
Game Semantics for Interface Middleweight Java ∗

Andrzej S. Murawski
DIMAP and Department of Computer Science

University of Warwick

Nikos Tzevelekos
School of Electronic Engineering and Computer Science

Queen Mary, University of London

Abstract
We consider an object calculus in which open terms interact with
the environment through interfaces. The calculus is intended to
capture the essence of contextual interactions of Middleweight Java
code. Using game semantics, we provide fully abstract models for
the induced notions of contextual approximation and equivalence.
These are the first denotational models of this kind.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; F.3.2 [Semantics of Programming Lan-
guages]: Denotational semantics

Keywords Full Abstraction, Game Semantics, Contextual Equiv-
alence, Java

1. Introduction
Denotational semantics is charged with the construction of mathe-
matical universes (denotations) that capture program behaviour. It
concentrates on compositional, syntax-independent modelling with
the aim of illuminating the structure of computation and facilitat-
ing reasoning about programs. Many developments in denotational
semantics have been driven by the quest for full abstraction [21]: a
model is fully abstract if the interpretations of two programs are the
same precisely when the programs behave in the same way (i.e. are
contextually equivalent). A faithful correspondence like this opens
the path to a broad range of applications, such as compiler opti-
misation and program transformation, in which the preservation of
semantics is of paramount importance.

Recent years have seen game semantics emerge as a robust de-
notational paradigm [4, 6, 12]. It has been used to construct the
first fully abstract models for a wide spectrum of programming lan-
guages, previously out of reach of denotational semantics. Game
semantics models computation as an exchange of moves between
two players, representing respectively the program and its compu-
tational environment. Accordingly, a program is interpreted as a
strategy in a game corresponding to its type. Intuitively, the plays
that game semantics generates constitute the observable patterns

∗Research supported by the Engineering and Physical Sciences Research
Council (EP/J019577/1) and a Royal Academy of Engineering Research
Fellowship (Tzevelekos).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838

that a program produces when interacting with its environment, and
this is what underlies the full abstraction results. Game semantics is
compositional: the strategy corresponding to a compound program
phrase is obtained by canonical combinations of those correspond-
ing to its sub-phrases. An important advance in game semantics
was the development of nominal games [3, 17, 26], which under-
pinned full abstraction results for languages with dynamic gener-
ative behaviours, such as the ν-calculus [3], higher-order concur-
rency [18] and ML references [24]. A distinctive feature of nominal
game models is the presence of names (e.g. memory locations, ref-
erences names) in game moves, often along with some abstraction
of the store.

The aim of the present paper is to extend the range of the
game approach towards real-life programming languages, by fo-
cussing on Java-style objects. To that end, we define an impera-
tive object calculus, called Interface Middleweight Java (IMJ), in-
tended to capture contextual interactions of code written in Mid-
dleweight Java (MJ) [9], as specified by interfaces with inheritance.
We present both equational (contextual equivalence) and inequa-
tional (contextual approximation) full abstraction results for the
language. To the best of our knowledge, these are the first deno-
tational models of this kind.

Related Work While the operational semantics of Java has been
researched extensively [7], there have been relatively few results
regarding its denotational semantics. More generally, most existing
models of object-oriented languages, such as [8, 15], have been
based on global state and consequently could not be fully abstract.

On the other hand, contextual equivalence in Java-like lan-
guages has been studied successfully using operational approaches
such as trace semantics [2, 13, 14] and environmental bisimu-
lation [16]. The trace-based approaches are closest to ours and
the three papers listed also provide characterizations of contextual
equivalence. The main difference is that traces are derived opera-
tionally through a carefully designed labelled transition system and,
thus, do not admit an immediate compositional description in the
style of denotational semantics.

However, similarities between traces and plays in game seman-
tics indicate a deeper correspondence between the two areas, which
also manifested itself in other cases, e.g. [20] vs [19]. At the time
of writing, there is no general methodology for moving smoothly
between the two approaches, but we believe that there is scope for
unifying the two fields in the not so distant future.

In comparison to other game models, ours has quite lightweight
structure. For the most part, playing consists of calling the oppo-
nent’s methods and returning results to calls made by the opponent.
In particular, there are no justification pointers between moves.
This can be attributed to the fact that Java does not feature first-
class higher-order functions and that methods in Java objects can-
not be updated. On the other hand, the absence of pointers makes
definitions of simple notions, such as well-bracketing, less direct,
since the dependencies between moves are not given explicitly any

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159075426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

∆|Γ ` x : θ
(x:θ)∈Γ

∆|Γ ` a : I (a:I)∈Γ
∆|Γ ` skip : void ∆|Γ ` null : I I∈dom(∆)

∆|Γ ` i : int

∆|Γ `M : int ∆|Γ `M ′ : int

∆|Γ `M ⊕M ′ : int

∆|Γ, x : θ′ `M : θ ∆|Γ `M ′ : θ′

∆|Γ ` letx = M ′ inM : θ

∆|Γ `M : I ∆|Γ `M ′ : I
∆|Γ `M = M ′ : int

∆|Γ `M : I′

∆|Γ ` (I)M : I
∆`I≤I′

∨∆`I′≤I

∆|Γ `M : int ∆|Γ `M ′,M ′′ : θ

∆|Γ ` ifM thenM ′ elseM ′′ : θ

∆|Γ, x : I ` M : Θ

∆|Γ ` new(x : I;M) : I ∆(I)�Meths=Θ
∆|Γ `M : I ∆|Γ `M ′ : θ

∆|Γ `M.f := M ′ : void
∆(I).f=θ

∆|Γ `M : I
∆|Γ `M.f : θ

∆(I).f=θ
∆|Γ `M : I

Vn
i=1(∆|Γ `Mi : θi)

∆|Γ `M.m(M1, · · · ,Mn) : θ
∆(I).m=~θ→θ

Vn
i=1(∆|Γ] {~xi : ~θi} `Mi : θi)

∆|Γ ` M : Θ
Θ={mi:~θi→θi | 1≤i≤n}
M={mi:λ~xi.Mi | 1≤i≤n}

Figure 1. Typing rules for IMJ terms and method-set implementations

more and need to be inferred from plays. The latter renders strategy
composition non-standard. Because it is impossible to determine
statically to which arena a move belongs, the switching conditions
(cf. [6]) governing interactions become crucial for determining the
strategy responsible for each move. Finally, it is worth noting that
traditional copycat links are by definition excluded from our set-
ting: a call/return move for a given object cannot be copycatted by
the other player, as the move has a fixed polarity, determined by the
ownership of the object. In fact, identity strategies contain plays of
length at most two!

Further Directions In future work, we would like to look for
automata-theoretic representations of fragments of our model in
order to use them as a foundation for a program verification tool
for Java programs. Our aim is to take advantage of the latest devel-
opments in automata theory over infinite alphabets [10], and fresh-
register automata in particular [23, 27], to account for the nominal
features of the model.

2. The language IMJ
We introduce an imperative object calculus, called Interface Mid-
dleweight Java (IMJ), in which objects are typed using interfaces.
The calculus is a stripped down version of Middleweight Java (MJ),
expressive enough to expose the interactions of MJ-style objects
with the environment.

Definition 1. Let Ints , Flds and Meths be sets of interface, field
and method identifiers. We range over them respectively by I, f, m
and variants. The types θ of IMJ are given below, where ~θ stands for
a sequence θ1, ..., θn of types (for any n). An interface definition
Θ is a finite set of typed fields and methods. An interface table ∆
is a finite assignment of interface definitions to interface identifiers.

Types 3 θ ::= void | int | I
IDfns 3 Θ ::= ∅ | (f : θ),Θ | (m : ~θ → θ),Θ

ITbls 3 ∆ ::= ∅ | (I : Θ),∆ | (I〈I〉 : Θ),∆

We write I〈I′〉 : Θ for interface extension: interface I extends I′
with fields and methods from Θ. We stipulate that the extension
relation must not lead to circular dependencies. Moreover, each
identifier f,m can appear at most once in each Θ, and each I can be
defined at most once in ∆ (i.e. there is at most one element of ∆ of
the form I : Θ or I〈I′〉 : Θ). Thus, each Θ can be seen as a finite
partial function Θ : (Flds ∪Meths) ⇀ Types∗. We write Θ.f for
Θ(f) and Θ.m for Θ(m). Similarly, ∆ defines a partial function
∆ : Ints ⇀ IDfns given by

∆(I) =

8><>:
Θ (I : Θ) ∈ ∆

∆(I′) ∪Θ (I〈I′〉 : Θ) ∈ ∆

undefined otherwise

An interface table ∆ is well-formed if, for all interface types I, I′:
• if I′ appears in ∆(I) then I′ ∈ dom(∆),
• if (I〈I′〉 : Θ) ∈ ∆ then dom(∆(I′)) ∩ dom(Θ) = ∅.

Henceforth we assume that interface tables are well-formed. In-
terface extensions yield a subtyping relation. Given a table ∆, we
define ∆ ` θ1 ≤ θ2 by the following rules.

(I〈I′〉 : Θ),∆ ` I ≤ I′

∆ ` θ ≤ θ
∆ ` θ1 ≤ θ2 ∆ ` θ2 ≤ θ3

∆ ` θ1 ≤ θ3

We might omit ∆ from subtyping judgements for economy.

Definition 2. Let A be a countably infinite set of object names,
which we range over by a and variants. IMJ terms are listed below,
where we let x range over a set of variables Vars , and i over Z.
Moreover, ⊕ is selected from some set of binary numeric opera-
tions.M is a method-set implementation. Again, we stipulate that
each m appear in eachM at most once.

M ::= x | a | skip | null | i | M ⊕M | letx = M inM

| M = M | ifM thenM elseM | (I)M | new(x : I;M)

| M.f | M.f := M | M.m(
−→
M)

MImps 3 M ::= ∅ | (m : λ~x.M),M

The terms are typed in contexts comprising an interface table ∆
and a variable context Γ = {x1 : θ1, · · · , xn : θn} ∪ {a1 :
I1, · · · , am : Im} such that any interface in Γ occurs in dom(∆).
The typing rules are given in Figure 1.

For the operational semantics, we define the sets of term values,
heap configurations and states by:

TVals 3 v ::= skip | i | null | a
HCnfs 3 V ::= ∅ | (f : v), V

States 3 S : A ⇀ Ints × (HCnfs ×MImps)

If S(a) = (I, (V,M)) then we write S(a) : I, while S(a).f and
S(a).m stand for V.f andM.m respectively, for each f and m.

