
Proceedings of Machine Learning Research 91:1–22, 2018 Conformal and Probabilistic Prediction and Applications

Inductive Venn-Abers Predictive Distribution

Ilia Nouretdinov i.r.nouretdinov@rhul.ac.uk
Information Security Group; Computer Learning Research Center, Department of Computer Science,
Royal Holloway, University of London, London, UK

Denis Volkhonskiy denis.volkhonskiy@skoltech.ru
Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia

Pitt Lim pitt.lim@stgeorges.nhs.uk
St.Georges Hospital, London, UK

Paolo Toccaceli paolo.toccaceli@rhul.ac.uk
Computer Learning Research Center, Department of Computer Science, Royal Holloway, University
of London, London, UK

Alexander Gammerman a.gammerman@rhul.ac.uk

Computer Learning Research Center, Department of Computer Science, Royal Holloway, University

of London, London, UK

Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov and Ralf Peeters

Abstract

Venn predictors are a distribution-free probabilistic prediction framework that transforms
the output of a scoring classifier into a (multi-)probabilistic prediction that has calibration
guarantees, with the only requirement of an i.i.d. assumption for calibration and test data.

In this paper, we extend the framework from classification (where probabilities are
predicted for a discrete number of labels) to regression (where labels form a continuum).
We show how Venn Predictors can be applied on top of any regression method to obtain
calibrated predictive distributions, without requiring assumptions beyond i.i.d. of calibra-
tion and test sets. This is contrasted with methods such as Bayesian Linear Regression,
for which the calibration guarantee instead relies on specific probabilistic assumptions on
the distribution of the data.

The adaptation of Venn Machine to regression required a theoretical analysis of the
transductive and inductive forms of the predictor. We identify potential consistency prob-
lems and provide solutions for them.

Finally, to illustrate their advantages, we apply regression Venn Predictors to the med-
ical problem of predicting the survival time after Percutaneous Coronary Intervention, a
potentially risky procedure that improves blood flow to a patient’s heart. The predic-
tive distributions obtained with this method allow a variety of interpretations that include
probability of survival time exceeding a chosen threshold or the shortest survival time
guaranteed with a given probability.

Keywords: reliable prediction, Venn machine, regression.

1. Introduction

The classical Machine Learning problems of Classification and Regression are concerned
with producing ”point” predictions in the sense that, given a test object, they choose
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a single label from a discrete or a continuous set, respectively, that minimizes a given
loss function. It can be argued that for various applications (e.g. decision making) the
point prediction alone is inadequate and that a richer supply of information regarding the
prediction is preferable.

In has been argued that the most informative form of output for a prediction problem is
a probability distribution on the label space. Especially for decision making, the availability
of predictive densities or predictive cumulative distribution functions has the fundamental
advantage of decoupling the modeling and learning stage from the specific choice of loss
function. Such choice, with its critical importance for the specific decision that ensues, can
be deferred and changed at will with no impact on the preceding stages.

Venn prediction is a framework for distribution-free (multi-)probabilistic prediction. The
distinguishing advantage of Venn Predictors is that they have a calibration guarantee, for
which the only requirement is that data be drawn independently from the same distribution
(i.i.d. assumption). By calibration, we refer to the property that:

P [Y = a | Pa] = Pa almost surely (1)

that is, the probability that the label is a given that the predicted probability is Pa is indeed
Pa. Practically, this corresponds to the relative frequencies of label being a tending to Pa
when computed only on the objects for which the probability of label a is Pa.

In their general form described in Vovk et al. (2005), Venn Predictors output discrete
probability distributions over the set of possible labels. Venn Predictors are described as
multi-probability predictors because for each test object they output as many probability
distributions as possible labels. Each of these distributions is obtained by assuming that the
test object x has a given hypothetical label y and adding the example z = (x, y) to the train-
ing set. Strictly speaking, the calibration property applies to one of such distributions, but
exactly which one of the distributions cannot be predicted. The differences across various
distributions however can provide an indication of how uncertain the probabilistic predic-
tion itself is. The key component of Venn Predictors is the Venn Taxonomy, a partition of
the space of the examples in which the elements (referred to as categories) are sets grouping
together examples that can be considered similar for the purposes of calculating relative fre-
quencies. The predicted distribution for a test object is the set of relative frequencies (one
for each possible label) calculated on the category in which the hypothetical test example
falls. The choice of the taxonomy is critical: a coarse taxonomy is going to have categories
with many elements, leading to more robust and representative relative frequencies, but its
predictions are going to be not very specific (or sharp, if one follows the terminology in
(Gneiting et al.)). In the Venn Prediction framework, the taxonomy is obtained by means
of the underlying Machine Learning algorithm. Note that once the taxonomy is established,
the probabilistic predictions are determined (as relative frequencies of the labels) without
further recourse to the underlying Machine Learning algorithm.

