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We realize the quantum regime of a surface acoustic wave (SAW) resonator by demonstrating
vacuum Rabi mode splitting due to interaction with a superconducting artificial atom. Reaching
the quantum regime is physically difficult and technologically challenging since SAW devices consist
of large arrays of narrow metal strips. This work paves the way for realizing analogues of quantum
optical phenomena with phonons and can be useful in an on-chip quantum electronics.

Quantum Acoustodynamics (QAD) is a new direction
of quantum mechanics studying interaction of acoustic
waves and phonons with quantum systems [1–6] and par-
ticularly with artificial ones [7–9]. Recently quantum
acoustics has been focused on establishing the quantum
regime in phonon systems [10–13]. The coupling to the
vacuum mechanical mode of bulk acoustic resonators has
been demonstrated in Ref. [1, 14]. Although, this was
an important achievement, such an approach is more dif-
ficult for integration in two dimensional circuits because
of issues in implementation of the bulk resonators in
comparison with planar systems, since bulk resonators
fabrication often require many layers of litoghaphy [1]
or use the substrate as a medium for the resonator
[14]. As it has been recently demonstrated in Ref. [3],
these problems can be solved by utilizing surface acoustic
waves (SAWs). Most recent research has already demon-
strated an interaction between the qubit and a SAW res-
onator [2, 15], however the quantum regime was not fully
reached. To reach the quantum regime in a SAW cavity,
a series of physical and technological challenges must be
overcome. Particularly, to exceed thermal fluctuations
in dilution refrigerators by phonon energies, the acoustic
frequencies must lie in the gigahertz range, which cor-
responds to submicron wavelengths opposite to commer-
cially used SAW devices operating in megahertz or lower
frequency ranges. Another problem is a lack of optical
like mirrors (such as thin film mirrors with high reflectiv-
ity), which is solved by fabricating Bragg type gratings
with a large number of nanometer metallic stripes. This
requires development of advanced nanotechnology meth-
ods.

In this work, we successfully realize the quantum
regime of a two-dimensional SAW cavity, demonstrated
via a vacuum Rabi splitting with a vacuum cavity mode.
The studied system is an artificial atom coupled to the
cavity on a quartz crystal. Further development will re-
sult in a realization of series of analogues of different
quantum optical effects in two dimensions and can help
create compact elements for quantum informatics, partic-

ularly in hybrid devices combining advantages of optical
and superconducting quantum technologies [16].

Surface acoustic waves in piezoelectrics were used for
a long time in compact electronic elements operating in
a megahertz range such as RF filters, resonators, delay
lines etc. [17–21]. One of the main advantages of pla-
nar SAW devices is their small size determined by a slow
speed of sound compared to electromagnetic waves and
therefore up to five orders of magnitude shorter wave-
lengths for the same frequencies. It has been recently
shown that superconducting artificial atoms, successfully
exploited for coherent control of photons [22] and demon-
stration of quantum optics with single quantum systems
[23], can also be used for control of single phonons and
more generally for quantum acoustodynamics [2, 3, 24].
The next important milestone must be the demonstration
of the interaction of the artificial atom with quantised
resonator modes.

To describe our SAW resonator interacting with the
artificial atom we use optical Jaynes-Cummings model,
usually describing an atom in an optical resonator, sub-
stituting the photon creation (annihilation) operators by
phonon ones b†(b). With this substitution the Hamilto-
nian reads [25]

H =
h̄ωa

2
σz + h̄ωrb

†b+ h̄g(b†σ− + bσ+), (1)

where σz is the Pauli matrix, σ+(σ−) is the creation
(annihilation) operator of the two-level system excited
state. The first term represents the two-level atom with
energy splitting h̄ωa, the second one describes the SAW
resonator with resonant frequency ωr and the third is the
resonator-atom interaction with coupling strength h̄g.