Given an interface table ∆ such that I ∈ dom(∆), we let the
default heap configuration of type I be

VI = {f : vθ |∆(I).f = θ},

where vvoid = skip, vint = 0 and vI = null. The operational se-
mantics of IMJ is given by means of a small-step transition relation

(S, i⊕ i′) −→ (S, j), if j = i⊕ i′ (S, letx = v inM) −→ (S,M [v/x]) (S, (I)null) −→ (S, null)

(S, if 0 thenM elseM ′) −→ (S,M ′) (S, if 1 thenM elseM ′) −→ (S,M) (S, a = a) −→ (S, 1)

(S, (I)a) −→ (S, a), if S(a) : I′ ∧ I′ ≤ I (S, a = a′) −→ (S, 0), if a 6= a′ (S, a.f) −→ (S, S(a).f)

(S, new(x : I;M)) −→ (S] {(a, I, (VI ,M[a/x]))}, a) (S, a.m(~v)) −→ (S,M [~v/~x]), if S(a).m = λ~x.M

(S, a.f := v) −→ (S[a 7→ (I, (V [f 7→ v],M)], skip), if S(a) = (I, (V,M))

(S,E[M]) −→ (S′, E[M ′]), if (S,M) −→ (S′,M ′)

Figure 2. Operational semantics of IMJ.

between terms-in-state, presented in Figure 2. The transition rela-
tion uses evaluation contexts E that are defined as follows.

E ::= letx = inM | ⊕M | i⊕ | = M | a =

| if thenM elseM ′ | (I) | .f | .f := M | a.f :=

| .m(
−→
M) | a.m(v1, · · · , vi, ,Mi+2, · · · ,Mn)

Given ∆|∅ ` M : void, we write M ⇓ if there exists S such that
(∅,M) −→∗ (S, skip).

Definition 3. Given ∆|Γ ` Mi : θ (i = 1, 2), we shall say that
∆|Γ ` M1 : θ contextually approximates ∆|Γ ` M2 : θ if, for
all ∆′ ⊇ ∆ and all contexts C such that ∆′|∅ ` C[Mi] : void, if
C[M1] ⇓ then C[M2] ⇓. We then write ∆|Γ `M1

@
∼M2 : θ. Two

terms are contextually equivalent (written ∆|Γ ` M1
∼= M2 : θ)

if they approximate each other.

For technical convenience, IMJ features the let construct,
even though it is definable: given ∆|Γ, x : θ′ ` M : θ and
∆|Γ ` M ′ : θ′, consider new(x : I; m :λx.M).m(M ′), where
I is a fresh interface with a single method m : θ → θ′. As usual,
we write M ;M ′ for letx = M inM ′, where x is not free in M ′.

Although IMJ does not have explicit local variables, they could
easily be introduced by taking let (x = new(y : Iθ;)) in · · · ,
where Iθ has a single field of type θ. In the same manner, one
can define variables and methods that are private to objects, and
invisible to the environment through interfaces.

Example 1 ([16]). Let ∆ = {Empty : ∅,Cell : (get : void→Empty,
set : Empty → void),VarE : (val : Empty),VarI : (val : int)}
and consider the terms ∆|∅ `Mi : Cell (i = 1, 2) defined by

M1 ≡ let v = new(x : VarE ;) in new(x : Cell;M1)

M2 ≡ let b = new(x : VarI ;) in
let v1 = new(x : VarE ;) in
let v2 = new(x : VarE ;)in new(x : Cell;M2)

with
M1 = (get : λ().v.val,

set : λy.(v.val := y))

M2 = (get : λ().if (b.val) then (b.val := 0; v1.val)
else (b.val := 1; v2.val),

set : λy.(v1.val := y; v2.val := y)).

We have ∆|∅ ` M1
∼= M2 : Cell. Intuitively, each of the two im-

plementations of Cell corresponds to recording a single value of
type Empty (using set) and providing access to it via get. The dif-
ference lies in the way the value is stored: a single private variable
is used in M1, while two variables are used in M2. However, in the
latter case the variables always hold the same value, so it does not
matter which of the variables is used to return the value.

The game semantics of the two terms will turn out to consist of
plays of the shape ∗∅ nΣ0 G∗0 S1 G

∗
1 · · · SkG∗k, where

Gi =

(
calln.get(∗)Σ0 retn.get(nul)Σ0 i = 0

calln.get(∗)Σi retn.get(ni)
Σi i > 0

Si = calln.set(ni)
Σi retn.set(∗)Σi

and Σi = {n 7→ (Cell, ∅)} ∪ {nj 7→ (Empty, ∅) | 0 < j ≤ i}.
Intuitively, the plays describe all possible interactions of a Cell
object. The first two moves ∗∅ nΣ0 correspond to object creation.
After that, the Gi segments represent the environment reading the
current content (initially having null value), while the Si segments
correspond to updating the content with a reference name provided
by the environment. The stores Σi attached to moves consist of all
names that have been introduced during the interaction so far.

It is worth noting that, because IMJ has explicit casting, a
context can always guess the actual interface of an object and
extract any information we may want to hide through casting.

Example 2. Let ∆ = {Empty : ∅,Point〈Empty〉 : (x : int, y : int)}
and consider the terms ∆|∅ `Mi : Empty (i = 1, 2) defined by:

M1 ≡ new(x : Empty;),

M2 ≡ let p = new(x : Point;) in p.x := 0; p.y := 1; (Empty)p.

In our model they will be interpreted by the strategies σ1 =
{ε, ∗∅ n{n 7→(Empty,∅)}} and σ2 = {ε, ∗∅ n{n 7→(Point,{x 7→0,y 7→1})}
respectively. Using e.g. the casting context C ≡ (Point) ; skip,
we can see that ∆|∅ ` M2 6@∼M1 : Empty. On the other hand,
Theorem 20 will imply ∆|∅ `M1

@
∼M2 : Empty.

On the whole, IMJ is a compact calculus that strips down Mid-
dleweight Java to the essentials needed for interface-based interac-
tion. Accordingly, we suppressed the introduction of explicit class
hierarchy, as it would remain invisible to the environment anyway
and any class-based internal computations can be represented using
standard object encodings [1].

At the moment the calculus allows for single inheritance for
interfaces only, but extending it to multiple inheritance is not prob-
lematic. The following semantic developments only rely on the as-
sumption that ≤ must not give rise to circularities.

3. The game model
In our discussion below we assume a fixed interface table ∆.

The game model will be constructed using mathematical objects
(moves, plays, strategies) that feature names drawn from the set
A. Although names underpin various elements of our model, we
do not want to delve into the precise nature of the sets containing
them. Hence, all of our definitions preserve name-invariance, i.e.
our objects are (strong) nominal sets [11, 26]. Note that we do not

need the full power of the theory but mainly the basic notion of
name-permutation. For an element x belonging to a (nominal) set
X we write ν(x) for its name-support, which is the set of names
occurring in x. Moreover, for any x, y ∈ X , we write x ∼ y if
there is a permutation π such that x = π · y.

We proceed to define a category of games. The objects of our
category will be arenas, which are nominal sets carrying specific
type information.

Definition 4. An arena is a pair A = (MA, ξA) where:

• MA is a nominal set of moves;
• ξA : MA → (A ⇀ Ints) is a nominal typing function;

such that, for all m ∈MA, dom(ξA(m)) = ν(m).

We start by defining the following basic arenas,

1 = ({∗}, {(∗, ∅)}, Z = (Z, {(i, ∅)},
I = (A ∪ {nul}, {(nul, ∅)} ∪ {(a, a, I)}),

for all interfaces I. Given arenas A and B, we can form the arena
A×B by:

MA×B = {(m,n) ∈MA ×MB | a ∈ ν(m) ∩ ν(n)

=⇒ ξA(m,a) ≤ ξB(n, a) ∨ ξB(n, a) ≤ ξA(m,a)}

ξA×B((m,n), a) =

(
ξA(m,a) if a /∈ ν(n) ∨ ξA(m,a) ≤ ξB(n, a)

ξB(n, a) otherwise

Another important arena is #(I1, · · · , In), with:

M#(~I) = {(a1, · · · , an) ∈ An | ai’s distinct}
ξ#(~I)((a1, · · · , an), ai) = Ii

for all n ∈ N. In particular, A#0 = 1.
For each type θ, we set Valθ to be the set of semantic values of

type θ, given by:

Val void = M1, Val int = MZ, ValI = MI .

For each type sequence ~θ = θ1, · · · , θn, we set Val~θ = Valθ1 ×
· · · ×Valθn .

We let a store Σ be a type-preserving finite partial function from
names to object types and field assignments, that is, Σ : A ⇀
Ints × (Flds ⇀ Val) such that |Σ| is finite and

Σ(a) : I ∧∆(I).f = θ =⇒ Σ(a).f = v ∧Σ ` v ≤ θ,
where the new notation is explained below. First, assumingΣ(a) =
(I′, φ), the judgement Σ(a) : I holds iff I = I′ and Σ(a).f
stands for φ(f). Next we define typing rules for values in store
contexts:

v ∈ Val void

Σ ` v : void

v ∈ Val int

Σ ` v : int

Σ(v) : I ∨ v = nul

Σ ` v : I
and write Σ ` v ≤ θ for Σ ` v : θ ∨ (Σ ` v : I′ ∧ I′ ≤ θ).

We let Sto be the set of all stores. We write dom(Σ(a)) for
the set of all f such that Σ(a).f is defined. We let Sto0 contain all
stores Σ such that:

∀a ∈ dom(Σ), f ∈ dom(Σ(a)). Σ(a).f ∈ {∗, 0, nul}
and we call such a Σ a default store.

Given arenasA andB, plays inAB will consist of sequences of
moves (with store) which will be either moves from MA ∪MB , or
moves representing method calls and returns. Formally, we define:

MAB = MA ∪MB ∪ Calls ∪ Retns

where we set Calls = {call a.m(~v) | a ∈ A∧~v ∈ Val∗} and
Retns = {ret a.m(v) | a ∈ A ∧ v ∈ Val }.

Definition 5. A legal sequence inAB is a sequence of moves from
MAB that adheres to the following grammar (Well-Bracketing),
where mA and mB range over MA and MB respectively.

LAB ::= ε | mAX | mAY mBX

X ::= Y | Y (call a.m(~v))X

Y ::= ε | Y Y | (call a.m(~v))Y (ret a.m(v))

We write LAB for the set of legal sequences in AB. In the last
clause above, we say that call a.m(~v) justifies ret a.m(v).

