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Smoking Gun or Circumstantial 
Evidence? Comparison of 
Statistical Learning Methods 
using Functional Annotations for 
Prioritizing Risk Variants
Sarah A Gagliano1,2,5, Reena Ravji1, Michael R Barnes3, Michael E Weale4 & Jo Knight1,2,5,6

Although technology has triumphed in facilitating routine genome sequencing, new challenges have 
been created for the data-analyst. Genome-scale surveys of human variation generate volumes 
of data that far exceed capabilities for laboratory characterization. By incorporating functional 
annotations as predictors, statistical learning has been widely investigated for prioritizing genetic 
variants likely to be associated with complex disease. We compared three published prioritization 
procedures, which use different statistical learning algorithms and different predictors with regard to 
the quantity, type and coding. We also explored different combinations of algorithm and annotation 
set. As an application, we tested which methodology performed best for prioritizing variants using 
data from a large schizophrenia meta-analysis by the Psychiatric Genomics Consortium. Results 
suggest that all methods have considerable (and similar) predictive accuracies (AUCs 0.64–0.71) 
in test set data, but there is more variability in the application to the schizophrenia GWAS. In 
conclusion, a variety of algorithms and annotations seem to have a similar potential to effectively 
enrich true risk variants in genome-scale datasets, however none offer more than incremental 
improvement in prediction. We discuss how methods might be evolved for risk variant prediction to 
address the impending bottleneck of the new generation of genome re-sequencing studies.

Complex diseases are caused by the interplay of many genetic variants and the environment, and repre-
sent a considerable health burden. Genome-wide association studies (GWAS) have had success in iden-
tifying some genetic risk factors involved in complex diseases such as inflammatory bowel disease1 and 
schizophrenia2. Interrogating the entire genome, exome or even selected genes through next generation 
sequencing technologies have also identified further risk variants3–6. However, more disease-associated 
variants, hereafter called risk variants or hits, remain to be discovered. Some risk variants are difficult to 
detect by current techniques due to limited sample sizes and low effect size of the variants. In silico meth-
odologies that integrate evidence over multiple data sources have the potential to unearth some of these 
risk variants in a cost-effective manner. The novel risk variants that are identified will help illuminate the 

1Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, 
Canada. 2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 3William Harvey 
Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 
London, UK. 4Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, 
UK. 5Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. 6Biostatistics Division, Dalla 
Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. Correspondence and requests 
for materials should be addressed to S.A.G. (email: sarah.gagliano@camh.ca)

received: 15 January 2015

accepted: 24 July 2015

Published: 24 August 2015

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159075482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sarah.gagliano@camh.ca


www.nature.com/scientificreports/

2Scientific Reports | 5:13373 | DOI: 10.1038/srep13373

genetic risk factors involved in complex diseases, which in turn could lead to earlier or more accurate 
diagnoses, and the development of personalized treatment options.

Risk variants show enrichment in functional annotations, such as DNase I hypersensitive sites, tran-
scription factor binding sites, and histone modifications (for example7–9). Several groups have gone fur-
ther with the results of enrichment by incorporating functional annotations as predictor variables in 
statistical learning frameworks to prioritize genetic variants for further study10–12. These statistical learn-
ing algorithms use the functional annotations to define a model that provides some measure of whether 
a variant is likely to increase the risk of manifesting a complex trait. However, understanding the relative 
merits of these approaches requires a thorough investigation into which statistical learning algorithm 
and/or which combination of functional annotations most effectively identifies novel risk variants.

There are many aspects to consider in the statistical learning framework (Supplementary Fig. 1). The 
genetic data input consists of both known risk variants and corresponding control variants (those with 
no evidence for risk effect); the classifier is used to discriminate between the two. Known risk variants 
may be identified from sources, such as the National Health Genome Research Institute (NHGRI) GWAS 
Catalogue13, the ClinVar database14, and the Human Gene Mutation Database (HGMD)15. In addition, 
the variants can be simulated; for example, Kircher et al. used an empirical model of sequence evolution 
with local adjustment of mutation rates11. In this way, the simulated variants would contain de novo 
pathogenic mutations. The goal of these methods is to identify disease-causing variants, but their appli-
cation can differ depending on whether the data under consideration consist of densely mapped variants, 
as in sequence data, or coarsely mapped variants, as in GWAS data. The use of different classifiers has 
the effect of refining the goal, in that coarsely mapped variants may tag other variants in high linkage 
disequilibrium, and so the functional characteristics of these other variants should be taken into account. 
The methods we investigate have been applied to both types of data16,17.

With regard to the functional annotations, some come from experimental procedures while others are 
predicted computationally. Examples include genomic and epigenomic annotations that can be incorpo-
rated from various online browsers and collections such as the Ensembl Variant Effect Predictor (VEP)18 
and the Encyclopedia of DNA Elements (ENCODE) Project19. Whether a variant is assigned the anno-
tations that can be attributed to itself only or to other variants with which it is in linkage disequilibrium 
can also refine the goal of the method.

