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Abstract—We analyse the security of database en-
cryption schemes supporting range queries against per-
sistent adversaries. The bulk of our work applies to a
generic setting, where the adversary’s view is limited
to the set of records matched by each query (known
as access pattern leakage). We also consider a more
specific setting where rank information is also leaked,
which is inherent to multiple recent encryption schemes
supporting range queries. We provide three attacks.

First, we consider full reconstruction, which aims
to recover the value of every record, fully negating
encryption. We show that for dense datasets, full re-
construction is possible within an expected number of
queries N log N + O(N), where N is the number of
distinct plaintext values. This directly improves on a
quadratic bound in the same setting by Kellaris et al.
(CCS 2016).

Second, we present an approximate reconstruction
attack recovering all plaintext values in a dense dataset
within a constant ratio of error, requiring the access
pattern leakage of only O(N) queries.

Third, we devise an attack in the common setting
where the adversary has access to an auxiliary distri-
bution for the target dataset. This third attack proves
highly effective on age data from real-world medical
data sets. In our experiments, observing only 25 queries
was sufficient to reconstruct a majority of records to
within 5 years.

In combination, our attacks show that current ap-
proaches to enabling range queries offer little security
when the threat model goes beyond snapshot attacks to
include a persistent server-side adversary.

Index Terms—privacy; cryptanalysis; encrypted
database.

I. INTRODUCTION

Various kinds of property-preserving encryption
(PPE) schemes have started to see wide deployment,
in particular in the area of data storage outsourcing.
There, a client encrypts a set of records or documents
using a PPE scheme, sends it to the server, and
can later query the server and retrieve matching
records. By exploiting the special properties of the
encryption scheme, the server can index the data just
as it would unencrypted data, allowing the server to

support efficient search. For example, deterministic
encryption allows matching queries to be made, while
Order-Preserving/Revealing Encryption (OPE/ORE)
allow range queries to be efficiently supported.

At the same time, our understanding of the security
that such schemes offer against various kinds of
adversary is still developing. This has led to seri-
ous attacks being found against some of the early
schemes [1], [2], [3], [4], [5], [6], [7] – a good
summary of this line of research is available in [8].
A second generation of schemes, which typically use
custom indexes rather than legacy indexes, promise
to do better, in the sense of provably leaking less
information about encrypted data. Perhaps inevitably,
the second generation of schemes has been followed
by another wave of attacks. Kellaris, Kollios, Nis-
sim, and O’Neill introduced generic reconstruction
attacks applicable to any scheme whose range queries
leak access pattern or communication volume, for
a uniform range query distribution [9]. Grubbs et
al. presented a snapshot attack on non-deterministic,
frequency-hiding OPE schemes when auxiliary infor-
mation about the plaintext distribution is available [7].
We continue this line of research into generic attacks,
which apply even to second-generation encryption
schemes, focussing on those schemes that support
range queries.

A. Setting and Notation

All three of our attacks share the same general set-
ting, which we introduce here. We let [a, b] denote the
set of integers {a, . . . , b} (with [a, b] = ∅ whenever
a > b).

a) Records, identifiers, and values: We consider
a collection of R records in a database, each with
a unique identifier in the set R and a (not neces-
sarily unique) value val(·) from some ordered set
X , on which range queries are performed. Without
loss of generality, we assume that R = [1, R] and
X = [1, N ], with “<” being the usual ordering on
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the integers. We let Sx ⊆ [1, R] denote the set of
identifiers of all records that contain value x. We
assume the attacker knows the set of all record identi-
fiers. (We discuss the implications of this assumption
in Appendix C – in any case, with uniform queries,
the set of all identifiers is recovered within O(N)
queries.)

b) Range queries: A range query [x, y] is de-
fined by its two end points x ≤ y in X . In our
analyses, except where indicated otherwise, range
queries are modelled as uniformly distributed non-
empty intervals in [1, N ]. The uniformity assumption
is briefly discussed in the next section. A range query
returns, at the very least, a set of matching record
identifiers M := {r ∈ R : val(r) ∈ [x, y]}. We also
write M = S[x,y] := ∪x≤t≤y St.

c) Adversarial model: The adversarial setting
we consider throughout is that of a persistent, passive
adversary, able to observe all communication between
client and server (as opposed to a snapshot or active
adversary). The adversary’s goal is to reconstruct
some information about the plaintext underlying the
database hosted by the server, i.e. infer information
about the client’s data. Such a model captures threats
such as an adversary having compromised the server
for a sufficient length of time, a man-in-the-middle
attacker intercepting communications between client
and server, and an honest-but-curious server. From
this last perspective, the security model we consider
directly expresses the privacy of the user’s data with
respect to the server – indeed, all of our attacks could
be mounted by the server itself.

Specifically, the view of the adversary is limited
to some scheme-dependent leakage induced by each
range query. We consider the following two types of
leakage.

d) Access pattern leakage: If, in response to
every range query, an adversary is able to observe
the set of matching record identifiers M, following
[9], we call this access pattern leakage. As discussed
in [9], access pattern leakage can stem from the actual
memory access pattern of the server. This is a rather
generic type of leakage: to the best of our knowledge,
all known efficient schemes supporting range queries
leak the access pattern.

e) Rank information leakage: The rank of a
value z ∈ X is the number of records having a
value less than or equal to z, i.e. rank(z) := |S[1,z]|.
It can also be interpreted as the highest position a
record in Sz could have in a list of records sorted
by value. The rank information leakage for a range
query [x, y] is the values a := rank(x − 1) and
b := rank(y), where a + 1 and b can be interpreted

as the lowest and highest positions (inclusive) of
matching records in the aforementioned sorted list.
The number of records returned by a query on range
[x, y] is

∑
x≤t≤y |St| = b− a.

It is natural to consider such leakage in schemes
supporting range queries, and our attacks directly
apply to, among others, Lewi and Wu’s ORE scheme,
Arx-RANGE, and Kerschbaum’s frequency-hiding
OPE scheme. More applications are discussed in
Section I-C.

Whenever we consider intervals of values in [1, N ],
we shall use the letters [x, y]; whenever we consider
intervals of ranks, we shall use the letters [a, b].

To summarise, if leakage is limited to the access
pattern, then a query on range [x, y] leaks M =
S[x,y]. If rank information also leaks, then the leakage
is (a, b,M) where a = rank(x−1) and b = rank(y).
We often assimilate a set of queries Q with its
leakage, hence writing it as {(ak, bk,Mk)} if rank
information is available, or simply {Mk} if only the
access pattern is available.

f) Density of the database: We say that the
database is dense iff every value x ∈ [1, N ] occurs
in at least one record. We assume that the database
is dense, except in Section IV.

g) Miscellaneous mathematical notation: The
notation log refers to the natural logarithm. We write
Hn for the n-th harmonic number Hn =

∑n
k=1

1
k .

Whenever f is a mapping A → B, if S ⊆ A, f(A)
denotes the image set {f(a) : a ∈ A}.

B. Our Contributions

We analyse the security of encryption schemes
supporting range queries against persistent, passive
adversaries. The bulk of our work applies to any
scheme leaking access patterns. We also consider the
case where the leakage additionally contains rank
information. We present three attacks: full reconstruc-
tion, approximate reconstruction, and reconstruction
using auxiliary information. An overview of the
characteristics of our first two attacks, juxtaposed
with previous results, is given in Table I. Note that
without rank leakage, full reconstruction is only up
to reflection. In Table I, the exact upper bounds on
the expected number of queries for the attacks in
Sections II-B and II-C require N ≥ 27 and N ≥ 26
respectively.

a) Full reconstruction attack: We show that
access pattern leakage is sufficient to allow full re-
construction, i.e. recovering the value of all records
with complete accuracy (up to reflection), within an
expected number of only N logN + O(N) queries,
where N is the number of distinct values. This



TABLE I: Comparison of full and approximate reconstruction attacks exploiting access pattern leakage on
encryption schemes allowing range queries, for a set of N distinct plaintext values, with uniformly

distributed queries.

Req’d leakage Assumptions Number of queries

Rank Density Sufficient Necessary

Full reconstruction attack
[9] N N O(N4 logN) Ω(N4)

[9] N Y O(N2 logN) -
Sec. II-B (Fig. 1) Y Y N(logN + 2) N log(N)/2−O(N)

Sec. II-C (Fig. 2) N Y N(logN + 3) N log(N)/2−O(N)

Approximate reconstruction attack (within εN )
Sec. III-B (Fig. 6) N Y 5

4
N log(1/ε) +O(N) N log(1/ε)/2−O(N)

directly improves on a O(N2 logN) bound by Kel-
laris et al. in the same setting [9]. Furthermore this
can be achieved efficiently and data-optimally (as
soon as the available leakage is sufficient for full
reconstruction for any algorithm, our algorithm suc-
ceeds). Concretely, a bound on the expected number
of queries is N(log(N) + 3) for N ≥ 26.