To each s ∈ LAB we assign a polarity function p from move
occurrences in s to the set Pol1 = {O,P}. Polarities represent the
two players in our game reading of programs: O is the Opponent
and P is the Proponent in the game. The latter corresponds to the
modelled program, while the former models the possible computa-
tional environments surrounding the program. Polarities are com-
plemented via O = {P} and P = {O}. In addition, the polarity
function must satisfy the condition:

• For all mX ∈ MX (X = A,B) occurring in s we have
p(mA) = O and p(mB) = P ; (O-starting)

• If mn are consecutive moves in s then p(n) ∈ p(m). (Alterna-
tion)

It follows that there is a unique p for each legal sequence s, namely
the one which assigns O precisely to those moves appearing in odd
positions in s.

A move-with-store in AB is a pair mΣ with Σ ∈ Sto and
m ∈ MAB . For each sequence s of moves-with-store we define
the set of available names of s by:

Av(ε) = ∅, Av(smΣ) = Σ∗(Av(s) ∪ ν(m))

where, for each X ⊆ A, we let Σ∗(X) =
S
iΣ

i(X), with

Σ0(X) = X, Σi+1(X) = ν(Σ(Σi(X))).

That is, a name is available in s just if it appears inside a move in
s, or it can be reached from an available name through some store
in s. We write s for the underlying sequence of moves of s (i.e.
π1(s)), and let v denote the prefix relation between sequences. If
s′mΣ v s and a ∈ ν(mΣ) \ ν(s′) then we say a is introduced
by mΣ in s.1 In such a case, we define the owner of the name a in
s, written o(a), to be p(m) (where p is the polarity associated with
s). For each polarity X ∈ {O,P} we let

X(s) = {a ∈ ν(s) | o(a) = X}
be the set of names in s owned by X .

Definition 6. A play in AB is a sequence of moves-with-store s
such that s is a legal sequence and, moreover, for all s′mΣ v s:
• It holds that dom(Σ) = Av(s′mΣ). (Frugality)
• If a ∈ dom(Σ) with Σ(a) : I then:

if m ∈MX , for X ∈ {A,B}, then I ≤ ξX(m,a);
for all nT in s′, if a ∈ dom(T) then T (a) : I;
if ∆(I).m = ~θ → θ then:
− if m = call a.m(~v) then Σ ` ~v : ~θ′ for some ~θ′ ≤ ~θ,
− if m = ret a.m(v) then Σ ` v : θ′ for some θ′ ≤ θ.

(Well-classing)
• If m = call a.m(~v) then o(a) ∈ p(m). (Well-calling)

We write PAB for the set of plays in AB.

1 By abuse of notation, we frequently write instead “a is introduced by m
in s”. Recall also that ν(s) collects all names appearing in s; in particular,
ν(mΣ1

1 · · ·mΣii) = ν(m1) ∪ ν(Σ1) ∪ · · · ∪ ν(mi) ∪ ν(Σi).

Note above that, because of well-bracketing and alternation, if
m = ret a.m(v) then well-calling implies o(a) = p(m). Thus,
the frugality condition stipulates that names cannot appear in a
play in unreachable parts of a store (cf. [17]). Moreover, well-
classing ensures that the typing information in stores is consistent
and adheres to the constraints imposed by ∆ and the underlying
arenas. Finally, well-calling implements the specification that each
player need only call the other player’s methods. This is because
calls to each player’s own methods cannot in general be observed
and so should not be accounted for in plays.

Given arenas A,B,C, next we define interaction sequences,
which show how plays from AB and BC can interact to produce a
play in AC. The sequences will rely on moves with stores, where
the moves come from the set:

MABC = MA ∪MB ∪MC ∪ Calls ∪ Retns .

The moves will be assigned polarities from the set:

Pol2 = { OL, PL, OLPR, PLOR, OR, PR } .
The index L stands for “left”, while R means “right”. The indices
indicate which part of the interaction (A,B or C) a move comes
from, and what polarity it has therein. We also consider an auxiliary
notion of pseudo-polarities:

OO = {OL, OR}, PO = {PL, PLOR}, OP = {PR, OLPR}.
Each polarity has an opposite pseudo-polarity determined by:

OL = OLPR = PO, OR = PLOR = OP, PL = PR = OO.

Finally, each X ∈ {AB,BC,AC} has a designated set of polari-
ties given by:

p(AB) = {OL, PL, OLPR, PLOR},
p(BC) = {OR, PR, OLPR, PLOR},
p(AC) = {OL, PL, OR, PR}.

Note the slight abuse of notation with p, as it is also used for move
polarities.

Suppose X ∈ {AB,BC,AC}. Consider a sequence s of
moves-with-store from ABC (i.e. a sequence with elements mΣ

with m ∈ MABC) along with an assignment p of polarities from
Pol2 to moves of s. Let s � X be the subsequence of s containing
those moves-with-store mΣ of s for which p(m) ∈ p(X). Addi-
tionally, we define s �γ X to be γ(s � X), where the function
γ acts on moves-with-store by restricting the domains of stores to
available names:

γ(ε) = ε, γ(smΣ) = γ(s)mΣ�Av(smΣ).

Definition 7. An interaction sequence in ABC is a sequence s of
moves-with-store in ABC satisfying the following conditions.

• For each s′mΣ v s, dom(Σ) = Av(s′mΣ). (Frugality)
• If s′mΣ v s and a ∈ dom(Σ) with Σ(a) : I then:

if m ∈MX , for X ∈ {A,B,C}, then I ≤ ξX(m,a);
for all nT in s′, if a ∈ dom(T) then T (a) : I;
if ∆(I).m = ~θ → θ then:
− if m = call a.m(~v) then Σ ` ~v : ~θ′ for some ~θ′ ≤ ~θ,
− if m = ret a.m(v) then Σ ` v : θ′ for some θ′ ≤ θ.

(Well-classing)
• There is a polarity function p from move occurrences in s to

Pol2 such that:
For all mX ∈ MX (X = A,B,C) occurring in s we have
p(mA) = OL, p(mB) = PLOR and p(mC) = PR;
If mn are consecutive moves in s then p(n) ∈ p(m).

(Alternation)

OO

OL

��

OR

��
PO

PL

HH

PLOR
,,
OP

OLPR

ll

PR

VV

Figure 3. Interaction diagram for Int(ABC). The diagram spec-
ifies the alternation of polarities in interaction sequences. Transi-
tions are labelled by move polarities, while OO is the initial state.

• If s′mΣ v s then m = call a.m(v) implies o(a) ∈ p(m).
(Well-calling)
• For each X ∈ {AB,BC,AC}, s � X ∈ LX . (Projecting)
• If s′mΣ v s and m = ret a.m(v) then there is a move nT in
s′ such that, for all X such that p(m) ∈ p(X), n is the justifier
of m in s � X . (Well-returning)
• Laird’s conditions [17]:

P (s �γ AB) ∩ P (s �γ BC) = ∅;
(P (s �γ AB) ∪ P (s �γ BC)) ∩O(s �γ AC) = ∅;
For each s′ v s ending in mΣnT and each a ∈ dom(T), if
− p(m) ∈ PO and a /∈ ν(s′ �γ AB),
− or p(m) ∈ OP and a /∈ ν(s′ �γ BC),
− or p(m) ∈ OO and a /∈ ν(s′ �γ AC),

then Σ(a) = T (a).

We write Int(ABC) for the set of interaction sequences in ABC.

Note that, by projecting and well-returning, each return move
in s has a unique justifier. Next we show that the polarities of
moves inside an interaction sequence are uniquely determined by
the interaction diagram of Figure 3. The diagram can be seen as
an automaton accepting s, for each s ∈ Int(ABC). The edges
represent moves by their polarities, while the labels of vertices
specify the polarity of the next (outgoing) move. For example, from
OO we can only have a move m with p(m) ∈ {OL, OR}, for any
p.

Lemma 1. Each s ∈ Int(ABC) has a unique polarity function p.

Proof. Suppose s ∈ Int(ABC). We claim that the alternation,
well-calling, projecting and well-returning conditions uniquely
specify p. Consider the interaction diagram of Figure 3, which
we read as an automaton accepting s, call itA. The edges represent
moves by their polarities, while the labels of vertices specify the
polarity of the next (outgoing) move. By projecting we obtain that
the first element of s is some mA and, by alternation, its polarity is
OL. Thus, OO is the initial state.
We now use induction on |s| to show that A has a unique run on
s. The base case is trivial, so suppose s = s′m. By induction hy-
pothesis, A has a unique run on s′, which reaches some state X .
We do a case analysis on m. If m ∈ MA ∪MB ∪MC then there
is a unique edge accepting m and, by alternation, this edge must
depart from X . If, on the other hand, m = call a.m(~v) then the
fact that o(a) ∈ p(m) gives two possible edges for accepting m.
But observe that no combination of such edges can depart from X .
Finally, let m = ret a.m(v) be justified by some n in s′. Then, by
well-bracketing, n is the justifier of m in all projections, and hence
the edge accepting m must be the opposite of the one accepting n
(e.g. if m is accepted by OL then n is accepted by PL).

Next we show that interaction sequences project to plays. The
projection of interaction sequences in ABC on AB, BC and AC

leads to the following definition of projections of polarities,

πAB(XL) = X πAB(XLYR) = X πAB(YR) = undef.
πBC(XL) = undef. πBC(XLYR) = Y πBC(YR) = Y

πAC(XL) = X πAC(XLYR) = undef. πAC(YR) = Y

where X,Y ∈ {O,P}. We can now show the following.

Lemma 2. Let s ∈ Int(ABC). Then, for eachX ∈ {AB,BC,AC}
and each mΣ in s, if p(m) ∈ p(X) then πX(p(m)) = pX(m),
where pX is the polarity function of s � X .

Proof. We show this for X = AB, the other cases are proven
similarly, by induction on |s| ≥ 0; the base case is trivial. For
the inductive case, if m is the first move in s with polarity in
p(AB) then, by projecting, m ∈ MA and therefore p(m) = OL
and pAB(m) = O, as required. Otherwise, let n be the last
move in s with polarity in p(AB) before m. By IH, pAB(n) =

πAB(p(n)). Now, by projecting, pAB(m) = pAB(n) and observe
that, for all X ∈ p(n), πAB(X) = πAB(p(n)), so in particular
πAB(p(m)) = πAB(p(n)) = pAB(n) = pAB(m).

The following lemma formulates a taxonomy on names appear-
ing in interaction sequences.

