
Towards
compositional game theory

Submitted in partial fulfilment of
the requirements of the degree of

Doctor of Philosophy,
Queen Mary University of London by

Julian Hedges

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159075143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement of originality

I, Julian Hedges, confirm that the research included within this thesis is
my own work or that where it has been carried out in collaboration with, or
supported by others, that this is duly acknowledged below and my contribution
indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is
original, and does not to the best of my knowledge break any UK law, infringe
any third party’s copyright or other Intellectual Property Right, or contain any
confidential material.

I accept that the College has the right to use plagiarism detection software
to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of
a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or
information derived from it may be published without the prior written consent
of the author.

Signature:

Date: 25/04/16
Details of collaboration and publications: see §0.6.

2

Abstract

We introduce a new foundation for game theory based on so-called open
games. Unlike existing approaches open games are fully compositional: games
are built using algebraic operations from standard components, such as players
and outcome functions, with no fundamental distinction being made between
the parts and the whole. Open games are intended to be applied at large scales
where classical game theory becomes impractical to use, and this thesis therefore
covers part of the theoretical foundation of a powerful new tool for economics
and other subjects using game theory.

Formally we define a symmetric monoidal category whose morphisms are open
games, which can therefore be combined either sequentially using categorical
composition, or simultaneously using the monoidal product. Using this structure
we can also graphically represent open games using string diagrams. We prove
that the new definitions give the same results (both equilibria and off-equilibrium
best responses) as classical game theory in several important special cases:
normal form games with pure and mixed strategy Nash equilibria, and perfect
information games with subgame perfect equilibria.

This thesis also includes work on higher order game theory, a related but
simpler approach to game theory that uses higher order functions to model
players. This has been extensively developed by Martin Escardó and Paulo
Oliva for games of perfect information, and we extend it to normal form games.
We show that this approach can be used to elegantly model coordination and
differentiation goals of players. We also argue that a modification of the solution
concept used by Escardó and Oliva is more appropriate for such applications.

3

Contents

Foreword 7
Acknowledgements . 7
A note on style . 7
Intended audience . 8

0 Introduction 9
0.1 Background: game theory . 9
0.2 Background: functional programming 11
0.3 Background: logic for social behaviour 13
0.4 On compositionality . 14
0.5 Overview of the thesis . 16
0.6 Publications . 17
0.7 Notation and conventions . 17

1 Higher order game theory 19
1.1 Decision theory . 19

1.1.1 Discussion . 19
1.1.2 Quantifiers . 20
1.1.3 The continuation monad 21
1.1.4 Selection functions . 21
1.1.5 Attainment . 22
1.1.6 Multi-valued variants . 23
1.1.7 Multi-valued attainment 24
1.1.8 Modifying the outcome type 25

1.2 Normal form games . 25
1.2.1 Discussion . 25
1.2.2 Games, strategies and unilateral continuations 26
1.2.3 Nash equilibria of normal form games 27
1.2.4 Best responses . 29
1.2.5 Classical games . 29
1.2.6 Mixed strategies . 31
1.2.7 Voting games . 32
1.2.8 Modelling with selection functions 33
1.2.9 Coordination and differentiation 34
1.2.10 Illustrating the solution concepts 35

1.3 Sequential games . 36
1.3.1 Discussion . 36
1.3.2 The category of selection functions 37

4

CONTENTS

1.3.3 The product of selection functions 38
1.3.4 Sequential games . 39
1.3.5 Subgame perfection . 40
1.3.6 Backward induction . 41
1.3.7 The inductive step . 42

2 The algebra and geometry of games 44
2.1 Open games . 44

2.1.1 Discussion . 44
2.1.2 The underlying model of computation 45
2.1.3 The category of stochastic relations 46
2.1.4 Open games . 47
2.1.5 The best response function 48
2.1.6 Closed games . 50
2.1.7 Decisions . 51
2.1.8 Preliminary examples of decisions 52
2.1.9 Computations and counit 53

2.2 The category of games . 54
2.2.1 Discussion . 54
2.2.2 Equivalences of games . 54
2.2.3 Categorical composition of games 55
2.2.4 Best response for sequential compositions 56
2.2.5 The identity laws . 59
2.2.6 Associativity . 60
2.2.7 Tensor product of games 62
2.2.8 Functoriality of the tensor product 63
2.2.9 Functoriality of the tensor product, continued 66
2.2.10 The monoidal category axioms 67
2.2.11 Strategic triviality . 69
2.2.12 Computations as a monoidal functor 71
2.2.13 The counit law . 72
2.2.14 Information flow in games 74

2.3 String diagrams . 75
2.3.1 Discussion . 75
2.3.2 String diagrams for monoidal categories 76
2.3.3 Compact closed categories 77
2.3.4 Boxing and compositionality 79
2.3.5 The geometry of games 80
2.3.6 Partial duality . 81
2.3.7 Covariance, contravariance and symmetries 82
2.3.8 Copying and deleting information 83
2.3.9 A bimatrix game . 84
2.3.10 A sequential game . 85
2.3.11 Coordination and differentiation games 87
2.3.12 Designing for compositionality 88

5

CONTENTS

3 Game theory via open games 91
3.1 Normal form games . 91

3.1.1 Discussion . 91
3.1.2 Tensor products of decisions 92
3.1.3 Best response for a tensor of decisions 93
3.1.4 Best response for a tensor of decisions, continued 94
3.1.5 The payoff functions . 95
3.1.6 Stochastic decisions . 97
3.1.7 Best response for a tensor of stochastic decisions 98

3.2 Extensive form . 100
3.2.1 Discussion . 100
3.2.2 Composition with perfect information 100
3.2.3 Building the composition 102
3.2.4 Best response for the composition 104
3.2.5 Best response for the composition, continued 105
3.2.6 Information sets . 107
3.2.7 Imperfect information via open games 109

3.3 Solvable games . 110
3.3.1 Discussion . 110
3.3.2 The definition of solvability 111
3.3.3 Solvable decisions . 112
3.3.4 Backward induction for open games 113
3.3.5 Selection functions and open games 114
3.3.6 Tensor does not preserve solvability 115
3.3.7 Failure of compositional Nash’s theorem 116

Conclusion 118
The future of compositional game theory 118
The status of string diagrams . 120
On the two composition operators . 121
Mixed strategies and Bayesian reasoning 123
Morphisms between games . 123
The meaning of coplay . 124

Appendix: The structure of GameSP (C) 126
A.1 Discussion . 127
A.2 The identity laws . 127
A.3 Associativity . 129
A.4 Functoriality of the tensor product 131
A.5 The monoidal category axioms 135
A.6 Strategic triviality . 137
A.7 Computations as a monoidal functor 138
A.8 The counit law . 139

Bibliography 141

6

Foreword

Acknowledgements

Top billing goes to my family (including Jeni, who says hi); my supervisor
Paulo Oliva; my second supervisor Edmund Robinson; my closest collaborators
Viktor Winschel and Philipp Zahn; my other coauthors Neil Ghani, Mehrnoosh
Sadrzadeh and Evguenia Spritz; and my other colleagues in Theory Group at
QMUL, especially my fellow PhD students in CS420 that was.

Over the past three and a half years I have had gained from talking with
many people. The following list is probably incomplete: Alessandro Abate,
Samson Abramsky, Valeria de Paiva, Martin Escardó, Jeremy Gibbons, Helle
Hvid Hansen, Peter Hines, Aleks Kissinger, Clemens Kupke, Alexander Kurz,
Pierre Lescanne, Adrian Mathias, Arno Pauly, Dusko Pavlović, Alex Smith.

I gratefully acknowledge that my PhD studies were funded by EPSRC doctoral
training grant EP/K50290X/1.

A note on style

To begin with, in this introduction I will refer to myself in the first person. Once
the thesis proper begins in chapter 1 I will return to using the third person.

I feel very fortunate to be writing a thesis in my native language, and I plan
to take advantage of it. The writing throughout is intentionally slightly less
formal than would be reasonable in a publication, and in this introduction much
less so.

When I read [Ati08] I was overly influenced by point 5 under ‘style’, namely
“Identify papers you have enjoyed reading and imitate their style”, even to the
expense of the previous point, “Be as clear and succinct as possible while being
clear and easy to understand”. I immediately thought of [Gir01] and the book
[Hoy08], which have both strongly influenced the way I think about logic and
programming respectively; both contain a mixture of formal mathematics or
computer science with vivid intuitions and downright aggressive personal opinion
that borders on philosophy. I have not carried my style to nearly that extreme,
but I hope that some of it is visible.

My opinion is that the definition-theorem-proof style of mathematics inherited
from Bourbaki will soon (but not quite yet) belong in a past age when theorem
provers were not practical to use, and that in the future the style of a typical
publication in mathematics will need to change to account for the fact that
human-checked proofs are unacceptably unreliable compared with machine-
checked proofs. I hope that the outcome is that style will become more informal

7

CONTENTS

and focus more on intuition, in contrast to what seems to be happening now (for
example, in the homotopy type theory community) with papers written in the
ugly syntax of literate proof assistant scripts.

I have intentionally written in continuous prose, rather than dividing into
sections labelled ‘definition’, ‘theorem’ and ‘proof’, to reflect the way that
mathematics is actually done: plausible definitions, theorems and proof ideas are
used to adjust each other until a fixpoint is reached. For example, the proof idea
may come first, followed by a definition encapsulating the hypotheses found to be
needed to make the proof go through, with the theorem coming last. The proofs
in this thesis are indeed checked by hand, although I trust the experimental
evidence discussed in §0.2 more than I trust my ability to write correct proofs.
Since in some cases several variant or false definitions are given, the ‘official’ one
will always be distinguished by a bold font.

Intended audience

It is very strange to write about ‘intended audience’ in a thesis, when the rule
of thumb is that it will be read by (at most) my supervisor and examiners.
However I intend to continue using my thesis as a reference on compositional
game theory even after papers are published, in particular because chapter 2
contains far more informal text than would be reasonable in a publication, and
I think the informal text is very important. Therefore, I will write here about
what background knowledge is assumed.

This thesis contains nontrivial amounts of both pure mathematics (by which
I mean the study of mathematical objects for no other reason than their inherent
beauty) and applied mathematics (by which I mean mathematics motivated and
influenced by modelling problems). An idealised reader has some background
knowledge in both game theory and category theory, but I expect that most
readers will be familiar with one, but not the other.

The category theory required to read this thesis is mostly monoidal categories,
for which the usual reference is [Mac78]. Alternatively, a self-contained introduc-
tion to monoidal category theory that emphasises the process-oriented view used
in this thesis can be found in [Coe06]. Category theory in this thesis is largely
treated as a means to an end, as an axiomatic approach to compositionality
and a way to easily prove the soundness of the string diagram language in §2.3.
Readers who are category theorists will be able to tell that I am not a category
theorist: in particular, no attempt is made to abstractly study the properties of
the category of games, the reasoning being very concrete and often by example.

The game theory that is needed as background is also very small, and is
discussed in §0.1. A list of topics reads like half of an undergraduate course in
game theory: normal form, extensive form, pure and mixed strategies, Nash
equilibria, subgame perfect equilibria. It is more important to have an intuition
for game theory than any specific piece of mathematical theory, for which a good
introduction is [Kre91].

8

Chapter 0

Introduction

0.1 Background: game theory

There is a tendency for theoretical computer scientists, when writing about game
theory, to refer mostly to the oldest references on the subject, such as [vNM44].
To a computer scientist, the term ‘game’ may mean ‘normal form game’, or it
may mean ‘extensive form game’, in the latter case often with information sets
quietly ignored. In particular, though, the computer scientist will ignore the
fact that game theory is a large research areas within economics, which itself
is a subject of comparable size to all of computer science. Another mistake
that a computer scientist can make, perhaps even simultaneously, is to equate
(academic) economics with game theory. These are both errors that I am still in
the process of trying to overcome myself.

With that being said, essentially all of the game theory needed to follow this
thesis can be found in [vNM44]. For a more concise introduction written by (and
therefore readable by) computer scientists I recommend [LBS08]. To computer
scientists I would also recommend [Kre91] which, being short on mathematics
and long on economic intuition, is likely to be very different to the way they
think about the subject. Of the various weighty reference books on game theory,
the one I use is [FT91]. Failing that, of course there are endless lecture notes
and slides online written for undergraduates in economics, computer science,
mathematics, engineering, . . .

For the closely related two types of game theory covered in this thesis, namely
higher order and compositional, I would like to be clear about how they relate to
what I will call classical game theory, by which I mean game theory as covered
by these references. The questions are: which features are common? What new
features are gained? What features are lost? Which problems are solved, and
which are not?

I will begin with the features common to all approaches. A game consists of
players or agents, who act in a way that is constrained by some rules or protocol.
By this I mean that when each player moves, they have a collection of possible
moves, and a collection of possible things they could observe about the past.
A strategy for each player is a mapping from possible observations to possible
moves, possibly allowing certain side effects such as probabilistic choices or belief
updating. Then a ‘solution’ of the game is an equilibrium, which is a choice of

9

0.1. BACKGROUND: GAME THEORY

strategy for each player that is stable or non-self-refuting, or equivalently is a
fixpoint of a best response function. In general a game may have zero, one or
many equilibria. In justifying the solution as a prediction of real world behaviour
we assume that the rules of the game and the perfect rationality of the players
are common knowledge1.

A built-in feature of classical game theory is that a choice of strategy for
each player will determine a real number for each player called a utility, and
the perfect rationality of the players is defined to mean that they act such
as to maximise their utility. This is discussed further in §1.2.5. Both higher
order and compositional game theory generalise away from this, replacing real
numbers with arbitrary objects and allowing rationality to be defined in far
more general ways which become part of the specification of a game. I will offer
three arguments in favour of doing this. The first is that by abstracting away
from a nontrivial but inessential feature, namely real analysis and optimisation,
the theory is genuinely simplified, and the significant issues become clearer.
The second is that new modelling techniques become available, such as the
coordination and differentiation games in §1.2.9 and §2.3.11. The third is that
this is a necessary step for compositionality: taking two players who perfectly
maximise and composing them together will typically produce a system that
does not perfectly maximise.

Since this is in some sense a strict generalisation, we can still revert back to
the special case by taking outcomes to be real numbers and considering only
agents who maximise real numbers. Indeed, §3.1 and §3.2 of this thesis do
exactly that. But what is lost is any piece of theory that begins by assuming
that outcomes are utilities and that players maximise. It may even be that
we lose the vast majority of all of the literature on game theory this way. To
give perhaps the most serious but elementary example, it is impossible to define
strategic dominance in general for higher order or compositional games.

Higher order game theory, as a subject which naturally grew out of appli-
cations in proof theory, is not really intended to solve any problem in game
theory. One feature that stands out, however, is the ability to write very short
and elegant functional programs that compute subgame perfect equilibria of
perfect information games, including certain infinite games [EO10b, EO12]. The
coordination and differentiation games of §1.2.9 and [HOS+15b], in addition,
constitute an ‘application’ of higher order game theory.

Compositional game theory, on the other hand, has been consciously designed
as an attack on a specific problem: compositionality. This is the principle that a
system should be built by composing together smaller subsystems, and that the
behaviour of a system is entirely determined by the behaviour of the subsystems
and the ways in which they are composed, and therefore it is possible to reason
about the system by structural induction on its decomposition. To a computer
scientist compositionality is such a fundamental idea that it is most often not even
mentioned. For example, every serious programming language is compositional:
a program is built from code blocks composed using sequencing, loops, functions
and so on, and the program’s behaviour is determined by the behaviour of the
code blocks together with the constructs used to compose them. I will discuss
the principle of compositionality in considerable detail in §0.4.

1
The phrase “it is common knowledge that X” means that “all players know that X”

together with “all players know that all players know that X”, and so on.

10

0.2. BACKGROUND: FUNCTIONAL PROGRAMMING

Compositionality, however, is an alien concept in game theory, because there
is no meaningful formal sense in which a game is built from composing together
smaller components. Put bluntly, this is why it is feasible to create a reasonably
robust software system containing millions of lines of code, but it is not feasible
to work with game theoretic models of comparable scale and complexity. I
am not aware of any literature that has come close to identifying the lack of
compositionality as a problem in game theory, but nevertheless it is a very serious
problem, and it is the problem that is solved in this thesis.

In order to talk systematically about which problems are not solved, I will
refer to chapter 5 of [Kre91] for a discussion of the problems of game theory.
With the exception of the section titled ‘What are a player’s payoffs?’, which
relates to the generalised rationality described above, neither higher order nor
compositional game theory contributes anything to these well-known problems.
I will divide these into two classes: the problems relating to ‘the rules of the
game’, and the problems relating to equilibrium analysis.

Problems with the ‘rules of the game’ include:

• A game-theoretic model must have fixed rules, and game theory is unable
to model unrestricted negotiation, for example;

• Similarly, it is difficult to model the ability of players to dynamically modify
the rules;

• The predictions of the model can be extremely sensitive to apparently
small changes in the rules;

• The structure of the game, by default, is common knowledge.