Finally, there are numerous statistical learning algorithms from which to choose. These algorithms 
must be able to handle the features of the functional data: correlations among predictor variables, and a 
large quantity of both samples and predictor variables.

In this paper, we compared the performance of three published methods that differ in annotation set, 
algorithm and genetic variants, including the classifier: a regularized regression called elastic net from 
Gagliano et al. (14 annotations)10, a modified random forest from Ritchie et al. (174 annotations)12 called 
GWAVA and a support vector machine from Kircher et al. (949 annotations, expanded from 63 unique 
annotations) called CADD11. These three papers describe algorithms capable of incorporating a large 
number of genetic variants labeled with multiple functional annotations, and can output a prediction 
score for each variant; hence, they are highly comparable. Although other methods exist to prioritize 
genetic risk variants, such as through the use hierarchical Bayesian analysis20,21, these require genetic 
association statistics for each variant for prioritization, and thus were beyond the scope of the compari-
sons in this paper. We investigate nine model types: combinations of the three different statistical learn-
ing algorithms and the three different functional annotation sets (summarized in Table  1). All model 
types were created for different classifications of hits: the NHGRI GWAS Catalogue13 and the Human 
Gene Mutation Database (HGMD)15.

Models based on GWAS data can be tested effectively in current data (we apply those models to the 
schizophrenia GWAS from the Psychiatric Genomics Consortium).

Results
Our primary analysis used the NHGRI GWAS Catalogue as the classifier. Risk variants/hits were defined 
as those variants present in the NHGRI GWAS Catalogue (www.genome.gov/gwastudies, downloaded 
on August 7, 2014)13 with a p-value of equal to or less than the accepted threshold for genome-wide sig-
nificance, 5 ×  10−8. A subset of non-hits (that are not in high linkage disequilibrium with the hits) was 
selected from common GWAS arrays for comparability. For the three annotation sets described above, 
when working with different classifiers some rare annotations have no variability and hence were not 
used to build the model. In this analysis none of the 14 annotations from Gagliano et al. were invariable, 
three of the 174 annotations from Ritchie et al. were invariable, and 509 of the 949 annotations from 
Kircher et al. were invariable. An independent test set was used to determine accuracy of the models for 
discriminating hits from non-hits based on the predictive score output from each model. These results 
are presented below.

Area under the ROC curve.  All the models had similar accuracy as demonstrated by the area under 
the curve (AUC) in the test set data (Table 2). Models using Kircher et al.’s annotations produced slightly 
higher AUCs compared to the other two annotation sets for the elastic net and random forest algorithms. 
In particular the combination of elastic net and Kircher et al.’s annotations was the only model that pro-
duced an AUC with confidence intervals that do not overlap with any of the other models.

http://www.genome.gov/gwastudies
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The AUC results for the training set were also computed to investigate whether the models were 
over-fit; that is to say, whether the training set AUC is much higher than the test set AUC. We found that 
for the Ritchie et al. and Kircher et al. annotation sets, the random forest models with node size equal 
to one were prone to over-fitting. For instance, for the random forest model based on the Ritchie et al. 
annotations, the test set and training set AUCs were 0.687 and 0.998, respectively (further data available 
on request). The over-fitting in the random forest models was solved when the minimum node size was 
set to 10% of the total sample size. Therefore only the random forest models with the minimum node 
size equal to 10% of the data are presented in Table 2 and discussed further in the results. These results 
highlight the importance of ensuring that appropriate parameters are chosen for the algorithms.

Density and distribution of prediction scores.  Violin plots were constructed by plotting the pre-
diction scores for hits (risk variants) and non-hits separately in order to visualize how well the two 
classes separated (Fig.  1 and Supplementary Table 1a). The two models with the best AUCs (Kircher  
et al. annotations with elastic net (0.71) and with random forest (0.70)) have comparatively well separated 
means and relatively normal distributions. In one of the two models with the lowest AUC (Ritchie et al. 
annotations with support vector machine (0.64)), the median prediction score between hits and non-hits 
is most similar and the distribution is very skewed. Interestingly, one of the mid-range performance 
models, the Gagliano et al. annotations for the support vector machine (0.66) showed evidence of a 
multimodal distribution where one mode is more common for hits and another for non-hits. However, 
this effect may simply be due to the comparatively small number of annotations, which lead to a smaller 
number of possible scores. Generally, the models created using the Kircher et al. annotations showed the 
largest spread of prediction scores for both hits and non-hits. We have also reported the proportion of 
hits in the top versus the bottom quartiles of the prediction scores in the test set (Supplementary Table 2). 
In summary the violin plots show that the distributions for hits and non-hits overlapped for all models. 
However, we see from Supplementary Table 2 that of the variants in the top quartile of prediction scores, 
there are significantly more hits compared to the lower quartile for all models assessed (p <  2.2 ×  10−16, 
chi-square test).