Lemma 3. Let s ∈ Int(ABC). Then,

1. ν(s) = O(s �γ AC)] P (s �γ AB)] P (s �γ BC);
2. if s = tmΣ and:
• p(m) ∈ OO and s �γ AC = t′mΣ′ ,
• or p(m) ∈ PO and s �γ AB = t′mΣ′ ,
• or p(m) ∈ OP and s �γ BC = t′mΣ′ ,

then ν(t)∩ ν(mΣ′) ⊆ ν(t′) and, in particular, if m introduces
name a in t′mΣ′ then m introduces a in s.

Proof. For 1, by definition of interactions we have that these sets
are disjoint. It therefore suffices to show the left-to-right inclusion.
Suppose that a ∈ ν(s) is introduced in some mΣ in s, with
p(m) ∈ PO, and let s �γ AB = · · ·mΣ′ · · · . If a ∈ ν(mΣ′)
then a ∈ P (s �γ AB), as required. Otherwise, by Laird’s last
set of conditions, a is copied from the store of the move preceding
mΣ in s, a contradiction to its being introduced at mΣ . Similarly
if p(m) ∈ OP . Finally, if p(m) ∈ OO then we work similarly,
considering O(s �γ AC).
For 2, we show the first case, and the other cases are similar. It
suffices to show that (ν(mΣ′) \ ν(t′)) ∩ ν(t) = ∅. So suppose
a ∈ ν(mΣ′) \ ν(t′), therefore a ∈ O(s �γ AC). But then
we cannot have a ∈ ν(t) as the latter, by item 1, would imply
a ∈ P (s �γ AB) ∪ P (s �γ BC).

Proposition 4. For all s ∈ Int(ABC), the projections s �γ AB,
s �γ BC and s �γ AC are plays inAB,BC andAC respectively.

Proof. By frugality of s and application of γ, all projections satisfy
frugality. Moreover, well-classing is preserved by projections. For
well-calling, let m = call a.m(~v) be a move in s and let nT be
the move introducing a in s. Suppose p(m) ∈ p(AB) and let
us assume pAB(m) = O. We need to show that oAB(m) = P .
By pAB(m) = O we obtain that p(m) ∈ {OL, OLPR} and, by
well-calling of s, we have that o(a) ∈ PO. Thus, p(n) ∈ PO
and, by Lemma 3, n introduces a in s �γ AB and therefore
oAB(n) = P , as required. If, on the other hand, pAB(m) = P
then we obtain p(n) ∈ OO ∪ OP and therefore, by Lemma 3,
a ∈ P (s �γ BC) ∪ O(s �γ AC). Thus, by the same lemma,
a /∈ P (s �γ AB) and hence oAB(a) = O. The cases for the other
projections are shown similarly.

In our setting programs will be represented by strategies be-
tween arenas. We shall introduce them next after a few auxiliary
definitions. Intuitively, strategies capture the observable computa-
tional patterns produced by a program.

Let us define the following notion of subtyping between stores.
For Σ,Σ′ ∈ Sto, Σ ≤ Σ′ holds if, for all names a,

Σ′(a) : I′ =⇒ Σ(a) ≤ I′∧∀f ∈ dom(Σ′(a)).Σ(a).f = Σ′(a).f

In particular, if a is in the domain of Σ′, Σ may contain more
information about a because of assigning to a a larger interface.
Accordingly, for plays s, s′ ∈ PAB , we say that s is an O-extension
of s′ if s and s′ agree on their underlying sequences, while their
stores may differ due to subtyping related to O-names. Where such
subtyping leads to s having stores with more fields than those in s′,
P is assumed to copy the values of those fields. Formally, s ≤O s′

is defined by the rules:

ε ≤O ε

s ≤O s′ Σ ≤ Σ′ Σ � P (smΣ) ⊆ Σ′

smΣ ≤O s′mΣ′
p(m)=O

snT ≤O s′ Σ ≤ Σ′ Σ extends Σ′ by T
snTmΣ ≤O s′mΣ′

p(m)=P

where Σ extends Σ′ by T if:

• for all a ∈ dom(Σ) \ dom(Σ′), Σ(a) = T (a);
• for all a and f ∈ dom(Σ(a))\dom(Σ′(a)),Σ(a).f = T (a).f.

The utility of O-extension is to express semantically the fact that the
environment of a program may use up-casting to inject in its objects
additional fields (and methods) not accessible to the program.

Definition 8. A strategy σ inAB is a non-empty set of even-length
plays from PAB satisfying the conditions:

• If smΣnT ∈ σ then s ∈ σ. (Even-prefix closure)
• If smΣ , snT ∈ σ then smΣ ∼ snT . (Determinacy)
• If s ∈ σ and s ∼ t then t ∈ σ. (Equivariance)2

• If s ∈ σ and t ≤O s then t ∈ σ. (O-extension)

We write σ : A → B when σ is a strategy in AB. If σ : A → B
and τ : B → C, we define their composition σ; τ by:

σ; τ = {s �γ AC | s ∈ σ‖τ}

where σ‖τ = {s ∈ Int(ABC) | s �γ AB ∈ σ ∧ s �γ BC ∈ τ}.

In definitions of strategies we may often leave the presence of
the empty sequence implicit, as the latter is a member of every
strategy. For example, for each arena A, we define the strategy:

idA : A→ A = {mΣ
Am

Σ
A ∈ PAA}

The next series of lemmata allow us to show that strategy com-
position is well defined.

Lemma 5. If smΣ , snT ∈ σ‖τ with p(m) /∈ OO then smΣ ∼
snT . Hence, if s1m

Σ , s2n
T ∈ σ‖τ with p(m) /∈ OO and s1 ∼ s2

then s1m
Σ ∼ s2n

T .

Proof. For the latter part, if s1 = π · s2 then, since π · (s2n
T) ∈

σ‖τ , by former part of the claim we have s1m
Σ ∼ π · (s2n

T) so
s1m

Σ ∼ s2n
T .

Now, for the former part, suppose WLOG that p(m) ∈ PO.
Then, by the interaction diagram, we also have p(n) ∈ PO. As
smΣ, snT �γAB ∈ σ, by determinacy of σ we get s′mΣ′∼ s′nT

′
,

2 Recall that, for any nominal set X and x, y ∈ X , we write x ∼ y just if
there is a permutation π such that x = π · y.

with s′mΣ′ = smΣ �γ AB and s′nT
′

= snT �γ AB. We there-
fore have (s′,mΣ′) ∼ (s′, nT) and, trivially, (s, s′) ∼ (s, s′).
Moreover, by Lemma 3, ν(mΣ′) ∩ ν(s) ⊆ ν(s′) and ν(nT

′
) ∩

ν(s) ⊆ ν(s′) hence, by Strong Support Lemma [26], smΣ′ ∼
snT

′
. By Laird’s last set of conditions, the remaining values of

Σ,T are determined by the last store in s, hence smΣ ∼ snT .

Lemma 6. If s1, s2 ∈ σ‖τ end in moves with polarities in p(AC)
and s1 �γ AC = s2 �γ AC then s1 ∼ s2.

Proof. By induction on |s1 �γ AC| > 0. The base case is encom-
passed in si = s′im

Σi with p(m) ∈ OO, i = 1, 2, where note that
by IH m will have the same polarity in s1, s2. Then, by IH we get
s′1 = π · s′2, for some π. Let s′′im

Σ′ = si �γ AC, for i = 1, 2, so
in particular s′′1 = π · s′′2 and therefore (s′1, s

′′
1) ∼ (s′2, s

′′
2). More-

over, by hypothesis, we trivially have (mΣ′ , s′′1) ∼ (mΣ′ , s′′2) and
hence, by Lemma 3 and Strong Support Lemma [26], we obtain
s′1m

Σ′ ∼ s′2m
Σ′ which implies s1 ∼ s2 by Laird’s conditions.

Suppose now si = s′is
′′
im

Σi , i = 1, 2, with p(m) ∈ P (AC)\OO
and the last move in s′i being the last move in s′is

′′
i having polarity

in p(AC). By IH, s′1 ∼ s′2. Then, by consecutive applications of
Lemma 5, we obtain s1 ∼ s2.

Proposition 7. If σ : A→ B and τ : B → C then σ; τ : A→ C.

Proof. We show that σ; τ is a strategy. Even-prefix closure and
equivariance are clear. Moreover, since each s ∈ σ‖τ has even-
length projections in AB and BC, we can show that its projection
in AC is even-length too. For O-extension, if s ∈ σ; τ and t ≤O s
with s = u �γ AC and u ∈ σ‖τ , we can construct v ∈ Int(ABC)
such that t = v �γ AC and v ≤O u, where ≤O is defined
for interaction sequences in an analogous way as for plays (with
condition p(m) = O replaced by p(m) ∈ OO, and p(m) =
P by p(m) ∈ PO ∪ OP). Moreover, v �γ AB ≤O u �γ
AB and v �γ BC ≤O u �γ BC, so t ∈ σ; τ . Finally, for
determinacy, let smΣ , snT ∈ σ; τ be due to s1s

′
1m

Σ′ , s2s
′
2n
T ′ ∈

σ‖τ respectively, where s1, s2 both end in the last move of s. By
Lemma 6, we have s1 ∼ s2 and thus, by consecutive applications
of Lemma 5, we get s1s

′
1m

Σ′ ∼ s2s
′
2n
T ′ , so smΣ ∼ snT .

The above result shows that strategies are closed under com-
position. We can prove that composition is associative and, conse-
quently, obtain a category of games.

Proposition 8. For all ρ : A → B, σ : B → C and τ : C → D,
(ρ;σ); τ = ρ; (σ; τ).

Definition 9. Given a class table ∆, we define the category G∆

having arenas as objects and strategies as morphisms. Identity
morphisms are given by idA, for each arena A.

Note that neutrality of identity strategies easily follows from the
definitions and, hence, G∆ is well defined. In the sequel, when ∆
can be inferred from the context, we shall write G∆ simply as G.
As a final note, for class tables ∆ ⊆ ∆′, we can define a functor

∆/∆′ : G∆ → G∆′

which acts as the identity map on arenas, and sends each σ : A →
B of G∆ to:

(∆/∆′)(σ) = {s ∈ P∆′
AB | ∃t ∈ σ. s ≤O t}

where P∆′
AB refers to plays in G∆′ . In the other direction, we can

define a strategy transformation:

(∆′/∆)(σ) = σ ∩ P∆
AB

which satisfies ∆′/∆(∆/∆′(σ)) = σ.