Regarding the last point, in higher order game theory each player’s quantifier or
selection function is assumed to be common knowledge, and in compositional
game theory the entire structure of a string diagram is assumed to be common
knowledge. I hope that the usual technique of using Bayesian games and universal
type spaces can be generalised to compositional game theory, but that is entirely
work for the future.

The central problem of equilibrium analysis is that there is no generally
accepted mechanism by which a particular equilibrium can be selected by the
players, in some cases even when there is exactly one equilibrium. Both higher
order and compositional game theory are fundamentally equilibrium-based, and
suffer from the same, familiar problems with equilibrium analysis, and I will say
nothing more about it.

0.2 Background: functional programming

Compositional game theory was almost entirely developed by me during an
intense two weeks in February 2015 (when I was living in Mannheim), in which
time I felt like the Haskell interpreter ghci became a sort of extension of my
brain. I already had working implementations of the definitions in §2.1 and §2.2,
and experimental verification of the results in §3.1 and §3.2, and even more that
is not covered in this thesis, before I had even written down the definitions in
mathematical language, let alone proved any theorems. The ability to rapidly
typecheck and experimentally test many different definitions was crucial in

11

0.2. BACKGROUND: FUNCTIONAL PROGRAMMING

eventually arriving at the definitions that work, and I still genuinely struggle to
understand the resulting definitions (particularly those in §2.1) intuitively.

Although the functional programming point of view was built into composi-
tional game theory from the start, I have tried my best to minimise it in the
presentation in this thesis, because the intersection of the intended audience
with functional programmers might vanish. In particular, monads have mostly
been replaced with their Kleisli categories. However, here I will describe my
intuitions for the use of functional programming in game theory.

The fundamental intuition I use is Moggi’s thesis [Mog91], which can be
paraphrased as follows: there is a correspondence between

1. Computations that input a value of type X, possibly carry out side effects,
and output a value of type Y

2. Functions of type X → TY for a suitable monad T

3. Morphisms in homC(X,Y) for a suitable category C

The passage from 2 to 3 is to take the Kleisli category C = KlT . The passage
from 1 to 2, which involves choosing a suitable monad, is part of the art of
functional programming. See also [PP02].

I will give one prototypical example, which is nondeterminism. Nondetermin-
istic choice is the ability of a program to return a result that is not uniquely
determined by its input. Instead, for each input the program has a set of outputs
that might possibly occur. If this set is empty then the program can never return
a result, which can be interpreted either as nontermination or as exceptional ter-
mination. The corresponding monad is the powerset monad P, and functions of
type X →PY form a useful model of nondeterministic programs. The category
that corresponds to this is KlP = Rel, the category of sets and relations, via
forward images of relations.

An important idea which is foundational to my research is that side effects,
or equivalently monads, are ubiquitous in game theory, and that identifying and
classifying them is a useful thing to do. The most important examples are the
selection and continuation monads, but they are not intuitive and will be left for
chapter 1. More intuitively, consider a player who makes an observation2 from a
type X and then makes a choice from a type Y .

A pure strategy for the player is a function X → IdY , where Id is the identity
monad IdY = Y , whose Kleisli category is Set. A mixed strategy is a function
X → DY , where DY is the set of probability distributions on Y . The monad
D is called the probability distribution or (finitary) Giry monad [Gir82], and
it is introduced in §2.1.3, along with its Kleisli category SRel. The Haskell
implementation of probability I use is described in [EK06].

From this viewpoint it is natural to also consider players who make truly
nondeterministic choices, without a probability distribution. Such a player has
a set of possible choices for each possible observation, and her strategies have
type X →PY , and are morphisms of Rel. Several computer scientists writing

2
For readers who are game theorists, X is the set of information sets owned by the player, and

the strategies we consider are behavioural strategies. The functional programming viewpoint
makes behavioural strategies X → DY far more natural to consider than mixed strategies
D(X → Y), which means that the assumption of perfect recall is essential. Throughout this
thesis, the term ‘mixed strategy’ really means ‘behavioural strategy’ in the context of dynamic
games.

12

0.3. BACKGROUND: LOGIC FOR SOCIAL BEHAVIOUR

about game theory have independently had the idea of nondeterministic players
[LaV06, Pav09, Hed14], although there is little significant theory. In Haskell the
most common implementation of nondeterminism uses lists, although there are
many alternatives.

If the player makes use of a prior of type A then her strategy is a function
of type X → RdA Y , where Rd is the reader monad, which acts on sets by
RdA Y = A→ Y . If her strategy moreover has the ability to update the prior
with a posterior after making the observation then it has type X → StA Y , where
the state monad St is StA Y = A→ Y ×A.

This Bayesian updating or learning is more complicated than the other
examples, because StA is the only example listed that is a noncommutative
monad. In this thesis only commutative monads will be considered, for simplicity.
By corollary 4.3 of [PR93], a monad is commutative iff its Kleisli category is
symmetric monoidal, which justifies the choice in §2.1.2 to parameterise the
definition of open games by an arbitrary symmetric monoidal category. More
general premonoidal categories also destroy the connection with string diagrams,
although see [Jef97].

This point of view is shared with [Pav09], which moreover refers to Freyd
categories [PT99]. The heavier machinery of Freyd categories is avoided in this
thesis by assuming that all objects have a comonoid structure (see §2.1.2), which
is stronger than necessary but is satisfied by the most important examples.

0.3 Background: logic for social behaviour

In this section I will give a brief literature review of applications of logic and
theoretical computer science to game theory. For lack of a better name, I will call
this research topic ‘logic for social behaviour’ after workshops held in Leiden in
2014, Delft in 2015 and Zürich in 2016. Another event that should be mentioned
in this context is the 2015 Dagstuhl workshop ‘Coalgebraic semantics of reflexive
economics’ [AKLW15]. Many researchers in this area also consider applications
to social choice theory, especially preference aggregation, but I will mention only
[Abr15], which links Arrow’s famous impossibility theorem with category theory.

A starting point is [Pav09], which proposes to study game theory using ideas
from program semantics, in particular viewing games as processes which can
have side effects such as state and probabilistic choices. That paper suggests a
larger research programme called ‘abstract game theory’ in which this thesis can
be located, although see §2.1.1.

An approach to infinitely repeated games using coinduction was introduced
in [LP12] and continued in [AW15] and the working paper [BW13]. Infinite and
coalgebraic games are mentioned only briefly in this thesis, in §2.2.1 and the
conclusion. However, given that coinduction and bisimulation are the correct
techniques for reasoning about infinite processes, it is likely that they will
continue to be important in game theory. In particular, if trying naively to
verify that some strategy of an infinite game is an equilibrium, then infinitely
many properties must be checked; however a finitary proof technique based on
bisimulation should be expected to work. As yet, coalgebraic game theory has
not been connected with the classical approach to repeated games using real
analysis, as covered for example in [FT91], and the very extensive literature on
repeated games. An unrelated application of coalgebra to game theory is [MI04],

13

0.4. ON COMPOSITIONALITY

which shows that universal Harsanyi type spaces are also final coalgebras.
Another line of work begins with [lR14], connecting two-valued games and

determinacy theorems with real-valued games and existence theorems. In [lRP14]
this is moreover connected with synthetic topology [Esc04], which is related
to ideas I am working on involving computably compact sets of probability
distributions in game theory, which are not in the scope of this thesis.

Practical experience of applying functional programming techniques to eco-
nomic modelling is described in [BMI+11], [IJ13] and [BKP15]. More generally,
[EK06] describes the application of functional programming to mathematical
modelling in biology. I directly quote the last sentence of that paper: “In par-
ticular, the high-level abstractions allowed us to quickly change model aspects,
in many cases immediately during discussions with biologists about the model.”
Due to the close connections between game theory and computational effects
described in §0.2, I expect the gains of using functional programming to increase
in the future.

Finally, algorithmic game theory [NRTV07] is a large topic that studies the
computational complexity of Nash equilibria and other constructions in game
theory, which began with the result in [DGP06] that computing approximate
Nash equilibria is infeasible. Algorithmic game theory can be contrasted with
the semantic approach to game theory that this thesis represents, but will likely
be an essential ingredient in the research project outlined in the conclusion.

0.4 On compositionality

This section is essentially an essay, loosely based on a talk I gave at Logic for
Social Behaviour 2016 in Zürich, after the vast majority of the thesis was written.

The term compositionality is commonplace in computer science, but is not
well-known in other subjects. Compositionality was defined in §0.1 as the
principle that a system should be designed by composing together smaller
subsystems, and reasoning about the system should be done recursively on its
structure. When I thought more deeply, however, I realised that there is more
to this principle than first meets the eye, and even a computer scientist may not
be aware of its nuances.

It is worthwhile to spend some time thinking about various natural and
artificial systems, and the extent to which they are compositional. To begin
with, it is well known that most programming languages are compositional. The
behaviour of atomic3 statements in an imperative language, such as variable
assignments and IO actions, is understood. Functions are written by combining
atomic statements using constructs such as sequencing (the ‘semicolon’ in C-like
syntax), conditionals and loops, and the behaviour of the whole is understood in
terms of the behaviour of the parts together with the ways in which they are
combined. This scales sufficiently well that a team of programmers can broadly
understand the behaviour of a program consisting of hundreds of millions of
individual atomic statements.

When the software industry began software was unstructured, with no in-
termediate concepts between atomic statements and the entire program, and
much of its history has been the creation of finer intermediate concepts: code

3
The term ‘atomic’ is used naively here, and does not refer to concurrency.

14

0.4. ON COMPOSITIONALITY

blocks, functions, classes, modules. Compositionality is not all-nor-nothing, but
is slowly increased over time; nor is it entirely well-defined, with many tradeoffs
and heated debates in the design and use of different language features. Even
with a modern well-designed language it is possible to write bad code which
cannot be easily decomposed; and even though there are many design patterns
and best practice guidelines, good software design is ultimately an art.

Going beyond software, consider a physical system designed by human
engineers, such as an oil refinery. An individual component, such as a pump or a
section of pipe, may have a huge amount of engineering built into it, with detailed
knowledge of its behaviour in a wide variety of physical situations. It is then
possible to connect these components together and reuse knowledge about the
components to reason about the whole system. As in software, each component
has an ‘interface’, which is a high level understanding of its behaviour, with
unnecessary details being intentionally forgotten.

As a third example, an organisation made of human beings, such as a company
or university, is also built in a compositional way, demonstrating that engineering
is not a requirement. It is possible to understand the behaviour of a department
without knowing the details of how the behaviour is implemented internally. For
example, a software engineer can use a computer without knowing the exact
process through which the electricity bill is paid, and will probably not even be
aware if the electricity provider changes. This is another example of reasoning
via an interface.

Clearly interfaces are a crucial aspect of compositionality, and I suspect that
interfaces are in fact synonymous with compositionality. That is, compositionality
is not just the ability to compose objects, but the ability to work with an object
after intentionally forgetting how it was built. The part that is remembered is
the ‘interface’, which may be a type, or a contract, or some other high-level
description. The crucial property of interfaces is that their complexity stays
roughly constant as systems get larger. In software, for example, an interface can
be used without knowing whether it represents an atomic object, or a module
containing millions of lines of code whose implementation is distributed over a
large physical network.

For examples of non-compositional systems, we look to nature. Generally
speaking, the reductionist methodology of science has difficulty with biology,
where an understanding of one scale often does not translate to an understanding
on a larger scale. For example, the behaviour of neurons is well-understood, but
groups of neurons are not. Similarly in genetics, individual genes can interact in
complex ways that block understanding of genomes at a larger scale.

Such behaviour is not confined to biology, though. It is also present in
economics: two well-understood markets can interact in complex and unexpected
ways. Consider a simple but already important example from game theory. The
behaviour of an individual player is fully understood: they choose in a way that
maximises their utility. Put two such players together, however, and there are
already problems with equilibrium selection, where the actual physical behaviour
of the system is very hard to predict.

More generally, I claim that the opposite of compositionality is emergent
effects. The common definition of emergence is a system being ‘more than
the sum of its parts’, and so it is easy to see that such a system cannot be
understood only in terms of its parts, i.e. it is not compositional. Moreover I
claim that non-compositionality is a barrier to scientific understanding, because

15

0.5. OVERVIEW OF THE THESIS

it breaks the reductionist methodology of always dividing a system into smaller
components and translating explanations into lower levels.

More specifically, I claim that compositionality is strictly necessary for
working at scale. In a non-compositional setting, a technique for a solving a
problem may be of no use whatsoever for solving the problem one order of
magnitude larger. To demonstrate that this worst case scenario can actually
happen, consider the theory of differential equations: a technique that is known
to be effective for some class of equations will usually be of no use for equations
removed from that class by even a small modification. In some sense, differential
equations is the ultimate non-compositional theory.

Of course emergent phenomena do exist, and so the challenge is not to avoid
them but to control them. In some cases, such as differential equations, this is
simply impossible due to the nature of what is being studied. The purpose of
this thesis is to demonstrate that it is possible to control emergent effects in
game theory, although it is far from obvious how to do it. A powerful strategy
that is used in this thesis is continuation passing style, in which we expand
our model of an object to include not only its behaviour in isolation, but also
its behaviour in the presence of arbitrary environments. Thus an emergent
behaviour of a compound system was already present in the behaviour of each
individual component, when specialised to an environment that contains the
other components.

As a final thought, I claim that compositionality is extremely delicate, and
that it is so powerful that it is worth going to extreme lengths to achieve it. In
programming languages, compositionality is reduced by such plausible-looking
language features as goto statements, mutable global state, inheritance in object-
oriented programming, and type classes in Haskell. The demands placed on
game theory are extremely strong: seeing a game as something fundamentally
different to a component of a game such as a player or outcome function breaks
compositionality; so does seeing a player as something fundamentally different
to an aggregate of players; so does seeing a player as something fundamentally
different to an outcome function. This thesis introduces open games, which
include all of these as special cases.

0.5 Overview of the thesis

The thesis is divided into three large chapters, each of which is divided into
three sections, each of which is divided into many subsections. Each section
begins with a ‘discussion’ subsection that gives motivation and background. The
serious part of the thesis consists of chapter 2 and chapter 3, with chapter 1 as
a sort of extended introduction.

The subject of this thesis is two new approaches to game theory, which can
be called the ‘higher order’ approach and the ‘compositional’ approach. Higher
order game theory is chronologically prior and much simpler, and can serve
as an introduction to the modes of thinking needed for compositional game
theory, which is much more complicated and unfamiliar. In principle it should
be possible to begin reading at chapter 2 and locally follow hyperlinks back
into chapter 1 when necessary to refer to definitions and notations. I do not
recommend this, however.

The main objects of study in higher order game theory are so-called quantifiers

16

0.6. PUBLICATIONS

and selection functions, which are introduced and studied in isolation in §1.1.
Simultaneous or normal form higher order games are studied in §1.2, and
sequential or perfect information games in §1.3. The contents of §1.2 is closely
based on [HOS+15b], and §1.3 is closed based on [EO11] (and therefore is not
my own work), with §1.1 being a mixture of the two.

Open games, the objects of study in compositional game theory, are intro-
duced in §2.1. This is a section heavy on definitions, introducing the definitions
of open games, decisions, computations and counits. Sequential and parallel
composition of open games are studied in §2.2, including some important theo-
rems about how composition behaves. This is applied in §2.3 to give a string
diagram language for specifying games. The whole of chapter 2 is based on the
preprint [GH16].

The purpose of chapter 3 is to formally connect open games to standard game
theory, which previously is done only informally. In §3.1 normal form games,
both with pure and mixed strategies, are shown to be a special case of open
games. The same is done for perfect information games with pure strategies in
§3.2, together with some sketched ideas for extending to imperfect information.
Finally, §3.3 returns to more theoretical considerations by exploring a possible
solution concept for arbitrary open games, which gives a connection between
compositional game theory and higher order game theory.

0.6 Publications

At the time of submission I have three publications: [Hed13], [Hed14] and
[Hed15a]. Of these, the last is on a different topic, and this thesis contains little
material from the first two.

On the other hand, this thesis does contain large amounts of material from
the preprints [HOS+15b] and [GH16]. A third preprint [HS16] is not related to
this topic. Two further preprints, [Hed15b] and [HOS+15a], are not currently
under review and have not been kept up to date.

0.7 Notation and conventions

Function application is written without brackets whenever it is unambiguous,
and the function set arrow → associates to the right, so if f : X → Y → Z
then fxy = (f(x))(y). λ-abstractions are denoted λ(x : X).t, where x is the
abstracted variable and X its type. The scope of the abstraction extends as far
as possible to the right, and binds tighter than everything except parentheses
and the equals sign. The application of a selection function to a λ-abstraction,
for example, is written ελ(x : X).t.

Binary and arbitrary products are written × and
∏

, binary and arbitrary
coproducts are written + and

∑
, and both bind tighter than →, so for example

A×B → C +D means (A×B)→ (C +D). The folded operators bind tighter
than their binary equivalents, so for example

∏
iXi × Y means (

∏
iXi) × Y .