In the full version of this paper, we also (i) present
an algorithm for full reconstruction when rank leak-
age is also available, offering a slightly better bound
of N(log(N) + 2) queries for N ≥ 27, (ii) prove
that our algorithms with and without rank leakage
are data-optimal, (iii) present faster reconstruction
algorithms with and without rank leakage, and (iv)
prove a lower bound of N log(N)/2 − O(N) on
the expected number of queries required for full
reconstruction with or without rank leakage for any
algorithm using access pattern leakage.

Our full reconstruction attacks require only two
mild extra assumptions for their success:

1) every x ∈ X appears in at least one record (so
the sets Sx are non-empty), also referred to as
“density” in [2], [9];

2) the range queries [x, y] are generated uniformly
at random.

Assuming that range queries are distributed uni-
formly at random makes our work directly com-
parable to Kellaris et al.’s [9]. Further, since our
full reconstruction algorithms are data-optimal, they
consume the minimum possible amount of data for
any query distribution. We show that very similar
bounds would be obtained for the distribution where
left end points are uniformly random; more generally,
we conjecture that similar bounds would be achieved
for a wide range of “non-pathological” distributions.
(This is in contrast to e.g. Kellaris et al.’s attack
in the non-dense case, which relies on a statistical

inference approach that directly exploits the expected
distribution of range queries.)

As a concrete example, if the values x represent
age in years, then with N = 125, our attack re-
duces by a factor of about 100 the expected num-
ber of queries that need to be observed for full
reconstruction, as compared to [9]. Specifically, the
expected number of queries required for their attack
is N(N+1)

2 HN(N+1)/2 ≈ 75, 196, while our attack
requires at most (N + 1)(log(N) + 1) + 8

√
N +

6 ≈ 830 queries, or, if rank leakage is available,
N(log(N) + 1) + 4.4

√
N + 4 ≈ 782 queries. Thus

the gap is significant even for relatively low values
of N .

b) Approximate reconstruction attack: In some
situations, exactly recovering the value x associated
with each record is not necessary, and approximately
learning these values may be sufficient. Under the
same assumptions as our first attack, we show that
O(N) queries suffice for approximate reconstruction
with only access pattern leakage. More precisely,
within an expected number of 5

4N log(1/ε) +O(N)
queries, the attacker can reconstruct the values x
associated with every record with a maximum error
of εN , for any arbitrary precision ε. Note that the
data requirement only grows logarithmically with
the desired precision ε. An exact upper bound is
(1+ε/4)N log(1/ε)+(2+4

√
ε)N+4/ε for N ≥ 40.

Going back to the example where N = 125, the
approximate reconstruction attack starts to overtake
the full reconstruction attack without rank leakage
for ε ≈ 0.05, i.e. when reconstructing records up to
a precision of 5%. (So an attacker’s guesses would
never be wrong by more than 2.5% of N .)

In the full version of this paper, we also (i) present
faster approximate reconstruction algorithms with
and without rank information, and (ii) prove a lower
bound N log(1/ε)/2−O(N) on the expected number



of queries before any algorithm can achieve approx-
imate reconstruction with precision εN .

c) Inference attack using auxiliary distribution:
Recent research has shown that an attacker equipped
with an auxiliary (or reference) distribution for the
plaintext can wreak havoc against deterministic en-
cryption schemes in a snapshot attack model by using
basic frequency analysis [2]. The assumption that an
auxiliary distribution is available is a mild one in
practice; it is often the case that the type of data in a
given column in an encrypted database is known or
can be inferred from the diversity of its values [2],
and a rough and ready auxiliary distribution can be
obtained from public statistics.

In our third attack, we show how an auxiliary
distribution can be combined with rank and access
pattern leakage to perform even better reconstruc-
tion attacks, with even fewer queries. Our attack
essentially converts rank leakage from each query to
information about the position of individual records
in a sorted list of all records, then maps it back to a
small set of possible values using the inverse CDF of
the auxiliary distribution.

Because this third attack is not amenable to a rigor-
ous analysis, we resort to an empirical evaluation. In
particular, we study the relationship between number
of random range queries available and the accuracy of
reconstruction of “age in years” data, extracted from
a real medical dataset. In our experiments, observing
only 50 queries was sufficient to reconstruct 95% of
one hospital’s records to within 10 years, 55% of its
records to within 5 years, and 35% of its records to
within 3 years.

C. Applications

To the best of our knowledge, all practical en-
cryption schemes supporting range queries leak ac-
cess pattern information, making our generic attacks
requiring only access pattern leakage widely appli-
cable. However, it should be noted that schemes
such as [10], [11] that rely on order-preserving or
order-revealing encryption (OPE/ORE) are already
vulnerable to powerful statistical inference attacks by
snapshot adversaries, such as [2].1 As a consequence,
our attacks are more relevant to second-generation
schemes that attempt to reduce or eliminate leakage
against snapshot adversaries, and in the remainder
we focus on such schemes. These schemes can be
divided into two groups: schemes that leak access
pattern but not rank information, and those that also

1Any ORE (a fortiori OPE) scheme is trivially broken whenever
the database is dense, as ordering all ciphertexts allows them to
be directly matched with plaintext values.

leak rank information. The first group includes Blind
Seer by Pappas et al. [12], as well as a scheme by
Faber et al. [13]; they also include approaches based
on Range Predicate Encryption, such as [14]. These
schemes are vulnerable to our full and approximate
reconstruction attacks.

The second group includes a variety of recent
schemes, such as Lewi and Wu’s ORE2 construc-
tion [15] (used in EncKV [16]), Arx [17] (which men-
tions ongoing collaboration with health data cloud
provider Chino and European medical project UN-
CAP to deploy their scheme), FH-OPE [18], and
Cipherbase [19]. While the leakage of these schemes
is expressed in different ways, it includes rank in-
formation. As a result, these schemes are vulnera-
ble to all three of our attacks. In addition to the
aforementioned schemes, the recent POPE scheme
by Roche et al. [20], and a scheme with similar
leakage by Hahn and Kerschbaum [21], should also
be mentioned: although they mainly target scenarios
where the database is not dense, our third attack still
applies.

For all of the aforementioned schemes except FH-
OPE, the only attacks we are aware of beside ours
is that of Kellaris et al. [9], which mainly focuses
on the non-dense setting, and requires a significantly
larger number of queries. In the non-dense case,
the approach of Kellaris et al. is to use statistical
inference based on the uniformity of queries; in the
dense case, they collect all O(N2) possible queries,
resulting in a simple sorting step.

In the particular case of Kerschbaum’s FH-OPE
scheme [18], an attack was already mounted by
Grubbs et al. [7]. Their attack is in the snapshot
setting and thus did not use query leakage. Although
our attacks require query leakage, they are more
generic, as the scheme is only required to leak
access patterns (and in some cases rank information).
Another difference is that the attack by Grubbs et
al. requires knowledge of an auxiliary distribution,
whereas our first two attacks (full and approximate
reconstruction) do not.

D. Full version of the article.

Due to space constraints, some proofs are not
included in this version of the paper. In their place,
some intuition explaining the query complexity of
our algorithms is provided in Sections I-B, II-A,
and III-A. Thus the present version is intended to
be self-contained. The full version is available at:

https://eprint.iacr.org/2017/701.pdf

2The Lewi-Wu construction is not strictly an ORE scheme; in
particular, it is fully secure against a basic snapshot adversary.

https://eprint.iacr.org/2017/701.pdf


II. FULL RECONSTRUCTION ATTACK

The purpose of a full reconstruction attack is to
determine the sets Sx for all x ∈ X . In other
words, a full reconstruction attacks recovers the value
associated with every record.

In Section II-A, we start with a simple introductory
example. In Section II-B, we focus on the case where
range queries leak rank information, as defined in
Section I-A. In Section II-C, we show how the attack
can be extended to work with only access pattern
leakage. Throughout this section, we assume that the
database is dense, i.e. every value appears in at least
one record (cf. Section I-A).

In all cases, we prove that N logN+O(N) queries
are enough for full reconstruction (and provide con-
crete bounds). Throughout this section, we give al-
gorithms that favour simplicity over efficiency. As
mentioned in Section I-B, the full version of this
paper contains much more efficient algorithms and
a lower bound on the number of queries required.