4. Soundness
Here we introduce constructions that will allow us to build a model
of IMJ. We begin by defining a special class of strategies. A strategy
σ : A → B is called evaluated if there is a function fσ : MA →
MB such that:

σ = {mΣ
Am

Σ
B ∈ PAB |mB = fσ(mA)} .

Note that equivariance of σ implies that, for all mA ∈ MA and
permutations π, it holds that π · fσ(mA) = fσ(π ·mA). Thus, in
particular, ν(fσ(mA)) ⊆ ν(mA).

Recall that, for arenas A and B, we can construct a product
arena A×B. We can also define projection strategies:

π1 : A×B → A = {(mA,mB)ΣmΣ
A ∈ P(A×B)A}

and, analogously, π2 : A × B → B. Note that the projections are
evaluated. Moreover, for each object A,

!A = {mΣ
A ∗Σ |mΣ

A ∈ PA1}
is the unique evaluated strategy of type A→ 1.

Given strategies σ : A→ B and τ : A→ C, with τ evaluated,
we define:

〈σ, τ〉 : A→ B×C = {mΣ
A s[(mB , fτ (mA))/mB] |mΣ

As ∈ σ}
where we write s[m′/mB] for the sequence obtained from s by
replacing any occurrences of mB in it by m′ (note that there can
be at most one occurrence of mB in s).

The above structure yields products for evaluated strategies.

Lemma 9. Evaluated strategies form a wide subcategory of G
which has finite products, given by the above constructions.
Moreover, for all σ : A → B and τ : A → C with τ evaluated,
〈σ, τ〉;π1 = σ and 〈σ, τ〉 = 〈σ, idA〉; 〈π1, π2; τ〉.

Using the above result, we can extend pairings to general σ :
A→ B and τ : A→ C by:

〈σ, τ〉 = A
〈σ,idA〉−−−−−→ B ×A 〈π2;τ,π1〉−−−−−−→ C ×B

∼=−→ B × C
where ∼= is the isomorphism 〈π2, π1〉. The above represents a
notion of left-pairing of σ and τ , where the effects of σ precede
those of τ . We can also define a left-tensor between strategies:

σ × τ = A×B 〈π1;σ,π2〉−−−−−−→ A′ ×B 〈π1,π2;τ〉−−−−−−→ A′ ×B′

for any σ : A→ A′ and τ : B → B′.

Lemma 10. Let τ ′ : A′ → A, σ : A → B1, τ : A → B2,
σ1 : B1 ×B2 → C1 and σ2 : B2 → C2, with τ and τ ′ evaluated.
Then τ ′; 〈σ, τ〉; 〈σ1, π2;σ2〉 = 〈τ ′; 〈σ, τ〉;σ1, τ

′; τ ;σ2〉.

Proof. The result follows from the simpler statements:

τ ; 〈σ, id〉 = 〈τ ;σ, τ〉, 〈σ, id〉; 〈σ′, π2〉 = 〈〈σ; id〉;σ′, id〉,
for all appropriately typed σ, σ′, τ , with τ evaluated, and Lemma 9.

An immediate consequence of the above is:

A
〈σ;τ〉−−−→ B1 ×B2

σ1×σ2−−−−→ C1 × C2 = A
〈σ;σ1,τ ;σ2〉−−−−−−−→ C1 × C2

More generally, Lemma 10 provides us with naturality conditions
similar to those present in Freyd categories [25] or, equivalently,
categories with monadic products [22].

We also introduce the following weak notion of coproduct.
Given strategies σ, τ : A→ B, we define:

[σ, τ] : Z×A→ B = {(1,mA)Σs |mΣ
As ∈ σ}

∪ {(0,mA)Σs |mΣ
As ∈ τ}

Setting î : 1 → Z = {∗ i}, for each i ∈ Z, we can show the
following.

Lemma 11. For all strategies σ′ : A′ → A and σ, τ : A→ B,

• 〈!; 0̂, id〉; [σ, τ] = τ and 〈!; 1̂, id〉; [σ, τ] = σ;
• if σ′ is evaluated then (idZ × σ′); [σ, τ] = [σ′;σ, σ′; τ].

Method definitions in IMJ induce a form of exponentiation:Vn
i=1(∆|Γ] {~xi : ~θi} `Mi : θi)

∆|Γ ` M : Θ
Θ={mi:~θi→θi | 1≤i≤n}
∧M={mi:λ~xi.Mi | 1≤i≤n}

the modelling of which requires some extra semantic machinery.
Traditionally, in call-by-value game models, exponentiation leads
to ‘effectless’ strategies, corresponding to higher-order value terms.
In our case, higher-order values are methods, manifesting them-
selves via the objects they may inhabit. Hence, exponentiation nec-
essarily passes through generation of fresh object names containing
these values. These considerations give rise to two classes of strate-
gies introduced below.

We say that an even-length play s ∈ PAB is total if it is either
empty or s = mΣ

Am
Σ]T
B s′ and:

• T ∈ Sto0 and ν(mB) ∩ ν(Σ) ⊆ ν(mA),

• if s′= s′′mΣ′nT
′
and a ∈ dom(Σ)\ν(γ(mΣ0

A mΣ0]T
B s′)), for

Σ0 ∈ Sto0 such that γ(mΣ0
A mΣ0]T

B s′) ∈ PAB , then a /∈ ν(n)
and T ′(a) = Σ′(a).

We write P t
AB for the set of total plays in AB. Thus, in total plays,

the initial move mA is immediately followed by a move mB , and
the initial store Σ is invisible to P in the sense that P cannot use
its names nor their values. A strategy φ : A → B is called single-
threaded if it consists of total plays and satisfies the conditions:3

• for all mΣ
A ∈ PAB there is mΣ

Am
T
B ∈ φ;

• ifmΣ
A m

Σ]T
B s ∈ φ then γ(mΣ0

A mΣ0]T
B s) ∈ φ, forΣ0 ∈ Sto0;

• if mΣ
Am

Σ]T
B s call a.m(~v)Σ

′
s′ ∈ φ and a ∈ ν(T) then s = ε.

Thus, single-threaded strategies reply to every initial move mΣ
A

with a move mT
B which depends only on mA (i.e. P does not read

before playing). Moreover,mT
B does not change the values ofΣ (P

does not write) and may introduce some fresh objects, albeit with
default values. Finally, plays of single-threaded strategies consist
of just one thread, where a thread is a total play in which there can
be at most one call to names introduced by its second move.

Conversely, given a total play starting with mΣ
Am

Σ]T
B , we can

extract its threads by tracing back for each move in s the method
call of the object a ∈ ν(T) it is related to. Formally, for each total
play s = mΣ

Am
Σ]T
B s′ with |s′| > 0, the threader move of s,

written thrr(s), is given by induction:

• thrr(s′mΣ′) = thrr(s′), if p(m) = P ;

• thrr(s′call a.m(~v)Σ
′
) = call a.m(~v)Σ

′
, if a ∈ ν(T);

• thrr(s′nT
′
s′′call a.m(~v)Σ

′
) = thrr(s′nT

′
), if a ∈ P (s)\ν(T)

and n introduces a.
• thrr(s′nT

′
s′′mΣ′)= thrr(s′nT

′
), if p(m) = O and n justifies m.

If s = s′nT
′
s′′ with |s′| ≥ 2, we set thrr(nT

′
) = thrr(s′nT

′
).

Then, the current thread of s is the subsequence of s containing
only moves with the same threader move as s, that is, if thrr(s) =

mΣ′ and s = mΣ
Am

Σ]T
B s′ then

dse = mΣ
Am

Σ]T
B (s′ � mΣ′)

3 Note that the use of the term “thread” here is internal to game semantics
parlance and in particular should not be confused with Java threads.

where the restriction retains only those moves nT
′

of s′ such that
thrr(nT

′
) = mΣ′ . We extend this to the case of |s| ≤ 2 by setting

dse = s. Finally, we call a total play s ∈ PAB thread-independent
if for all s′mΣ′ veven s with |s′| > 2:

• if γ(ds′mΣ′e) = s′′mΣ′′ then ν(Σ′′) ∩ ν(s′) ⊆ ν(s′′);

• if s′ ends in some nT
′

and a ∈ dom(Σ′)\ν(γ(ds′mΣ′e)) then
Σ′(a) = T ′(a).

We write P ti
AB for the set of thread-independent plays in AB.

We can now define strategies which occur as interleavings of
single-threaded ones. Let φ : A→ B be a single-threaded strategy.
We define: φ† = {s ∈ P ti

AB | ∀s′ vevens. γ(ds′e) ∈ φ}.

Lemma 12. φ† is a strategy, for each single-threaded φ.

Proof. Equivariance, Even-prefix closure and O-extension fol-
low from the corresponding conditions on φ. For determinacy,
if smΣ , snT ∈ φ† with |s| > 0 then, using determinacy of φ
and the fact that P-moves do not change the current thread, nor do
they modify or use names from other threads, we can show that
smΣ ∼ snT .

We say that a strategy σ is thread-independent if σ = τ† for
some single-threaded strategy τ . Thus, thread-independent strate-
gies do not depend on initial stores and behave in each of their
threads in an independent manner. Note in particular that evaluated
strategies are thread-independent (and single-threaded).

Lemma 13. Let σ : A → B and τ : A → C be strategies with τ
thread-independent. Then, 〈σ, τ〉;π1 = σ and:

〈σ, τ〉 = A
〈τ,σ〉−−−→ C ×B

∼=−→ B × C .

Proof. The former claim is straightforward. For the latter, we ob-
serve that the initial effects of σ and τ commute: on initial move
mΣ
A , τ does not read the store updates that σ includes in its re-

sponse mΣ′
B , while σ cannot access the names created by τ in its

second move mΣ′]T
C .

It is worth noting that the above lemma does not suffice for ob-
taining categorical products. Allowing thread-independent strate-
gies to create fresh names in their second move breaks universality
of pairings. Considering, for example, the strategy:

σ : 1→ I × I = {∗ (a, a)Σ ∈ P1(I×I) | Σ ∈ Sto0}

we can see that σ 6= 〈σ;π1, σ;π2〉, as the right-hand-side contains
plays of the form ∗ (a, b)T with a 6= b.

We can now define an appropriate notion of exponential for our
games. Let us assume a translation assigning an arena J~θK to each
type sequence ~θ. Moreover, let I be an interface such that

∆(I) � Meths = {m1 : ~θ1 → θ1, · · · ,mn : ~θn → θn}

where ~θi = θi1, · · · , θimi , for each i. For any arena A, given
single-threaded strategies φ1, · · · , φn : A→ I such that, for each
i, if mΣ

Aa
Σ]T s ∈ φi then

a /∈ ν(Σ) ∧ T (a) : I ∧ (call a.m(~v) ∈ s =⇒ m = mi),

we can group them into one single-threaded strategy:

〈〈φ1, . . . , φn〉〉 : A→ I =
[n

i=1
φi .