In the rest of the paper, we’ll restrict our attention to binary Venn Predictors, i.e. Venn
Predictors for two labels, which we’ll denote arbitrarily as 0 and 1. In this context, the
Venn Predictor outputs 2 probability distributions, one assuming label 0 for the test object
and the other assuming label 1. It is customary (although potentially confusing) to refer
to p0 and p1 to the probability of label 1 in the two distributions, respectively. In a rather
broad sense, the p0 and p1 can be viewed as lower and upper probabilistic estimates.
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Among binary Venn Predictors, Venn-Abers predictors (Vovk and Petej, 2014) can be
used to calibrate a score produced by a scoring classifier, whenever such score is supposed to
be directly related to the probability of the positive label. The score s(x) (which could have
any arbitrary domain, not restricted to [0,1]) is transformed into a multi-probabilistic cal-
ibrated prediction (p0(x), p1(x)), with p0(x) = g0(s(x)), p1(x) = g1(s(x)), where g0(s) and
g1(s) are monotonic functions of s. In addition to being calibrated in the sense mentioned
earlier, the probabilities (p0(x), p1(x)) also maximize the likelihood over the ”augmented”
training set (i.e. the training set plus the test object with a hypothetical label).

1.1. Outline of the approach

The aim of this work is to extend Venn Prediction to regression problems, i.e. with contin-
uous labels as opposed to discrete labels. The approach we propose is to map the original
regression setting onto a binary classification setting on which we can apply Venn-Abers
prediction. This is achieved by choosing a threshold t and applying Venn Predictors to
produce upper and lower estimates for P [≤ t]. By repeating this for different thresholds t,
we obtain the values at t of an upper and a lower predictive distribution P̂1(t) and P̂0(t).

The principal challenge this approach presents is the potential for inconsistencies. Incon-
sistencies here mean contradictions between probabilistic predictions at different threshold
levels, i.e. P0(ti) > P0(tj) for ti < tj . The Appendix of this paper includes a theoretical
analysis of the problem and the justification of the framework. We will show that inconsis-
tency is not avoidable in the transductive form of Venn-Abers scheme, but disappears for
the inductive version of Venn machine developed in (Lambrou et al., 2015).

The method described here can be seen as complementary to the one proposed for
conformal predictive distributions (Vovk et al., 2017), where a similar form of output (upper
and lower bounds for the distribution) is produced by calculating conformal predictive
regions for different significance levels.

Just as Venn-Abers is applicable to virtually any scoring classifier, the framework we
propose produces valid predictive distributions on top of virtually any regression method.
To illustrate its advantages, in Sec. 5 we provide a comparison with well-known Bayesian
Linear Regressionshowing how the proposed method leads to narrower valid intervals on a
synthetic data set. As a real-life case study, we apply the method to obtain a probabilistic
prediction of patient survival time on the basis of historical data on patient characteristics
and observed outcome, following Percutaneous Coronary Intervention (PCI), a non-surgical
procedure used to treat narrowing (stenosis) of the coronary arteries of the heart.

2. Formal definition of the method

We start by recalling relevant notions from Vovk et al. (2005); Vovk and Petej (2014);
Lambrou et al. (2015) related to Venn, Venn-Abers and Inductive Venn predictions for the
binary classification task, i.e. when the predicted label can take one of 2 values, arbitrarily
denoted here as 0 and 1.
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2.1. Venn Predictor

Assume we are given training samples

(z1, . . . , zn), zi = (xi, yi), i = 1 . . . n,

where xi ∈ Rd, yi ∈ {0, 1}, i = 1 . . . n.
Given a test object xn+1, the Venn Predictor outputs a (multi-)probabilistic prediction

in the form of a probability distribution over the possible values of the label.
For this we need to introduce the notion of Venn taxonomy. A Venn taxonomy A is a

measurable function that assigns to each n ∈ {2, 3, . . .} and each sequence (z1, . . . , zn) an
equivalence relation ∼ on {1, . . . , n}. The relation has to be equivariant in the sense that,
for each n and each permutation π of {1, . . . , n},

(i ∼ j|z1, . . . , zn)⇒ (π(i) ∼ π(j)|zπ(1), . . . , zπ(n)),

where (i ∼ j|z1, . . . , zn) means that i is equivalent to j under the relation assigned by A to
(z1, . . . , zn). Next we define a class of the equivalence of j as

A(j|z1, . . . , zn) := {i ∈ {1, . . . , n}|(i ∼ j|z1, . . . , zn)}.

A Venn predictor with a Venn taxonomy A outputs the pair (p0, p1), where

py =
|{i ∈ A(n+ 1|z1, . . . , zn, (xn+1, y))|yi = 1}|

|A(n+ 1|z1, . . . , zn, (xn+1, y))|
(2)

Note that both p0 and p1 express the probability of the test object having 1 as label.
y ∈ {0, 1} will be referred to here as the version of Venn prediction.

Venn Predictors offer a calibration guarantee under the assumption that the observations
are independently and identically distributed. A definition of calibration was given in eq. 1
in the Introduction; we refine it here to accommodate the multi-probabilistic nature of the
prediction, according to (Vovk and Petej, 2014).

For a given discrete random variable Y , that takes values in {0, 1} and Venn predictions
P0, P1 ∈ [0, 1], there exists a selector S (i.e. a random variable taking values 0 or 1) such
that PS is calibrated.

For further details, the reader is referred to (Vovk et al., 2005) where a more general
but more complex game-theoretic form of Venn machine validity is discussed.

2.2. Venn-Abers Predictor

The Venn Prediction framework does not prescribe any method for constructing the taxon-
omy. Venn-Abers Predictors provide a method for establishing a taxonomy with desirable
properties using a scoring classifier as underlying ML method. More specifically, the re-
quirement posed by the Venn-Abers framework is that the score s(xn+1) output by the
underlying algorithm be directly related to the probability that label yn+1 is 1. In a nut-
shell, the higher the score, the higher the probability of the label being the positive one1.

