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Abstract

This paper is a quantitative study of a reserve contract for real-time balancing of a power
system. Under this contract, the owner of a storage device, such as a battery, helps smooth
fluctuations in electricity demand and supply by using the device to increase electricity con-
sumption. The battery owner must be able to provide immediate physical cover, and should
therefore have sufficient storage available in the battery before entering the contract. Accord-
ingly, the following problem can be formulated for the battery owner: determine the optimal
time to enter the contract and, if necessary, the optimal time to discharge electricity before
entering the contract. This problem is formulated as one of optimal stopping, and is solved
explicitly in terms of the model parameters and instantaneous values of the power system
imbalance. The optimal operational strategies thus obtained ensure that the battery owner
has positive expected economic profit from the contract. Furthermore, they provide explicit
conditions under which the optimal discharge time is consistent with the overall objective
of power system balancing. This paper also carries out a preliminary investigation of the
“lifetime value” aggregated from an infinite sequence of these balancing reserve contracts.
This lifetime value, which can be viewed as a single project valuation of the battery, is shown
to be positive and bounded. Therefore, in the long run such reserve contracts can be benefi-
cial to commercial operators of electricity storage, while reducing some of the financial and
operational risks in power system balancing.
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1 Introduction

1.1 Problem motivation

Electricity supply and demand on a power system must be balanced continuously in real time to
ensure its stability. The system operator, an independent entity that manages the transmission
system [1, p. 3], may balance the power system by:

• incremental actions, such as requesting additional generation or a reduction in demand,
when there is a shortfall in supply;
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• decremental actions, such as requesting generation to be curtailed or demand increased,
when there is an overproduction of energy;

Decremental balancing actions are increasingly relevant for power systems with high levels of
intermittent generation from renewable energy sources [2], and electricity storage is widely seen
as an important technology for ensuring power system stability in this case [3, 4, 5, 2, 6].
Consequently, this paper analyses a contract in which the owner of a storage device, such as
a battery, helps smooth fluctuations in electricity demand and supply by using the device to
increase electricity consumption. By analysing the battery owner’s decision to enter the contract,
this paper investigates whether the battery owner and system operator can benefit from such
an arrangement. The analysis uses a model of a market for procuring balancing services that is
conceptually similar to those found in European countries such as the United Kingdom, Germany
and Denmark. A general discussion of such a market, based on the textbook [1], is presented
below.

1.2 Procurement of power system balancing services

Balancing services can be procured by the system operator on either a short-term or long-term
basis. Those that are acquired shortly before delivery in real time are sourced from a real-time
(alternatively, “spot” or “reserve”) market that is managed by the system operator. In Great
Britain, for example, the short-term market is known as the Balancing Mechanism [7], and in
it the system operator trades with eligible participants between gate closure, which is one hour
ahead of a specific reference time, and delivery (real time) [7]. The short-term approach presents
the system operator with considerable risks concerning the amount and cost of balancing services.
In order to mitigate such risks, the system operator can negotiate long-term bilateral contracts
with third-party balancing service providers in advance [1, p. 60].

In long-term contracts for balancing services, the service provider is first paid a fixed price,
referred to as the contract premium, to keep available some capacity for altering its generation or
demand as required. In accordance with the terminology used previously, this paper associates
incremental balancing reserve with services that increase generation or reduce demand, and
decremental balancing reserve with services that decrease generation or increase demand. After
receiving the contract premium, a provider of incremental reserve is typically paid to increase
its generation or decrease its demand for electricity [1, p. 60]. On the other hand, a provider of
decremental reserve typically pays to withhold its generation or increase its demand for electricity
[1, p. 60]. The qualifier “typically” is ascribed here to acknowledge the emergence of negative
real-time prices in some markets.

Balancing services are generally categorised according to component of the system imbalance
they are meant to address [1, pp. 107–111]. This paper is concerned with regulation services
which, according to [1, p. 108], are meant to address “rapid fluctuations in load and small
unintended changes in generation.” Such services help keep the system frequency within a
sufficiently small range around its nominal value, for example, and are typically provided by
technologies that can rapidly adjust their demand or generation as required [1, p. 108].