To investigate the consistency of the models we calculated pairwise correlations of the prediction 
scores in the test set for the various models either holding the algorithm or the annotation set constant. 
We found that the models with the most correlated scores were those using the Gagliano et al. annota-
tion set. Furthermore, the degree of correlation when holding the algorithm constant, but varying the 

Gagliano et al. 
(PLoS ONE 2014)

Ritchie et al. (Nat Methods 2014) 
“GWAVA”

Kircher et al. (Nat Genetics 
2014) “CADD”

Functional annotations
n =  14 (ENCODE, 
eQTLs, PhastCons, 
Genic context…)

n =  174 (ENCODE, GERP, Genic 
context…)

n =  63 (expanded to 949) 
(Ensembl VEP, ENCODE, 
PolyPhen…)

Risk variants (“Hits”)
NHGRI GWAS 
Catalogue (p-value 
≤  5 ×  10−8)

HGMD—“regulatory” Simulated mutations under 
neutral model—“gap” sites

Non-risk variants (“Non-hits”)
union of common 
Illumina and 
Affymetrix GWAS 
panels

other variants in 1000 Genomes 
Project (for example, within 1kb 
of each HGMD variant)

high-frequency derived human 
alleles from 1000 Genomes

Classifier algorithm Elastic net Random forest Support vector machine

Training protocol 60% training. 40% 
reserved for testing 100% training 99% training. 1% reserved for 

testing

Table 1.   Comparison of the three papers.

Annotations → Gagliano et al. Ritchie et al. Kircher et al.

Elastic Net 0.67 [0.65–0.68] (0.67) 0.65 [0.63–0.66] (0.67) 0.71 [0.69–0.73] (0.74)

Random Forest 
(altered minimum 
node size)

0.67 [0.65–0.68] (0.69) 0.68 [0.66–0.69] (0.72) 0.70 [0.68–0.72] (0.79)

Support Vector 
Machine (with prior 
feature selection)

0.66 [0.65–0.68] (0.66) 0.64 [0.63–0.66] (0.66) 0.64 [0.61–0.66] (0.68)

Table 2.   The area under the curve (AUC) for the GWAS Catalogue comparisons, holding data and 
classifier constant, while varying algorithm and annotations. The 95% confidence interval based on 2000 
bootstrap replicates (generated using the R package pROC) is shown in square brackets. The AUC in the 
training set is in parentheses.
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annotation set, was generally not as high as when holding the annotation set constant (Supplementary 
Table 3).

Feature selection within elastic net and random forest.  More does not necessarily equal better 
as not all the annotations may be relevant to predicting risk variants. Generally, not all of the functional 
annotations in the annotation sets were used to create the various models. For instance of the variable 
features, elastic net assigned non-zero Beta coefficients to 9 out of 14 annotations, 12 out of 171, and 
16 out of 432. Random forest assigned non-zero Gini importance values to all of the 14, 131 out of 171, 
and 239 out of 432. All of these models had similar performance in the test sets (AUCs ranging from 
0.68 to 0.70 for the random forest models and 0.65 to 0.71 for the elastic net models). The results suggest 
that elastic net has a more stringent feature selection implementation than random forest. The support 
vector machine models always assigned non-zero feature weights, as support vector machine does not 
intrinsically perform feature selection, as does elastic net and random forest. Thus, we inputted only 
those annotations with a non-zero Beta coefficient from the elastic net models into the support vector 
machine models (see Methods).

Importance of the functional annotations.  Different combinations of annotations can be used to 
obtain models with similar predictive accuracy. Furthermore, it is difficult to interpret the importance 
of the annotations for numerous reasons, some of which are discussed below.

All three annotation sets contained a mixture of binary variables and continuous variables. For 
Kircher et al.’s annotations, background selection (the annotation with the widest continuous scale that 

Figure 1.  Violin plots showing class separation by prediction scores for the various comparisons using 
the GWAS Catalogue as the classifier. Hits are variants in the GWAS Catalogue with a genome-wide 
significant p-value (p ≤  5 ×  10−8) and non-hits are those not present in the GWAS Catalogue, but are found 
on common GWAS arrays for comparison purposes. The non-scaled elastic net models are plotted. The 
adjusted minimum node size (10%) random forest models are plotted.
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ranged from 0 to 1000) came up as most important for predicting the class label in the random forest 
model. This bias for random forest preferentially selecting annotations measured on a continuous scale 
has been previously described22. When making a decision at a node, continuous annotations can be used 
multiple times at varying cut-offs to split the data. In this way, functional annotations measured on a 
continuous scale are incorporated more often into the forest compared to non-continuous annotations, 
and thus obtain higher variable importance measures22,23.

It is also difficult to interpret the variable importance measures derived from elastic net because 
this algorithm is not scale invariant. Using Gagliano et al.’s annotations with elastic net, we compared 
the models created with scaled (all annotations have a standard deviation of 1 and a mean of 0) versus 
non-scaled annotations. Although the AUCs for both models were nearly identical, the assigned Beta 
coefficients differed (Supplementary Fig. 2). When we do standardize the scale, we find that the order 
of importance of coefficients replicates that of the random forest model. However, standardizing a set 
of largely binary variables removes the effect linked to the frequency, and thus skews the biological rep-
resentation. So it is not clear that scaling is the best approach.