Note that the a above is fresh for each mΣ
A (i.e. a /∈ ν(mΣ

A)).

Let now σ1, · · · , σn be strategies with σi : A × J~θiK → JθiK.
For each i, we define the single-threaded strategy Λ(σi) : A→ I:

Λ(σi) = {mΣ
Aa

Σ]Tcall a.mi(~v)Σ
′
s ∈ P t

AI | γ((mA, ~v)Σ
′
s) ∈ σi}

∪ {mΣ
Aa

Σ]T call a.mi(~v)Σ
′
s ret a.mi(v)T

′
s′ ∈ P t

AI |

γ((mA, ~v)Σ
′
s vT

′
s′) ∈ σi} ∪ {mΣ

Aa
Σ]T ∈ P t

AI}

where a /∈ ν(Σ,~v, v, s, s′, Σ′, T ′) and T (a) : I. By definition,
Λ(σi) is single-threaded. Therefore, setting

Λ(σ1, . . . , σn) = 〈〈Λ(σ1), . . . ,Λ(σn)〉〉† : A→ I,
we obtain a thread-independent strategy implementing a simultane-
ous currying of σ1, · · · , σn. In particular, given translations JMiK
for each method in a method-set implementationM, we can con-
struct:

JMK : JΓK→ I = Λ(JM1K, · · · , JMnK).

Finally, we define evaluation strategies evmi : I × J~θiK→ JθiK by
(taking even-length prefixes of):

evmi = {(a,~v)Σcall a.mi(~v)Σret a.mi(v)TvT ∈ PAi |Σ(a) ≤ I}

whereAi = (I×J~θiK)JθiK. We can now show the following natural
mapping from groups of strategies in A × J~θiK → JθiK to thread-
independent ones in A→ I.

Lemma 14. Let σ1, · · · , σn be as above, and let τ : A′ → A be
evaluated. Then,

• Λ(σ1, . . . , σn)× id; evmi = σi,
• τ ; Λ(σ1, . . . , σn) = Λ((τ × id);σ1, . . . , (τ × id);σn).

Apart from dealing with exponentials, in order to complete our
translation we need also to address the appearance of x : I in the
rule4

Γ, x : I,∆ ` M : Θ

Γ,∆ ` new(x : I;M) : I ∆(I)�Meths=Θ.

Recall that
JMK : JΓK× I → I (1)

is obtained using exponentiation. Thus, the second move of JMK
will appear in the right-hand-side I above and will be a fresh name
b which will serve as a handle to the methods of M: in order to
invoke m : λ~x.M on input ~v, the Opponent would have to call
b.m(~v). The remaining challenge is to merge the two occurrences
of I in (1). We achieve this as follows. Let us assume a well-formed
extension ∆′ of ∆:

∆′ = (I′ : (f′ : I)),∆

that is, I′ contains a single field f′ of type I. We next define the
strategy κI : 1→ I′ × I of G∆′ :

κI = {∗ (a′, a)Σ0call a.m(~v)Σcall b.m(~v)Σret b.m(v)T ret a.m(v)T }†

where m ∈ dom(∆(I)), b = Σ(a′).f′, and Σ0 ∈ Sto0 is such
that Σ0(a) : I and Σ0(a′) : I′. We let Jnew(x : I;M)K be the
strategy:5

JΓK
〈id,!;κI〉;∼=−−−−−−−→ I′×JΓK×I id×〈JMK,π2〉−−−−−−−−→ I′×I×I

(asnf′×id);π2−−−−−−−−→ I
and asnf is the assignment strategy:

asnf : I × JθK→ 1 = {(a, v)Σ∗Σ[a.f 7→v] ∈ P(I×JθK)1},

4 Note that x may appear free inM; it stands for the keyword this of Java.
5 Here we omit wrapping JMK inside ∆/∆′, as well as wrapping the whole
Jnew(x : I;M)K in ∆′/∆, for conciseness.

for each field f. Thus, object creation involves creating a pair of
names (a′, a) with a : I and a′ : I′, where a is the name of the
object we want to return. The name a′ serves as a store where the
handle of the method implementations, that is, the name created
by the second move of JMK, will be passed. The strategy κI ,
upon receiving a request call a.m(~v)Σ , simply forwards it to the
respective method of a′.f′ and, once it receives a return value,
copies it back as the return value of the original call.

Let #(~I) :
−→
I → #(

−→
I) = {~aΣ~aΣ | ais distinct}, for each

sequence of interfaces
−→
I . The latter has a right inverse #(~I)−r :

#(
−→
I)→

−→
I with the same plays. We can now define the semantic

translation of terms.

Definition 10. The semantic translation is given as follows.

• Contexts Γ = {x1 : θ1, · · ·, xn : θn}∪{a1 : I1,· · · , am : Im}
are translated into arenas by

JΓK = Jθ1K× · · · × JθnK×#(I1, · · · , Im),

where JvoidK = 1, JintK = Z and JIK = I.
• Terms are translated as in Figure 4 (top part).

In order to prove that the semantics is sound, we will also need
to interpret terms inside state contexts. Let Γ ` M : θ, with
Γ = Γ1 ∪ Γ2, where Γ1 contains only variables and dom(Γ2) =
dom(S). A term-in-state-context (S,M) is translated into the strat-
egy:

JΓ1 ` (S,M)K = JΓ1K
JSK−−→ JΓ1K×

−→
I id×#(~I)−−−−−→ JΓK

JMK−−−→ JθK.

The semantic translation of states (Figure 4, lower part), comprises
two stages:

JΓ1 ` SK = JΓ1K
JSK1−−−→ JΓ1K×

−→
I JSK2−−−→ JΓ1K×

−→
I .

The first stage, JSK1, creates the objects in dom(S) and implements
their methods. The second stage of the translation, JSK2, initialises
the fields of the newly created objects.

In the rest of this section we show soundness of the seman-
tics. Let us call NEW, FIELDUP, FIELDAC and METHODCL re-
spectively the transition rules in Figure 2 which involve state.
Given a rule r, we write (S,M)

r−→ (S′,M ′) if the transition
(S,M) −→ (S′,M ′) involves applying r and context rules.

Proposition 15 (Correctness). Let (S,M) be a term-in-state-
context and suppose (S,M)

r−→ (S′,M ′).

1. If the transition r is not stateful then JMK = JM ′K.
2. If r is one of FIELDAC or FIELDUP then JSK2; (id×#(~I)); JMK =

JS′K2; (id×#(~I)); JM ′K.
3. If r is one of METHODCL or NEW then J(S,M)K = J(S′,M ′)K.

Thus, in every case, J(S,M)K = J(S′,M ′)K.

Proof. Claim 1 is proved by using the naturality results of this
section. For the let construct, we show by induction on M that
JM [v/x]K = 〈id, JvK〉; JMK. For 2 we use the following properties
of field assignment and access:

〈asnf , π1〉;π2; drff = 〈asnf , π2〉;π2 : I × JθK→ JθK
〈asnf , π1〉 × id;π2; asnf = id× π2; asnf : I × JθK× JθK→ 1

which are easily verifiable (the former one states that assigning a
field value and accessing it returns the same value; the latter that
two assignments in a row have the same effect as just the last
one). The final claim follows by showing that the diagrams below

• JΓ ` xi : θiK = JΓK πi−→ JθiK; • JΓ ` ai : IiK = JΓK
πn+1−−−→ #(

−→
I)

#(~I)−r−−−−−→
−→
I πi−→ Ii;

• JΓ ` skip : voidK = JΓK !−→ 1; • JΓ ` null : IK = JΓK !; ˆnul−−−→ I, where ˆnul : 1→ I = {∗ nul};

• JΓ ` i : intK = JΓK !;̂i−→ Z; • JΓ ` letx = M ′ inM :θK = JΓK
〈id,JM′K〉−−−−−−→ JΓK× Jθ′K

JMK−−−→ JθK;

• JΓ ` (I)M : IK = JΓK
JMK−−−→ I′

stpI′I−−−−→ I, where stpI′I : I′ → I = {nul nul} ∪ {aΣaΣ ∈ PI′I | Σ(a) ≤ I};

• JΓ `M ⊕M ′ : intK = JΓK
〈JMK,JM′K〉−−−−−−−→ Z× Z ⊕−→ Z, where ⊕ : Z× Z→ Z = {(i, j) (i⊕ j)};

• JΓ `M = M ′ : intK = JΓK
〈JMK,JM′K〉−−−−−−−→ I × I eq−→ Z, where eq = {(a, a)Σ 1Σ ∈ P(I×I)Z} ∪ {(a, b)Σ 0Σ ∈ P(I×I)Z | a 6= b};

• JΓ ` ifM thenM ′ elseM ′′ : θK = JΓK
〈JMK,id〉−−−−−→ Z× JΓK

[JM′K,JM′′K]−−−−−−−−→ JθK;

• JΓ ` new(x :I;M) : IK = JΓK
〈id,!;κI〉;∼=−−−−−−−→ I′ × JΓK× I id×〈JMK,π2〉−−−−−−−−→ I′ × I × I

asnf′×id−−−−−→ 1× I π2−→ I,

where JMK = JΓK× I Λ(JM1K,...,JMnK)−−−−−−−−−−−→ I ifM = {m1 : λ~x1.M1, · · · ,mn : λ~xn.Mn};

• JΓ `M.f := M ′ : voidK = JΓK
〈JMK,JM′K〉−−−−−−−→ I × JθK

asnf−−→ 1;

• JΓ `M.f : θK = JΓK
JMK−−−→ I drff−−→ JθK, where drff : I → JθK = {aΣvΣ ∈ PIJθK | Σ(a).f = v};

• JΓ `M.m(
−→
M) : θK = JΓK

〈JMK,J
−→
MK〉−−−−−−−→ I × J~θK evm−−→ JθK, where J

−→
MK = 〈〈〈JM1K, JM2K〉, · · · 〉, JMnK〉.