Since electricity storage technologies such as batteries, flywheels, superconducting magnetic
energy stores, and supercapacitors can provide fast access to power, they have the potential to
perform the regulation services that are provided by conventional technologies such as generating
units [3, 4, 5]. Accordingly, the recent papers [8, 9] studied an incremental balancing reserve
contract between a battery owner and the system operator in which the battery owner provides a
regulation service by discharging electricity from the battery. These papers studied the battery
owner’s decision to enter the contract, and the decision to buy electricity beforehand if necessary.
The “lifetime” value aggregated from an infinite sequence of these contracts, which can be viewed
as a single project valuation model for an electricity store [10, p. 693], was also studied.
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1.3 Aim and scope of the present work

This paper studies a decremental reserve contract between a battery owner and the system
operator in which the former uses the battery to provide a regulation service. In this contract,
the battery owner first receives a premium to keep some storage available and, when called upon,
pays a fixed price to consume one unit of electricity using the battery.

The battery owner must be able to provide immediate physical cover, and is therefore unable
to enter the contract when the battery is full. In order to ensure that the battery owner can enter
the contract at a future time, we assume that there is a real-time market in which the stored
electricity can be sold (see Figure 1 below). Furthermore, we assume that the price per unit
of electricity in this market is determined by the instantaneous value of the system imbalance.
We study the battery owner’s decision to enter a single contract, as well as the lifetime value
aggregated from an infinite sequence of these contracts (that is, infinite repetitions of the cycle
in Figure 1 below). More precisely, in this paper:

1. When the battery owner is able to provide immediate physical cover, we study its decision
to enter the contract via optimal stopping theory. The study of this decision when the
battery is full also requires an analysis of the decision to sell electricity prior to entering
the contract. As such it is related to a more general optimal stopping problem with two
stopping times.

2. We assume a Brownian motion model for the transmission system imbalance, a piecewise
linear relationship between the system imbalance and the market price (see (2.1) below),
and, like [8], that the system operator uses the contract when the imbalance crosses a
fixed threshold value (see equation (2.2) below). A condition (2.7) is also introduced
below to disincentivize the battery owner from selling electricity and immediately entering
the contract when the system operator intends to use it. Under these assumptions and
for specific values of the model parameters, in Theorems 3.1 and 3.2 we provide explicit
solutions to these optimal stopping problems.

3. Finally, we prove in Theorem 4.1 that the lifetime value is bounded.

The rest of the paper is organised as follows. Section 2 presents the model and the optimisation
problems corresponding to a single contract. Explicit expressions for the contract’s value and
the battery owner’s optimal decisions are derived in Section 3. The lifetime value is studied
in Section 4, and afterwards is the conclusion. Proofs of the main results can be found in the
electronic supplementary material.

2 A model for the balancing reserve contract

This section describes the model for the contract and the battery owner’s optimisation problems,
based on the one in [8]. The random instantaneous value of the demand-supply imbalance on
the power system over time is represented by a standard Brownian motion X = (X(t))t≥0. A
positive (resp. negative) value of X(t) indicates a surplus (resp. shortfall) in the electricity
supply at time t ≥ 0.

Let x ∈ R denote the current value of the system imbalance. We suppose there is a deter-
ministic function x 7→ f(x) that quantifies the relationship between the market price per unit
of electricity and the system imbalance. A reasonable assumption is that x 7→ f(x) decreases
in x, so that market prices decrease (resp. increase) as the over-supply (resp. under-supply)
of power worsens. A simple model for the market price is provided by the following piecewise
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linear function:

f(x) =


M, x ≤ M−c

b

c+ bx, M−c
b < x ≤ −cb

0, −c
b < x

(2.1)

where M, c, b are constants satisfying 0 < c < M and b < 0. The resulting market prices are
non-negative and capped at the level M , which helps compensate for the lack of mean reversion
in the imbalance process (Xt)t≥0. The condition c < M ensures that the upper price cap M is
associated with a shortfall in generation.

I • • •

II • •

III • •

Regime/T ime 0 τI τII τIII

Sell one unit of electricity
at price f(XτI

)

Enter into the contract
and receive p

Pay K and get
one unit of electricity

wait

wait

wait

Figure 1: A diagram showing the timeline of the contract in terms of three regimes (I, II, III).
The transition from regime I to II, regime II to III, and regime III to I occur at the times τI ,
τII and τIII respectively.

Figure 1 above illustrates three different regimes of operation for the battery owner in relation
to the contract. These regimes are described as follows:

1. In regime I, the battery is full and the battery owner has not yet entered into the contract
with the system operator. In this regime, the battery owner can sell one unit of electricity
on the market at some future time denoted by τI . After selling the electricity and being
paid the market price f(XτI ), the battery is no longer full and there is an immediate
transition to a new regime II.