Although the focus is not about annotations we have provided details of the various importance 
measures in supplementary data: see Supplementary Tables 9–17 and Supplementary Figures 5–13 for 
the feature importance measures from all the models based on the GWAS Catalogue as the classifier. In 
the primary analysis transcription factor binding sites were consistently in the top three annotations for 
the Gagliano et al. annotations for all three algorithms, but there were no other clear patterns with regard 
to important annotations for the Ritchie et al. or Kircher et al. annotation sets. In summary, different 
annotations came up as most important for the various models regardless of predictive accuracy.

Performance for complex disease variants: Application to Schizophrenia GWAS.  Various 
quantile-quantile plots were constructed in order to compare which models showed greater separation 
of the schizophrenia GWAS p-values for high scoring and low scoring functional variants. For all of 
the models, scores were obtained for the sub-genome-wide-significant variants (5 ×  10−8 <  p <  1 ×  10−6) 
from the first round of the GWAS by the Psychiatric Genomics Consortium (PGC1)24. The PGC1 
p-values were plotted on the x-axis and the p-values from the second larger round of the schizophre-
nia GWAS (PGC2)2 were plotted on the y-axis (Fig. 2). (The results from PGC2 were not used to train 
the model.) Plots were constructed where annotations were held constant but the algorithm differed. 
For instance, for the 14 annotations from Gagliano et al. we plotted the models from the three algo-
rithms in one plot. Furthermore, models from the same algorithm but varying by annotation set were 
compared (Supplementary Fig. 3). We have also reported the proportion of hits in the top versus the 
bottom quartiles of the prediction scores in the test set (Supplementary Table 4). With regard to the 
functional annotation set, the separation of the novel associated variants from the non-associated in the 
sub-genome-wide-significant variants was best exhibited in the quantile-quantile plots when using either 
the Kircher et al. or Ritchie et al. annotation sets. Regardless of annotation set, the elastic net models con-
sistently showed good separation. For all algorithms using either the Ritchie et al. or Kircher et al. anno-
tations, the PGC1 sub-genome-wide-significant variants that have the highest prediction scores (within 
the top quartile) consistently contain a higher proportion of GWAS significant variants from the second 

Figure 2.  Quantile-quantile plots of PGC1 sub-genome-wide-significant variants 
(5 × 10−8 < p < 1 × 10−6) stratified by prediction score for the various models based on the GWAS 
Catalogue classifier, and plotted by PGC2 p-values. PGC1 p-values are plotted on the x-axis and PGC2 
p-values are plotted on the y-axis. Models grouped by annotation set: Gagliano et al. (a) Ritchie et al.  
(b) and Kircher et al. annotations (c). The lower quartile genetic variants are those PGC1 sub-genome-wide-
significant variants that were assigned the lowest prediction scores (in the first quartile), and the top quartile 
variants are those with the highest prediction scores (in the fourth quartile).
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round of the schizophrenia GWAS (p ≤  5 ×  10−8) compared to the variants that have scores in the lower 
quartile. The elastic net models too, regardless of annotation set, showed this pattern. Although these pat-
terns are not all statistically significant, it is notable that the biggest positive difference comes from using 
the Ritchie et al. annotations with the elastic net algorithm, and the most significant difference between 
the proportion of GWAS significant variants in the top quartile compared to the proportion in the lower 
quartile comes from the Kircher et al. annotations using the elastic net algorithm; (there are more vari-
ants available in the Kircher et al. model than the Ritchie et al. model). The Gagliano et al. annotations 
performed very poorly with both the random forest and support vector machine algorithms since the 
variants with low prediction scores were more likely to be hits than those with high scores. This is a result 
of the PGC2 hits not being enriched in two of the top annotations for the Gagliano et al. models using 
either the random forest or support vector machine algorithms, H3K4Me3 and H3K27Ac. In the GWAS 
Catalogue analysis of the variants that possess the H3K4Me3 and H3K27Ac marks, nearly 70% are hits 
and the remainder are non-hits. In comparison, of the PGC1 sub-genome-wide-threshold variants that 
possess those two annotations, only 21% are PGC2 hits, and the remaining variants are non-hits.

The results for the application to the schizophrenia GWAS did not always reflect the AUCs from the 
training data. For instance, a poor performing model in terms of AUC based on the test set, elastic net 
with the Ritchie et al. annotations, performed well in the GWAS application. All in all, the accuracy of the 
resulting models should be assessed by various means, including (but not limited to) theoretical models 
such as the ROC curve, as well as empirical approaches such as applying the model using data from one 
study and evaluating its performance on independent data with gold standard answers.