Projections from a product are written π, and injections into a coproduct are ι.
If x :

∏
i:I Xi then I write xi for πix : Xi. Similarly, if f : X →

∏
i:I Yi then I

write fi for πi ◦ f : X → Yi. The type with one element is 1, and its element is
∗ : 1. The subscript −i, as in x−i, f−i, π−i is used for projection onto

∏
j 6=iXj .

17

0.7. NOTATION AND CONVENTIONS

The notation (xi, x−i), common in game theory, additionally uses the natural
isomorphism Xi ×

∏
j 6=iXj

∼=
∏
j:I Xj implicitly.

I distinguish carefully between ‘types’ X, which are sets, and ‘sets’ A ⊆ X,
which are functions A : X → B where X is a type and B is the type of booleans
containing ⊥ and >. To confuse matters, however, I often also use the term
‘set’ to refer to a type when the difference is harmless, because there is so much
social inertia behind the ‘set’ terminology. If A ⊆ X and x : X, then the
notation x ∈ A is shorthand for Ax = >, and {x : X | · · · } is shorthand for its
characteristic function. PX = X → B is the set of all subsets of the type X.

P [α = x] : [0, 1] is the probability that a random variable α : DX is equal to
x : X. Here D is the probabilistic analogue of P, defined in §2.1.3. If α : DR
then E[α] : R is the expected value of α.

Some symbols are reserved for particular uses. Types of plays or moves are
denoted X, Y , Z and types of outcomes are denoted R, S, T . Σ is the set of
strategy profiles of a game, and σ is a strategy profile. P is a play function,
which converts a strategy profile into a play, and B is a best response function,
which takes a strategy profile to its set of best responses. R is a rationality
function (§2.1.7) and C is a coplay function (§2.1.4), which appear only in the
context of open games. ε and δ are single-valued selection functions, E is a
multi-valued selection function, ϕ and ψ are single-valued quantifiers, and Φ is
a multi-valued quantifier. q is an outcome function, which takes a play to an
outcome. U is the unilateral deviation operator. G and H are open games, and
D is a decision.

18

Chapter 1

Higher order game theory

1.1 Decision theory

1.1.1 Discussion

The purpose of chapter 1 of this thesis, which is largely based on [HOS+15b]
and [EO11], is to introduce the reader to a particular way of thinking about
game theory. Although it is logically self-contained, readers unfamiliar with
game theory should read it together with another source, such as [LBS08] or
[Kre91], that gives a more classical introduction with motivation and standard
examples. Readers already familiar with game theory could begin reading at
chapter 2 and follow hyperlinked references into this part when necessary.

Suppose we have some situation in which an agent is choosing a move of type
X. After the choice is made, she receives some outcome, say of type R. For
example, if we are representing preferences by utilities, we would take R = R.
The outcome depends not just on the agent’s choice, but also on the choices
of other agents, the ‘rules’ of the situation, and the agent’s own preferences.
The first key concept of this thesis is that these additional dependencies will be
abstracted away into a single function k : X → R mapping choices to outcomes.
This function will be called a (strategic) context.

If we view an agent as computing a move, the context represents the com-
putation done afterwards by the environment. This leads us to the principle
that strategic contexts are continuations. Furthermore the structure of game
theory, and especially the definition of Nash equilibrium (§1.2.3), is such that
many of our definitions have explicit access to the context. A computation which
has access to its calling environment by means of a continuation is precisely a
continuation passing style computation. Throughout this thesis, and especially
in §2.2 we will see that the mathematical structure of game theory can be usefully
improved by allowing more things to depend on an arbitrary continuation. This
is the principle, perhaps the most important single idea in this thesis, that game
theory wants to be in continuation passing style.

We will describe agents by their behaviour on each context. There are two
options, which lead respectively to ‘quantifiers’ and ‘selection functions’: we can
map the context to either the good outcomes, or the good moves. We will see
in §1.2 that the latter is preferred for technical reasons, and so we will adopt
the following slogan: to know an agent is to know her preferred moves in every

19

1.1. DECISION THEORY

context.

1.1.2 Quantifiers

Consider a sentence of predicate logic of the form

∃(x : X).kx

Here k is a predicate, which either holds or does not hold for each element of
the domain of quantification X. Thus, we can view k as a function k : X → B,
where B = {⊥,>} is the type of booleans. Since the meaning of our sentence
is invariant under α-renaming, it depends only on the value of the function k,
and thus could be unambiguously written with the point free syntax ∃k. For
comparison, there is a familiar example of point free syntax in measure theory:∫

X

k dµ =

∫
X

k(x) dµ(x)

Since ∃k has a value of type B and depends only on k : X → B, we can say
that ∃ is a particular function

∃ : (X → B)→ B

To be precise, ∃ is the function of this type defined by

∃k =

{
> if kx = > for some x : X

⊥ otherwise

Within an ambient higher-order theory, the sentence ∃(x : X).kx (which involves
only a first-order quantifier) is then equivalent to ∃k; to be clear, this second
∃ is not syntactically speaking a quantifier of the logical theory, but is simply
an ordinary higher-order function which behaves as a quantifier. We can do the
same thing with the universal quantifier: it is a function

∀ : (X → B)→ B

defined by

∀k =

{
> if kx = > for all x : X

⊥ otherwise

Abstracting from these two cases leads to the definition of a generalised quan-
tifier in [Mos57] as an arbitrary function of type (X → B)→ B.

This is generalised one step further in [EO10a], by allowing the type of
booleans B to be replaced by an arbitrary type R. The most important new
example that this gains us is maximisation of real-valued functionals k : X → R:
by the same reasoning as before, the expression

max
x:X

kx

can be written as max k, and we can view max as a function

max : (X → R)→ R

20

1.1. DECISION THEORY

In summary, we define a quantifier on a set X as an arbitrary function

ϕ : KRX

where KRX = (X → R) → R. We will view ϕ as a function that takes each
context k : X → R to an agent’s preferred outcome given that context. We
should always think of this as an outcome that is in the image of the context,
that is, it is an outcome that can actually occur given that context.

For example, the quantifier max : KRX models a classical economic agent
who maximises utility, in the sense that the preferred outcome is the one that is
maximal among those that can be attained. In this sense, quantifiers can be seen
as a generalisation of utility maximisation, which abstracts away the irrelevant
fact that we are working with the ordered real numbers, and allows us to focus
on the important structure.

The existential quantifier ∃ : KBX is also an instance of maximisation, this
time over the discrete order ⊥ < >. We also observe that min : KRX is a
quantifier, and that ∀ : KBX similarly minimises over the order ⊥ < >.

1.1.3 The continuation monad

In §1.1.2 we introduced the type KRX = (X → R)→ R. The operator KR is
well known in programming language theory where it is called the continuation
monad [Koc71, Mog91]. This means that we have unit maps η : X → KRX,
and for each function f : X → KRY a Kleisli extension f∗ : KRX → KRY .
Explicitly, these are given by

ηx = λ(k : X → R).kx

and
f∗ϕ = λ(k : Y → R).ϕλ(x : X).fxk

A Kleisli arrow ϕ : X → KRY is viewed as a computation of type X → Y in
continuation passing style. This means that after the function X → Y has
terminated the result is passed to a continuation Y → R, and the computation
is allowed to have first class access to its continuation.

An important fact about the continuation monad, proved in [Koc71], is that
for an arbitrary strong monad T , the monad morphisms T →JR are exactly in
bijection with the T -algebras with carrier R.

The structure of the continuation monad is related to game theory in [EO11,
Hed14], but we will not do so in this thesis, because of the argument in [HOS+15b]
and §1.2 for preferring selection functions to quantifiers.

1.1.4 Selection functions

Just as a quantifier gives the best outcome in a context, so a selection function
gives the best move. Thus, a selection function is a function ε : JRX where

JRX = (X → R)→ X

The selection function corresponding to the existential quantifier is the Hilbert
epsilon operator. In the Hilbert calculus ε(x : X).kx is a term that, by definition,

21

1.1. DECISION THEORY

satisfies k if possible. We can informally define ε : JBX by

εk =

{
some x : X satisfying kx if such x exists

arbitrary otherwise

By the axiom of choice, we can obtain such a function ε satisfying this specifica-
tion.

Similarly, the selection function corresponding to max is arg max : JRX,
which chooses some point at which a function is maximised. This is ordinarily
written as

arg max k = arg max
x:X

kx

Again, because a function may attain its maximum at many points, we generally
need the axiom of choice to actually obtain arg max as a function.

Although mathematically speaking selection functions are often about op-
timality, it will sometimes be useful to think in anthropomorphic terms of
satisfaction. To talk about the value ϕk, we say that if an agent is choosing in
the context k : X → R, then she is satisfied with the outcome ϕk. Similarly,
she is satisfied with making the move εk. If the agent has a quantifier ϕ that
chooses an outcome ϕk 6∈ Im(k) that is not attainable by any move then the
agent’s preferences in the context k are unrealistic, because she will never be
satisfied with any outcome that can actually occur.

1.1.5 Attainment

We have given two types of functions that can be used as models of agents, and
now we will study the relationship between them. We begin by noticing that a
selection function ε defines a quantifier ε by the equation

εk = k(εk)

This defines a map · : JRX → KRX, which can be proved to be a morphism
of monads, see lemma 6.3.6 of [EO10a], where the selection monad JR is defined
in §1.3.2.

We will say that the selection function ε attains the quantifier ϕ just if
ϕ = ε, and we will call the quantifier ϕ attainable if it is attained by some
selection function.

As a first example, the Hilbert epsilon operator ε attains the existential
quantifier. This generalises Hilbert’s definition of the existential quantifier as
∃k = k(εk). For if ∃k = > then we have at least one x : X satisfying kx = >,
and so x = εk has this property. Conversely, if ∃k = ⊥ then there is no such x,
and so x = εk is some arbitrary point, which has kx = ⊥. As a second example,
it is easy to see that arg max attains max, essentially by definition.

For a less trivial example, consider the definite integration operator∫
: KR[0, 1]

defined by ∫
k =

∫ 1

0

kxdx

22

1.1. DECISION THEORY

The mean value theorem tells us that if p : [0, 1]→ R is integrable then there is
some point x : [0, 1] with the property that

kx =

∫
k

We can apply the axiom of choice to form a selection function ε : JR[0, 1] that
takes each k to such an x. Thus,

∫
is an attainable quantifier. This is given as

an example in [EO10a].
For a second interesting example, also from [EO10a], suppose we work

in a setting (such as a cartesian closed category of domains) in which every
endomorphism k : X → X has a canonical fixpoint, computed by a function

fix : (X → X)→ X

In this case we have R = X, and JXX = KXX, and so fix can be seen as both
a quantifier and a selection function. Moreover, because fix k is guaranteed to be
a fixpoint of k we have k(fix k) = fix k, and hence fix : JXX attains fix : KXX.

1.1.6 Multi-valued variants

Quantifiers were generalised yet another step in [EO11], by allowing the quantifier
to return a set of results,

Φ : (X → R)→PR

We will call a function with this type a multi-valued quantifier. Similarly,
in [HOS+15b] and [HOS+15a], selection functions were generalised to multi-
valued selection functions

E : (X → R)→PX

Multi-valued quantifiers were introduced in [EO11] for applications in game
theory and the proof of Bekič’s lemma. For example, the max quantifier is
single-valued for a total order such as R, but is multi-valued for a preorder such
as Rn with x ≤i y ⇐⇒ xi ≤ yi. The step from single-valued to multi-valued
selection functions makes it harder to work with sequential games (because
we lose the monad structure, see §1.3), but easier to work with simultaneous
games. Thus, §1.2 will focus on multi-valued selection functions, but §1.3 on
single-valued selection functions.

We will give two important examples of multi-valued selection functions. The
first is the multi-valued variant of arg max,

arg max : (X → R)→PX

which chooses all points at which its argument is maximised:

arg max k = {x : X | kx ≥ kx′ for all x′ : X}

Notice that under reasonable hypotheses arg max k is nonempty.
The second example is the multi-valued fixpoint operator

fix : (X → X)→PX

23

1.1. DECISION THEORY

defined by
fix k = {x : X | x = kx}

The fixpoint operator on sets (as opposed to posets) is naturally multivalued,
because a function may have zero, one or many fixpoints, and no preferred
fixpoint.

It is a subtle question whether we should allow multi-valued quantifiers and
selection functions to return the empty set on any input. For some applications
in game theory it is useful to suppose that the sets are always non-empty. We
will call such a multi-valued quantifier or selection function total, after [Hed13].
For example arg max on a finite set is total. This is the approach taken in
[HOS+15b].

On the other hand, there are situations where it is unreasonable to require
totality, such as when working with games of imperfect information with pure
strategies, so that equilibria may not exist. We will define the domain of a
multi-valued quantifier or selection function to be the subset of X → R on which
it returns a nonempty set. This will be denoted by dom(E) or dom(Φ). For
example, the domain of arg max on a compact space X contains all continuous
functions. Of course, a multi-valued quantifier or selection function can be
restricted to a total one on its domain. This is the approach taken in [Hed13].

1.1.7 Multi-valued attainment

Multi-valued quantifiers and selection functions also support a concept of attain-
ment, namely that E : (X → R)→PX attains Φ : (X → R)→PR if for all
k : X → R we have

{kx | x ∈ Ek} ⊆ Φk

This definition gives the expected attainments: for example, the multi-valued
arg max attains max (where max is a single-valued quantifier viewed as a multi-
valued quantifier by returning singletons), and the multi-valued fixpoint operator
attains itself.

By analogy to the overline operator · : JR → KR, given a multi-valued
selection function E : (X → R)→PX we can define the ‘smallest’ multi-valued
quantifier E : (X → R)→PR attained by E, namely

Ek = {kx | x ∈ Ek}

Equivalently, Ek is the forward image of Ek under k. However, in the multi-
valued case we can also do this in reverse, converting a quantifier Φ into the
‘largest’ selection function Φ attaining it, namely

Φk = {x : X | kx ∈ Φk}

As suggested, the types (X → R)→PX and (X → R)→PR both carry a
partial order structure inherited from the powerset operator. Given multi-valued
selection functions E1, E2 : (X → R) → PX we will say that E1 refines E2,
and write E1 v E2, if for every k : X → R we have E1k ⊆ E2k. Similarly, for
quantifiers we will say that Φ1 refines Φ2 and write Φ1 v Φ2. With this notation,
we can say that E attains Φ iff E v Φ.

We can view a single-valued selection function ε : JRX as multi-valued by
setting Ek = {εk}, and so we can talk about refinement between single-valued

24

1.2. NORMAL FORM GAMES

and multi-valued quantifiers. Specifically, we say that ε refines E iff for all k we
have εk ∈ Ek. By the axiom of choice, a multi-valued selection function has a
singled-valued refinement iff it is total. This also applies to quantifiers.

The overline operators define a Galois connection between the refinement
orders. Given a selection function E : (X → R) → PX and a quantifier
Φ : (X → R)→PR,

E v Φ ⇐⇒ E v Φ

The proof is straightforward, by showing that both sides are equivalent to the
claim that for every k : X → R and x : X, if x ∈ Ek then kx ∈ Φk.

The double overline operator on total quantifiers is the identity, because

Φk = {kx | x ∈ Φk} = {kx | kx ∈ Φk} = Φk ∩ Im k

On selection functions, following order-theoretic terminology we will think of

− as a closure operator, and a selection function E satisfying E = E will be
called closed.

1.1.8 Modifying the outcome type

The operator JR defined in §1.1.4 is contravariant in the outcome type R, in
contrast to the continuation monad KR, which is not functorial in R. Moreover,
the action of JR on morphisms of outcomes has a clear game-theoretic reading.

Given a selection function ε : JRX and a function f : S → R, let f ·ε : JSX
be the selection function

f · ε = λ(k : X → S).ε(f ◦ k)

This can easily be shown to commute with the other operations on JR, including
the product of selection functions (§1.3.3).

This also applies to multi-valued selection functions, where the selection
function E : (X → R)→PX changes to

f · E = λ(k : X → S).E(f ◦ k)

If we take f to be the projection πi : RN → R then the multi-valued selection
function arg max : (X → R)→PX changes to

πi · arg max = λ(k : X → RN).{x : X | kix ≥ kix
′ for all x′ : X}

which is the selection function modelling an agent who maximises the ith coordi-
nate while ignoring the others. This selection function is used in [HOS+15b].

1.2 Normal form games

1.2.1 Discussion

A definition of game was given in [vNM44] that is general enough for most
purposes, the so-called extensive form games. At this point we will not introduce
extensive form games formally, but we will discuss some of the important
concepts.

25

1.2. NORMAL FORM GAMES

A game consists of players, who make choices. The choices made by all
players, together with the rules of the game, determine an outcome. The choices
made by the players are constrained by the fact that each player has (usually
different) preferences over the outcomes, and each player acts in such a way as
to bring about their preferred outcome. We will model preferences of players by
quantifiers or selection functions, which abstracts away more specific definitions
such as preference relations or utilities used in standard game theory.