Our device, shown in Fig. 1, is fabricated on a quartz
substrate. It consists of an acoustic resonator with a
superconducting artificial atom inside. The resonator is
a 2D Fabry-Perot cavity, formed by two Bragg gratings
[26, 27]. To excite and to detect the SAWs we add two
identical interdigital transducer ports (IDTs) inside the
resonator. The IDT converts applied ac-voltage into an
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FIG. 1. The device. (a) A schematic 3D representation
of the sample. Two identical IDT ports and the transmon
qubit are located inside the SAW cavity. The SAW resonator
is formed by two Bragg gratings, consisting of 200 periodic
stripe electrodes each, with a period p, where p = 980 nm.
Distance between the gratings is 225× p/2 = 110.7 µm. IDT
ports consist of 29 periodic identical cells with a period p.
Each cell consists of 2 electrodes, connected to bars at op-
posite sides. The distance between the IDT port and the
adjacent grating is d1 = (1 + 1/8)p. The transmon qubit is
located between the IDT ports and contains a SQUID shunted
by an IDT capacitance. The qubit IDT has 18 cells. Each
cell consists of 3 electrodes per period p, which minimizes its
mechanical reflection of acoustic waves, in order to suppress
parasitic resonances this element would otherwise cause [17].
The length of all electrodes in our device is W = 100 µm. The
width of the electrodes of the gratings and IDT ports is p/4,
and the width of the qubit IDT electrodes is p/6. (b) Op-
tical micrographs of the sample with insets showing zoomed
stripe structures and a Josephson junction, obtained with a
scanning electron microscope (SEM).

acoustic wave and it is formed by a periodic array of
alternating electrodes with a fixed pattern per period.
We use two distinct IDT patterns with 2 and 3 electrodes
per period, as shown in Fig. 1.

A tuneable two-level artificial atom consists of a
SQUID shunted by an IDT structure, playing the role
of both a qubit capacitance and a coupler to SAWs in
the resonator. The qubit IDT has the same period as
IDT ports and mirrors and its electrodes are positioned
at the expected antinodes of standing acoustic wave in
the resonator.

The device is fabricated in two steps of electron beam
lithography and one step of optic laser lithography.
Firstly, we form coplanar lines and ground planes us-
ing optic lithography. Then we fabricate IDTs and grat-
ings and finally the SQUID, using the standard two-angle
shadow evaporation technique. The most challenging
process is the lithography of the gratings and IDTs, as
their stripes are as narrow as 170 nm, while their length
is 100 µm (the aspect ratio is about 600) and the total
number of stripes is close to a thousand. All structures
are made of Al and the metallic stripes are formed by
deposition of the metal through a mask of organic resist
with Al capping. Al capping is created after the mask
is developed by evaporating 30 nm of Al at large angles
to the surface normal, so that it creates an additional
undercut. To succeed in fabricating the stripes many
try-and-error attempts for adjusting the fabrication pa-

rameters have been made.
Connection of the aluminum layers is provided via

large capacitances, formed by an oxide between large alu-
minum pads. Since, according to our calculations, these
capacitances are more than 200 times larger than capac-
itance of the transmon qubit itself, they provide good
coupling, while not affecting the qubit characteristics.

The qubit charging energy obtained from the qubit
spectroscopy (discussed later) is EC/h = 225 ± 7 MHz
and according to EC = e2/2CΣ qubit capacitance is
CΣ = 86 ± 3 fF. The SQUID consists of two Joseph-
son junctions with maximal Josephson energy EJ0/h =
15.7 ± 0.5 GHz. The energy of the qubit is controlled
by a magnetic field of a surrounding solenoid, which
tunes the effective Josephson energy EJ of the SQUID.
The ratio EJ0/EC = 70 defines the transmon regime
and the ground-to-first excited state transition energy
E01 ≈

√
8EJEC − EC [9].

