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Abstract 
 

The presence of arbuscular mycorrhizal fungi (AM fungi) in plant roots can have varied effects 

on insect herbivores. This thesis focused on the root feeding Otiorhynchus sulcatus, a pest of 

the perennial soft fruit crop Rubus idaeus, and subsequent interactions with two of its natural 

enemies, the entomopathogenic nematodes (EPNs) Heterorhabditis megidis and Stienernema 

kraussei. These interactions were thought to be mediated by plant signalling in the form of 

volatile organic compounds (VOCs) that are known to be modified by the presence of AM 

fungi.  

A series of experiments were conducted to test the efficacy and taxis behaviour of EPNs when 

AM fungi were present or excluded from the root zone and to see if this was driven by plant 

VOC emissions. Stienernema kraussei was found to be the most effective EPN at controlling 

O. sulcatus under glasshouse conditions and in combination with resistant R. idaeus cultivars 

efficacy was even greater. When H. megidis taxis to R. idaeus plants was tested, the addition of 

AM fungi increased attraction of H. megidis regardless of O. sulcatus feeding pressures but this 

was not easily attributed to a difference in VOC production. Captured VOCs including the 

known semiochemicals, α-pinene and carene, were elevated under high O. sulcatus herbivory 

pressure indicating that EPNs in this system were indeed responding to herbivore induced 

VOCs. When EPN attraction was tested with a commercial inoculum however, similar effects 

were not seen, and EPNs were instead attracted by higher R. idaeus root biomass. 

As this experimental system was developed to become more ecologically relevant, it was 

found that the effects seen under more controlled conditions were not reproduced. This 

indicates that while this system has promise, further study is required to unlock the potential 

of AM fungi to provide novel pest management options in agriculture. 
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1111 General IntroductionGeneral IntroductionGeneral IntroductionGeneral Introduction    

The control of insect pests in horticulture, silviculture and agriculture is a constant battle for 

growers all over globe. Most conventional methods entail applications of chemical pesticides. 

However, the use of chemicals for this purpose is becoming increasingly controversial, with 

many being withdrawn from use due to safety and environmental concerns. Another issue that 

affects the chemical control of insects is that of resistance developing in pest populations. 

With the temporary ban of neonicotinoid pesticides across the EU in 2013, a number of pests 

traditionally controlled by these chemicals were left without an effective means to control 

them. New approaches to insect control which minimise or avoid pesticide use are 

consequently in high demand. In this thesis the application of utilising root defence signalling, 

in mycorrhizal plants, to enhance a biological control agent was explored. 

 

1.11.11.11.1 The Black Vine Weevil The Black Vine Weevil The Black Vine Weevil The Black Vine Weevil Otiorhynchus Otiorhynchus Otiorhynchus Otiorhynchus 

sulcatussulcatussulcatussulcatus    

1.1.11.1.11.1.11.1.1 Otiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatus    biology and life cyclebiology and life cyclebiology and life cyclebiology and life cycle    

The black vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) is a very successful 

polyphagous species with hundreds of known host plants (Moorhouse et al., 1992). Adult O. 

sulcatus are between 9-13mm in length with a dark grey or black colouration with pale patches 

across the elytra and pronotum (Figure 1.1a). The elytra of O. sulcatus are fused, and all 

members of the species are flightless. All individuals are clonal triploid females and reproduce 

via mitotic parthenogenesis (Lundmark, 2010).  

 
Figure 1.1a: An adult O. sulcatus feeding. 1.1b: An O. sulcatus larvae. 
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Eggs, white when first laid and later a caramel brown in colour, are laid by overwintering 

adults from March onwards, while overwintering larvae emerge as adults later in the season 

and lay eggs in July and August (Moorhouse et al., 1992) as shown in Figure 1.2. The eggs are 

laid at the base of host plants in the leaf litter. Larvae, which are pale brown or white with a 

caramel brown coloured scleratised head, hatch after 1-2 weeks (Figure 1.1b) and travel down 

into the soil to feed on root material. This ensures that individuals of all life stages are present 

throughout the year. 

 

 

Figure 1.2: The life cycle of O. sulcatus living under field conditions in the Northern hemisphere (Clark, 2010). 
Based on data from Moorhouse, Charnley & Gillespie (1992) 

The high number of eggs that O. sulcatus adults lay per day, 2- 4 eggs throughout their adult 

life stage (Clark et al., 2011b), alongside their polyphagous nature make this species relatively 

easy to rear in the lab (section 2.1.8). The origin of O. sulcatus is in central Europe but through 

the shipment of plant material via trade routes it has spread to many temperate regions 

throughout the globe (Figure 1.3) (Moorhouse et al., 1992). 



16 
 

 

Figure 1.3: Global distribution of O. sulcatus, indicated by light blue shading, after Lundmark (2010). 

1.1.21.1.21.1.21.1.2 Otiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatus    as a pest speciesas a pest speciesas a pest speciesas a pest species    

Otiorhynchus sulcatus is a major pest of horticultural plants and soft fruit crops across the 

temperate zones of the world and can cause significant damage to a wide range of host plants. 

Adult O. sulcatus cause minor damage to the leaves of plants leaving characteristic notches on 

the leaf edge, while larvae feed on the root system of the plant and in high numbers can cause 

stunted growth, wilting and eventually death (Penman & Scott, 1976). As few as 1-3 larvae 

feeding on the roots of potted plants and can cause plant death in species such as Cyclamen 

and Rhododendron when kept under glasshouse conditions (Moorhouse et al., 1992). The 

combination of O. sulcatus feeding belowground and further herbivores feeding aboveground 

can cause even greater damage to crops. In a study by McKenzie et al. (2013) an example of 

reciprocal feeding was observed in the red raspberry, Rubus idaeus, when O. sulcatus feeding 

belowground benefitted from carbon reallocation caused by aphids feeding aboveground. The 

adults when present in R. idaeus foliage can be a problem in crops that are harvested by 

mechanical means as they can contaminate the collected fruit (Kieffer et al., 1983). Larval 

damage on soft fruit crops such as R. idaeus and strawberry, Fragaria ananassa, is of particular 

economic importance in the UK, with these crops worth in excess of £89.6m (2013) and 

£217.8m (2013) respectively (DEFRA, 2013). Both these crops are grown under polytunnels, 

which create conditions known to increase O. sulcatus performance (Johnson et al., 2010). One 

way to improve pest resistance of R. idaeus is to use resistant cultivars (Hall et al., 2008), this 

can influence oviposition by O. sulcatus when there is an alternative host present, but in the 

absence of a choice of host plants, egg laying is not influenced by host type (Clark et al., 

2011b). This could be an argument for the planting of trap crops adjacent to R. idaeus planting 

as part of an integrated pest management system. 
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1.1.31.1.31.1.31.1.3 Otiorhynchus sulcatus Otiorhynchus sulcatus Otiorhynchus sulcatus Otiorhynchus sulcatus control.control.control.control.    

Traditionally chemical control of O. sulcatus was achieved using Aldrin but this pesticide was 

withdrawn from use in 1990 and current methods typically entail a soil drench of chemicals 

such as the neonicotinoid; Imidacloprid, which has been withdrawn from use in the EU, under 

a temporary ban, from 2014, and the oganophosphate; Chlorpyrifos. The future use of these 

chemicals is uncertain and so alternative control measures must be sought (Moorhouse et al., 

1992; Cross & Burgess, 1997; Gill et al., 2001).   

The two main biological control agents used to manage O. sulcatus are an entomopathogenic 

fungus Metarhizium anisopliae and entomopathogenic nematodes (EPNs) but these methods 

are not currently as effective as pesticides. Metarhizium anisopliae treatments are usually 

most effective against O. sulcatus when applied in a pre-treated soil mix and are less effective 

when added to the soil surface, or through irrigation systems (Moorhouse et al., 1993, 1994; 

Bruck & Donahue, 2007). This method is poorly suited to raspberry cultivation, as the plants 

are in the soil for around 5 years and cannot be replanted into pre-treated soil each time O. 

sulcatus is identified.  

The two most commonly used genera of EPNs are the Steinernematidae and 

Heterorhabditidae. Deployed as biological controls they are most effective when added in 

water to the root zone of affected plants (Denno et al., 2008). The nematodes are applied as 

motile infective juveniles. They swim through the thin water layer that covers soil particles and 

upon finding an insect host, via host odour cues such as kairomones and other various related 

odours (Dillman et al., 2012), they enter through the spiracles whereupon they expel their 

bacterial endosymbionts which quickly break down and liquefy the host tissues finally killing 

the host via septicaemia. The nematodes then feed on this bacterially enriched soup and 

gather within the host body to reproduce. Several weeks after infection the host cadaver 

ruptures and thousands of the next generation of infective juveniles then emerge to seek out 

new hosts (Kakouli-Duarte et al., 1997; Wilson et al., 1999; Bruck et al., 2005; Lola-Luz & 

Downes, 2007). EPNs have been shown to respond with taxis to the universal host cue of CO2 

as well as more host specific volatile organic compounds (VOCs) to find prey (Dillman et al., 

2012). It has been posed that the taxis behaviour of EPNs and the specific temperature 

tolerances of individual species, and strains of EPNs can be the biggest limiting factors in 

determining successful control of O. sulcatus (van Tol et al., 1998). Through the use of EPNs 

active at low soil temperatures, typical of UK conditions, and the manipulation of VOC cues 

that can better attract, and maintain the interest of EPNs, better O. sulcatus control might be 

achieved. It is with this aim in mind that this thesis set out to investigate belowground 

predator prey interactions. 
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EPNs are well suited to R. idaeus cropping as they can take advantage of existing infrastructure 

for simple application. An aqueous delivery method recommended for EPNs (Bruck et al., 

2005) is ideal for a protected cropping system such as that used for raspberry production as it 

can be incorporated into an existing irrigation system. Improving the efficacy of EPNs could 

lead to a better suited and more cost effective biological control of O. sulcatus, eventually 

replacing existing conventional methods of control.  

A possible way to improve the efficacy of existing biological controls may be a synergistic 

approach with resistant plants and plant symbionts, arbuscular mycorrhizal fungi are one such 

group of organisms that may provide a solution (section 1.5). 

1.21.21.21.2 The Red Raspberry, The Red Raspberry, The Red Raspberry, The Red Raspberry, Rubus idaeusRubus idaeusRubus idaeusRubus idaeus    

1.2.11.2.11.2.11.2.1 Rubus idaeusRubus idaeusRubus idaeusRubus idaeus    biology and cultbiology and cultbiology and cultbiology and cultivation historyivation historyivation historyivation history    

The European or Red Raspberry Rubus idaeus (Rosales: Rosaceae) is a deciduous perennial 

shrub that performs best in slightly acidic soils. The perennial root stock of R. idaeus produces 

a biennial stem or ‘cane’ and usually produces fruit after 2 years of growth. Cultivated R. 

idaeus are usually planted in the winter, from November to March. Different cultivars produce 

fruit at different times in the summer and early autumn and are termed as either early, mid or 

late fruiters, with all cultivars bearing fruit in a window between June and October. Established 

R. idaeus rootstock and canes are typically maintained for around 5 years, after which, yield 

tends to tail off as pests and pathogens accumulate and become more of a problem. Rubus 

idaeus forms a fruit or raspberry that is in fact an aggregate of drupelets that retains a conical 

form after ripening, it is this fruit that gives the plant its common name. Despite global 

cultivation, R. idaeus has its native range in Europe through to Siberia. It is thought that Rubus 

ancestors likely originated from what is modern day China as this is the centre of Rubus 

diversity in the Northern hemisphere (Hall et al., 2008). R. idaeus is a plant that readily forms 

associations with arbuscular mycorrhizal (AM) fungi, this affinity has even been applied with 

some success in a commercial setting with micropropagated R. idaeus inoculated with AM 

fungi to aid establishment (Varma & Schuepp, 1994). 

In the UK, R. idaeus is a valuable crop with a farm gate value estimated at £89.6m in 2013 

(DEFRA, 2013). This crop is grown in an area of 1,478 hectares, across the UK (DEFRA, 2013) 

and its cultivation and harvest provides a large amount of seasonal employment. Modern R. 

idaeus cropping in the UK and cultivation on similar latitudes is conducted almost entirely 

under protected cropping environments, most typically in polytunnels. Polytunnels are 

temporary structures consisting of long semi-cylindrical tunnels around 2.5m at their highest 
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point and formed of steel hoops and covered in translucent polythene sheeting. Rubus idaeus 

canes are planted in any number of rows inside the polytunnels and then a polythene ground 

covering is placed over a mulch at the base of the plants to exclude weeds and increase soil 

temperatures. Polytunnels can provide conditions that are between 4°C and 10°C greater than 

exterior temperatures and can result in a 50% increase in plant height and a 16% increase in 

leaf area across the growing season (Johnson et al., 2010, 2012). Rubus idaeus that are grown 

in polytunnels are typically irrigated at the soil surface in order to have greater control of soil 

moisture throughout the seasons.  

1.2.21.2.21.2.21.2.2 Rubus idaeusRubus idaeusRubus idaeusRubus idaeus    Pests and diseasesPests and diseasesPests and diseasesPests and diseases    

As with all cultivated species, R. idaeus has a number of pests and diseases that make its 

cultivation challenging for commercial and amateur growers alike. There is a wide range of 

fungal, bacterial and viral pathogens that infect R. idaeus (Hall et al., 2008). The majority of 

these diseases are managed by the incorporation of resistant cultivars but the fungal 

pathogens often require regular fungicide applications to ensure they are controlled below an 

economic threshold (Hall et al., 2008). The application of such fungicides can have a negative 

effect on the formation of AM fungi in R. idaeus and further reduce soil microbial diversity, 

which is already known to be low in arable fields (Daniell et al., 2001). Another threat to R. 

idaeus yields are a variety of insect pests that also cause plant tissue damage (Alford, 2007). 

This thesis will focus on the insect pest O. sulcatus, as previously discussed (section 1.1.2), its 

pest status in R. idaeus cropping has recently become a more serious issue as cultivation 

practices move towards protected cropping. The implementation of polytunnels in R. idaeus 

cultivation has had the side effect of accelerating O. sulcatus development and increasing its 

impact as a pest. Johnson et al. (2010) demonstrated that R. idaeus carbon/nitrogen ratios 

were higher in polytunnels than in uncovered cropping. They showed that this decrease in 

nutritional quality led to significantly more plant material being consumed which, coupled with 

higher temperatures caused a 20 fold increase in eggs laid by the time adult O. sulcatus were 5 

weeks old.  

The increasing pest issue that O. sulcatus poses to R. idaeus cropping and the mycorrhizal 

affinity of the plant meant that it was a good choice for investigating the interactions of AM 

fungi on root defence signalling (discussed further in section 1.5). 
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1.31.31.31.3 Arbuscular Mycorrhizal FungiArbuscular Mycorrhizal FungiArbuscular Mycorrhizal FungiArbuscular Mycorrhizal Fungi    

Arbuscular mycorrhizal fungi (AM fungi) are a group of obligate plant symbionts in the phylum 

Glomeromycota (Schüβler et al., 2001) that form symbiotic relationships with around 70% of 

all vascular plants (Hodge, 2000; Smith & Read, 2008). AM fungi contribute to their symbionts 

by the provision of phosphorus, nitrogen and other nutrients and in return they receive carbon 

compounds produced in the plant by photosynthesis (Bever et al., 2001). The presence of AM 

fungi in a plant root are not immediately obvious to the naked eye but can be discovered by 

the clearing and staining of root tissues and the application of microscopy (Figure 1.4). The AM 

fungal spores germinate in the soil when conditions are appropriate for plant seed germination 

and root growth. From the spore, hyphae form, which grow fairly slowly until they encounter 

sesquiterpene root exudates which induce extensive branching in hyphae and hence facilitate 

the location of host roots (Akiyama et al., 2005). If the fungus encounters a root or root hair 

then an appresorium is formed and penetration occurs in the elongation zone of the root, in 

places where suberation has yet to occur. Hyphae then grow in or between the root cortical 

cells. Specialised hyphal tissues enter cortical cells to form arbuscules which are entirely 

contained in the cell plasma membrane. It is this site where nutrient exchange takes place 

(Smith & Read, 2008). The formation of arbuscules occurs in a cycle of between 4-15 days after 

which they break down and new ones are formed constantly. Vesicles, which are thought to be 

storage organs, form in cortex cells and are lipid filled sacs readily identified in stained root 

tissues (Figure 1.4). 

 

 

Figure 1.4: Zea mays root tissue stained with trypan blue to show colonisation by AM fungi and the different AM 
fungal structures. Image taken from (INVAM, 2014). 
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As well as improved nutrient uptake, plants have shown a variety of other symptoms while in 

symbiosis with AM fungi. AM fungi have been shown to alter the interactions between plants 

and their pests and pathogens (Borowicz, 2001; Koricheva et al., 2009).  AM fungi have even 

been found to have an effect on the community of pollinators visiting the flowers of plants 

(Gange & Smith, 2005; Wolfe et al., 2005; Cahill et al., 2008), suggesting that their presence 

may produce a cascade of effects through a multi-trophic system.  

A meta-analytical study by Koricheva, Gange, and Jones (2009) determined that most 

generalist insect herbivores were negatively affected by the presence of mycorrhizas while 

specialist insect feeders responded positively. This meta-analysis was however, mostly based 

on foliar feeding insects, due to the very small number of root feeding studies available, and 

although O. sulcatus could be considered a generalist feeder, previous studies have shown 

reduction in larval weights when in the presence of mycorrhizas (Gange et al., 1994; Gange, 

1996, 2001). In 2011 Currie, Murray, and Gange showed that this generalist/specialist trend in 

response to AM fungi may also be true in root feeding insects when they showed that the root 

clover weevil, Sitona lepidus, showed increased survival and no negative response to the 

presence of AM fungi. In addition to these trends in specialist/generalist responses to 

herbivory in the presence of AM fungi, a reduction in plant tolerance to herbivory has been 

observed as a consequence of AM fungi colonisation (Borowicz, 1997; Bennett & Bever, 2011). 

Observations by Gange & Ayres (1999) led to the proposal that there is a curvilinear 

relationship between AM fungal colonisation and plant benefit. Low levels of colonisation 

providing benefits to plants in the form of increased resource provisioning, whereas higher 

levels of colonisation produced more of a carbon drain than a nutrient benefit. This 

explanation fits with the observation of there being an AM fungi mutualism-parasitism 

continuum (Johnson et al., 1997). 

The process of AM fungal colonisation has the effect of priming plant defences that then give 

the plant a better chance of responding rapidly to pests or pathogens through the jasmonic 

acid and salicylic acid pathways (Van der Ent et al., 2009; Jung et al., 2012). The allocation of 

increased resources, provided by AM fungi can also contribute to constitutive plant defences, 

bolstering plant resistances against herbivores (Bennett et al., 2006; Kempel et al., 2010). In 

addition to this, AM fungi have been shown to change the secondary metabolite production of 

plants altering the proportion of monoterpenes and sesquiterpenes produced as volatiles 

(Rapparini et al., 2008; Fontana et al., 2009). An objective of this thesis was to measure the 

impact of AM fungi on root VOC production (section 1.5). 
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1.41.41.41.4 Herbivore Induced Natural Enemy Herbivore Induced Natural Enemy Herbivore Induced Natural Enemy Herbivore Induced Natural Enemy 

AttractionAttractionAttractionAttraction    

When a plant is damaged by a feeding herbivore a number of inducible defences are activated. 

This often includes an increase in the concentration of VOCs present in plant tissues which can 

act in many different ways, either as a direct toxin or a feeding deterrent (Bezemer & van Dam, 

2005). These VOCs are exuded by the plant both above and belowground and in some cases 

this is used by additional herbivores to locate and identify an already damaged plant, but this 

can also act as an attractant for natural enemies that can come to the aid of the attacked 

plant. The notion of plants using insect predators and parasitoids as bodyguards is not new 

(Dicke & Sabelis, 1988) and there have been a number of discoveries of this behaviour in both 

insect and mite species (Dicke et al., 1990; Turlings et al., 1990; Elliot et al., 2000; Gange et al., 

2003; Guerrieri et al., 2004). Van Tol et al. (2001) showed that Thuja occidentalis roots under 

attack by O. sulcatus released chemicals attractive to the EPN; Heterorhabditis megidis. They 

failed however to detect noticeable changes in airborne volatile emissions and instead 

concluded that these chemicals were likely waterborne. The taxis of H. megidis was also found 

in a similar experiment by Boff et al (2001), using a Y shaped olfactometer choice experiment 

with a series of treatments comprising Fragaria roots and O. sulcatus larvae with the outcome 

that the combined treatment, with O. sulcatus larvae feeding on strawberry roots provided a 

strong attraction to H. megidis. Unfortunately no attempt was made to discover the 

mechanism behind this attraction but plant volatiles were again considered the likely 

attractant. Aratchige, Lesna, & Sabelis (2004) conducted a similar study on rust mites that feed 

belowground on tulips. Infestations by these mites affected the attraction of predatory mites. 

They found that predatory mites could discriminate between artificial wounding of tulip bulbs 

and a rust mite infestation. They did not test this system in a soil medium or measure the 

volatile compounds that may be responsible for such behaviour. The ability of natural enemies 

to discriminate between true herbivory and artificial wounding highlights the complexity of the 

herbivore induced VOCs to which natural enemies respond. 

In 2005 Rasmann et al. conducted an experiment on western corn root worm, Diabrotica 

virgifera, induced volatile emissions in maize, Zea mays, plants and how these volatiles 

attracted H. megidis. This was carried out using a 6-arm root zone olfactometer to monitor the 

relative attraction of H. megidis to control, mechanical damage and D. virgifera infested Z. 

mays plants. Plants infested with D. virgifera were significantly more attractive to H. megidis. 

For the first time solid-phase micro-extraction samples were analysed by GC-MS to identify the 
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chemo-attractant responsible. They proposed the primary chemo-attractant was the 

sesquiterpene (E)-β-caryophyllene. In the field two cultivars were compared while under 

D. virgifera attack, one North American cultivar where (E)-β-caryophyllene emission doesn’t 

occur and one European cultivar where (E)-β-caryophyllene emission is comparable to the wild 

Z. mays ancestor teosinte. As a consequence of elevated (E)-β-caryophyllene production the 

European cultivar showed a fivefold increase in nematode infection rate. This increase in 

nematode infection rate was also seen if the soil around the North American plants was spiked 

with (E)-β-caryophyllene. This research was then used in another study, by the same lab group, 

to restore the signal of (E)-β-caryophyllene in North American Z. mays plants (Degenhardt et 

al., 2009). The method by which this discovery was achieved has provided a comprehensive 

framework for future research and application of that research into root defence (Rasmann & 

Agrawal, 2008). Rasmann & Turlings (2007) increased the scope of their olfactometry 

experiments to include both a below and above ground component with paired below and 

aboveground pests and natural enemies. They found that when both pests were present on 

the same plant that the relevant odour emissions were reduced and the attraction of both 

natural enemies were reduced. This may be the reason why reliance on volatile induced 

natural enemy attraction may always prove less effective in complex multi-trophic field 

environments. This reduced effectiveness of plant immune response is also seen in systemic 

plant defences in other plant species, where combinations of above and belowground pests 

feeding on a plant can cause a significant reduction in the production of host defence 

chemicals (Bezemer et al., 2003, 2004). 

Continuing in the rapidly expanding field of belowground herbivore-induced volatile emissions 

Ali, Alborn, & Stelinski (2010) investigated if there was a similar system that could be exploited 

with the root feeding weevil Diaprepes abbreviatus and citrus roots. Again a 6-arm root zone 

olfactometer was employed with control, mechanical damaging, non-feeding larvae and 

infested plant treatments. As may be expected it was found that plants infested with D. 

abbreviatus were more attractive to the EPN Steinernema diaprepesi. Four possible 

compounds were isolated as being the possible attractant in this system; geijerene (a break 

down product of pregeijerene), pregeijerene, α-santalene and α-Z-bergamotene, with 

pregeijerene thought to be the most likely attractant due to its relative abundance. Ali et al. 

(2012) then took this system to the field and showed that herbivore induced plant volatiles 

increased the activity of EPNs in the root zone of mature citrus roots with 4 species of 

nematodes responding to pregeijerene. Later tests showed that this volatile was a general 

signal as it had a similar effect on EPN activity when isolated and added to blueberry fields (Ali 

et al., 2010). 
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There is a downside to olfactometry experiments which is worth considering when attempting 

to replicate results in the field. In a root-zone olfactometer the partitioning of soil or sand 

chambers with a barrier to insects and EPNs disrupts a potential foraging strategy which EPNs 

may employ to locate their host. This is through the following of host kairomone trails left 

behind as an insect moves through the soil, a method of host searching which is also common 

in many other organisms (Rogers & Potter, 2002; Inoue & Endo, 2008). This could mean that in 

a field setting the additional stimulus of host kairomone trails could make for a more complex 

network of attractant gradients leading to variation in nematode infection rates and 

consequently host mortality. 

In a recent series of studies it has been shown that herbivore induced volatile emissions 

causing natural enemy recruitment have been shown to be enhanced by the presence of AM 

fungi. Schausberger et al. (2012) demonstrated that mycorrhizal plants infested with the red 

spider mite Tetranychus urticae were more attractive than non mycorrhizal plants to the 

spider mite predator, Phytoseiulus persimilis. Their studies suggest that predatory mites learn 

to recognise the altered plant VOCs of mycorrhizal plants (Patiño-Ruiz & Schausberger, 2014) 

which are more attractive due to their prey, T. urticae, being of higher nutritional quality 

(Hoffmann et al., 2011c). This means that although there was an initial greater effect of 

T. urticae damage to plants this was more than compensated for by increased predation. Not 

only was P. persimilis more attracted to mycorrhizal plants but ovipostion was also greater 

leading to lasting T. urticae suppression (Hoffmann et al., 2011b). 

This presents an exciting development for any potential biological control programme on a 

belowground insect pest. As, although the presence of AM fungi has been shown to alter 

natural enemy attraction aboveground, very little is known about the impact it might have on 

belowground predator prey interactions. One of the objectives of this thesis was to see if the 

presence of mycorrhizas and feeding O. sulcatus change the root volatile emissions of R. 

idaeus and whether this influenced EPN attraction (see section 1.5). 

 

1.51.51.51.5 Chapter outlines and objectivesChapter outlines and objectivesChapter outlines and objectivesChapter outlines and objectives    

The main aim of this thesis was to establish if mycorrhizal fungi influenced root defence 

signalling and if this, in turn, influenced belowground predator prey interactions. In particular, 

to discover if these effects were detectable in an AM fungal/R. idaeus system with the 

herbivore O. sulcatus and EPN predators. The root defence signals sampled were root VOC 

emissions.  



25 
 

1.5.11.5.11.5.11.5.1 Chapter 2Chapter 2Chapter 2Chapter 2    

Chapter 2 details some of the specific methodologies employed in the experimental chapters 

(chapters 3-6). 

1.5.21.5.21.5.21.5.2 Chapter 3Chapter 3Chapter 3Chapter 3    

The main aim of chapter 3 was to see if the presence of AM fungi had an impact on O. sulcatus 

performance and to discover if O. sulcatus or AM fungi had an influence on plant VOC 

emissions. Key objectives in this chapter were: 

• To investigate how different R. idaeus cultivars responded to O. sulcatus infestations 

of different densities. 

• To test how O. sulcatus larvae performed under different population densities.  

• To assess whether AM fungal colonisation was affected by O. sulcatus herbivory 

and/or R. idaeus cultivar. 

