⟩ = −1

2
sin θ. (4.34)

Equations ( 4.31 - 4.34) can now be rewritten using b-operators and the im-

portant consequence is that the atomic superposition is converted into the

coherent single-photon field by substitution s+ → ib+. In the more general

case, the atomic coherence is mapped on the zero-one photon state according

to s+ → ib+ and s− → −ib−, where b− = |0⟩ ⟨1|.

The classical coherent and zero-one states can be represented in similar

forms

|α⟩ = A

(
|0⟩+ α |1⟩+ α2

√
2!

+ ...

)
|β⟩ = B(|0⟩+ β |1⟩)

(4.35)

where A = exp(−|α|2/2) and B = (1+ |β|2)−1/2. Particularly for the coherent

photon state in Eq. 4.33, β = − tan θ/2 and B = cos θ/2.

The Hamiltonian of Eq. 4.25 can be equivalently rewritten through the

single-photon creation/annihilation operators as

H = iℏg(b+a− b−a†), (4.36)

meaning that b-operators describe atomic excitations with phase δωt and.

therefore, satisfy identities similar to s-operators: b+b− = |1⟩ ⟨1|, b−b+ =

|0⟩ ⟨0|, b+b+ = 0, b−b− = 0.

We can simplify Eq. 4.28 for the case of strong coherent drive as

U(t, t′) ≈ cos(η
√
a†a) + (ab+ − a†b−)

sin(η
√
a†a)√

a†a
. (4.37)

4.7.3 Elastic scattering of two frequencies

Now we will discuss an atom driven by two different frequency waves (ω± =

ω0 ± δω). For this case we can calculate the spectra within our semiclas-
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sical approach, using Eqs. 4.29, 4.30. Substituting classical driving field

θ = Ω∆teiδωt + Ω∆te−iδωt = 2Ω∆t cos δωt into Eq. 4.31, we obtain

⟨s+⟩ = −1

2
sin(2Ω∆t cos δωt), (4.38)

which is decoupled in Bessel function series according to

⟨s+⟩ = −
∞∑

k=−∞

(−1)kJ2k+1(2Ω∆t) cos[(2k + 1)δωt], (4.39)

and, therefore, calculating the spectral component ⟨s+2k+1⟩ of the emission at

frequency (2k + 1)δωt gives

⟨s+2k+1⟩ =
(−1)k

2
J2k+1(2Ωt)e

i(2k+1)δωt. (4.40)

Despite the simplicity of the above derivation, it does not illustrate the physical

entity of QWM, in particular, it fails to separate individual contributions of

multi-photon processes into emission and therefore does not illustrate the link

to photon statistics of the emitted light. Moreover, the semiclassical picture

fails to explain the limited number of spectral components we observe for the

case of quantum mixing with delayed pulses. Therefore, for our purposes it is

instructive to calculate the same physical quantity from an approach of second

quantisation.

For this approach, we now take the two continuous coherent driving fields

|α−⟩− and |α+⟩+ into account, where α± are real amplitudes for simplicity.

The Hamiltonian is then modified to

H = iℏg(s−−a
†
− − s+−a− + s−+a

†
+ + s++a+), (4.41)

where a†± (a±) is the creation (annihilation) operator of a photon at ω±, s
+
±

(s−±) is time-dependent rising (lowering) operator of the atomic states such

that s+± = σ+e∓iδωt (s−± = σ−e±iδωt), and ℏg is the coupling energy to the
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modes. The evolution operator of the Hamiltonian of Eq. 4.41 can be expanded

similarly to Eq. 4.28, however, each term contains sequential combinations of

operators s−±a
†
± and s+±a±. We can rewrite the Hamiltonian through the b-

operators, using substitution s+± → b+± and s−± → b−±,

H = iℏg(b+−a− − b−−a
†
− + b++a+ − b−+a

†
+), (4.42)

where b±± describe atomic excitation/relaxation with phases ±δωt. The evolu-

tion operator U(t′, t) = exp(− i
ℏHt∆t) can be rewritten in the tensor form

U =1 + η(b−ma
†
m − b+mam)−

η2

2!
(b+mb

−
j ama

†
maj)

− η3

3!
(b−m−j+pa

†
maja

†
p − b†m−j+pama

†
jap) + ...,

(4.43)

where indexes take values ±1. Here, we rely on b+mb
−
j b

+
p = b+m−j+p be-

cause b-operators should satisfy the same relations as s-operators: s+ms
−
j s

+
p =

e−imδωtσ+eijδωtσ−e−ipδωtσ+ = e−i(m−j+p)δωtσ+ = s+m−j+p. Here we expanded

the definition of s-operators to an arbitrary l-mode according to s±l = e∓ilδωtσ±.

This, for example, means that the third order terms a+a
†
−a+b

+
3 and a−a

†
+a−b

+
−3

result in creation of the single-photon fields at frequency ω±3 = ω0 ± 3δω.

In general, the output light could be generated at frequencies ω±l = ω0 ±

lδω, where l = 2k+1, k = 0, 1, 2, .... Among all terms in Eq. 4.43 contributing

into creation of the single-photon field at ω±l, the one of lowest order consists

of 2k+2 operators: 2k+1 a-operators a±a
†
∓a±... = (a±a

†
∓)

ka± and one b+±(2k+1).

As it was shown in [32], the superposed atom generates a coherent field V =

ℏΓ1

qp
⟨s+⟩. Generalising the statement, we can write the expression for the single-

photon coherent field generated at frequency ω±l:

V±l =
ℏΓ1

qp
⟨b+±l⟩ , (4.44)

where qp is the dipole coupling moment for our case of capacitive coupling

of the atom to the transmission line. In order to analyse the evolution, we
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start from initial state Ψ(t) = |β⟩ ⊗ |n⟩− ⊗ |n⟩+ consisting of the atom in the

superposition described by single-photon coherent state |β⟩, and photon states

|n⟩± (where n ≫ 1) with equal number of photons in both frequency modes.

We introduce the following operators

Â+−
2k =

(a†−a+)
−k : k < 0

(a†+a−)
k : k ≥ 0

Â−
2k+1 =

(a−a
†
+)

−ka− : k < 0

(a+a
†
−)

ka+ : k ≥ 0

Â−+
2k =

(a−a
†
+)

−k : k < 0

(a+a
†
−)

k : k ≥ 0

Â−
2k+1 =

(a−a
†
+)

−ka− : k < 0

(a+a
†
−)

ka+ : k ≥ 0

(4.45)

which satisfy relations (Â+)†2k+1 = Â−
2k+1, (Â

+−
2k )† = Â+−

−2k, (Â
−+
2k )† = Â−+

2k . The

operator

Â−
2k+1b

+
2k+1 (4.46)

creates a single photon at ω2k+1 with the least number of photons cre-

ated/annihilated at driving frequencies ω±. Particularly, A−
2k+1 |n−, n+⟩ =(

9n−+k)!
n−!

n+!
(n+−k−1)!