• JΓ1 ` SK = JΓ1K
〈id,−→κI〉−−−−−→ JΓ1K×

−−−−−→
(I′ × I)

∼=−→
−→
I′×(JΓ1K×

−→
I)

id×〈π2;J
−→
MK,id〉−−−−−−−−−−→

−→
I′×
−→
I ×(JΓ1K×

−→
I)

∼=×id−−−→
−−−−−→
(I′ × I)×(JΓ1K×

−→
I)

(−−→asnf′×id);π2−−−−−−−−→ JΓ1K×
−→
I 〈id,〈−→id,J

−→
V K〉〉−−−−−−−−→ (JΓ1K×

−→
I)×

−→−→
I ×

−→−→
JθK id×∼=−−−→ (JΓ1K×

−→
I)×

−−−−−−→−−−−−−→
(I × JθK)

(id×−−→asnf);π1−−−−−−−−→ JΓ1K×
−→
I ,

where dom(S) = {a1, · · · , an}, −→κI = 〈κI1 , · · · , κIn〉, S(ai) : Ii,
−→
I′ = I′1 × · · · × I′n,

−→
I = I1 × · · · × In,

−→
M = (M1, · · · ,Mn),

Mi = S(ai) � MImps , J
−→
MK = 〈JM1K, · · · , JMnK〉, asnf′ = asnf′1

×· · ·×asnf′n ,
−→
V = (V1, · · · , Vn), Vi = S(ai) � HCnfs , J

−→
V K =

〈JV1K, · · · , JVnK〉, Vi = (f1
i : v1

i , · · · , fnii : vnii), JViK = 〈Jv1
i K, · · · , Jvnii K〉,−−→asnf = asnfi×· · ·×asnfn , asnfi = asnf1i

×· · ·×asnf
ni
i

.

Figure 4. The semantic translation of IMJ.

commute (we write A for JΓK×
−→
I),

−→
I′×A×J~θK

id×J
−→
MK×id //

id×〈J
−→
MK,JMiK〉×id

��

−→
I′×
−→
I ×J~θK

〈∼=,π2;πi〉×id// −−−−→(I′×I)×Ii×J~θK

(−−→asnf′×evm);π2

��−→
I′×
−→
I ×Ii×J~θK

∼=×id // −−−−→(I′×I)×Ii×J~θK
(−−→asnf′×evm);π2 // JθK

JΓ1K
χ

��
−→
I′×A×A

id×〈π2;πi,σ
′〉//

id×σ′��

−→
I′×A×Ii×J~θK

id×J
−→
MK×id// −→I′×

−→
I ×Ii×J~θK

∼=×id ��
−→
I′×A×J~θK

id×J
−→
MK×id��

−−−−→
(I′×I)×Ii×J~θK

(−−→asnf′×evm);π2
��−→

I′×
−→
I ×J~θK

〈∼=,π2;πi〉×id// −−−−→(I′×I)×Ii×J~θK
(−−→asnf′×evm);π2 // JθK

where σ′ : A→ J~θK a combination of values and assignments, and

χ = JΓ1K
〈id,−→κI〉−−−−−→ JΓ1K×

−→
I′ ×

−→
I (δ×id×δ);∼=−−−−−−−→

−→
I′ ×A×A

with δ = 〈id, id〉. The former diagram says that, assigning method
implementations

−→
M to object stores ~a′ and calling Mi on some

method m is the same as assigning
−→
M to ~a′ and evaluating instead

a new copy of Mi on m. The reason the diagram commutes is

that the copy of Mi differs from the original just in the handle
name (the one returned in the codomain of JMiK), but the latter
is hidden via composition with evm. The latter diagram stipulates
that if we create ~a with methods

−→
M, then calling ai on m is the

same as callingMi on m. The latter holds because of the way that
κIi manipulates calls inside the interaction, by delegating calls to
methods of ai toMi.

Proposition 16 (Computational Soundness). For all ` M : void,
if M ⇓ then JMK = {∗ ∗} (i.e. JMK = JskipK).

Proof. This directly follows from Correctness.

Proposition 17 (Computational Adequacy). For all ` M : void,
if JMK = {∗ ∗} then M ⇓.

Proof. Suppose, for the sake of contradiction, that JMK = {∗ ∗}
and M 6⇓. We notice that, by definition of the translation for
blocking constructs (castings and conditionals may block) and due
to Correctness, if M 6⇓ were due to some reduction step being
blocked then the semantics would also block. Thus, M 6⇓ must
be due to divergence. Now, the reduction relation restricted to all
rules but METHODCL is strongly normalising, as each transition
decreases the size of the term. Hence, if M diverges then it must
involve infinitely many METHODCL reductions and our argument
below shows that the latter would imply JMK = {ε}.
For any term Γ ` N : θ and a ∈ A \ dom(Γ), construct Γa ` Na,
where Γa = Γ]{a : VarI}, by recursively replacing each subterm
of N of the shape N ′.m(~N) with a.f := (a.f + 1);N ′.m(~N).

VarI is an interface with a sole field f : int. Observe that each
s ∈ JΓ ` NK induces some s′ ∈ JΓa ` NaK such that a appears
in s′ only in stores (and in a single place in the initial move)
and O never changes the value of a.f, while P never decreases
the value of a.f. We write JΓa ` NaKa for the subset of JΓa `
NaK containing precisely these plays. Then, take M0 to be the
term letx = new(x : VarI ;) in (Ma[x/a];x.f), where x a fresh
variable. Because ∗∗ ∈ JMK, we get ∗j ∈ JM0K for some j ∈ Z.
Consider now the infinite reduction sequence of (∅,M). It must
have infinitely many METHODCL steps, so suppose (∅,M) −→∗
(S,M ′) contains j + 1 such steps. Then, we obtain (∅,M0) −→∗
(Sa, (M

′)a; a.f), with Sa(a).f = j + 1. By Correctness, we
have that ∗j ∈ JSa, (M ′)a; a.fK = JSaK; (id×#); J(M ′)a; a.fKa.
Since in J(M ′)aKa the value of a cannot decrease, and its initial
value is j + 1 (as stipulated by Sa), we reach a contradiction.

5. Full Abstraction
Recall that, given plays s, s′, we call s an O-extension of s′ (written
s ≤O s′) if s, s′ are identical except the type information regarding
O-names present in stores: the types of O-names in s may be
subtypes of those in s′. We shall write s ≤P s′ for the dual
notion involving P-names, i.e., s ≤P s′ if s, s′ are the same, but
the types of P-names in s′ may be subtypes of those in s. Then,
given X ∈ {O,P} and fixed A,B, let us define clX(s) = {s′ ∈
PAB | s′ ≤X s} and clX(σ) =

S
s∈σ clX(s). We write P∆|Γ`θ

for PJΓKJθK. A play will be called complete if it is of the form
mAY mBY .

Next we establish a definability result stating that any complete
play (together with other plays implied by O-closure) originates
from a term.

Lemma 18 (Definability). Let s ∈ P∆|Γ`θ be a complete play.
There exists ∆′ ⊇ ∆ and ∆′|Γ ` M : θ such that J∆′|Γ `
M : θK = clO(s).

Proof. The argument proceeds by induction on |s|. For s = ε,
any divergent term suffices. For example, one can take ∆′ =
∆ ⊕ {Div 7→ (m : void → void)}, and pre-compose any term
of type θ with new(x : Div; m : λ().m()).m().

Suppose s 6= ε. Then the second move can be a question or an
answer. We first show how to reduce the former case to the latter,
so that only the latter needs to be attacked directly.

Suppose

s = qΣq call o.m(~u)Σ1 s1 ret o.m(v)Σ2 s2 w
Σ3 s3,

where o : I′ and ∆(I′)(m) :
−→
IL → IR. Consider ∆′ =

∆ ⊕ {I′′ 7→ (
−−−→
f′ : IL, m′ : IR → θ)} and the following play

from P∆′|Γ`I′′ :

s′ = qΣq pΣ
′
1 s′1 call p.m′(v)

Σ′2 s′2 ret p.m′(v)
Σ′3 s′3,

where p 6∈ ν(s), Σ′i = Σi ⊕ Σ, Σ = {p 7→ (I′′,
−−−−→
f ′ 7→ u)} and

s′j is the same as sj except that each store is extended by Σ. If
∆′|Γ `M ′ : I′ satisfies the Lemma for s′ then, for s, one can take
letxp = M ′ inxp.m

′(y.m(
−−−→
xp.f

′)), where y refers to o, i.e., y is
of the shape x.

−→
f , where x ∈ dom Γ and

−→
f is a sequence of fields

that points at o in Σq .
Thanks to the reduction given above we can now assume that

s ∈ P∆|Γ`θ is non-empty and

s = qΣq mΣ0
0 mΣ1

1 · · ·m
Σ2k
2k ,

wherem0 is an answer. We are going to enrich s in two ways so that
it is easier to decompose. Ultimately, the decomposition of s will
be based on the observation that themΣ1

1 · · ·m
Σ2k
2k segment can be

viewed as an interleaving of threads, each of which is started by a
move of the form call p for some P-name p. A thread consists of
the starting move and is generated according to the following two
rules: m2i belongs to the thread of m2i−1 and every answer-move
belongs to the same thread as the corresponding question-move.

• The first transformation of s brings forward the point of P-name
creation to the second move. In this way, threads will never
create objects and, consequently, it will be possible to compose
them without facing the problem of object fusion.
Suppose P (s) = −→pi and pi : Ipi . Let ∆′ = ∆ ⊕ {IP 7→−−−−→
fi : Ipi}. Consider s′ = (n, q)Σ

′
q m

Σ′0
0 m

Σ′1
1 · · ·m

Σ′2k
2k , where

Σ′q = Σq ⊕ {n 7→ (IP ,
−→
null)} and Σ′i = Σi ⊕ {n 7→

(IP ,−→pi)}⊕{pi 7→ (Ipi ,
−→
null) | Σi(pi) undefined, pi ∈ P (s)}.

Let Γ′ = {xn : IP } ⊕ Γ. Observe that s′ ∈ P∆′|Γ′`θ .
• The second transformation consists in storing the unfolding

play in a global variable. It should be clear that the recursive
structure of types along with the ability to store names is suf-
ficient to store plays in objects. Let Iplay be a signature that
makes this possible. This will be used to enforce the intended
interleaving of threads after their composition (in the style of
Innocent Factorization [5]). Let ∆′′ = ∆′⊕{History 7→ play :
Iplay} and Γ′′ = {xh : History} ⊕ Γ. Consider

s′′ = (h, n, q)Σ
′′
q m

Σ′′0
0 m

Σ′′1
1 · · ·mΣ′′2k

2k

with
Σ′′q = Σ′q ⊕ {h 7→ (History, play 7→ null)},
Σ′′2i = Σ′2i ⊕ {h 7→ (History, play 7→ s′≤m2i

)},
Σ′′2i+1 = Σ′2i+1 ⊕ {h 7→ (History, play 7→ s′≤m2i

)}.