1.5.31.5.31.5.31.5.3 Chapter 4Chapter 4Chapter 4Chapter 4    

Chapter 4 aimed to determine how EPNs and AM fungal colonisation of R. idaeus affect root 

herbivore performance. To achieve the main aim of this study, a number of objectives were 

identified: 

• To find out the effects of different EPN treatments on O. sulcatus mortality and larval 

mass. 

• To ascertain the response of R. idaeus to O. sulcatus herbivory and EPN treatments 

through the collection of biomass data.  

• To resolve the impact of AM fungal colonisation on O. sulcatus mortality and larval 

mass and to see if this was effected by the different EPN treatments.  

1.5.41.5.41.5.41.5.4 Chapter 5Chapter 5Chapter 5Chapter 5    

In chapter 5, two experiments are presented, both using belowground olfactometers to 

measure the taxis of EPNs towards different chemical cues. 

1.5.4.11.5.4.11.5.4.11.5.4.1 Chapter 5.1Chapter 5.1Chapter 5.1Chapter 5.1    

The main aim of this first olfactometry experiment was to see if the EPN Heterorhabditis 

megidis showed a preference for R. idaeus that were infested with O. sulcatus and inoculated 

with AM fungi and see if this was driven by plant VOC emissions. Further to this aim there 

were a number of objectives explored in this experiment: 

• To see if AM fungi influenced the attraction of H. megidis and if this could be explained 

by different VOC emissions. 
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• To evaluate if the density of O. sulcatus populations on experimental plants had an 

effect on any observed herbivore induced natural enemy attraction effects and if this 

could be linked to VOC production. 

• To determine if differences an R. idaeus cultivar could have an impact on H. megidis 

attraction and root emitted VOCs. 

• To establish if levels of AM fungal colonisation recorded as percentage root length 

colonised (%RLC) by AM fungal structures (section 2.1.7) had an impact on H. megidis 

attraction, R. idaeus performance and O. sulcatus performance. 

1.5.4.21.5.4.21.5.4.21.5.4.2 Chapter 5.2Chapter 5.2Chapter 5.2Chapter 5.2    

The second of the two olfactometry experiments repeated the process applied in the first, but 

whereas the first olfactometry experiment used a field derived AM fungal inoculant this 

experiment used a commercial preparation alongside the EPN Steinernema kraussei. The aim 

of this experiment was to investigate if commercial AM fungal inoculant could increase the 

attraction of S. kraussei to O. sulcatus infested R. idaeus. Key objectives in this second 

experiment were: 

• To see if the addition of a commercial AM fungal inoculant would influence S. kraussei 

distributions.  

• To establish if S. kraussei were influenced by the presence of feeding O. sulcatus 

larvae, perhaps through herbivore induced VOCs. 

• To investigate if the biomass and root to shoot ratio could have had an influence on 

the attraction of S. kraussei, and been influenced by O. sulcatus and AM fungal 

treatments. 

1.5.51.5.51.5.51.5.5 Chapter 6Chapter 6Chapter 6Chapter 6    

In chapter 6 the main aim was to determine if commercial AM fungi had an impact on 

O. sulcatus control when the EPN, Steinernema kraussei were added to R. idaeus and how this 

might compare to a field soil based inoculation. The objectives of this chapter were: 

• To investigate if commercial inocula could enhance S. kraussei performance as 

effectively as a field derived spore inoculation. 

• To assess the effects that different AM fungal treatments have directly on R. idaeus 

biomass  

• To see if the %RLC by AM fungal structures can give an indication of the benefit 

derived by a host plant.  

1.5.61.5.61.5.61.5.6 Chapter 7Chapter 7Chapter 7Chapter 7    

In chapter 7 the findings of all chapters are summarised and then discussed. 
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2222     General methodsGeneral methodsGeneral methodsGeneral methods    
 

2.1.12.1.12.1.12.1.1 Surface sterilisation of Surface sterilisation of Surface sterilisation of Surface sterilisation of Rubus idaeusRubus idaeusRubus idaeusRubus idaeus    root stock at the James Hutton Instituteroot stock at the James Hutton Instituteroot stock at the James Hutton Instituteroot stock at the James Hutton Institute    

In order to prepare plants before inoculation with AM fungi a method of root surface 

sterilisation was used throughout this thesis. Rootstock from R. idaeus plants was washed over 

medium sieves (with 1mm and 0.5mm pores) with jets of cold water, so as to minimize loss of 

root material while ensuring that as much soil and other visible organic material was removed. 

The roots were then submerged in a bleach solution (4.5% Sodium Hyporchlorite) for 2 

minutes. This was assessed to be sufficient time to dissolve as much of the finest root tissue, 

where AM fungal colonisation is concentrated, and fungal hyphae as possible while 

maintaining plant viability. The bleached root material was then thoroughly rinsed for 3 

minutes in cold water and then allowed to soak in cold water for 2 minutes after a final 1 

minute cold water rinse. The root material was then planted into seed trays with sterilised 

loam (Keith Singleton Nethertown, UK) and grown on top of under-heated benches in a 

controlled greenhouse environment (16:8 light:dark days at 18˚C). After 4 weeks the fresh 

growth from the rootstock was deemed sufficient for individual planting. The seed trays were 

carefully unearthed and the individual small R. idaeus plants were separated taking extreme 

care not to damage any of the roots of live plants, so as to minimise transplant shock, these 

small plants were then ready for experimental treatments.  

 

2.1.22.1.22.1.22.1.2 Field extracted arbusField extracted arbusField extracted arbusField extracted arbuscular mycorrhizal scular mycorrhizal scular mycorrhizal scular mycorrhizal spores using sucrose centrifugationpores using sucrose centrifugationpores using sucrose centrifugationpores using sucrose centrifugation    

Spores extracted from the field were extracted from soil taken from a field that has had R. 

idaeus, of multiple cultivars, grown on it for over 10 years. This allowed a soil community that 

was adapted to the presence of R. idaeus to be sampled and allowed for the extraction of a R. 

idaeus specific mixture of AM fungal species. 

In a method adapted from Daniels and Skipper (1982) the AM fungal spores were extracted 

from soil using sucrose centrifugation. Initially large stones were removed from the soil using a 

Scheppach RS400 Electric Soil Sifter Sieve. Next, approximately 100g of sifted soil was added to 

200ml of water and agitated in a BL305840 Blendforce Triplax blender (Tefal, Sarcelles, France) 

with 3 depressions of the pulse blend setting, before being poured into a stack of larger test 

sieves terminating in a 40μm test sieve. The soil was washed through the sieves with jets of 

cold water. The soil particles trapped on the 40μm sieve were then transferred into 50ml tubes 

containing 20ml of 60% sucrose solution and placed in a centrifuge (Sigma 4K15) for 3 minutes 
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at 2000rpm at a temperature of 22°C. The supernatant was then poured into a 40μm sieve and 

rinsed with water to remove sucrose from the spores. The collected spores were then re-

suspended in water for short term storage and kept at 4°C. The spores were always used to 

inoculate soil within 4 days of extraction. 

2.1.32.1.32.1.32.1.3 PreparatioPreparatioPreparatioPreparation of arbuscular mycorrhizal fungal spore inoculations and a microbial n of arbuscular mycorrhizal fungal spore inoculations and a microbial n of arbuscular mycorrhizal fungal spore inoculations and a microbial n of arbuscular mycorrhizal fungal spore inoculations and a microbial 

washwashwashwash    

Excess water was removed from the spore suspension using a P10ml Gilson® (Luton, UK) 

Pipetman to create a microbial wash. This extracted volume was then put through a vacuum 

filter to remove any spores or detritus. The remaining spore suspension and the newly created 

microbial wash were then divided into equal volumes and half of each suspension was 

sterilised in an autoclave (Boxer laboratory equipment LTD, Wave 01920/468). This method 

was adapted from the methods outlined by Ames et al (1987) to control for microbial 

populations. 

2.1.42.1.42.1.42.1.4 AM fungal trap culturesAM fungal trap culturesAM fungal trap culturesAM fungal trap cultures    

Trap cultures were established using spore based inoculations taken from the field site 

mentioned in section 2.1.2 at the same time as the plants in section 3.2 were inoculated. 

Twelve 10L pots were filled with twice sterilised loam (Keith Singleton, Nethertown, UK) with 

each pot inoculated with 54±7.95SE spores and then sown with a grassland seed mixture. This 

seed mixture comprised 5% Lotus corniculatus 5% Plantago lanceolata 10% Trifolium pratense 

80% Agrostis capillaris from The James Hutton seed stocks (The James Hutton Institute, 

Dundee,UK). 

2.1.52.1.52.1.52.1.5     Staining protocol for arbuscular mycorrhizal fungi in roots using Quink InkStaining protocol for arbuscular mycorrhizal fungi in roots using Quink InkStaining protocol for arbuscular mycorrhizal fungi in roots using Quink InkStaining protocol for arbuscular mycorrhizal fungi in roots using Quink Ink    

One of the main methods by which R. idaeus roots were stained, in order to obtain 

information on colonisation, was an adapted version of the method proposed by Vierheilig et 

al. (1998) a method in which we used domestically available Parker (Newhaven, UK) Royal Blue 

Quink Ink. R. idaeus roots were prepared prior to staining by removing all the soil under 

running water. The roots were then cut into 1cm long pieces and placed into a labelled tissue 

Square mesh tissue embedding cassette made by Thermo Fisher scientific (Waltham, USA). The 

cassettes were then placed into a beaker containing 10% KOH (10% w/v: 10g KOH in 100ml 

aqueous solution) solution which has been preheated to 80˚C in a water bath. The samples 

were then left for 10 hours in the water bath, with the KOH solution being changed and 

refreshed every 2.5 hours. This process cleared the root cells of pigment and allows the 

mycorrhizal features within the root to become visible.  

Following the clearing stage, the roots were then rinsed in water to remove the KOH and then 

blotted dry on tissue. This stage was essential as the stain will lose its colour if the liquid 
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attached to the roots is too basic. The samples were then added to a preheated beaker of 

staining solution (84.4:15:0.6, dH2O:1%HCl: Royal Blue Quink), again in a water bath kept at 

80˚C, for 15 minutes. 

The stained root was then used to prepares slides ready for scoring using the treatment using 

the magnified intersections method (McGonigle et al., 1990) see section 2.6. 

2.1.62.1.62.1.62.1.6     Staining pStaining pStaining pStaining protocolrotocolrotocolrotocol    for arbuscular mycorrhizal fungi in roots using trypan blue.for arbuscular mycorrhizal fungi in roots using trypan blue.for arbuscular mycorrhizal fungi in roots using trypan blue.for arbuscular mycorrhizal fungi in roots using trypan blue.    

An alternative method for staining roots for assessing AM fungal colonisation is to use trypan 

blue, using a method adapted from Phillips & Hayman, (1970). Roots were prepared and 

placed into tissue cassettes exactly as described in section 2.4. An appropriate volume of 3% 

KOH (i.e. 3g/100ml or 30g/L) was boiled and then added to a beaker containing the tissue 

cassettes, these were then left for 30 minutes and then the solution was poured off and rinsed 

in water for 5 minutes. The samples were then placed into a 2% HCl solution and allowed to 

soak for 30 minutes and then drained, this time without a rinsing step. A Trypan Blue solution 

(1:1:1 lactic acid:water:glycerol with Trypan Blue at 0.05% of total volume) was then boiled 

and added to the cassettes and left for 20 minutes. Following this step the tissue cassettes 

were then thoroughly rinsed to remove excess Trypan Blue stain and the samples added to a 

de-stain solution (50:45:5 glycerol:water:1%HCl) and left to sit in the fridge for 2 days prior to 

being placed on slides ready for scoring, see section 2.1.7. 

2.1.72.1.72.1.72.1.7 Preparing slides and scoring roots for arbuscular mycorrhizal colonisationPreparing slides and scoring roots for arbuscular mycorrhizal colonisationPreparing slides and scoring roots for arbuscular mycorrhizal colonisationPreparing slides and scoring roots for arbuscular mycorrhizal colonisation    

Labelled slides containing stained root tissue can be used to gain an indication of root length 

colonised by AM fungi using the magnified intersections method (McGonigle et al., 1990). 

Glass slides were prepared with stained root tissue arranged length-ways along the slide, this 

was then mounted in de-staining solution (50:50 glycerol:water) with a glass coverslip sealed 

with clear nail varnish. 

2.1.82.1.82.1.82.1.8 OOOOtiorhynchustiorhynchustiorhynchustiorhynchus    sulcatussulcatussulcatussulcatus    cultucultucultucultured at the James Hutton Institutered at the James Hutton Institutered at the James Hutton Institutered at the James Hutton Institute    

The O. sulcatus culture maintained at the James Hutton Institute, Dundee consisted of gravid 

adult O. sulcatus that were originally captured as adults, at night in polytunnels containing a 

monoculture of R. idaeus on site. The adults were kept in culture maintained at 18˚C on a 16:8 

Day/night cycle. They were kept in 9cm Petri dishes, with 5 individuals per Petri dish, lined with 

a moist tissue paper and fed twice weekly with fresh strawberry leaves of the ‘Symphony’ 

cultivar (Figure1.1a). Once a week the adults were transferred to fresh tissue lined Petri dishes 

and the old ones were stored at 4°C. The old dishes were never kept for more than 4 weeks, 

and it was from these that O. sulcatus eggs were sampled for experiments, taking care to use 

the freshest eggs available. 
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2.1.92.1.92.1.92.1.9 OOOOtiorhynchustiorhynchustiorhynchustiorhynchus    sulcatussulcatussulcatussulcatus    cultured at Royal Holloway University of Londoncultured at Royal Holloway University of Londoncultured at Royal Holloway University of Londoncultured at Royal Holloway University of London    

The O. sulcatus culture maintained at Royal Holloway, University of London consisted of gravid 

adult O. sulcatus that were captured as larvae feeding on strawberry plants onsite and then 

reared through to adults on ‘Elsanta’ strawberry (Fragaria ananassa) plants in a constant 

environment room kept at 22˚C on a 16:8 Day/night cycle. The adults were kept in culture 

maintained at 22˚C on a 16:8 Day/night cycle. They were contained in 9cm Petri dishes, with 5 

individuals per Petri dish, lined with a moist tissue paper and fed twice weekly with fresh 

strawberry leaves of the “Elsanta” cultivar. Once a week the adults were transferred to fresh 

tissue lined Petri dishes and the old ones were stored at 4°C. The old Petri dishes were never 

kept for more than 4 weeks, and it was from these that O. sulcatus eggs were sampled for 

experiments, taking care to use the freshest eggs available. 

2.1.102.1.102.1.102.1.10 EntomopathoEntomopathoEntomopathoEntomopathogenic nematode culturinggenic nematode culturinggenic nematode culturinggenic nematode culturing    

Entomopathogenic nematode cultures were maintained by in vivo production of infective 

juveniles under 18˚C on a 16:8 Day/night cycle conditions in 9cm Petri dishes. The wax moth 

Galleria mellonella (Livefood, Rooks Bridge,UK) was used as a surrogate host and infective 

juveniles were collected using white traps as devised by White (1927). Entomopathogenic 

nematodes were then stored in tap water at 5°C in 20ml glass vials. 

2.1.112.1.112.1.112.1.11 Nematode extraction using Baermann funnelsNematode extraction using Baermann funnelsNematode extraction using Baermann funnelsNematode extraction using Baermann funnels    

Samples of sand or soil were placed into a Baermann funnel. Baermann funnels consist of a 

filter placed inside a funnel into which a sand or soil sample in placed (see Figure 2.1). The 

sample was placed on top of the tissue paper filter and then left for 48 hours. During this time 

the nematodes within the sample that were both living and motile, swam down through the 

filter and collected just above the pinch clamp, as indicated in Figure 2.1. After 48 hours the 

pinch clamp was then released and the first 20ml of water was run off into a 50ml centrifuge 

tube. This liquid sample was then transferred into a gridded 6cm petri dish and placed under a 

dissecting microscope into and the nematodes were counted. 
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Figure 2.1: A Baermann Funnel. F, a glass  funnel; W, tap water at 18°C; FL (dashed line) fluid level in funnel; SB, 
Sample basket. S, Sample of sand from olfactometer; KW, two layers of Kimwipes or other laboratory tissue; PRM 
Plastic ring with nylon mesh; T, rubber tubing; PC, pinch clamp; CV, catch vessels, 50ml centrifuge tube, or glass 
beaker. Modified diagram from (Lok, 2007) 

2.1.122.1.122.1.122.1.12 Nematode extraction using wet sieving and sucrose centrifugationNematode extraction using wet sieving and sucrose centrifugationNematode extraction using wet sieving and sucrose centrifugationNematode extraction using wet sieving and sucrose centrifugation    

To extract nematodes from sand or soil, samples were first placed into one of two 100ml 

beakers to which water was added. The suspended sand solution was then poured between 

the two 100ml beakers ten times in order to agitate the substrate and suspend the nematodes 

in the water. This was then left to settle for 15 seconds and then the supernatant was poured 

onto a 38μm sieve. The sieved sample was then transferred into a 50ml centrifuge tube along 

with 40ml of water. This was spun at 1700rpm (810g) for 5 minutes and then allowed to settle 

for 5 minutes. This process produced a pellet at the bottom of the tube, containing the 

nematodes. The supernatant was then pipetted out using a P10ml Gilson® (Luton, UK) 

Pipetman to approximately 1cm above the pellet. The 50ml centrifuge tubes were then topped 

up to 40ml volume with a 45.4% sucrose solution. This was then placed on a vortex at high 

speed for 10 seconds to ensure the pellet was completely dispersed. The 50ml centrifuge 

tubes were then loaded back into the centrifuge and brought up to 1000rpm (280g) over 30 

seconds at which point the brake was applied. This re-suspends the supernatant with the last 

grains of sand and organic material collecting in a pellet at the bottom of the tube. 
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The supernatant was then poured back into a 38μm sieve and washed with tap water before 

being transferred into a gridded 6cm Petri dish that was sealed with parafilm®M made by 

Sigma-Aldrich® (ST. Louis, USA) ready for the population to be counted under a dissecting 

microscope. 

2.1.132.1.132.1.132.1.13 Plant volatile samplingPlant volatile samplingPlant volatile samplingPlant volatile sampling    

The method for sampling volatiles in these experiments was the application of stainless steel 

tubes packed with 200mg of the sorbent powder, Tenax® TA. (2.6-diphenylene oxide polymer 

resin, 60–80 mesh, surface area 35 sq m/g; Markes International Ltd, Llantrisant, UK). Tenax® 

TA designed for the trapping of volatiles and semi-volatiles and has a very low affinity for 

water, it is therefore ideal for use in high moisture environments, such as soil. These tubes 

were conditioned prior to use in order to remove any residual components present within the 

tube either from previous use or exposure during storage. The tubes were conditioned in a 

conditioning oven at 240°C while maintaining a steady flow of 2kPa of the clean carrier gas 

Helium at 5N grade for 4 hours. The freshly conditioned tubes were then immediately capped 

with ¼ inch brass storage caps complete with ¼ inch PTFE ferrules. The caps were screwed on 

finger tight and then using the CapLok™ tool they were tightened a further quarter turn. The 

tubes then remained in a clean and dry environment and were not uncapped until immediately 

prior to sampling.  

All experiments conducted used potted R. idaeus. To make the sampling using ATD tubes 

easier a short wooden dowel plug was inserted upright into the soil, at the time of potting the 

R. idaeus, with one end just breaking the soil surface. This dowel plug was 1mm greater in 

length and 5mm greater in diameter than the ATD tubes used. This dowel was removed just 

prior to sampling and the hole it left behind was the space in which the ATD tubes were placed 

(see Figure 2.2). This ensured that there was no unnecessary disruption of the root zone at the 

time of sampling volatiles. Immediately after sampling the caps were replaces by the same 

method and stored until desorption. 
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Figure 2.2: A R. idaeus cane with an automated thermal desorption tube in the soil for the passive collection of 
root volatiles. 

 

2.1.142.1.142.1.142.1.14 ATDATDATDATD----GCGCGCGC----MS methodology MS methodology MS methodology MS methodology     

The volatile samples captured in ATD tubes were then analysed in a Unity™ automated 

thermal desorber (Markes International Ltd, Llantrisant, UK) with an ATD Ultra™ auto sampler 

(Markes International Ltd, Llantrisant, UK)  coupled with an Agilent Technologies 6890N GC-MS 

system (Agilent Technologies 5975B). Sample tubes were alternated with a blank tube to 

ensure the independence of each chromatograph. Samples were desorbed over a period of 5 

minutes per tube at a temperature of 240°C. The compounds eluted by this process then 

passed from the sample tube to a cryofocussing trap, containing Tenax® and kept at 10°C. The 

cryofocussing trap was then rapidly heated to 240°C whereupon, compounds were transferred 

along a transfer line heated to 150°C onto a DB1701 GC column (60.0m 0.25mm 1.00lm, J&W, 

Folsom, CA, USA). The helium carrier gas used in the column had a flow rate of approximately 

0.5ml min-1. The oven temperature was increased from an initial 40°C to 240°C at a rate of 5°C 

min-1 and maintained at 240°C for 20 minutes. Following a 2 minute solvent delay EI (70.0eV) 

mass spectra were acquired at 1.33 scans s-1 over a mass range of 20-300 a.m.u. sourced at 

230°C. This data was read directly into MSD Chemstation software (G1710DA, Rev. D.03.00).  

This method was based entirely on the work of Cognat et al. (2012). 

2.1.152.1.152.1.152.1.15 GCGCGCGC----MS bMS bMS bMS based peak integration and identificationased peak integration and identificationased peak integration and identificationased peak integration and identification    

The data collected into Chemstation software through the process described in section 2.1.14 

was then converted from the standard “.D” Agilent format to “.RAW” files for use in the mass 
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spectrometry software Xcalibur™ 2.0.7 (Thermo Scientific, USA). The peaks in the 

chromatographs were then manually integrated using the software and individual peaks were 

run through the NIST MS 2.0d Library (NIST, USA). Only library matches that returned matches 

in excess of 80% were considered as reliable identifications. Identification was further aided 

with reference to an above-ground R. idaeus volatile database provided by Dr Tom Shephard 

(The James Hutton Institute, Dundee, UK), which was created using the same sampling 

methods on the same machine setup. This database has been previously used in peer reviewed 

publications (McMenemy et al., 2012). In order to account for the lack of an internal standard 

within samples, the peak area of each compound was divided by the total peak area of the 

entire sample. This created a value that represented a relative abundance of any given 

compound which could be used in further statistical analyses. 

 

2.1.162.1.162.1.162.1.16 Graphs in this thesisGraphs in this thesisGraphs in this thesisGraphs in this thesis    

All graphs in this thesis that present error bars are shown with standard error, unless 

otherwise noted. 



 

3333 Is the black vine weevil, Is the black vine weevil, Is the black vine weevil, Is the black vine weevil, 

Otiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatus, influence, influence, influence, influenced d d d 

by the presence of mycorrhizasby the presence of mycorrhizasby the presence of mycorrhizasby the presence of mycorrhizas    

when feeding upon when feeding upon when feeding upon when feeding upon Rubus idaeusRubus idaeusRubus idaeusRubus idaeus????    
 

3.13.13.13.1 IntroductionIntroductionIntroductionIntroduction    
Otiorhynchus sulcatus causes significant damage to a range of silvicultural and horticultural 

crops throughout the world’s temperate regions. Adult O. sulcatus feed on the foliage of a 

huge range of plants, inflicting relatively minor damage when compared to the root feeding 

larvae, which can reduce plant growth and if an infestation is severe, the death of a host plant 

(Penman & Scott, 1976). Conventional control of O. sulcatus is achieved using soil drench 

treatments of chemical pesticides. Until very recently the most commonly used treatment for 

an O. sulcatus infestation was the neonicotinoid; Imidacloprid, which has been temporarily 

withdrawn from use in the EU since 2014 due to non-target effects on bees. Future strategies 

to control  O. sulcatus would be wise to therefore consider pesticide free alternatives as part 

of an integrated approach to pest management (Gill et al., 2001).   

One of the primary plant hosts of O. sulcatus which is of major economic importance is the red 

raspberry, Rubus idaeus,  with over 13.8 thousand tonnes produced in 2013, worth £89.6 

million to the UK economy (DEFRA, 2013).  The production of R. idaeus is, in the UK, almost 

entirely under the protection of plastic tunnels which can raise temperatures by around 4°C 

compared to the surrounding field conditions and results in greatly increased growth (Johnson 

et al., 2010). However these conditions are also very favourable for O. sulcatus performance 

with the insects consuming more R. idaeus biomass, completing their life cycles faster and with 

adults being more fecund (Johnson et al., 2010). Two cultivars that have been studied 

previously with respect to their tolerance to O. sulcatus attack are Glen Ample and Glen Rosa 

(Clark et al., 2012). Both these cultivars are autumn mid-season fruiters and typically produce 

fruit in their second year late in July through to the middle of August. Despite being sister 

cultivars they differ in their usage, with Glen Ample being a major commercial variety, due to 

fruit size and quality, and Glen Rosa being more popular on the amateur market due to its 

better tolerance to pests and diseases (Hall et al., 2008; Clark et al., 2011b). Like many 



 

members of the Rosaceae, R. idaeus readily form mutualisms with arbuscular mycorrhizal 

fungi. 

AM fungi form symbiotic relationships with the majority of plant taxa (Hodge, 2000), they 

contribute phosphorus and other plant limiting nutrients in return for plant sugars derived 

from photosynthesis (Whittingham & Read, 1982; Bever et al., 2001; Smith & Read, 2008). The 

allocation of increased resources, provided by AM fungi can also contribute to plant resistance 

against herbivores (Bennett et al. 2006, Kempel et al. 2010).  As well as improved nutrient 

uptake plants have shown a variety of other effects while in symbiosis with AM fungi. The 

process of AM fungal colonisation has the effect of priming plant defences that then give the 

plant a better chance of responding rapidly to pests or pathogens through the jasmonic acid 

and salicylic acid pathways (Van der Ent et al. 2009, Jung et al. 2012). Koricheva et al. (2009) 

conducted meta-analysis to compare the effects of AM fungi on different groups of insect 

herbivores. They concluded that while specialist insect herbivores often responded positively 

to AM fungal colonisation, generalists tended to be negatively affected. They postulated that 

this disparity due to AM fungi boosting plant defences and plant nutrition and that the effects 

of this would be more detrimental to generalists whose physiology is not specialised to 

counter the defences of any particular plant species and cannot therefore take advantage of 

increased nutrient availability, unlike a specialist herbivore. O. sulcatus, a generalist herbivore, 

have appear to fit this observed trend as studies on Fragaria spp. demonstrate a reduction in 

larval weights when a single species of AM fungi is present in plant roots (Gange et al., 1994; 

Gange, 1996, 2001). This effect seems disappear however, when a mixed AM fungal inocula is 

added to plants with such treatments having no apparent effects on larval performance 

(Gange, 2001). Under field conditions plants are known to have associations with multiple AM 

fungal partners simultaneously,  if this is at the cost of possible benefits of exclusive symbioses 

with one partner then this suggests that these relationships are more complex than at first 

glance (Gadhave et al. unpublished; Bakker et al., 2013). This experiment was therefore 

designed to see if a mixed AM fungal inocula added to plants, that was indigenous to R. idaeus 

in the field, would show negative effects on O. sulcatus performance. 