) 1
2

, when k > 0. . In the discussed case of large and equal

photon number n ≫ 2k + 1, A−
2k+1 |n, n⟩ ≈ nk+ 1

2 |n+ k, n− k − 1⟩. The evo-

lution can be simplified to

U(t′, t)Ψ(t) ≈
∞∑

k=−∞

[Â+−
2k C

+
2kb

−
k b

+
−k + Â−+

2k C
−+
2k b

+
k b

−
−k−

Â−
2k+1C

−
2k+1b

+
2k+1 + Â2k+1C

+
2k+1b

−
2k+1]Ψ(t),

(4.47)

where coefficients Cl depend on the initial state and come from a sum of all pos-

sible permutations of combinations of creation-annihilation operators (a−a
†
−,

a†−a−, a
†
+a+, a+a

†
+ for two virtual photons involved, a+a

†
−a−a

†
+, a

†
+a−a

†
−a+

and two more terms for four virtual photons involved and so on), which do not

change neither the occupation nor the frequency of photonic states. Assuming
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that n≪ 2k and using the relations a |n⟩ = n |n⟩, a† |n⟩ ≈ n |n⟩ we arrive at

Cl ≈
1

(
√
n)l

∞∑
m=0

(−1)j+m(η
√
n)l+2m

(l + 2m)!

(l + 2m)!

m!(l +m)!
=

(−1)j

(
√
n)l

Jl(η
√
n), (4.48)

where j = mod (l, 2), Jl is the Bessel function of the first kind.

If the initial state Ψ = |β, α, α⟩, where α is a real number, Eq. 4.47 is

simplified to

∞∑
k=−∞

=

[
(−1)k

α2k
J2k(θ)

(
Â+−

2k b
−
−kb

+
k + Â−+

2k b
+
−kb

−
k

)
+

(−1)k

α2k+1
J2k+1(θ)

(
Â+

2k+1b
−
2k+1 − Â−

2k+1 − Â−
2k+1b

+
2k+1

)]
Ψ,

(4.49)

and in the case of Ψ = |0, α, α⟩

UΨ ≈
∞∑

k=−∞

[
(−1)k

α2k
J2k(θ)Â

+−
2k |0⟩2k ⊗ |α, α⟩

+
(−1)k

α2k+1
J2k+1(θ) |1⟩2k+1 ⊗ |α, α⟩

]
,

(4.50)

where θ = 2ηα. Taking into account that b+2k+1 = |1⟩2(k+p)+1 ⟨0|2p, we can

directly write an expression for the expectation value of the single-photon

creation operator at ω2k+1,

⟨b+2k+1⟩ =
∞∑

p=−∞

(−1)k+p+p

α2(k+p)+1
J2(k+p)+1(θ)J2p(θ) ⟨Â−

2(k+p)+1Â
+−
−2p⟩ . (4.51)

Using standard textbook formulae for Bessel functions, it is simplified to

⟨b+2k+1⟩ =
(−1)kJ2k+1(2θ)

2α2k+1
⟨Â−

2k+1⟩ . (4.52)

Here we use the following property: α−(2(k+p)+1) ⟨Â−
2(k+p)+1Â

+−
−2p⟩ ≈

α−(2k+1) ⟨Â−
2k+1⟩ for α ≫ 1. Taking into account that ⟨Â−

2k+1⟩ ≈ α2k+1,
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we simplify the expression further to

⟨b+2k+1⟩ =
(−1)k

2
J2k+1(2Ω∆t), (4.53)

where Ω∆t = θ. The final expression is identical to Eq. 4.40. The coherent

emission amplitude at each mode is

V2k+1 =
ℏΓ1

qp
⟨b2k+1⟩ , (4.54)

and power

W2k+1 =
V 2
2k+1

2Z0

, (4.55)

where Z0 is the line impedance. We calculate the coherent wave energy at each

cycle, substituting Eq. 4.53 into Eq. 4.44 and integrating over time t. Taking

into account that Γ1 =
ℏωq2pZ0

ℏ2 and
∫∞
0

⟨b22k+1⟩ dt =
∫∞
0
e−Γ1tdt = Γ−1

1 , we find

the generated photon number in two directions to be

E±(2k+1)

ℏω
=
J2
±(2k+1)(2Ω∆t)

4
. (4.56)

Although we have found the analytical solution for the approximated case of

strong drive, it can be generalised for any arbitrary initial driving states as

⟨b+2k+1⟩ = D−
2k+1 ⟨Â

−
2k+1⟩ , (4.57)

where D−
2k+1 is a coefficient dependent on the driving amplitudes. This means

that only states at frequency ω0 ± (2k+1)δω with odd indexes 2k+1 > 0 can

be created. Creation of the single-photon state, requires annihilation of k + 1

photons at at ω+ and creation of k photons at ω−.

4.7.4 Quantum mixing

We consider an evolution from two sequential pulses with frequencies ω− and

ω+ as illustrated in Fig 4.11(a). The first pulse results in the atomic exci-

tation described by the single-photon field |β⟩−, which comes from process
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|β−, α, α⟩ = B−
(
1 + β−

b+−a−
α−

)
|0, α−, α+⟩, where B− =

√
1 + β2

−. The state is

then interacting with coherent state |α⟩+ of the second pulse (Fig. 4.11(b)).

Among all processes of the third and higher orders, the only non-trivial

one, leading to creation of the new frequency mode, is described by A−
3 b

+
3 =

a+a
†
−a+b

+
3 = a+b

+
+a

†
−b

−
−a+b

+
+ because at most one photon is emitted from |β⟩−

at ω−. All other processes are prohibited due to lack of photons at ω−. It

results in creation of the single-photon state at 2ω+ − ω− = ω0 + 3δω as

schematically shown in Fig. 4.11(c).

Figure 4.11: a) Pulse sequence b) The first pulse prepares the coherent single-
photon state |β⟩− which interacts with the coherent state |α⟩+ of the
second pulse. c) Schematic presentation of the only non-trivial high
order process resulting in a peak at ω0 + 3δω.

The evolution is described as

U(t′, t) |0, α−, α+⟩ ≈B+

(
1 + β+ +

a+ b++ − a†+b
−
+√

a†+a+

)

×B−

(
1 + β−

a−b
+
−√

a†−a−

)
|0, α−, α+⟩ ,

(4.58)

where operators β± = tan(θ±/2), B± =
√
1 + β2

±, θ− = 2g−α−(t
′ − t), θ+ =
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2g−α−(t
′′ − t′). The equation is further simplified to

U(t′, t′′) |0, α−, α+⟩ ≈ B+B−

(
1− β̂−

+ β̂
+
− + β̂+

+ + β̂+
−

)
|0, α−, α+⟩ , (4.59)

where operators β̂+
± = β±a±b

+
±(a

†
±a±)

−1/2 and β̂−
± = (β̂+

±)
†. Among all possible

operators of Eq. 4.46 of orders higher or equal to three, only A−
3 b

+
3 creates the

new frequency field because only

⟨A−
3 b

+
3 ⟩ = B2

+B− ⟨0, α−, α+| β̂−
+a+a

†
−a+b

+
3 β̂

−
+ β̂

+
− |0, α−, α+⟩ (4.60)

is non-zero. And we find

⟨b+3 ⟩ = B2
+B−β

2
+β−. (4.61)

Finally, the field amplitude is found to be

⟨b+3 ⟩ ≈ sin2[Ω+(t
′′ − t′)] sin[Ω−(t

′ − t)], (4.62)

where Ω± = gα±.