A. Simple Attack with Simplified Query Distribution

We begin with an example that provides some
intuition for why N logN+O(N) queries are enough
for full reconstruction with rank information leakage.
In this section only, we assume that the left end points
x of range queries [x, y] are uniformly random (so left
end points are biased toward lower values).

Recall that for a query on range [xk, yk], access
pattern leakage and rank information leakage mean
that an adversary observes (ak, bk,Mk). Our algo-
rithm will succeed iff every value x ∈ [1, N ] appears
as the left end point of some query. Because we as-
sumed uniformly random left end points, the expected
number of queries until this condition is satisfied
is the solution to the standard coupon collector’s
problem, satisfying:

N ·HN ≤ N
(

1 +
∫ N
x=1

1
x

)
= N(1 + logN)

where HN is the N -th harmonic number.
Suppose every left end point does occur in at least

one query. By relabelling, we may assume that the
ak’s are in increasing order. The adversary selects
any N -subset of indices ki, where 1 ≤ i ≤ N , such
that the aki are distinct. It then computes:

Ei :=Mki \
(⋃

`≥ki+1
M`

)
, 1 ≤ i ≤ N

where we define the union ∪`≥ki+1
M` for i = N

to be the empty set. The set Ej is precisely the set
of identifiers for records containing value j ∈ X ;
that is, Ej = Sj . The idea is that Mkj certainly
contains all such records, but possibly also other

records. Performing a set subtraction with the sets
of record identifiers M` for ` ≥ kj+1 removes the
additional records.

This concludes the attack: within an expected
number of queries N · HN ≤ N log(N) + N , all
left end points are collected, and the values of all
records can be recovered. Despite its simplicity, this
example captures a large part of the intuition behind
our attacks in this section and the next. In particular,
the data complexity bounds in the following sections
are ultimately based on reductions to (increasingly
intricate) variants of the coupon collector’s problem.

B. Full Reconstruction with Rank Information
Before moving on to full reconstruction attacks

without rank information, we first present a more ro-
bust algorithm for full reconstruction in the presence
of rank information leakage. The general approach
of this new algorithm, and in particular the notion
of partition of records, will form the basis of later
algorithms and their analysis. This new algorithm
is data-optimal: if it fails, then full reconstruction
is impossible given the input queries (for any al-
gorithm). As a consequence, this algorithm requires
the minimum possible number of queries for any
distribution of queries.

In particular, it must perform at least as well
as the algorithm from the previous section; it must
succeed within an expected number of queries ≤
N(log(N)+1) in the case of uniform left end points.
We also show that it succeeds with an expected
number of queries ≤ N(log(N) + 2) for uniform
queries, contrary to the algorithm from the previous
section, which requires Ω(N2) queries in that setting.

a) The algorithm: The idea of the algorithm is
as follows. As before, fix a set of Q queries on ranges
[xk, yk], k ≤ Q, with the corresponding leakage
observed by the adversary {(ak, bk,Mk) : k ≤ Q}.

Define the following equivalence relation on
records. (Recall that records are assimilated with their
IDs.) Two records are equivalent iff for each of the Q
queries, either both records are matched by the query,
or neither is. It is clear – at least intuitively – that two
records can be meaningfully distinguished iff they are
in distinct equivalence classes. The equivalence class
of a record r can be easily computed as:

P (r) :=
(⋂
{k:r∈Mk}Mk

)
\
(⋃
{k:r 6∈Mk}Mk

)
,

which contains exactly the records whose value is in:

V (r) :=
(⋂
{k:r∈Mk}[xk, yk]

)∖(⋃
{k:r 6∈Mk}[xk, yk]

)
.

Note that neither P (r) nor V (r) can be empty, as
they must contain, at least, r and val(r) respectively.



Note also that V (r) is unknown to the adversary at
this point in the attack.

The set of P (r)’s (resp. V (r)’s) forms a partition
of the set of records (resp. values), and each P (r)
contains exactly those records whose value lies in
V (r). Due to this bijection, the partition of records
P = {P (r) : r ∈ R} cannot contain more than
N elements. On the other hand, since records in the
same class cannot be meaningfully distinguished, full
reconstruction requires |P| = N .

The crucial point is that, conversely, |P| = N is
enough to enable full reconstruction: if |P| = N ,
then each V (r) must contain a single value, and P (r)
constitutes the set of records having that value. Thus
each element of P corresponds to a single value: P =
{Sx : x ∈ X}. Hence, in order to find the value of
every record, it only remains to sort the elements of
P by value, which can be done using rank as a kind
of proxy for value: the value of P (r) has rank:

m(r) := max
((⋂

{k:r∈Mk}[ak, bk]
)
\(⋃

{k:r 6∈Mk}[ak, bk]
))
.

It suffices to sort all values m(r) to correctly sort the
corresponding classes P (r) by value. Our algorithm
does exactly this. Pseudo-code is provided in Fig. 1.
In this algorithm, we immediately compute the map
m, and check that |{m(r) : r ∈ R}| = N .
Computing P and/or V first is not necessary, but
is only used above as an aid to understanding the
algorithm.

FULL-RECONSTRUCTION(Q):
Input: set of queries Q = {(ak, bk,Mk)}.
Output: ⊥, or map Val : R → X s.t.
∀r Val(r) = val(r).

1: m← empty map, Val← empty map
2: for all r ∈ R do . Partitioning step
3: m(r)← max

((⋂
{k:r∈Mk}[ak, bk]

)
\(⋃

{k:r 6∈Mk}[ak, bk]
))

4: end for
5: M ← {m(r) : r ∈ R}
6: if |M | < N then
7: return ⊥
8: end if
9: M ← sort(M, increasing) . Sorting step

10: for all r ∈ R do
11: Val(r)← index of m(r) in M
12: end for
13: return Val

Fig. 1: Full reconstruction attack with rank leakage.

b) Analysis of the algorithm: We make several
claims about the FULL-RECONSTRUCTION algorithm
in Fig. 1. First, it is data-optimal: if it fails, then no
algorithm can achieve full reconstruction with proba-
bility 1 given the same queries as input. The rationale
we have provided for the algorithm already gives
strong evidence that this is the case, however a more
formal treatment is provided in the full version of
this paper. Second, we observe that the algorithm still
achieves full reconstruction with an expected number
of queries upper-bounded by N(log(N) + 1) in the
setting where left end points are uniformly random.
This is a direct consequence of data optimality and
the observations in Section II-A.

Third, and most importantly, we claim that the
algorithm in Fig. 1 achieves a similar data complex-
ity in the case where range queries are uniformly
random (unlike the algorithm from Section II-A).
More precisely, we show that for N ≥ 27, the
expected number of queries is upper-bounded by
N(log(N) + 2). For simplicity, we assume in the
following statement that N is a multiple of 4, but
as the success probability of the algorithm and the
expected number of queries before it succeeds respec-
tively increase and decrease with N , we can always
round N to the next multiple of 4 if necessary.

Proposition 1. Assume N is a multiple of 4. Assume
that the database is dense, and range queries are
drawn uniformly at random. Then the probability of
success of the algorithm in Fig. 1 after Q queries is
lower-bounded by:

1− 2e−Q/(2N+2) −Ne−Q/N .

Moreover, the expected number of queries before
the algorithm succeeds is upper-bounded by:

N log(N) +O(N).

Concretely, for N ≥ 27, it is upper-bounded by
N(log(N) + 1) + 4.4

√
N + 4 ≤ N(log(N) + 2).

A proof of Proposition 1 is given in the full version
of this paper. As a concrete example, setting N = 100
yields an expected number of queries upper-bounded
by 609 to achieve full reconstruction of a dense
database, regardless of the number of records.

c) Matching lower bound: In the full version
of this paper, we show that the necessary expected
number of queries for any algorithm to achieve full
reconstruction is 1

2N log(N)−O(N).
d) Complexity: The algorithm in Fig. 1 is stated

in a way that closely follows the rationale exposed
earlier in this section. However it is quite ineffi-
cient: line 3 in particular results in a large number



of redundant computations, each involving multiple
intersections and unions of potentially large sets.
While the number of values N may be small, and
we already know that Q ≈ N logN queries are
enough for full reconstruction, the number of records
R can be quite large. In the full version of this paper,
we show a very efficient approach to computing the
partition of records, without explicitly computing any
set intersections or unions. This results in a time
complexity O(Q(N + R)), with little overhead over
simply reading all queries.