In order to make an informed choice the player needs to know which outcomes
will occur for a given choice, but to know this, she needs to know what the
other players will choose. However, the other players are reasoning in the same
way, and need to know what she will choose, and so we have a circularity. The
circularity is resolved by a solution concept, each of which is a proposed definition
for what it means for a player to choose rationally, under various assumptions
about the other players.

The game may have some dynamic structure in which some players can
observe (possibly partial information about) the choices of some other players
before making their own choice. A strategy for a player is a function that
chooses a move, contingent on observed information. Strategies can be used to
abstract away the details of how players interact with each other.

Given an arbitrary game, we can define a new game called its normalisation.
In this new game, the choices are precisely the strategies of the previous game.
Given a strategy for each player, we can ‘play out’ the strategies to determine a
choice for each player in the old game, which in turn determines an outcome.
The new game is played simultaneously, with no player able to make any direct
observations. Thus, games with dynamic structure can be disregarded, and we
can focus on simultaneous games only.

For example, suppose the first player chooses x : X, and then the second
player perfectly observes it and chooses y : Y , with the outcome being q(x, y).
In the normalisation, simultaneously the first player chooses a strategy σ1 : X
and the second player chooses a strategy σ2 : X → Y , with the outcome being
q′(σ1, σ2) = q(σ1, σ2σ1).

The most standard solution concept for simultaneous games is called the
Nash equilibrium. This is unable to distinguish between an extensive form game
and its normalisation, in the sense that it gives the same ‘solutions’ (rational
choices) for both. However there are more refined solution concepts, such as
subgame perfect equilibrium, which can distinguish an extensive form game from
its normal form. Thus, it is still important to study extensive form games.

This section is based almost entirely on [HOS+15b].

1.2.2 Games, strategies and unilateral continuations

We begin with a collection I of players. Each player i : I has a nonempty set Xi

of moves. We also have a set R of outcomes, and an outcome function

q :
∏
i:I

Xi → R

Since the game is played simultaneously, a strategy for each player is simply a
move σi : Xi. The function q (together with its type) completely specifies the
rules of a normal form game. We will leave the specification of the players until
§1.2.3.

26

1.2. NORMAL FORM GAMES

A strategy profile is a tuple of strategies for each player,

σ :
∏
i:I

Xi

A play is a tuple of moves (which has the same type) and playing the strategy
profile σ results in the play Pσ = σ, so strategies are ‘played out’ by the play
function

P = id :
∏
i:I

Xi →
∏
i:I

Xi

The play Pσ = σ is called the strategic play of the strategy σ, and is the play
that results from all players playing according to σ. Each strategy σ additionally
determines an outcome q(Pσ) = qσ.

We will next define unilateral continuations, which have proved to be a
useful tool for reasoning about higher order games. They were introduced in
[Hed13], in which it is shown that the majority of the proof of Nash’s theorem
amounts to showing that the unilateral continuations satisfy certain topological
properties. They are also heavily used in [HOS+15b].

Suppose we have a fixed strategy profile σ. We can now define unilateral
continuations in which all but one player use σ, and the remaining player unilat-
erally deviates to some other move. The ith player’s unilateral continuation
from σ is the function

U q
i σ : Xi → R

given by
U q
i σxi = q(xi, σ−i)

The notation (xi, σ−i), which we will now introduce here, is standard in game
theory and useful for reasoning about unilateral deviation. The subscript in σ−i
means that we project σ onto the subspace

∏
j 6=iXj . We will sometimes write

the projection operator as

π−i :

N∏
j=1

Xj →
∏

1≤j≤N
j 6=i

Xj

The notation (xi, σ−i) fills the ‘missing’ ith entry with xi, and is defined by the
equation

(xi, σ−i)j =

{
xi if i = j

σj otherwise

Although this could be ambiguous and is often disliked by those who strive for
type safety, this notation will come into its own in §3.1 and §3.2.

The purpose of a unilateral continuation is that the behaviour of all other
players has been abstracted into a single function, allowing us to reduce a
game-theoretic problem to a decision-theoretic one.

1.2.3 Nash equilibria of normal form games

The preferences of the player i : I can be modelled either using a multi-valued
quantifier

Φi : (Xi → R)→PR

27

1.2. NORMAL FORM GAMES

or a multi-valued selection function

Ei : (Xi → R)→PXi

In any context k : Xi → R, the value of the quantifier Φik is the set of outcomes
that player i considers to be good in the context k. Similarly, if we use selection
functions then Eik is the set of moves that player i considers to be good in the
context.

The unilateral continuation U q
i σ : Xi → R is the context in which player i

is unilaterally deviating from the strategy profile σ. If the player is implemented
by a multi-valued quantifier then the set of outcomes that the player considers
good, and can be attained by unilaterally deviating, is Φi(U

q
i σ). The outcome

that actually occurs if the player does not deviate is q(Pσ) = qσ. Therefore, if

qσ ∈ Φi(U
q
i σ)

then the player is already satisfied with the outcome and has no incentive to
unilaterally deviate. If this condition holds for each player i : I then we will call
σ a quantifier equilibrium.

On the other hand, if we implement players using multi-valued selection
functions, then we have a set of good moves Ei(U

q
i σ). This is the set of moves

which it would be rational for player i to choose, given that all other players
use σ. The actual move chosen by player i is σi, so player i has no incentive to
unilaterally deviate if

σi ∈ Ei(U
q
i σ)

If this condition holds for all i : I then we call σ a selection equilibrium.
If we could model the players either by quantifiers Φi, or by selection functions

Ei that attain Φi (in the sense of §1.1.7), then every selection equilibrium is a
quantifier equilibrium. To see this, if σi ∈ Ei(U

q
i σ) and Ei attains Φi, then

qσ = U q
i σσi ∈ Φi(U

q
i σ)

We can therefore say that the selection equilibrium is an equilibrium refine-
ment of the quantifier equilibrium. In particular, if we have players modelled
by selection functions Ei then we can define quantifier equilibria using the
quantifiers Ei.

The converse of this holds, and hence quantifier and selection equilibria
coincide, if our selection functions are of the form Ei = Φi, where the overline
operator is the one defined in §1.1.7. To see this, suppose σ is a quantifier
equilibrium, so we have

qσ = U q
i σσi ∈ Φi(U

q
i σ)

Then σ ∈ Φi(U
q
i σ) and hence we have a selection equilibrium for the selection

functions Φi.
Given a strategy profile σ, we will say that player i is non-pivotal if the

unilateral continuation U q
i σ : Xi → R is constant. If σ is a quantifier equilibrium

then any deviation (xi, σ−i) by a non-pivotal player results in another quantifier
equilibrium. Selection equilibria in general do not share this property.

28

1.2. NORMAL FORM GAMES

1.2.4 Best responses

An important concept in the foundations of game theory is that of a best
response function. This is a function B : Σ → PΣ, where Σ is the type of
strategy profiles of a game, such that the fixpoints of B pick out some solution
concept. The informal specification of a game’s best response function is that
Bσ should be the set of strategy profiles σ′ such that for each player i, it is
rational for player i to use the strategy σ′i, in the sense of having no incentive to
unilaterally deviate, under the assumption that the other players are using σ−i.

For a normal form game as defined in §1.2.2, we can define the best response
function

B :
∏
i:I

Xi →P
∏
i:I

Xi

in two different ways, which lead to quantifier and selection equilibria. If our
players are defined by multi-valued quantifiers Φi : (Xi → R)→PR then we
can use the definition

Bσ =

{
σ′ :

∏
i:I

Xi

∣∣∣∣∣ U q
i σσ

′
i ∈ Φi(U

q
i σ) for all i : I

}

A fixpoint of this B is a strategy profile satisfying

U q
i σσi ∈ Φi(U

q
i σ)

for each i : I. Since U q
i σσi = qσ, this is precisely the definition of a quantifier

equilibrium.
Alternatively, if our players are specified by multi-valued selection functions

Ei : (Xi → R)→PXi, we define the best response function by

Bσ =
∏
i:I

Ei(U
q
i σ)

A fixpoint σ ∈ Bσ of this satisfies

σi ∈ Ei(U
q
i σ)

for each i : I, and so is a selection equilibrium.
There are two reasons for focussing on best response functions. A technical

reason is that it is sometimes possible to prove existence theorems for a solution
concept by applying a fixpoint theorem to a suitable best response function.
Nash’s theorem has this form, but this is not something that will be emphasised
in this thesis.

A second, more philosophical reason is that having the same best response
function seems to be a necessary condition to consider two games to be equivalent.
Although there is no formal theory of this, in §3.1 and §3.2 we will use equality of
best response functions as an informal criterion for two games to be considered
the same.

1.2.5 Classical games

In classical normal form games, each play determines a real number for each
player called that player’s utility. The utility is a numerical rating of the player’s

29

1.2. NORMAL FORM GAMES

preference for that play, and players with rational preferences, in the sense of the
von Neumann-Morgenstern utility theorem [vNM44], act as if they maximise
some real utility. It is important to realise that utilities need not physically exist,
and in particular utility should not be identified with monetary profit (which is
usually called ‘payoff’). This point is made strongly in section 1.1 of [Kre90].

In this setting, the outcome of a play consists of a real number for each
player, and so we take R = RI , with the outcome function having type

q :
∏
i:I

Xi → RI

We can think of each player i : I as having her own personal outcome function

qi :
∏
j:I

Xj → R

defined by qi = πi ◦ q where πi is the ith projection RI → R.
Player i acts to maximise the ith coordinate, and so we could model her with

the maximising quantifier

Φi : (Xi → RI)→PRI

given by
Φik = {kx | kix ≥ kix

′ for all x′ : Xi}

or alternatively with the maximising selection function

Ei : (Xi → RI)→PXi

given by
Eik = {x : Xi | kix ≥ kix

′ for all x′ : Xi}

(see §1.1.8).
Notice that Ei = Φi, and hence quantifier and selection equilibria coincide

for a classical game. An equilibrium σ (of either kind) satisfies the conditions,
for each i : I, that

qiσ ≥ U qi
i σx′

for each possible unilateral deviation x′ : Xi. Since U qi
i σx′ = qi(x

′, σ−i), we see
that this is precisely the ordinary definition of a pure strategy Nash equilibrium
[LBS08]. Thus, our two solution concepts both coincide with the ordinary one
in the case of classical games.

The best response function for a classical normal form game is

Bσ =

{
σ′ :

∏
i:I

Xi

∣∣∣∣∣ qi(σ′i, σ−i) ≥ qi(x′i, σ−i) for all i : I and x′i : Xi

}

We get this irrespective of whether we use the quantifier or selection function
forms, and fixpoints of this B give precisely the pure strategy Nash equilibria.

The same reasoning applies if we replace RI with an arbitrary set R with
a rational preference relation �. A rational preference relation is another
name for a total preorder, that is, a relation that is transitive and total but not
necessarily antisymmetric. We will write a ≈ b if we have a � b and b � a for

30

1.2. NORMAL FORM GAMES

some a 6= b : R. For example, if we take RI with the order a �i b iff ai ≤ bi,
then �i is a rational preference relation which has a ≈ b iff ai = bi.

A rational preference relation on R is the same as a total order on ≈-
equivalence classes. Thus, given a continuation k : X → R, we have a set of
optimal outcomes, namely the maximal equivalence class

Φk = {kx | kx � kx′ for all x′ : X}

This defines a multi-valued quantifier, and similarly we have a multi-valued
selection function attaining it.

1.2.6 Mixed strategies

In this section we will turn aside from the development of higher order game
theory in order to introduce mixed strategies, which will be used in §3.1. It is
still an open problem how mixed strategies should be modelled in the higher
order framework.

Consider a classical normal-form game with a finite number of players, labelled
1 ≤ i ≤ N , so the outcome function has type

q :

N∏
i=1

Xi → RN

We will also assume that the sets Xi are finite. A mixed strategy for player i
is a probability distribution on Xi. We will write this as σi : DXi, where the
probability distribution operator D is properly introduced in §2.1.3. A mixed
strategy profile is a tuple

σ :

N∏
i=1

DXi

Given a mixed strategy profile σ, for each player i we obtain a probability
distribution on utilities. This can be used to obtain an expected utility for
the ith player, which is given by

E[qiσ] =
∑

x:
∏N
i=1Xi

(
qix ·

N∏
i=1

P [σi = xi]

)
: R

where we use the fact that the Xi are finite to ensure convergence. The notation
qiσ means the application of the non-stochastic function qi to the random variable
σ. Formally, the functor D is acting on qi (see §2.1.3).

A mixed strategy Nash equilibrium is a mixed strategy profile in which
no player can increase her expected utility by unilaterally deviating to some
other move. Equivalently, a mixed strategy Nash equilibrium is a fixpoint of the
best response function

B :

N∏
i=1

DXi →P
N∏
i=1

DXi

31

1.2. NORMAL FORM GAMES

given by

Bσ =

{
σ′ :

N∏
i=1

DXi

∣∣∣∣∣ E[qi(σ
′
i, σ−i)] ≥ E[qi(x

′
i, σ−i)]

for all 1 ≤ i ≤ N and x′i : Xi

}

Nash’s famous existence theorem, namely that mixed strategy equilibria
always exist under only the finiteness condition we have given, is proved in
[Nas51] by applying the Kakutani fixpoint theorem [Kak41] to this function
B. A generalisation of this method for certain higher order games was given
in [Hed13]. However, there is no known sense in which we can consider mixed
equilibria of an arbitrary higher order game. This will be called the problem
of mixed extensions. For example, the passage from the deterministic to the
probabilistic arg max operator appears not to be categorically natural, and for
other selection functions it is unclear what the probabilistic equivalent should
even be.

1.2.7 Voting games

We are now going to introduce an extended example from [HOS+15b], which
illustrates the use of selection functions that are different from arg max, and
argues that selection equilibrium (as supposed to quantifier equilibrium) is the
correct solution concept for higher order games in normal form.

We will consider an election with three voters and two candidates. The set
of candidates is X = {a, b}. We will consider the election as a game in which
the three voters simultaneously choose a candidate. The outcome of the game is
precisely the candidate who received the most votes. Thus, we take the set of
outcomes to also be X, and the outcome function to be the majority function
q : X3 → X.

We will denote the three voters by i = 1, 2, 3. The preferences of the voters
are defined by multi-valued selection functions Ei : (X → X)→PX, or by the
multi-valued quantifiers Ei. We will investigate how the selection and quantifier
equilibria vary as we choose different combinations of selection functions.

If player i is rational, then by definition she has a rational preference relation
�i on X. Since X contains two elements, there are precisely three rational
preference relations, where respectively a is preferred to b, b is preferred to a, and
both are equally preferred. The last case, when player i is indifferent between a
and b, is described by the multi-valued selection function

Ea≈bk = X

that always returns the set of all moves. For the remaining two cases, we can fix
an ordering a � b and write the corresponding selection functions as arg max and
arg min with respect to this ordering. We can get all possible rational behaviours
by choosing E1, E2 and E3 from arg max, arg min and Ea≈b.

As a first example, take the three selection functions to be E1 = arg max,
E2 = arg min and E3 = Ea≈b, so the first judge prefers a, the second prefers b and
the third is indifferent. Consider a strategy profile σ = (σ1, σ2, σ3) : X3. For each

32

1.2. NORMAL FORM GAMES

of these, we can calculate for i = 1, 2, 3 the unilateral contexts U q
i σ : X → X,

namely
U q

1 σx1 = q(x1, σ2, σ3)

U q
2 σx2 = q(σ1, x2, σ3)

U q
3 σx3 = q(σ1, σ2, x3)

Using the definition in §1.2.3, we see that σ is a selection equilibrium iff

σ1 ∈ arg max(U q
1 σ) = arg max

x1:X
q(x1, σ2, σ3)

σ2 ∈ arg min(U q
2 σ) = arg min

x2:X
q(σ1, x2, σ3)

σ3 ∈ Ea≈b(U
q

3 σ) = X

where the third condition is trivial.
Since there are only 8 strategy profiles, we can simply enumerate them and

calculate the equilibria by brute force. We will begin by checking that the
obvious strategies (a, b, a) and (a, b, b), where each player votes for her preferred
candidate, are selection equilibria. In this case the unilateral contexts are

U q
1 (a, b, a)x1 = q(x1, b, a) = x1

U q
2 (a, b, a)x2 = q(a, x2, a) = a

Applying the selection functions gives

arg max(U q
1 (a, b, a)) = arg max

x1:X
x1 = {a}

arg min(U q
2 (a, b, a)) = arg min

x2:X
a = {a, b}

Since a ∈ arg max(U q
1 (a, b, a)) and b ∈ arg min(U q

2 (a, b, a)), we have a selection
equilibrium. We can similarly verify that (a, b, b) is a selection equilibrium.

1.2.8 Modelling with selection functions

However, this game has additional equilibria that are less plausible. Consider
for example the strategy (a, a, a). Classically, this is an equilibrium because the
second player, who is the only player who might have incentive to deviate, is in
fact not pivotal and so cannot increase her utility with any deviation. This is
also captured by the selection equilibrium, because the second player’s unilateral
context is the constant function

U q
2 (a, a, a)x2 = q(a, x2, a) = a

The minimum value that q(a, x2, a) can take is a, and this minimum is at-
tained at x2 = a, b. Thus we have arg min(U q

2 (a, a, a)) = {a, b}, and since
a ∈ arg min(U q

2 (a, a, a)) we see that player 2 has no incentive to unilaterally
deviate.