Plants can respond to herbivore attack with an array of inducible defences among these is the 

increased production of plant VOCs emitted by plant tissues; acting potentially as toxins or 

deterrents (Bezemer & van Dam, 2005). VOCs are released both above and below the soil 

surface and provide a chemical signature that is particular not only to the plant species but 

also the plants’ status and can consequently be attractive to further herbivores but also 

natural enemies that can assist the beleaguered plant. This effect of plants attracting natural 

enemies has been observed in a number of plants species alongside both insects and mite 



 

species (Dicke et al., 1990; Turlings et al., 1990; Elliot et al., 2000; Gange et al., 2003; Guerrieri 

et al., 2004).  Earlier studies investigating O. sulcatus larval feeding inducing increased 

attraction of the EPN; Heterorhabditis megidis unfortunately failed to detect any VOC 

emissions that could explain H. megidis distributions (Boff et al., 2001; van Tol et al., 2001). 

Later experiments investigating these effects in belowground herbivore induced VOCs 

attracting natural enemies have been more successful in capturing and identifying the VOC 

compounds responsible. These studies used techniques such as solid-phase microextraction 

fibres or thermal desorption sampling followed by gas chromatography and mass 

spectrometry techniques (Rasmann et al., 2005, 2012b; Ali et al., 2012). This study will employ 

similar methods to try and identify any changes in root volatile chemistry between R. idaeus 

treated with differing levels of O. sulcatus and AM fungi. 

The main aim of this work was to see if the presence of AM fungi affected O. sulcatus 

performance on R. idaeus. With this as the main aim a number of further objectives were 

identified. It was investigated if the two R. idaeus cultivars responded differently to O. sulcatus 

infestations of different densities. The hypotheses were that high density treatments of O. 

sulcatus would have a greater negative effect on R. idaeus growth parameters and that Glen 

Ample would suffer greater levels of herbivore damage than Glen Rosa. To test how O. 

sulcatus larvae performed under different population densities the hypothesis that higher 

densities of O. sulcatus would result in lower O. sulcatus larval mass was tested. It is feasible 

that O. sulcatus herbivory on roots could result in lower AM fungal colonisation as the root 

tissue available for AM fungi to colonise would be diminished; differences between cultivar 

susceptibility would likely moderate this interaction. It was investigated whether levels of AM 

fungal colonisation was effected by O. sulcatus herbivory and/or R. idaeus cultivar. It was 

hypothesised that AM fungal colonisation would be influenced by O. sulcatus density and that 

there would be a difference between the AM fungal colonisation of Glen Rosa and Glen Ample. 

Root VOC emissions were captured and the data collected from this was analysed to see if 

there are changes in chemistry that reflect different AM fungal and herbivory treatments. It 

was hypothesised that root VOC emissions would be altered by AM fungal and O. sulcatus 

treatments 

 

3.23.23.23.2 Materials and Materials and Materials and Materials and MethodsMethodsMethodsMethods    
A 2 x 2 x 3 factorial experiment was conducted with two different R. idaeus cultivars (Glen 

Ample and Glen Rosa), two different mycorrhizal treatments (live or sterile spores) and three 



 

different herbivore treatments using Otiorhynchus sulcatus (a control treatment, low 20 egg 

treatment and a high 40 egg treatment). 

3.2.13.2.13.2.13.2.1 Experimental setupExperimental setupExperimental setupExperimental setup    

Following surface sterilisation of their roots (see general methods 2.1.1) 108 individual plants, 

54 of each cultivar, were separated and put into 1.8L size 6 pots containing 1.6L of a twice 

sterilised 1:1 loam (Keith Singleton sterilised loam) and sand mix. A 0.2L reduction in soil 

medium was incorporated into the design in order to reduce contamination of adjacent pots 

caused by splash-back during watering. A length of dowel (9mm diameter X 90mm) was placed 

vertically in each pot to create a column in the soil for the later insertion of automated thermal 

desorption (ATD) tubes, in a way that would not damage the roots. 

Field extracted spores and a microbial wash was prepared following methods laid out in the 

general methods sections 2.1.2 and 2.1.3. All 108 plants were then inoculated with 2ml of 

spore solution, containing 54±7.95SE spores, and 2ml of microbial wash; with the live spores 

and a sterile microbial wash forming the “live” mycorrhizal treatment and the sterile spores 

and live microbial forming the “sterile” mycorrhizal treatment.  Both the treatments were 

applied using a P10ml Gilson® (Luton, UK) Pipetman with spores injected 5mm below the soil 

surface at the base of the plant’s main stem.  A number of initial plant measurements were 

made at the time of inoculation (plant height and total number of leaves). 

Seven weeks after the addition of mycorrhizal spores, O. sulcatus eggs were added to plants. 

One hundred and eight plants were divided equally, according to cultivar and AM fungal 

treatment, into three different groups. One group was kept as a control group with no eggs 

added; the second group had 20 eggs added, and the third group 40 eggs.  The eggs were 

sourced from the JHI O. sulcatus culture (see general methods 2.1.8). Every two weeks after 

the addition of O. sulcatus eggs until the time of harvest, plant measurements of plant height 

and total number of leaves were taken. The length and width of the largest leaf were 

multiplied to give an estimation of leaf area. 

Fourteen weeks after the addition of O. sulcatus eggs, preconditioned ATD tubes packed with 

Tenax TA (see general methods 2.1.13) were placed into the pots of 36 plants to sample root 

VOC emissions. The tubes were left in the soil for a 24 hour period before being sealed with 

brass long term storage end caps. The plants were then harvested with the O. sulcatus larvae 

recovered from the soil, counted and weighed, and the above and belowground portions of 

the plants were snap frozen in liquid nitrogen and then freeze dried to enable the recording of 

dry mass. Arbuscular mycorrhizal colonisation of roots was assessed using the gridline 

intersect method (McGonigle et al., 1990) after being stained with Trypan blue (see general 

methods 2.1.7). 



 

3.2.23.2.23.2.23.2.2 Data analysisData analysisData analysisData analysis    

The data was then analysed with the statistical package R (version 3.1.2). The plant growth 

data, that was collected periodically, was analysed using a repeated measures analysis of 

covariance which compared the response variables; plant height and leaf number against the 

explanatory variables; mycorrhizal presence, number of O. sulcatus eggs added, experimental 

block and initial plant growth, as co-variants and time as an error function. 

The data that were taken after the experimental harvest was analysed using an ANOVA to 

compare the response variables; biomass, O. sulcatus mortality and O. sulcatus mass against 

the explanatory variables; mycorrhizal presence, number of O. sulcatus eggs added, R. idaeus 

cultivar and the covariate, experimental block. 

The VOC samples captured from the soil earlier in the experiment were then processed using 

the methods outlined in the general methods sections 2.1.14 and 2.1.15. The extracted data 

was then analysed using a principal component analyses and identified compounds of 

particular relevance were incorporated into generalised linear models (GLMs) with all the 

explanatory variables recorded in the experiment. 

3.33.33.33.3 ResultsResultsResultsResults    
3.3.13.3.13.3.13.3.1 Plant growthPlant growthPlant growthPlant growth    datadatadatadata    

The major factor affecting the recorded size metrics of R. idaeus throughout the duration of 

the experiment was the cultivar. Glen Ample plants were taller but with fewer leaves, which 

were on average larger (Table 1) than those of Glen Rosa (Figures 1, 2 and 3). In each case the 

initial height, leaf number or leaf size recorded at the beginning of the experiment was 

included as a covariate in the model, so differences recorded were not just due to initial plant 

size. To further explore the variation within the two cultivars used in this experiment the data 

was split into two sub-sets, one for each cultivar. The significant interaction between the O. 

sulcatus treatment and the R. idaeus cultivar (Table 1) was due to Glen Ample plants being 

taller in the high density, 40 egg, O. sulcatus treatment (Figure 6). The estimated area of the 

largest leaf also showed this trend with increased size in the presence of O. sulcatus larvae in 

the larger density 40 egg treatment (Figure 7). A significant interaction between cultivar and 

AM fungal treatment when the number of leaves per plant were investigated was uncovered. 

This was explained by the number of leaves on Glen Rosa being influenced by the AM fungal 

treatment, with AM fungal control plants having more leaves (Table 1) at every time point in 

the experiment (Figure 8).



 

 

Table 3.1: Results of repeated measures ANOVAs on R. idaeus measurements taken throughout the experiment. 

  Measurements taken over time  

Parameter Plant height  Number of leaves Estimated leaf area 

F P F P F P 

O. sulcatus 
treatment 

10.28 <0.001 3.033 0.04 3.05 0.05 

AM fungal treatment 3 0.08 21.34 <0.001 14.18 <0.001 

R. idaeus cultivar 331.684 <0.001 6.4 0.01 128.8 <0.001 

O. sulcatus*AM fungi 3.73 0.035 6.664 0.001 11 <0.001 

O. sulcatus*cultivar 8.282 <0.001 0.78 0.4 8.1 <0.001 

AM fungi*Cultivar 0.896 0.344 5.13 0.02 0.13 0.9 

Experimental block 17.38 <0.001 3.78 0.005 9.86 <0.001 

Initial plant height 25.31 <0.001     

Initial leaf number   65.19 <0.001   

 

 

 

Figure 7: R. idaeus of the Glen Ample (dark grey) 
cultivar were taller throughout the experiment than 
Glen Rosa (light grey). 

 

Figure 8: R. idaeus of the cultivar Glen Rosa (light 
grey) had more leaves over time than Glen Ample 
(dark grey).

0

20

40

60

80

100

120

140

160

180

2 4 6 8 10 12

P
la

n
t 

h
ei

gh
t 

(m
m

)

Weeks after O. sulcatus addition

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12

N
u

m
b

er
 o

f 
le

av
es

Weeks after O. sulcatus addition



41 
 

 

 

Figure 9: The area of the largest leaf on each plant 
was significantly different in the two cultivars 
tested; Glen Ample (dark grey) leaves being 
significantly larger than Glen Rosa (light grey).

 

 

Figure 6: O. sulcatus egg density had a significant 
influence on the height of Glen Ample over time. 
Control treatment shown in black, 20 egg treatment 
in dark grey and 40 egg treatment in light grey. 

 

Figure 7: The O. sulcatus egg density added at the 
beginning of the experiment had a significant 
influence on the estimated area of the largest leaf 
on the Glen Rosa plants. Control treatment shown 
in black, 20 egg treatment in dark grey and 40 egg 
treatment in light grey.

 

Figure 8: The AM fungal treatment (light grey) 
added to Glen Rosa plants caused a decrease in the 
number of leaves the plant grew when compared to 
the control (dark grey) treatment. 

 

 

3.3.23.3.23.3.23.3.2 Herbivory and biomass dataHerbivory and biomass dataHerbivory and biomass dataHerbivory and biomass data    

After the experiment was harvested the biomass of the plant was recorded. The total biomass 

was not explained by either the mycorrhizal treatment, the number of O. sulcatus eggs added 

or the R. idaeus cultivar. However, when above and below ground biomass were tested 

separately using a root to shoot ratio as a response variable there was a clear effect of the 

O. sulcatus treatment. This root to shoot ratio was significantly different (F2,98=7.78, P <0.001)  
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under the different O. sulcatus egg densities with a higher proportion of biomass distributed to 

the aboveground portion of the plant in the two treatments where O. sulcatus were added 

when compared to the insect free control treatment (Figure 13). The mortality of O. sulcatus 

larvae was found to be significantly higher (F1,28=16.20, P<0.001) in the 40 egg treatment than 

in the 20 egg treatment (see Figure 10). The mortality of O. sulcatus larvae did not appear to 

be affected directly by the AM fungal treatment or by differences between cultivar biomass. 

The larval masses of O. sulcatus recorded was not found to be affected by the AM fungal 

treatment, O. sulcatus density or the R. idaeus cultivar.

 

Figure 13: The Root to shoot ratio was different in 
the three O. sulcatus densities with the control 
treatment showing a higher distribution of biomass 
in the roots when compared to the two herbivory 
treatments.

 
 
Figure 14: The percentage mortality of O. sulcatus 
larvae between the beginning and the end of the 
experiment was higher in the 40 egg density.

 

3.3.33.3.33.3.33.3.3 Mycorrhizal colonisation dataMycorrhizal colonisation dataMycorrhizal colonisation dataMycorrhizal colonisation data    

The percentage root length colonised by AM fungal structures indicated that the treatment in 

which AM fungi were added to plants exhibited much higher levels of colonisation 

(F=1,20=20.81, P <0.001) than control treatments (Figure 15). When the individual structures 

were analysed separately it was found that hyphal colonisation and vesicle colonisation 

mirrored the overall trend (F1,20=21.03, P <0.001 and F1,27=5.03, P <0.05 respectively) but the 

presence of arbuscule formation was higher (F1,27=10.04, P <0.001) in the Glen Ample cultivar 

when compared to Glen Rosa (Figure 16).
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Figure 15: Total colonisation of roots was 
significantly greater in the treatment where AM 
fungi were added. 

 

Figure 16: The formation of arbuscules was found to 
be higher in the Glen Ample cultivar than in Glen 
Rosa.

3.3.43.3.43.3.43.3.4 Volatile organic chemistry dataVolatile organic chemistry dataVolatile organic chemistry dataVolatile organic chemistry data    

The compounds captured from the root zone in this experiment did not produce any useful 

results after principal component analysis and none of the identified compounds that were 

shown in the literature to elicit an attractant response in EPNs correlated with the AM fungal 

treatments. However, α-pinene and carene, both known semiochemicals, that have been 

previously shown to elicit such a response (Rasmann et al., 2012a) were identified.  The 

compound α-pinene was present in 58.82% of the samples, with large peaks, the areas of 

which comprised on average 30.94% ± 5.9SE of the total peak area of the chromatographs, 

making it the most abundant and ubiquitous compound within the range of detected and 

identified known semiochemicals. Secondly carene was detected in 52.94% of samples and 

comprised on average some 14.94% ± 2.6SE of the total peak area. It is worth mentioning that 

due to a large number of compounds falling outside the 80% threshold, for identification via 

the NIST library (details in 2.1.15), that duplicated compounds within a similar mass range may 

still exist in the data set. For the same reason it may be that there other un-identified VOCs 

that may be documented in the literature as being semiochemicals. The large peaks detected 

for some compounds, such as α-pinene represent very large outliers in the data set, the 

presence of which make the output of a PCA unreliable. The removal of such outliers for the 

purpose of re-analysis was not advisable as they represented a large proportion of the total 

peak area, and also known semiochemicals. The raw data used in this analysis can be found in 

digital appendix 1. 
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3.43.43.43.4 DiscussionDiscussionDiscussionDiscussion    
In order to determine how different R. idaeus cultivars respond to O. sulcatus infestation plant 

metric data was collected throughout the experiment and then plant biomass was calculated 

at the end of the experiment. The main findings from the plant metrics collected over time was 

the strong differences in growth patterns observed between the two R. idaeus cultivars. Glen 

Ample was much taller with larger leaves than Glen Rosa which was a shorter, slower growing 

plant with more numerous but smaller leaves. This fits very well with the information available 

from the plant breeders about these two cultivars. Glen Ample has the higher yield and larger, 

sweeter fruit and is favoured commercially. Glen Rosa however is more tolerant to pests and 

diseases. It has the A10 resistance gene for protection against the large raspberry aphid, has 

smaller fruit and typically produces smaller yields when compared to Glen Ample (Hall et al., 

2008). A more vigorous growth is typically associated with Glen Ample leading to higher 

average biomass than in Glen Rosa  (Hall et al., 2008) which was not recorded directly in this 

experiment as both cultivars showed similar biomass but there is a pattern to indicate this 

seen in plant height and leaf size data. 

It is when these two cultivars of R. idaeus are investigated separately that further details on 

their responses to AM fungi and herbivory treatments become apparent. In Glen Ample the 

higher density, 40 egg treatment resulted in significantly taller plants. This might suggest, at 

least when only looking at plant height, that these plants were exhibiting some form of over-

compensatory growth in response to this high level of herbivory (McNaughton, 1983). A similar 

pattern was observed in Glen Rosa plants with the area of the largest leaf being significantly 

larger on plants exposed to the higher, 40 egg O. sulcatus treatment. Again, increased growth 

could be considered as an indication of a stressed plant that is exhibiting over-compensatory 

growth. However this is not borne out when the biomass data were taken into account. The 

biomass data collected reveals that there is no significant difference in biomass between 

herbivory treatments. Instead, it is the pattern of resource allocation that changes in the plant. 

The root to shoot ratio indicates that in the two O. sulcatus treatments a higher proportion of 

biomass is found in the aboveground portion of the plant when compared to control plants. 

This has been shown to occur as a response to root herbivory in Zea mays, and using 

radioactive 11CO2 it was shown that this was an effect of carbon reallocation from roots to 

stem tissues (Robert et al., 2014). A similar effect showing that plants allocate nitrogen away 

from root herbivores (Newingham et al., 2007) has been shown in Centaurea maculosa. 

Although neither of these plants are closely related to R. idaeus these examples do provide 

explanations for how plants can respond to root herbivory which might explain the patterns 

observed in R. idaeus biomass. 
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Another observation made using plant metric data was that Glen Rosa plants had significantly 

fewer leaves in treatments where AM fungi was added. This was an unexpected result as 

commonly AM fungi are linked with an increase in biomass (Smith & Read, 2008). This could be 

another effect of AM symbiosis resulting in altered resource distribution, as this was not an 

effect that was found to be represented in overall biomass.  

The initial density of O. sulcatus added to plants had a significant impact on the mortality of 

these populations. At higher densities, a significantly higher mortality was found. This is likely 

due to a greater competition for limited food resources. This is in accordance with the findings 

of La Lone and Clarke (1968) who found, while studying O. sulcatus larvae feeding on potted 

rhododendrons, that mortality of larvae increased with increasing density and that mortality 

was highest in early instars, findings mirrored by Gange (1996). The performance of O. sulcatus 

was not however affected by AM fungal treatments despite previous studies on Fragaria 

ananassa showing a decrease in larval performance (Gange et al., 1994; Gange, 1996, 2001). 

While the majority of these studies used only single species of mycorrhizal inocula. Gange 

(2001) showed that when a mixture of two species was added then this effect on larval survival 

was lost. As this experiment used a mixed mycorrhizal inocula in order to mimic field 

conditions and a different plant species, it is perhaps unsurprising that these effects on larval 

performance were not observed. 

The percentage root length colonised by AM fungi was higher in plants to which live AM fungal 

spores had been added and was very low or absent in untreated control plants. Overall this 

suggests that the surface sterilisation and subsequent inoculation of plants was a success. This 

low level of colonisation in control plants is likely to be due to residual AM fungal material in 

R.idaeus root material or it could have been material that survived soil autoclaving. Plants 

were separated by a minimum of 20cm so as to minimise the occurrence of soil splashing 

between pots of different treatments during watering but this is still a possibility. It should also 

be noted that a “microbe free plant” is neither attainable nor a necessarily useful baseline 

comparison as plants never exist in the absence of microbes (Partida-Martínez & Heil, 2011). 

Another discovery when analysing the root colonisation data was the differing levels of 

arbuscule colonisation in the two R. idaeus cultivars tested. Arbuscule colonisation was on 

average low in both cultivars, which is not to say that this level of colonisation was not 

sufficient for the plant to receive a detectable benefit in plant performance (Gange & Ayres, 

1999). While arbuscule colonisation was low, it was significantly lower in Glen Rosa plants than 

in Glen Ample plants. This is interesting as it shows that even closely related cultivars, can 

possess differing mycorrhizal affinity. This is a large area of research at the moment and 

breeding traits such as mycorrhizal affinity back into highly productive lines is of great interest 
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to plant breeders in order to move towards more sustainable agriculture with fewer inputs. 

This is of increasing need as the global availability of mineralised phosphorus continues to 

decline. 

The VOCs collected via ATD-GC-MS were quantified and then identified, but those collected in 

the experiment did not correlate significantly with the experimental treatments. However a 

number of chemicals were identified that are frequently associated in entomopathogenic 

nematode ecology literature as semiochemicals governing chemotaxis towards insect hosts 

such as O. sulcatus (Rasmann et al., 2012a). In the chromatographs produced by this 

experiment, the largest and most ubiquitous peak, was that of α-pinene. This compound has 

been previously identified as a subterranean herbivore-induced VOC when isolated from citrus 

roots (Ali et al., 2010, 2011) as well as being shown to vary in emission levels with respect to 

AM colonisation (Rapparini et al., 2008). It is worth noting that  both α-pinene and β-pinene 

have been found previously in several other R. idaeus varieties (Aprea et al., 2009) so its 

presence alone, both as a plant VOC emission and as a R. idaeus metabolite is well established. 

Due to the soil based sampling method used, it is not possible to determine if the emissions 

were detected from the plant via some kind of herbivore induced pathway or if these 

compounds were in fact also produced directly by O. sulcatus larvae feeding on R. idaeus 

roots. Galleria mellonella,  an insect which is very susceptible to EPNs has been shown to 

produce both hexanal and alpha pinene and both these compounds stimulated a jumping 

response in the EPN Steinernema carpocapsae and to a lesser extent chemotaxis (Hallem et al., 

2011). It could be a peculiarity of G. mellonella which in turn could be the reason for its 

pronounced susceptibility to EPNs but we cannot rule out that this is a trait that O. sulcatus 

may have in common which may aid any biological control programme that aims to 

incorporate or enhance the effects of root herbivore induced VOCs that attract EPNs. 

3.53.53.53.5 ConclusiConclusiConclusiConclusionsonsonsons    
The main findings in this chapter were that both R. idaeus cultivars tested showed different 

growth patterns in response to AM fungal and O. sulcatus treatments. However both Glen 

Ample and Glen Rosa showed the same resource reallocation tolerance response to O. 

sulcatus herbivory. This study formed an experimental framework for the later experiments in 

this thesis as it provided evidence that the root surface sterilisation and subsequent 

inoculation with AM fungi protocol worked with R. idaeus. In addition to this it also provided 

information on how the two cultivars of R. idaeus responded to different densities of O. 

sulcatus.  
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The VOCs captured during the experiment did not provide any evidence of any VOCs that may 

be root herbivore of AM fungi induced, but perhaps with a greater level of compound 

identification this data set could provide evidence for these effects. 

To build upon the information gathered in this experiment, new experiments were devised. An 

additional component was added to this tri-trophic system, in the form of EPNs. The 

interaction of these EPNs with the other components of the system were studied in two 

settings. The first was a ‘no choice’ experiment on R. idaeus to establish how effective 

different EPNs were at O. sulcatus control in the presence of AM fungi (Chapter 4). The second 

was an investigation into the preferences of EPNs when confronted with R. idaeus with 

different AM fungal and O. sulcatus treatments (Chapter 5). 

4444 Combining entomopathogenic Combining entomopathogenic Combining entomopathogenic Combining entomopathogenic 

nematodes and resistant cultivars to nematodes and resistant cultivars to nematodes and resistant cultivars to nematodes and resistant cultivars to 

reduce reduce reduce reduce Otiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatusOtiorhynchus sulcatus    

performance.performance.performance.performance.    
 

4.14.14.14.1 IntroductionIntroductionIntroductionIntroduction    
 

Plants interact with a myriad of soil organisms, ranging from those that can be broadly 

described as mutualistic (e.g. mycorrhizal fungi and nitrogen fixing bacteria) to those that have 

detrimental effects on plant performance (e.g. herbivores and pathogens) (Gregory et al., 

2009). In addition to having a mutualistic relationship with soil microbes, more recent work 

suggests that plants have mutualistic relationships with invertebrate natural enemies of root 

herbivores, most notably EPNs (San-Blas, 2013). In particular, a number of studies have shown 

that plants under attack by root herbivores recruit EPNs, often by volatile cues released from 

the roots (Rasmann et al., 2005; Ali et al., 2010, 2012). EPNs infect root-feeding insects in their 

infective juvenile stage by penetrating the insect’s cuticle or entering via orifices (Kaya & 

Gaugler, 1993). 

Symbioses between AM fungi and vascular plants are extremely common with such 

associations occurring in around 70% of plant taxa (Hodge, 2000). Plants typically trade sugars 
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with AM fungi in exchange for phosphorus with this interaction varying in the degree of 

mutualism observed (Bever et al., 2001; Smith & Read, 2008).  As well as improved nutrient 

uptake, plants show a variety of other traits while in symbiosis with AM fungi. For example, 

there are numerous examples of AM fungi altering the performance of herbivorous insects 

feeding on shoots, either directly (Bennett, Alers-Garcia & Bever 2006; Koricheva, Gange & 

Jones 2009) or indirectly, via effects on the higher trophic levels, such as parasitoids (Gange, 

Brown & Aplin 2003). Despite sharing the same part of the plant (i.e. the roots), surprisingly 

few studies have addressed how AM fungi affect root herbivores, though there is ample scope 

for direct interaction and potentially an adaptive advantage to both fungi and plants in 

resisting root herbivory (Johnson & Rasmann, 2015). Indeed, of the eight studies reporting 

effects of AM fungi on root herbivores listed by Johnson and Rasmann (2015), all but one 

reported highly negative impacts of AM fungi on root herbivores.  

Given that AM fungi and EPNs are both detrimental to root herbivores when studied 

individually, this raises the intriguing prospect that these two plant mutualists could work in 

concert to help host plants resist attack by root herbivores. To our knowledge, no previous 

studies have addressed whether AM fungi and EPNs synergistically affect the performance of 

root-feeding insect pests, despite the clear potential for combining these interactions to 

control a number of economic pests (Blackshaw & Kerry, 2008). While there are no studies 

investigating the interaction of AM fungi with EPNs, antagonistic interactions between AM 

fungi and plant parasitic nematodes have been reported (Elsen et al., 2008).  It could be 

hypothesised, however, that this antagonism would not occur with EPNs, given that they 

confer protection to the roots, and by implication AM fungi. AM fungi could facilitate EPN 

efficacy against root herbivores in a least two ways. Firstly, most AM fungi negatively affect 

root herbivore performance (Johnson & Rasmann 2015), which could render herbivores more 

vulnerable to EPN attack and penetration. Secondly, AM fungi have been shown to alter the 

volatile profile of plants (Rapparini et al., 2008) which could also be true of volatiles released 

from the roots, including those attracting EPNs. Schausberger et al. (2011), for example, 

demonstrated that AM fungi changed the composition of herbivore-induced plant volatiles 

(caused by feeding by Tetranychus utrticae) emitted by the plant, which recruited the 

herbivore’s natural enemy, Phytoseiulus persimilis. The use of mutualistic fungal associations 

with plants to supress shoot herbivores has been mooted (Vannette & Hunter, 2009; Pineda et 

al., 2010), but their potential to synergistically interact with EPNs remains an, as yet, untapped 

management option against root herbivores.  

O. sulcatus is a good model for testing the hypothesis that AM fungi and EPNs may work in 

tandem to supress root herbivore populations. There is evidence that plants form mutualistic 
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associations with both organisms individually to resist attack by O. sulcatus. AM fungi are 

known to reduce the performance of O. sulcatus (Gange, Brown & Sinclair 1994; Gange 1996; 

Gange 2001) and Thuja occidentalis roots attacked by O. sulcatus release attractant cues to the 

EPN, Heterorhabditis megidis Van Tol et al. (2001). O. sulcatus is a major pest of horticultural 

and nursery crops across temperate zones and causes significant damage to a wide range of 

host plants (Moorhouse, Charnley & Gillespie 1992). Adult O. sulcatus cause minor damage to 

the leaves of plants, while larvae feed on roots and cause significant reductions in plant vigour 

and yield (Penman & Scott, 1976). In a four year field study, Clark et al. (2012) reported that 

heavy infestations of O. sulcatus reduced yield by 39% and 66% in Glen Rosa and Glen Ample 

Rubus idaeus varieties, respectively. Traditionally, chemical control of O. sulcatus was achieved 

using Aldrin, but this pesticide was withdrawn from use in 1990. Current methods typically 

entail application of a neonicotinoid (Imidacloprid) or an oganophosphate (Chlorpyrifos), but 

the former has been suspended under recent EU legislation and both are damaging to non-

target organisms, including many beneficial organisms (Gill et al., 2001). In addition to the 

undesirable ecological impacts of these chemicals, many of the horticultural crops affected by 

O. sulcatus have moved to insecticide-free production because of consumer demand (Gordon 

et al., 2006), so sustainable and environmentally sound control measures are urgently needed.  