Observe that s′′ ∈ P∆′′|Γ′`θ .

Now we shall decompose mΣ′′1
1 · · ·mΣ′′2k

2k into threads. Recall that
each of them is a subsequence of s′′ of the form

call p.m(−→u)
Σc t ret p.m(v)Σr

where the segment t contains moves of the form call o or ret o for
some o ∈ O(s). We would now like to invoke the IH for each
thread but, since a thread is not a play, we do so for the closely
related play (h, n, q,−→u)Σc t′ vΣr . Let us call the resultant term
Mp,m,−→u ,Σc . Next we combine terms related to the same p : Ip into
an object definition by

Mp ≡ new(x : Ip; m : λ−→u .case(−→u ,Σc)[Mp,m,−→u ,Σc]]).

The case statement, which can be implemented in IMJ using nested
if’s, is needed to recognize instances of −→u and Σc that really
occur in threads related to p. In such cases the corresponding
term Mp,m,−→u ,Σc will be run. Otherwise, the statement leads to
divergence.

The term M for s can now be obtained by taking

letxn = new(x : IP ;) in
letxh = new(x : History;) in

let
−−−−−−−→
xpi = Mpi in

assert(qΣq);
−−−−−−−−→
xn.fi = xpi ; make(Σ′′0); play(m0)

where
−−−−−−−→
xpi = Mpi represents a series of bindings (one for each

P-name pi ∈ P (s)), assert((h, n, q)Σ
′′
q) is a conditional that

converges if and only if the initial values of free Γ identifiers as
well as values accessible through them are consistent with q and
Σq respectively, make(Σ′′0) is a sequence of assignments that set
values to those specified in Σ′′0 (up-casts need to be performed to
ensure typability) and play(m0) is skip, i, null or, if m0 is a name,

it is a term of the form (θ)y. ~f , where y is xn or (x : Ix) ∈ Γ such
that y. ~f gives an access path to m0 in Σ′′0 .

We conclude with full abstraction results both in inequational
and equational forms. For technical convenience, we shall use a
modified (but equivalent) definition of contextual approximation.

Lemma 19. Let Γ = {x1 : I1, · · · , xk : Ik}, ∆|Γ ` Mi : θ
(i = 1, 2), and ∆′ = ∆∪{WrapΓ,I 7→ (f : (I1, · · · , Ik)→ θ)}.
Then ∆|Γ ` M1

@
∼M2 if and only if, for all ∆′′ ⊇ ∆′ and

∆′′, z : WrapΓ,I ` test : void, if Ctest[M1] ⇓ then Ctest[M2] ⇓,
where Ctest[−] ≡ let z = new(x : WrapΓ,I ; f : λ−→xi .[−]) in test.

Proof. The Lemma holds because, on the one hand, it relies on
contexts of a specific shape and, on the other hand, any closing
context C[−] for Mi can be presented in the above form with
test ≡ C[z.f(x1, · · · , xk)].

Given a term ∆|Γ `M : θ, let us write J∆|Γ `M : θKcomp for
the set of complete plays from J∆|Γ `M : θK. In what follows, we
shall often omit ∆|Γ,` for brevity.

Theorem 20 (Inequational full abstraction). Given ∆|Γ ` Mi : θ
(i = 1, 2), we have ∆|Γ `M1

@
∼M2 : θ if and only if

clP (J∆|Γ `M1 : θKcomp) ⊆ clP (J∆|Γ `M2 : θKcomp).

Proof. The proof uses the following play transformation. Given
t = qΣqs1a

Σas2 ∈ P∆|Γ`θ , we define t ∈ P∆′,WrapΓ,I`void as

nΣn calln.f(q)Σq⊕Σn s⊕Σn1 retn.f(a)Σa⊕Σn s⊕Σn2 ∗Σ⊕Σn ,

where ∆′,WrapΓ,I are the same as in the above Lemma, Σn =

{n 7→ (WrapΓ,I , ∅)}, s⊕Σn stands for s in which each store
was augmented by Σn and Σ is the store of the last move in
t. Intuitively, t is the play that Ctest[−] needs to provide for a
terminating interaction with t.

(⇒) Let s ∈ clP (JM1Kcomp). Then there exists s′ ∈ JM1Kcomp

with s ∈ clP (s′). Apply Definability to s′ to obtain ∆′′, z : WrapΓ,I `
test : void such that JtestK = clO(s′). Because s′ ∈ JM1Kcomp

and Adequacy holds, we must have Ctest[M1] ⇓. From M1
@
∼M2

we obtain Ctest[M2] ⇓. Hence, because of Soundness, there exists
s′′ ∈ JM2Kcomp such that s′′ ∈ JtestK. Since JtestK = clO(s′), it
follows that s′′ ∈ clO(s′) and, consequently, s′ ∈ clP (s′′). Thus,
s ∈ clP (s′) and s′ ∈ clP (s′′). Hence, s ∈ clP (s′′) and, because
s′′ ∈ JM2Kcomp , we can conclude s ∈ clP (JM2Kcomp).

(⇐) Let Ctest[−] be such that Ctest[M1] ⇓. By Soundness, there
exists s ∈ JM1Kcomp such that s ∈ JtestK. Because JM1Kcomp ⊆
clP (JM1Kcomp) and clP (JM1Kcomp) ⊆ clP (JM2Kcomp), we also
have s ∈ clP (JM2Kcomp). Thus, there exists s′ ∈ JM2Kcomp such
that s ∈ clP (s′). Consequently, s′ ∈ clO(s). Since s ∈ JtestK, we
also have s′ ∈ JtestK. Because s′ ∈ JM2Kcomp and s′ ∈ JtestK, by
Adequacy, we can conclude that Ctest[M2] ⇓.

Example 3. Let us revisit Example 2. We have clP (σ1) = σ1 and
clP (σ2) = σ2 ∪ {∗∅, n{n 7→(Empty,∅)}}, i.e. clP (σ1) (clP (σ2).
Thus, it follows from Theorem 20 that ∆|∅ ` M1

@
∼M2 and

∆|∅ `M1 6∼= M2.

Theorem 21 (Equational full abstraction). Given ∆|Γ ` Mi : θ
(i = 1, 2), ∆|Γ `M1

∼= M2 : θ if and only if

J∆|Γ `M1 : θKcomp = J∆|Γ `M2 : θKcomp .

Proof. The preceding result implies that M1
∼= M2 if and only

if clP (JM1Kcomp) = clP (JM2Kcomp). We show that this implies
JM1Kcomp = JM2Kcomp . Let s ∈ JM1Kcomp . By clP (JM1Kcomp) =
clP (JM2Kcomp), it must be the case that s ∈ clP (JM2Kcomp),
i.e., there exists s′ ∈ JM2Kcomp such that s ∈ clP (s′). Again,
by clP (JM1Kcomp) = clP (JM2Kcomp), it follows that s′ ∈
clP (JM1Kcomp), i.e., there exists s′′ ∈ JM1Kcomp such that
s′ ∈ clP (s′′). So, we have s ∈ clP (s′) and s′ ∈ clP (s′′), which
implies s ∈ clP (s′′). However, s, s′′ ∈ JM1Kcomp , so s ∈ clP (s′′)
entails s = s′′. Hence, s ∈ clP (s′) and s′ ∈ clP (s), and s = s′

follows. Because s′ ∈ JM2Kcomp , we showed s ∈ JM2Kcomp . The
other inclusion is derived analogously.

References
[1] M. Abadi and L. Cardelli. A theory of objects. Springer Verlag, 1996.

[2] E. Ábraham, M. M. Bonsangue, F. S. de Boer, A. Gruener, and M. Stef-
fen. Observability, connectivity, and replay in a sequential calculus of
classes. In Proceedings of FMCO, 2004.

[3] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B.
Stark. Nominal games and full abstraction for the nu-calculus. In
Proceedings of LICS, 2004.

[4] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Information and Computation, 163:409–470, 2000.

[5] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully
abstract game semantics for Idealized Algol with active expressions.
In Algol-like languages, pages 297–329. Birkhaüser, 1997.

[6] S. Abramsky and G. McCusker. Game semantics. In Logic and
Computation: Marktoberdorf Proceedings. Springer-Verlag, 1998.

[7] J. Alves-Foss, editor. Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science. Springer, 1999.

[8] J. Alves-Foss and F. S. Lam. Dynamic denotational semantics of Java.
In Formal Syntax and Semantics of Java, pages 201–240. 1999.

[9] G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imperative
core calculus for Java and Java with effects. Technical Report 563,
Computer Laboratory, University of Cambridge, 2002.

[10] H. Björklund and T. Schwentick. On notions of regularity for data
languages. Theor. Comput. Sci., 411(4-5):702–715, 2010.

[11] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[12] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF.
Information and Computation, 163(2):285–408, 2000.

[13] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a
core Java language. In Proceedings of ESOP, 2003.

[14] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for
concurrent objects. Theor. Comput. Sci., 338(1-3):17–63, 2005.

[15] S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented
languages. In Theoretical Aspects of Object Oriented Programming,
pages 463–495. MIT Press, 1994.

[16] V. Koutavas and M. Wand. Reasoning about class behavior. In
Proceedings of FOOL/WOOD, 2007.

[17] J. Laird. A game semantics of local names and good variables. In
Proceedings of FOSSACS, 2004.

[18] J. Laird. Game semantics for higher-order concurrency. In Proceed-
ings of FSTTCS, 2006.

[19] J. Laird. Game semantics for call-by-value polymorphism. In Pro-
ceedings of ICALP, 2010.

[20] S. B. Lassen and P. B. Levy. Typed normal form bisimulation for
parametric polymorphism. In Proceedings of LICS, 2008.

[21] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical
Computer Science, 4(1):1–22, 1977.

[22] E. Moggi. Computational lambda-calculus and monads. In Proceed-
ings of LICS, 1989.

[23] A. S. Murawski and N. Tzevelekos. Algorithmic nominal game se-
mantics. In Proceedings of ESOP, 2011.

[24] A. S. Murawski and N. Tzevelekos. Game semantics for good general
references. In Proceedings of LICS, 2011.

[25] J. Power and E. Robinson. Premonoidal categories and notions of
computation. Math. Struct. in Comput. Sci., 7:453–468, 1997.

[26] N. Tzevelekos. Full abstraction for nominal general references. Logi-
cal Methods in Computer Science, 5(3), 2009.

[27] N. Tzevelekos. Fresh-register automata. In Proc. of POPL, 2011.