HGMD Analysis.  In an attempt to apply the algorithms and annotation set combinations to whole 
genome sequencing data, and indeed fine-mapping studies, rather than just GWAS, a different classifier 
was used to identify hits and non-hits, the Human Gene Mutation Database (HGMD). We conducted 
two analyses with subsets of the public release of HGMD. In the first, we took all the variants (single 
nucleotide polymorphisms) in HGMD and chose controls that fell within a kilobase of either side from 
the HGMD variant. In this analysis one of the 14 annotations from Gagliano et al. was invariable, eight 
of the 174 annotations from Ritchie et al. were invariable, and 396 of the 949 annotations from Kircher  
et al. were invariable. Secondly, models based on the subset of non-exonic HGMD variants and 
non-exonic control variants were assessed. This second set of models was created in an effort to overcome 
the ascertainment bias inherent in HGMD related to genes. In this analysis two of the 14 annotations 
from Gagliano et al. were invariable, 16 of the 174 annotations from Ritchie et al. were invariable, and 
756 of the 949 annotations from Kircher et al. were invariable.

The models for the analysis using all of the HGMD variants using either the Ritchie et al. or Kircher 
et al. annotations had high predictive accuracy (Table 3). The AUCs for the non-exonic HGMD analysis 
were more comparable to the ones obtained for the primary analysis using the GWAS Catalogue as the 
classifier (Table 4), but again the annotations from Ritchie et al. and Kircher et al. performed better.

Similar to the analysis using the GWAS Catalogue as the classifier, for the HGMD analysis models the 
features that came up as most important tended to vary depending on the algorithm and are difficult to 
interpret. It is however notable that genic annotations featured highly (see Supplementary Tables 18–26 
and Supplementary Figures 14–22). For the Gagliano et al. annotations, the top annotation (or the sec-
ond most important in the case of support vector machine) was nonsynonymous SNPs. For the Kircher 
et al. annotations, the top annotations for the random forest and support vector machine models were 
related to the coding sequence or nonsynonymous SNPs. The top annotation for elastic net was CpG. 
For the Ritchie et al. annotations, the top two annotations were coding sequence and exon for both the 
random forest and support vector machine models. For elastic net, the top two annotations were donor 
and coding sequence. The importance of genic features is likely linked to bias in the data, which will be 
examined further in the Discussion.

The HGMD analysis in which only non-exonic HGMD and control variants were considered seemed 
to overcome this bias towards genes or positions relative to genes. Interestingly, for all algorithms, the top 

Annotations → Gagliano et al. Ritchie et al. Kircher et al.

Elastic Net 0.66 [0.64–0.67] (0.65) 0.87 [0.86–0.88] (0.88) 0.88 [0.87–0.89] (0.88)

Random Forest 
(altered minimum 
node size)

0.65 [0.64–0.66] (0.66) 0.91 [0.90–0.92] (0.91) 0.87 [0.86–0.88] (0.89)

Support Vector 
Machine (with prior 
feature selection)

0.63 [0.62–0.64] (0.66) 0.85 [0.83–0.86] (0.86) 0.85 [0.84–0.86] (0.87)

Table 3.   The area under the curve (AUC) for the HGMD comparisons, holding data and classifier 
constant, while varying algorithm and annotations. The 95% confidence interval based on 2000 bootstrap 
replicates (generated using the R package pROC) is shown in square brackets. The AUC in the training set is 
in parentheses.
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annotation for the Gagliano et al. annotation set was DNase I hypersensitive sites, but we caution against 
making biological inferences on the top annotations for the reasons outlined above (see Supplementary 
Tables 27–35 and Supplementary Figures 23–31).

Discussion
We found that the three algorithms assessed here, elastic net, random forest and the linear support vector 
machine show comparable accuracy in the GWAS test data. The Kircher et al. annotations trained using 
the elastic net algorithm have the highest AUC. When applied to real data, several models show the 
potential to prioritize novel hits, with the exception of the random forest and support vector machine 
models using the Gagliano et al. annotations. However, this was just one real dataset and further studies 
would need to be assessed to validate this conclusion. Under the conditions employed in our analysis, 
none of the models were over-fitted, as demonstrated by verifying that the training set AUC is similar 
in magnitude to that of the test set.

Furthermore, our results show that various combinations of annotations can create models with sim-
ilar predictive ability when it comes to identifying risk variants from non-risk variants. One must be 
wary of making strong conclusions about the relevance of the annotations because of the difficulty in 
interpretation. The coefficients or variable importance measures are differentially affected by issues such 
as correlation between the attributes, and whether variables are normalized (for elastic net and support 
vector machine). This observation makes it difficult to differentiate the predictive power of the functional 
annotation sets used by each study, at least in the case of GWAS risk variants.