This study aimed to determine how root herbivore natural enemies (two EPN species) and AM 

fungal colonisation of the plant affect root herbivore performance. The study system used two 

cultivars of R. idaeus, known to be highly (Glen Ample) and moderately (Glen Rosa) susceptible 

to O. sulcatus (Clark et al., 2012). R. idaeus is a small, but high value crop, known to be 

mycorrhizal (Taylor & Harrier, 2000) and widely attacked by O. sulcatus (Alford, 2007). The two 

EPN species incorporated into the experiment are both widely recommended and 

commercially available specifically for use against O. sulcatus (Haukeland & Lola-Luz, 2010). 

Steinernema kraussei Steiner is cold tolerant, active at <10°C, whereas H. megidis is active at 

>10°C, both are known to alter their dispersal and taxis depending on the substrate they are in 

and they possess different bacterial endosymbiont communities (Forst et al., 1997; Kruitbos et 

al., 2010; Ansari & Butt, 2011). These two species contrast well with one another and should 

provide an interesting comparison. Otiorhynchus sulcatus has a history, particularly in the 

horticultural sector, of being treated with a range of EPNs which creates a convenient multi-

trophic system in which to study potential interactions. To assess how the different EPN 

treatments influenced O. sulcatus mortality and performance we proposed two hypotheses. 

First that EPN treatments would decrease O. sulcatus abundance and secondly that EPN 

treatments would lower O. sulcatus larval mass.  Plant biomass was calculated at the end of 

the experiment to quantify the plant response to EPN treatments. We hypothesised that EPN 

treatments on plants infested with O.sulcatus would promote an increase in plant biomass. 
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Carbon allocation in R. idaeus was investigated as a response to herbivory. The root to shoot 

ratio of plant biomass was used as an index of changes in carbon allocation in response to 

herbivory. We predicted that the EPN treatments and subsequent abundance of O. sulcatus 

would influence the root to shoot ratio in R. idaeus cultivars. 

To assess the influence of EPN and cultivar treatments on AM fungal colonisation a series of 

hypotheses were tested. We tested the assumption that different cultivars of R. idaeus would 

exhibit different levels of root length colonisation by mycorrhizal structures (arbuscules, 

vesicles or spores) based on evidence in other systems (Hetrick et al., 1993; Zhu et al., 2001). 

We then tested the assertion that the percentage of root length colonised (%RLC) by 

mycorrhizal structures (arbuscules, vesicles or spores) would increase EPN efficacy. Based on 

previous observations by other authors (Treseder, 2013) we hypothesised that the %RLC 

would be positively correlated with plant biomass. Finally based on work conducted on 

strawberry which indicated that AM fungi could impair the performance of O. sulcatus larvae 

(Gange, 1996) we predicted that the %RLC would be negatively related to O. sulcatus larval 

mass 

 

4.24.24.24.2 MaterialMaterialMaterialMaterialssss    and Methodsand Methodsand Methodsand Methods    
 

4.2.14.2.14.2.14.2.1 Study systemStudy systemStudy systemStudy system    

Rootstock from existing R. idaeus plants of two cultivars; Glen Ample and Glen Rosa were 

prepared according to the methods outlined in section 2.1.1. Following this, 78 individual 

plants, 39 of each cultivar, were transplanted into 1.8L pots containing 1.6L of a twice sterilised 

1:1 soil (Keith Singleton sterilised loam, Nethertown, Cumbria) and sand mix. The 39 plants of 

each cultivars were equally and randomly distributed between the 3 treatments giving a 

replication of 13 plants for each treatment. The plants were then incorporated into a 

randomised block design for the duration of the experiment. Two weeks after the plants were 

transplanted, and before any herbivore or EPN treatments were added, plant height was 

recorded in order to be used later as a covariate in statistical models to account for the initial 

variation in height between plants. 

O. sulcatus eggs were taken from a pre-existing culture (cultured as described in chapter 

2.1.8). The EPNs used in the experiment were purchased from commercial suppliers and were 

advertised as being a specific lines to control for O. sulcatus. S. kraussei (Becker and 

Underwood®, Littlehampton, UK) and H. megidis (Biobest®, Milton Bridge, UK). They were 



51 
 

both added to plants as separate treatments at their recommended dosages. This worked out 

as approximately 9000 S. kraussei added per pot and approximately 16000 H. megidis added to 

each pot. 

 

4.2.24.2.24.2.24.2.2 Experimental setupExperimental setupExperimental setupExperimental setup    

A 2 x 3 factorial experiment was conducted under controlled conditions (16:8 days at 18˚C), 

with two different R. idaeus cultivars (Glen Ample and Glen Rosa) and three different EPN 

treatments (a control treatment, and addition of S. kraussei or H. megidis).  

Five weeks after the re-potting of R. idaeus cultivars, 40 O. sulcatus eggs were added into a 

10mm indent in the soil surface, 20mm away from the stem of each plant.  This egg density 

was selected to simulate arrival of a gravid adult feeding on plants for several weeks (Clark et 

al. 2012a). Four weeks after plants were infested with O. sulcatus, EPNs were added to plants, 

with control plants remaining untreated. Three weeks after nematodes were added, the plants 

were harvested and O. sulcatus larvae were retrieved, counted and fresh mass taken. Plants 

were then freeze dried to ascertain dry mass. In chapter 3.3 it was noted that although the R. 

idaeus rootstock was surface sterilised, even in control treatments using sterile soil, there was 

a low level of AM fungal colonisation in roots. For this reason, although no live AM fungal 

spores were added to plants, it was considered worthwhile assessing the colonisation of AM 

fungi at the end of the experiment. Roots were stained and mycorrhizal colonisation of roots 

was assessed using methods outlined in 2.1.62.1.5 and 2.1.72.1.7 but differed in that hyphal 

colonisation was not recorded separately when other features were identified. The root 

scoring carried out in this chapter was conducted by Alison E. Bennett (The James Hutton 

Institute, Dundee, UK). All results are reported at percentage root length colonised (%RLC). 

 

4.2.34.2.34.2.34.2.3 Statistical AnalysesStatistical AnalysesStatistical AnalysesStatistical Analyses    

The mean mass and abundance of O. sulcatus larvae on each plant was analysed using 

generalised linear models (GLMs) incorporating Gaussian and Poisson errors respectively. 

These response variables were tested against the cultivar and EPN treatment and the 

interactions between the two. Experimental block and initial plant height were included as 

covariates. In order to simplify the models, the two cultivar treatments were then analysed 

separately. The biomass data taken from the dry mass of R. idaeus plants and the AM fungal 

colonisation data was then analysed using ANCOVAs using nematode treatment, O. sulcatus 

abundance and mean O. sulcatus mass as explanatory variables with experimental block 

incorporated as a covariate. All analysis was carried out using R3.1.2 ‘Pumpkin Helmet’ (R Core 
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Team, 2013) and models were simplified where appropriate with the best fitting minimal 

models reported. 

4.34.34.34.3 ResultsResultsResultsResults    
 

4.3.14.3.14.3.14.3.1 Insect herbivoreInsect herbivoreInsect herbivoreInsect herbivore    performanceperformanceperformanceperformance    

O. sulcatus abundance (Figure 4.1) and mass (Figure 4.2) was significantly lower on Glen Rosa 

than Glen Ample (t1,65= -2.17, P <0.05, t1,65=-2.39, P <0.05 respectively) and because of this the 

two cultivars were subsequently analysed separately to look at them both with a greater 

resolution. It should be noted that a very small number of dead O. sulcatus larvae were 

retrieved at the end of the experiment (two individuals), due to the small number retrieved, 

these larvae were not included in analyses. In Glen Rosa, the addition of S. kraussei caused O. 

sulcatus abundance to be much lower (t2,35=-2.70, P <0.05) than in any other treatment (Figure 

4.1).The larval mass of O. sulcatus on Glen Rosa Plants was not influenced by the nematode 

treatment (Figure 4.2). 

 

Figure 4.1: Mean O. sulcatus abundance, per plant, in different EPN treatments. Dark grey bars represent Glen 
Ample and light grey bars represent Glen Rosa plants. 
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Figure 4.2: O. sulcatus larval mass on R. idaeus. Dark grey bars represent Glen Ample and light grey bars 
represent Glen Rosa plants.  

In Glen Ample, the abundance and mass of O. sulcatus larvae were both reduced in treatments 

where S. kraussei (t2,32=4.36, P <0.001) were added (Figure 4.3). 

 

 

Figure 4.3: O. sulcatus larval mass and abundance, per plant, on Glen Ample. Grey bars represent mean O. 

sulcatus mass, and correspond to the left hand axis and the black points represent O. sulcatus abundance and 
corresponds to the right hand axis.  

 

4.3.24.3.24.3.24.3.2 Plant biomass dataPlant biomass dataPlant biomass dataPlant biomass data    

There were no significant differences between the biomass of the two R. idaeus cultivars 

tested. All the variation in whole plant biomass recorded at the harvest of the experiment was 

explained by the initial size of the plant at the beginning of the experiment (t1,52= 6.13, P 

<0.001), with no significant effects of treatment conditions. To represent this, the non-
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destructive measurement of initial plant height was added into the model as a covariate 

(Figure 4.4). 

 

Figure 4.4: The initial plant biomass of R. idaeus at the beginning of the experiment plotted against the whole 
plant biomass recorded at the end of the experiment. 

 

The root to shoot ratio was calculated using the biomass data from both Glen Rosa and Glen 

Ample. No patterns of above-belowground biomass were observed in Glen Rosa (Figure 4.5).  

 

Figure 4.5: The relationship between root to shoot ratio of Glen Rosa and the mean abundance per plant of O. 

sulcatus larvae. 

In Glen Ample a negative relationship was observed between the root to shoot ratio and the 

abundance of O. sulcatus larvae (F1,32= 8.58, P <0.01). This showed that there was a higher 

proportion of above ground biomass, relative to belowground biomass when there were 

higher numbers of root feeding O. sulcatus larvae (Figure 4.6). 
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Figure 4.6: The relationship between root to shoot ratio of Glen Ample and the mean abundance per plant of O. 

sulcatus larvae. 

 

4.3.34.3.34.3.34.3.3 Arbuscular mycorrhizal fungal colonisation dataArbuscular mycorrhizal fungal colonisation dataArbuscular mycorrhizal fungal colonisation dataArbuscular mycorrhizal fungal colonisation data    

When the %RLC by AM fungal features was analysed it was found that the distribution of these 

structures was quite variable across experimental treatments (Table 4.1)  

Table 4.1: A summary of the percentage of root length colonised (%RLC) by different AM fungal structures. 

Cultivar Nematode 
treatment 

Mean Arbuscular 
colonisation (%RLC 
with SE) 

Mean Vesicle 
colonisation (%RLC 
with SE) 

Mean Spore 
colonisation (%RLC 
with SE) 

Glen Ample control 38.0 ± 6 19.1 ± 5 27.3 ± 4 

H. megids 36.1 ± 7 22.3 ± 6 24.0 ± 6 

S. kraussei 57.0 ± 8 11.0 ± 4 35.0 ± 9 

Glen Rosa control 15.0 ± 6 4.0 ± 2 4.0 ± 4 

H. megids 14.0 ± 7 5.0 ± 4 5.4 ± 4 

S. kraussei 11.0 ± 7 4.0 ± 3 4.0 ± 4 

 

It is clear from this table that there exists a big difference between the %RLC of root material 

of the two R. idaeus cultivars, with Glen Ample showing much higher levels of colonisation 

(F1,30= 122.83, P < 0.001) than Glen Rosa (Figure 4.7). 
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Figure 4.7: The %RLC by all AM fungal features combined in two R. idaeus cultivars. 

After it was discovered that the two cultivars tested had very different relationships with AM 

fungi the two cultivars data sets were then split and analysed separately. In Glen Rosa it was 

found that the %RLC by arbuscules had a positive relationship (t1,31= 3.55, P <0.01) with the 

mean O. sulcatus larval mass recorded per plant (Figure 4.8). The other AM fungal structures 

showed no significant relationships with either the experimental treatments or the covariates 

included, such as O. sulcatus abundance, O. sulcatus larval mass and plant biomass. 

 

Figure 4.8: The relationship between the mean mass of O. sulcatus on each Glen Rosa plant and the %RLC 
colonised by arbuscules. 

In Glen Ample it was found that the %RLC by arbuscules a positive relationship with the 

individual plant biomass and the different EPN treatments added to experimental plants 

(Figure 4.9). The amount of arbuscule colonisation and biomass were found to both be 

significantly higher in plants where S. kraussei were added (t2,32= -2.14, P <0.05). Colonisation 

of other AM fungal structures showed no significant relationships with either the experimental 

treatments or the covariates included, such as O. sulcatus abundance, O. sulcatus larval mass 

and plant biomass. 
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Figure 4.9: The relationship between the %RLC by arbuscules and the mean biomass Glen Ample plants. Dark 
Grey bars represent %RLC by arbuscules, and corresponds to the left hand axis and the light grey points represent 
O. sulcatus mass per plant and corresponds to the right hand axis.  

 

4.44.44.44.4 DiscussionDiscussionDiscussionDiscussion    
 

The comparison of two commercially available EPN species showed that S. kraussei was more 

effective at controlling O. sulcatus than H. megidis in both cultivars of R. idaeus, with the 

abundance and performance of O. sulcatus being substantially lower. Both these species are 

considered to be capable of cruise foraging, meaning they actively seek out hosts in the soil 

(Campbell et al., 2003; Kruitbos et al., 2010). The experiment was held at a constant 18°C 

meaning both species were operating within their optimal temperature range. Their 

contrasting performance could hence be due to other differences in behaviour and biology. 

There have been several studies that show soil media or substrate can have a significant effect 

on the dispersal behaviour of EPNs with different species showing greater taxis towards hosts 

in different media (Kruitbos et al., 2010; Ansari & Butt, 2011). This could explain some of the 

variation between these species and consequently results may not be the same in the field. 

This said, S. kraussei has a lower cold tolerance (4°C) when compared to H. megidis (10°C) 

making it a better choice when treating plants at the beginning or end of a growing season 

(Haukeland & Lola-Luz, 2010). This is ideal for the protection of both Glen Ample and Glen 

Rosa, as these are both mid-season fruiting varieties, and the beginning of the season 

represents a period of critical growth, prior to flowering (Hall et al., 2008). 

O. sulcatus performed significantly better on Glen Ample plants than on Glen Rosa as shown in 

their larval mass, and this is supported by previous studies which found Glen Ample to be a 
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more susceptible cultivar when compared to other R. idaeus cultivars (Clark et al., 2011a, 

2012). This is likely due to the different traits bred into these two cultivars. Glen Ample is a 

more popular variety as it produces a higher yield of larger, sweeter fruit and is favoured 

commercially. Glen Rosa however is more tolerant to pests and diseases. It has been bred to 

have an A10 resistance gene which confers resistance to the large raspberry aphid but has 

smaller fruit and typically produces smaller yields when compared to Glen Ample (Hall et al., 

2008).  

When O. sulcatus performance data was separated by cultivar an interesting effect was 

observed in Glen Ample plants that may hint at the reason for the difference in efficacy seen in 

the two EPN species. The interaction between O. sulcatus abundance and mass on Glen Ample 

plants showed that larval mass was reduced by a similar degree in both H. megidis and S. 

kraussei treatments. However it was only in S. kraussei treated plants where this fall in O. 

sulcatus mass was mirrored with a fall in abundance. This could be explained by O. sulcatus 

being infected by EPNs and this stress on their immune systems resulting in decreased 

performance, but not death. The level of tolerance to EPNs is known to vary greatly with some 

insect immune systems able to encapsulate and withstand up to 20 EPNs before the insect was 

killed (Thurston et al., 1994). In H. megidis it would appear that this process of encapsulation is 

occurring, or perhaps the associated symbiotic bacteria, Photorhabdus spp., is apparently not 

causing death by septicaemia normally associated with their infection of host tissues, unlike 

the Xenorhabdus spp. associated with S. kraussei (Dowds & Peters, 2002). This suggests that 

under the conditions of this experiment, H. megidis was behaving more like a parasite that a 

parasitoid. This is not a viable life strategy for an EPN as they must kill their hosts in order to 

complete their life cycle. It is possible that with more time, perhaps H. megidis may have 

proved more effective in killing O. sulcatus larvae but this would still make it a poor candidate 

for the biological control of a pest outbreak. 

The plant height of R. idaeus taken just two weeks into the experiment was a reliable predictor 

for the biomass at the end of the experiment. Obviously the height of plants at this stage in the 

experiment could not have been affected by the subsequently added experimental treatments 

but it could have been affected by AM colonisation, which we assume at this point was already 

present in the transplanted rootstock. There was found to be no difference between the 

biomass of the two R. idaeus cultivars included in this study. This was unexpected, given the 

traits normally associated with these two R. idaeus lines. The more vigorous growth more 

typically associated with Glen Ample (Hall et al., 2008) would usually lead to greater average 

biomass that in Glen Rosa which was not observed in this experiment as both cultivars showed 

similar biomass. It is feasible that Glen Ample was able to compensate for loss of biomass 
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despite a heavier O. sulcatus infestation as a consequence of its typically more vigorous 

growth but without an O. sulcatus free control we can only speculate on this. 

In Glen Ample a negative relationship between root to shoot ratio and O. sulcatus abundance 

was observed. In short this means that when the population of O. sulcatus was higher, more 

carbon was being allocated away from R. idaeus roots and instead to the shoots of plants. This 

is the same pattern as was observed in chapter 3.4 and mirrored the effect seen in previous 

studies on plant response to root herbivory (Newingham et al., 2007; Robert et al., 2012). The 

fact that we have found evidence of this tolerance response in this cultivar again does suggest 

that this is a common response to root herbivory in Glen Ample.  

Despite the R. idaeus rootstock being surface sterilised it was noted in chapter 3.3 that even in 

control treatments, using sterile soil, there was a low level of AM fungal colonisation in roots. 

For this reason, although no live AM fungal spores were added to plants, it was assumed that 

as it is impossible to sterilise a plant, that AM fungi would still be present in the root stock. It 

might be possible to avoid this source of contamination by growing all plants from seed but 

given the extra year that this would add to experiments, this was considered impractical, also 

R. idaeus is grown from rootstock commercially and so this allows us to better mimic field 

conditions. It is also worth noting that to create a totally sterile, microbe free plant, would 

create a highly contrived and artificial experimental model which would have no real-world 

parallels outside of other lab studies (Partida-Martínez & Heil, 2011). For this reason the 

possible presence of AM fungi was acknowledged and R. idaeus roots were stained and AM 

fungal colonisation recorded.  

When these data were analysed it became clear that the two R. idaeus cultivars showed 

dramatically different levels of colonisation, with Glen Ample showing nearly 80% colonisation 

and Glen Rosa with only approximately 20% colonisation by AM fungi. The susceptible cultivar, 

Glen Ample, also showed a strong effect of increased carbon allocation away from roots and 

towards shoots in the root to shoot ratio analysis carried out. This resource allocation effect 

could be a possible explanation for the very high levels of %RLC recorded as stunted 

belowground growth leads to reduced elongation of roots due to growth, meaning that the 

density of mycorrhizal features was greater, the opposite of that often seen when a plant is 

growing rapidly (Titus & Lepš, 2000). 

 It has been shown in studies of other commercially important crops such as wheat that 

mycorrhizal responsiveness can vary greatly between cultivars and in wheat there has been a 

trend for modern cultivars to have very low mycorrhizal responsiveness compared to old (pre-

1950s) cultivars (Hetrick et al., 1993; Zhu et al., 2001). Phosphorus uptake by plants in modern 
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wheat cultivars has become largely independent of AM fungi (Hetrick et al., 1996), but from 

the perspective of moving towards sustainable agriculture, a strong argument could be made 

for re-introducing these traits into modern lines. With clear evidence of very high colonisation 

in Glen Ample, a modern and popular cultivar, it could be argued that what must be re-

introduced in wheat, is still present in raspberries. However although increasing %RLC is nearly 

always linked with higher levels of plant growth and shoot phosphorus (Treseder, 2013), it has 

long been debated that there is a mutualism-parasitism continuum in AM fungal relationships 

(Penman & Scott, 1976; Smith & Smith, 2013). With very high levels of colonisation, no 

detected relationship with increase in growth and no clear idea of phosphorus levels in plant 

tissues it could be that the relationship between plant and AM fungi in Glen Ample plants has 

shifted towards commensalism or indeed parasitism.  

The positive relationship observed in Glen Rosa plants between %RLC by arbuscules and the 

mean mass of O. sulcatus larvae could be due to the increased nutrients in plant tissues at 

higher levels of colonisation (Treseder, 2013). This increased access to a phosphorus rich 

source of food could explain this increased body size in O. sulcatus larvae as it is known that 

phosphorus limitation can impact on insect body size (Huberty & Denno, 2006).  This pattern 

of increased larval weights in plants that are colonised with AM fungi is the opposite to that 

found in the meta-analysis by Koricheva et al. (2009) which showed that overall root feeders 

showed lower performance on mycorrhizal plants. This meta-analysis drew data from a 

number of studies that all looked at single AM fungal species inoculations compared with 

control treatments where AM fungi were totally absent or at very low levels which does not 

allow a direct comparison with this study. 

In Glen Ample both the plant biomass and the %RLC of arbuscules was higher in S. kraussei 

treated plants. S. kraussei was the most effective EPN in controlling O. sulcatus and so this 

could be considered as the treatment in which herbivory was at its lowest levels. This may be 

significant as both AM fungi and O. sulcatus are actually competing over a similar resource, 

with O. sulcatus favouring the same un-lignified root tissue that AM fungi require in order to 

colonise (Smith & Read, 2008). It then follows that the combination of lower levels of 

herbivory, higher levels of biomass and higher levels of arbuscule colonisation would arise 

under these conditions. 

There are of course limitations to staining to assess AM fungal colonisation as firstly it only 

provides a snapshot in time of what is a dynamic relationship and the stain itself cannot 

distinguish between dead and living material. This snapshot in time may also be misleading as 

the proportion of different AM fungal structures present in plant roots, changes significantly 

over time, as well as the species present (Šmilauer, 2001; Husband et al., 2002). It has also 



61 
 

been shown in studies with control and herbivory treatments that herbivory can shift the 

proportions of mycorrhizal structures presence (Klironomos et al., 2004) and that plants that 

are stressed, a higher proportion of vesicles and spores are present when %RLC is assessed 

(Duckmanton & Widden, 1994). This study doesn’t have a herbivore free treatment, but it 

could be argued that vesicle and spore colonisation are quite high in proportion to arbuscles 

and the presence of root herbivores may well be the reason for this. 

There was no indication of the suppressive effect of AM fungi known to occur in O. sulcatus 

(Gange, 1996) which we previously hypothesised could make O. sulcatus more susceptible to S. 

kraussei.  Our thinking was that the bacterial endosymbiont carried by S. kraussei, 

Xenorhabdus spp. (Forst et al., 1997), may more effectively overwhelm the insect immune 

response if the insect is already suffering from reduced performance. Not content that the 

level of colonisation alone would necessarily correlate with the function of the AM symbiosis 

we devised further experiments to manipulate AM fungal communities in the presence of 

EPNs. 

4.54.54.54.5 ConclusionsConclusionsConclusionsConclusions    
The EPN, S. kraussei, provided superior levels of O. sulcatus control, when compared to 

H. megidis and control treatments. Otiorhynchus sulcatus had lower survival and performance 

on the R. idaeus cultivar, Glen Rosa, when compared to Glen Ample. Glen Ample, was 

however, far more susceptible to O. sulcatus herbivory. As Glen Ample is the commercial 

favourite, this finding underlines the need for improved protection against O. sulcatus. Further 

justification for the adoption by more resistant cultivars by growers was found when 

O. sulcatus infested Glen Rosa plants were treated with S. kraussei. This combined treatment 

of S. kraussei on Glen Rosa provided the highest levels of O. sulcatus suppression. Despite the 

relatively high populations of O. sulcatus on R. idaeus, even in the control treatments 

O. sulcatus larvae did not have a significant impact on overall plant biomass. They did however 

influence carbon allocation in the plants, with more being pushed to the shoots in Glen Ample 

as seen in chapter 3. 

AM fungal colonisation was higher in Glen Ample than Glen Rosa but this was likely due to this 

susceptible cultivar investing less carbon resources belowground and a reduction in root 

elongation resulting in an artificially high %RLC.  Otiorhynchus sulcatus performance actually 

increased in the presence of more arbuscules in Glen Ample plants. This could be caused by 

higher phosphorus concentrations in plant tissues as a consequence of higher levels of AM 

fungal colonisation. This contrasts to existing literature on AM fungi interacting with root 

feeding performance literature. 
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This experiment led to two new experiments. The taxis of EPNs in response to different AM 

fungi and O. sulcatus combinations was assessed (Chapter 5) and then a similar experiment to 

this study was devised in the more horticulturally relevant setting of a polytunnel in a design 

that incorporated different commercial AM fungal inocula.. 
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5555 Do AM fungi enhance the ‘alarm Do AM fungi enhance the ‘alarm Do AM fungi enhance the ‘alarm Do AM fungi enhance the ‘alarm 

signal’ sent out by infested plants to signal’ sent out by infested plants to signal’ sent out by infested plants to signal’ sent out by infested plants to 

natural enemies?natural enemies?natural enemies?natural enemies?    

 

5.15.15.15.1 IntroductionIntroductionIntroductionIntroduction    

The presence of arbuscular mycorrhizal fungi (AM fungi) in the roots of vascular plants is 

widespread (Hodge, 2000) and can improve a plant’s nutrient uptake, especially of 

phosphorus. In addition to this, AM fungi can have effects that cascade through to higher 

trophic levels with varied effects on insect herbivores (Koricheva et al., 2009) through to insect 

parasitoids and predators (Gange et al., 2003; Hoffmann et al., 2011c). 