4.7.5 Two-photon quantum mixing

In the case of an equally spaced three-level system described by |0⟩, |1⟩ and

|2⟩, with transition energies ∼ ω10 =∼ ω21, the resonance drive results in

excitation of the system, leading to state Ψ = C(|0⟩ + γ1 |1⟩ + γ2 |2⟩), where

C =

[
1 + |γ1|2 + |γ2|2

]−1/2

.

We introduce two-state creation/annihilation operators c†, c with the fol-

lowing properties: c† |0⟩ = |1⟩, c† |1⟩ = |2⟩, c† |2⟩ = 0, c |2⟩ = |1⟩, c |1⟩ = |0⟩,

c |0⟩ = 0. In the case of the same pulse sequence the first pulse applied at ω−

during time [t′, t] is followed by another pulse ω+ during [t′′, t′] (Fig. 4.12(b).

Similarly to Eq. 4.59, the evolution is presented as

U(t′′, t) = C+

[
1 + γ̂†+ + γ̂+ + γ̂†2+ + γ̂2+

]
× C−

[
1 + γ̂†− + γ̂†2−

]
, (4.63)
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where γ̂†1± = γ+1±a±c
†
±, γ̂

+
1± = γ−1±a

†
±c±, γ̂

†
2± = γ+2±(a±c

†
±)

2, γ̂+2± = γ−2±(a
†
±c±)

2.

U(t′′, t) = C+C−

[
1+γ̂†++γ̂++γ̂

†
−+γ̂

†
2++γ̂2++γ̂

†
2−+γ̂

†
+γ̂

†
−+γ̂+γ̂

†
−+γ̂+γ̂

†
2−+γ̂2+γ̂

†
2−

]
.

(4.64)

As an example, some terms contributing into the peaks, additionally to the

single-photon wave mixing, are

3ω+ − 2ω− : ⟨γ̂†+A−
5 c

+
5 (γ̂2+γ̂

†
2−)

†⟩ = ⟨γ̂†+A−
5 c

+
5 γ̂2−γ̂

†
2+⟩ → ⟨a+a†−a

†
−a+a+⟩

2ω− − ω+ : ⟨γ̂†2−A−
3 c

+
−3(γ̂+)

†⟩ → ⟨a−a−a†+⟩
(4.65)

where the former is schematically shown in Fig. 4.12(d).

Figure 4.12: a) The system can be tuned to a working point where the transition
from the ground state to the first excited state and from the first
excited state to the ground state are equal and other energies are far
away. b) We consider two sequential pulses at frequencies ω− and
ω+ interacting with the equally spaced three-level atom resulting in
the spectrum exhibiting five peaks. c) The first pulse prepares the
coherent two-photon state |γ⟩− which interacts with the coherent
state |α⟩+ of the second pulse. d) Schematic of the physical process
resulting in a peak at 3ω+ − 2ω−.
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4.8 Conclusion

According to our understanding, QWM has not been demonstrated in systems

other than superconducting quantum ones due to the following reasons. First,

the effect requires a single quantum system because individual interaction pro-

cesses have to be separated in time [97] and it will be washed out in multiple

scattering on an atomic ensemble in matter. Next, although photon counters

easily detect single photons, in the visible optical range, it might be more

challenging to detect amplitudes and phases of weak power waves [98, 99].

On the other hand, microwave techniques allow one to amplify and measure

weak coherent emission from a single quantum system [64, 100], due to strong

coupling of the single artificial atom; the confinement of the radiation in the

transmission line; and due to an extremely high phase stability of microwave

sources. The radiation can be selectively detected by either spectrum analy-

sers or vector network analysers with narrow frequency bandwidths, efficiently

rejecting the background noise.

To conclude, we have demonstrated wave mixing on a single artificial atom

(Fig. 4.13(a)) and QWM (Fig. 4.13(b-d)) - interesting phenomena of quantum

optics.

We consider the time evolution of a two-level system illuminated by two

microwaves with frequencies ω± = ω0 ± δω, where ω0 is the transition fre-

quency of the atom and the detuning δω is much smaller than the atom’s

relaxation rate Γ1, which can be written as a series expansion with each term

describing a multi-photon process. What’s important is that each term in the

expansion consists of pairs of annihilation (creation) a (a†) operators of the

driving field and creation (annihilation) b+ (b−) operators of the single photon

field, i.e. sequential absorption (emission) accompanied by atomic excitations

(relaxations) thus conserving energy.

We have explored different regimes of QWM and proved that the super-

posed and coherent states of light are mapped into a quantised spectrum of

narrow peaks. The number of peaks is determined by the number of interacting
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Figure 4.13: Different regimes of mixing and dynamics of photonic states. (a)
Coherent wave mixing on a single artificial atom in the continuous
driving regime. (b) Anharmonic Rabi oscillations in classical wave
mixing on a single artificial atom. (c) Quantum wave mixing with a
two-level atom. The single emission side peak appears. (d) Quantum
wave mixing on a three-level atom. Two more side peaks at 3ω+−2ω−
and 2ω− − ω+ appear because the two-photon field is stored in the
atom at ω−.

photons. As the number of required photons increases with order k, the emis-

sion peaks take longer to appear. For continuous drives we observe many order

peaks at frequencies ω0 ± (2k + 1)δω (Fig. 4.13(a)). Pulsing the two coherent

drives results in the emission peaks oscillating according to Bessel functions

of their order (Fig. 4.13(b)). Introducing a time-delay between pulses leads to

an asymmetric spectrum (Fig. 4.13(c-d)). The first pulse prepares the atom in

a superposed state, or in other words stores the coherent single photon field,

which subsequently interacts with the second pulse. The asymmetry arises

from the two-level atom only being able to provide one photon at most that

can mix with the coherent photon field. As seen in Fig. 4.13(c), if the first pulse

is at frequency ω− the only allowed higher order peak is at 2ω+−ω−. There is

no peak at 2ω−−ω+ as this would require two photons from the two-level atom.

However, extending the experiment to a three-level atom with equally spaced

transition frequencies causes two additional side peaks to appear (Fig. 4.13(d)),

amounting to five peaks in the spectrum. Now, the two-photon state interacts
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with the coherent photon field provided by the second pulse.

Thus, QWM can probe photonic states and could serve as a powerful tool

for building new types of on-chip quantum electronics.



Chapter 5

Mixing of coherent waves on a

single three-level artificial atom

We report coherent frequency conversion in the gigahertz range via three-wave

mixing on a single artificial atom in open space. All frequencies involved are

in vicinity of transition frequencies of the three-level atom. A cyclic configu-

ration of levels is therefore essential, which we have realised with an artificial

atom based on the flux qubit geometry. The atom is continuously driven at

two transition frequencies and we directly measure the coherent emission at

the sum or difference frequency. Our approach enables coherent conversion

of the incoming fields into the coherent emission at a designed frequency in

prospective devices of quantum electronics.

5.1 Introduction

For a long time research in experimental quantum optics focused on study-

ing ensembles of natural atoms [101, 30]. However, there have been huge

advances in performing analogous quantum optics experiments using other

systems [102, 103, 104]. In particular, superconducting artificial atoms are re-

markably attractive to study quantum optics phenomena. The artificial atoms

are nano-scale electronic circuits that can be fabricated using well established

techniques and can therefore be easily scaled up to larger systems. Their en-

ergy levels can be engineered as desired, and strong coupling can be achieved
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with resonators and transmission lines [85, 105, 32, 90].