2. In regime II, the battery owner can provide immediate physical cover and has not yet
entered into the contract with the system operator. The battery owner can enter this
contract at some future time τII and receive a premium p > 0. Afterwards, there is an
immediate transition to a new regime III.

3. In regime III, the battery owner has entered into the contract with the system operator.
It waits until the time τIII that the system operator uses the contract, and then pays K
for a unit of electricity that it stores. After this there is an immediate transition to regime
I.

Throughout this paper we will use subscripts to help identify cash flows and optimisation prob-
lems associated with specific regimes.
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Remark 2.1. Without loss of generality, we assume henceforth that the battery’s capacity is one
unit of electricity. Therefore, the battery is empty when its owner is in regime II.

2.1 The battery owner’s valuation problem

We use optimal stopping theory [11, 12] to value the battery owner’s decision to enter the
contract in accordance with real options analysis [13]. In particular, the valuation is treated as
an optimisation problem for the battery owner under the probability measure Px under which X
has initial value x, X(0) = x. Let Ex denote expectations with respect to Px, and T represent
the set of stopping times.

We assume that the system operator uses the contract immediately after the imbalance
exceeds a fixed threshold x∗ > 0,

τIII = inf{t ≥ 0 : X(t) ≥ x∗}. (2.2)

Let r > 0 represent a constant discount rate and set a =
√

2r. Suppose the battery owner is
currently in regime III and the system operator has not yet used the contract. The expected
discounted cash flow for the battery owner is:

hIII(x) = Ex{−e−rτIII (K)} =

{
−K, x > x∗

−Kea(x−x∗), x ≤ x∗
(2.3)

In equation (2.3), we used the following formula for the first time the Brownian motion is at a
point y ∈ R, D{y} = inf{t ≥ 0: X(t) = y}, (see [14], for example):

Ex{e−rD{y}} = e−a|y−x|, a =
√

2r.

Suppose now that the battery owner is in regime II and wants to optimise the time it enters the
contract. Taking into account the cash flow from the contract premium p, we can formulate the
optimisation problem in regime II as one of optimal stopping:

VII(x) = sup
τII∈T

Ex{e−rτII (p+ hIII(X(τII)))}, x ∈ R. (2.4)

In equation (2.4), the value function in regime II, x 7→ VII(x), quantifies the optimal value of the
expected discounted cash flow to the battery owner in regime II arising from its decision to enter
(or not enter) the contract. According to Chapter 1 of [12], an optimal stopping time τ̂II ∈ T
attains the supremum in (2.4) for all initial values x of the instantaneous system imbalance.
Theorem 3.1 below verifies that the stopping time τ̂II = inf{t ≥ 0: X(t) ∈ SII} is optimal,
where SII is the stopping set corresponding to (2.4),

SII = {x ∈ R : VII(x) = p+ hIII(x)}.

The set SII identifies all values of the system imbalance at which it is optimal to immediately
enter the contract.

Suppose now that the battery owner is in regime I and wishes to optimise the time it
sells electricity on the market and the time it subsequently enters the contract. We model its
strategy in this regime by a pair of times (τI , τII) where τI , τII ∈ T satisfy τI ≤ τII . The time
τI determines when it sells the stored electricity in order to transition from regime I to II. The
time τII determines when it enters the contract once in regime II. If we define the set T2 of such
strategies as,

T2 := {(τI , τII) ∈ T × T : τI ≤ τII},
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then the optimisation problem in regime I is given by,

VI(x) = sup
(τI ,τII)∈T2

Ex{e−rτI (f(X(τI))) + e−rτII (p+ hIII(X(τII)))}. (2.5)

This problem is an optimal starting and stopping problem, according to [15], and in this case an
optimal strategy (τ̂I , τ̂II) ∈ T2 is one that attains the supremum in equation (2.5) for all x.

2.1.1 A dynamic programming method for obtaining solutions in regime I

Following the methodology in [15], the solution to the optimisation problem (2.5) in regime I
can be obtained recursively using the solution to the optimisation problem (2.4) in regime II as
follows:

VI(x) = sup
τI∈T

Ex{e−rτI (f(X(τI)) + VII(X(τI)))}. (2.6)

This allows us to determine an optimal strategy (τ̂I , τ̂II) for regime I by studying separately
the timing decisions for selling electricity in regime I and entering the contract in regime II.
Theorem 3.2 below verifies that the stopping time τ̂I = inf{t ≥ 0: X(t) ∈ SI} is optimal in
(2.6), where SI is defined by,

SI = {x ∈ R : VI(x) = f(x) + VII(x)}.