If we as a modeller decide that this is implausible, one classical method is to
modify the preferences of the players. In the initial formulation, the preferences
of player 2 are given by a rational preference relation a �2 b on the type of

33

1.2. NORMAL FORM GAMES

outcomes R = X. However, we can pass from this to a rational preference
relation �′2 on the type of plays X ×X ×X, given by

(x1, x2, x3) �′2 (x′1, x
′
2, x
′
3) ⇐⇒ q(x1, x2, x3) �2 q(x

′
1, x
′
2, x
′
3)

Thus, a play is preferred iff it leads to a preferred outcome. In this preference
order, we have implausible equivalences such as (a, a, a) ≈′2 (a, b, a). The solution
is to manually modify the preference relation. For example, we could replace
�′2 with a lexicographic relation �′′2 which first takes preferred outcomes, and
then if the outcomes are equivalent, uses the preference on moves b �2 a. This
models a player who will always vote b, except in the strange context in which
voting a leads b to win the contest, and voting b leads a to win.

When using selection functions, the idiomatic way to approach this problem
is to use selection refinements (§1.1.7). Specifically, we refine player 2’s multi-
valued selection function arg min : (X → X) → PX to the single-valued
selection function

ε2k =

{
b if b ∈ arg min k

a otherwise

Much more detail about this is given in [HOS+15b]. A particular advantage
of higher order game theory that can be exploited is that we never need to
assume that the notion of rationality implemented by a selection function is
equivalent to maximising over a rational preference relation, so rational and
non-rational behaviour can be treated on an equal footing.

1.2.9 Coordination and differentiation

The main contribution of [HOS+15b] is the demonstration that coordinating
and differentiating behaviour of players in the voting game can be modelled by
selection functions that do not arise from rational preference relations, specifically
fixpoint and non-fixpoint operators. Specifically, coordinating behaviour is
modelled by the selection function Efix : (X → X)→PX given by

Efixk =

{
{x : X | x = kx} if nonempty

X otherwise

and differentiating behaviour by

Enonfixk =

{
{x : X | x 6= kx} if nonempty

X otherwise

Notice that {x : X | x 6= kx} is empty iff k is the identity function X → X.
In the scenario of the voting game, a player modelled by Efix aims to vote

for the winner, and as such they are a Keynesian agent, after [Key36, chapter
12]. Keynes’ example of coordinating preferences in economics is as follows:
suppose for simplicitly that the financial success of a company is dependent only
on the number of investors it attracts. An investor, therefore, has no preferences
over different companies, but rather must aim to go with the majority of other
investors. Similarly, a player modelled by Enonfix is a punk, whose only aim is to
vote against the majority.

34

1.2. NORMAL FORM GAMES

These selection functions are total variants of their refinements

E′fixk = {x : X | x = kx}

E′nonfixk = {x : X | x 6= kx}

which are not total (see §1.1.6). The intuition behind returning X in the
exceptional case, rather than ∅ or some arbitrary default value such as {a}, is
that in this case the player is indifferent and hence should be satisfied with any
choice. In practice this has been checked by brute force, by showing that these
exact definitions of Efix and Enonfix agree with the informal specification of a
player who aims to vote with or against the majority.

Unlike arg max and arg min, the selection functions Efix and Enonfix are not
closed (see §1.1.7). To give a specific counterexample, consider the context
k : X → X given by kx = a. The fixpoints of k are Efixk = {a}. Then

Efixk = {kx | x ∈ {a}} = {a}

and
Efixk = {x : X | kx ∈ {a}} = {a, b}

Thus Efixk 6= Efixk. Similarly,

Enonfixk = {b} 6= {a, b} = Enonfixk

This relates to the choices not being pivotal in the constant context (see §1.2.3).

1.2.10 Illustrating the solution concepts

As a second example, we will take E1 = Efix, E2 = Enonfix and E3 = arg max.
Thus we have a Keynesian agent, a punk, and a rational player who prefers a.
This game has 4 selection equilibria, namely

(a, a, b), (a, b, a), (b, b, a), (b, b, b)

Of these, (a, a, b) and (b, b, b) are implausible and can be ruled out by refining
arg max as described in §1.2.8. With (a, b, a) all three voters have achieved their
aim: the first is in the majority, the second is in the minority and the third
has her preferred outcome. In (b, b, a) player 2 is unable to be in the minority
because she is pivotal, and so she is satisfied with the choice of b. Player 2’s
unilateral context is

U q
2 (b, b, a)x2 = q(b, x2, a) = x2

and U q
2 (b, b, a) has no non-fixpoints, and so Enonfix(U q

2 (b, b, a)) = {a, b} by
definition. This selection equilibrium could be ruled out if desired out by refining
Enonfix to return the actual set of non-fixpoints, even if empty.

Now, suppose we define the preferences instead by the multi-valued quantifiers
E1, E2, E3. The four selection equilibria remain as quantifier equilibria (see
§1.2.3), but there are two additional quantifier equilibria which are not selection
equilibria, namely (a, a, a) and (b, a, a). We will focus on the latter as an example.
The unilateral context for the first player with this strategy profile is

U q
1 (b, a, a)x1 = q(x1, a, a) = a

35

1.3. SEQUENTIAL GAMES

The strategy profile is not a selection equilibrium because player 1’s choice is
not a fixpoint, in other words,

b 6∈ {a} = Efix(U q
1 (b, a, a))

However, the quantifier equilibrium uses outcomes rather than choices, and the
outcome is a fixpoint:

q(b, a, a) = a ∈ {a} = Efix(U q
1 (b, a, a))

According to the definition in §1.2.3, taking Φi = Ei, this makes (b, a, a) a
quantifier equilibrium. Alternatively, this can be seen as player 1 not being
pivotal (§1.2.3) and deviating from the more plausible equilibrium (a, a, a).

For a third example, we will take E1 = E2 = E3 = Efix, giving a game
in which no players have preferences over the candidates but all aim to vote
with the majority. Intuitively the equilibria of this game should be (a, a, a) and
(b, b, b), and indeed these are exactly the selection equilibria. However, every
strategy profile of this game is a quantifier equilibrium. This is essentially a
tautology: no matter how the players vote, the majority choice is in the majority.
This is an example where the selection equilibrium makes a useful prediction
that agrees with intuition, but the quantifier equilibrium makes no prediction.

For a final example, take E1 = E2 = E3 = Enonfix. This models a population
consisting entirely of punks. Of course, in any particular play a majority of the
punks will always fail in their aim to be in the minority. The selection equilibria
of this game are precisely the ‘maximally differentiated’ strategy profiles, namely
all strategy profiles except for (a, a, a) and (b, b, b). Once again, every strategy
profile is a quantifier equilibrium, because

Enonfixk =

{
{kx | x 6= kx} if nonempty

Im k otherwise

If we take for example player 1 with the strategy profile (a, a, a), the unilateral
context is U q

1 (a, a, a)x1 = a, and so

Enonfix(U q
1 (a, a, a)) = {U q

1 (a, a, a)b} = {q(b, a, a)} = {a}

This gives us a second example in which the selection equilibrium makes a useful
and intuitive prediction, whereas the quantifier equilibrium makes no prediction.

On the basis of these examples, we choose to use selection equilibria rather
than quantifier equilibria as the default solution concept for higher order games.
This is essentially the argument of [HOS+15b]. This approach is more general
than [EO11], which (naively) takes the quantifier equilibrium as its solution
concept.

1.3 Sequential games

1.3.1 Discussion

The theory of sequential games defined by selection functions was the starting
point of higher order game theory. It was first developed in [EO10a], with the

36

1.3. SEQUENTIAL GAMES

presentation in this section based on [EO11]. In particular it is not the work of
the author, but is included for completeness.

The type of single-valued selection functions, introduced in §1.1.4, carries
the structure of a strong monad. Moreover the type of single-valued quantifiers
carries a different strong monad structure, namely the continuation monad (see
§1.1.3). The key result about higher order games is that the monad operations
on these types are compatible with the game-theoretic interpretation, and in
particular there is a monoidal product operator that implements the backward
induction algorithm (and which moreover extends to unbounded games), which
is the standard method in game theory to calculate subgame perfect equilibria
of games of perfect information.

We will use the term sequential game to refer to games of perfect infor-
mation with the added restriction that the player choosing at each stage, and
the set of moves available to her, is independent of the previously chosen moves.
This rules out standard examples such as the market entry game.1

In a sequential game the players are ordered, with each player being able to
observe the choices made by previous players before making her own choice. We
can easily adapt the unilateral continuations from §1.2.2 in order to define Nash
equilibria for sequential games. However, sequential games can have implausible
Nash equilibria in which players make so-called incredible threats, in which a
player can rule out branches of the game tree by contingently making a mutually
destructive move. Subgame perfect equilibria rule this out, by forcing play to be
rational even in branches that are not reached by playing the strategy. Every
sequential game with finitely many players has at least one subgame perfect
equilibrium, a result that is proved constructively using backward induction.

The method in this chapter of computing subgame perfect equilibria using the
product of selection functions generalises to games with infinitely many players,
so long as the outcome function is topologically continuous. These ‘unbounded
sequential games’ are crucial to the application of selection functions in proof
theory [Pow13, OP14, OP15], and are discussed from a game-theoretical point
of view in [EO12]. However, backward induction for unbounded games relies
crucially on subtle aspects of higher type computability, namely bar recursion,
and for simplicity in this thesis we will focus only on games with finitely many
players.

1.3.2 The category of selection functions

Just as quantifiers form the continuation monad KR, so selection functions form
the selection monad JR where

JRX = (X → R)→ X

Explicitly, the unit maps η : X →JRX are given by

ηx = λ(k : X → R).x

and the Kleisli extension of f : X →JRY is

f∗ε = λ(k : Y → R).f(ελ(x : X).k(fxk))k

1
Generally speaking, type theoretic approaches to game theory have difficulty with this

sort of example. Multi-agent influence diagrams [KM03], for example, cannot represent the
market entry game. This exact issue is the focus of [BIB13].

37

1.3. SEQUENTIAL GAMES

It is difficult to give a direct proof that JR is a monad, and the proof in
[EO10a], which also applies to the selection monad transformer in [Hed14], uses
the fact that the monad laws are equivalent to the category axioms for the Kleisli
category. This proof is simple enough to reproduce here.

Given a locally small category C and a fixed object R, we will define a new
category JRC called a selection category. The objects of JRC are exactly
the objects of C, and the hom-sets are given by

homJRC(X,Y) = homC(Y,R)→ homC(X,Y)

In particular, using the fact that Set is enriched in itself gives

homJRSet(X,Y) = (Y → R)→ (X → Y) ∼= X →JRY

The identity on X is given by

idXk = idX

where the left hand idX is the identity in homJRC(X,X), and the right hand
is in homC(X,X). The composition of ε : homC(Y,R) → homC(X,Y) and
δ : homC(Z,R)→ homC(Y,Z) is given by

(δ ◦ ε)k = δk ◦ ε(k ◦ δk)

The category axioms can be proved very compactly. The left unit law is

(idY ◦ ε)k = idY k ◦ ε(k ◦ idY k) = idY ◦ ε(k ◦ idY) = εk

The right unit law is

(ε ◦ idX)k = εk ◦ idX(k ◦ εk) = εk ◦ idX = εk

and the associativity law is

(γ ◦ (δ ◦ ε))k = γk ◦ (δ ◦ ε)(k ◦ γk)

= γk ◦ δ(k ◦ γk) ◦ ε(k ◦ γk ◦ δ(k ◦ γk))

= (γ ◦ δ)k ◦ ε(k ◦ (γ ◦ δ)k)

= ((γ ◦ δ) ◦ ε)k

Notice that the selection category does not capture the strong monad structure
of JR (although this could probably be achieved by using enriched category
theory more carefully). However, JRC can also be given a premonoidal product,
which we will now introduce.

1.3.3 The product of selection functions

In §1.1.4 we introduced single-valued selection functions as elements of the type

ε : JRX = (X → R)→ X

In §1.3.2 we proved that JR is a monad. In [EO10a] it is moreover proved that
JR is a strong monad. In particular this means that it is a monoidal monad, in

38

1.3. SEQUENTIAL GAMES

the sense that it has a premonoidal2 product operator

n : JRX ×JRY →JR(X × Y)

This operator is called the binary product of selection functions, and is
explicitly defined by

(εn δ)k = (a, ba)

where

a = ελ(x : X).k(x, bx)

bx = δλ(y : Y).k(x, y)

This can be folded to any finite number of selection functions εj : JRXj , by

Nn
j=i

εj = εi n
Nn

j=i+1

εj

with the base case nN
j=N εj = εN .

1.3.4 Sequential games

Since our players now choose sequentially, we will number them 1, . . . , N . Just
as for normal form games (§1.2.2), a sequential game consists of choice types
Xi, and an outcome function

q :

N∏
i=1

Xi → R

where R is a type of outcomes.
We will, similarly, model the players by multi-valued selection functions

Ei : (Xi → R)→PXi

This is the role taken by single-valued quantifiers in [EO10a] and by multi-
valued quantifiers in [EO11]. Since the same reasoning about coordination
and differentiation games applies as in §1.2.10 and [HOS+15b], we will use
multi-valued selection functions rather than quantifiers.

The first difference between sequential and normal form games is that strate-
gies become nontrivial. When player i makes her choice, she can directly observe
the choices made by all players j < i. Thus, player i’s strategy is a function

σi :
∏
j<i

Xj → Xi

and the type of strategy profiles is

Σ =

N∏
i=1

∏
j<i

Xj → Xi


2
The product of selection functions is written ⊗ elsewhere in the literature, but we will write

it as n to emphasise that it is noncommutative, and avoid confusion with the tensor product
of open games introduced in §2.2.7, which is very different. This notation for a premonoidal
product is from [PR93].

39

1.3. SEQUENTIAL GAMES

A play, however, is still a tuple in
∏N
i=1Xi.

Given a strategy, we can play it to obtain its strategic play. Notice that if
σ : Σ then σ1 is simply a choice σ1 : X1, because the tuple

∏
j<1Xj is the unit

type. Similarly σ2 : X1 → X2, so we can apply σ2 to σ1 to obtain the second
player’s choice, σ2σ1 : X2. This can be extended by course-of-values recursion:

P : Σ→
N∏
i=1

Xi

(Pσ)i = σi((Pσ)1, . . . , (Pσ)i−1)

1.3.5 Subgame perfection

A partial play is defined to be a tuple

x1, . . . , xi−1 :
∏
j<i

Xj

for some 1 ≤ i ≤ N . Notice that the empty sequence is considered a partial
play, but a play is not considered a partial play. Partial plays are in bijection
with subgames, which are games that can be obtained by replacing some initial
segment of players by fixed choices.

Given a strategy profile σ, we can extend a partial play to a play called
its strategic extension by σ. This is similar to a unilateral deviation, except
that instead of a single player i deviating, all players j ≤ i deviate. In the
strategic extension νσx of x = x1, . . . , xi−1 by σ, the first i− 1 players are forced
to use the partial play, but subsequent players use σ. The definition is by the
course-of-values recursion

(νσx)j =

{
xj if j < i

σj((ν
σ
x)1, . . . , (ν

σ
x)j−1) if j ≥ i

If i = 1 then x is the (unique) partial play of length 0, in which case Pσ = νσ.
We will now modify the unilateral continuations introduced in §1.2.2 for use

with sequential games. Instead of simply having a single function

U q
i : Σ→ Xi → R

for the ith player’s unilateral continuation, we must instead have one for each
partial play of length i− 1. This will be defined by

U q
x σxi = q(νσx,xi)

for x = x1, . . . , xi−1.
A subgame perfect equilibrium is a strategy profile σ that is an equilib-

rium in every subgame. That is, for every partial play x = x1, . . . , xi−1, the next
move played by σ, namely σix, is rational according to the selection function Ei,
in the context in which player i unilaterally deviates in the subgame induced by
x. Explicitly, σ must satisfy the conditions

σix ∈ Ei(U
q
x σ)

40

1.3. SEQUENTIAL GAMES

for all partial plays x = x1, . . . , xi−1.
Equivalently, a subgame perfect equilibrium is a fixpoint of the best response

function B : Σ→PΣ, where

Bσ = {σ′ : Σ | σ′ix ∈ Ei(U
q
x σ) for all x = x1, . . . , xi−1}

1.3.6 Backward induction

We will now prove the theorem that deserves to be called the fundamental
theorem of higher order game theory, that the product of selection functions
computes a play that is rational according to subgame perfect equilibrium.