This greater control of parameters allows one to reproduce quantum optics

phenomena with improved clarity or even reach regimes, that are unattainable

with natural atoms. For instance coherent population trapping [106], electro-

magnetically induced transparency [107, 108], Autlers-Townes splitting [109,

53, 110, 111, 112], and quantum wave mixing [1] have been experimentally ob-

served in superconducting three-level systems [113, 114, 115, 116, 117]. More-

over, three-level atoms can be used to cool quantum systems [118, 119], amplify

microwave signals [87] and generate single or entangled pairs of photons [120]

– important applications for future quantum networks.

Here we investigate three-wave mixing, a nonlinear optical effect that can

occur in cyclic three-level atoms, which are lacking in nature [121], but can

easily be realised with superconducting artificial atoms. The only suitable nat-

ural systems for the three-wave mixing are chiral molecular three-level systems

without inversion symmetry [122]. However, these systems cannot be tuned in

frequency.

Different to Josephson junction based parametric three-wave mixing de-

vices [123], that rely on mixing on a classical non-linearity, we implement here

another method to generate three-wave mixing using a single cyclic or ∆-type

artificial atom. This was considered theoretically in references [121, 124].

We directly measure the coherent emission of the cyclic three-level atom

under two external drives corresponding to two atomic transitions. The emis-

sion occurs at a single mixed frequency (sum or difference). This emission is a

corollary of coherent frequency conversion but inherently differs from classical

frequency conversion [7, 50] which would result in sidebands at the sum and

difference frequencies.

Previously, coherent atomic excitations using two frequencies have been

studied in a single dc-SQUID phase qubit circuit with two internal degrees of

freedom [125]. However, in this work, we realise coherent frequency conversion

with a cyclic artificial atom in open space, which offers some advantages over
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placing it in a cavity. In particular, it allows to directly detect the coherent

(elastic) component of the emitted field at sum or difference frequencies of the

artificial atom by a vector network analyser (VNA) [64].

This work establishes innovative quantum electronics that enables three-

wave mixing, and coherent frequency conversion.

Figure 5.1: (a) False-coloured micrograph of the device taken at an angle. The
three-level artificial atom consisting of a superconducting loop with
four Josephson junctions is capacitatively coupled to the transmission
line. (b) Spectroscopy of the single artificial three-level atom. The
transition frequencies are detected by transmission as a function of
flux bias and probe driving frequency. Choosing a working point away
from the degeneracy point δΦ ̸= 0 indicated by the dashed line in (b)
results in (c) a cyclic-type artificial atom with transition frequencies
ω21/2π = 6.48 GHz, ω32/2π = 8.35 GHz, and ω31/2π = 14.83 GHz.

5.2 Sample description

Our device consists of a superconducting loop (∼ 10µm2) interrupted by four

Josephson junctions. This geometry is based on the flux qubit [126] where one

of the Josephson junctions, the α-junction, has a reduced geometrical overlap
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by a factor of α. It is capacitatively coupled to a 1D transmission line via

an interdigitated capacitance of C = 5 fF (see Fig 5.1(a)). The device pa-

rameters (Josephson energy EJ/h = 65 GHz, charging energy (EC = e2/2C)

EC/h = 19 GHz, and α = 0.45) have been chosen such that the three low-

est transition frequencies fall into the frequency measurement band of our

experimental setup. The coupling to the transmission line is strong enough

to suppress non-radiative atom relaxation and hence the majority of photons

from the atom are emitted into the transmission line.

The device was fabricated by means of electron-beam lithography and

shadow evaporation technique with controllable oxidation. For a detailed de-

scription of the fabrication process refer to sec. 3.2.

The transition frequencies, ω12, ω23, and ω13 are controlled by the external

magnetic flux threaded through the loop, Φ = Φ0/2 + δΦ, where Φ0 is the

flux quantum and δΦ is the detuning from the energy degeneracy point of

the artificial atom. The atomic transition energies are found by performing

transmission spectroscopy. We sweep the frequency of a probe microwave

against the flux bias δΦ, as seen in Fig. 5.1(b). The working point is set

away from the degeneracy point δΦ ̸= 0, where all transitions are allowed,

forming a cyclic or ∆-type atom with transition frequencies ω21/2π = 6.48

GHz, ω32/2π = 8.35 GHz, and ω31/2π = 14.83 GHz (ω31 = ω21 + ω32), as

schematically shown in Fig. 5.1(c).

5.3 Coherent frequency conversion

The experiment is performed in a dilution refrigerator at base temperature

T = 12 mK, at which point thermal excitations are suppressed and negligible.

We investigate coherent emission of the three-level artificial atom under two

continuous drives. The measurement circuit is schematically illustrated in

Fig. 5.2. All regimes shown in Fig. 5.3(a-c) have been measured with different

driving field amplitudes, Ωij, between states |i⟩ and |j⟩, where i and j are 1, 2

or 3.
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Figure 5.2: Measurement setup for coherent mixing of a three-level artificial atom
under two continuous driving tones.

First, let us focus on the case when transitions |1⟩ → |3⟩ and |2⟩ → |3⟩

are driven with excitation frequencies ωd
31 = ω31 + δω31, ω

d
32 = ω32 + δω32
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Figure 5.3: Coherent emission in a driven three-level atom with energy diagrams of
the pumping schemes. (a) The three-level atom is continuously driven
with driving amplitudes Ω23 and Ω13, in b) with driving amplitudes
Ω12 and Ω13, and in c) with driving amplitudes Ω12 and Ω23. d)
The measured coherent emission peak at ω12 in terms of photon rate,
ν21em, under driving amplitudes Ω23/2π = 16 MHz, Ω13/2π = 50 MHz,
as a function of detuning of the driving frequency, δωd

23. The inset
schematically shows the typically measured spectrum.

(Fig. 5.3(a)) and emission at |2⟩ → |1⟩ is measured. Here δωij are small

detunings from their corresponding atomic transition frequencies ωij = ωi−ωj

with i > j. In the rotating wave approximation, the three-level artificial

atom under two drives ωd
31, ω

d
32 coupling the atomic states through the dipole

interaction ℏΩij = ϕijVij, with ϕij the atomic dipole moment, is described by

the Hamiltonian

H = − ℏ(δω31σ11 + δω23σ22)

− ℏ
[
Ω13

2
(σ13 + σ31) +

Ω23

2
(σ32 + σ23)

]
,

(5.1)

where σij = |i⟩ ⟨j| is the transition operator. The dynamics of the system are
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governed by the Markovian master equation.