The set SI identifies all values of the system imbalance at which it is optimal to immediately
sell the stored electricity in order to enter the contract at a subsequent time.

2.1.2 A condition on the market price at the contract’s time of use

In this model, it is possible in regime I for the battery owner to sell electricity and then immedi-
ately enter the contract. Furthermore, it is possible in regime II for the battery owner to enter
the contract immediately before the system operator uses it at τIII . In short, it is possible to
have τI = τII = τIII in Figure 1. Since this action provide no physical benefit to the system
operator, the battery owner should not be incentivized to undertake it. If the prevailing market
price at τIII is strictly less than the net expenditure K − p of the battery owner, then there is
no financial incentive for the aforementioned behaviour. By definition of τIII in (2.2) and as the
market price function x 7→ f(x) is decreasing, this sustainability condition is given by,

f(x∗) < K − p. (2.7)

Note that condition (2.7) also implies p < K since f(x∗) ≥ 0.

3 Explicit solutions for the timing decisions and optimal values

In this section we provide explicit solutions for the value functions and optimal strategies when
the battery owner is in either regime I or regime II for different model parameters. This is ac-
complished by first solving (2.4) explicitly, then using that explicit representation to characterise
the solution to (2.6) (and therefore (2.5)).

3.1 Explicit solutions in regime II

Theorem 3.1. In regime II, the value function VII (cf. (2.4)) is given explicitly by

VII(x) =

{
p−Kea(x−x∗), −∞ < x ≤ ln( p

2K
)

a + x∗

ea(x∗−x) p2

4K ,
ln( p

2K
)

a + x∗ < x.
(3.1)
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Moreover, the set SII of values for the instantaneous imbalance at which it is optimal to imme-
diately enter the contract is defined by:

SII = (−∞, ln( p
2K

)

a + x∗] (3.2)

According to Theorem 3.1, in regime II there is a point XII defined by,

XII =
ln( p

2K
)

a + x∗, (3.3)

below which it is optimal to immediately enter the contract. Since 0 < p < K by (2.7) above,

we have
ln( p

2K
)

a < 0 and therefore XII < x∗. Theorem 3.1 therefore confirms that it is not
optimal for the battery owner to offer the contract when the system operator is expected to use
it immediately. Figure 2 below illustrates this by plotting the payoff p+hIII and value function
VII for regime II. The set SII = (−∞, XII ] is highlighted in bold on the curve.

−300 −200 −100 0 100 200 300

0
10

20
30

40
50

60

Imbalance value

VII

p + hIII

Figure 2: Solution in regime II with parameters r = 3.2 · 10−5,M = 80, b = −0.5, p = 55,K =
65, c = 50 and x∗ = 95. The optimal threshold point in regime II is XII ≈ −13 and the set of
values x ≤ XII at which the battery owner should immediately enter the contract is highlighted
in bold on the curve. The dotted vertical line denotes the point x∗.

3.2 Explicit solutions in regime I

Let Xmin and Xmax denote the points at which the market price attains its minimum value
f(Xmin) and maximum value f(Xmax) respectively,

Xmin =
−c
b
, Xmax =

M − c
b

. (3.4)

Recall that Xmax < Xmin since x 7→ f(x) is decreasing (cf. (2.1)). Based on Theorem 3.1 above
and these price caps, it is instructive to distinguish three main cases:

Case 1. Xmin < XII

Case 2. Xmax ≤ XII ≤ Xmin
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Case 3. XII < Xmax

All three cases can be analysed using similar techniques. However, we solely present results for
Case 2, since in the other cases the point XII lies outside the domain of values [Xmax, Xmin]
where the market price changes (cf. (2.1)). We identify three subcases of Case 2 for grouping
solutions, and these subcases are determined by the values of three points: XII and Xmax, which
are defined in (3.3) and (3.4) respectively, and XΓ which is the unique solution in (−∞,− c+p

b ]
to Γ(x) = 0 with,

Γ(x) =
1

2
e−ax

(
c+ p+

b

a
+ bx

)
−Ke−ax∗ .

For further details see the supplementary material.