Suppose each Ei is refined by a single-valued selection function εi : JRXi,
in the sense of §1.1.7, so εik ∈ Eik for all k : Xi → R. Then(

Nn
i=1

εi

)
q

is the strategic play of a subgame perfect equilibrium.
This has been proven in [EO10a, EO11], but we will give the proof again

here, because the technique is important and will be used again in §3.2.4 and
§3.3.4. Specifically, we will prove that the strategy profile σ defined by the
course-of-values recursion

σi(x1, . . . , xi−1) = εi(U
q
x1,...,xi−1

σ)

is subgame perfect, and that its strategic play is
(
nN

i=1 εi

)
q. Subgame perfection

is immediate, because for every partial play x1, . . . , xi−1 we have

σi(x1, . . . , xi−1) = εi(U
q
x1,...,xi−1

σ) ∈ Ei(U
q
x1,...,xi−1

σ)

For the second part, we will prove the stronger fact that for any partial play
x1, . . . , xi−1,  Nn

j=i

εj

 qx1,...,xi−1
= (νσx1,...,xi−1

)Nj=i

by strong induction on N − i, where

qx1,...,xi−1
:

N∏
j=i

Xj → R

is defined by

qx1,...,xi−1
(xi, . . . , xN) = q(x1, . . . , xi−1, xi, . . . , xN)

The original claim follows, because the empty partial play has the property

(νσ)Nj=1 = νσ = Pσ

This is the characteristic of the proof technique we are using: to prove a property
of a sequential game, work by bar induction on the tree of subgames. For games
with finitely many players, this is equivalent to fixing a partial play of length

41

1.3. SEQUENTIAL GAMES

i − 1 and working by strong induction on N − i, ending eventually with the
empty partial play, whose induced subgame is the game itself.

In the base case, we have a partial play x1, . . . , xN−1, and Nn
j=N

εj

 qx1,...,xN−1
= εNqx1,...,xN−1

= (νσx1,...,xN−1
)Nj=N

because by the definition of (νσx)j in §1.3.5,

(νσx1,...,xN−1
)N = σN ((νσx1,...,xN−1

)1, . . . , (ν
σ
x1,...,xN−1

)N−1)

= σN (x1, . . . , xN−1)

By the definition of σ this is εN (U q
x1,...,xN−1

σ). Finally, we have

U q
x1,...,xN−1

σ = qx1,...,xN−1

because for all xN : XN ,

U q
x1,...,xN−1

σxN = q(νσx1,...,xN
)

= q((νσx1,...,xN
)1, . . . , (ν

σ
x1,...,xN

)N)

= q(x1, . . . , xN)

= qx1,...,xN−1
xN

This completes the base case of the proof.

1.3.7 The inductive step

For the inductive step, we take a partial play x1, . . . , xi−1. Unfolding the product
of selection functions once gives Nn

j=i

εj

 qx1,...,xi−1
=

εi n Nn
j=i+1

εj

 qx1,...,xi−1
= (a, ba)

where

a = εiλ(xi : Xi).qx1,...,xi−1,xi
(bxi)

bxi =

 Nn
j=i+1

εj

 qx1,...,xi−1,xi

The inductive hypothesis gives us

bxi = (νσx1,...,xi−1,xi
)Nj=i+1

for all xi : Xi. We must prove that

(a, ba) = (νσx1,...,xi−1
)Nj=i

which is to say that

a = (νσx1,...,xi−1
)i

ba = (νσx1,...,xi−1
)Nj=i+1

42

1.3. SEQUENTIAL GAMES

We will first prove that for all xi : Xi,

U q
x1,...,xi−1

σxi = qx1,...,xi−1,xi
(bxi)

The left hand side by definition is

U q
x1,...,xi−1

σxi = q(νσx1,...,xi−1,xi
)

and the right hand side, by the inductive hypothesis, is

qx1,...,xi−1,xi
(bxi) = qx1,...,xi−1,xi

((νσx1,...,xi−1,xi
)Nj=i+1)

and these are equal because

qx1,...,xi−1,xi
((νσx1,...,xi−1,xi

)Nj=i+1) = q(x1, . . . , xi−1, xi, (ν
σ
x1,...,xi−1,xi

)Nj=i+1)

= q(νσx1,...,xi−1,xi
)

From this we immediately get

(νσx1,...,xi−1
)i = σi((ν

σ
x1,...,xi−1

)1, . . . , (ν
σ
x1,...,xi−1

)i−1)

= σi(x1, . . . , xi−1)

= εi(U
q
x1,...,xi−1

σ)

= εiλ(xi : Xi).qx1,...,xi−1,xi
(bxi)

= a

which is the first of the two conditions to be proved.
In order to prove the second condition

ba = (νσx1,...,xi−1
)Nj=i+1

we use the inductive hypothesis to get

ba = (νσx1,...,xi−1,a
)Nj=i+1

and so we will prove by strong induction on j ≥ i that

(νσx1,...,xi−1
)j = (νσx1,...,xi−1,a

)j

(Notice that this also trivially holds for j < i.) In the base case we have

(νσx1,...,xi−1,a
)i = a = (νσx1,...,xi−1

)i

by the previous result. For the inductive step,

(νσx1,...,xi−1,a
)j = σj((ν

σ
x1,...,xi−1,a

)1, . . . , (ν
σ
x1,...,xi−1,a

)j−1)

= σj((ν
σ
x1,...,xi−1

)1, . . . , (ν
σ
x1,...,xi−1

)j−1)

= (νσx1,...,xi−1
)j

This completes the entire proof.

43

Chapter 2

The algebra and geometry
of games

2.1 Open games

2.1.1 Discussion

In this section we define open games, our objects of study. The barrier to entry
is high: this section is quite abstract, and although we focus on examples and
intuitions inline with the theory, we must wait until §2.3.9 before giving even
the most trivial examples from game theory textbooks. Moreover the definitions
we develop here bear no apparent relation whatsoever to the usual, familiar
definitions of game due to von Neumann [LBS08], or the higher order games
introduced in chapter 1, and a large part of this thesis will be spent developing
the reader’s intuition for how these objects behave and how they should be used
in mathematical modelling. To some extent the investment in abstraction will
not pay off in the scope of this thesis, which is setting the groundwork for serious
applications.

There are two key pieces of intuition that should be understood before
beginning this section. The first is that a game should be seen as a process. In
particular a game should be a process that maps observations to choices: a game
should input whatever information is observable, compute a decision and then
output that decision. We remain agnostic about what is meant by ‘computation’
using the familiar technique of modelling a computation as a morphism of a
suitable axiomatically-defined category. In this informal games-as-processes
description we can already see that a game may consist of an aggregate of players:
the game-process may distribute its input to a collection of sub-processes, each
of which has only partial access to the true input, and which run in parallel to
compute choices.

The idea of viewing games as processes, and hence as morphisms of a
suitable category, first appears (to the author’s knowledge) in [Pav09]. Our
implementation, however, is quite different. With the theory here we are able
to take the logical next step and view sequential and parallel play of games as
sequential and parallel composition of processes. This brings game theory into
line with other areas in which ‘process’ can be viewed as meaning ‘morphism of

44

2.1. OPEN GAMES

a monoidal category’, especially in physics [Coe06].
The second key piece of intuition, which is shared with higher order game

theory and which we reiterate from §1.1.1, is that all of our computation is done
relative to a continuation. A game is a process that runs in a calling environment,
and after a process has terminated with a decision the calling environment will
use that decision to compute an outcome for the process. This computation
taking decisions to outcomes is the process’ continuation, and it is one of the
most fundamental principles of game theory that this computation is known
to the players, hence the processes run in continuation passing style. We will
uniformly use the term ‘continuation’ to refer to what is variously called a ‘utility
function’, ‘payoff function’, ‘payoff matrix’ or ‘outcome function’. However
continuations are more general, and include for example contexts in which other
players are making rational choices. This ability to reduce multi-player situations
to single-player situations, by abstracting away the other players into something
akin to an outcome function, is a crucial ingredient of compositional game theory.
The outcomes-as-continuations view strongly informed the definitions in this
section, and other parts of the theory.

The entirety of chapter 2 is essentially based on [GH16].

2.1.2 The underlying model of computation

We will now introduce our model of computation: symmetric monoidal
categories. The definitions in this section will be made with respect to an
arbitrary symmetric monoidal category, which will be instantiated with particular
examples in later sections. This should be seen in the context of premonoidal
categories and the computational λ-calculus [Mog89], restricted to commutative
effects.

We will begin with a category with finite products, which for simplicity
we will take to be the category Set of sets and functions. Given a monad
T : Set→ Set, we can form the Kleisli category Kl(T), whose objects are sets
and whose morphisms are Kleisli arrows,

homKl(T)(X,Y) = X → TY

The unit morphisms of Kl(T) are the units of T , and the composition of mor-
phisms in Kl(T) is given by Kleisli extension.

A monoidal monad [Koc72] is, intuitively, a monad T equipped with a
product operator

⊗ : TX × TY → T (X × Y)

(For a full definition see [Sea13].) If the diagram

TX × TY T (X × Y)

TY × TX T (Y ×X)

⊗

σTX,TY

⊗

TσX,Y

45

2.1. OPEN GAMES

commutes then T is called a commutative monad, and this can be used to
make Kl(T) into a symmetric monoidal category [PR93]. The unit object of
Kl(T) is I = 1, the set with one element, and the object X ⊗ Y is the cartesian
product X × Y .

Categories of the form Kl(T) have some additional structure we will need,
namely that every object X canonically has the structure of a cocommutative
comonoid: that is, we have deleting morphisms

!X : homKl(T)(X, I)

and copying morphisms

∆X : homKl(T)(X,X ⊗X)

given by composing the unique maps in Set with the units of T . Notice that
in general, however, the monoidal product is not a cartesian product. As a
consequence, we also get canonical projections

π1 : X ⊗ Y X⊗!Y−−−−→ X ⊗ I ρX−−→ X

and

π2 : X ⊗ Y !X ⊗Y−−−−→ I ⊗ Y λY−−→ Y

The justification and intuition for considering such a category as a ‘model of
computation’ is described in §0.2. For the remainder of this chapter, C is going
to refer to an arbitrary category in which every object carries the structure of
a cocommutative comonoid. One example is Set, which translates into game-
theoretic terms as pure strategies. Another example is SRel, which gives mixed
strategies and which we will now describe.

2.1.3 The category of stochastic relations

We begin with the finitary probability distribution monad D : Set→ Set.
The underlying functor acts on sets by

DX =

α : X → [0, 1]

∣∣∣∣∣∣ supp(α) is finite,
∑

x∈supp(α)

αx = 1


where supp(α) = {x : X | αx 6= 0}. We consider values α : DX as random
variables of type X, and use the notation P [α = x] for αx : [0, 1]. The action on
morphisms f : X → Y is given by

P [Dfα = y] =
∑

x∈supp(α)
fx=y

P [α = x]

This makes D into a functor.
The monad unit δ : X → DX creates unit mass distributions,

P
[
δx = x′

]
=

{
1 if x = x′

0 otherwise

46

2.1. OPEN GAMES

The Kleisli extension of a function f : X → DY is given by

P
[
f∗α = y

]
=

∑
x∈supp(α)

P [fx = y]

This makes D into a monad on Set. Finally, we have a monoidal product
⊗ : DX ×DY → D(X × Y) given by

P [α⊗ β = (x, y)] = P [α = x] · P [β = y]

With these operations, D is a commutative monad on Set, and so its Kleisli
category is symmetric monoidal. We will refer to the Kleisli category as SRel,
the category of sets and stochastic relations. This is a variant of the usual
notion of stochastic relations, which is defined in [Pan99] using subprobability
rather than probability distributions. The distribution monad used here is the
same one used in the study of convex sets [Fri09, JWW15], and is a finitary
version of the Giry monad on the category of measure spaces [Gir82]. Although
subprobability distributions might be interesting in this setting, allowing choices
to fail with some probability, we will use true probability distributions to remain
close to Nash’s original assumptions.

2.1.4 Open games

Open games are defined with respect to a category C carrying the structure
described in §2.1.2, namely a symmetric monoidal category in which every
object X carries the structure of a cocommutative comonoid (X, !X ,∆X). More
explicitly, C can be thought of as the kleisli category of a commutative monad
on Set.

We can now give the definition of an open game. A type of an open game is
of the form

G : (X,S)→ (Y,R)

where X,Y,R, S are objects of C. For now this is purely formal; later we will
make open games into the morphisms of a category whose objects are pairs. In
§2.3.5 we will introduce an alternative notation for this, namely

G : X ⊗ S∗ → Y ⊗R∗

Each of the four objects of C should be read in a different way. We view
X as the type of observations that can be made by G, and Y as the type of
moves or choices, hence a game maps observations to choices. The types R
and S, on the other hand, are ‘dual’ or ‘contravariant’ types. A useful intuition
is that a type appearing in the right component of a pair represents a type whose
elements are elements of R in the future, and which a rational player is reasoning
about. We view R as the type of outcomes of G, that is, the type of values
about which the players in G have preferences. The type S, dually, represents
outcomes that are ‘generated’ by G and returned to the calling environment.

We now finally arrive at the central definition of this thesis, that of an open
game, which we will often simply call a game. An open game of type

G : (X,S)→ (Y,R)

47

2.1. OPEN GAMES

is, by definition, a 4-tuple

G = (ΣG ,PG ,CG ,BG)

where

• ΣG is a set, called the set of strategy profiles of G

• PG : ΣG → homC(X,Y) is called the play function of G

• CG : ΣG → homC(X ⊗R,S) is called the coplay function of G

• BG : homC(I,X) × homC(Y,R) → ΣG → PΣG is the best response
function of G

In general we impose no conditions whatsoever on these components. In practice,
however, we will restrict to games which are freely generated by the constructions
considered in this section and §2.2, which gives some implicit restrictions.

Notice the unusual mixture of ‘internal’ and ‘external’ parts of this definition.
It would be simple to directly generalise this to the setting in which C is enriched
over another category V; the definition given is the case when V = Set. If C is
enriched over itself (as is the case when C = Set), the definition is equivalent to
a purely internal one. If C is the kleisli category of some monad, it could also be
given a purely internal definition in terms of that monad.

The most straightforward parts of this definition are the first two components.
It is intuitive that a game has a set of strategy profiles and that, given a strategy
profile and an observation, we can run the strategy profile on the observation
to obtain a choice. To give a simple concrete example with C = Set, suppose
Y = A×B, and define

Σ = (X → A)× (X ×A→ B)

and
P(σ1, σ2)x = (σ1x, σ2(x, σ1x))

This represents a two-player game of perfect information: first the value x is
input, then the first player observes this and chooses a, and then the second
player observes both x and a and chooses b, and finally the pair (a, b) is output.

Probably the most mysterious part of the definition is the coplay function.
The basic idea is that the coplay function takes a utility in the future and
transforms it to a utility less far in the future (this idea will be made more
explicit in the conclusion). It is completely unclear, however, why this should
depend on an observation and a strategy. The only explanation that will be given
is that the dependence on the observation is used only to define the counit game
in §2.1.9, which transforms an observation into a utility. The dependence on a
strategy profile is a consequence of this, since to define coplay for an aggregate
it is necessary to have access to the play functions of the components, which
requires a strategy profile.

2.1.5 The best response function

The final part of the definition of an open game, and the part which needs the
most explanation, is the best response function. In classical game theory the

48

2.1. OPEN GAMES

best response function of a game is a function B : Σ → PΣ, where σ′ ∈ Bσ
means that each player i would be satisfied to play her component σ′i in response
to the situation in which every other player j plays the strategy σj . When this

happens we say that σ′ is a ‘best response’ to σ. An equilibrium can be defined
as a strategy which is a best response to itself, that is to say, a fixpoint of the
multi-valued function B. The best response functions in §1.2.4 and §1.3.5 behave
in this way.

We can quite easily replace BG for open games with an ‘equilibrium set
function’

EG : homC(I,X)× homC(Y,R)→PΣG

by defining EG(h, k) to be the set of fixpoints of BG(h, k). If we do this, the
remaining definitions in this section can be made correctly, without reference to
best responses. However we choose to always carry around the best response
function, which after all contains more information, for the reasons given in
§1.2.4: it provides a method to prove existence theorems , and it gives a finer
notion of equivalence between games. If we were studying ‘abstract game theory’
more seriously we could investigate the idea that the string diagrams in §2.3.5
can be interpreted in two different categories, and the best response function is
forgotten by an identity-on-objects functor.

One of the fundamental ideas of this thesis (see §1.1.1 and §2.1.1) is that
games should only be defined relative to a continuation. This leads to the idea of
allowing a continuation as an additional parameter to the best response function,
namely

BG : homC(Y,R)→ ΣG →PΣG

Here we see in full generality what is meant by the term ‘continuation’ in this
thesis: it is nothing but a function from choices to outcomes. The importance of
working relative to a truly arbitrary continuation, rather than an arbitrary-but-
fixed continuation such as an outcome function, is that when we define BGkσ in
terms of the best response functions of its components, we will use continuations
k′ that actually depend on the strategy profile σ as well as on k. Thus, allowing
continuations to vary is at least as important as allowing strategies to vary.