1. Note that a scoring classifier may not necessarily satisfy this property; in fact, for mere classification
what is required is that the sign of the score be directly related to the probability of label.
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The taxonomy constructed by Venn-Abers predictors (a partition of R into intervals)
is designed so that the predicted probabilities are non-decreasing (as a function of s) and
maximize the likelihood of the training set. This is achieved by a calibrator g(s) maximizing:∏

i=1,2,...,n

pi

where:

pi =

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0

Based on results in (Ayer et al., 1955; Brunk, 1955; Zadrozny and Elkan, 2002), the sought
g(s) can be obtained as isotonic regression (i.e. order-preserving regression) on (si, yi)
defined as the non-decreasing function minimizing the sum of square residues:

n∑
i=1

(g(s(xi))− yi)2

Then the multi-probabilistic prediction for x is the pair

(p0, p1) = (g0(s0(x)), g1(s1(x))).

Note that the isotonic regression is piecewise constant. The intervals of x where (g(s(x)) is
constant are the categories of the Venn-Abers taxonomy.

2.3. Inductive Venn Predictor

The Venn machines described in the previous section are in general computationally de-
manding because they require that the underlying ML algorithm be retrained for every
new test object and hypothetical label. They are said to be transductive (Vapnik, 1998;
Gammerman et al., 1998); they are intended to provide predictions for one test object, as
opposed to obtaining a model of general validity.

In the Inductive form, the underlying ML algorithm of a Venn machine is trained once
only, on a subset of the training set which is referred to as the proper training set. The rest
of the training set forms the calibration set. It is the calibration set that, along with the
test object and its hypothetical labels, gets divided into the categories of the taxonomy and
is used to compute the relative frequencies as defined in eq. 2.

In our notation, the proper training set is defined as:

TP = {z−1, . . . , z−r}.

and the calibration set as:
TC = {z1, . . . , zh}.

with r + h = n and we denoted the test object as xh+1.
Then s(x) is defined as the score S(x, TP ) assigned by the underlying method to x after

training on the proper training set TP . Since the proper training set is fixed, s can be
considered as a function depending only on x.

The Inductive Venn Predictors enjoy the same type of calibration guarantee as their
Transductive counterparts, whenever the scoring function can be represented in the form
S(x, TP ).
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2.4. Inductive Venn-Abers Predictor

In the Inductive Venn-Abers Predictors, g is a monotonic function of s minimizing the sum
of square residues over the calibration set TC plus the test object with the hypothetical
label:

h+1∑
i=1

(g(s(x−i, TP ))− y−i)2

Venn-Abers Predictors are known to satisfy calibration guarantees of Venn Predictors.

3. Inductive Venn-Abers Predictive Distributions

Our approach to Venn-Abers Predictive Distribution is a modification of Inductive Venn-
Abers Predictor, therefore it is called Inductive Venn-Abers Predictive Distribution (IVAPD).
A more straightforward transductive version is found to be inconsistent. Its description and
inconsistency proof is located in Appendix A.

3.1. Methodology

3.1.1. From regression to classification

As in Sec. 2.3, we split the training set into a proper training set TP = {z−1, . . . , z−r} and
a calibration set TC = {z1, . . . , zh}, where zi = (xi, yi) is a pair of a feature vector xi ∈ Rd
and a label yi ∈ R. The difference in this setting is indeed that the labels yi are real-valued,
as opposed to binary.

By introducing a threshold t, we can reduce the regression problem of predicting of a
continuous label to a binary classifications problem (or, rather, to a multiplicity of binary
classification problems). Specifically, each yi is replaced by yti = 1 if yi > t and by yti = 0
otherwise. For the new example xh+1 we try to answer the question whether yth+1 = 1 i.e.
yh+1 > t.

3.1.2. Apply Venn-Abers Prediction

The straightforward application of the Venn-Abers framework to this problem would be
resort to a function s(x) learned by an underlying ML algorithm (which would correspond
to the scoring function) and to fit Isotonic Regressions to the sets:

T tC0
=
{(

(x1), y
(t)
1

)
, . . . ,

(
s(xh), y

(t)
h

)
, (s(xh+1), 0)

}
T tC1

=
{(

(x1), y
(t)
1

)
, . . . ,

(
s(xh), y

(t)
h

)
, (s(xh+1), 1)

}
obtaining the two Isotonic Calibrators g0(s) and g1(s), respectively, which define implicitly

the two taxonomies A(t)
0 and A(t)

1 .
The resulting multi-probabilistic estimate is then

(p0(xh+1), p1(xh+1)) = (g0(s(xh+1)), g1(s(xh+1)))

p0 and p1 by construction are estimates of P
[
y
(t)
h+1 = 1

]
and consequently of P [yh+1 > t].
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By varying t, we obtain values of the predictive distribution for y as we set out to do2.

3.1.3. Computational simplifications

The method stated above can be computationally onerous. We now introduce a variant
that retains the desirable properties while requiring simpler calculations.