Theorem 3.2. Let SI denote the set of values for the instantaneous imbalance at which it
is optimal to immediately sell the stored electricity. The value function in regime I, VI , and
corresponding set SI are given explicitly in Case 2 by:

• Case 2.1 : If Xmax < XΓ < XII , then

VI(x) =


M + p−Kea(x−x∗), −∞ < x ≤ Xmax

c+ bx+ p−Kea(x−x∗), Xmax < x ≤ XΓ

e−a(x−XΓ)(c+ bXΓ + p−Kea(XΓ−x∗)), XΓ < x

(3.5)

and SI = (−∞, XΓ].

• Case 2.2 : If XΓ ≤ Xmax, then

VI(x) =

{
M + p−Kea(x−x∗), −∞ < x ≤ Xmax

ea(Xmax−x)(M + p−Kea(Xmax−x∗)), Xmax < x
(3.6)

and SI = (−∞, Xmax].

• Case 2.3 : If XII ≤ XΓ, then

VI(x) =


M + p−Kea(x−x∗), −∞ < x < Xmax

c+ bx+ p−Kea(x−x∗), Xmax ≤ x ≤ XII

c+ bx+ ea(x∗−x) p2

4K , XII < x ≤ Xmin − 1
a

− b
ae
a(Xmin−x)−1 + ea(x∗−x) p2

4K , Xmin − 1
a < x

(3.7)

and SI = (−∞, Xmin − 1
a ].

Theorem 3.2 shows that in Case 2 there is a point XI below which it is optimal to immedi-
ately sell electricity in order to enter the contract at a subsequent time. Figures 3–5 illustrate
the solutions for Case 2 in each of the subcases identified in Theorem 3.2. Each figure shows
the payoff function f + VII to optimise in regime I (cf. (2.6)) and the value function VI from
Theorem 3.2. The set SI = (−∞, XI ] from Theorem 3.2 is highlighted in bold on the plot of
VI . The set SII = (−∞, XII ] from Theorem 3.1 is highlighted in bold on the horizontal axis.
A dotted vertical line is used to denote the point x∗. The model parameters used to generate
these figures were chosen to satisfy the sustainability condition (2.7), whilst keeping b, K, c and
M fixed for the different cases.

Theorem 3.2 and the illustrations show that there are instances in which it is only optimal
to sell electricity at its maximum price (Case 2.2), and others in which the battery owner can
act optimally by selling electricity below its maximum price (Cases 2.1 and 2.3). It is important
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f + VII

Figure 3: Solution in regime I for Case 2.1 with parameters r = 3.2 ·10−5,M = 80, b = −0.5, p =
55,K = 65, c = 50, x∗ = 95, Xmax = −60 and Xmin = 100. The set of values x ≤ XI

(resp. x ≤ XII) at which the battery owner should immediately sell the stored electricity (resp.
enter the contract) is highlighted in bold on the curve (resp. the x-axis), with XI ≈ −17 and
XII ≈ −13. The dotted vertical line denotes the point x∗.
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f + VII

Figure 4: Solution in regime I for Case 2.2 with parameters r = 1.682 · 10−5,M = 80, b =
−0.5, p = 55,K = 65, c = 50, x∗ = 95, Xmax = −60 and Xmin = 100. The set of values x ≤ XI

(resp. x ≤ XII) at which the battery owner should immediately sell the stored electricity (resp.
enter the contract) is highlighted in bold on the curve (resp. the x-axis), with XI ≈ −60 and
XII ≈ −53. The dotted vertical line denotes the point x∗.
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Figure 5: Solution in regime I for Case 2.3 with parameters r = 3.2 ·10−5,M = 80, b = −0.5, p =
40,K = 65, c = 50, x∗ = 95, Xmax = −60 and Xmin = 100. The set of values x ≤ XI

(resp. x ≤ XII) at which the battery owner should immediately sell the stored electricity (resp.
enter the contract) is highlighted in bold on the curve (resp. the x-axis), with XI ≈ −25 and
XII ≈ −52. The dotted vertical line denotes the point x∗.

to ensure that this decision rule is consistent with the overall objective of balancing the power
system. In Cases 2.1 and 2.2 of Theorem 3.2, the point XI is sufficiently low to ensure that this
is the case. However, in Case 2.3 it is possible that for some values of the model parameters
x∗, p,K, r, c and b that the point XI = Xmin− 1

a satisfies XI > x∗, and exacerbates power system
imbalance.