If we define the best response function in this way we again obtain a logically
sound theory. However this definition contains a serious error, because nontrivial
examples can only be written if the best response function is also allowed to
depend on the observation made. A pair

(h, k) : homC(I,X)× homC(Y,R)

will be called a context for the game G, and we can roughly think of h and k
as the past and future behaviour of the calling environment. There is another
major subtlety here, namely that the best response function does not depend
on a pure observation but on the computation of an observation, which may
have side effects. If T is a commutative monad on the category of sets, and
C is its (symmetric monoidal) Kleisli category, then the observation is a value
of type TX rather than X. For example if we have probabilistic choice as a
side effect by taking C = SRel (see §2.1.3) then we need to consider probability
distributions over possible observations, because elements of homSRel(I,X) are
random variables of type X. If we try to use pure observations instead, we find
that we cannot define categorical composition in §2.2.3.

49

2.1. OPEN GAMES

Finally, we come to a family of variants that are much more important.
The definition of best response as a multivalued function and an equilibrium
as a fixpoint is classical, and is sufficient for working with pure, mixed and
nondeterministic strategies. This idea, however, does not stand up to more
complex side effects such as learning. If we write the multivalued function
instead as

BG : homC(I,X)× homC(Y,R)→ ΣG → ΣG → B

then the better definition is to replace the booleans B with some other (in general
noncommutative) algebraic structure B. If we only care about Nash equilibria
then we can take B to be a monoid, however for reasoning about subgame
perfection it seems that B should be some kind of ‘noncommutative complete
semilattice’. A typical example would be of the form B = T ′B, where T ′ is
another (strong, not necessarily commutative) monad on the category of sets,
which can be different to T , the monad with C = Kl(T). Since it is still unclear
what the appropriate definition should be we will use the simpler one by default.

2.1.6 Closed games

The reason for the terminology open game introduced in §2.1.4 is that an open
game is open to its environment, in the sense that information can pass back and
forth. However, if one of X,Y,R, S in G : (X,S)→ (Y,R) is equal to the tensor
unit I in C, then the flow of information is restricted, and if all are equal to I
then no information can pass between the game and its environment. A closed
game is therefore defined1 to be an open game of type G : (I, I)→ (I, I).

Looking ahead to the result in §2.2.10, that open games are morphisms of a
monoidal category whose objects are pairs of sets, and whose tensor unit is (I, I),
a closed game can equivalently be called an abstract scalar. This terminology
is from [AC04, Abr05], and we will use it interchangeably with ‘closed game’.
See also [KL80].

Closed games are particularly interesting when I is terminal in C. The
categories Set and SRel both have this property, although Rel (which models
nondeterminism) does not. In this case, closed games have a very simple
formulation: the play and coplay functions become trivial, and the game is
described entirely by its set ΣG of strategy profiles, and its best response
function, whose type reduces to

BG : ΣG →PΣG

A game in the intuitive, informal sense can be described by this data (see §1.2.4),
and correspondingly there is no notion of information being shared with the
environment in classical game theory, which suggests that games in the usual
sense should be thought of as closed games.

A closed game G over any category has a canonical history and a canonical
continuation, namely both being given by idI . Thus we can give a solution
concept for closed games: an equilibrium of G is a strategy profile σ : ΣG with
σ ∈ BG(idI , idI)σ. This solution concept will be used in §3.1 and §3.2, where
we see that it includes pure and mixed Nash and subgame perfect equilibria as
special cases.

1
Games are not doors, or topologies: every closed game is open, although it is reasonable

to think of closed games as a degenerate case of open games.

50

2.1. OPEN GAMES

2.1.7 Decisions

In this section we see our first examples of open games, the decisions, which
are one-player games. Every nontrivial game contains decisions as components,
representing the players of the game.

Decisions, by definition, are games of the form

D : (X, I)→ (Y,R)

where the player makes an observation from X and makes a choice from Y , with
preferences over outcomes in R. Formally, the requirements for a game with this
type to be a decision are

• ΣD = homC(X,Y)

• PDσ = σ : homC(X,Y)

• CDσ = !X⊗R : homC(X ⊗R, I)

• BD(h, k) : homC(X,Y)→P homC(X,Y) is constant

Consequently, to define a decision is to define a function

R : homC(I,X)× homC(Y,R)→P homC(X,Y)

Such a function will be called a rationality function, and defines the best
response function of a decision by

BD(h, k)σ = R(h, k)

Since a decision always consists of a single player and never an aggregate, a
strategy is simply a mapping from observations to outcomes. The fact that the
strategy is a morphism of C means that the strategy can have effects, such as
probabilistic choice (see §1.2.6). The condition on PD is simply that playing the
strategy involves applying it as a function to the observation.

The only possibly unexpected condition is that on BD. The idea of best
responses (see §1.2.4) is that B(h, k)σ should be the set of strategy profiles σ′

such that, for each player, playing using σ′ is a rational response to the situation
in which every other player is playing using σ. Since a decision involves only
one player any property of ‘every other player’ is vacuous, and so σ is not used
in the definition.

The definition of a decision is already at the right level of generality that an
arbitrary multi-valued selection function (§1.1.6) can be considered as a decision.
First, notice that a decision D : (I, I) → (Y,R) over C = Set is defined by a
rationality function

R : (Y → R)→PY

which is precisely the type of a multi-valued selection function (see §1.1.6).
More generally, a multi-valued selection function E : (Y → R)→PY can be
converted into a decision DE : (X, I)→ (Y,R) for an arbitrary set X, using the
response function

R(x, k) = {σ : X → Y | σx ∈ Ek}

The resulting decision models a player whose rationality is defined by E.

51

2.1. OPEN GAMES

2.1.8 Preliminary examples of decisions

We will give two example families of decisions representing classically rational
players, respectively with pure and mixed strategies. In the first case, we take
C = Set. We will fix a rational preference relation � on a set R, representing a
player’s preferences for different outcomes in R, where r � r′ means that the
outcome r is considered at least as good as the outcome r′. We will also fix an
arbitrary set X and a finite set Y . To define a decision

D : (X, 1)→ (Y,R)

is to define a rationality function

R : X × (Y → R)→P(X → Y)

We define a particular family of decisions by the response functions

R(x, k) = {σ : X → Y | k(σx) � ky for all y : Y }

We will now explicitly give the data defining D. Its strategies are ΣD = X → Y ,
and its play function PD : (X → Y) → (X → Y) is PDσx = σx. Its coplay
function CD : (X → Y)→ (X ×R→ 1) is CD(σ, (x, r)) = ∗. Its best response
function

BD : X × (Y → R)→ (X → Y)→P(X → Y)

is given by

BD(x, k)σ = {σ′ : X → Y | k(σ′x) � ky for all y : Y }

For our second family of examples we will use C = SRel (defined in §2.1.3).
For an arbitrary set X and finite set Y we define a decision

D : (X, 1)→ (Y,R)

modelling a player who maximises expected utility (see §1.2.6). To specify such
a decision is to specify a response function

R : DX × (Y → DR)→P(X → DY)

where D is the distribution monad (see §2.1.3). We use the particular function

R(h, k) = {σ : X → DY | E[k∗(σ∗h)] ≥ E[ky] for all y : Y }

where E : DR→ R is the expectation operator defined by

E[α] =
∑

x∈supp(α)

P [α = x] · x

and −∗ is the Kleisli extension of D . Explicitly, we have the strategy set
ΣD = X → DY . The play function

PD : (X → DY)→ (X → DY)

is given by P [PDσx = y] = P [σx = y]. The coplay function

CD : (X → DY)→ (X × R→ D1)

is given by P [CDσ(x, r) = ∗] = 1. The best response function

BD : DX × (Y → DR)→ (X → DY)→P(X → DY)

is given by

BD(h, k)σ = {σ′ : X → DY | E[k∗(σ′∗h)] ≥ E[ky] for all y : Y }

52

2.1. OPEN GAMES

2.1.9 Computations and counit

Besides decisions, the other atomic games we will consider are computations
and counits. These components are unable to make strategic decisions, and
in particular only have one strategy, which behaves trivially. Their purpose,
however, is to control the information flow in a game. Examples of computations
include outcome functions, identities, copying and deleting. The counits serve to
connect forward-flowing to backward-flowing data, that is, identifying a particular
forward-flowing value as the value that some player is reasoning about.

Formally, a computation is a game

(f, g) : (X,S)→ (Y,R)

defined by morphisms f : homC(X,Y) and g : homC(R,S). The definition is
given by

• Σ(f,g) = 1 = {∗}

• P(f,g)∗ = f : homC(X,Y)

• C(f,g)∗ : homC(X ⊗R,S) is given by the composition

X ⊗R π2−→ R
g−→ S

• B(f,g)(h, k)∗ = {∗} for all h and k

The conditions Σ(f,g) = 1 and B(f,g)(h, k)∗ = {∗} implement the idea that (f, g)
is ‘strategically trivial’. The fact that ∗ ∈ B(f,g)(h, k)∗ means that ∗ is always
an equilibrium of a computation. The idea behind this is that a strategy for an
aggregate game should never fail to be an equilibrium because of a computation,
because a computation has no preferences. Rather, if a strategy fails to be an
equilibrium, it should always be because some player has incentive to deviate.
We expand on this idea in §2.2.11.

The conditions on P(f,g) and C(f,g) determine the information flow, which
is explained in more detail in §2.2.14. When C = Set, the coplay function of a
computation is simply

C(f,g)∗(x, r) = gr

Next, for each object X of C we define a counit εX : (X,X)→ (I, I) by

• ΣεX = 1 = {∗}

• PεX
∗ = !X : homC(X, I)

• CεX
∗ = ρX : homC(X ⊗ I,X)

• BεX
(h, k)∗ = {∗} for all h and k

The intuition behind this definition is similar to that for computations. If
C = Set, the coplay function is CεX

∗(x, ∗) = x.

53

2.2. THE CATEGORY OF GAMES

2.2 The category of games

2.2.1 Discussion

In §2.1 we introduced many definitions, especially of open games (§2.1.4), de-
cisions (§2.1.7), computations and counits (§2.1.9). In this section we will add
algebraic structure, giving two ways to compose games: categorical composition,
which is a primitive form of sequential play of games, and tensor product, which
is a primitive form of simultaneous play.

As a matter of fact, in this section we define two different categorical compo-
sition operators. This is essentially a historical accident, and the state of affairs
is discussed in the conclusion. These two categorical composition operators
are called N -composition and SP -composition, and they correspond roughly
to a choice of solution concept between Nash equilibrium and subgame perfect
equilibrium.

In this section we will additionally prove that N -composition and tensor
product together obey the axioms of a symmetric monoidal category. In §2.3
this algebraic structure will be investigated further. The appendix, which
closely follows this section (minus the explanatory text) does the same for SP -
composition, proving that it forms a symmetric premonoidal category with the
same definition of tensor product. Both operators will be used in chapter 3.

Readers who are not category theorists can treat composition and tensor
product as rather like sequential and parallel composition operators in process
algebra, similar to those in [BW13], with the axioms we check simply being
technical conditions for the string diagram language introduced in §2.3.5 to be
sound.

One important direction that we will not consider in this thesis (although it is
discussed in the appendix) is to additionally consider morphisms between games,
so that we have a monoidal bicategory [SP09]. This would allow us to give some
canonicity to the operators defined in this section (for example, characterising
them as universal properties), and more importantly, when considering infinite
games such as repeated games, a natural approach is to define the game as a
terminal coalgebra of a functor which precomposes a finite approximation to
the repeated game with one additional stage. Because a terminal coalgebra is
defined by a universal property of objects, this requires morphisms between
games. There are several possible definitions that could be used, however, and
at the present time it is not clear which are useful. One possibility that would
be elegant, but is only speculation, is that solutions of games (see §3.3.2) are
global points, and that backward induction of solutions (§3.3.4) is an instance of
horizontal composition of 2-cells. A bicategory of games would also provide a
formal theory of equivalences and refinements between games, as discussed in
§1.2.4.

2.2.2 Equivalences of games

For technical reasons, we must quotient the class of open games by isomorphisms
of strategy sets. This is necessary to obtain a category because, for example, we
would otherwise find that the compositions I ◦ (H ◦ G) and (I ◦ H) ◦ G are not
equal (as required by the axioms of a category) because their underlying sets of
strategies are not equal, merely naturally isomorphic. By taking morphisms of

54

2.2. THE CATEGORY OF GAMES

the category to be suitable equivalence classes, this problem is avoided.
Given two open games G,G′ : (X,S) → (Y,R), we will say that G and G′

are equivalent, and write G ∼ G′, if there exists an isomorphism i : ΣG ∼= ΣG′

which commutes with the play, coplay and best response functions. That is, we
demand that

• PGσ = PG′(iσ) : homC(X,Y)

• CGσ = CG′(iσ) : homC(X ⊗R,S)

• σ′ ∈ BG(h, k)σ ⇐⇒ iσ′ ∈ BG′(h, k)(iσ)

always hold.
In the remainder of this section, we must check that everything we define is

independent of the choice of representative of the equivalence class.

2.2.3 Categorical composition of games

Given a pair of games G : (X,T) → (Y, S) and H : (Y, S) → (Z,R), we need
to define a composition H ◦N G : (X,T)→ (Z,R). This is a primitive form of
composition in which the intermediate choice at Y is hidden; the more intuitive
sequential composition that produces plays of type X ⊗ Y will be recovered
using tensor product and identities in §3.2.2. The game H ◦N G is an aggregate
whose players consist of the players of G together with the players of H. This
means that a strategy profile for H ◦N G should consist of a strategy profile for
G together with a strategy profile for H, that is, ΣH◦NG = ΣG × ΣH.

Since the play is sequential, the observation that is made by H should be the
choice that is made by G. This motivates the definition of the play function of
H ◦N G, namely that PH◦NG(σ, τ) should be the composition

X
PGσ−−−→ Y

PHτ−−−→ Z

Using the categorical composition in C appropriately sequences the effects that
can be used by the two components. For example if G and H both contain
players who can make probabilistic choices, the play function of H ◦N G gives
the appropriate probability distribution on Z taking into account the probability
distribution on Y .

The coplay function of H ◦N G, on the other hand, is hard or impossible to
justify on intuitive grounds. We define CH◦NG(σ, τ) to be the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R X⊗CHτ−−−−−→ X ⊗ S

CGσ−−−→ T

(where we are assuming that C is strict monoidal). When C = Set, this is given
explicitly by

CH◦NG(σ, τ)(x, r) = CGσ(x,CHτ(PGσx, r))

This will be discussed in §2.2.14.
For now we will also give the best response function without motivation, but

it will be discussed in detail in the next section. The definition is

BH◦NG(h, k)(σ, τ) = BG(h, kτσ)×BH(PGσ ◦ h, k)τ

55

2.2. THE CATEGORY OF GAMES

where kτ◦ is the composition

Y
∆Y−−→ Y ⊗ Y Y⊗PHτ−−−−−→ Y ⊗ Z Y⊗k−−−→ Y ⊗R CHτ−−−→ S

With this definition we obtain a category GameN (C), whose objects are
pairs of objects of C, and whose morphisms are equivalence classes of open games,
with the identity on (X,R) being the computation (idX , idR). The axioms of a
category will be proved in §2.2.5 and §2.2.6.

We must now prove that H ◦N G is well-defined, i.e. if G ∼ G′ and H ∼ H′
then H ◦N G ∼ H

′ ◦N G
′. We are given isomorphisms iG : ΣG → ΣG′ and

iH : ΣH → ΣH′ , and we define a new isomorphism iH◦NG(σ1, σ2) = (iGσ1, iHσ2).
For the play function,

PH◦NG(σ, τ) = PHτ ◦PGσ

= PH′(iHτ) ◦PG′(iGσ)

= PH′◦NG
′(iH◦NG(σ, τ))

Similarly for coplay,

CH◦NG(σ, τ) = CGσ ◦ (X ⊗CHτ) ◦ (X ⊗PGσ ⊗R) ◦ (∆X ⊗R)

= CG′(iGσ) ◦ (X ⊗CH′(iHτ)) ◦ (X ⊗PG′(iGσ)⊗R) ◦ (∆X ⊗R)

= CH′◦NG
′(iH◦NG(σ, τ))

For the best response functions, we first check that

kτ◦ = CHτ ◦ (Y ⊗ k) ◦ (Y ⊗PHτ) ◦∆Y

= CH′(iHτ) ◦ (Y ⊗ k) ◦ (Y ⊗PH′(iHτ)) ◦∆Y

= kiHτ◦

Then
BH◦NG(h, k)(σ, τ) = BG(h, kτ◦)σ ×BH(PGσ ◦ h, k)τ

and

BH′◦NG
′(h, k)(iGσ, iHτ) = BG′(h, kiHτ◦)(iGσ)×BH′(PG′(iGσ) ◦ h, k)(iHτ)

Because kτ◦ = kiHτ◦ we immediately get BG(h, kτ◦)σ = BG′(h, kiHτ◦)(iGσ).
Similarly, since PGσ ◦ h = PG′(iGσ) ◦ h, we also have

BH(PGσ ◦ h, k)τ = BH′(PG′(iGσ) ◦ h, k)(iHτ)

and we are done.