As mentioned in the Introduction, the main goals of these methods are to identify those variants 
that are important for disease risk, which can be applied to identifying novel loci or for fine-mapping 
at previously implicated loci. The HGMD is designed to contain disease variants, whereas the GWAS 
Catalogue contains variants associated with disease, but those variants may only be tagging the “causal” 
variant. GWAS are undertaken to identify the loci containing the variant and may identify the actual 
causal variant but will more often identify variant in high linkage disequilibrium with the causal variant. 
Thus, the primary analyses in this paper (using the GWAS Catalogue) may be considered to be about 
identifying novel loci rather than fine-mapping, and the HGMD analyses may be considered to be more 
about fine-mapping a specific locus. Furthermore, the Gagliano et al. method may be considered to 
be better suited to identifying novel loci (rather than fine-mapping) because it annotates variants on 
whether or not the variant itself falls into the base pair range for the functional annotation, but also if 
that variant has is in linkage disequilibrium (r2 >  0.8) with a variant that falls into the range. The Ritchie 
et al. and Kircher et al. methods annotate the variants just based on whether the variant itself falls into 
the base sequence for the functional annotation, and do not look at their linkage disequilibrium proxies. 
That being said, we also performed the analyses for the Gagliano et al. annotations only considering 
whether the variant itself falls into the sequence for the functional annotation as an additional analysis. 
The resulting models had very similar accuracy to those models created when the linkage disequilibrium 
proxies were taken into account (data available on request).

To apply the methods in next generation sequencing data and fine-mapping studies we would ideally 
use risk variants identified from such studies. Unfortunately, there are not a sufficient number available. 
We used the HGMD to attempt to extrapolate our findings. However, we believe the high accuracies 
achieved for the all HGMD models (ie. not the models looking just at non-exonic variants) are driven 
by the inherent bias of the HGMD data, in that it is largely focused on genes. For the models using only 
non-exonic HGMD and control variants, the AUCs were considerably lower, with the Kircher et al. and 
Ritchie et al. annotation sets clearly out-performing the annotations used by Gagliano et al. Yet, this sub-
set of HGMD is a highly derived and filtered set of variants, emphasizing the need for empirical data. The 
simulation employed by Kircher et al. to consider all variants, in which the functional annotations were 
used to differentiate between millions of high frequency human-derived alleles from the same number 
of simulated alleles11, showed considerable accuracy; further adaptions to this strategy may prove useful.

Annotations → Gagliano et al. Ritchie et al. Kircher et al.

Elastic Net 0.65 [0.61–0.68] (0.66) 0.77 [0.74–0.80] (0.78) 0.79 [0.76–0.81] (0.80)

Random Forest 
(altered minimum 
node size)

0.65 [0.61–0.68] (0.65) 0.80 [0.77–0.82] (0.86) 0.78 [0.75–0.80] (0.85)

Support Vector 
Machine (with prior 
feature selection)

0.61 [0.58–0.65] (0.68) 0.68 [0.65–0.72] (0.78) 0.76 [0.73–0.78] (0.82)

Table 4.   The area under the curve (AUC) for the non-exonic HGMD comparisons, holding data and 
classifier constant, while varying algorithm and annotations. The 95% confidence interval based on 2000 
bootstrap replicates (generated using the R package pROC) is shown in square brackets. The AUC in the 
training set is in parentheses.
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Compared to the corresponding elastic net or random forest models, the support vector machine 
models consistently produced slightly lower AUCs for the GWAS Catalogue and all HGMD analyses. 
This poorer performance may be attributed to the fact that we implemented the most basic kernel type 
for the support vector machine, a linear kernel. This kernel was chosen in an effort to be consistent with 
the type of kernel that was utilized by Kircher et al., and with the advantage that computational time 
remains comparable with the other algorithms (Supplementary Text and Supplementary Tables 4–7). 
However, a linear kernel may not be best to separate the data. Furthermore, as support vector machine 
does not intrinsically perform feature selection, we selected a subset of features with a non-zero Beta 
coefficient from the corresponding analysis using the elastic net algorithm. Use of another method of 
feature selection may have yielded different results. Our results do not necessarily suggest that the elas-
tic net and random forest algorithms out-perform the support vector machine algorithm, since altering 
either the kernel type or the functional annotations in the support vector machine models may produce 
results comparable to the other two algorithms.

There are limitations to this comparison. For example, other statistical learning algorithms, such as a 
deep neural network25, and other annotation sets could be explored. Annotation sets could be phenotype 
specific, as there is evidence that the level of enrichment of functional information can differ depend-
ing on the subset of risk variants selected26. For instance, enrichment of disease-specific variants in the 
GWAS Catalogue can differ in certain cell types, for example for DNase I hypersensitive sites8.

Identifying which algorithm and/or annotations identify risk variants with the highest accuracy will 
help researchers develop a better understanding of the genetic factors involved in complex disease in a 
cost-effective manner making use of a rich set of publically available functional data. This work helps 
illuminate the genetic factors involved in disease by making use of existing functional data in silico. 
Increasing knowledge on the etiology of complex disease will allow for earlier or better diagnoses, and 
the development of personalized treatment and novel therapies.

Methods
We explored the utility of each of the three algorithms with each of the three functional annotation sets 
in order to attribute performance differences to the algorithm and/or annotations. A total of nine model 
types were created.