One of the insect herbivores shown to be affected by the presence of AM fungi is Otiorhynchus 

sulcatus a generalist herbivore in the Curculionidae. In three separate publications, Gange and 

colleagues showed that when O. sulcatus larvae were reared on plants inoculated with a single 

species of AM fungi, larvae suffered reduced growth when compared to untreated control 

plants (Gange et al., 1994; Gange, 1996, 2001). In the most recent of these publications Gange 

(2001) demonstrated that while this effect reduced larval performance under single species 

inoculations of AM fungi, this was lost when multiple species were added. As plants almost 

never exist with only one AM fungal partner it means that the applications of such a system 

into a field trial are very unlikely to reproduce these results. If however there were 

combinations of AM fungal species and crop plants susceptible to O. sulcatus that did work to 

reduce their performance then such a system could be a very potent component of an 

integrated crop management system. This is of particular interest with regards to O. sulcatus 

as it is a pest that affects a wide range of plants of economic importance and is difficult to 

control. The conventional chemical approach to controlling O. sulcatus in crops is soil drench 

treatments of pesticides such as the temporarily banned (in the EU) neonicotinoid imidacloprid 

and various organophosphates. A Soil drench treatment of a pesticide uses far greater volumes 

than most foliar treatments and therefore pose an increased risk of both non-target effects 

and also environmental risk. Another method of control that is popular for the treatment of 
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plants that may be at risk of, or already under O. sulcatus attack, are entomopathogenic 

nematodes (EPNs). These have been shown in many studies to be effective in reducing both 

the performance and increasing mortality of O. sulcatus (Bruck et al., 2005; Haukeland & Lola-

Luz, 2010; Ansari & Butt, 2011). Previous studies have been conducted using an olfactometry 

based system and established that O. sulcatus feeding on various host plants caused a foraging 

preference in the EPN Heterorhabditis megidis over control or mechanically wounded 

treatments (Boff et al., 2001; van Tol et al., 2001). However neither of these studies were able 

to offer any evidence for the mechanisms behind this attraction beyond speculating that these 

are likely to be caused by herbivore induced plant volatiles. Neither of these studies were 

based on the same plant species, R. idaeus, as in the current study and nor did they consider 

how AM fungal colonisation may influence this relationship. There has been a recent surge in 

the number of publications covering the topic of herbivore induced plant volatiles and several 

of these have produced impressive results using belowground olfactometers to control root 

feeding insect pests with EPNs (Heil, 2014a). A study by Rasmann et al. (2005) identified the 

sesquiterpene (E)-β-caryophyllene as being the main herbivore induced volatiles caused by 

Diabrotica virgifera feeding on Zea mays. Infested plants were found to be much more 

attractive to H. megidis due to this VOC being present. Cultivars which produce higher levels of 

this VOC have been incorporated and the system has been shown to work in the field 

(Degenhardt et al., 2009). In addition to plants being selected for the emissions of certain 

VOCs, EPNs can be cultured, using olfactometers and various VOC stimuli to enhance their 

attraction to root defence signals (Hiltpold et al., 2010a,b). 

In addition to the increase in literature investigating herbivore induced natural enemy 

attraction via VOCs there have been several papers that have shown that AM fungal 

colonisation can influence the production of the VOCs (Rapparini et al., 2008; Fontana et al., 

2009; Hoffmann et al., 2011c; Schausberger et al., 2012; Henke et al., 2015). However all these 

studies used single species of AM fungi and variation even between isolates of the same 

species can show very different effects (Wooley & Paine, 2007). In addition to this, these single 

species systems bear little resemblance to field conditions. In fact the application of AM fungi 

as commercial species mixtures in the field to improve agricultural sustainability has met with 

very little success. It is not enough to show that AM fungi even in species mixtures can have 

effects on VOCs that enhance pest control but that these effects can be replicated by growers 

with commercially available products.  

To this end, two olfactometry experiments were carried out. The first of these two 

experiments used both the R. idaeus cultivars used and discussed in chapters 3 and 4, Glen 

Ample and Glen Rosa as host plants. The host plants were inoculated with a field derived 
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mixed species inoculum of AM fungal spores. The insect herbivores used were O. sulcatus to 

which the preference of H. megidis EPNs was tested. The main aim of this experiment was to 

see if H. megidis showed a preference for R. idaeus that were both infested with O. sulcatus 

and inoculated with AM fungi and to see if the mechanism by which this may occur was due to 

altered plant VOC emissions. Based on the work of previous authors mentioned earlier in this 

introduction it seemed likely that inoculation with AM fungi would cause plants to produce a 

different VOC cocktail that provided greater attraction to H. megidis. This led to the 

hypotheses that in the presence of AM fungi, VOC emissions would be modified and that H. 

megidis attraction would be greater. Different densities of O. sulcatus were used to create 

different levels of herbivory on R. idaeus. It was expected that these different densities would 

produce herbivore induced VOCs and consequently result in higher numbers of H. megidis 

attracted. The hypotheses were that high densities of O. sulcatus would lead to a change in 

VOC emissions and an increase in H. megidis taxis. An objective of this study was to see if there 

was a difference in VOC emissions and H. megidis attraction between the two cultivars. If this 

was the case then the reduced O. sulcatus survival seen on Glen Rosa alongside EPNs in 

chapter 4 could be explained by induced VOCs. It was hypothesised that Glen Rosa would have 

a distinct VOC profile from Glen Ample and that H. megidis would be more attracted Glen 

Rosa. The percentage of root length colonised (%RLC) by AM fungi was expected to be greatest 

in treatments where AM fungi was added, otherwise contamination may have occurred. 

Additionally it might be expected that the %RLC may be altered by either O. sulcatus herbivory, 

or the differences in root morphology between the two R. idaeus cultivars. It was hypothesised 

that %RLC would be different across O. sulcatus, AM fungal and cultivar treatments. 

The second of these two olfactometry experiments repeated these tests, but in a way that 

would be more related to commercial practice. In particular, the AM fungal inoculant and the 

biological control agents (EPNs) used were commercially available. Also, the experimental 

methodology did not involve laboratory procedures that would not be achievable in the field 

(e.g. soil sterilisation). To represent this the commercial favourite Glen Ample cultivar of 

R. idaeus was used as the host plant system to which O. sulcatus were added. The AM fungal 

inoculant used was a commercially available preparation and the EPN was the readily available 

S. kraussei which proved most efficacious in O. sulcatus control in chapter 4. The aim of this 

experiment was to investigate if a commercial AM fungal inoculant could increase the 

attraction of S. kraussei to O. sulcatus infested R. idaeus. A key objective in this study was to 

see if the addition of a commercial AM fungal inoculant would influence S. kraussei 

distributions. It was hypothesised that the addition of an inoculant would increase S. kraussei 

attraction. Secondary to this objective was to establish if S. kraussei were influenced by the 

presence of feeding O. sulcatus larvae perhaps through herbivore induced VOCs. The 
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hypothesis was that S. kraussei would show a preference for plants that had an added 

O. sulcatus population. The biomass and root to shoot ratio recorded in this experiment could 

have also had an influence on the attraction of S. kraussei, and been influenced by O. sulcatus 

and AM fungal treatments. It was hypothesised that added AM fungi would increase plant 

biomass, and that conversely the addition of O. sulcatus would decrease plant biomass and 

alter root to shoot ratio, as in previous experiments (chapters 3 and 4). It was also 

hypothesised that the plant biomass or root to shoot ratio could have influenced S. kraussei. 

 

5.25.25.25.2 Olfactometry experiment 1: Olfactometry experiment 1: Olfactometry experiment 1: Olfactometry experiment 1:     

5.2.15.2.15.2.15.2.1 MaMaMaMaterials and Methodsterials and Methodsterials and Methodsterials and Methods    

Under controlled conditions (16:8 light:dark days at 18˚C), a 2 x 2 x 3 factorial experiment was 

conducted with two different R. idaeus cultivars (Glen Ample and Glen Rosa), two different 

mycorrhizal treatments (live or sterile spores) and three different herbivore treatments using 

O. sulcatus (a control treatment, low 20 egg treatment and a high 40 egg treatment). A 

randomised block design was used to account for spatial variation within the climate 

controlled glasshouse. 

Rubus idaeus was prepared using the methods outlined in 2.1.1. After 4 weeks 48 individual 

plants, 24 of each cultivar, were transplanted into 1.8L pots containing 1.6L of a twice sterilised 

1:1 soil (Keith Singleton  sterilised loam) and sand mix.  A length of wooden dowel, 9mm 

diameter X 90mm, (B&Q, Eastleigh, UK) was placed vertically in each pot to displace soil for the 

later addition of automated thermal desorption (ATD) tubes. 

AM spores were extracted from trap cultures (see section 2.1.4) containing spores taken from 

a field site that has had raspberry plants grown on it for over 10 years. The spores were 

extracted using the sucrose centrifugation method (2.1.2) and AM fungal inoculum was 

prepared using methods described in 2.1.3. All 48  plants were then inoculated with 1.5ml of 

spore solution, containing 17±4SE spores, and 1.5ml of microbial wash; with the live spores 

and a sterile microbial wash forming the ‘live’ mycorrhizal treatment and the sterile spores and 

live microbial wash forming the ‘sterile’ mycorrhizal treatment.  Both the treatments were 

applied using a P10ml (Gilson®, Luton, UK) Pipetman and spores were injected 5mm below the 

soil surface at the base of the plant’s main stem.   

Three weeks after the addition of mycorrhizal spores O. sulcatus eggs were added to plants, 

the culture from which these eggs were taken is described in 2.1.8. The plants of each cultivar 
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were divided equally into three groups. One group was kept as a control group with no eggs 

added; the second group had 20 eggs added, and the third group 40 eggs. These levels of O. 

sulcatus treatment were selected to represent a low high herbivory pressure, respectively, 

relative to plant size (Clark et al., 2012) 

Three weeks after the addition of weevil eggs the plants were then placed into a belowground 

olfactometer. The olfactometer used in this experiment was a 6 arm choice chambers for 

assessing the preferences of EPNs (Figure 5.1). For full schematics of the olfactometers see 

appendix 1. The two cultivars were tested separately with two consecutive runs on the 

olfactometer. 

 

 

Figure 5.1: A 6 arm belowground olfactometer. After Rasmann et al. (2005). 

Plants from a single cultivar were randomly selected within treatment and then randomly 

placed in a position around the olfactometer so that all treatments were represented at any 

one time but any “push” effects were mitigated. After the olfactometer was loaded with 

plants, silver sand was added to the central chamber and arms which was kept damp with 10% 

water by weight of sand. The EPNs used in this experiment were from a culture of 

Heterorhabditus megidis used by Rasmann et al., (2005) and were maintained using the 

culturing methods shown in 2.1.10. This strain of H. megidis was known to respond to the 

plant VOC (E)-β-caryophyllene (Rasmann et al., 2005). For each run of the olfactometers 

approximately 300 H. megidis were added to the central chamber. Over the course of 24h 

these EPNs then dispersed towards the plants at the ends of the arms. At the end of the arms 

the EPNs were trapped by a fine 40μm wire mesh and collected in a small detachable section 

of the arm (Figure 5.2). This sand sample was then placed in a Baermann funnel (see section 
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2.1.11) and the numbers of retrieved EPNs were assessed. This process repeated for each 

cultivar separately. 

 

 

Figure 5.2: A detailed diagram of one of the olfactometer arms. The PTFE detachable section contained the sand 
sample from which EPNs were extracted. 

Preconditioned ATD tubes (see section 2.1.13) were placed into the pots to sample root VOC 

emissions at the same time that the nematodes were added. The olfactometer was then left to 

run for 24h then it was harvested, sterilised and reset to obtain 8 replicates. The plants were 

then harvested with the weevils removed from the soil, counted and weighed, and the above 

and belowground portions of the plants were oven dried to enable the calculation of dry mass. 

Arbuscular mycorrhizal colonisation of roots was assessed using the gridline intersect method 

after being stained with Quink Ink Royal blue (2.1.5 and 2.1.7). ATD tubes retrieved from the 

soil and then the VOC samples they had captured were desorbed and run through an ATD-GC-

MS set-up (see 2.1.14).  

5.2.25.2.25.2.25.2.2 Data analysisData analysisData analysisData analysis    

The number of H. megidis retrieved showed a positive skew, as is typical of count data, and 

was consequently incorporated into a generalised linear model (GLM) with Poisson errors as a 

response variable. This was tested against the explanatory variables of AM fungal treatment, 

R. idaeus cultivar and R. idaeus biomass. The experimental block and olfactometer run number 

were included as covariates in order to account for spatial and temporal variation in the 

variables recorded. 

In order to ensure that different numbers of O. sulcatus eggs actually represented different 

sized populations of O. sulcatus larvae a GLM with Poisson errors was carried out. The number 

of retrieved larvae were tested against the explanatory variables of O. sulcatus treatment, AM 

fungal treatment and R. idaeus biomass and the covariates; experimental block and 
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olfactometer run. This test was then repeated but with O. sulcatus performance (total larval 

mass per plant) as the response variable. 

Rubus idaeus biomass and root to shoot ratio were used in ANCOVAs with the explanatory 

variables; O. sulcatus treatment and AM fungal treatment with the experimental block and 

olfactometer run as covariates.  

The total %RLC of all recorded AM fungal structures combined and the %RLC of individual 

structures (arbuscules, vesicles, hyphae and spores) were tested as response variables in a 

series of GLMs. They were tested with the explanatory variables; abundance, AM fungal 

treatment, O. sulcatus treatment and R. idaeus cultivar. The experimental block was included 

as a covariate. 

VOC data was extracted from GCMS software and relative peak areas were calculated as 

detailed in 2.1.15. A principal component analysis (PCA) was carried out on the relative 

abundance of VOCs. This VOC relative abundance was used in order to help account for the 

PCA known sensitivity to outliers. The PCAs were carried out using the statistical package ‘car’ 

in R3.1.2 (R Core Team, 2013). However due to the presence of large outliers, the data set 

failed to meet the assumptions of a PCA, making the results of this test unreliable. 

Unfortunately these data points could not be omitted as they constituted a large proportion of 

the data set. Consequently a series of GLMs were used on specific VOCs of interest which had 

been mentioned previously in the literature (pinenes and carenes, both monoterpenes 

(Rasmann et al., 2012a) to see if they correlated with H. megidis, AM fungal or O. sulcatus 

distributions. The total signal (the sum of all peak areas) and the total number of compounds 

isolated in each sample were also used as response variables and tested against the 

distribution of nematodes and the AM fungal, R. idaeus cultivar and O. sulcatus treatments. 

Although the total signal provides a less informative data set, with regards to the relative 

composition of VOCs present, it is also less sensitive to misidentified compounds than more 

targeted analyses. 

All analysis was carried out using R3.1.2 ‘Pumpkin Helmet’ (R Core Team, 2013) with the best 

fitting minimal models reported. 

5.2.35.2.35.2.35.2.3 ResultsResultsResultsResults    

The olfactometry experiment showed that H. megidis had a preference for plants which were 

inoculated with AM fungi (t1,38=2.23, P <0.05). This preference was also affected by the O. 

sulcatus treatment that plants received as indicated by a significant interaction between these 

two variables (t2,38= 2.38, P <0.05). Plants inoculated with AM fungal spores were significantly 
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more attractive to H. megidis when O. sulcatus were either absent or present at the lower, 20 

egg treatment when compared to AM fungal control treatments. At the higher, 40 egg, level of 

O. sulcatus herbivory this relationship was not significant (Figure 5.3). The R. idaeus cultivar 

was found have no effect on H. megidis distributions. 

 

 

Figure 5.3: The mean abundance of H. megidis attracted to differently treated R. idaeus. Dark grey bars represent 
the AM fungal control treatment while light grey bars represent the treatment to which live AM fungal spores 
were added. 

The two different O. sulcatus densities included in the experiment, created by the addition of 

either 20 or 40 O. sulcatus eggs, were found to reflect in a resulting larval abundance that was 

significantly higher (Z2,44= 2.58, P<0.01) in the 40 egg treatment (Figure 5.4). This meant that 

egg addition proved a reliable predictor of O. sulcatus larval density and was therefore used to 

represent this in statistical models. 

 

Figure 5.4: Initial O. sulcatus egg densities resulted in a comparable relative larval density with the addition of 
twice as many eggs, resulting in twice as many larvae. 
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The mean mass and larval performance of O. sulcatus was not found to vary significantly, 

either between different larval densities, between AM fungal treatments or between the two 

R. idaeus cultivars. 

The R. idaeus biomass measured at the end of the experiment was not found to differ under 

the different O. sulcatus, AM fungal or R idaeus cultivar treatments. The same was also true for 

the root to shoot ratio of each plant, calculated from the R. idaeus biomass data. 

The %RLC by different AM fungal structures varied across all treatments (Table 5.1). As only 3 

spores were identified across all treatments, spore colonisation was omitted from analyses but 

was included in the total number of AM fungal structures. 
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Table 5.1: A summary table of the %RLC by different AM fungal structures. All means are presented with standard error. 

AM fungal 
treatment 

R. idaeus 
cultivar 

O. sulcatus 
treatment 

Total colonisation of 
AM fungal structures 
(%RLC ) 

Arbuscule 
colonisation (%RLC) 

Vesicle colonisation 
(%RLC) 

Hyphal colonisation 
(%RLC) 
 

Sterile 
treatment 

Glen Ample Control 
 

5.75 ± 1.93 3.40 ± 1.16 2.94 ± 0.69 2.35 ± 0.79 

20 eggs 
 

4.67 ± 3.46 1.62 ± 1.27 0.00 ± 0.00 3.05 ± 2.20 

40 eggs 
 

50.23 ± 13.19 14.10 ± 4.83 7.28 ± 1.00 35.66 ± 8.20 

Glen Rosa Control 
 

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

20 eggs 
 

0.31 ± 0.31 0.16 ± 0.16 0.00 ± 0.00 0.16 ± 0.16 

40 eggs 
 

0.32 ± 0.21 0.21 ± 0.12 0.00 ± 0.00 0.11 ± 0.11 

AM fungal 
spores 
added 

Glen Ample Control 
 

56.48 ± 3.66 13.74 ± 5.08 3.51 ± 0.30 42.05 ± 5.46 

20 eggs 
 

57.97 ± 2.38 19.21 ± 0.65 3.99 ± 1.07 37.98 ± 2.95 

40 eggs 
 

40.34 ± 0.71 15.62 ± 0.65 18.35 ± 6.27 23.80 ± 1.52 

Glen Rosa Control 
 

58.07 ± 13.92 21.90 ± 4.84 1.86 ± 1.31 35.85 ± 9.07 

20 eggs 
 

34.60 ± 19.21 11.15 ± 7.86 4.19 ± 0.41 23.28 ± 11.46 

40 eggs 
 

39.22 ± 15.30 9.25 ± 3.57 6.50 ± 4.70 28.66 ± 11.39 
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All the different structures recorded showed that %RLC was higher in the AM fungal treatment 

where live AM fungal spores were added. This is perhaps best represented by the level of 

overall %RLC recorded for all AM fungal structures which showed a substantial difference 

(F1,35= 51.77, P <0.001) in the %RLC between the two AM fungal treatments (Figure 5.5). 

 

 

Figure 5.5: The %RLC by AM fungal structures was higher in the additive AM fungal treatment. 

Although the %RLC of vesicles was mostly explained by the AM fungal treatment added 

(F1,35=11.17, P <0.05), there was also a significant influence of the R. idaeus cultivar in 

determining the colonisation by vesicles. The %RLC by vesicles was significantly higher 

(F1,35=4.48, P <0.01) in Glen Ample under high levels of O. sulcatus herbivory (Figure 5.6).  

 

Figure 5.6: The %RLC of vesicles was found to be higher when there was high levels of O. sulcatus herbivory on 
Glen Ample. The dark grey bars represent the R. idaeus cultivar, Glen Ample and the light grey bars Glen Rosa. 

 

The PCA carried out on VOCs failed to identify any significant components. The compounds 

identified as being possible herbivore induced VOCs (pinenes and carenes) were not found to 

be linked to either the O. sulcatus treatment or the H. megidis distributions. While these 

specific compounds were not found to be linked to herbivory or H. megidis distribution these 

two factors did appear to be linked to plant VOC emissions. The high O. sulcatus herbivory 
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treatment caused an increase in the total VOC signal recorded which was linked to a 

corresponding increase in the number of H. megidis attracted (t1,36=-2.353, P <0.05) to heavily 

infested plants (Figure 5.7).  The raw VOC data is included in digital appendix 2. 

 

Figure 5.7: The total signal of plant VOCs was found to be higher in plants treated with a high O. sulcatus 
herbivory treatment, and in turn was more attractive to H. megidis. Grey bars represent the total signal of plant 
VOCs recorded and correspond to the left hand axis and the black points represent H. megidis abundance and 
correspond to the right hand axis. 

 

5.2.45.2.45.2.45.2.4 DiscussionDiscussionDiscussionDiscussion    

Olfactometers have proven to be a valuable tool to study the interactions of plants, herbivores 

and natural enemies, as well as the mechanisms behind these interactions. Olfactometers 

allow us to deconstruct the continuum of interacting organisms present in the field and restrict 

these to a finite and quantifiable level. This drastically reduces the complexity of a system and 

enables us to understand some of the core processes occurring in the natural world, in this 

case, a specific set of belowground predator prey interactions in a system comparable to a R. 

idaeus crop. 

 In this experimental set up, the presence of AM fungi appears to influence H. megidis 

attraction when O. sulcatus populations are low or absent. This effect appears to no longer be 

modified by AM fungi when O. sulcatus herbivory is at a higher level, with H. megidis attraction 

elevated regardless of AM fungal treatments. The recovery of O. sulcatus larvae at the end of 

the olfactometry experiment and the assessment or R. idaeus root tissue for AM fungal 

colonisation confirmed that both the herbivory and AM fungal treatments were successful 

manipulations of these two organisms. 
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The PCA carried out on the data failed to isolate any principal components of interest. It may 

be that even though the data was standardised the GCMS data set was still dominated by a 

few very large outliers, which makes the output of any PCA unreliable. Analysis using just these 

dominant compounds that were identified as likely being α-pinene and delta 3-carene could 

not explain the distributions of H. megidis, nor did they appear to be as a consequence of AM 

fungal and O. sulcatus treatments. Both these VOCs are known R. idaeus metabolites (Aprea et 

al., 2009) as well as VOCs recognised as eliciting nematode taxis (Ali et al., 2010; Rasmann et 

al., 2012a). The total signal of VOCs recorded in the experiment was found to have a strong 

relationship with the levels of H. megidis attracted to different densities of O. sulcatus. The 

control and low O. sulcatus treatments did not result in a higher total signal but the high 

treatment did and this was matched with a marked increase in the level of H. megidis 

attraction. This supported the earlier H. megidis results that showed increased attraction to 

high O. sulcatus densities but did not explain the differences in the populations of H. megidis 

attracted to AM fungal and non AM fungal plants. The fact that total signal data did not 

support this is unsurprising as previous studies exploring secondary metabolite production of 

AM fungal and non AM fungal plants have shown that total signal did not vary but the 

proportion of monoterpenes and sesquiterpenes was altered (Rapparini et al., 2008; Fontana 

et al., 2009). So in future, if greater expertise was brought to bear on the identification of 

these compounds then perhaps the levels of these two groups of VOCs could be assessed and 

incorporated into analyses. 

A phenomenon that adds to the complexity of herbivore induced VOC production and EPN 

taxis systems was demonstrated by Hallem et al. (2011). They showed that EPNs were 

responding directly to VOC emissions from insect larval hosts as opposed to herbivore induced 

plant VOCs. They discovered that hexanal and α-pinene released from G. mellonella larvae 

both simulated a jumping response in S. carpocapsae and to lesser extent chemotaxis. 

Discerning the true mechanism behind these EPN taxis effects may not be important for their 

reproducibility but may go some way towards explaining why mechanical damage treatments 

often elicit a slightly weaker response from EPNs than treatments containing actual insect 

herbivores (As reviewed by Dicke, 1999).  

The presence of an AM fungal community in plant roots seems to mislead H. megidis into 

responding to treated plants as if there was outbreak of O. sulcatus.  This high level of O. 

sulcatus herbivory elicits the same elevated H. megidis response in both mycorrhizal 

treatments, suggesting that this is the level of herbivory at which these two cultivars respond 

to herbivory regardless of AM fungal colonisation. The fact that these two cultivars appear to 

exhibit very similar reactions under these conditions is surprising as Leitner et al. (2010) found 
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that the presence of a single AM fungal species caused detectable changes in herbivore 

induced VOCs in Medicago truncatula but only on specific cultivars. However as Glen Rosa and 

Glen Ample are ‘sister’ cultivars it could be that this similarity in response to herbivory and AM 

fungal colonisation could be due to their very similar genetic backgrounds. These results also 

conflict with the findings of Henke et al. (2015) who found that plant VOCs changed when 

there was AM fungal colonisation, only when the plant was stressed, be it herbivory or an 

abiotic stress. This differs to the results found in this study as even in control treatments the 

difference in natural enemy attraction was apparently, purely due to the difference in AM 

fungal treatment and independent of herbivory. It could be that colonisation by AM fungi, 

primes R. idaeus, triggering the plant’s natural resistance to pests regardless of whether they 

are present or not (Jung et al., 2012). Alternatively it could be that the increased phosphorus 

(P) uptake linked with AM fungal colonisation (Smith & Read, 2008) increases the provisions a 

plant needs to produce VOC signals that are attractive to natural enemies. However, a recent 

study by Babikova et al. (2014), which showed that plant VOC emissions were independent of 

P availability, implies that this is perhaps an over simplistic hypothesis and still an area where a 

lot more work needs to be carried out in order to reveal the true mechanisms behind these 

effects. The fact that R. idaeus with an AM fungal community appears to attract H. megidis as 

if they are under heavy O. sulcatus attack, regardless of if these pests are present, is 

potentially of great use in an integrated crop management system. EPNs can be applied 

directly to plant roots via the use of irrigation systems such as T- Tape® (John Deere Ltd., 

Langar, UK) to plants inoculated to tailored AM fungal community. Such a system if easily 

applied to a cropping system could potentially ensure that EPNs would be attracted to plant 

roots regardless of insect presence and be able to perform as body guards in the event that O. 

sulcatus were to oviposit on a protected plant. The idea that such a system that works in 

individual pots could be easily scaled up into a field scenario where multiple plants share the 

same uninterrupted rhizosphere is rather unrealistic as this presents a very different 

environment. A major difference, beyond the obvious lack of compartmentalisation that 

isolates root feeders in a pot system, is the connectivity that common mycelial networks 

(Walder et al., 2012) bring to such a system. These provide a communication network that can 

warn nearby plants (Babikova et al., 2013) about pests and may therefore create VOC 

gradients that could draw EPNs away from un-infested plants.  

There was one anomaly discovered in the %RLC data. In the high herbivory treatment there 

was a higher population of vesicles in Glen Ample. This was likely driven by two factors 

associated with the known susceptibility of Glen Ample to O. sulcatus (Clark et al., 2011a). 

Firstly high vesicle colonisation is commonly associated with an AM fungal symbiotic 

relationship that is under stress (Duckmanton & Widden, 1994), in this case most likely from 
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O. sulcatus herbivory. Secondly a plant under this high level of herbivory will be unlikely to be 

growing rapidly, which would normally result in root elongation, and is associated with lower 

densities of AM fungal features (Titus & Lepš, 2000). It is therefore more likely in this scenario 

to have a higher density of AM fungal colonisation. This is further supported by the results in 

chapters 4.3 and 3.3 which both discuss how this effect could arise from the recorded carbon 

allocation patterns seen in Glen Ample under high herbivory treatments. 

If it were possible to avoid the use of a tailored, R. idaeus specific, AM fungal inoculant then 

this would greatly increase the feasibility of applying such a system in a commercial setting. 

For this reason, in the second olfactometry experiment in section 5.3, a commercially available 

AM fungal inoculant was used to see if the same effects would be present. 

Whereas H. megidis is commercially available and was purchased for experimental work in 

chapter 4 the strain used in this study was sourced from Prof. Sergio Rasmann (University of 

California, Irvine, USA) and was a strain specific to his work published in Rasmann et al. (2005). 

This strain is therefore not available commercially and may not compare well in terms of 

attraction to herbivore induced VOCs to those sourced from Biobest® (Milton Bridge, UK). In 

chapter 4, where the efficacy of both H. megidis and S. kraussei were compared it was clear 

that S. kraussei provided superior levels of O. sulcatus control. For this reason it made sense to 

use in subsequent experiments the commercially available and superior S. kraussei. 

In order to further increase the validity to R. idaeus growers, the commercial favourite, Glen 

Ample was used in experiments from this point on. This is because, in this experiment, at least 

from the perspective of herbivore induced VOCs, and subsequent natural enemy attraction, 

the two cultivars were indistinguishable. 

 

 

5.35.35.35.3 Olfactometry experiment 2: Is this effect Olfactometry experiment 2: Is this effect Olfactometry experiment 2: Is this effect Olfactometry experiment 2: Is this effect 

commercially viable?commercially viable?commercially viable?commercially viable?    