The atom interacting with 1D open space emits a coherent wave [32, 64]

V em
ji (x, t) = i

ℏΓji

ϕji

⟨σij⟩ ei(kji|x|−ωjit) (5.2)

where ⟨σij⟩ = ρji is found from the stationary solution (ρ̇ = 0) of the master

equation. The spectral density S(ω) = 1
2π

∫ +∞
−∞ ⟨V̂ em

ij (0)V̂ em
ji (τ)⟩sseiωτdτ , where

the subscript (ss) of the correlator denotes the stationary solution, decomposes

into incoherent and coherent parts [49]. Using a spectrum analyser we monitor

the narrow emission peak, corresponding to the coherent component of the

emission Scoh = ℏωZ0Γji⟨σij⟩ss⟨σji⟩ssδ(ω − ωij) with the impedance of the

transmission line Z0 and where we have substituted Γji = ωZ0

ℏϕji
[32]. The

narrow peak power (mathematically a delta function) in the emission spectrum

is expected to be

P (ω) =
ℏωΓji

2
| ⟨σij⟩ |2, (5.3)

where P =
|V em

ji |2

2Z0
. Here ω is in the vicinity of the transition frequency

ω21/2π = 6.48 GHz as schematically shown above Fig. 5.3(d). The linewidth

of the emission peak is as narrow as the linewidths of the generator emission

that is driving the artificial atom. If our device is used as a single side band

mixer, the maximum power it would sustain is limited by the relaxation time

of the transition and must be ≤ ℏωΓij/8 since |⟨σji⟩| ≤ 1/2. Due to the oper-

ating principle, the bandwidth of such a device is restrained by the transition

frequencies of the cyclic atom. Quantum mechanics dictates that there can

only be emission at a frequency corresponding to an atomic transition within

the atom.

To explain this in an alternative way, it is instrucitve to use the second

quantization approach. For the interaction of waves on the single quantum

system only one scattering process can occur at the same instant. Introducing

creation (annihilation) operator, a†ij (aij) of a photon at frequency ωij, the
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allowed multi-photon processes, limited by the transitions of the atom, are

described by a31a
†
32a

†
21, and a†31a32a21. These two processes conserve energy

and explain the creation of the field in Fig. 5.3(a-c) denoted as dashed black

lines.

Figure 5.4: Measurement of coherent emission photon rate νem in arbitrary units
as a function of frequency detuning δωd of the two drives with am-
plitudes Ωij indicated on the panels. (a) Emitted photon rate of the
transition from |2⟩ → |1⟩, νem21 , with Rabi frequencies corresponding to
the respective field strengths Ω13, Ω23. (b) Emitted photon rate of the
transition from |3⟩ → |2⟩, ν32em, with Rabi frequencies corresponding to
the respective field strengths Ω13, Ω12. (c): Emitted photon rate of the
transition from |3⟩ → |1⟩, ν31em, with Rabi frequencies corresponding to
the respective field strengths Ω12, Ω23.

Fig. 5.3(d) shows the measured coherent emission peak as a function of

detuning of the driving frequency, δωd
23, expressed as photon rate, νem21 = P (ω)

ℏω
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under weak pumping amplitudes (Ω13 << γ13, Ω23 << γ23, where γij are

dephasing rates). Note that we are measuring only the elastically scattered

coherent emission from the atom. Each point in Fig. 5.3(d) corresponds to the

narrow emission peak exemplified as series of dotted peaks.

Figure 5.5: Numerical simulations of coherent emission photon rate νem as a func-
tion of frequency detuning δωd of the two drives with amplitudes Ωij

indicated on the panels. (a) Emitted photon rate of the transition from
|2⟩ → |1⟩, νem21 , with Rabi frequencies corresponding to the respective
field strengths Ω13, Ω23. (b) Emitted photon rate of the transition from
|3⟩ → |2⟩, νem32 , with Rabi frequencies corresponding to the respective
field strengths Ω13, Ω12. (c) Emitted photon rate of the transition from
|3⟩ → |1⟩, νem31 , with Rabi frequencies corresponding to the respective
field strengths Ω12, Ω23.

We then measure the coherent emission as a function of detuning of δωd
23

for varying values of Ω13, while keeping Ω23 constant. Splitting of the coherent
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emission under large driving amplitude Ω13 is observed which appears due to

level splitting induced by driving fields. This splitting is investigated further

by recording the coherent emission photon rate versus detuning of the two

drives for various combinations of powers. As seen in Fig. 5.4(a), the direction

of the splitting is determined by the stronger drive: Ω13 >> Ω23 leads to Ω13

splitting level |1⟩; Ω23 >> Ω13 leads to Ω23 splitting level |2⟩ and the splitting

pattern in the coherent emission V em
21 is turned by 90 degrees.

In an analogous way, we pump transitions between states |3⟩ and |1⟩

with driving frequency ωd
31 = ω31 + δω31 and transitions between states |2⟩

and |1⟩ with driving frequency ωd
21 = ω21 + δω21 (Fig. 5.3(b)) resulting in the

Hamiltonian

H = − ℏ(δω21σ22 + δω31σ33)

− ℏ
[
Ω12

2
(σ12 + σ21) +

Ω13

2
(σ32 + σ23)

]
.

(5.4)

In this pumping scheme, the emission power of the coherent emission of

transitions between states |3⟩ and |2⟩, V em
32 , is read out and a narrow peak in

the power spectrum at ω32/2π = 8.35 GHz is recorded.

The photon rate of coherent emission between states |3⟩ and |2⟩ is moni-

tored as a function of detuning of the drives, δωd
13 and δω

d
12, for several combi-

nations of driving amplitudes, Ω13 and Ω12, Fig. 5.4(b), the result being more

complex than in the previous driving configuration. It becomes apparent that

the coherent emission from the atom depends on all relaxation and dephasing

rates. The bright coherent emission line stretching diagonally from the bottom

left to the top right corner in Fig. 5.4(b) is primarily determined by dephasing

on the |3⟩ to |2⟩ transition, γ23. The vertical coherent emission line that ap-

pears for some combinations of powers strongly depends on the dephasing rate

γ12. Emission lines broaden when the two driving frequencies are comparable

to each other and larger than their dephasing rates.

To achieve coherent frequency upconversion we pump transitions between

states |2⟩ and |1⟩ with driving frequency ωd
21 = ω21 + δω21 and transitions be-
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tween states |3⟩ and |2⟩ with driving frequency ωd
32 = ω32+δω32, see Fig. 5.3(c).

The Hamiltonian for this configuration is

H = − ℏ(δω21σ11 + δω32σ33)

− ℏ
[
Ω12

2
(σ12 + σ21) +

Ω23

2
(σ32 + σ23)

]
.

(5.5)

As expected, we observe a single narrow coherent emission peak in the emission

power spectrum only at the sum frequency ω12/2π+ω23/2π = 14.83 GHz, but

not at the difference frequency ω12 − ω23, confirming that our results cannot

be explained by mixing with a classical nonlinearity. Similar to the previous

pumping configurations, the coherent emission peak is split under a strong

driving amplitude. Fig. 5.4 (c) shows the behaviour of the coherent emission

V em
13 as a function of detuning of the drives δω12/2π and δω23/2π for a range

of driving powers.

Finally, we numerically simulate our experimental results using the

master-equation formalism with the Lindblad term

L[ρ] = (Γ31ρ33 + Γ21ρ22)σ11 + (Γ32ρ33 − Γ21ρ22)σ22

− (Γ31ρ33 + Γ23ρ22)σ33 −
∑
i ̸=j

γijρijσij.
(5.6)

Here γij = γji is the damping rate of the off-diagonal terms (dephasing) and

Γij is the relaxation rate between the levels |i⟩ and |j⟩. In the numerical

simulations we chose Γ21/2π = 8 MHz, γ21/2π = 8 MHz, Γ32/2π = 38 MHz,

γ32/2π = 42 MHz, Γ31/2π = 41 MHz, and γ31/2π = 39.5 MHz which give

the best correspondence between the experiment, Fig. 5.4, and simulations,

Fig. 5.5.