In the primary analysis, the set of risk variants used for training all the models were based on whether 
or not a genetic variant is a hit or a non-hit from a genome-wide association study (GWAS). Hits were 
defined as those variants present in the NHGRI GWAS Catalogue (www.genome.gov/gwastudies, down-
loaded on August 7, 2014)13 with a p-value of equal to or less than 5 ×  10−8. There were 3,618 unique 
genetic variants that met these criteria. (Note that at the time of download the novel hits from the 
second phase of the schizophrenia GWAS from the Psychiatric Genomics Consortium (PGC2)2 had 
not yet been included.) A subset of non-hits was selected from common GWAS arrays (Affymetrix 
Genome-Wide Human SNP Array 6.0, the Illumina Human1M-Duo Genotyping BeadChip, and the 
Illumina HumanOmni1-Quad BeadChip). Those non-hits in high linkage disequilibrium (r2 >  0.8) with 
hits were removed from the analyses.

Functional annotation sets.  The data was then annotated using three distinct protocols outlined in 
each of the three respective papers. The variants were marked with the Gagliano et al. annotations avail-
able on the website (http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/
Statistical-Genetics.aspx). Fourteen functional annotations were used by Gagliano et al., two of which 
were on a continuous scale (two conservation measures, PhyloP and PhastCons), and the remaining were 
binary, signifying the presence or absence. The binary annotations included those related to genomic 
context such as the presence in a gene, a splice site or a transcription start site, as well as those from the 
ENCODE Project19 such as three types of histone modifications and DNase I hypersensitivity. For the 
ENCODE data, functional annotations present in multiple cell lines were grouped together, and genetic 
variants were annotated accordingly in a binary, present or absent, fashion. Variants were marked with an 
annotation if they or their linkage disequilibrium proxies fall into the base pair range of the annotation.

To annotate the variants using Ritchie et al.’s annotations, the data were entered into the online 
GWAVA webserver (https://www.sanger.ac.uk/resources/software/gwava/). Ritchie et al. investigated 174 
functional annotations, some binary and others continuous. They also used ENCODE Project tracks 
including those investigated in Gagliano et al. but not necessarily coded as presence or absence. For 
instance, for transcription factor binding sites, the number of cell types in which the site was present 
was used as the annotation. Additionally, variation such as mean heterozygosity and genic and sequence 
contexts were included. Variants were marked with an annotation if they fall into the base pair range of 
the annotation.

To obtain Kircher et al.’s annotations, the data were entered into the online CADD webserver (http://
cadd.gs.washington.edu). However, Kircher et al. also imputed missing values, expanded categorical var-
iables, added indicator variables, and included interaction terms. Martin Kircher provided scripts to run 
on the webserver output to prepare our dataset in accordance with the complete protocol. Kircher et 
al. looked at 63 unique functional annotations, which totaled to 949 once the categorical variables were 
expanded, and the indicator variables and interaction terms were included. A mixture of continuous, 

http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/Statistical-Genetics.aspx
http://www.camh.ca/en/research/research_areas/genetics_and_epigenetics/Pages/Statistical-Genetics.aspx
https://www.sanger.ac.uk/resources/software/gwava/
http://cadd.gs.washington.edu
http://cadd.gs.washington.edu
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categorical, and binary functional annotations was included. Similar annotations to those used by 
Gagliano et al. and/or Ritchie et al. were included, such as ENCODE Project annotations and genic con-
text. Additionally, data from online variant prediction programs (e.g. Sift27 and PolyPhen28) were incor-
porated. Variants were marked with an annotation if they fall into the base pair range of the annotation.

Statistical learning algorithms.  The variants were randomly divided; 60% was used for training the 
models, and the remaining 40% was reserved for testing. Elastic net is a regularized logistic regression, 
and those models were constructed using the glmnet package in R29. A weighting procedure was included 
to up-weight hits, as described in Knight et al.30; in brief, the weighting has the effect of equalizing the 
number of hits and non-hits in the training set. Optimal parameters of lambda and alpha were selected 
for each elastic net model using 10-fold cross validation. Lambda is an overall penalty parameter. Alpha 
controls the proportion of weight assigned to both the sum of the absolute value of the coefficients and 
the sum of the squared value of the coefficients, which affects the degree of their sparsity. A range of 
combinations of lambda and alpha were investigated. The lambda and corresponding alpha that give a 
model a deviance one standard deviation above the model with the lowest deviance was selected.

Random forest is a collection of decision trees. The random forest models were implemented in 
Python using the scikit-learn package31. Two sets of random forest models were created, both using 
10-fold cross validation. For the first set, we replicated Ritchie et al.’s random forest implementation 
by using scripts (e.g. gwava.py) provided on their online GWAVA FTP site (ftp://ftp.sanger.ac.uk/pub/
resources/software/gwava/). For instance, bootstrap sampling was employed to form decision trees from 
bootstrap subset samples. To address the class imbalance in the datasets, non-hits were down-weighted 
through the balance_classes function created by Ritchie et al. and included in their random forest imple-
mentation. The balance_classes function selects a subset of non-hits that is equal to the number of hits 
in order to grow a tree. Furthermore, the subset of annotations used to determine the node split was set 
to the square root of the total number of annotations. This setting is the default setting for classification 
problems to determine the best split at each node of the decision tree32. Additionally, as done by Ritchie 
et al., we used 100 decision trees since we determined that the prediction scores and variable importance 
measures did not significantly differ past 100 trees.