The first simplification affects how the Isotonic Regression is computed. In the method
above the IR is fitted and evaluated for every test object and every chosen t twice. In
this streamlined version we propose to compute it once only on the training set. So, we
determine the non-decreasing g(s) that minimizes the sum of square residues on TP :

r∑
i=1

(g(s(x−i, TP ))− y−i)2

Note that the function g is defined at the points x−i; on other points it is evaluated using
the 1-nearest-neighbour method, i.e. g(s) = g(si) where si is the nearest proper training
set point to s.

The function g(s) induces a (single) taxonomy A(t), whose categories are the values of
x for which g(s(x)) has the same value.

A(t) := {i = 1, . . . , h+ 1 : g(s(xi)) = g(s(xh+1))}.

For each t the probability estimate is then calculated as:

P̂{yn+1 > t} =
|{i ∈ A(t)(h+ 1) : yti = 1}|

|At|

where A(t)(h + 1) = A(h + 1|(x1, yt1), . . . , (xh, yth), (xh+1, y
t
h+1)) is the class of equivalence

(or category) of the new example, so i ∈ A(h+ 1|U) means the (xi, yi) and (xh+1, yh+1) are
from the same class of equivalence when the taxonomy is applied to the set U .

In this inductive scheme, the taxonomy does not depend on the test object nor on the
hypothetical label assigned to it. This allows us to apply a second simplification: the upper
and lower predictive distribution can be expressed directly as the empirical distribution of
yi for i ∈ At:

P̂{yh+1 ≤ t} =
|{i ∈ A(t) \ {h+ 1} : yi ≤ t}|+ q

|A(t)|
where q ∈ {0, 1} is the hypothetical label assigned to the test object.
This scheme is summarised in Algorithm 1. The output is made in the form of two

(lower and upper) cumulative distribution functions.

2. A predictive distribution is generally expressed as P [y ≤ t], as for a (cumulative) distribution function,
whereas we estimate P [y > t], but the former can be obtained banally from the latter.
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Algorithm 1 Inductive Venn-Abers Predictive Distribution

INPUT: proper training set TP = {(x−1, y−1), . . . , (x−r, y−r)}.
INPUT: calibration set TC = {(x1, y1), . . . , (xh, yh)}.
INPUT: testing example xh+1.
INPUT: underlying predictor P : (x, T )→ s
for i := 1, . . . , r do
s−i := P (xi, T \ {(x−i, y−i)})

end for
find (g−1, . . . , g−r) s.t.

∑r
i=1(g−i − y−i)2 → min wrt. (s−i ≤ s−j)⇒ (g−i ≤ g−j)

for i := 1, . . . , h+ 1 do
si := P (xi, TP )
find s−j which is the closest to si (may be not unique)
gi := g−j (take average if not unique)

end for
let A := {i = 1, . . . , h : gi = gh+1}
let Ŷ := {yi : i ∈ A}
OUTPUT:

P̂0{yh+1 ≤ t} :=
|{ŷ ∈ Ŷ : ŷ ≤ t}|

|A|+ 1

P̂1{yh+1 ≤ t} :=
|{ŷ ∈ Ŷ : ŷ ≤ t}|+ 1

|A|+ 1

3.1.4. Validity and Consistency

Assume than we apply the computation shortcut, recomputing the function g = gTP on the
base of the proper training set TP . The algorithm still may be considered as a valid form
of Inductive Venn Predictor earlier described in Sec. 2.3 with

S(x, TP ) = gTP (s(x, TP )) .

For consistency of the distribution P̂ , we need to ensure that t < t′ yields

P̂{yi > t} ≥ P̂{yi > t′}.

In Appendix B, the consistency is shown for a class of algorithms including this approach.

4. Calibration role of IVAPD

As shown in Zhou et al. (2011), one advantage of the Venn Prediction framework is that it
achieves calibration under less restrictive assumptions than other methods. For instance,
parametric methods are known to be sensitive to the assumption of the distribution that
is supposed to generate the observations. While there are domains in which such assump-
tions are justified as they are known to be consistent with the nature of the process that
generated the data, in other fields such assumptions have weak support or are dangerously
unwarranted.
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In this section, we show the advantages of the distribution-free approach of Venn-Abers
Predictive Distributions compared to Bayesian Linear (Ridge) Regression.

Both methods are assessed in terms of the prediction intervals that can be extracted
from their output. We consider two metrics:

validity: for a confidence value, we compute the rate with which the predicted interval
contains the true value and we compare it with the chosen confidence value.

efficiency: the average size of the confidence intervals. If a method outputs consistently
narrower intervals, it provides more specific, hence useful predictions. Other possible
measures of efficiency will be considered later in Sec. 5.4.

4.1. Datasets

We evaluated the performance of IVAPD on four datasets. Two of them are benchmark
data sets from the well-known UCI Machine Learning Repository, whereas the other two
are synthetic data sets.

The data sets are:

1. Facebook Metrics (Moro et al., 2016) dataset contains information about 500 Facebook
posts. The goal is to predict the number of Total Interactions depending on the user
behavior in a social network.

2. Energy Efficiency (Tsanas and Xifara, 2012) dataset contains energy analysis using
12 different simulted building shapes (totally 768 instances). The predicted value is
Heating Load.

3. Artificial dataset (Gaussian noise) with the following mechanism of generation. First,
generate vector w ∈ R10 as Normally distributed vector, where each coordinate has
zero mean and variance 1. Then, a vector x ∈ R10×2000 is generated from uniform
distribution U[0,1]. Finally, y = w · x + ε, where the noise term ε ∼ N (0, 1) has
Gaussian distribution with mean 0 and variance 1. Also we made the noise term
equal to zero for a random half of the generated data.