The SAWs propagation speed at low temperatures in
quartz is v ≈ 3.16 km/s [24]. The periodicity of IDT
stripes is p = 980 nm and that of the Bragg mirrors is
p/2, which defines an optimal SAW wavelength and fre-
quency: λ = p, ωc/2π ≈ 3.2 GHz. Each element of our
sample has a finite frequency bandwidth determined by
its geometry. The calculated frequency characteristics of
different elements are plotted in Fig. 2(a) and resulting
bandwidth of the resonator is limited by the Bragg mir-
rors to about 33 MHz.

FIG. 2. Frequency characteristics (normalized to be 1 at max-
imum). (a) Calculated frequency characteristics of different
circuit elements. The Bragg mirror reflectivity (red line), has
the width of the main maximum ∆Fm = 33 MHz. Green and
yellow curves correspond to the simulated frequency depen-
dence of the absolute values of transmission amplitudes for a
signal, applied to the input IDT (yellow) or qubit IDT (green).
The corresponding bandwidths are ∆FIDT = 95 MHz and
∆Fq = 143 MHz. (b) Measured transmission through a SAW
resonator. The central peak corresponds to the SAW mode,
interacting with the qubit, since its IDT electrodes are located
in acoustic field antinodes for this mode.

All measurements described below are performed in a
dilution refrigerator at the base temperature of 20 mK.
The thermal fluctuation energy is well below the energy
of phonons, which is h̄ωc/kB = 150 mK (here kB is
the Boltzmann constant). To measure the acoustic re-
sponse, we implement the same method and the mea-
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surement circuit as the ones used in quantum optics ex-
periments with the superconducting artificial atoms de-
scribed for example in Refs. [22, 25]. The electromagnetic
microwaves are transmitted from a vector network ana-
lyzer (VNA) through coaxial cables and then through an
on-chip coplanar line to the input IDT port, where they
are converted into SAWs in the resonator. The stand-
ing SAWs are converted into electromagnetic waves by
the output IDT port. Then the signal is amplified by
cryogenic amplifiers and measured by the VNA.

We first perform a measurement of a transmission
amplitude through the resonator, which is shown in
Fig. 2(b). In this measurement the qubit is away from
the resonator resonance. We find three resonances with
frequencies ω1/2π = 3.164 GHz, ωc/2π = 3.176 GHz and
ω2/2π = 3.197 GHz. The full-width-at-half-maximum
(FWHM) of square of transmission amplitude |t|2 at ωc
is ∆ω/2π = 0.332 MHz. Taking into account that the
frequency width is ∆ω and the power applied to the res-
onator is Pin (from -134 to -128 dBm) we estimate the
phonon number in the resonator to be in the range 10
– 40 (Nres = Pin/ ∆ωh̄ωc) in case of negligible internal
loss. The phonon number can be even smaller, when the
internal loss is not negligible compared to the external
one.

Next, we demonstrate the interaction between the
qubit and the SAW resonator in the quantum regime.
We do that by monitoring the complex transmission am-
plitude t through the cavity at frequency ωc as a function
of magnetic field, applying a weak driving power to keep
the effective phonon number in the resonator less than
one. The transmission peak exhibits periodic anticross-
ings with the period corresponding to a flux quantum
through the SQUID loop. The typical anticrossing is
shown in Fig. 3. The anticrossing demonstrates the inter-
action of the two-level system with the SAW cavity and
it disappears with an increase in the driving amplitude,
as expected. Also, we make sure that there is indeed less
than one phonon in the resonator by checking that the
anti-crossing picture is not affected by the decrease of
driving amplitude. Our estimate of the phonon number
in the resonator at ωc is much less than one, consider-
ing the applied power (ten times less compared to the
first measurement shown in Fig. 2(b)) and the resonator
linewidth broadening in the vicinity of the anticrossing..