C. Full Reconstruction without Rank Information

We now extend the attack to the case where only
the access pattern is leaked. Kellaris et al. have
already shown that O(N2 logN) queries are enough
to achieve full reconstruction for dense databases [9].
However, we show that N log(N) + O(N) queries
are still enough with the same assumptions. A small
caveat is that in the absence of rank information, full
reconstruction can be achieved only up to reflection,
swapping value i with value N + 1 − i. (Of course,
this fact also applies to the attacks in [9].)

a) The algorithm: In response to a query on
range [xk, yk], the adversary now sees only the access
pattern leakage Mk = S[xk,yk]. The attack can
be divided into a partitioning step and a sorting
step. In the remainder we identify a query with the
corresponding set of matching records. Although the
algorithm can fail at a few points, it is data-optimal.
Pseudo-code is provided in Fig. 2.

First, compute the partition of records P as in
Section II-B:

P (r) :=
(⋂
{k:r∈Mk}Mk

)
\
(⋃
{k:r 6∈Mk}Mk

)
P := {P (r) : r ∈ R} .

Recall that full reconstruction requires |P| = N , and
that if |P| = N , every element of P is the set Sx
for some x ∈ X = [1, N ]. We will call the elements
of P “points”. Each such point p corresponds to a
distinct value in X (viz. the singleton val(p)).

To achieve full reconstruction, it remains to assign
the correct value to each point, which is equivalent
to sorting P according to the value of each point
– this is the sorting step. First, we set out to find
an end point, i.e. a point with value 1 or N (which
are indistinguishable due to the reflection symmetry
mentioned earlier). To this end, we form a maximal
union S of queries that does not cover the full set of
records, but does cover an interval of values. Build
S as follows: start with a query not covering the full
set of records, and extend it with overlapping queries

until no longer possible without covering the full set
of records R. If R \ S is reduced to a single point,
then it must be an end point: indeed in that case S
must cover an interval of N −1 values within [1, N ],
so the remaining value can only be 1 or N . If R\S
is not a single point, the algorithm fails.

Once an end point is identified, we assume that
it corresponds to value 1, which must be true up
to reflection. We have thus determined the initial
segment of points I(1) containing a single point.
We then propagate this information by building each
initial segment of points I(i) = S[1,i] in turn, by
induction. Given an initial segment I(i), this amounts
to finding the next point, which must be Si+1. To
do this, we build the intersection T of all queries
overlapping I(i) and containing at least one point
outside I(i). We then subtract from T all queries
overlapping T from the right (i.e. overlapping T and
not contained in I(i)∪T ) so long as T remains non-
empty. If the resulting T contains a single point, it
must be Si+1; we let I(i+1) = I(i)∪T and continue.
Otherwise the algorithm fails.

Once we have built the last (proper) initial segment
I(N −1), we have successfully sorted all points, and
hence determined the value of all records. Pseudo-
code is given in Fig. 2.

b) Analysis of the algorithm: Once again, the
algorithm is data-optimal: if it fails on some in-
put, then full reconstruction with probability 1 is
impossible for any algorithm given that input (a
proof is provided in the full version of this arti-
cle). Furthermore, the expected number of queries
necessary for the algorithm to succeed in achieving
full reconstruction, given uniformly random ranges
queries, is N log(N) + O(N). More precisely, the
following holds.

Proposition 2. Assume N is a multiple of 4. Assume
that the database is dense, and range queries are
drawn uniformly at random. Then the probability of
success of the algorithm in Fig. 2 after Q queries is
lower-bounded by:

1− 4e−Q/(2N+2) −Ne−Q/(N+1).

Moreover, the expected number of queries before the
algorithm succeeds is upper-bounded by:

N log(N) +O(N).

Concretely, for N ≥ 26, it is upper-bounded by (N+
1)(log(N) + 1) + 8

√
N + 6 ≤ N(log(N) + 3).

A proof of Proposition 2 is provided in the full
version of this paper. Since it is one of our main
results, we provide here some intuition regarding



FULL-RECONSTRUCTION-AP(Q):
Input: set of queries Q = {Mk}.
Output: ⊥, or map Val : R → X s.t.
∀rVal(r) = val(r) or ∀rVal(r) = N+1−val(r).

1: P, I,Val← empty maps
2: for all r ∈ R do . Partitioning step
3: P (r)←

(⋂
{k:r∈Mk}Mk

)
\
(⋃
{k:r 6∈Mk}Mk

)
4: end for
5: P ← {P (r) : r ∈ R}
6: if |P| < N then
7: return ⊥
8: end if
9: Pick S ∈ Q s.t. |S| < R . Sorting step

10: while ∃q ∈ Q s.t. q∩S 6= ∅, q\S 6= ∅, q∪S 6= R
do . Searching for end point

11: S ← S ∪ q
12: end while
13: if R \ S 6∈ P then . Ensuring |val(R \ S)| = 1
14: return ⊥
15: end if
16: I(1)← R \ S . Found end point
17: for all i ∈ [1, N − 1] do . Seeking next point
18: Q′ ← {q ∈ Q : q ∩ I(i) 6= ∅, q \ I(i) 6= ∅}
19: T ←

{⋂
q∈Q′ q

}
\ I(i)

20: while ∃q ∈ Q s.t. q∩T 6= ∅, q \ (T ∪I(i)) 6=
∅, T \ q 6= ∅ do

21: T ← T \ {q}
22: end while
23: if T 6∈ P then . Ensuring |val(T )| = 1
24: return ⊥
25: end if
26: I(i+ 1)← I(i) ∪ T . Found next point
27: end for
28: for all r ∈ R do . Success
29: Val(r)← min ({i : r ∈ I(i)})
30: end for
31: return Val

Fig. 2: Full reconstruction from access pattern.

why N log(N) +O(N) queries is still enough, even
without rank information. For simplicity, we go back
to the setting of the introductory example from Sec-
tion II-A, and assume that the left end points of range
queries are uniformly random. The reasoning from
Section II-A already shows that if all N possible left
end points appear in some range query, then |P| = N .
Thus we have N points (elements of P), and the
partitioning step succeeds. It remains to sort points.

For the sorting step to succeed, the previous con-
dition is not enough. (Consider the case where all
queries are singleton range queries [x, x].) If we

strengthen the previous condition very mildly by
requiring that (1) all left end points < N appear in
some range query on an interval of length at least
2 and (2) there exists a range query of the form
[x,N − 1] for some x < N − 1, then with these two
conditions the algorithm from Fig. 2 cannot fail at
lines 14 or 24, and hence the sorting step succeeds.3

In the proof of Proposition 2 (in the full version),
the actual requirements are slightly more intricate
because range queries are assumed to be uniformly
distributed. However, the underlying idea is the same.

c) Complexity: Again, our algorithm was de-
scribed in such a way to maximise legibility and
ease analysis. In the full version, we show that the
algorithm in Fig. 2 can be executed efficiently, with
time complexity O(Q(N2 +R)).

III. APPROXIMATE RECONSTRUCTION ATTACK

In the previous section, we showed that
N log(N) + O(N) uniformly distributed range
queries are sufficient to fully reconstruct the exact
value in every record. In this section, we present
an approximate reconstruction attack that seeks to
determine the value val(r) of every record r, up
to some precision k = εN . We limit our attention
to the general setting where only access pattern
leakage is available (a data-optimal variant when
rank information is available is given in the full
version).

More precisely, for every record r, an approximate
reconstruction attack with precision k outputs an
interval [x, x+k] such that val(r) ∈ [x, x+k]. A full
reconstruction attack may be regarded as the special
case where k = 0. In the remainder however, we
shall assume k > 0 and, without loss of generality,
that k = εN is an integer. Note that our algorithm
will either succeed, i.e. it correctly recovers all values
up to precision ε as defined above; or it outputs ⊥.
(In other words, the algorithm can fail with ⊥, but it
cannot output an incorrect answer.)

The approximate reconstruction attack we discuss
in this section succeeds within an expected number
of queries upper-bounded by 5

4N log(1/ε) + O(N).
In particular, it is O(N) for any fixed ε, and only
grows logarithmically with the precision ε.

A. Intuition for Approximate Reconstruction

We first provide some intuition as to why the
complexity drops from O(N logN) to O(N) when
a margin of error is allowed in a reconstruction

3These conditions are sufficient, but not necessary – which is
why the approximate reconstruction algorithm, contrary to the full
reconstruction algorithm, is not data-optimal.



attack. Recovering the value of every record required
O(N logN) queries because the problem essentially
reduced to a coupon collector’s problem on N items,
as seen in Section II-A. Each coupon was an integer
in the interval [1, N ]. After k < N distinct coupons
have been drawn, drawing a new coupon requires
N/(N − k) tries on average, since each new draw
has a probability (N − k)/N of yielding a “new”
coupon. Recall that the expected number of draws to
gather all N coupons is:∑N−1

k=0
N

N−k = N ·
∑N
k=1

1
k = N ·HN

where HN is the N -th harmonic number.
The last few coupons are much more expensive to

collect than the early ones, in terms of the expected
number of draws required. In particular, if we only
wish to recover (1 − ε)N coupons for some ε > 0,
then the expected number of draws is:∑N−εN−1

k=0
N

N−k = N ·
∑N
k=εN+1

1
k

< N ·
∫ N
εN

1
x = N · log( 1

ε )

where εN is assumed to be an integer. Thus, the
expected number of tries is O(N), with the growth
being proportional to log(1/ε).