4. Artificial dataset (Exponential noise) with the same mechanism of generation, as for
previous dataset, with different distribution for the noise. Instead of Gaussian noise,
we use variates from an exponential distribution with parameter 1, i.e. ε ∼ exp(1).
As for the previous dataset, we also set zero noise for a random half of data.

4.2. Bayesian Linear Regression as underlying method

As an example of underlying prediction method, we use Bayesian Linear (Ridge) Regression,
which is described in (Bishop, 2006). We recap briefly the key points of BLR and we also
show how it can be used to provide a predictive distribution.

Assume the target t is given by linear function f of the features x ∈ Rd plus some noise
term:

t = f(x,w) + ε =
d∑
i=1

wixi + ε,

9
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where w ∈ Rd is the vector of the weights and the noise term ε ∼ N(0, β) is characterized
by a normal distribution with mean 0 and variance β. Therefore we can say the probability
of a value t is given by a normal distribution around the value of the function f(x,w) at
that point:

p(t | x,w, β) = N (t | f(x,w), β−1), (3)

where N (t | µ, σ2) is a normal distribution with mean µ and variance σ2.
In Bayesian LR, it is also assumed that weights are distributed according to a prior that

takes the form of an isotropic, zero-mean Gaussian:

p(w|α) = N (w|0, α−1I)

where α is the precision parameter.
The prediction of t for new values of x is done via the predictive distribution defined by:

p(t|t, α, β) =

∫
p(t|w, β)p(w|t, α, β)dw, (4)

where t is the vector of target values from the training set.
Denoting by X the design matrix, the posterior weight distribution p(w|t, α, β) is given by

p(w|t) = N (mN ,SN ),

where S−1N = αI + βXTX and mN = βSNX
T t.

Note that the Bayesian LR relies on restrictive assumptions on the distribution of the
noise. If the distribution of the noise in the observed data departs significantly from Gaus-
sian, the Bayesian predictive distribution, which by construction follows a Gaussian distri-
bution, will not reflect the actual form of the noise distribution. This is bound to affect the
validity of the predicted confidence intervals.

4.3. Confidence Intervals

In order to compare Bayesian LR with IVAPD on validity and efficiency we used confi-
dence intervals. For each test object both algorithms predict the distribution of the label.
Confidence intervals were constructed for these distributions and then compared using the
validity and efficiency metrics earlier defined in Sec.4.

In case of Bayesian LR confidence intervals are constructed from the distribution they
predict. As soon as we know the class of the predicted distribution — for our case it
is normal, we could consider standard intervals for it. For each test object Bayesian LR
predicts mean and variance of the target value, so the target distribution for each test object
is completely defined. In that case for Gauss distribution confidence intervals will be s.t.
that areas around the median are equal.

For IVAPD, each of the data set was divided into three parts of equal size: proper
training, calibration and testing set. For Bayesian LR, the testing set is the same, while
two first parts together are used as the training set.

In case of IVAPD, the confidence intervals are obtained in the following way. For each
of the two (lower and upper) distributions, we find the shortest interval which has the

10
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probability determined by the confidence level. Then the union of these two intervals is
used as the output.

The results for validity testing are presented in Figure 1. The coverage on y axis means
the percentage of test objects for which the predicted confidence interval covers the real
value.

Figure 1: Coverage for different confidence levels: intervals produced by Bayesian LR di-
rectly vs. intervals produced by IVAPD with Bayesian LR underlying algorithm

The confidence level is the complement to 1 of the significance level and expresses the
(chosen) probability that the confidence interval cover the true value of the label. Typical
values of the confidence values used in practice are close to 1 (e.g. 95%). In Figure 1 a
predictor with ideal validity would correspond to the diagonal. Points below the diagonal
correspond to invalidity, while points above the diagonal are associated with conservative
and potentially inefficient predictions.
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The charts show that the results on real-world data sets are valid (above diagonal) for
both approaches, although Bayesian LR typically shows larger deviation from the diagonal,
indicating that the predictions are conservative and possibly leading to loss in efficiency.

When applied to the two artificial datasets, Bayesian LR exhibits validity only in one
case, namely the one in which the noise is Gaussian (as assumed by the form of Bayesian
LR used here). But if the noise is exponential, the confidence intervals depart from validity.
On the other hand, IVAPD stays valid for both artificial datasets.

Figure 2: Interval width for different confidence levels: intervals produced by Bayesian LR
directly vs. intervals produced by IVAPD with Bayesian LR underlying algorithm

Figure 2 presents efficiency chart in the form of interval width. The comparison has
sense only when both methods show valid results, therefore it is not applicable to Artificial
Dataset (Exponential noise) where Bayesian LR is sometimes far below the diagonal.

Validity of Facebook dataset is mostly correct but at risk at high values of confidence
level (close to 1). The target value in case of Facebook is ”Total Interactions” for each
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user. If for confidence level α we obtain confidence interval of size d interactions, than
with probability at least α the true value of Total Interactions will be inside the interval
[µ− d

2 ;µ+ d
2 ], where µ — predicted mean value of Total Interactions for test object.