To find an energy splitting of this anticrossing for the
lowest excitation we use the following equation

E± =
h̄(ωc + ωq)± h̄

√
(ωc − ωq)2 + 4g2

2
(2)

from diagonalization of the Hamiltonian of Eq. (1). Using
this function, we acquire the coupling constant g/2π =
15.7±0.2 MHz from the fit of our anticrossing spectrum,
as shown in Fig. 3(a, c). This means that total splitting
is 2g/2π = 31.4 MHz, which tightly fits in the band-
width of the resonator ∆Fm = 33 MHz. Note also that
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FIG. 3. Interaction of the qubit with the acoustic resonator.
(a) and (c) panels represent amplitude (|t|) and phase (arg(t))
of the transmission coefficient t through the SAW resonator
in vicinity of the resonator frequency ωc. The anticrossing
demonstrates the interaction between the qubit and the res-
onator, when they are in resonance. The dashed line is the ex-
pected qubit energy without the interaction. The dotted line
is the calculated energy splitting according to Eq. (2) with
g/2π = 15.7± 0.2 MHz. (b) The theretical plot of the trans-
mission amplitude obtained from a master equation solving.
(d) The transmission plot in wider frequency and magnetic
field ranges, showing the splitting absence on the adjacent
resonator modes.

the splitting does not occur at the adjacent resonator
modes (see Fig. 3(d)). It means that these modes are
only weakly coupled to the qubit, which signifies that
maximums of amplitudes (antinodes) of the correspond-
ing standing waves do not coincide with qubit electrode
locations, as they do for the central mode.

In our next measurement we apply a method of disper-
sive readout known from the circuit QED [25] to charac-
terize the qubit energies. By monitoring the transmission
through the cavity at ωc and sweeping the second probe
tone ωp we find a pattern with one well distinguished
qubit resonance line, corresponding to the qubit transi-
tion energy E10 (Fig. 4). We also see a signature of a
E12 transition as well as some higher order transitions.
The pattern is periodic with the applied magnetic field
and the period is expected to be the flux quantum Φ0

through the SQUID. Measured qubit transition energies
are in a good agreement with our expectations. Although
the excitation of the qubit in the dispersive regime is per-
formed through an acoustic resonator port, the excitation
is electromagnetic in its nature. This is due to the fact
that away from the acoustic resonance, the electromag-
netic coupling is much stronger than the acoustic one,
since the IDT ports have limited acoustic bandwidth of
95 MHz (see Fig. 2(a)). From our capacitance simula-
tions, we find the effective qubit gate capacitance to be
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Cg ≈ 0.1 fF.

Δω/2π
12.6 MHz

Peak width
power dependence

P = 6.3 a.u.
(a)

(b)

(c)

0.2 0.0 0.2
/ 0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Fr
e
q
u
e
n
cy

, 
G

H
z

0.1

0.2

0.3

|a
rg

[t
]|

, 
ra

d

(a)

FIG. 4. (a)Two tone spectroscopy. The phase shift of the
first tone signal transmission is shown by color. The vertical
axis corresponds to the frequency sweep of the second tone.
The horizontal axis corresponds to the magnetic flux through
the SQUID. The dotted lines are the fitting curves, obtained
from the qubit Hamiltonian (Eq. (1)) eigenstates calculation:
E01 (white), E12 (magenta). The acoustic resonance is also
seen at 3.176 GHz. There are also signatures of some other
lines corresponding to higher order processes. From E01 fits
we obtain qubit’s charging energy EC = 0.21 GHz and max-
imum Josephson energy EJ0 = 17.4 GHz, which is in good
agreement with our expectations. The first tone phase peak
at the fixed magnetic flux Φ = 0.31Φ0. (c) The peak width

dependence on a driving power, fitted by δω =
√

Γ2
1 +AP

(red curve).