5.4 Conclusion

In conclusion, we have demonstrated three-wave mixing and coherent fre-

quency conversion using a single cyclic three-level artificial atom. The fun-

damental difference from classical Josephson junction based parametric three-
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wave mixing devices [123] is that here transition frequencies of the artificial

atom are mixed to generate a single coherent emission peak at the sum or dif-

ference frequency. A requirement for this phenomena to occur is a cyclic-type

atom, which is absent in nature due to electric-dipole selection rules, but can

easily be realised with superconducting artificial atoms. Thus we suggest a

unique method of generating coherent fields at designed frequency by mixing

on the single artificial atom.



Chapter 6

Quantum sensor of absolute

power

6.1 Introduction

Superconducting quantum systems are good candidates for developing new

quantum devices [81, 87]. They are nanoscale electronic circuits that can

be connected to electronic devices and they easily reach the strong coupling

regime [32]. Progress in development of superconducting circuits, in particular

applications in quantum optics, quantum computing and quantum informa-

tion, demand calibration of microwave lines and knowledge of applied powers

to the circuits situated on a chip at low temperatures. To date, there is no

direct method for measuring the absolute power of a microwave signal in a

transmission line at cryogenic temperatures since power meters and spectral

analysers rely on semiconductor based electronics. Usually, one resorts to

room temperature characterisation. However, when the setup including sev-

eral microwave components (wiring, attenuators, circulators, amplifiers, etc)

are cooled down to millikelvin temperatures, their scattering parameters or

transfer functions are changed. Furthermore, the circuits on chip are omitted

from room temperature characterisations.

There have been several proposals to tackle these challenges. Some of

them have limited time resolution due to the finite length of the Π-pulse [80],
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are suitable for correcting pulse imperfections [127], or only applicable to spe-

cific systems [128]. For example, photon numbers have been accurately cali-

brated via the Stark shift of a qubit-cavity system [129]. This idea has been

extended to multi-level quantum systems (qudits) to deduce the unknown sig-

nal frequency and amplitude from the higher level AC Stark shift [130]. Others

are based on the shot noise of a known microwave component [131], or on the

transmission scattering parameter S21 of a device under test to a reference

transmission line [132, 133, 134]. These methods may require separate cool

downs or multiple switched cryogenic standards. Another recent proposal uses

a transmon qubit coupled to a readout resonator to characterise qubit control

lines in the range of 8 to 400 MHz in situ but is limited by the decoherence

time of the qubit [135].

In this chapter, we demonstrate that a two-level system strongly coupled

to the open space can act as a quantum sensor of absolute power. We realise

the quantum sensor using a superconducting flux qubit [136] but in principle it

can be implemented with any two-level system that is strongly coupled to the

environment. The quantum sensor is independent of dephasing of the two-level

system used and in the case of superconducting qubits also of its material.

6.2 Sample description and working principle

We benchmark our absolute power sensor at 7.48 GHz by using four flux qubits

with different device parameters. Each flux qubit consists of an Al supercon-

ducting loop and four Al/AlOx Josephson junctions, where one of the Joseph-

son junctions, the α-junction, has a reduced geometrical overlap by a factor of

α. The coupling capacitance to the 1D transmission line and α-junction was

varied; two qubits have been designed to have a coupling capacitance of 3fF

with α = 0.5, while the remaining two qubits have C = 5fF, α = 0.45. All four

qubits have been co-fabricated on one sample chip using electron-beam lithog-

raphy and shadow evaporation technique with controllable oxidation (sec. 3.2).

The qubits are revealed through transmission spectroscopy as seen in
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Fig. 6.1. Although, by design, two in four qubits should be identical (apart

from their position in magnetic field, since their loop area was varied), a clear

spread of energies is visible due to technological limitations. We fit the shape of

the transition frequency for each qubit to numerical simulations (Fig. 6.2). At

7.48 GHz, we measure power extinction |t|2 and relaxation rate Γ1, which agree

with numerical simulations (Fig. 6.2) of each qubit. Results are tabulated in

Table. 6.1.

Figure 6.1: Transmission spectroscopy,
Im[t], of four flux qubits.
We benchmark the abso-
lute power sensor at 7.48
GHz.

Qubit ∆ = ℏω0 |t|2 Γ1/2π
A 6.83ℏ GHz 92% 11.5 MHz
B 6.19ℏ GHz 87% 12.36 MHz
C 6.63ℏ GHz 93% 20.8 MHz
D 7.46ℏ GHz 94% 23.27 MHz

Table 6.1: Tunnelling energy ∆, power
extinction |t|2 and relax-
ation rate Γ1/2π at ωa =
7.46 GHz of the four flux
qubits used to sense the ab-
solute power at ωa = 7.46
GHz.

Our quantum sensor relies on the principle that when a two-level system

is illuminated by electromagnetic waves with incident photon rate, ν, only

a fraction of incident photons is absorbed with rate Ω. The incident elec-

tromagnetic wave couples to the two-level system via the dipole interaction

energy, ℏΩ = µV0, where µ is the dipole moment, and V0 is the Voltage am-

plitude of the microwave signal we aim to sense. The incident photon rate is

ν = V 2
0 /(2Zℏω), where Z is the impedance of the transmission line that guides

the microwave photons to the two-level system with frequency ω. Substitut-

ing Voltage amplitude V0 = ℏΩ/µ and relaxation rate Γ1 = µ2ωZ/ℏ into the
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Figure 6.2: Transition frequencies (top row), and relaxation rates (bottom row)
f12, Γ1(12) in red, f13, Γ1(13) in yellow and f23, Γ1(23) in violet as a func-
tion of flux δϕ/δϕ0 of artificial atoms A,B,C and D. Blue markers are
experimental points taken from transmission spectroscopy (Fig. 6.1).
Solid lines are numerical simulations calculated with fitting parame-
ters EC = 16 GHz, EJ = 53 GHz with α and coupling capacitance C
shown in the insets.

Figure 6.3: Schematic of a cryogenic environment together with an illustration of
the chip containing a two-level system - the absolute power sensor
- coupled to a transmission line. Knowledge of absolute powers W0

supplied to a chip at cryogenic temperatures, are important for most
quantum technologies with superconducting circuits. The two-level
system with dipole moment µ interacts with the field V0 containing
many photons giving rise to coherent oscillations at Rabi frequency Ω.

incident photon rate gives

ν =
Ω2

2Γ1

. (6.1)
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From Eq. 6.1 it becomes clear that to sense the incident power,

W0 = νℏω, (6.2)

or the incident photon rate, ν, the Rabi frequency or absorption rate, Ω, and

the relaxation rate, Γ1, (or the dipole moment µ) should be found.

We study different methods of measuring the required quantities (Ω and

Γ1), in particular by measuring reflection through the transmission line, quan-

tum oscillations, the Mollow triplet and wave mixing [1] on the two-level sys-

tem.