The same interpretation of interval width is for Energy Efficiency dataset. For confidence
level α and interval width d the true Heating Load for a given test object will be inside
[µ− d

2 ;µ+ d
2 ] with probability at least α.

Therefore the most essential example for comparison is Energy Efficiency as a real data
example with doubtless validity. In this example Figure 2 shows better efficiency of IVAPD
for high values of confidence level (which are commonly used).

In conclusion, the examples considered here confirm in practice the theoretically-backed
validity of IVAPD for real and artificial data. In particular, the artificial dataset examples
demonstrate practically that, for IVAPD, validity does not require assumptions on the
data, but only that training and test observations be drawn independently from the same
distribution.

5. Application

In this section, we apply IVAPD to an important medical problem: to estimate life ex-
pectancy of a patient following a Percutaneous Coronary Intervention procedure (PCI).
Connecting the possible risk with the predictable survival time after the procedure leads
to the decision whether the procedure can be performed or not. Providing the output is in
the form of predictive distribution allows the doctors to make the choice.

Earlier, in medical applications, reliable methods of machine learning were mostly ap-
plied to classification (or diagnostic) problems. A review of some of them can be found
in Nouretdinov et al. (2014). An example of Venn Machine application to a problem of
early diagnostic can be found in Nouretdinov et al. (2015). An interesting example of re-
gression estimation in medical field has been presented in Nouretdinov and Lebedev (2013).

In this work we consider the expected survival time of a patient after a risky PCI
procedure.

The result of the calculation depends on what approach is used as the underlying
method. For example, if the underlying method is over-fitted, this leads to larger difference
between the upper and the lower estimates of probabilistic distribution, so the result is still
valid and less efficient In this section we discuss and apply the criteria of evaluation, in
order to show how different underlying method can be compared with each other.

5.1. Data description

Percutaneous Coronary Intervention life status dataset was collected in St.George Hospital
of London. It contains 10,108 observations. Each observation represents a person who had
the PCI procedure.

By recommendations of experts, the features listed in Table 1 were selected. The number
(No.) in the first column refers to ID of the feature in the original data file. All the features
are categorical, with exception of the age which is numerical. In our calculations the age is
presented by a binary value: below/over 80.

All the observations have been randomised and only 4,212 were used when the features
with missing values were excluded.
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Table 1: Data features and labels

No. Feature description Range

- Age (below/over 80) 30–97 (0–1)
1.07 Gender 1–2
2.03 Procedure Urgency 1–4
5.06 History of Renal Disease 0–4
2.04 Cardiogenic Shock Pre-Procedure 0–1
2.13 Previous MI 0–1
2.16 Diabetes 0–4
2.02 Indication for Intervention 1–10
5.07 Ventilated PreOp 0–1
5.15 Arterial Access 1–8

The life status (’Survived’ on ‘Not survived’) was available for the patients taking the
procedure, at the following 12 time points after the procedure: (1) 7 days; (2) 30 days;
(3) 90 days; (4) 1 year; then (5-12) each 6 months until 5 years. The survival time for a
patient is defined as the time point at which the patient was alive after the procedure, or 0
if there are no such points. We consider this time as a value predictable by regression. The
observations were continued up to 5 years after the procedure and at that point the patient
belongs to the category ”survived”.

5.2. Experimental settings

The randomised data examples were split into three parts of equal size (that is 1,403):
proper training, calibration and testing sets. Algorithm 1 is applied to each example from
the testing set as the testing example.

To include an underlying method into Algorithm 1 we need to define a function s(x) =
s(x, TP ) where x ∈ Rd is an unlabelled feature vector and TP is a set of labelled feature
vectors (x, y) ∈ Rd ×R.

As the example of underlying method we use k Nearest Neighbours (kNN) with different
values of k. Due to non-linearity of the problem we prefer it here to such methods as Linear
Regression.

The underlying k-NN regression algorithm works as follows. For an example x, it finds
its k nearest neighbours i.e. examples (xi, yi) ∈ TP with the smallest Hamming distance
H(xi, x), and outputs the average of corresponding labels yi of k nearest neighbours as s(x).

5.3. Understanding individual predictions

An example of individual prediction is presented at Fig.3. The plot contains lower and
upper estimates P0 and P1 for the predicted distribution P of the label y. The true value
is 5 years (this patient in known to survive that time). The underlying method for NCM is
k-NN with k = 5.
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Figure 3: Examples of individual predictions: lower (pessimistic) and upper (optimistic)
cumulative distribution functions C0(t) and C1(t) as functions of the survival time t.

One of ways to show a predictive distribution P on the plot is to present its non-
decreasing cumulative distribution function (cdf), i.e. P{y : y < t} as a function of t. We
present distributions P0 and P1 as their cdf C0 and C1 where

Ci(t) = Pi{y : y < t}.

So, the plain line on Fig.3 is the lower (pessimistic) distribution cumulative function,
and the dashed line the upper (optimistic) distribution cumulative function. The cdf reaches
1 at the maximal considered time point (5 years).

So for a time moment t, the prediction means that the probability of the survival time
being below t - in other words, that the patient was not alive at time point t, - lies between
C0(t) and C1(t). Therefore, there two values are considered as optimitic and pessimistic
risk estimates.

Predictive distribution allows to answer the following questions about the risk of the
procedure.

• Question A. What is the probability to survive after the procedure within a given
time t? What is the risk (probability of non-survival)?