 

5.3.15.3.15.3.15.3.1 Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

A 2 x 2 factorial experiment was carried out, in a constant temperature room (22˚C on a 16:8 

Day:night cycle), using one cultivar of R. idaeus (Glen Ample) to test the effects of two 
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different mycorrhizal treatments (live or sterile commercial AM fungal inoculum) and two 

herbivore treatments of O. sulcatus (a control treatment and a 40 egg treatment). These 

experimental treatments were incorporated into a randomised block design. 

R. idaeus was prepared using the methods outlined in 2.1.1. After 4 weeks 40 plants were 

transplanted into 2L size pots containing 1.8L of compost (John Innes No. 3, Levingtons, UK) 

and an AM fungal inoculum.   

The commercially available AM fungal inoculant known as ‘MycoForce Mycorrhizal 

Transplanter™’ produced by Symbio® was used in this experiment to more closely mimic the 

crop management tools available to a commercial grower. The inoculant was added to plants 

at the commercially recommended dose of 5ml per 2L pot which contains approximately 1100 

propagules. A control treatment of inoculant was created by heat sterilising the inoculum at 

400°C twice for 20mins, with an hour to cool between heat treatments. 

Five weeks after plants were potted into 2L pots the plants of each AM fungal treatment were 

split randomly into two equal groups of 20 plants. To half the plants, 20 O. sulcatus eggs (taken 

from a culture maintained on site, see 2.1.9) were added and to the other half, no eggs, in 

order to create an O. sulcatus-free control treatment. 

After three weeks the potted R. idaeus were then connected to two belowground 

olfactometers. The olfactometers in this experiment were four arm choice chambers for 

analysing the dispersal of nematodes, and other than the different number of arms, their 

construction differed in no way to those discussed in 5.2.1. The 40 experimental plants were 

divided randomly into ten groups of four, with each plant in each group representing a 

different treatment group. These plants were then placed in a random order into a series of 

five 24hr olfactometry runs. As mentioned in 5.2.1, randomising the order of plants enables 

there to be a distinction between “push” and “pull” effects, both of which could be useful tools 

in such a system (Pickett et al., 2014). 

Once plants were incorporated into the olfactometer, moist silver sand (10% water by weight 

relative to sand) was added to the central chamber and four arms of the olfactometer. After 

the addition of moist sand, approximately 2,000 S. kraussei (Becker and Underwood®, 

Littlehampton, UK) suspended in 10ml of water were added to the centre of the central 

chamber using a P10ml (Gilson®, Luton, UK) Pipetman. The olfactometer was then allowed to 

run uninterrupted for 24hrs at which point it was dissembled and the removable sections 

depicted in Figure 5.2 were carefully set aside so that EPNs could be retrieved using wet 

sieving and sucrose centrifugation (see 2.1.11) enabling the numbers of nematodes attracted 

to each treatment to be assessed. The two olfactometers, used in this experiment, were then 
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sterilised and reset with fresh plants a total of 5 times, creating 10 replicates. After plants had 

been used in the olfactometer they were harvested, O. sulcatus larvae were retrieved from the 

compost, counted and weighed. The fresh above and belowground portions of the plants were 

weighed and then oven dried at 50°C to enable the calculation of dry mass. Prior to oven 

drying, 30mg sub samples of fresh root material were frozen in liquid nitrogen and the freeze 

dried. This was in preparation for DNA extraction Ion Torrent™ (Life Technologies Ltd, Paisley, 

UK) next generation sequencing to identify the AM fungal community colonising the roots. This 

will be done in collaboration with Dr Karita Saravesi (University of Oulu, Finland). 

The abundance of S. kraussei recaptured was analysed using an ANCOVA and tested against 

the explanatory variables of O. sulcatus treatment, R. idaeus biomass and AM fungal 

treatment. The experimental block in which plants were grown was included as a covariate in 

order to account for spatial variation within the constant temperature room as was the 

olfactometer run date, in order to account for any temporal effects. 

The number of retrieved O. sulcatus larvae as well as their performance (total O. sulcatus 

weight per plant) were both used as response variables in GLMs using a Poisson error structure 

as both these data sets exhibited a negative skew consistent with the Poisson distribution. 

These two response variables were both tested against the explanatory variables of AM fungal 

treatment and R. idaeus biomass with experimental block and olfactometer run, as covariates. 

The response variables of R. idaeus biomass and root to shoot ratio were used in ANCOVAs 

and tested against the O. sulcatus treatment and the AM fungal treatment with the 

experimental block and olfactometer run included as covariates. The change in mass between 

wet and dry R. idaeus aboveground biomass was used as a response variable in an ANCOVA to 

see if the explanatory variable of O. sulcatus treatment and AM fungal treatment influenced 

water concentration, again experimental block and olfactometer run were used as covariates. 

All analysis was carried out using R3.1.2 ‘Pumpkin Helmet’ (R Core Team, 2013) with the best 

fitting minimal models reported. 

 

5.3.25.3.25.3.25.3.2 ResultsResultsResultsResults    

The numbers of S. kraussei recovered from the different olfactometer arms were not explained 

by the different experimental treatments applied to plants, with neither the presence of O. 

sulcatus nor an added AM fungal inoculum making a detectable difference (data not shown). 

The total biomass of R. idaeus did not have a relationship with either the AM fungal treatment 

or O. sulcatus presence. There was however a positive relationship (F=1,21 4.46, P <0.05) 
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between the R. idaeus root to shoot ratio and the abundance of S. kraussei (Figure 5.8). This 

means that when root mass is larger relative to shoot mass, more S. kraussei were attracted. 

 

Figure 5.8: The abundance of S. kraussei had a positive relationship with R. idaeus root to shoot ratio. 

The root to shoot ratio of R. idaeus was also lower (F1,21=8.81, P <0.01) when O. sulcatus larvae 

were present when compared to control treatments (Figure 5.9)  

 

Figure 5.9: R. idaeus biomass was lower when O. sulcatus larvae were present. 

In order to ascertain if the relationships exhibited by S. kraussei and O. sulcatus with root to 

shoot ratio were driven by root biomass, as opposed to fluctuations in aboveground biomass 

the analysis was repeated with the two sets of biomass data separately. Steinernema kraussei 

attraction appeared to only be affected by root biomass (F1,21=89.281, P <0.01) with 

aboveground biomass having no effect on their distributions (Figure 5.10 and Figure 5.11)  
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Separating the shoot and root data in order to further explain the relationship between O. 

sulcatus and R. idaeus did not reveal any further relationships. 

 

Figure 5.10: Root biomass is positively related to S. 

kraussei attraction. 

 

Figure 5.11: Shoot biomass has no effect on S. 

kraussei attraction. 

 

The water content of R. idaeus shoots was not found to be influenced by either herbivory or 

AM fungal treatment. The abundance and performance of recovered O. sulcatus larvae was 

not found to vary significantly between AM fungal treatments. 

5.3.35.3.35.3.35.3.3 DiscussionDiscussionDiscussionDiscussion    

In this second olfactometry experiment, an attempt was made to test an experimental set up 

which was closer to what might be usefully applied in the field by a commercial R. idaeus 

grower for enhancing pest control. In the field, for example, it is not possible to sterilise soil 

and so any AM fungal treatments are in fact additive treatments to a pre-existing soil microbial 

community, which is what has been simulated in this experiment. Alongside this key 

difference, the more effective EPN species, S. kraussei, as shown in trials in chapter 4, was 

used in addition to the industry standard R. idaeus cultivar, Glen Ample. 

The abundance of S. kraussei attracted to plants was not affected by the addition of an AM 

fungal inoculant in the way that H. megidis were shown to respond to a field derived inoculant 

in 5.2.3. If S. kraussei addition in combination with a commercial inoculant were to have 

followed the same pattern as in 5.2.3 then it would be expected that an increased population 

of S. kraussei would have been recorded in olfactometer arms that lead to both arms 

terminating in plants that had been inoculated with AM fungi, regardless of O. sulcatus 

treatment. The fact that this was not observed could be for one of two primary reasons. Firstly, 
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this could be simply due to the differences in these two EPN species, while both are termed as 

being ‘cruise’ foragers (Campbell et al., 2003; Kruitbos et al., 2010) meaning they are mainly 

observed actively seeking prey via chemotaxis, as opposed to the ‘ambusher’ tactics employed 

by some closely related species. They are however both from different families, the 

Steinernematidae and Heterorhabditidae, while most of the recorded differences in these two 

species are related their biology that is key to their pathogenicity (Boemare, 2002), once in 

contact with a host insect, there are fewer differences documented in their taxis behaviour. 

However, their distinct genetic backgrounds may predispose them to respond to host and 

plant chemical cues differently. Also they may not be equally capable of dispersal and efficient 

host seeking in the same substrate types as one another. EPNs have been shown to have very 

different levels of host finding performance and efficacy in different substrate types (Choo & 

Kaya, 1991; Kruitbos et al., 2010). While S. kraussei may outperform H. megidis in a sandy loam 

(as used in chapter 4.2), it may be that H. megidis can outperform S. kraussei in terms of host 

location in a sand based system. If this is the case then a useful follow-up experiment to this 

one would be to test the same system but with different substrate types within the 

olfactometer central chamber and arms. Another confounding factor that may preclude the 

comparison of these two EPN species is that the H. megidis used in 5.2.1.2 were a strain that 

were used by Rasmann et al. (2005) and may have become optimised in terms of their 

response to herbivore induced VOCs in a sand based system, over several generations of 

culturing. It may therefore be interesting to compare the results obtained in section 5.2 with a 

new experiment which could investigate the performance, in an identical set-up, of a 

commercially available strain of H. megidis. 

Secondly, in addition to the differences between the EPN species is the difference in the AM 

fungal treatment. With one experiment using a field derived, R. idaeus tailored, AM fungal 

inoculant and the other, an ‘off the shelf’ general purpose commercial preparation. Although 

there are isolated examples of when a commercially available inoculum has been applied in an 

agricultural setting with some success (Ceballos et al., 2013), the literature is dominated by 

examples of how effects seen in laboratory tests with these products fail to have any 

detectable effects when used in the field (Herrmann & Lesueur, 2013). This could be due to the 

fact that the general purpose species mixtures of these inoculum tend not to be specific to the 

species of plant to which they are being added and generally just contain the most abundant 

species, or the species most often readily identified in the scientific literature. The literature is 

also dominated by experiments showing pronounced multi-trophic effects under the artificial 

scenarios in which only one AM fungal species is colonising a plant. These effects are often 

seen to break down when more than one species is added (Gange, 2001; Gange et al., 2005; 

Vannette & Hunter, 2013). This could be caused by so called priority effects, whereby the 
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species already in association with a plant are more likely to outcompete an added species 

(Werner & Kiers, 2014) but it is also likely that plant species such as R. idaeus have a locally 

adapted community and added ‘exotic’ species are far less likely to establish. The addition of 

an inoculum that is tailored to the plant species in question could therefore interact in a more 

beneficial way with the population of AM fungi already native to the plant’s roots. This may be 

an effect that might be hard to incorporate and develop into a commercial product, which 

usually contain many species, but evidence for this is certainly apparent when comparisons are 

made between experiments 5.2 and 5.3 and also apparent in chapter 6. 

The presence or absence of O. sulcatus made no difference to the preference of S. kraussei in 

this olfactometry experiment. This was perhaps not unexpected as in the previous experiments 

it was only under a higher level of O. sulcatus herbivory that plants responded with chemical 

changes and recruited EPNs when AM fungal were absent, or with very low abundance. The 

lower density of 20 O. sulcatus eggs added to the plants in this case was used in order to look 

specifically at the differences between AM fungal treated and non-treated plants. If a higher 

density of O. sulcatus were used and effects observed were similar to those in 5.2 then the AM 

fungal effects would have been masked by a more general herbivore induced natural enemy 

attraction effect. 

Although S. kraussei were not influenced in their foraging direction by AM fungi or O. sulcatus, 

they were influenced by the amount of R. idaeus root biomass. EPNs have been shown to be 

attracted to the roots of plants both in the presence (Kanagy & Kaya, 1993; Cutler & Webster, 

2003) and absence of insect hosts (Bird & Bird, 1986). There are many reasons why this may be 

but in the absence of a detectable host EPNs are known to use chemotaxis to seek out plant 

roots (Kanagy & Kaya, 1993) and that the change in water gradients and soil structure around 

plant roots allows for improved host location and speed of dispersal (Bal et al., 2014; Demarta 

et al., 2014). 

The change in root to shoot ratio that S. kraussei was responding to was, after further scrutiny 

almost entirely explained by the relationship directly with root mass and not by any 

aboveground patterns of biomass. This was not found to be the case with O. sulcatus’ 

relationship with the root to shoot ratio of R. idaeus. The distribution of R. idaeus biomass was 

in fact found to be driven by the presence of O. sulcatus herbivory. This effect of changing 

above/belowground biomass ratios, in Glen Ample, has been observed and discussed multiple 

times already in this thesis (chapters 2.4 and 3.4). In this case it is perhaps serendipitous for 

the O. sulcatus larvae that their low population and herbivory on these Glen Ample plants is 

actually making them less appealing to S. kraussei. It should however be noted that even 
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plants with low root mass attracted between 20 and 30 S. kraussei and so it is likely that this 

set of circumstances may not have saved these O. sulcatus larvae from harm.  

There wasn’t any significant variation in the water concentration of aboveground R. idaeus 

tissues that was explained by experimental treatments. It was originally theorised that water 

uptake could have been impaired by root herbivory (Zvereva & Kozlov, 2012) or modified by 

AM fungal presence (Smith & Read, 2008) but no evidence was found for this. This theory 

could be more vigorously pursued in a future experiment with the additional information that 

could be inferred by having the wet weight of the R. idaeus root tissues. This was however 

reasoned to be impractical as the complete removal of soil particles from a root system 

invariably requires the application of a lot of time and fine jets of water both of which would 

lead to potential inaccuracies when calculating wet weights. 

The abundance and performance of O. sulcatus larvae retrieved at the end of the olfactometry 

runs were not found to be affected by AM fungal treatment nor S. kraussei attraction. The 

absence of an AM fungal effect is perhaps to be expected, as previously discussed with 

reference to commercial inocula, and inocula of multiple AM fungal species. This lack of an 

effect of AM fungal treatment on O. sulcatus performance was also seen in a study by Gange, 

(2001) which showed that while single species of AM fungi reduced O. sulcatus performance, 

when multiple species of AM fungi were added, this effect was lost. The absence of an impact 

of S. kraussei populations on O. sulcatus abundance and performance is encouraging as it 

suggests that S. kraussei are effectively trapped by the 40μm mesh and are not reaching the 

experimental pots, which could have led to either the death of O. sulcatus larvae before 

retrieval or an underestimation in the populations of S. kraussei. 

5.45.45.45.4 Conclusions Conclusions Conclusions Conclusions     

The two different olfactometry experiments discussed in this chapter have enabled a greater 

understanding of this complex multi-trophic system and also raised many more avenues of 

enquiry for later investigation. The first of these two experiments established if the 

observation of effects seen in other herbivore induced VOC attraction studies with EPNs could 

be repeated in a R. idaeus-AM fungi-O.sulcatus system. The second olfactometry experiment 

attempted to apply the findings of the first into a system more similar to that found in the 

field, to see what could be reasonably achieved in a R. idaeus cropping system with 

commercially available products. 

The two R. idaeus cultivars tested in the first olfactometry experiment did not show any 

difference in their attractiveness to the EPN, H. megidis, nor were there any differences in VOC 
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production detected. For this reason, experiments subsequent to this focused on the more 

commercially relevant cultivar, Glen Ample. 

When field derived spores were added to plants, those plants were found to be more 

attractive to H. megidis when O. sulcatus densities were low. This result was not found to be 

attainable when a more generalised population of AM fungi were added, in the form of a 

commercial inoculum. This commercial inoculant was used as an additive treatment to non-

sterile soil. The second experiment carried out in this chapter is therefore much more 

reflective of conditions encountered in the field by R. idaeus growers. It suggests that the 

application of these inocula are not the answer to harnessing any AM fungal induced VOC 

effects on natural enemy attraction. Instead, if the compounds responsible for enhanced EPN 

attraction could be isolated and added as part of an integrated crop management regime with 

EPNs then this could provide a much more reliable pest management tool. This could be a way 

of improving EPN efficacy and bringing the level of O. sulcatus control that they provide in line 

with chemical pesticide treatments. It is unlikely that such a development would remove the 

need for pesticide applications but it could mean that such EPN treatments could reduce the 

frequency that pesticides would need to be applied. If enhanced EPNs were more effective at 

safeguarding plants when O. sulcatus populations were at low levels then they could prevent 

the establishment of O. sulcatus infestations in a R. idaeus crop. Allowing growers to reduce 

pesticide use, decreasing their reliance on such products, potentially reducing costs, but more 

importantly decreasing their impact on the environment and non-target organisms such as 

pollinators and natural enemies. Developing such a system would require further lab and field 

based trials to determine if such effects could be realised.  

In a future olfactometry experiment it would be good to test a commercially available strain of 

H. megidis to see if they produced the same results in section 5.1. It would be interesting to 

also measure the relative success of the two EPN species taxis towards hosts where different 

substrate types, other than sand were used in the centre of the olfactometer. 

The results of this chapter and of chapter 4 lead to a new study, presented in chapter 6, in a 

polytunnel environment comparing multiple commercially available AM fungal inocula and 

their effects of O. sulcatus performance and subsequent S. kraussei efficacy.  
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6666 Investigating Investigating Investigating Investigating SteiSteiSteiSteinernema kraussei nernema kraussei nernema kraussei nernema kraussei 

efficacy in protecting raspberry efficacy in protecting raspberry efficacy in protecting raspberry efficacy in protecting raspberry 

plants with commercial AM fungal plants with commercial AM fungal plants with commercial AM fungal plants with commercial AM fungal 

inoculants inoculants inoculants inoculants in a protected cropping in a protected cropping in a protected cropping in a protected cropping 

environmentenvironmentenvironmentenvironment    

 

6.16.16.16.1 IntroductionIntroductionIntroductionIntroduction    

Positive effects on plant nutrition and negative effects on insect herbivory have been reported 

over many years of controlled laboratory and field studies on AM fungal plants (Koide & 

Mosse, 2004). This body of literature provides some very encouraging results that imply, with 

the exceptions of some functional groups of insect herbivores, that AM fungi can provide 

improved resistance to plant pests (Koricheva et al., 2009). These effects are often mediated 

by changes in tolerance to pest damage, reviewed in Vannette & Hunter (2009), either by 

direct effects that alter herbivore performance (Gange et al., 1994; Gange, 2001) or indirect 

effects that attract natural enemies (Hoffmann et al., 2011a; Schausberger et al., 2012). 

Despite these reported positive effects, AM fungi have yet to be adopted into mainstream 

agriculture. 

The lack of uptake by mainstream agriculture may be explained by a series of reasons. Firstly 

there is an absence of high quality and reliable, mass produced, and commercially available 

AM fungal inoculums available to growers (Herrmann & Lesueur, 2013). With some 

commercial preparations even containing many undeclared species of AM fungi, Trichoderma 

spp. and bacteria (Faye et al., 2013). Part of the problem in terms of the production of inocula 

is a lack of scalability in the production of AM fungi. The continuous culturing of AM fungi in 

trap cultures creates selection pressures which may not favour performance in the field and 

reduce diversity (Trejo-aguilar et al., 2013). The lack of plant and region specificity when it 
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comes to AM fungal formulations are also known to have an impact on their performance 

(Rowe et al., 2007; Berruti et al., 2013). The addition of less generic and more complementary 

AM fungal species may overcome this issue which could be caused by so called priority effects, 

by which established, native species, outcompete introduced species (Werner & Kiers, 2014). 

The effects observed in laboratory studies are rarely reproduced in the field with commercial 

inocula. A rare example of field success with field applications of AM fungi was reported by 

Ceballos et al. (2013), who demonstrated that Cassava yield in Colombia was increased after 

the addition of a single species inoculation of the AM fungi, Rhizophagus irregularis, but this 

may be a phenomenon that is not globally relevant. A recent study by Soudzilovskaia et al. 

(2015) identified distinct patterns of global AM fungal root colonisation driven by climate and 

soil chemistry that favour colonisation in regions with milder, more continental climates. The 

bulk of literature testing commercial inocula demonstrates very poor performance of inocula 

and frequently negative effects on plants after addition (Corkidi et al., 2004; Rowe et al., 2007; 

Berruti et al., 2013; Faye et al., 2013).  

Another aspect that can be off-putting to growers is the limited shelf life of AM fungi and the 

variable effects of the sterile ‘inert’ carriers. The shelf life of AM fungal inocula is brief, and 

even with refrigeration they last for weeks to months rather than the years that mineral 

fertilisers and chemical pesticides can be stored. This also means that if inoculation of a crop is 

not soon after purchase then large scale refrigeration must be invested in to enable storage. 

The inert carriers used with AM fungal formulations have been shown to contain growth 

promoters and micronutrients that may have unexpected effects and in some cases be more 

effective at increasing plant yields than the AM fungal component (Corkidi et al., 2004; Faye et 

al., 2013). AM fungi, even if effective do not provide the immediate and dependable impact on 

crops of their chemical fertiliser and pesticide equivalents and applications are currently a 

more expensive option (Ceballos et al., 2013). Another issue that may preclude the inclusion of 

AM fungi into an integrated crop management system is their sensitivity to applications of 

foliar systemic fungicides. Fungicides are vital for soft fruit production in order to combat rusts 

and powdery mildews but are detrimental to AM fungi (Kough et al., 1987) and are even used 

for this reason to create control treatments in AM fungi studies (Gange & West, 1994). Not all 

fungicides have detectable effects on AM fungi after single applications (Sukarno et al., 1993), 

but how they perform in the long term, after successive treatments throughout several 

growing seasons remains to be seen. This at the very least, restricts a grower to the products 

they can use in concert with AM fungi and may well provide a barrier to growers on the 

grounds of increased cost. 



88 
 

In an effort to test whether the effects seen in chapters 3 and 5.1, on Otiorhynchus sulcatus 

and Steinernema kraussei performance after adding an indigenous soil based spore inoculation 

could be reproduced with a commercial inoculum a polytunnel trial was carried out. The main 

aim was to determine if commercial AM fungi had an impact on O. sulcatus control when the 

EPN, Steinernema kraussei was added to R. idaeus and how this might compare to a soil based 

inoculation. The primary objective was to investigate if commercial inocula could enhance S. 

kraussei performance as effectively as a field derived spore (FDS) inoculation. It was 

hypothesised that O. sulcatus survival and larval mass would be lowest in plants treated with a 

FDS inoculation. Another objective was to assess the effects that different AM fungal 

treatments would have directly on R. idaeus. It was assumed that plant biomass and dormancy 

breaking would be increased when the most beneficial AM fungal community was present. 

Two hypotheses were tested to this effect. First that R. idaeus growth would be highest in the 

FDS treatment, secondly that dormancy breaking would be highest in the FDS treatment. The 

percentage root length colonised (%RLC) by AM fungal structures can sometimes give an 

indication of the benefit derived by a host plant. It was hypothesised that the different AM 

fungal communities added to R. idaeus would result in different levels of %RLC. 

 

 

6.26.26.26.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

An experiment was set up to investigate how two different commercial AM fungal inocula 

compared to the field derived AM fungi used in chapters 4 and 5.1, when added to R. idaeus. 

After inoculation with AM fungi all R. idaeus then had an O. sulcatus herbivory treatment 

added which was then controlled using the EPN, S. kraussei. 

In preparation for the experiment, 160 R. idaeus canes of the industry favourite Glen Ample 

cultivar were purchased from Hargreaves Plants® (Kings Lynn, UK), a major commercial 

distributor of this cultivar. This meant that plants were purchased in the same life stage and 

condition as a commercial R. idaeus grower would receive them. These dormant R. idaeus 

canes were then weighed so that their initial biomass could be included as a covariate in 

analyses. Glen Ample canes were potted up into 2L pots with 1.8L of compost (John Innes No. 

3, Levingtons, UK). Soil was not sterilised, as this is a facility that is not available to R. idaeus 

growers, and not possible in field planting and so all soil treatments are purely additive 

treatments. Plants were inoculated with one of four AM fungal treatments at the time of 

planting. Two treatments were commercially available AM fungal inoculants added at their 
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recommended dosages. The first of these four treatments received 5ml per pot, of ‘MycoForce 

Mycorrhizal Transplanter™’ (MF) produced by Symbio® with each 5ml dose containing 

approximately 1100 propagules. The second treatment received 15ml of ‘rootgrow™ 

mycorrhizal fungi’ (RG) produced by PlantWorks Ltd. (Sittingbourne, UK) containing 

approximately 2500 propagules per dose. The third treatment received a field derived spore 

(FDS) population of 41 ± 7.4 AM fungal spores taken from trap cultures (see section 2.1.4). This 

was prepared in exactly the same way as outlined in section 2.1.2 but instead of the creating of 

a microbial wash, as in other chapters, after the wet sieving stage, collected spores were 

surface sterilised with 9% Sodium Hyporchlorite solution to control for other soil microbes 

following methods used by Klironomos (2002). All of these three treatments contained 

sterilised (heat sterilised twice at 400°C for 20mins) material from the other two treatments so 

as to control for any additional nutrients contained in the inert clay carrier contained in the 

two commercial inocula and trace (equalling less than 1% by volume) additives such as chitin, 

alginates and humates. The fourth and final AM fungal treatment consisted of sterilised 

inocula from all three of the AM fungal inoculants and therefore represented a treatment 

where only the microbe community present in the compost and or already associated with the 

dormant R. idaeus canes was present. 

The 160 potted, and inoculated dormant R. idaeus canes were arranged into a randomised 

block design consisting of 4 experimental blocks, within which all treatments were represented 

equally, inside a polytunnel (located at 51°25'37.8"N 0°34’01.2"W). Plants were put into the 

polytunnel in early September 2013. A five week period of uninterrupted growth enabled AM 

fungi and R. idaeus to establish. After this five week period a population of 40 O. sulcatus eggs 

(taken from culture as described in 2.1.8) was added to all plants from all treatments to 

simulate a high level of root herbivory (Clark et al., 2012). After four weeks (as in section 4.2) 

approximately 9000 S. kraussei (Becker and Underwood®, Littlehampton, UK) were added to 

each R. idaeus pot to represent a grower responding to and treating an O. sulcatus infestation 

using the recommended dosage of this biological control agent. Three weeks after the 

application of S. kraussei, in early December, the plants were harvested. During this time the 

temperatures had been mild (Table 6.1) and in November a thermostatic heater was installed 

to keep the temperature in the polytunnel above 6°C. This ensured that neither O. sulcatus 

growth (Moorhouse et al., 1992) nor S. kraussei, (Richardson et al., 2002), activity was 

impaired by low temperatures. 
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Table 6.1: Climate data taken from the Met Office historical data set at their Heathrow weather station 
(51°28'34.9''N 0°29'39.3"W) in 2013, just 7.5km from the experimental site. *Sun hours were recorded using an 
automatic Kipp & Zonen sensor. 

Month Maximum 
recorded 
temperature (°C) 

Minimum 
recorded 
temperature (°C) 

Number of days 
with air frost  

Sun hours* 

September 19.7 11.1 0 118.9 

October 17.0 10.6 0 89.6 

November 10.4 4.7 1 80.4 

December 10.2 3.5 3 51.3 
 

When the plants in the experiment were harvested, an attempt was made to recover O. 

sulcatus larvae from the root system, then the above and belowground portions of R. idaeus 

were cleaned of soil and placed in a drying oven at 50°C. Subsequent to desiccation the plant 

tissues were weighed and their dry mass recorded.  A 2g sub sample of root tissue was taken 

from each plant in order for AM fungal colonisation to be assessed using the methods outlined 

in 2.1.6 and 2.1.7. 