6.3 Reflection through the transmission line

The two-level atom driven by a resonant microwave is described in the rotating

wave approximation by the HamiltonianH = ℏω
2
σz− ℏΩ

2
(σ+eiϕ+σ−e−iϕ), where

ω is the atomic transition frequency, and σ± = (σx ± iσy)/2 with the Pauli

matrices σx, σy, σz. The dynamics of the system are governed by the master

equation ρ̇ = − i
ℏ [H, ρ] + L̂[ρ] with the Lindblad term L̂[ρ] = −Γ1σzρ11 −

Γ2(σ
+ρ10 + σ−ρ01) where Γ2 are dephasing rates. When the artificial two-level

atom is driven close to its resonance, it acts as a scatterer and generates two

coherent waves propagating forward and backward with respect to the driving

field [32]

Vsc(x, t) = i
ℏΓ1

µ
⟨σ−⟩ eik|x|−iωt, (6.3)

where ⟨σ−⟩ = ρ10 is found from the stationary solution of the master equation.

The reflection coefficient is defined as Vsc = −rV0 and inserting Eq. 6.3 gives

r =
Γ1

2Γ2

1 + iδω/Γ2

1 + (δω/Γ2)2 + Ω2/Γ1Γ2

. (6.4)

We detect the qubit resonances as a sharp dip in the power transmission co-

efficient. We reach a power extinction |t|2 > 85% for all qubits at 7.48 GHz

confirming strong coupling to the transmission line. Assuming strong drive

(Ω >> Γ1Γ2) the reflection coefficient can be approximated as r ≃ Γ2
1/(2Ω

2)
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at δω = 0. The absolute power then becomes

W0 =
Γ1

4r
ℏω

=
Ω

2
√
2r

ℏω,
(6.5)

where the relaxation rate Γ1, the reflection coefficient r are measurable quan-

tities. By definition the reflection coefficient is linked to the transmission coef-

ficient via r = 1− t. We measure transmission around 7.48 GHz for a range of

input powers Win for all qubits. This requires tuning the magnetic field when

switching between qubits. The experimental set-up is shown in Fig. 3.10 but

with a 50dB attenuator in the input line at room temperature.

Figure 6.4: Qubit B. a) Reflection as function of frequency for a set of input powers
Win. b) Reflection at f = 7.468 GHz versus input powers Win.

As seen in Fig. 6.4 the peak in reflection saturates at low powers. We

fit Eq. 6.4 in this limit of saturation to obtain relaxation rate Γ1 (Table 6.1).

We calculate the absolute power according to Γ1ℏω/4r (Eq. 6.5) and plot it

against Win (Wout) with the slope representing the attenuation (gain) in our

system (Fig 6.5). We find that we had (−107.0 ± 0.4) dBm attenuation and

(54.7± 0.4) dBm gain in our measurement circuit where the uncertainties are

deduced from the 95% confidence bound from the least square linear fit.

Recall that in the derivation of Eq. 6.5 we approximated r in the limit of

strong drive (Ω >> Γ1Γ2). However, at high powers the reflection curve may

exhibit distortions due to interference with power leaked.
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Figure 6.5: The absolute power W0 sensed by qubits A, B, C, and D (Table 6.1)
at 7.48 GHz as a function of (a) input power Win and as a function
of (b) output power Wout. The slope of the linear fit (solid red line)
represents (a) attenuation and (b) gain in our measurement circuit.

6.4 Quantum oscillations

An alternative method comprises of measuring Ω and deducing the absolute

power via W0 = Ω2/(2Γ1)ℏω. We have already characterised Γ1 and obtain

the Rabi frequency, Ω, for a set of driving powers Win by performing quantum

oscillation measurements (Fig.6.6(a)). A schematic of the experimental set-up

is shown in Fig. 3.15. At the input, a continuous microwave is chopped by

a rectangular pulse of varying pulse length from 1.5 ns to 15.5 ns forming an

excitation pulse that is delivered through coaxial cables to the sample (at 12

mK) exciting the atom. The output signal is amplified by a cryogenic and a

room temperature amplifier and then chopped by a readout pulse of length

40ns. The emission of the atom is detected using a Vector Network Analyser

(VNA). We perform Rabi oscillation measurements for all qubits tuned to

7.48 GHz at values of the microwave power, Win, applied at room temperature

ranging from -9 dBm to 8 dBm. Fig. 6.6(b) shows the absolute power W0

sensed by qubits A, B, C, and D (Table 6.1) at 7.48 GHz as a function of input

power Win. The slope of the linear fit (red solid line) gives an attenuation of

(−103.9± 0.4) dB in our measurement circuit.

A clear disadvantage of this method is that the measurement of Rabi

oscillations is limited by dephasing. At high input powers it may not be
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Figure 6.6: (a) Rabi oscillations (of qubit B) for input powers Win ranging from
-10 to 8 dBm. (b) The absolute power W0 sensed by qubits A, B,
C, and D (Table 6.1) at 7.48 GHz as a function of input power Win.
The slope of the linear fit (solid red line) represents attenuation in our
measurement circuit.

possible to measure many periods, and the Rabi frequency has to be deduced

through linear interpolation.

6.5 Mollow triplet

A more robust way to deduce the Rabi frequency Ω is to measure the atom’s

incoherent spectrum under strong drive. The atom coupled to a strong driving

field (Ω2 >> Γ2
1) can be described by the dressed-state picture in which the

atomic levels are split by Ω and four transitions between the dressed states are

allowed giving rise to the Mollow or resonance fluorescence triplet [51, 53, 32].

To observe the Mollow triplet we measure the power spectrum around 7.48

GHz using a spectrum analyser under a strong resonant drive (Fig.6.7). The

expected spectral density is calculated solving Eq. 2.68 giving [32]

S(ω) ≈ 1

2π

ℏωΓ1

8

( γs
(δω + Ω)2 + γs

+
2γc

δω2 + γ2c
+

γs
(δω − Ω)2 + γ2s

)
(6.6)

where half-width of the central and side peaks are γc = Γ2 and γs = (Γ1+Γ2)/2,

respectively. We deduce the Rabi frequency from the separation of the Mollow

triplet side peaks, find the linear relationship between the Rabi frequency and

the input microwave amplitude and calculate the absolute power according to

W0 = Ω2/(2Γ1)ℏω. The result is shown in Fig. 6.8 yielding an attenuation of
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Figure 6.7: Qubit B. a) Mollow triplet as a function of Win and frequency. b)
Linear frequency spectral density of emission power under a resonant
drive with fixed driving power Win = 0.73mW forming the Mollow
Triplet. Experimental data is presented by blue markers. The red solid
curve presents the fit of the emission spectrum according to Eq.6.6with
Γ1 = 12.36 MHz and Γ2 = Γ1/2. From the fitting parameters we obtain
the Rabi frequency as a function of the input driving power.

(−102.6± 0.3) dB in our measurement circuit. The gain in our measurement

circuit can be deduced from the amplitude of the fit of the Mollow triplet. We

obtain a gain of 52.37 dBm.