We have just highlighted the possibility that the battery owner’s “optimal” strategy for
selling electricity in Case 2.3 can further unbalance the power system. First, we point out that
this possibility is ruled out if the threshold XI satisfies XI ≤ 0. Figure 5 above illustrates a
solution that satisfies this property. The condition XI ≤ 0 in Case 2.3 is given more precisely
by Xmin − 1

a ≤ 0, which is equivalent to requiring the parameters r, c and b to satisfy,

−c
b
≤ 1√

2r
. (3.8)

As an alternative to (3.8), it is possible to find conditions for the parameters x∗, p and K that
ensure Case 2.3 does not occur. The supplementary material shows that the condition XII ≤ XΓ

for Case 2.3 is equivalent to XII ≤ Xmin − 1
a . This shows we have XI ≥ XII in Case 2.3 on the

one hand, and XI < XII in Cases 2.1 and 2.2 on the other hand. Case 2.3 therefore corresponds
precisely to the situation in Case 2 in which, with the exception of the boundary case XI = XII ,
the battery owner should sometimes wait between selling electricity and entering the contract.
In terms of the parameters r, c and b, Case 2.3 occurs precisely when the parameters x∗, p and
K satisfy,

x∗ ≤ −c
b
− 1 + ln( p

2K )√
2r

. (3.9)
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4 Analysis of the lifetime value of offering balancing services

In this section we analyse the lifetime value aggregated from infinite repetitions of the cycle
illustrated in Figure 1. For this analysis we introduce the following sequence of intermediary
problems based on Section 2 above: for n ≥ 1 let V n

I and V n
II be the value functions associated

with n iterations of the cycle illustrated in Figure 1, starting from regimes I and II respectively.
Setting V 0

I ≡ 0, the sequence of functions {V n
I }n≥1, can be defined inductively as follows:

V n
I (x) = sup

(τI ,τII)∈T2
Ex
{
e−rτIf(X(τI)) + e−rτII (p+ hnIII(X(τII)))

}
(4.1)

where hnIII is defined by,

hnIII(x) := Ex{e−rτIII (V n−1
I (X(τIII))−K)}

=

{
V n−1
I (x)−K, x > x∗

(V n−1
I (x∗)−K)ea(x−x∗), x ≤ x∗

(4.2)

Similarly, for n ≥ 1 we define V n
II in the following manner:

V n
II(x) = sup

τII∈T
Ex{e−rτII (p+ hnIII(X(τII)))}. (4.3)

Note that V 1
II = VII and V 1

I = VI , which is in accordance with the definitions given in Section 2
above.

Definition 1. If the limit V ∗I (x) := lim
n→∞

V n
I (x) exists for each x ∈ R, then we refer to V ∗I (x)

as the lifetime value at x starting in regime I. If the limit V ∗II(x) := lim
n→∞

V n
II(x) exists for each

x ∈ R, then we refer to V ∗II(x) as the lifetime value at x starting in regime II.

Theorem 4.1. Let V n
I , V n

II and hnIII be defined by (4.1)–(4.3).

1. For n ≥ 1, the functions V n
I , V n

II and hnIII are continuous and bounded. Furthermore, the
sequences {V n

I }n≥1, {V n
II}n≥1 and {hnIII}n≥1 are increasing.

2. For n ≥ 1, the function V n
I satisfies,

V n
I (x) = sup

τI∈T
Ex{e−rτI (f(X(τI)) + V n

II(X(τI)))}.

3. The limits V ∗I = lim
n→∞

V n
I and V ∗II = lim

n→∞
V n
II exist and are bounded, continuous functions

that satisfy,

V ∗II(x) = sup
τII∈T

Ex{e−rτII (p+ h∗III(X(τII)))} (4.4)

V ∗I (x) = sup
τI∈T

Ex{e−rτI (f(X(τI)) + V ∗II(X(τI)))} (4.5)

where h∗III = lim
n→∞

hnIII is given by,

h∗III(x) =

{
V ∗I (x)−K, x > x∗

(V ∗I (x∗)−K)ea(x−x∗), x ≤ x∗
(4.6)

4. The function V ∗I also satisfies,

V ∗I (x) = sup
(τI ,τII)∈T2

Ex{e−rτI (f(X(τI))) + e−rτII (p+ h∗III(X(τII)))}. (4.7)
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Theorem 4.1, which is proved in the supplementary material, confirms more than the ex-
istence of the lifetime value functions V ∗I and V ∗II . First, by inspecting the solutions given
in Theorems 3.1 and 3.2 above, we know that V 1

I > 0 and V 1
II > 0, which shows that the

battery owner can get strictly positive expected economic profit from one contract. Since the
sequences {V n

I }n≥1 and {V n
II}n≥1 are increasing, Theorem 4.1 shows that strictly positive ex-

pected economic profit can be accrued from these contracts in the long run, which is important
for commercial operators of electricity storage.