Ritchie et al. used a minimum node size (min_samples_split) of 1. The minimum node size is the 
minimum number of samples required to split an internal node. We created another set of random forest 
models in which we adjusted the minimum node size. This parameter is dataset specific, and a recom-
mended setting is 10% of the total dataset32. Consider n to be the number of hits in the training dataset. 
For the second set of random forest models, we set the minimum node size to approximately 10% of 2n.

Support vector machine creates a hyperplane within a decision boundary space defined by support 
vectors to separate the classes in multidimensional space. The support vector machine models were 
implemented in Python through the scikit-learn package31. Kircher et al. did not use a weighting pro-
cedure as their training set was already balanced. To compare protocols in an unbiased manner, we 
used a subset of the training set in which we chose all hits, and randomly selected an equal amount of 
non-hits. We performed a grid search using the tune function in order to determine the optimal cost 
parameter for a linear kernel. The cost parameter is a penalty (see chapter 9 in James et al.33 for details). 
Feature selection is critical to improving model performance and is intrinsically incorporated by the 
elastic net and random forest algorithms34. Feature selection must be implemented before using support 
vector machine, as there is no feature selection protocol built in. Kircher et al. utilized univariate logistic 
regression among other methods to select features that best predict genetic risk variants. In this paper 
our support vector machine models included those annotations that had a non-zero Beta coefficient from 
the corresponding elastic net models. We chose the annotations found to be important from elastic net, 
since this algorithm implements a more stringent feature selection protocol compared to random forest 
(see Results).

Assessment of model performance.  We assessed model performance in the test set data by calcu-
lating the area under the receiver operating characteristic (ROC) curve using the R package ROCR35 (and 
verified using the R package pROC36). 95% confidence intervals were generated using 2000 bootstrap 
replicates also using pROC36. As another measure of model performance, we also examined the distri-
bution of prediction scores assigned to the test set data with the aid of violin plots.

We investigated importance of the functional annotations through the Beta coefficient for elastic net. 
Similar to the output from a simple logistic regression, the larger coefficients are interpreted as more 
important to predicting genetic risk variants. For random forest we used Gini importance, which was 
also used in Ritchie et al. Gini importance is a scaled measure of Gini impurity averaged over all trees; 
it represents the improved capacity for correctly predicting variants that can be directly attributed to the 
annotation37. For support vector machine, feature weights can be obtained related to the construction of 
the hyperplane when a linear kernel is used38.

Performance for complex disease variants: Application to Schizophrenia GWAS.  We tested 
the performance of the nine models based on the GWAS classifier in a schizophrenia GWAS context. We 
selected all sub-genome-wide-significant variants (5 ×  10−8 <  p <  1 ×  10−6) from the first round of the 

ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/


www.nature.com/scientificreports/

1 0Scientific Reports | 5:13373 | DOI: 10.1038/srep13373

GWAS by the Psychiatric Genomics Consortium (PGC1)24. For each of the nine models we obtained pre-
diction scores for these variants and selected the variants from the first and fourth prediction score quar-
tiles. For these variants we extracted the p-values from the larger second round of the GWAS (PGC2)2 
and plotted these in quantile-quantile plots. Note that there is sample overlap in the discovery cohort 
(about 30%) of the smaller PGC1 in the larger PGC2. Sample details are provided as a Supplementary 
Table in the PGC2 paper2. We were able to determine for all models whether variants assigned higher 
scores were enriched in the variants with more significant p-values compared to variants with less sig-
nificant p-values.

HGMD analysis.  The nine models created by combinations of annotation sets and algorithms were 
assessed using two sets of the public release of the Human Gene Mutation Database (HGMD) variants 
provided to Ensembl in the fourth quarter of 2013 (provided by Graham Ritchie). In the first, we took all 
the variants (single nucleotide polymorphisms) in HGMD (N =  3,391) and chose non-hits/controls that 
fell within a kilobase of either side from the HGMD variant (for consistency with the way the controls 
were selected in Ritchie et al.12). Secondly, models based on the subset of non-exonic HGMD variants 
(N =  689) and non-exonic control variants were assessed. Additionally, the data was randomly split into 
60% for training and 40% for testing. The same procedures for elastic net, random forest and support 
vector machine used in the GWAS Catalogue analysis were also conducted for the HGMD analyses.

Comparison of scores from the three papers: Application to Schizophrenia GWAS.  In the 
effort for a more general comparison of the published methods as is, rather than looking specifically 
at the algorithm and annotations as done above, we additionally conducted the schizophrenia GWAS 
application using scores for the variants obtained directly from the published papers. This analysis is 
further described in Supplementary Text and the results are depicted in Supplementary Figure 4 and 
Supplementary Table 8.

Computations were performed on either the CAMH Specialized Computing Cluster (SCC) or the 
General Purpose Cluster (GPC) supercomputer at the SciNet HPC Consortium [Ref. 39].
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