Interpretation. What is the probability that the survival time is at least t / smaller
than t?

Answer. The survival probability lies between 1−C0(t) and 1−C1(t). The smallest of
the two can be taken as the pessimistic estimate. The risk (understood as non-survival
probability) is between C0(t) and C1(t).
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Example. The procedure risk estimated for the first patient from Fig. 3 for 2-year
survival time is about 20%, survival probability is estimated as 80%. If we look at
1-year survival time instead, the survival probability is estimated as 85%, the risk as
15%.

• Question B. What survival time after the procedure which can be guaranteed with
probability p?

Interpretation. What is the largest time point t̂ with the property: the survival
time is at least t̂ will be wrong with probability at most 1− p?
Answer. It is min{C−10 (1− p), C−11 (1− p)}.
Example. If we return to the example from Fig. 3, for p = 0.8, the low risk time is
1.5 years; for p = 0.9, it is 3 months.

Both of these answers can be taken directly from the plot.
But the real advantage in using predictive distribution is that we can make a decision to

use the procedure or not. Typically, the way of decision can be formulated as measuring the
probabilistic expectation of a loss function that takes into account different factors (such as
survival at more than one time point). Presentation of the output as predictive distribution
allows to keep freedom of its choice. Once we have the full probability distribution and
defined the loss function we can find an expected value.

5.4. Evaluation criteria

The algorithm produces valid predictions independently on its underlying method. However,
different underlying methods can be evaluated and compared in terms of their relative
efficiency (informativeness).

One of possible evaluation criteria (size of the prediction intervals) was earlier discussed
in Sec. 4.3, but there are some other possibilities, because as we mentioned above, the
output of Algorithm 1 can be interpreted in different ways according the preferred way of
risk assessment. Table 2 shows several types of evaluation criteria.

First of all, it is possible to reduce the output to a question of classification: whether
the example’s labels lie within a given region U (such as a concrete ray or interval). The
answer given by IVAPD is that this probability is either P0(U) or P1(U). A common way
of measuring the performance of probabilistic predictions is using a loss function (such as
logarithmic loss or Brier score) measuring the difference between the true label (yes or no)
and the predicted probability. In order to compress two probabilistic predictions of a binary
value to one, it is possible for example to use the formula that is given in Vovk and Petej
(2014) and justified for logarithmic loss function:

P (U) =
P1(U)

1− P0(U) + P1(U)
.

Another criterion related to Venn Machine is the difference between P0(U) and P1(U)
meaning precision of the probabilistic estimate. Typically, the loss and the precision com-
plement each other. As a sort of intuitive approximation, it can be said, that the loss is
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Table 2: Evaluation criteria for predictive distributions

No. Inter- Criterion Evaluated Parameters
pretation goal

1 Prob. Log-loss Fitting region U
2 Prob. Precision Overfitting region U
3 Interval Width Inf-ness significance level ε
4 Regression Square loss Accuracy

the penalty for under-fitting of the underlying method, while high difference between upper
and lower estimates reflects over-fitting, too complex underlying method.

An alternative direction is interpretation in the form of reliable regression, similar to
one earlier used in Sec. 4.3. The question has a form: what interval covers the label with
probability at least (1− ε)? Any interval U satisfying the property

min{P0(U), P1(U)} ≥ (1− ε)

is suitable. It is possible to select one of them which is optimal in some sense, for example
having the smallest length. Its length may be the way of assessment: the smaller the interval
is, the more informative is the prediction.

In addition, we mention the possibility to interpret the predictive distribution in terms
of simple regression. This can be done by taking the average (expectation) of a random
value distributed according to the mixture of lower and upper distributions. This criterion
can be also used to compare the output of IVAPD with the straightforward output of the
underlying method in terms of the accuracy.

5.5. Evaluation results

Here we compare the results of prediction with k-NN underlying method according eval-
uation criteria from Sec.5.4. For each of the criteria, the median over the testing set is
taken.

The results are presented in Table 3. Three values of k = 5, 25, 100 are compared to
each other.

Most of the criteria shows better quality of k = 100, although for some of the tasks
k = 5 also works relatively well.

In addition, we show in Table 4 that the accuracy of the predictive distribution (reduced
to its average for comparison) is not worse than one of the underlying method. The accuracy
is measured as average square residuals. The shown effect is similar to one shown in Zhou
et al. (2011) as a positive effect of calibration made by Venn-Abers framework. Observed
in another dimension, this table also confirms the advantage of k = 100 parameter value.

6. Conclusion

In this paper, we presented a framework for reliable regression that gives output in its most
complete form: lower and upper estimates for the whole predictive distribution. It allows
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Table 3: Evaluation of the results

k U Log-loss Prec. ε Width

5 {y : y > 15} 0.0296 0.0177 0.1 1026
{y : y > 365} 0.0645 0.0177 0.2 423

25 {y : y > 15} 0.0458 0.0260 0.1 983
{y : y > 365} 0.1001 0.0260 0.2 482

100 {y : y > 15} 0.0236 0.0177 0.1 1074
{y : y > 365} 0.0708 0.0177 0.2 389

Table 4: Evaluation in terms of regression: average square residuals (in days) compared for
the underlying method and IVAPD.

k Underlying IVAPD

5 579 565
25 554 547
100 570 544

interpretations both in terms of survival probability for a given threshold, and in terms of
predictive regions, that cover true value with given probability. The framework allows to
include any kind of standard regression method as its underlying algorithm. The choice of
underlying algorithm may be evaluated by difference between lower and upper distributions,
and by other criteria.
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Appendix A. Transductive VAPD

Consider the training data with real-valued labels

(x1, y1), . . . , (xn, yn)

and a testing example xn+1 with the label yn+1 for prediction.
For a given threshold t we are able to reduce the prediction problem to the binary one.