B. Approximate Reconstruction Attack

The details of the approximate reconstruction algo-
rithm are provided in Appendix A, see in particular
Fig. 6. In this section, we present a brief overview of
the algorithm, and discuss its properties.

Compared to the full reconstruction algorithms
from Section II, particular care must be taken around
a few issues. The main one is that, because the
partition of records P at the core of the previous
algorithms no longer satisfies |P| = N , there is no
guarantee that its elements correspond to intervals of
values (as opposed to arbitrary subsets). As a result
we eschew this approach, and instead ensure at every
step that the subsets of records we build correspond to
intervals of values (i.e. for every subset S of records
built in the course of the algorithm, val(S) is an
interval).

The general idea of the algorithm is to carefully
split the set of records into three subsets, called left,
middle and right subsets, such that the values corre-
sponding to each subset (i.e. the image of each subset
by val) form three consecutive intervals of values.
Then the algorithm collects queries Q that contain
the middle subset and overlap the left one. Such
queries are called left coupons. After substracting the
middle and right subsets from left coupons, it can be
observed that the resulting sets form a linear order for

set inclusion. This induces an ordering of the value of
records appearing in left coupons. Then the process is
repeated for right coupons. The algorithm is described
in detail in Appendix A.

a) Expected number of queries: Contrary to
the full reconstruction algorithms from the previous
section, the approximate reconstruction algorithm is
not data-optimal. However, we do give a data-optimal
variant in the case where rank information is available
in the full version of the paper.

The main feature of the approximate reconstruction
algorithm is expressed by the following proposition.
As before, we assume for simplicity that N is a
multiple of 4, and, as before, this has little impact.

Proposition 3. Assume N is a multiple of 4, εN/2
is an integer, and ε < 3/4. Assume that the database
is dense, and range queries are drawn uniformly
at random. Then the probability of success of the
algorithm in Fig. 6 after Q queries is at least:

1−4e−Q/(2N+2)−2e−Q log(1+ε/2)+εN/2·(log(1/ε)+1.5).

Moreover, the expected number of queries before
the algorithm succeeds is upper-bounded by:

5

4
N log(1/ε) +O(N).

Concretely, for N ≥ 40, it is upper-bounded by (1 +
ε/4)N log(1/ε) + (2 + 4

√
ε)N + 4/ε.

A proof of Proposition 3 is given in the full version
of this paper (an intuition for the data complexity was
also discussed in Section III-B). As a corollary of the
expected number of queries given above, if we want
to recover the value of all records within a constant
additive error, i.e. ε = Θ(1/N), then O(N logN)
queries suffice: as one might expect, this matches
the full reconstruction attack. Another observation is
that for fixed ε, O(N) queries suffice; and perhaps
surprisingly, the expected number of queries only
grows logarithmically with the desired precision.

The formula for the probability of success may
appear difficult to parse. It may help to observe that
the last term is dominant for small ε. Furthermore, if
we approximate log(1 + ε/2) by ε/2, and disregard
the final “+1.5”, then the last term would dictate a
probability of failure upper-bounded by 2/e < 3/4
for Q = N log(1/ε) queries, and this upper bound
would be divided by e ≈ 2.7 for every additional
2/ε queries. Once again if ε = Θ(1/N) this matches
the approximate behaviour of the full reconstruction
attack.



b) Matching lower bound: In the full version
of this paper, we show that the expected number
of queries before any algorithm can achieve approx-
imate reconstruction with precision εN is at least
1
2N log(1/ε) − O(N), where the constant in O(N)
is independent of ε.

c) Complexity: As was the case with the algo-
rithms in Fig. 1 and 2, the algorithm in Fig. 6 was
defined with legibility in mind, rather than efficiency.
A more efficient variant is discussed in the full ver-
sion, and achieves a time complexity O(Q(N2 +R))
with only access pattern leakage, and O(Q(N +R))
with rank information.

IV. EXPLOITING AUXILIARY INFORMATION

The previous attacks do not make any assumptions
about the distribution of values, but in a real-world
scenario, this distribution may be quite predictable.
For instance, the values might represent the age
of patients in a hospital or salaries in a personnel
database. Attacks on database encryption schemes
based on statistical inference are commonplace; in
this regard our previous attacks are atypical.

In this section, we propose a heuristic algorithm
for performing reconstruction attacks against schemes
that have access pattern leakage and rank leakage, in
the setting where some auxiliary information about
the values’ distribution is available. Our attack is not
amenable to rigorous analysis, unlike our previous
two attacks, so we will rely on an empirical evalua-
tion of its performance.

While we introduce a new assumption about the
availability of pertinent auxiliary information, we
also remove an assumption that applied to previous
attacks: we no longer assume the data is dense. So,
while query end points are still sampled uniformly at
random from X , not all of these values necessarily
correspond to a record or records. As in the previous
attacks, we assume that the adversary knows the set
of record identifiers R and we treat this set as [1, R]
without loss of generality.

A. The Algorithm

As usual, we consider the scenario where a client
is issuing uniformly distributed queries on ranges
[xk, yk] ⊆ X , for k ≤ Q, and for each query, the
adversary observes the leakage (ak, bk,Mk).

a) The algorithm: Let us define position as
follows: the position pos(r) of a record r is its index
(counting from 1) in the sorted list L of records
(sorted by value). From this perspective, the rank of
a value x is the position of the last record with value
x in L.

The algorithm proceeds in two steps. In Step 1,
for each record r, we compute an interval [a, b] such
that pos(r) ∈ [a, b], or, equivalently, rank(val(r) −
1) + 1 ≥ a and rank(val(r)) ≤ b. Essentially we
are performing an approximate reconstruction attack,
except that, instead of outputting an interval of X
containing val(r), we output an interval of [1, R]
containing pos(r). In Step 2 of the algorithm, we
will use the auxiliary information about the a priori
distribution of values X to map each position to the
most likely associated value. Compared to the algo-
rithms we have encountered in the previous sections,
such an approach can output a guess for the value
of a record even when only few range queries are
available.

We now explain each step of the algorithm in
detail.

Step 1. Recall from Section II-B that the partition
of records P = {P (r) : r ∈ R} is defined by:

P (r) :=
(⋂
{k:r∈Mk}Mk

)
\
(⋃
{k:r 6∈Mk}Mk

)
,

In the same way, define the partition of positions
{S(r) : r ∈ R} by:

S(r) :=
(⋂
{k:r∈Mk}[ak + 1, bk]

)∖(⋃
{k:r 6∈Mk}[ak + 1, bk]

)
.

Recall that [ak + 1, bk] can be interpreted as the
positions of records in Mk: that is, [ak + 1, bk] =
pos(Mk). By looking at the definitions of P (r) and
S(r), it is apparent that as a direct result S(r) =
pos(P (r)). Thus, S(r) contains precisely the set
of positions that record r can occupy in a list of
records sorted by value. As result, computing the
minimal and maximal possible position of a record r
is straightforward: they are precisely min(S(r)) and
max(S(r)). This concludes Step 1 of the algorithm.
Pseudo-code is provided in Fig. 3.

Step 2. At this point, for each record r, we have
computed a possible range [a + 1, b] for its position
pos(r). Now, we would like to output an estimate for
its value val(r). First, from the knowledge of a, b,
we compute an (approximation of) the distribution of
val(r); second, using this distribution, we output an
estimate for val(r). Let us call these two steps (2a)
and (2b). In the remainder we fix a record r and the
corresponding interval of positions [a + 1, b] output
by the algorithm in Fig. 3.

Step 2a. By construction, a and b are always the
ranks of some values. We can attempt to determine
which values using the auxiliary distribution D by
evaluating rank(x) for all values x based on D, and



Input: set of queries Q = {(ak, bk,Mk)}.
Output: maps minPos,maxPos : R → [1, R]
s.t. ∀r, pos(r) ∈ [minPos(r),maxPos(r)].