No O. sulcatus larvae, live or dead, were retrieved from R. idaeus at the end of the experiment. 

This meant that no statistical analyses could be carried out on this data as in previous 

chapters. At the end of the experiment, R. idaeus had started to flower, but due to time and 

equipment constraints the exact numbers of flowers were not recorded but their presence was 

noted on approximately 80% of R. idaeus. 

The R. idaeus total biomass data and the R. idaeus root to shoot ratio were both analysed 

separately in linear regression models against the AM fungal treatment with the initial 

dormant cane weight as a covariate. The dormancy breaking recorded in R. idaeus canes was 

analysed using a generalised linear model, with a quasi-binomial errors structure, against the 

AM fungal treatment applied. 

The percentage root colonised (%RLC) by each of the three different AM fungal structures; 

arbuscules, vesicles and hyphae were analysed using linear regression models, with a quasi-

gaussian errors, against the AM fungal treatment added and the initial R. idaeus cane mass. To 

further understand the distribution of %RLC in plants an analysis of plant benefit vs arbuscular 

colonisation was carried out to see if the data fitted with the model proposed by Gange & 

Ayres (1999). Plant benefit was calculated as the percentage change (positive or negative) in 

R. idaeus biomass and run in a linear model against %RLC of arbuscules. 

All analysis was carried out using R3.1.2 ‘Pumpkin Helmet’ (R Core Team, 2013) and models 

were simplified where appropriate with the best fitting minimal models reported. 



91 
 

6.36.36.36.3 ResultsResultsResultsResults    

The biomass of R. idaeus was found to vary across AM fungal treatments with control and FDS 

treatments producing very similar biomass but RG and MF treatments resulted in lower 

biomass (Figure 6.1). The biomass in RG treated R. idaeus was found to be lower (t1,29=-2.68, P 

<0.01) than the other treatments while the lower biomass seen in MF treated plants was 

found to be due to the initial differences in cane biomass which was included as a covariate.

 

Figure 6.1: The mean biomass of R. idaeus was found to be lower in treatments where the RG AM fungal 
inoculant was added. 

The root to shoot ratio calculated for R. idaeus plants was found not to be affected by the 

added AM fungal treatments and did not differ between treatments. 

Some of the R. idaeus canes that were planted at the beginning of the experiment remained 

dormant, or died and failed to bud and produce fresh growth of any kind.  It was found that 

fewer broke dormancy when treated with RG (t1,159=2.87, P <0.01) than in any other treatment. 

There was also a similar trend in plants inoculated with MF (P >0.05). Plants in the control and 

FD AM fungal treatment groups fared equally well with both treatments producing fresh 

growth on canes in 31 of 40 R. idaeus planted (Figure 6.2). 

 

Figure 6.2: The percentage of R. idaeus canes that broke dormancy was found to be lower in the Rootgrow™
™™

™ (RG) 

AM fungal treatment. 
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AM fungal colonisation, reported as %RLC of different AM fungal structures, was recorded at 

fairly low levels in all AM fungal treatments (Table 6.2). 

Table 6.2: The %RLC of AM fungal structures across different AM fungal treatments.  

AM fungal treatment Mean Arbuscular 
colonisation (%RLC 
with SE) 

Mean Vesicle 
colonisation (%RLC 
with SE) 

Mean Hyphal 
colonisation (%RLC with 
SE) 

Control 7.1 ± 3 3 ± 1 14 ± 7 

FDS 3.0 ± 1 5.9 ± 3 9.0 ± 3 

RG 8.1 ± 3 8.7 ± 3 16.3 ± 4 

MF 4.8 ± 2 8.5 ± 4 12.9 ± 4 

 

The mean %RLC by arbuscules was found to be lower in plants when the field derived AM 

fungal treatment was added (t1,25=-2.28, P <0.05) when compared to other treatments (Figure 

6.3).  

 

 

Figure 6.3: The %RLC of arbuscules was found to be lower in the field derived spores (FDS) AM fungal treatment 
than in other treatments. 

In addition to the %RLC of arbuscules being lower in FDS inoculated plants, there was found to 

be an overall negative relationship between the %RLC of arbuscules and the R. idaeus cane 

mass (t1,25= -2.39, P <0.05), taken at the beginning of the experiment (Figure 6.4). This 

relationship was found to be very similar to the negative relationship (t1,35= -2.30, P <0.05) 

between %RLC and the plant benefit (percentage change in biomass relative to control treated 

plants) recorded in R. idaeus plants (Figure 6.5). There was not found to be any difference in 

the relationship between %RLC and plant benefit in the different AM fungal treatments.
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Figure 6.4: The R. idaeus cane mass recorded at the 
beginning of the experiment had a negative 
relationship with the %RLC of arbuscules. 

 

Figure 6.5: A negative relationship was observed 
between plant benefit and the %RLC of arbuscules 
in R. idaeus.

 

 The %RLC of vesicles and hyphae was not found to differ across the four AM fungal treatments 

added to R. idaeus plants. 

6.46.46.46.4 DiscussionDiscussionDiscussionDiscussion    

This study investigated some of the challenges faced by R. idaeus growers when confronted 

with O. sulcatus infestation. It attempted to determine if AM fungal inoculants available to 

growers could make a difference to plant susceptibility to O. sulcatus and the efficacy of 

S. kraussei in its control. The major difference between this system to the conditions 

encountered in commercial R. idaeus cropping was that R. idaeus were grown in pots. This is 

because it is necessary to compartmentalise the rhizosphere when working with a 

subterranean root feeder such as O. sulcatus, but also removes plant to plant interactions via 

the rhizosphere. 

Regrettably many of the planned objectives of this study had to be abandoned as no 

O. sulcatus were recovered from plants. The lack of O. sulcatus recovered from plants has 

proven quite anomalous when compared to other studies which used the same methods of 

O. sulcatus addition and EPN control (Chapter 4 and 5). There may have been a problem with 

the O. sulcatus larvae used in this experiment. O. sulcatus eggs were shipped from The James 

Hutton Institute (TJHI) in Dundee, and the details of the procedures used to maintain this 

culture are described in 2.1.8. As O. sulcatus eggs from this culture have been used in 

experiments in chapters 3, 4 and 5.1 it seems unlikely that the issue was with non-viable eggs 

from this culture. It had however been mentioned prior to receiving this shipment of eggs that 

the culture had been producing fewer eggs in recent months and fresh individual females had 

not been sourced (Dr Carolyn Mitchell, TJHI, personal communication, 30th September, 2013). 
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It could be that the viability of these eggs had started to decline along with the fecundity of the 

adults (Fisher & Bruck, 2004; Fisher, 2006). The eggs were transported in person over a 12h 

period and added to plants within one week and so no extreme temperatures which are 

known to affect egg viability occurred during this time (Fisher, 2006). The next possible 

explanation to explain O. sulcatus mortality from a chronological perspective was that O. 

sulcatus failed to survive on the established Glen Ample canes that they were added to. The 

eggs were added to plants in the poly tunnel with seasonal temperatures of between 10-17°C 

and this is not an extreme enough range to affect development (Fisher, 2006). The Glen Ample 

canes used in this experiment were approximately two years older than the plants used in 

previous chapters (3, 4 and 5) and age may feasibly have reduced their susceptibility to 

O. sulcatus. However the adult O. sulcatus that laid these eggs were captured from 2 -3 year 

old R. idaeus canes of various varieties and  good O. sulcatus performance on mature Glen 

Ample is well documented (Clark et al., 2012). 

The S. kraussei treatment added to plants cannot fully account for O. sulcatus absence. 

Although S. kraussei were added to all treatments, the test plants, not included in this analysis 

which had O. sulcatus added for the purpose of determining the best time to add S. kraussei, 

also failed to produce any live O. sulcatus larvae. S. kraussei, given the right conditions could 

well produce 100% mortality in O. sulcatus, it is perhaps unfortunate that it was so successful 

in this case. The inclusion of two extra control treatments could have elucidated this particular 

point. A S. kraussei free treatment of 40 plants would have determined if O. sulcatus were 

indeed present and an O. sulcatus and S. kraussei free control could have established if 

O. sulcatus were having an effect on R. idaeus growth performance. The reason why these two 

additional treatments were not incorporated in the design was that O. sulcatus had been 

shown to have an effect on Glen Ample biomass in all previous experiments (chapters 3, 4 and 

5) and S. kraussei had been shown in chapter 4 to provide around 84% control in a very similar 

system. In addition to this, including another 80 plants to this experiment would have made 

the scale of the experimental set up and harvest impractical for a single individual to conduct. 

If the O. sulcatus and S. kraussei treatments, which were added to all plants across all AM 

fungal treatments are to be presumed to, on average have had, an equal effect on all plants 

then this does not diminish the potential of this data to enable speculation on the observed 

differences between AM fungal treatments. 

The AM fungal treatment added to plants was found to have a number of different effects on 

both the plants and their colonisation by AM fungi. One of the key differences between the 

FDS and the two commercial inocula tested was the mode of application. The FDS treatment 

added only AM fungal spores to plants, the two other treatments consisted of infective 
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‘propagules’. In this context, the number of propagules refers to the total number of spores, 

extraradical hyphae and infected root fragments present in any given volume of inoculum. This 

is unlikely to result in the same level of infectivity as a purely spore based inocula as not all AM 

fungal species have the same colonisation strategies. Klironomos & Hart (2002) assessed the 

levels of colonisation success of several AM fungal species when added as either spores, 

extraradical hyphae or infected root fragments. They demonstrated that while all species 

tested would readily colonise root tissue when added as spores, only a few genera could infect 

from hyphae and colonisation was very low when infected root fragments were applied. The 

two commercial inocula used in this experiment both contained a very high number of 

propagules, between 1100-2500, while the FDS treatment only contained 41 ± 7.4 spores. With 

no information on what proportion of propagules within the commercial products were spores 

it is hard to know how comparable these inoculants are. 

One of the main reasons that the methods of controlling for microbial populations in the FDS 

treatment outlined in Klironomos (2002) was used as opposed to the microbial wash method 

devised by Ames et al. (1987) and used in chapters 3 and 5.1 was the perceived difficulty in 

applying this method to a commercial inoculum. Subsequent to carrying out this experiment it 

has been noted that West (1995) proposed a filtration based method for achieving a control 

for soil microbes. If this experiment was repeated then this method would be incorporated to 

provide a distinction between the different microbial communities that may be present in a 

commercial inocula. In fact it has even been shown that in some commercial inocula that 

several undeclared bacterial species and Trichoderma spp. were present (Faye et al., 2013) and 

it would be good to try and control for any effects of these organisms if they are present. 

The commercial product RG performed exceedingly poorly, with R. idaeus biomass greatly 

reduced as well as the numbers of R. idaeus canes breaking dormancy.  An argument could be 

made that the addition of RG has introduced a population of AM fungi that are behaving 

parasitically under these conditions and imposing a fitness cost on R. idaeus (Smith & Smith, 

1996; Johnson et al., 1997). This is not the first time that negative effects have been recorded 

on plants when commercial inoculum is applied. Corkidi et al. (2004) evaluated the effects on 

plant growth and AM fungal infectivity of ten commercial inocula. A large range of between 0-

50% colonisation was observed, which they concluded was due to a lack of viable propagules 

and differences in application rates. They determined that nearly all the effects of increased 

plant growth were due to the presence of growth promoters in the ‘inert’ carrier substrate as 

opposed to AM fungal colonisation. In addition to these findings, all but two of the ten inocula 

tested produced plants that were smaller than control plants, an effect that is far from 

dissimilar to that seen in this study. In fact, studies reporting success with commercial AM 



96 
 

fungal products appear to be the exception (Ceballos et al., 2013) rather than the rule (Rowe 

et al., 2007; Berruti et al., 2013; Faye et al., 2013). This is frequently due to the poor quality 

and consistency of commercial products that often only serve to discourage farmers from 

looking to improve crop sustainability with expensive biofertilisers (Herrmann & Lesueur, 

2013). 

As has already been discussed, the R. idaeus used in this experiment were older than those 

used in previous experiments (chapters 3, 4 and 5). Whereas this may not affect O. sulcatus 

directly it can most certainly affect the AM fungi-plant interactions and may in turn effect 

herbivores via secondary metabolites (Miller et al., 2014). 

The low levels of colonisation observed in R. idaeus at the end of the experiment could have 

been linked to the chemical changes in the plant due to flowering. The flowering of a plant has 

been shown to decrease the formation of new AM fungal structures (Johnson et al., 1982). If 

this experiment was repeated, the numbers of flowers produced on each plant would provide 

an interesting covariate to incorporate into analyses. The %RLC of arbuscules recorded in 

R. idaeus was found to be significantly lower in FDS treated plants than in any other AM fungal 

treatment. This may be explained by the models for AM fungal colonisation versus plant 

benefit proposed by Gange & Ayres (1999). The dose-response effects of AM fungal 

colonisation were assessed with respect to plant benefit. The results presented may explain 

why there was significantly lower colonisation in the FDS treatment when compared to other 

treatments. These lower levels of arbuscule density on R. idaeus roots may produce maximum 

benefit to the plant, while higher levels of arbuscule colonisation density start to have a 

negative impact past approximately 5% colonisation on average. The effects in this experiment 

of %RLC versus plant benefit were found to have a linear relationship as opposed to the 

curvilinear predicted by Gange & Ayres (1999). This may be a consequence of low sample size, 

perhaps with a greater level of replication a curvilinear effect would emerge. This same effect 

may also explain the %RLC of arbuscules also having a negative relationship with the initial 

cane size of R. idaeus. Larger canes appeared to result in lower levels of arbuscule colonisation. 

These larger canes often had more developed root systems and as a consequence of this, they 

may have had a more established, pre-existing AM fungal community. Priority effects detected 

in AM fungal communities show that species that are already in association with roots, will 

outcompete added species (Werner & Kiers, 2014). Another possible explanation could be that 

large plants were less reliant on AM fungi for nutrition due to large reserves within tissues 

prior to dormancy. 

Some of the limitations of staining as a method to determine AM fungal colonisation are that 

stained structures are not necessarily alive and active, and collected data is only reflective of 
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colonisation at the time of harvest. This means that changes in colonisation over time are not 

known, which limits the information that can be derived as such changes can be substantial 

(Šmilauer, 2001; Husband et al., 2002). Plants under stresses such as herbivory can also 

present a different proportion of AM fungal structures in their roots than plants not enduring 

such stresses (Duckmanton & Widden, 1994; Klironomos et al., 2004), a distinction that cannot 

be made in this study. 

One of the original objectives for this experiment was to analyse the AM fungal community in 

association with the roots of the differently treated R. idaeus using molecular techniques. This 

would be useful information as it has been that there are species specific effects seen only 

when certain AM fungi are present (Gange, 2001). A collaborator was approached to help carry 

out this work but unfortunately the collaborator did not have a schedule that allowed for 

samples to be analysed quickly enough after the experimental harvest. This was a problem as 

long term storage in -80°C freezers were not available for this purpose at RHUL. A new 

collaborator was approached to analyse the roots of R. idaeus plants in chapter 5.2 to try and 

investigate how the AM fungal community changes after the addition of a commercial 

inoculum. 

 

6.56.56.56.5 ConclusionsConclusionsConclusionsConclusions    

No O. sulcatus were retrieved from plants and so the focus of this study shifted from one of 

AM fungi/insect herbivore interactions to a comparative study on R. idaeus performance under 

different AM fungal treatments.  

The infective propagules in commercial inocula consist of an unknown proportion of spores. As 

spores are the only reliable infective structure to produce colonisation in plant roots these 

high numbers of infective propagules reported may be misleading. The commercial inoculum 

known as Rootgrow™ appeared to have negative effects on R. idaeus performance, reducing 

biomass and dormancy breaking. This community was clearly very ill-suited to Glen Ample 

R. idaeus, behaving more like a parasite than a mutualist. The field derived spore inoculation 

performed in a very similar way to control plants with no detectable differences with regards 

to R. idaeus performance. 

The differences in the percentage of root length colonised in the different AM fungal 

treatments was found to be explained by a dose response effect of AM fungal colonisation. 

High levels of colonisation produced negative effects on plant biomass, while low levels were 

either beneficial or benign. 
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7777 Summary and Summary and Summary and Summary and General DiscussionGeneral DiscussionGeneral DiscussionGeneral Discussion    

 

7.17.17.17.1 Summary of results by chapterSummary of results by chapterSummary of results by chapterSummary of results by chapter    

7.1.17.1.17.1.17.1.1 Chapter 3Chapter 3Chapter 3Chapter 3    

• A tritrophic system was set up to investigate the interactions between Otiorhynchus 

sulcatus, Rubus idaeus and arbuscular mycorrhizal (AM) fungi under glasshouse 

conditions. 

• The Glen Ample and Glen Rosa R. idaeus cultivars tested showed different growth 

patterns in response to AM fungal and O. sulcatus treatments. Both Glen Ample and 

Glen Rosa showed the same resource reallocation tolerance response to O. sulcatus 

herbivory.  

• Root emissions in the form of volatile organic compounds (VOCs) were captured 

during the experiment. Analysis did not identify that any VOCs were induced by 

herbivores or AM fungi but some known semiochemicals, α-pinene and carene, were 

identified.  

7.1.27.1.27.1.27.1.2 ChapteChapteChapteChapter 4r 4r 4r 4    

• In this chapter a multi-trophic system was set up to assess the relationships between 

R. idaeus, AM fungi, O. sulcatus and entomopathogenic nematodes (EPNs) under 

glasshouse conditions. 

• The EPN, Steinernema kraussei, was found to provide superior levels of O. sulcatus 

control when compared to the EPN, Heterorhabditis megidis, and control treatments. 

• Otiorhynchus sulcatus larvae had lower survival and performance on the R. idaeus 

cultivar Glen Rosa. 

• The commercial favourite, Glen Ample, was far more susceptible to O. sulcatus 

damage, when compared to Glen Rosa. 

• The application of S. kraussei on Glen Rosa provided the highest levels of O. sulcatus 

suppression. 

• Surprisingly even in the control treatments the O. sulcatus larvae did not impact 

significantly on overall plant biomass but they did influence carbon allocation in the 

plants, with more being pushed to the shoots in Glen Ample, as seen in Chapter 3. 

• AM fungal colonisation was a lot higher in Glen Ample than Glen Rosa but this was 

likely due to this susceptible cultivar investing less carbon resources belowground and 
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more aboveground. This reduced root growth can lead to artificially high percentage of 

root length colonised (%RLC). 

• On Glen Ample plants, O. sulcatus performance increased in the presence of more 

arbuscules. This is possibly due to higher phosphorus concentrations in tissues. This 

contrasts to existing literature on AMF/root feeding performance. 

7.1.37.1.37.1.37.1.3 Chapter 5Chapter 5Chapter 5Chapter 5    

• Two olfactometry experiments were carried out in order to investigate the preferences 

of EPNs to differently treated R. idaeus. The EPNs were exposed to plants treated with 

different combinations of O. sulcatus larvae and AM fungi. 

• The two R. idaeus cultivars, Glen Rosa and Glen Ample, which were tested in the first 

olfactometry experiment did not show any difference in their attractiveness to the 

EPN, H. megidis, nor were there any differences in VOC production detected. 

• When field derived spores were added to plants, those plants were found to be more 

attractive to H. megidis even when O. sulcatus densities were low.  

• High densities of O. sulcatus were found to produce greater VOC emissions which in 

turn made plants more attractive to H. megidis. 

• In the second of these two olfactometer experiments commercial inocula were tested 

in combination with low populations of O. sulcatus to see if effects seen with field 

derived spores and H. megidis could be repeated. 

• When commercial inocula was used, attraction of the more effective EPN, S. kraussei, 

was not affected. Instead, S. kraussei attraction was dictated largely by R. idaeus root 

biomass. 

7.1.47.1.47.1.47.1.4 Chapter 6Chapter 6Chapter 6Chapter 6    

• This chapter documented the interactions between R. idaeus, field derived and 

commercial AM fungi, O. sulcatus and S. kraussei in a protected cropping environment. 

• No O. sulcatus were retrieved from plants under any of the different treatments added 

• The commercial inoculum known as Rootgrow™ had negative effects on R. idaeus, 

reducing biomass and dormancy breaking. This AM fungal community behaved more 

like a parasite than a mutualist.  

• Plants inoculated with field derived spores performed in a very similar way to control 

plants, with no detectable differences with regards to R. idaeus performance. 

• Differences in the %RLC of arbuscules across the different AM fungal treatments were 

explained by a dose response effect of arbuscule colonisation. High arbuscule 
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colonisation resulted in negative effects on plant biomass, while low levels were either 

beneficial or benign. 

 

7.27.27.27.2 General DiscussionGeneral DiscussionGeneral DiscussionGeneral Discussion    

This thesis set out with the aim of discovering if mycorrhizal fungi facilitated root defence 

signalling in belowground predator-prey interactions. This line of enquiry was posed as a 

consequence of work done by a number of different research groups, all with relevance to 

belowground interactions involving root feeding insects. Publications by Gange et al. (1993, 

1996, 2001) demonstrated negative effects of AM fungi on the larval mass and survival of 

O. sulcatus providing evidence that this belowground herbivore may be influenced by the 

presence of AM fungi. In addition to this, work conducted by Dr Scott Johnson (University of 

Western Sydney, Australia) and colleagues (Clark et al., 2011c,a, 2012; Johnson et al., 2012) 

investigated how many aspects of O. sulcatus performance varied on different R. idaeus 

cultivars. Rubus idaeus is a good model plant for the investigation into the performance of this 

pest as it is highly mycorrhizal (Varma & Schuepp, 1994), a favoured host of O. sulcatus (Alford, 

2007), and a valuable horticultural crop (DEFRA, 2013). An effective biological control agent for 

O. sulcatus is the application of EPNs (Haukeland & Lola-Luz, 2010) and recent studies have 

shown that plant cultivar (Degenhardt et al., 2009), AM fungi (Schausberger et al., 2012), and 

herbivory alone (Rasmann et al., 2005) can have an impact on EPN attraction to plants. This 

third aspect of herbivore induced, natural enemy attraction draws together elements from 

both the research performed on O. sulcatus and AM fungi and that on R. idaeus cultivars. This 

area of research became the main focus of this study and its investigation led to the 

experimental chapters presented in this thesis. 

7.2.17.2.17.2.17.2.1 Soil sterilisationSoil sterilisationSoil sterilisationSoil sterilisation    

The sterilisation of soil via autoclaving was carried out in experiments reported in chapters 3, 4 

and 5.1 prior to inoculation with AM fungal inoculum. A decision was made to discontinue this 

practice in the experiments reported in chapters 5.2 and 6. This decision was based on a few 

different factors. Firstly, if this research is to have particular relevance to R. idaeus growers, 

any effects observed need to be repeatable in the field. One of the key differences between 

the conditions of field and lab studies involving AM fungi is that field soils cannot be easily 

sterilised. This can produce a system that is very different from that of a lab based study. In a 

lab based study, experiments are straight forward ‘Sterile’ vs treatment comparisons. This kind 

of comparison is useful for advancing fundamental research but recently the biological 
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relevance of sterile, microbe free plants has been questioned, as it is a state that is almost 

never found in nature. This, as discussed by Partida-Martínez and Heil (2011) ignores the 

evolutionary history of plants and cannot be relied upon to produce normal ecological 

outcomes following interactions with experimental treatments. The ease with which AM fungi 

added to a system then colonise a plant is also understood to be quite different. Plants in the 

field that have an AM fungal community added in the form of an inoculum are likely to 

encounter a plant that has a pre-existing AM fungal community in residence in the root 

system. Werner and Kiers (2014) demonstrated that the order of arrival of AM fungal species 

matters, as indigenous AM fungi can outcompete invading species with no apparent reduction 

in fitness. This is an effect that is completely missed in studies where sterile soil has been 

applied and so reduces their ecological relevance. 

The autoclaving of soil changes not just the indigenous AM fungal population but also has an 

effect on the free living microbial community. There are a large number of soil bacteria which 

are categorised functionally as mycorrhiza helper bacteria, the exclusion of these bacteria can 

inhibit AM fungal performance as they are known to enhance sporulation and mycelial growth 

(Frey-Klett et al., 2007). It is also misleading to assume that the sterilisation of soil has the 

effect of ceasing all biological activity. In fact it often leaves only certain enzymes and microbes 

that create a very unnatural community when compared with untreated soil (Carter et al., 

2007). These considerations all contributed to the change in soil preparation protocols. 

7.2.27.2.27.2.27.2.2 Soil/Sand mixtures in mycorrhizal studiesSoil/Sand mixtures in mycorrhizal studiesSoil/Sand mixtures in mycorrhizal studiesSoil/Sand mixtures in mycorrhizal studies    

A number of studies that investigate AM fungal interactions have included in their methods a 

dilution of soil media with sand by around 50% by volume (Bennett & Strauss, 2013; Bennett et 

al., 2013). These studies quote reasons such as improved drainage or an effort to reduce the 

chance that AM fungi will behave parasitically, but the creation of a phosphorus deficient 

medium ensures that plants are very dependent on their AM fungal symbionts and more likely 

to receive a positive benefit from colonisation (Hoeksema et al., 2010). This provides more 

exaggerated effects than would otherwise be seen in a pure soil medium. 

These high, >50%, sand systems bear little in common with the conditions faced by R. idaeus 

growers and are perhaps only directly relevant to the margins of agricultural land adjacent to 

sand dune systems. The behaviour and performance of soil organisms is impacted by soil 

texture and structure. Soils with high sand content are coarser and have greater porosity 

(Brady & Weil, 2007) and have been shown to have an impact on the growth and morphology 

of AM fungi (Drew et al., 2003). Sandy soils are known to have a negative impact upon root 

herbivores (Brown & Gange, 1990) and in species with morphology similar to O. sulcatus 

larvae, which rely on existing cracks and fissures in the soil to aid movement, this may be 
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especially detrimental (Villani et al., 1999). Soil texture also has an impact on EPN behaviour, 

with different species often more effective in different substrate types and foraging 

behaviours modified in sandy soils (Kruitbos et al., 2010). 

For these reasons, after the completion of experiments presented in chapters 3, 4 and 5.1, 

subsequent experiments were conducted in an undiluted soil media that had the same sand 

content as when purchased. This means that any effects seen are more likely to be replicated 

in a potted horticultural setting. 

7.2.37.2.37.2.37.2.3 Relevance to Relevance to Relevance to Relevance to R. idaeusR. idaeusR. idaeusR. idaeus    cropping in the UKcropping in the UKcropping in the UKcropping in the UK    

Otiorhynchus sulcatus is a damaging pest on R. idaeus, a crop of major economic importance in 

the UK with the ‘farm gate’ value of production valued at £89.6 billion in 2013 (DEFRA, 2013). 

There are several reasons why O. sulcatus is a particular issue in R. idaeus cropping. One of the 

reasons for recent concern regarding this pests’ impact is that over the last decade the 

majority of R. idaeus production has been converted to polytunnel based protected cropping 

systems. These polytunnels raise and moderate temperatures relative to ambient conditions 

and allow for greater control in water management. They also serve to extend growing 

seasons and produce higher quality fruit when compared to unprotected cropping (Demchak, 

2009). These improved conditions for R. idaeus come at a cost. The same conditions that 

favour R. idaeus production also improve the performance of O. sulcatus (Johnson et al., 

2010). On top of this, the future for chemical insecticide based methods of this pest is by no 

means certain and so biological control alternatives are commonly employed as an alternative. 