We assume that there is a binary Venn taxonomy defined as an equivalence relation on the
set of objects with binary labels. Each yi is replaced by yti = 1 if y1 > t and by yti = 0
otherwise. For the new example x we try to answer the question whether ytn = 1 i.e. yn > t.

In Venn algorithm both labels 0 and 1 are assigned to test object x for calculations,
two versions ytn+1 ∈ {0, 1} are checked. Assume that this choice is already made that is the
same for any t.

Then for each t we will get probability estimate:

P̂{yn+1 > t} =
|{i ∈ At : yti = 1}|

|At|

where At = A(n+1|(x1, yt1), . . . , (xn, ytn), (xn+1, y
t
n+1)) is the class of equivalence of the new

example, so i ∈ A(n + 1|U) means the (xi, yi) and (xn+1, yn+1) are from the same class of
equivalence when the taxonomy is applied to the set U .

For consistency of the distribution P̂ , we need to ensure that t < t′ yields

P̂{yi > t} ≥ P̂{yi > t′}.

Below we will show how this condition may be broken.

Inconsistency example

We have to study how P̂{yi > t} behaves in dependence on t. Assume for convenience
that all the real-valued labels of the training set are different, and the training example is
ordered by label:

−∞ < y1 < y2 < y3 < · · · < yn < +∞

Whenever t is between yk and yk+1, examples the classification labels yti = 0 for i = 1, . . . , k
and yti = 1 for i = k+1, . . . , n. Denote the new example as z = (xn+1, yn+1). At is the class
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Table 5: Inconsistency example for 1NN VACP

t 2 1

i xi yi y2i si g A2 y1i si g A1

3 11 2.5 1 0 0.25 + 1 1 1
2 22 1.5 0 1 0.25 + 1 1 1
1 44 0.2 0 0 0.25 + 0 0 0 +
4 55 0.3 0 0 0.25 + 0 0 0 +

P̂t 0.25 0

of equivalence of the new example according to the classification taxonomy. Obviously, At
is the same for any t from yk < t < yk+1.

Table 5 presents an example showing that this version of Venn-Abers method may be
inconsistent. It shows an example when changing the threshold from t = 2 to t = 1 (with
increasing the binary label of example 7) makes decrease of the estimate P̂t = P̂{y > t} for
the predicted example 4.

For each of two values of t we start with reducing the label to its binary version (yti). The
considered version of probabilistic estimate is fixed as y2n+1 = y1n+1 = 0. Then the 1-nearest-
neighbours prediction is made for each examples, si means the label of the example closest
to xi. g(si) is the isotonic calibrator calculated from si and yti . At is the corresponding
class of equivalence: plus sign is assigned to all the examples having the same g(si) as the
new example i = 14. P̂t is the proportion of positive labels (yti = 1) within this class.

One can make the following explanation of inconsistency: changing the label of example 2
from negative (0) to positive (1) influence (increasing the prediction scores) some part of the
new example’s class of equivalence, that do not cover the new example itself. Therefore the
new example’s class of equivalence losses its ‘progressive’ part and becomes less ‘positive’
in average. This is actually a natural consistence of the uncalibrated process of adding
examples one-by-one.

Appendix B. Sufficient conditions for consistency

Here we a proof of consistency for a more general class of Venn machines. The case of
Inductive Venn Prediction can be interpreted in terms of this statement in the way discussed
in Sec. 2.3. In this Appendix we omit the proper training set TP as the argument of the
taxonomy function, assuming it to be fixed.

Statement 1. If the taxonomy function has the form A0(zj), then Venn predictor is
consistent i.e. t < t′ yields

P̂{yi > t} ≥ P̂{yi > t′}

for each of the versions y ∈ {0, 1}.
Proof: Remind that

P̂{y > t} =
|{i ∈ At : yti = 1}|

|At|
where At is the class of equivalence of the new example. It is enough to check the statement
for yi−1 < t < yi < t′ < yi+1. The possible cases are:
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1. neither (xi, 0) nor (xi, 1) is equivalent to z: P̂{yi > t} = P̂{yi > t′} because xi
affects neither P̂{y > t} nor P̂{y > t′};

2. both (xi, 0) and (xi, 1) are equivalent to z: P̂{yi > t} > P̂{yi > t′} because the
taxonomy is the same, a negative example within the taxon just becomes positive
when the threshold t′ is changed to t, so the percentage of positive examples within
this taxon increases;

3. (xi, 1) is equivalent to z, (xi, 0) is not: moving the threshold from t′ to t makes the
class of equivalence of the new example larger by adding one positive example (xi, 1)
therefore P̂{yi > t} > P̂{yi > t′};

4. (xi, 0) is equivalent to z, (xi, 1) is not: moving the threshold from t′ to t makes the
class of equivalence of the new example smaller by removing one negative example
(xi, 1) therefore P̂{yi > t} > P̂{yi > t′}.
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