1: S ← empty map
2: for all r ∈ R do
3: S(r)←

(⋂
{k:r∈Mk}[ak + 1, bk]

)
\(⋃

{k:r 6∈Mk}[ak + 1, bk]
)

4: minPos(r)← min(S(r))
5: maxPos(r)← max(S(r))
6: end for
7: return minPos,maxPos

Fig. 3: Computing minimal intervals containing the
position of each record.

matching a (resp. b) with the closest result. This
yields a simple model for the distribution of val(r): if
a = rank(x−1) and b = rank(y), then we can model
the distribution of val(r) as D restricted to [x, y].

The auxiliary distribution D tells us that each
value z ∈ [1, N ] occurs within records with some
probability pz , with

∑N
z=1 pz = 1. Let qz =

∑z
i=1 pi

denote the cumulative distribution.
For z ∈ [1, N ], rank(z) can be seen as a random

variable whose distribution is determined by D and
follows a binomial distribution:

Pr [rank(z) = a] =

(
R

a

)
qaz (1− qz)R−a (1)

with expected value E(rank(z)) = Rqz .
Given a ∈ [1, R] and knowing that a = rank(z) for

some z, finding the most likely value of z amounts
to choosing z so as to maximise Pr [rank(z) = a].
Fixing a, observe that the function q 7→ qa(1−q)R−a
is concave and reaches its maximum for q = a/R.
Using (1), it follows that the optimal choice of z is
either z or z + 1, for z such that a/R lies within
[qz, qz+1]. The optimal choice between z and z +
1 can be determined by computing (1) above and
picking the higher of the two values.

In this way, we can compute the most likely values
x, y ∈ X such that a = rank(x−1) and b = rank(y).
Assuming that rank−1(a) and rank−1(b) are in fact
x− 1 and y, then val(r) ∈ [x, y], and we can model
the distribution of val(r) as D restricted to [x, y],
i.e. each value t ∈ [x, y] occurs with probability
(
∑y
i=x pi)

−1
pt. This concludes the first step.

Step 2b. We now have (an approximation of) the
distribution of val(r). We wish to output an estimate
of val(r). A simple choice is to output its expected
value. For the distribution proposed in the previous
step, this means outputting as a guess for val(r)

the expectation of a value drawn according to D
conditioned on being within [x, y], namely:

(
∑y
i=x pi)

−1
(
∑y
i=x i · pi) . (2)

This concludes the attack. We discuss several variants
of Step 2 in Appendix B. In our experiments, the
simple approach presented above already proved to
be effective.

b) Complexity: Step 2 requires a negligible
amount of computation. As in previous sections, the
algorithm in Step 1 can be sped up considerably using
techniques we introduce in the full version of the
paper, resulting in O(Q(N + R)) operations, little
more time than it takes to read all queries.

B. Experimental Results

Since this attack is less amenable to rigorous
analysis, we carry out an empirical evaluation by
simulating queries on age data in years, from 0–
124. The data we use are from the 2009 Nationwide
Inpatient Sample (NIS), from the Healthcare Cost
and Utilization Project (HCUP), run by the Agency
for Healthcare Research and Quality in the United
States [22]. (We expect results for any other year
would be similar.) It includes data at the hospital level
– e.g. number of discharges, number of beds – and
at the patient discharge level – e.g. demographics,
diagnosis, procedure, payer.

Remark. The NIS is processed in a way to protect
the privacy of individual patients, physicians, and
hospitals. Our experiments were on the AGE attribute
only, and we did not attempt to deanonymise any of
the data. All authors underwent the HCUP Data Use
Agreement training and submitted signed Data Use
Agreements to the HCUP Central Distributor.

We extract the age data (in years) from the patient
discharge records of the largest 200 hospitals in the
2009 sample. Each of these largest hospitals has
between 13,000 and 122,000 records, approximately,
for a total of about 4.9 million records. We simulate
range queries on individual hospitals’ data and attack
the query leakage; the auxiliary distribution we use is
obtained by averaging over all 200 largest hospitals’
records. Query end points are sampled independently
and uniformly at random from [0, 124], the range of
valid age values according to the NIS Description of
Data Elements. The auxiliary attack does not require
the data to be dense and, indeed, some of the ages
in this range do not appear in the records of any of
the largest 200 hospitals. Further, each hospital’s data
is not necessarily dense with respect to the auxiliary
distribution.
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Fig. 4: Fraction of records recovered within ε of
actual age as number of observed queries tends to

infinity, for largest 200 hospitals.

We measure the attack’s success by computing the
proportion of a hospital’s records that was recovered
within ε, i.e. the fraction of records for which the
guessed value is at most εN years away from the
true value, where N is the number of possible values,
125. It is important to note that ε is used only to
characterise results and is not a parameter of the
attack, unlike the approximate reconstruction attack
in Section III. Here, there is no guarantee that the
guessed values are within ε of the true values.

We display results from our experiments in plots
with relative error (ε) on the x-axis and cumulative
fraction of records on the y-axis. Since ages are in
the range [0, 124], the margin of error for all records
cannot be higher than 125, which corresponds to ε =
1. Perfect reconstruction corresponds to a vertical line
at ε = 0, while successful attacks have steeply rising
curves that reach y = 1 for small values of ε.

Suitability of the auxiliary distribution. First, we
demonstrate the extent to which the performance of
this attack is limited by the accuracy of the auxiliary
distribution. Although each hospital has over 10,000
records, the per-hospital distributions of ages can
vary greatly from the auxiliary distribution. (Such
differences could be due to regional demographics
or specialised departments, e.g. neonatal, pediatric,
or geriatric.) Fig. 4 shows the asymptotic success of
the attack for each of the 200 hospitals: we plot the
fraction of records recovered within ε as the number
of observed queries tends to infinity, meaning that
there has been enough leakage to fully determine the
partitions of records and the partitions of positions.
To measure how closely each hospital’s distribution
matches the auxiliary distribution, and to investigate
the effect of this on the success of our attack, we
colour-code each hospital’s curve in Fig. 4 with the
discrete Kolmogorov-Smirnov (K-S) statistic for the
per hospital and aggregate distributions. The K-S
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(b) Exact auxiliary information

Fig. 5: Fraction of records recovered within ε of
actual age for one hospital, averaged over 1000

experiments.

statistic is a cumulative goodness-of-fit test; for two
discrete distributions, it is the maximum absolute
difference between their cumulative distribution func-
tions: KS(q, q′) := maxz∈X |qz − q′z|. The smaller
the K-S statistic, the closer the two distributions. If
the attack were carried out with exact knowledge
of the frequencies, the relative error for all records
would be 0 as the number of observed queries tends
to infinity. Fig. 4 illustrates the importance of the
closeness of the auxiliary distribution to the actual
distribution: for small K-S values (encoded in dark
red), the algorithm generally performs better, recov-
ering more records with a smaller relative error.

In the remainder of this section, we focus on one
hospital with over 30,000 records whose distribution’s
closeness to the auxiliary distribution was about aver-
age: its K-S statistic (about 0.098) is near the median
(about 0.103).

Required number of observed queries. Fig. 5a
shows the success of the attack on this particular
hospital’s data, averaged over 1000 experiments, with
values assigned to records after 5, 10, 15, 25, 50,
75, and 100 queries. Fig. 5b shows what its success
would be if the auxiliary information were perfect.
Even with this simple heuristic attack and only
approximate auxiliary information, the number of



queries required to reconstruct most of the database
is relatively small. (Recall that for N = 125, the
expected number of queries for our full reconstruction
attack with rank leakage is 782.) After observing only
10 queries, an attacker can already guess the ages of
70% of records within 10 years (ε = 0.08). After
25 queries, 95% of records are guessed within 10
years, and 55% within 5 years. After 100 queries, the
success of the attack is restricted only by the accuracy
of the auxiliary data’s distribution.

In Appendix C, we investigate the effect of relaxing
two assumptions: that the total number of records is
known, and that the set of all record identifiers is
known.

V. CONCLUSIONS

Building secure databases supporting commonly
expected functionality, such as range queries, is a
challenging task. Initial solutions based on OPE or
ORE offered great usability, but were quickly shown
to offer little security in the face of frequency analysis
attacks exploiting auxiliary distributions, cf. [2], [7]
– and no security at all if the database is dense.
Second-generation schemes such as the Lewi-Wu
ORE scheme, Arx, and FH-OPE, seek to increase se-
curity while preserving all or most of the functionality
of OPE. Indeed, significant progress seems to have
been achieved against snapshot adversaries: although
FH-OPE is still vulnerable to some attacks [7], the
Lewi-Wu scheme as well as Arx offer, at least in
principle, a high level of security against snapshot
attackers4, in a way that precludes the type of sta-
tistical inference attacks that worked so powerfully
against earlier candidates.