5 Discussion and conclusion

In this paper we have used a real options approach to analyse a balancing reserve contract
between a battery owner and a transmission system operator. Under this contract, the battery
owner helps smooth fluctuations in electricity demand and supply, and therefore provides a
regulation service [1, p. 108], by charging the battery. The reserve is also decremental in the
sense that the action is comparable to a reduction in generation. Under the contract’s terms,
the battery owner must be able to provide immediate physical cover, which means it can only
enter the contract if it has sufficient storage available. If this is the case, it only needs to time
its decision to enter the contract, and we say that the battery owner is in regime II. Otherwise,
it must decide when to sell the stored electricity, and then when to subsequently enter the
contract. In this case, we say that the battery owner is in regime I. Our work is an extension of
a recent study [8], which analysed the corresponding problem for a battery owner that provides
an incremental regulation service to the transmission system operator. Our study and its findings
are summarised as follows:

1. In general, the system operator faces operational and financial risks when it turns to the
short-term market to procure balancing services [1, p. 60]. For the contract studied in
this paper, the system operator mitigates some of its operational risk by reserving battery
capacity for balancing services in advance. Some of the system operator’s price risk is
mitigated by the fixed premium p it pays to reserve battery capacity, and the fixed price
K it receives per unit of electricity consumed and stored in the battery, according to the
contract.

2. Our probabilistic framework uses a Brownian motion to represent the instantaneous values
of the system imbalance over time. Positive values indicate a generation surplus, whereas
negative values indicate a shortfall in generation. We assume that the system operator
calls on the battery owner to provide its regulation service as soon the system imbalance
exceeds a threshold x∗ > 0.

3. The net discounted value in regime II, which is the sum of the battery owner’s expected
discounted cash flows upon entering the contract, is given by,

p−Ke
√

2rmin(x−x∗,0) (5.1)

where r > 0 is the discount rate, and x is the present value of the system imbalance.
If the battery owner enters the contract when x is sufficiently small, the net discounted
value in regime II is positive. This is confirmed by Theorem 3.1, which shows that there
is a point XII < x∗ such that the battery owner should enter the contract whenever
x ≤ XII , and defer its entry otherwise. The point XII is given explicitly in terms of the
model parameters. We note that our observation that the battery owner should sometimes
defer entry into the contract differs from the optimal strategy for the incremental reserve
contract, which was derived in [8].
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4. Our model uses a piecewise linear function f to define a market price that decreases as
the present value x of the system imbalance increases. This function is assumed to be
nonnegative and first attains its maximum and minimum values at the points Xmax and
Xmin respectively, where Xmax < 0 < Xmin. Our model ensures that the battery owner
is not incentivized to sell electricity and immediately enter the contract when the system
operator plans to use it. This is done by ensuring the net cash flow satisfies f(x)+p−K < 0
for all x ≥ x∗, which is simplified to the sustainability condition f(x∗) + p−K < 0 given
in (2.7).

5. Using equation (5.1) for the net discounted value in regime II and assuming the battery
owner follows the optimal strategy given in Theorem 3.1, the net discounted value in
regime I is given by,

f(x) + e
√

2rmin(XII−x,0)(p−Ke
√

2r(min(XII ,x)−x∗)). (5.2)

The value given by (5.2) is positive since f is nonnegative and the net discounted value in
regime II is positive when the battery owner follows the optimal strategy. Equation (5.2)
also highlights the possibility of additional discounting to the cash flow for the net dis-
counted value in regime II. This additional discounting occurs when the battery owner
does not immediately enter the contract after selling the stored electricity.

6. Theorem 3.2 presents the solution in regime I for the case Xmax ≤ XII ≤ Xmin. This
result shows there is a point XI ≤ Xmin such that for x ≤ XI it is optimal for the battery
owner to immediately sell the stored electricity. For x > XI it is optimal for the battery
owner to defer its sale of electricity. This threshold XI and the optimal net discounted
value in regime I have explicit expressions that depend on the model parameters.