One of the more popular choices for this is the application of EPNs (Haukeland & Lola-Luz, 

2010). Some of the problems with the field application of EPNs is that they are often unreliable 

when compared to insecticides as they produce more variable results (Kakouli-Duarte et al., 

1997), hence any methods to improve their efficacy would be very welcome.  

In this thesis an attempt was made to do just this, by investigating possible VOC attractants to 

EPNs and try to establish if mycorrhizal plants showed enhanced allure. Unfortunately there 

were no individual VOCs isolated from AM fungal plants that were shown to have a direct 

impact on EPN attraction. However, the presence of AM fungi was shown to increase 

attraction of EPNs when compared to control treatments. Further conclusions from herbivore 

induced VOCs are discussed in 7.2.5.   

In chapter 4 AM fungal colonisation was found to reduce O. sulcatus larval mass, perhaps due 

to increased provisioning of nutrients, providing greater constitutive defence (Bennett et al., 

2006; Kempel et al., 2010), or even a priming effect as a direct consequence of AM fungal 

colonisation (Jung et al., 2012). Rubus idaeus with an AM fungal community were found to be 
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more attractive to EPNs (Chapter 5.1) again possibly due to extra provisioning or priming by 

AM fungi which could be leading to changes in the composition of VOC emissions (Rapparini et 

al., 2008; Fontana et al., 2009). 

What was found which is of more immediate relevance to a R. idaeus grower is that when the 

EPN, S. kraussei, was applied to R. idaeus of the cultivar Glen Rosa then greatly improved 

control of O. sulcatus was achieved. If growers could be convinced to grow more pest resistant 

cultivars and apply EPNs throughout the growing season then high levels of O. sulcatus control 

could be maintained. Such applications could help to reduce chemical pesticide inputs which 

can avoid effects on non-target organisms such as pollinators and natural enemies. 

The application of pest resistant, but not genetically modified, R. idaeus cultivars are 

compatible with farming with an organic certification (Soil Association Certification 2013). This 

can add significant market value to raspberries. Depending on the quality of fruit organic 

certified production can increase the end consumer price between 49% - 84% based on 

information from 3 of the UK’s 5 biggest supermarkets (Table 7.1). While this data was taken 

from produce being sold out of season, in March, it does show that there is significant value 

added to raspberries when they are sold with an organic certification label. 

Table 7.1: The retail prices of organic and non-organic raspberries at the UK’s 5 largest supermarkets. Asda and 
Morrisons were not offering an organic alternative at the time this data was taken on 27/03/2015. Data taken 
was exclusive of promotional offers from the supermarket websites. 

UK Supermarket Price of Non-Organic 

Raspberries (£/kg) 

Price of Organic 

Raspberries (£/kg) 

Added value to 

Raspberries (%) 

Tesco £13.34 £20.00 49% 

Sainsbury £13.33 £22.00 65% 

Waitrose £15.16 £28.00 84% 

 

If EPN efficacy against O. sulcatus can be further improved then this pest will become less of a 

barrier to R. idaeus growers interested in increasing their crop’s value through organic 

production. Additionally, long term organic agriculture has been found to have a positive effect 

on soil microbial diversity (Birkhofer et al., 2008) which could help to restore some of the 

benefits associated with AM fungal colonisation previously mentioned and those found by 

other authors (Smith & Read, 2008; Koricheva et al., 2009).  

7.2.47.2.47.2.47.2.4 The application of commercial AM fungiThe application of commercial AM fungiThe application of commercial AM fungiThe application of commercial AM fungi    

The complex nature of the AM fungal communities associated with plant roots often leads to 

very variable results between studies. Crop plants are commonly associated with multiple 

species of AM fungi (Daniell et al., 2001) and the AM fungal community can be specific to a 
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particular plant community (Johnson et al., 2004). This can mean that generalised species 

mixtures of AM fungi compare poorly to plant specific communities (as discussed in chapter 6). 

Additions of commercial inocula were shown to result in negative or benign effects on plants 

when applied in chapters 5.2 and 6. This could be explained by priority effects whereby 

indigenous AM fungi outcompete all invader species (Werner & Kiers, 2014). Theories as to 

how these effects may be overcome are discussed in detail in Gadhave et al. (appendix 2). This 

thesis has added to the body of literature (Rowe et al., 2007; Berruti et al., 2013; Faye et al., 

2013) indicating that commercial producers of AM fungi are trying to run before they can walk, 

with bold claims of unspecified plant benefit. Until there is a greater understanding of the 

specificity and community ecology of soil microbes it seems very unlikely that a universal 

inoculum will provide anything approaching a reliable tool in a growers’ arsenal of crop 

management techniques. Instead it is more likely that more context specific products, tailored 

to particular plant communities, may prove to be more effective products (Berruti et al., 2013). 

7.2.57.2.57.2.57.2.5 Herbivore induced volatiles and natural enemy attractionHerbivore induced volatiles and natural enemy attractionHerbivore induced volatiles and natural enemy attractionHerbivore induced volatiles and natural enemy attraction    

There is definite evidence that herbivore induced volatile production can be modified by AM 

fungi (Rapparini et al., 2008; Fontana et al., 2009) and that this can result into enhanced 

natural enemy attraction (Schausberger et al., 2012; Patiño-Ruiz & Schausberger, 2014). In this 

study however these effects were not identified. The production of VOCs by R. idaeus under 

different herbivore pressures was not found to produce a significant difference in the 

composition of VOCs (chapter 3.3). In chapter 5.1, it was found that there was elevated VOC 

production and EPN attraction when R. idaeus were under a high herbivore pressure. Despite 

these conditions and treatments being very similar to those in chapter 3, the VOC data set in 

chapter 3 did not show this effect of increased VOC production. There is however a trade off 

when trying to maximise ecological relevance as the populations of all four of the organisms in 

this system are genetically variable and phenotypically plastic and this can have an impact on 

the reproducibility of results (Heil, 2014b). 

What was less clear was how the presence of AM fungi was influencing EPN attraction. 

Mycorrhizal plants were clearly more attractive to H. megidis in the olfactometry experiment 

but the distinction between mycorrhizal and non mycorrhizal plants was not evident in VOC 

data. This is probably because of the number of captured VOCs that have been identified was 

very low in the two data sets. Rapparini et al. (2008) demonstrated that it was the proportion 

of monoterpenes and sequesterpenes that was altered by AM fungal colonisation rather than 

the total signal of VOCs. With such a small number of potential monoterpenes and 

sequesterpenes identified it may be that the greater part of the story this data set has to tell is 

yet to be told. 
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As far as the application of AM fungi to augment herbivore induced defences in plants is 

concerned this thesis suggests that reproducibility even between lab studies is low, let alone 

application in the field. As has been previously discussed, commercial AM fungi produce 

unreliable and often unfavourable effects in plants. These products are not the answer to 

harnessing potential AM fungal induced VOC effects on natural enemy attraction. However, if 

the VOCs responsible for enhanced EPN attraction could be identified and then isolated then 

used as part of an integrated crop management system in conjuncture with EPNs then this 

could provide a reliable pest management tool. Such a development could reduce the 

frequency that chemical pesticides would need to be applied. If enhanced EPNs were more 

effective at safeguarding plants when O. sulcatus populations were at low levels then they 

could prevent the establishment of O. sulcatus on R. idaeus crops. If growers were able to 

reduce pesticide reliance this could potentially reduce costs. More importantly, a reduction in 

pesticide application frequency could decrease the environmental impact of pest control 

which would be better for non-target organisms such as pollinators and natural enemies.  

Another way in which a very similar system has been implemented in the field with success has 

been to increase the production of VOC emissions, which recruit natural enemies, in plant 

tissues. The system developed by Rasmann et al. (2005), which identified a herbivore induced 

VOC attractive to EPNs, went on to restore this signal in a commercially viable cultivar which 

performed well in the field (Degenhardt et al., 2009). The system described in this thesis has 

the added potential of being based around a crop that is commonly irrigated. This could be a 

definite advantage as both EPNs and VOCs can be delivered through such a system with no 

need to compromise on high yielding but pest susceptible cultivars. This would also avoid the 

need to use a genetically modified plant, which would avoid major regulatory issues in the EU. 

7.37.37.37.3 ConclusionsConclusionsConclusionsConclusions    

The findings in this thesis have advanced the understanding of a specific multi-trophic study 

system, designed to apply knowledge of plant/AM fungi/insect interactions and herbivore 

induced natural enemy interaction to R. idaeus production. 

When two cultivars of R. idaeus were investigated there was found to be a difference in 

resource allocation as a tolerance response in R. idaeus against O. sulcatus. Of the R. idaeus 

cultivars tested, Glen Rosa was found to be more resistant to O. sulcatus attack when 

compared to the commercially favoured Glen Ample cultivar. When two natural enemies in 

the form of two EPN species, H. megidis and S. kraussei were added to the system, differences 

in efficacy were recorded. The commercially available strain of S. kraussei was found to be the 

most effective EPN at controlling O. sulcatus under glasshouse conditions. The combination of 
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Glen Rosa and S. kraussei was found to provide exceptional levels of O. sulcatus control. When 

H. megidis taxis to R. idaeus plants was tested, plant cultivar was not found to influence either 

taxis or VOC production. Captured VOCs include known semiochemicals and were elevated 

under high O. sulcatus herbivory pressure. The addition of AM fungi increased attraction of 

H. megidis regardless of O. sulcatus feeding pressure but it was not possible to attribute this to 

a difference in VOC production. The production of VOCs and the attraction of H. megidis was 

increased under high levels of herbivory, independent of AM fungal treatment. When EPN 

attraction was tested with a commercial inoculum, these effects were not seen, and EPNs 

were instead attracted by higher R. idaeus root biomass. Further investigations into the 

applications of commercial inocula produced negative or an absence of effects on R. idaeus 

whereas a host specific AM fungal inocula produced more positive effects.  

As the experimental system explored in this study was developed to become more ecologically 

relevant to field conditions, it was found that the effects seen under more contrived lab 

conditions were hard to reproduce. This implies that there are undiscovered interactions 

between the study organisms and their environment that added ‘noise’ to experimental data 

sets. As the field of multi-trophic microbe/plant/herbivore/predator expands and is better 

understood it is likely that this unexplained variation will be accounted for and these systems 

will come ever closer to having a direct impact upon how ecological knowledge is applied to 

cropping systems. 

7.47.47.47.4 Suggestions for future workSuggestions for future workSuggestions for future workSuggestions for future work    

This thesis has raised many new questions and there are many areas within this system that 

could benefit from further investigation. There is plenty of scope for further belowground 

olfactometry experiments as this system provides a very flexible platform with which to study 

ecological interactions. In future olfactometry experiments it would be good to test a 

commercially available strain of H. megidis to see if they produced the same results as those 

used in section 5.1, which were taken from a culture available only for research. It would be 

interesting to also measure the relative success of the two EPN species at taxis towards hosts 

where substrate types more similar to field soils were used instead of sand in the olfactometer 

arena. This would require some modifications to EPN extraction techniques but would be 

relatively simple to carry out, given the equipment and experience acquired in earlier 

experiments. 

The VOC data collected could be expanded upon and added to if a collaboration with a 

chemical ecologist working on a similar system could be established. If further information 
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could be derived from the data sets then this could lead to a higher impact publication output 

subsequent to this PhD.  

To further understand the AM fungal communities applied during the experiments reported in 

chapter 5.2, next generation sequencing to identify AM fungal community colonising the roots 

will be carried out. This will be done in collaboration with Dr Karita Saravesi (University of 

Oulu, Finland). It will establish what species were present before and after the addition of a 

commercial AM fungal inoculant and may enable the detection of priority effects or other AM 

fungal interactions.  

The large scale application of AM fungi in the field to protect crops against insect herbivores 

may still be in its infancy due to the complexity of agroecosystems but this does not mean that 

this potential resource should be ignored. Some field trials of the experimental system 

investigated in this thesis could provide some very interesting results and help to advance our 

understanding of these complex systems. 
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Abstract- Soil microbes present a novel and cost-effective method of 
increasing plant resistance to insect pests and thus a sustainable opportunity to 
reduce current pesticide application. However, the use of microbes in integrated 
pest management programmes is still in its infancy. This could be primarily 
attributed to the variations in microbial inoculum performance in laboratory and 
field conditions. Soil inoculants containing single, indigenous microbial species 
have shown promising results in increasing plant resistance to foliar feeding 
insects. Conversely, commercial inoculants containing multiple species often 
show no effects. We present a simple model that endeavours to explain the 
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discrepancies in results when microbial inoculants containing single and 
multiple species are used under both controlled and field conditions. 
Furthermore, we discuss how this knowledge can be applied to manipulate soil 
microbial species and develop ‘tailored’ microbial inoculants that could be used 
in plant protection against antagonists.  

Key Words- Microbial inoculants, tritrophic interactions, pest management, 
insect herbivores. 

MICROBE-MEDIATED ABOVE- AND BELOW-GROUND INTERACTIONS IN 
THE FIELD 
 
The rhizosphere is the most diverse and dynamic ecosystem in nature 
(Hinsinger et al. 2009). Microbial diversity within this zone is colossal and is 
critical for plant growth, and ultimately in the maintenance of life on earth 
(Bakker et al. 2013). The influence of microbes associated with roots can be 
exerted on higher trophic levels such as insects, both above- and below-ground. 
A number of studies have shown how plant growth promoting (PGP) 
rhizobacteria or arbuscular mycorrhizal (AM) fungi can influence the growth and 
performance of foliar-feeding insects [bacteria (Pineda et al. 2010); endophytes 
(Jaber and Vidal 2010); mycorrhizas (Koricheva et al. 2009)] and diversity and 
abundance of plant pathogens (Weller et al. 2002) and nematodes (Kerry 
2000). The majority of the effects on foliar-feeding insects appear to be 
negative, although many are also context-dependent, being greatly influenced 
by abiotic factors (Gange et al. 2012).  

The fact that soil microbes can have both direct and indirect beneficial 
effects on plants has led to much research into the development of commercial 
inocula, that aim to improve plant growth and yield (Herrmann and Lesueur 
2013). Invariably, inocula that contain PGP rhizobacteria or AM fungi comprise 
a mixture of species (Trabelsi and Mhamdi 2013). The most successful of these 
types of inocula has been the range of products containing Rhizobium for 
legumes (Brockwell and Bottomley 1995) and those containing mycorrhizal 
fungi (Ceballos et al. 2013). However, a feature of all microbial inoculants, even 
those containing Rhizobium, is that they frequently appear to have no effects 
when applied in field conditions (Corkidi et al. 2004; Herrmann and Lesueur 
2013) despite controlled laboratory experiments being positive. This is often put 
down to poor quality of product, but such effects can still be seen even when 
the products applied are of high quality (Herrmann and Lesueur 2013). Such 
null results could result in a lack of sales and product development, which from 
a sustainable agriculture point of view, would be most unfortunate. 

 
SINGLE VS MULTIPLE SPECIES 
 
A second feature in the literature, which appears common across both bacteria 
and mycorrhizal studies, is that controlled experiments in which one species of 
microbe is added to a plant seem to show much greater effects on insect 
performance than when two or more species are added. Single species of PGP 
rhizobacteria, when applied to plants in controlled experiments, are likely to be 
more effective in offering plant resistance to a variety of insects including 
chewers (Zehnder et al. 1997; Van Oosten et al. 2008) and phloem feeders 
(Valenzuela-Soto et al. 2010) than multiple PGP bacterial species (Herman et 
al. 2008; Boutard-Hunt et al. 2009). Experiments with combinations of 
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arbuscular mycorrhizal fungi often show little or far less of an effect on insects 
than do single species additions (Gange 2001; Gange et al. 2005; Vannette and 
Hunter 2013). Two separate experiments were conducted using soil bacteria 
and mycorrhiza on insect herbivores serve to illustrate these differences (Fig. 
1). Any of three individual species of PGP Bacillus were found to be more 
effective in reducing field infestations of the specialist aphid, Brevicoryne 
brassicae than a mixture of the same species (Fig. 1a). Similarly, colonization of 
strawberry by two individual Glomus spp. significantly reduced the growth and 
survival of black vine weevil (Otiorhynchus sulcatus) larvae, but the combination 
of the same species did not (Gange 2001) (Fig. 1b). These experiments 
contrast with the backdrop of root bacterial and mycorrhizal communities 
showing high diversity (Bakker et al. 2013) and lead to three important 
questions: (i) why is it that single species additions often show negative effects 
on insects, while combinations do not?; (ii) are microbial inoculants that contain 
a consortium of species likely to be of use in pest control? and (iii) if ‘less is 
more’ when it comes to the enhancement of plant resistance, why have root 
communities with few species not been selected for in nature? 
 
MECHANISTIC INSIGHTS INTO TRITROPHIC INTERACTIONS 
  
A critical feature of microbial inoculants is that it is generally unknown if the 
species contained within them are present in the soil to which they are applied. 
Generally, there is likely to be a reasonable amount of overlap because the 
inoculum species are usually easy to culture, having been previously extracted 
from field soils. However, there will never be a perfect overlap, as a large 
proportion of the soil microbial community is unculturable (Amann et al. 1995). 
This uncertainty will always lead to variable inoculum performance in different 
field soils and crops. 
Single microbial species scenario To answer question (i), we propose a simple 
model (Fig. 2), based on the compatibility of species in the inoculum and the 
rhizosphere. Imagine a very simple, three species root microbial community. Of 
course, rhizosphere communities are far more complex, but we limit the species 
richness in this figure for the sake of clarity. The dynamics of the community 
may be relatively stable over time, assuming that abiotic factors remain 
constant. We then add a single species inoculum, as happens in many 
laboratory experiments. If this species is present in the root community, its 
population will increase, and through a process of antagonism, that of the other 
two species will decrease (Fig. 2a). Priority effects may also play a part here, as 
it has been observed that established mycorrhizal fungi will supress invader 
species not originally present (Werner and Kiers 2014). However, it is unlikely 
that resources (i.e. plant derived carbon) will be so limiting as to allow one 
species to go extinct. The system will, therefore, return to its original state after 
a further period of competition. The critical point is the sudden change in 
microbial populations relative to each other, which will be registered by the plant 
(Bakker et al. 2013). There is evidence that much of plant biochemistry derives 
from microbial interactions within the tissues (Kloepper and Ryu 2006). These 
changes will elicit chemical signals in plant tissues that affect an insect feeding 
on that plant negatively, as reported by earlier studies (Gange et al. 2012). For 
instance, B. amyloliquefaciens FZB42 persists in the rhizosphere over 5 weeks 
(Kröber et al. 2014), changes foliar glucosinolate levels and suppresses insect 
populations (K.R. Gadhave, et al, unpublished). Soil bacteria and fungi prime 
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plants against insects and the ‘microbe induced priming’ is a likely mechanism 
by which this occurs. 
Microbial mediators and plant defensive chemistry Both single as well as 
multiple microbial species change the levels of constitutive defence compounds 
produced by plants against herbivores (Gange et al. 2012). For instance, earlier 
studies showed that two single rhizobacterial species alter the glucosinolate and 
cucurbitacin profiles in Arabidopsis and cucumber plants respectively (Zehnder 
et al. 1997; Brock et al. 2013). Microbe mediated induction of plant defences, 
including those involving the emission of herbivore induced plant volatiles 
(HIPVs) that attract natural enemies of insect herbivores, is facilitated primarily 
by an interplay of jasmonic acid, salicylic acid and ethylene pathways [e. g. 
bacteria (Koornneef and Pieterse 2008); fungi (Van der Ent et al. 2009; Jung et 
al. 2012)]. Single PGP rhizobacterium; Pseudomonas fluorescens and AM 
fungus; G. intraradices have been shown to change the proportion of terpenes 
and sesquiterpene produced as volatiles respectively (Fontana et al. 2009; 
Pangesti et al. 2015). Such changes in volatile emissions have been shown to 
attract natural enemies to herbivore infested plants (Hoffmann et al. 2011; 
Schausberger et al. 2012) suggesting important implications for indirect plant 
defence. Kniskern et al (2007) showed that salicylic and jasmonic acid defence 
pathways reduce natural bacterial diversity in Arabidopsis. Thus, it is probable 
that plants harbouring less diverse bacteria are able to invest more in defence 
signalling against plant antagonists, which partially explains why single species 
microbial inocula could be more effective against herbivores than those with 
multiple species.  
The induction of systemic resistance in plants involves the recognition of 
Microbes Associated Molecular Patterns (MAMPs) such as flagellin, 
lipopolysaccharides, siderophores, antibiotics and biosurfactants in bacteria 
(Van Wees et al. 2008; Van der Ent et al. 2009), and chitin, 
endopolygalacturonases and ergosterol in fungi (Klemptner et al. 2014; Zhang 
et al. 2014) by plant receptors. Thus, it is likely that the MAMPs associated with 
single and multiple microbial species may differ in their ability to mount defence 
against pests. A literature on the effects of single vs mixed microbial species on 
plant defensive metabolites is not robust to make any generalizations. However, 
it is plausible that microbial species number and composition in inocula can 
have far-reaching impacts on plant signalling pathways and MAMPs, which are 
the key determinants of induced defences of plants.       ..  
Mixed microbial species scenario If the inoculum contains multiple species that 
are in common with those in the root system this will simply increase all their 
populations in the rhizosphere (Fig. 2b). The relative abundance of one species 
to the others remains the same, and no chemical changes are elicited in the 
plant. Thus, no effect of inoculation is seen on plant antagonists. An example 
may be shown by results of Roger et al. (Roger et al. 2013) who showed that 
Spodoptera littoralis caterpillars preferentially fed on plants inoculated with 
combinations of two isolates of the AM fungus; Rhizophagus irregularis rather 
than on plants inoculated with only one isolate. Perhaps the worst case 
scenario may be if the inoculum contains no species that are present in the 
rhizosphere. We suggest that this is the most likely reason for some field 
applications having little or no measurable effects. In most cultivated soils, it is 
likely that the local adaptation of communities has occurred, and the added 
‘exotic’ species will fail to establish. A good example of this is the responses 
exhibited by O. sulcatus larvae feeding on Rubus idaeus plants treated with a 
mycorrizal mix extracted from R. idaeus soils, and a commercial mycorrizal 
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species mixture (Fig. 1c). The larval performance was severely reduced on 
plants treated with the native species mix, compared with those treated with a 
commercial inoculum (J. E. Hourston, unpublished).   

We propose that the answers to questions (ii) and (iii) lie in the nature of the 
soil microbial community itself. It is well known that plant roots in soil are linked 
by a Common Mycelial Network (CMN) of mycorrhizas (Walder et al. 2012). 
This network allows the inter-plant transfer of nutrients and signals of insect 
attack (Babikova et al. 2013). The analogous networks through which soil 
bacteria facilitate plant growth and interlink with CMNs are sparsely explored. 
However, recent studies on root-microbial communication revealed the roles of 
an array of bacterial molecules that enable intra and interspecies 
communication in the rhizosphere through biofilm formation and quorum 
sensing (Faure et al. 2009). We propose that these ubiquitous bacterial 
attributes help PGP bacteria maintain diversity and stable contact with roots, 
and derive common benefits to plants. Diverse rhizosphere communities are 
thus far more likely to connect with such networks than depauperate 
communities. Such connections provide advantages to both the microbes and 
the plants. 

Thus, a microbial inoculant that contains many species is likely to contain at 
least some species that will be in common with those in the soil networks. Given 
that complete overlap of inoculum with the soil community can be discounted, 
the scenario depicted in Fig. 2a is more likely, and thus effects should be 
observed if one or a few species are in common. Whether the multiple non-
indigenous species trigger synergistic functional responses in plants is poorly 
understood. It is more plausible that the addition of multiple non-resident 
microbial species in the rhizosphere will encourage competition within added 
species and between benign indigenous microflora for nutrients and niches. 
This may favour the least beneficial microflora in the rhizosphere and potentially 
reduce the magnitude of plant growth promotion which would otherwise have 
been realised if a single native species was present in an inoculum. For 
example, Conn & Franco (Conn and Franco 2004) showed that the addition of a 
non-adapted commercial mixed inoculant in the soil disrupted the resident 
actinobacterial endophyte community in wheat by reducing the diversity from 40 
genera to 21 and colonization of detectable root microbiota by half. Conversely, 
the addition of a single actinobacterial endophyte species increased its 
colonization level without any adverse effects on the diversity and colonization 
of the indigenous endophyte population. Thus, the presence of the non-
indigenous microbiota is more likely to disrupt the established rhizosphere 
bacteria and/or CMN and produce antagonistic effects on indigenous microbial 
communities. 

Despite the many listed advantages of single species inocula on indigenous 
rhizo-bacterial communities and plant fitness, their addition would be far too 
risky economically, because the chance of one species matching with the 
indigenous population is lower than if there are many species being added. To 
overcome this trade-off, we recommend the use of inocula that contain only a 
few species, to reflect native soil conditions. Individual species of bacteria or 
fungi added to potted plants and grown under controlled conditions are a poor 
mimic of field conditions mainly because of their inability to compete in a more 
diverse and dynamic rhizosphere in the field. The challenge is now to better 
understand the structure of soil microbial communities, such that inocula can be 
produced that are tailored to local conditions. Integrated pest management 
systems, including sustainable components such as tailored microbial 
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inoculants could be a promising resource to increase agricultural productivity 
and protection of the environment through a lessening of the reliance on 
pesticides.  

 
CONCLUDING REMARKS 
Microbial inoculants are becoming a common feature in agriculture and 
horticulture, but are often mistrusted by growers due to their inconsistent 
results. We suggest that careful matching of some species within inocula to 
those occurring naturally will overcome this inconsistency. This careful tailoring 
of inocula would not only have the potential to improve plant performance 
including fitness against insects, but also reduce the unknown effects of 
introducing entirely alien microbial species to an area (Schwartz et al. 2006). It 
is unlikely that a universal soil microbial inoculant could be developed, as the 
communities within different soils and beneath certain crops differ (Hortal et al. 
2013). However, a better understanding of microbial community structure will 
enable more sustainable products to be developed. A few ‘tailored’ species in 
such products would not only represent a good thing, but also make sense from 
both an economic and ecological point of view. 
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Figures 
Fig. 1. Effects of inoculation of individual vs. multiple microbial species and 

commercial vs. non-commercial inoculant on insect herbivores: individual 

species of (a) Bacillus most effectively reduced B. brassicae field infestation; (b) 

Glomus significantly reduced O. sulcatus larval survival, than the mixtures of the 

same species. (c) Non-commercial inoculant containing indigenous mycorrhizal 

species reduced O. sulcatus larval mass more than the commercial mycorrhizal 

inoculant. The notations; B. c., B. s., B. a., G. m., G. f., CI and NCI represent B. 

cereus, B. subtilis, B. amyloliquefaciens, G. mosseae, G. fasciculatum, 

commercial (mixed) and non-commercial (mixed) inoculants respectively. In 

each case, the Y axis represents the percent reduction in insect performance on 

treated plants, compared to control (untreated plants). 
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Fig. 2. A model explaining the potential effects of applications (depicted by 

arrows) of single vs. multiple microbial species on the rhizosphere microbial 

community and insect herbivores: (a) the addition of single microbial species 

will increase its population and decrease the abundance of others, possibly less 

beneficial, species through antagonism, which will prime the plant for systemic 

defence and reduce insect infestation; (b) the addition of multiple species will 

increase their populations, with the unchanged relative abundance in the 

rhizosphere. This will not elicit any chemical changes in plant tissues and so will 
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not significantly influence insect growth or population dynamics. 

 

 