This left open the question of the security of-
fered by such schemes against persistent adversaries,
including an honest-but-curious host server (or any
adversary having compromised the server for a suffi-
cient length of time). On that front, the generic attack
by Kellaris et al. [9] shows that observing the access
pattern leakage of O(N2 logN) queries is enough to
reconstruct the value of all records when the database
is dense. Our own attacks reduce the expected number
of queries to N log(N) +O(N) in the same setting.
Even for a relatively low number of values N = 125,
this reduces the required number of queries from
around 75,000 to around 800. We also prove a linear
upper bound O(N) for approximate reconstruction
with a fixed precision (say, 5%). These results come
with matching lower bounds, and efficient algorithms

4Counterpoints on the realism of basic snapshot adversaries are
discussed in [23].

(which, in the case of the full reconstruction attack,
are also data-optimal).

Furthermore, we investigate the setting where rank
information is leaked (as is the case for the Lewi-Wu
scheme, Arx, and FH-OPE), and an approximation
of the distribution of plaintext values is known to the
adversary. In that setting, our experiments on a real-
world medical database show that after observing the
leakage of as few as 25 queries, the age of a majority
of patients could be reconstructed to within 5 years,
even with imperfect auxiliary information.

All of our results combine to show that, to the
best of our knowledge, no known practical scheme
supporting range queries achieves a meaningful level
of privacy for the client’s data with respect to the
server hosting the database (or any other persistent
adversary).

It would be interesting to analyse to what extent
full or approximate reconstruction can be achieved
when the density assumption does not hold. Such at-
tacks were explored in [9], where a full reconstruction
algorithm requiring the access pattern leakage from
O(N4 logN) queries was established and shown to
be essentially optimal over all data distributions. Still,
improvements may well be possible for typical data
distributions (as opposed to the pathological ones
used to show an Ω(N4) lower bound in [9]). Another
interesting extension would be to study the effective-
ness of such attacks for non-uniform range queries,
for instance using real-world range query samples
(although by definition our data-optimal algorithms
would still behave optimally, their data requirements
may change). On the positive side, an interesting open
problem is whether it is possible to build database en-
cryption schemes that satisfy some sensible efficiency
criteria while offering meaningful security against
persistent adversaries.

In the absence of such a scheme, we are not in
a position to suggest defences against the attacks
presented in this paper, except for employing methods
that hide access patterns. This can be done using
ORAM or PIR techniques. These approaches are
currently rather expensive for use at large scale. They
suggest that developing “good enough” oblivious ac-
cess techniques for stored data, where some security
is traded for increased efficiency, would be a fruitful
research direction.
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APPENDIX A
APROXIMATE RECONSTRUCTION ALGORITHM

In this section, we describe our approximate re-
construction algorithm, introduced in Section III. The
input of the algorithm is the access pattern leakage
of a set of queries Q = {Mk : k ≤ Q} on ranges
[xk, yk], withMk = S[xk,yk]. The algorithm proceeds
in two steps.

The first step is to split the set of records into
two “halves” (and a middle part) as follows. Let r
be an arbitrary record. (All possible choices of this
record will be tried until the algorithm succeeds.) Let
M denote the intersection of all queries containing
r. We wish to find two sets of records halfL and
halfR such that halfL ∪halfR contains all records,
halfL ∩ halfR = M , and finally both val(halfL) and
val(halfR) are intervals. In this way, we partition
the set of records into three subsets (halfL \M , M ,
and halfR \M ) such that the corresponding sets of
values (val(halfL \M), val(M), and val(halfR \M))
is a partition of [1, N ] into three successive intervals.
We will then sort records independently in halfL and
halfR.

http://eprint.iacr.org/2016/591
http://www.hcup-us.ahrq.gov/nisoverview.jsp
http://www.hcup-us.ahrq.gov/nisoverview.jsp
http://eprint.iacr.org/2017/468


The exact technique used to build halfL and halfR
is given in lines 3-6 in Fig. 6. Each subset is built as
a union of two overlapping queries, ensuring that the
corresponding value set is an interval, while incurring
only a cost O(N) in the expected number of queries
for the algorithm to succeed.

The second step is to sort records within halfL \M .
To do so, define a left coupon as a set of records of
the form q\halfR such that q is a query (i.e. q =Mk

for some k) containing M . We claim that the set
CL of left coupons is linearly ordered for ⊂. To see
this, shift the perspective from records to their values:
let [xM , yM ] = val(M); then every left coupon is
equal to S[x,xM−1] for some x < xM . Indeed, any
query q containing M is such that val(q) = S[x,y]
for some x ≤ xM ≤ y, and val(halfR) = [xM , N ].
The linear order ⊂ on left coupons clearly implies the
(reverse) order for the value of new records appearing
in each successive coupon. Thus we have identified
and sorted nL = |CL| distinct sets of records, all
below xM .

We repeat the process for halfR to partition halfR
into nR = |CR| ordered subsets, all above yM .
Finally, we have sorted nL + nR + 1 distinct subsets
of records, whose union covers all records.5 Since the
values appearing in each subset of the global partition
must be distinct, the values appearing in the k-th
subset must be at least k; likewise they can be at most
k +N − (nL + nR + 1) (since the `-th set counting
from the right can contain values at most N + 1− `).
Hence if nL+nR+1 = (1−ε)N , we have succeeded
in approximate reconstruction with precision εN . If
that condition is not satisfied, try again at the first step
with the next value of r. Pseudo-code is provided in
Fig. 6.

APPENDIX B
AUXILIARY ATTACK STEP 2 VARIANTS

Although the approach we took for Step 2 of the
auxiliary attack in Section IV is grounded on relevant
analysis, and performs well in practice, it remains
heuristic. Indeed, define the set of boundaries as the
image of rank; the name boundary comes from the
fact that boundaries separate distinct values in the
sorted list of records L. From this perspective, each
query leaks two boundaries ak and bk. At a high level,
the problem at hand is to compute the distribution
of x, y conditioned on knowing rank(x − 1) = a,
rank(y) = b, and on the knowledge of all other

5Recall that we assume [1, N ] to be a query; or equivalently, that
the set of all records is known. As a result S[1,xM−1], S[yM+1,N ]
must appear, respectively, as left and right coupons.

known boundaries ak and bk.6 In the above approach,
we disregard boundaries other than a and b, and
tackle each of them in isolation, which is a reason-
able approximation, but not a perfect one. Although
computing the likelihood of a given assignment of
boundaries to values is simple enough (it follows a
multinomial distribution), solving the previous prob-
lem that takes into account all boundaries simultane-
ously, seems to require, at least naively, searching a
space of size exponential in N .

A number of trade-offs between accuracy and pro-
cessing power are possible however. In the remainder,
we mention a few such optimisations for step (2a).
Regarding step (2b) of the algorithm, we also briefly
discuss other choices for the final estimate of val(r),
depending on what metric we wish to optimise.

Starting with step (2a), one possibility is to com-
pute the assignment of both ends of the interval
[a, b] simultaneously. That is, instead of comput-
ing za and zb to maximise Pr [rank(za) = a] and
Pr [rank(zb) = b] independently, maximise the joint
probability Pr [rank(za) = a ∧ rank(zb) = b], which
follows a trinomial distribution:

Pr [rank(za) = a ∧ rank(zb) = b]

=
R!

a!(b− a)!(R− b)!
· qaza(qzb − qza)b−a(1− qzb)R−b. (3)

Another possibility is to observe that in the orig-
inal approach as well as the one just above, we
first compute the most likely values x, y such that
rank(x− 1) = a and rank(y) = b, then approximate
the distribution of val(r) by D restricted to [x, y]. In
other words we are forcing rank−1(a) and rank−1(b)
to take their most likely values and deducing the
distribution of val(r) from there. We could instead
compute the entire distribution of x and y conditioned
on rank(x−1) = a and rank(y) = b, using either (1)
or (3); then use this entire distribution to infer that
of val(r). More explicitly, the distribution of val(r)
becomes:

Pr [val(r) = t] (4)

=
∑

(x,y)∈X 2

Pr [rank(x− 1) = a ∧ rank(y) = b]

· Pr [val(r) = t|rank(x−1) = a ∧ rank(y) = b]

where the first term is equal to
Pr [val(r) = t|val(r) ∈ [x, y]] = (

∑y
i=x pi)

−1
pt

6Empirical solutions for a similar but distinct problem, akin to
finding the most likely simultaneous assignment of all boundaries,
are proposed in [2], [7].