6.6 Wave mixing in combination with the

Mollow triplet

In sec. 4.7.1 we have derived an analytical formula for the amplitude of wave

mixing peaks (Eq. 4.24). We drive the artificial atom by two continuous drives

with frequencies ω− = ω0 − δω and ω+ = ω0 + δω where ω0 = 7.48 GHz and

negligible detuning δω = 0.5 kHz << Γ1. For driving amplitudes Ω− >> Ω+

we may approximate the ratio of the first (p=1) and the zeroth (p=0) order

peak in the limit of Γ1Γ2 << Ω2
− as V−3/V−1 ≈ Γ2

1/2Ω
2
−.

Then,
W0

Ω−

√
V3
V1

=
V 2
0

2ZΩ−

Γ1√
2Ω−

(6.7)
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Figure 6.8: The absolute power W0 sensed by qubits A, B, C, and D (Table 6.1)
at 7.48 GHz as a function of input power Win. The slope of the linear
fit (solid red line) represents attenuation in our measurement circuit.

and substituting Γ1 = ωZq2p/ℏ and qpV0 = ℏΩ− gives

W0

Ω−

√
V3
V1

=
V 2
0 ω−q

2
p

2
√
2Ω−ℏ

=
ℏω
2
√
2
.

(6.8)

Rearranging Eq. 6.8 yields

W0 =
Ω−

2
√
2

√
V1
V3

ℏω. (6.9)

Comparing Eq. 6.9 to Eq. 6.5, we find r ≈
√
V3/V1. Already knowing Ω from

the previous Mollow triplet measurement, using a spectrum analyser we only

need to record amplitudes of the wave mixing peaks V1, and V3 (Fig. 6.9(a)) for

a set of powers Win. We plot
√
V3/V1 as a function of frequency (Fig. 6.9(b))

and find the minimum in the vicinity of 7.486 GHz. The absolute power can
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Figure 6.9: Qubit B. a) Spectral component of first side peak (p=1), that appears
due to continuous wave mixing with two drives of unequal amplitudes,
as a function of frequency for driving amplitudes V+ ranging from 1
to 0.1 (mW )1/2. b)

√
V3/V1 as a function of frequency.

now be deduced according to Eq. 6.9. Fig. 6.10 show results for the case of

equal driving amplitudes in which we obtain an attenuation of (−109.4± 0.9)

dB and a gain of (52.0 ± 0.9) dB in our measurement circuit. For unequal

Figure 6.10: Third peak method with equal driving powers: The absolute power
W0 sensed by qubits A, B, C, and D (Table 6.1) at 7.48 GHz as
a function of (a) input power Win and as a function of (b) output
power Wout. The slope of the linear fit (solid red line) represents (a)
attenuation and (b) gain in our measurement circuit.

driving amplitudes we find an attenuation of (−111.7 ± 0.6) dBm and a gain

of (55.0± 0.6) dB in our measurement circuit (Fig. 6.11). The discrepancy in

our results may arise from the high sensitivity of the amplitude of the split

side peaks (Fig 6.9(a)) to the driving amplitudes. Although we set the two
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drives as equal, they may in reality be slightly different.

Figure 6.11: Third peak method with unequal driving powers: The absolute power
W0 sensed by qubits A, B, C, and D (Table 6.1) at 7.48 GHz as a
function of (a) input power Win and as a function of (b) output
power Wout. The slope of the linear fit (solid red line) represents (a)
attenuation and (b) gain in our measurement circuit.

6.7 Conclusion

To conclude, a two-level system strongly coupled to the environment can act

as a sensor of absolute power. Only two quantities, the Rabi frequency Ω and

the relaxation rate Γ1, need to be measured to deduce the absolute power.

We have presented several methods to obtain the two required quantities,

which ideally should be measured using the same experimental set-up. If this is

not possible, microwave elements outside the cryostat such as wires, choppers

and attenuators for example, have to be calibrated using a VNA at room

temperature. A summary of the obtained attenuation and gain coefficients

is presented in Table 6.2 with the errors coming from the least-square fits.

Note that, the different methods required different experimental set-ups. Even

though we aimed to keep the attenuation in our system similar, we could not

keep it exactly equal across all methods.
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Method Attenuation Gain
Reflection (sec. 6.3) (−107.0± 0.4) dB (54.5± 0.4) dB
Rabi osc. (sec. 6.4) (−103.9± 0.4) dB -

Mollow triplet (sec. 6.5) (−102.6± 0.3) dB 52.37 dB
Mixing equal case (sec. 6.6) (−109.4± 0.9) dB (52.0± 0.9) dB

Mixing unequal case (sec. 6.6) (−111.66± 0.6) dB (55.0± 0.6) dB

Table 6.2: Summary of attenuation and gain coefficients obtained by different
methods.

We recommend methods 6.5 (Mollow triplet), or 6.6 (Wave mixing) since

these are independent of dephasing. So far we have proved the operation

principle of the absolute power sensor, however, to quantify systematic errors

and the accuracy of our absolute power sensor further work is still due.



Chapter 7

Conclusion and outlook

Quantum optics is the study of light interacting with matter at a fundamental

level, where the physical description needs to include quantum mechanics to

account for the dynamic of single photons and atoms.

Superconducting qubits or artificial atoms are ideal systems to investigate

quantum optical effects. They are nano-scale electrical circuits that are fabri-

cated using techniques that have been well-established in the semi-conductor

industry. In contrast to natural atoms, their energy levels can be engineered as

desired. Although the first superconducting qubits was demonstrated in 1999

[31], they have not been demonstrated in the UK until we successfully set-up

and established the fabrication and measurement of superconducting qubits -

artificial atoms - in the Nanotechnology Group at Royal Holloway, University

of London in 2015.

This thesis focused on quantum optics experiments with artificial atoms.

Strong coupling of artificial atoms has been demonstrated in transmission

lines [32], resonators [42], and 3D-cavities [137] allowing to observe scatter-

ing on a single atom. Scattering with a single frequency on a single artificial

atom has been studied before [32], we have now extended this to two frequen-

cies unveiling, for the first time, different regimes of wave mixing on a single

quantum scatterer. We have shown that in quantum wave mixing the super-

posed and coherent states of light are mapped into a quantised spectrum of

narrow peaks with the number of peaks determining the number of interacting
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photons. We have partly published our findings in [1], and another article is

in preparation (see publication list at the beginning of the thesis).

Furthermore, we demonstrated that we can reach regimes that are

unattainable using natural atoms. In particular, cyclic atoms are lacking in

nature but can be engineered with superconducting circuits. We have explored

three-wave mixing within a single three-level artificial atom allowing coherent

frequency conversion to occur. To the best of our knowledge this is the first ex-

periment showing measurements of this effect. This work has been submitted

for publication (see publication list).

We also proposed to use a superconducting qubit as a quantum sensor

of absolute power at cryogenic temperatures and have performed a proof of

principle experiment. We have filed a patent and the article is in preparation

(see publication list).

A natural continuation to this thesis would be to develop the absolute

power sensor further. Another interesting direction to pursue are quantum

simulations of spin dynamics using an array of superconducting qubits. In

addition, it was shown theoretically that a quantum state can be perfectly

transferred through a one-dimensional chain of spins [138, 139]. Realising this

theoretical proposal using a chain of superconducting qubits would make an

important contribution towards the development of quantum computers.
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