7. We have also identified condition 3.9 on the model parameters that determines when
XII ≤ XI or, in other words, when it may be optimal for the battery owner to defer entry
into the contract after selling the stored electricity. Figure 5 displays a solution in regime
I with XII < XI < 0, illustrating that the strategy for selling electricity in this case can
be consistent with the overall objective of power system balancing.

8. Our results for the net discounted values in regimes I and II indicate the battery owner
has positive expected economic profit from the balancing reserve contract. We showed
furthermore that the lifetime value aggregated from an infinite sequence of these contract is
positive and bounded. This indicates the potential benefit of such contracts to commercial
operators of electricity storage.

The analysis in this paper can be extended to the case of a negative lower cap on the market
price. In order to get results similar to those obtained here, the assumption p ≤ K should
be made explicit. This is because the optimal strategy in regime II is not of the same form
as in Theorem 3.1 if p > K, as shown in the supplementary material. Another interesting
extension involves a more general stochastic process for modelling the system imbalance. In
the case of diffusion processes, the transformation technique described in [11], which underpins
Theorems 3.1 and 3.2 of this paper, can be used to convert the problem into another one for
Brownian motion without discounting. This has been done recently in [9] for a slightly different
model of the incremental reserve contract studied by [8].

Acknowledgements. The first named author expresses his gratitude to the UK Engi-
neering and Physical Sciences Research Council (EPSRC) for its financial support via grant
EP/N013492/1, and partial support via grant EP/K00557X/2. The second named author ex-
presses his gratitude to John Moriarty and Jan Palczewski for many fruitful discussions. Both
authors thank all those who commented on the previous version of the manuscript.



Real option valuation of a decremental regulation service contract 14

References

[1] Kirschen D, Strbac G. 2004 Fundamentals of Power System Economics. Chicester: John
Wiley & Sons.

[2] Rothleder M, Loutan C. 2014 Case Study - Renewable Integration: Flexibility
Requirement, Potential Overgeneration, and Frequency Response Challenges. In
Renewable Energy Integration - Practical Management of Variability, Uncertainty, and
Flexibility in Power Grids (ed. LE Jones), chapter 6, pp. 67–79. New York: Elsevier Inc.

[3] Barton JP, Infield DG. 2004 Energy storage and its use with intermittent renewable
energy. IEEE transactions on energy conversion 19, 441–448.
(http://dx.doi.org/10.1109/TEC.2003.822305).

[4] Kyriakopoulos GL, Arabatzis G. 2016 Electrical energy storage systems in electricity
generation: Energy policies, innovative technologies, and regulatory regimes. Renewable
and Sustainable Energy Reviews 56, 1044–1067.
(http://dx.doi.org/10.1016/j.rser.2015.12.046).

[5] Nehrir MH, Wang C, Strunz K, Aki H, Ramakumar R, Bing J, Miao Z, Salameh Z. 2011
A review of hybrid renewable/alternative energy systems for electric power generation:
Configurations, control, and applications. IEEE Transactions on Sustainable Energy 2,
392–403. (http://dx.doi.org/10.1109/TSTE.2011.2157540).

[6] Vittal V. 2010 The impact of renewable resources on the performance and reliability of
the electricity grid. The Bridge 40, 5–12.

[7] Elexon. 2017. Balancing mechanism.
(https://www.elexon.co.uk/knowledgebase/what-is-the-balancing-mechanism/).
Accessed: January, 2017.

[8] Moriarty J, Palczewski J. 2017 Real option valuation for reserve capacity. European
Journal of Operational Research 257, 251–260.
(http://dx.doi.org/10.1016/j.ejor.2016.07.003).

[9] Moriarty J, Palczewski J. 2016 Energy imbalance market call options and the valuation of
storage. Arxiv. [Preprint] (https://arxiv.org/abs/1610.05325v1).

[10] Hach D, Chyong CK, Spinler S. 2016 Capacity market design options: A dynamic
capacity investment model and a GB case study. European Journal of Operational
Research 249, 691–705. (http://dx.doi.org/10.1016/j.ejor.2015.08.034).

[11] Dayanik S, Karatzas I. 2003 On the optimal stopping problem for one-dimensional
diffusions. Stochastic Processes and their Applications 107, 173–212.
(http://dx.doi.org/10.1016/S0304-4149(03)00076-0).

[12] Peskir G, Shiryaev AN. 2006 Optimal Stopping and Free-Boundary Problems. Lectures in
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