We also extract the relaxation rate Γ1 of the qubit
(assuming there is no pure dephasing, which is usually
valid for transmons) from an intrinsic width of the spec-
tral line of the qubit by measuring it in the dispersive
regime at Φ = 0.31 and ω/2π = 3.85 GHz – not far
from the resonant point in the low driving limit. The
typical peak is shown in Fig. 4(b) and the peak width
dependence as a function of driving power is in Fig. 4(c).
It is fitted by δω =

√
Γ2

1 +AP , where P is the driving
power and Γ1 and A are the fitting parameters. Γ1 is
found to be 10.5 ± 1 MHz. We use that Γ1 to solve
the master equation and obtain the theoretical plot of
the resonator transmission shown in Fig. 3(b), which is
in good agreement to the experiment (Fig. 3(a)). The
rather short lifetime can be a result of several different
sources of dissipations: the dielectric; defects on the sur-
face; dissipation in the thin and long qubit electrodes and
some others.

Now we independently estimate the coupling g of
the qubit to the resonator according to h̄g = ζeV0[2],
where ζ = (EJ/2EC)1/4 ≈ 1.95 at the anticrossing
with Φ/Φ0 = 0.38, e is the elementary charge and V0

is the voltage, induced by zero-point fluctuations of the
SAW mode. Power of the acoustic wave with ampli-
tude φ0 transferred in a width W = 100 µm is P =
ωWε∞|φ0|2

2K2 [27], where ω = 3.1 GHz is the frequency
of the wave, ε∞ = 5 × 10−11 F/m is the capacitance

of a unit-aperture single-electrode transducer per period
and K2 = 0.0012 is a piezoelectric coupling constant.
Energy of zero-point fluctuations in the acoustic res-
onator is: Eres = 2PLeff/v = h̄ω/2, where v = 3.16
km/s is the SAW propagation speed and Leff is the
effective length of the resonator. This effective length
consists of the distance between the resonator mirrors
L0 = 110.7 µm plus the penetration depth in these mir-
rors Lp = p/(4|rs|) = 17.5 µm, where |rs| = 0.014 is
the absolute value of the reflection coefficient from one
electrode [27]. Thus we obtain Leff = L0 + 2Lp = 145.7
µm. This allows us to get a value of the effective am-
plitude of the standing acoustic wave φ0. We calcu-
late the maximal possible induced voltage amplitude to

be: V0 = 2φ0 =
√

2h̄vK2

LeffWε∞
= 3.3 × 10−8 V, and

gmax/2π ≈ 16 MHz, which is close to the experimen-
tally measured value. The actual value is also dependent
on the stripe geometry.

Finally, in order to better understand the exact mech-
anism of our system excitation, we consider two driving
terms in the full Hamiltonian: (i) the drive of the acous-
tic cavity via IDT: Hac = h̄Ωac(b

†+ b) cosωt and (ii) the
electric drive of the qubit: Hel = h̄Ωel(σ

+ + σ−) cosωt,
where Ωac and Ωel are acoustic and electric driving am-
plitudes respectively. The acoustic driving amplitude at
the resonance can be found as h̄Ωac = µacV , where
µac = CIDTV0 ≈ CΣV0 ≈ 0.018 e is the coupling be-
tween the voltage V applied to the input IDT and the
resonator driving amplitude Ωac. The electric coupling
between the IDT and the qubit can be expressed as
h̄Ωel = µelV , where µel = CgVq and Vq = 2eζ/CΣ is
the potential induced in the transmon qubit due to sin-
gle Cooper pair transition. Substituting the numbers, we
find µel = 2eCg/CΣ ≈ 0.002e. This means that at the
resonance the electric coupling is weaker than the acous-
tic one (µac/µel ≈ 9).

In conclusion, we have experimentally demonstrated
interaction between an artificial atom and a SAW res-
onator. The result is an important milestone for the
future realization of quantum acoustics effects dual to
quantum optics [28]. It can also be used to build com-
pact devices for quantum informatics [29], since SAWs
wavelength is smaller than electromagnetic by 5 orders
of magnitude. Also SAW resonator can be designed to
have multiple resonance modes, which can be utilized to
place several qubits in one resonator and address them
independently.
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view Letters 118, 103601 (2017).
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