APPROXIMATE-RECONSTRUCTION(Q):
Input: set of queries Q = {Mk}, real 0 < ε < 1.
Output: ⊥, or maps minVal,maxVal : R → X s.t. ∀r, val(r) ∈ [minVal(r),maxVal(r)] or ∀r, val(r) ∈
[N + 1−maxVal(r), N + 1−minVal(r)]; and ∀r,maxVal(r)−minVal(r) ≤ εN .

1: for all r ∈ R do
2: M ←

⋂
{k:r∈Mk}Mk . Partitioning step

3: Find qL, qR s.t. qL ∩ qR = M , maximizing |qL ∪ qR|
4: Find q′L s.t. q′L ∩ qL 6= ∅, q′L ∩ qR ⊆M , maximizing |q′L ∪ qL|
5: Find q′R s.t. q′R ∩ qR 6= ∅, q′R ∩ qL ⊆M , maximizing |q′R ∪ qR|
6: if q′L ∪ qL ∪ qR ∪ q′R = R then
7: halfL ← q′L ∪ qL
8: halfR ← qR ∪ q′R
9: CL ← {q \ halfR : q ∈ Q,M ⊆ q} \ {∅} . Left sorting step

10: nL ← |CL|
11: (CL[1], . . . , CL[nL|)← sort CL for order ⊂ . It is a linear order
12: CR ← {q \ halfL : q ∈ Q,M ⊆ q} \ {∅} . Right sorting step
13: nR ← |CR|
14: (CR[1], . . . , CR[nR])← sort CR for order ⊂ . It is a linear order
15: if N − (nL + nR + 1) ≤ εN then
16: for all r ∈ R do . Success
17: if r ∈ halfL then
18: minVal(r)← nL + 1−min{i : r ∈ CL[i]}
19: else if r ∈M then
20: minVal(r)← nL + 1
21: else if r ∈ halfR then
22: minVal(r)← nL + 1 + min{i : r ∈ CR[i]}
23: end if
24: maxVal(r)← minVal(r) +N − (nL + nR + 1)
25: end for
26: return minVal, maxVal
27: end if
28: end if
29: end for
30: return ⊥

Fig. 6: Approximate reconstruction attack from access pattern leakage.

and the second term can be computed using (3).
A merit of this approach is that it fully captures
the information leaked by pos(r) ∈ [a, b]. It does,
however, remain heuristic as already discussed – in
the sense that we are still ignoring the existence of
other known boundaries.

In step (2b), we use the approximation Dv of the
distribution of val(r) output by step (2a) to produce
an estimate e for val(r). We chose to output the
expected value of x for x ← Dv . If we define the
error as the difference x − e between x ← Dv

and the estimate e, then the choice of picking the
expectation ensures that the mean error is zero, and

also minimises the variance of the error.7 Other
metrics we may wish to minimise include the mean
of the absolute error |x − e|; in that case we should
pick the median of the distribution as our estimate; or
we may prefer to minimise the median of the absolute
error, which amounts to finding an interval [s, t] ⊆ X
of minimal length and probability at least 1/2, and
outputting (s+ t)/2 (finding such an interval can be
done in time O(N)).

Finally, we note that the algorithm could output
more than simply an estimate of the value. It could,
for example, simply output Dv; or, after estimating

7To see this, if Dv assigns probability pi to x = i, then the
variance of the error is

∑
i pi(i − e)2; it has degree two in e

and derivative 2(e− E [Dv ]), so its minimum is reached for e =
E [Dv ].



the most likely values for x and y, output the en-
tire range [x, y]. Alternatively, the algorithm could
compute a confidence interval around the estimated
value from (2). This is straightforward using the
approximate distribution output by step (2a). Such a
confidence interval would be particularly meaningful
if the distribution is computed as in (4), since it would
then properly capture situations where a boundary
falls in the middle of many successive values with low
probability, which can introduce a significant amount
of uncertainty.

APPENDIX C
RELAXING AUXILIARY ATTACK ASSUMPTIONS

Although the auxiliary attack in Section IV does
not assume density of the data, it still makes two
important assumptions: that the total number of
records is known (which is necessary to obtain point
guesses from rank values), and that the set of all
record identifiers is known. While we have referred to
sets of record identifiers as “access pattern leakage”,
this information need not come from observing disk
accesses at the server – the adversary could learn
the record identifiers by intercepting the query result,
for instance. In such a setting, the adversary would
not be able to learn the set of record identifiers or
the total number of records by any methods that
require (physical) access to the storage media. We
briefly discuss the impact of removing these two
assumptions.

Number of records. For some distributions – in
particular, the age data we used – approximating the
total number of records is easy with only a few
queries. Consider the following approach: (i) compute
the expected value of the maximum value in X that
was a query end point in the set of Q queries, then (ii)
use the maximum observed rank and the cumulative
auxiliary distribution to arrive at an estimate R̃.

Recall that ranges are chosen independently and
uniformly at random from X = [1, N ]. Let AQ
denote the maximum value of a query end point after
Q queries have been made:

AQ = max
query k∈Q

max {xk, yk} = max
query k∈Q

{yk}.

Although this value is unknown, it must correspond
to the maximum observed rank and we can compute
its expected value. We show in the full version of
the paper that the probability that the right end point
y of a uniformly random range is equal to z ∈ X
is 2z

N(N+1) ; and so the probability that is less than

or equal to z is z(z+1)
N(N+1) . Hence the probability that

AQ = z for any z ∈ X is:

Pr [AQ = z] = Pr [AQ ≤ z]− Pr [AQ ≤ z − 1]

=

(
z(z + 1)

N(N + 1)

)Q
−
(

(z − 1)z

N(N + 1)

)Q
.

Simplifying, we find an expected value:

E [AQ] = N − 1

(N(N + 1))Q

N−1∑
z=1

(z(z + 1))Q.

Now, guess that the maximum observed rank,
bmax := maxquery k∈Q {bk}, corresponds to the end
point ŷmax := bE(AQ)e. Finally, we can estimate the
number of records R using the cumulative distribu-
tion function q derived from the auxiliary distribution:
R̃ := bbmax/qŷmaxe.

Returning to our experiment, the expected maxi-
mum observed end point is 118.6 after just 10 queries,
122.0 after 25 queries, 123.2 after 50 queries, and
123.6 after 75 queries. This heuristic works well
for the age dataset because query end points are
sampled uniformly at random, while ages above 110
are infrequent and not dense, so it is unlikely to
take more than 10 queries for the maximum rank
value (i.e. the number of records) to be observed.
For other distributions, perhaps the minimum or
the mean would be more suitable. Since so few
queries are required to estimate the total number
of records R given an auxiliary distribution, we are
confident that removing this assumption would not
have significantly decreased the attack’s success in
our experiments.

Set of record identifiers. Next, consider the as-
sumption that the adversary knows the set of all
record identifiers. If we remove this assumption, then
it is clear that the adversary cannot “reconstruct” any
records that have not matched at least one query.
Fig. 7 shows the results of the experiment when the
attacker does not know the set of possible record
identifiers before observing any queries, with the ag-
gregate auxiliary distribution (7a) and exact auxiliary
information (7b).

In the case of our experiment, the most significant
phenomenon arises from the fact that 17% of our
chosen hospital’s records have value 0 (corresponding
to infants). If no query covers the value 0, then
the corresponding 17% of records cannot be recon-
structed. This results in a sharp jump depending on
whether a query covering the value 0 has been issued,
visible in the form of vertical lines at the top of
the curves in Fig. 7. (Because we average the error
over a large number of experiments, the horizontal
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Fig. 7: Fraction of records recovered within ε of
actual age for one hospital, averaged over 1000

experiments, without assumption that set of record
identifiers is known.

position of the vertical line at the top of each curve
reflects the probability that a query covering the value
0 was issued: indeed if the value 0 has been queried,
the corresponding 17% of records are recovered with
an error close to 0; while if it was not queried, the
records cannot be reconstructed, and are attributed an
error of 1.)

When we assume the set of all record identifiers is
known, the attacker recovers all records within an er-
ror of about ε = 0.19 after seeing only 5 queries and
using the approximate auxiliary distribution. Without
record identifiers, the IDs of 17% of the records
cannot be recovered (much less reconstructed) until
an expected number of (N + 1)/2 = 63 queries
have been issued. As a result the performance of the
attack, visible on Fig. 7, is significantly worse than in
the case where record identifiers are known. (When
comparing these graphs to Fig. 5, note that the x-axis
now runs from 0 to 1 rather than 0.24 and that the
results are for up to 200 queries rather than just 100.)
This illustrates the value of knowing the set of record
identifiers in our attacks.
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