2.2.4 Best response for sequential compositions

In order to give a definition of BH◦NG(h, k)(σ, τ), we need to define what it

means for a strategy profile (σ′, τ ′) to be a best response to (σ, τ), in the context
consisting of a history h : homC(I,X) and a continuation k : homC(Z,R).

The idea is that we have a fixed situation in which the strategy profile played
is (σ, τ), and then one player unilaterally deviates to a component of σ′ or τ ′.

56

2.2. THE CATEGORY OF GAMES

This means that if we have a player in G deviating to a component of σ′ we
know that every player in H is playing τ , and vice versa.

The first condition is that σ′ should be a best response to σ, in a modified
context in which we extend the continuation k backwards in time using the fact
that we know that H will be played using τ . Therefore we define the extended
continuation kτ◦ to be the composition

Y
∆Y−−→ Y ⊗ Y Y⊗PHτ−−−−−→ Y ⊗ Z Y⊗k−−−→ Y ⊗R CHτ−−−→ S

For the second condition we need that τ ′ is a best response to τ in an
appropriate context. The same continuation k can be used without modification,
and the history can be extended forwards using the fact that G will be played
with σ, namely as the composition

I
h−→ X

PGσ−−−→ Y

This leads to the definition

BH◦NG(h, k)(σ, τ) =

{
(σ′, τ ′) : ΣG × ΣH

∣∣∣∣ σ′ ∈ BG(h, kτ◦)σ and
τ ′ ∈ BH(PGσ ◦ h, k)τ

}
which can be written equivalently as

BH◦NG(h, k)(σ, τ) = BG(h, kτ◦)σ ×BH(PGσ ◦ h, k)τ

This is precisely the definition of N -composition.
Assuming that when a player in H is deviating to τ ′, the players in G

use σ, leads to a theory of games supporting a solution concept based on Nash
equilibrium. However our games are dynamic (that is to say, they have non-trivial
temporal structure in which players can observe events that happened in the
past), and it is widely recognised in game theory that Nash equilibrium is not a
suitable solution concept for dynamic games. In particular, in a Nash equilibrium
earlier players can make so-called ‘non-credible threats’ to later players. The
category GameN (C) behaves in this way, in that it allows strategies making
non-credible threats to be equilibria (that is, fixpoints of the best response
function).

The usual solution to this problem is to use subgame-perfect equilibria (see
§1.3.5). This is an equilibrium refinement of Nash: every subgame-perfect
equilibrium is a Nash equilibrium, but not vice versa. In classical game theory,
the usual method is to define ‘subgames’ as subtrees of the game tree, and define
a subgame-perfect equilibrium to be a strategy which induces a Nash equilibrium
when restricted to any subgame.

One possibility, therefore, would be to extend the data specifying a game
with a recursively-built collection of subgames, and quantify over this collection
when defining the best-response function. However, a simpler solution is possible.
An apparent alternative would be to quantify over the type of histories, and say
that a best response should be valid for every possible history, not just the ones
that arise from the strategy profile. For classical game theory this works, but
for us it is too strong. Consider, for example, a game defined (over the category
of sets, for simplicity) as a composition of the form

(X, I)
(∆X ,idI)−−−−−−→ (X ⊗X, I)

D−→ (Y,R)

57

2.2. THE CATEGORY OF GAMES

where D is a decision. Now the earlier component does not contain a player
and cannot make strategic decisions, so our intuition about threats is no longer
valid. No matter what the starting history is, and no matter what this game
is precomposed with, the player making the decisions can only ever observe
histories of the form (x, x). It is therefore too strong to require that the player’s
strategy should be rational for histories not of this form.

This example, however, suggests the solution: the image of the play function,
as the strategy profile of the first component varies, gives precisely those histories
for the second component that can possibly arise. Now we can return to the
original problem: defining what it means for (σ′, τ ′) to be a best response to
(σ, τ) in the context (h, k). The second condition becomes that τ ′ should be a
best response to τ now in a variety of contexts: all those of the form (h′, k),
where h′ is of the form PGσ

′′ ◦ h, where σ′′ is an arbitrary strategy profile for G.
Putting this together and rewriting it, we get

BH◦SPG(h, k)(σ, τ) = BG(h, kτ◦)σ ×
⋂
σ
′
:ΣG

BH(PGσ
′ ◦ h, k)τ

We will define the SP -composition operator ◦SP to be identical to ◦N for strategy
profiles, play and coplay, but to behave this way instead for best responses. We
define another category, called GameSP (C), whose composition operator is
◦SP but in every other way is defined identically to GameN (C). Proofs about
GameSP (C) are given in the appendix.

The reason that we retain both definitions, rather than considering only
SP -composition, is that N -composition is better behaved with respect to the
tensor operation that we will define later in this section.

We must still prove that this definition respects equivalence. As before, we
define iH◦SPG(σ, τ) = (iGσ, iHτ). We have

BH◦SPG(h, k)(σ, τ) = BG(h, kτ◦)σ ×
⋂
σ
′
:ΣG

BH(PGσ
′ ◦ h, k)τ

and

BH′◦SPG
′(h, k)(iGσ, iHτ) = BG′(h, kiHτ◦)(iGσ)×

⋂
σ
′
:ΣG′

BH′(PG′σ
′ ◦ h, k)(iHτ)

The first terms are equal as for N -composition. For the second part, take some

τ ′ ∈
⋂
σ
′
:ΣG

BH(PGσ
′′ ◦ h, k)τ

Then for each σ′ : ΣG′ we have

τ ′ ∈ BH(PG(i−1
G σ′′) ◦ h, k)τ

and hence
iHτ

′ ∈ BH′(PG′σ
′′ ◦ h, k)(iHτ)

The converse is symmetrical.

58

2.2. THE CATEGORY OF GAMES

2.2.5 The identity laws

We will now prove that GameN (C), as defined in §2.2.3, is a category, beginning
with the identity laws. Let G : (X,S)→ (Y,R) be a game. We first prove that
(idY , idR) ◦N G ∼ G , and hence they are equal after quotienting.

For the strategy sets,

Σ(idY , idR)◦NG = ΣG × Σ(idY , idR) = ΣG × 1

and so we take the isomorphism i : ΣG × 1→ ΣG . For the play function,

P(idY , idR)◦NG(iσ) = P(idY , idR)∗ ◦PGσ = idY ◦PGσ = PGσ

For coplay, by definition C(idY , idR)◦NG(iσ) is the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R

X⊗C(idY , idR)∗−−−−−−−−−−→ X ⊗R
CGσ−−−→ S

which, expanding the definitions further, is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R X⊗π2−−−−→ X ⊗R

CGσ−−−→ S

The first part of this is the identity on X ⊗R, so it is equal to CGσ.
For best response,

iσ′ ∈ B(idY ,idR)◦NG(h, k)(iσ)

⇐⇒ (σ′, ∗) ∈ BG(h, k∗◦)σ ×B(idY ,idR)(PG(iσ) ◦ h, k)∗
⇐⇒ σ′ ∈ BG(h, k∗◦)σ

The continuation k∗◦ is given by

Y
∆Y−−→ Y ⊗ Y

Y⊗P(idY , idR)∗−−−−−−−−−−→ Y ⊗ Y Y⊗k−−−→ Y ⊗R
C(idY , idR)∗−−−−−−−−→ R

Expanding the definitions and simplifying, this is

Y
∆Y−−→ Y ⊗ Y Y⊗k−−−→ Y ⊗R π2−→ R

which is equal to k, and we are done.
For the other identity law, we will prove that G ◦N (idX , idS) ∼ G. For the

strategy sets,

ΣG◦N (idX , idS) = Σ(idX , idS) × ΣG = 1× ΣG ∼= ΣG

now with the isomorphism i : ΣG → 1× ΣG . For the play function,

PG◦N (idX , idS)(iσ) = PGσ ◦P(idX , idS)∗ = PGσ ◦ idX = PGσ

For coplay we have that CG◦N (idX , idS)(iσ) is the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗P(idX, idS)∗⊗R−−−−−−−−−−−−→ X ⊗X ⊗R

59

2.2. THE CATEGORY OF GAMES

X⊗CGσ−−−−−→ X ⊗ S
C(idX, idS)∗−−−−−−−−→ S

Expanding and simplifying, this is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗CGσ−−−−−→ X ⊗ S π2−→ S

which is equal to CGσ.
For best response we have

iσ′ ∈ BG◦N (idX ,idS)(h, k)(iσ)

⇐⇒ (∗, σ′) ∈ B(idX ,idS)(h, kσ◦)∗ ×BG(P(idX ,idS)∗ ◦ h, k)σ

⇐⇒ σ′ ∈ BG(P(idX ,idS)∗ ◦ h, k)σ

⇐⇒ σ′ ∈ BG(h, k)σ

because P(idX ,idS)∗ = idX .
In summary, we have proved that the identity for composition on an object

(X,R) is (idX , idR), in the category GameN (C).

2.2.6 Associativity

Consider games

(W,U)
G−→ (X,T)

H−→ (Y, S)
I−→ (Z,R)

We will prove that
I ◦N (H ◦N G) ∼ (I ◦N H) ◦N G

The two sets of strategy profiles are ΣI◦N (H◦NG) = (ΣG × ΣH) × ΣI and
Σ(I◦NH)◦NG = ΣG × (ΣH × ΣI), so we take the isomorphism

i : (ΣG × ΣH)× ΣI → ΣG × (ΣH × ΣI)

The case for the play function follows immediately from associativity of
composition in the underlying category C:

PI◦N (H◦NG)((σ, τ), υ) = PIυ ◦PH◦NG(σ, τ)

= PIυ ◦PHτ ◦PGσ

= PI◦NH(τ, υ) ◦PGσ

= P(I◦NH)◦NG(i((σ, τ), υ))

For coplay, by definition CI◦N (H◦NG)((σ, τ), υ) is the composition

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PH◦NG(σ,τ)⊗R
−−−−−−−−−−−−−→W ⊗ Y ⊗R

W⊗CIυ−−−−−→W ⊗ S
CH◦NG

(σ,τ)
−−−−−−−−→ U

which is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

60

2.2. THE CATEGORY OF GAMES

W⊗PHτ⊗R−−−−−−−−→W ⊗ Y ⊗R W⊗CIυ−−−−−→W ⊗ S ∆W⊗S−−−−−→W ⊗W ⊗ S
W⊗PGσ⊗S−−−−−−−→W ⊗X ⊗ S W⊗CHτ−−−−−−→W ⊗ T

CGσ−−−→ U

On the other hand C(I◦NH)◦NG(i((σ, τ), υ)) is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

W⊗CI◦NH(τ,υ)
−−−−−−−−−−−→W ⊗ T

CGσ−−−→ U

which is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

W⊗∆X⊗R−−−−−−−→W ⊗X ⊗X ⊗R W⊗X⊗PHτ⊗R−−−−−−−−−−→W ⊗X ⊗ Y ⊗R
W⊗X⊗CIυ−−−−−−−−→W ⊗X ⊗ S W⊗CHτ−−−−−−→W ⊗ T CIσ−−−→ U

and these two morphisms are equal by the comonoid laws for ∆. For another
perspective on this part of the proof, see §2.2.14.

For best response, we have

((σ′, τ ′), υ′) ∈ BI◦N (H◦NG)(h, k)((σ, τ), υ)

⇐⇒ ((σ′, τ ′), υ′) ∈ BH◦NG(h, kυ◦)(σ, τ)×BI(PH◦NG(σ′′, τ ′′) ◦ h, k)υ

⇐⇒ (σ′, τ ′, υ′) ∈ BG(h, (kυ◦)τ◦)σ

×BH(PGσ ◦ h, kυ◦)τ ×BI(PHτ ◦PGσ ◦ h, k)υ

and

i((σ′, τ ′), υ′) ∈ B(I◦NH)◦NG(h, k)(i((σ, τ), υ))

⇐⇒ (σ′, (τ ′, υ′)) ∈ BG(h, k(τ,υ)◦)σ ×BI◦NH(PGσ ◦ h, k)(τ, υ)

⇐⇒ (σ′, τ ′, υ′) ∈ BG(h, k(τ,υ)◦)σ

×BH(PGσ ◦ h, kυ◦)τ ×BI(PHτ ◦PGσ ◦ h, k)υ

Here kυ◦ is the composition

Y
∆Y−−→ Y ⊗ Y Y⊗PIυ−−−−−→ Y ⊗ Z Y⊗k−−−→ Y ⊗R CIυ−−−→ S

and (kυ◦)τ◦ is the composition

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗kυ◦−−−−−→ X ⊗ S CHτ−−−→ T

which expands to

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗∆Y−−−−−→ X ⊗ Y ⊗ Y

X⊗Y⊗PIυ−−−−−−−→ X ⊗ Y ⊗ Z X⊗Y⊗k−−−−−→ X ⊗ Y ⊗R X⊗CIυ−−−−−→ X ⊗ S CHτ−−−→ T

On the other hand k(τ,υ)◦ is the composition

X
∆X−−→ X ⊗X X⊗PI◦H(τ,υ)−−−−−−−−−→ X ⊗ Z X⊗k−−−→ X ⊗R CI◦H(τ,υ)−−−−−−−→ T

which expands to

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗PIυ−−−−−→ X ⊗ Z X⊗k−−−→ X ⊗R

∆X⊗R−−−−→ X ⊗X ⊗R X⊗PHτ⊗R−−−−−−−−→ X ⊗ Y ⊗R PIυ−−−→ X ⊗ S PHτ−−−→ T

Then (kυ◦)τ◦ = k(τ,υ)◦, and we are done.

61

2.2. THE CATEGORY OF GAMES

2.2.7 Tensor product of games

Besides the two variants of categorical composition we have introduced, the
other aggregation operator we will consider is a tensor (or monoidal) product.
Given an arbitrary pair of games

G : (X1, S1)→ (Y1, R1)

and
H : (X2, S2)→ (Y2, R2)

we can form their tensor product

G ⊗H : (X1 ⊗X2, S1 ⊗ S2)→ (Y1 ⊗ Y2, R1 ⊗R2)

Since the tensor product ⊗ of C can be extended componentwise to pairs of
objects, this will give us a product-like operator on GameN (C). Whereas both
variants of H ◦ G behaves like the sequential play of G and H, the purpose of
G ⊗H is to behave like the simultaneous play.

Just as for sequential composition, a strategy profile for an aggregate of two
games consists of a strategy profile for each game, thus

ΣG⊗H = ΣG × ΣH

The play function can be defined using the tensor product of morphisms in C, by

PG⊗H(σ, τ) = PGσ ⊗PHτ

Similarly, the coplay function is

CG⊗H : ΣG × ΣH → homC(X1 ⊗X2 ⊗R1 ⊗R2, S1 ⊗ S2)

where CG⊗H(σ, τ) is given by

X1 ⊗X2 ⊗R1 ⊗R2

∼=−→ X1 ⊗R1 ⊗X2 ⊗R2

CGσ⊗CHτ−−−−−−−→ S1 ⊗ S2

To define the best response function

BG⊗H : homC(I,X1 ⊗X2)× homC(Y1 ⊗ Y2, R1 ⊗R2)→ ΣG × ΣH

→P(ΣG × ΣH)

essentially the same reasoning applies as in §2.2.4, except that we are now
working with simultaneous games, and with selection equilibria (in the sense
of §1.2.3). Given h : homC(I,X1 ⊗X2), we can take the canonical projections
of it to form the component histories h1 : homC(I,X1) and h2 : homC(I,X2).
More importantly, given a continuation k : homC(Y1 ⊗ Y2, R1 ⊗ R2), a history
h : homC(I,X1 ⊗ X2) and a strategy profile (σ, τ) : ΣG × ΣH, we can form
smaller continuations in which each component may deviate from the strategy,
while the other stays fixed. The continuation for the first player is denoted
k⊗τ(h2) : homC(Y1, R1), and is defined by the composition

Y1

∼=−→ Y1 ⊗ I
Y1⊗h2−−−−→ Y1 ⊗X2

Y1⊗PHτ−−−−−−→ Y1 ⊗ Y2
k−→ R1 ⊗R2

π1−→ R1

62

2.2. THE CATEGORY OF GAMES

Similarly, the continuation kσ(h1)⊗ : homC(Y2, R2) for the second player is

Y2

∼=−→ I ⊗ Y2
h1⊗Y2−−−−→ X1 ⊗ Y2

PGσ⊗Y2−−−−−→ Y1 ⊗ Y2
k−→ R1 ⊗R2

π2−→ R2

Given these definitions, the best response function for the tensor product is given
by

BG⊗H(h, k)(σ, τ) = BG(h1, k⊗τ(h2))σ ×BH(h2, kσ(h1)⊗)τ

We will now prove that the tensor product is well-defined on equivalence
classes. Take equivalences G ∼ G′ and H ∼ H′, so we have isomorphisms
iG : ΣG → ΣG′ and iH : ΣH → ΣH′ . We will prove that there is an equivalence

G ⊗ H ∼ G′ ⊗ H′ given by the isomorphism iG⊗H(σ, τ) = (iGσ, iHτ). For the
play function,

PG⊗H(σ, τ) = PGσ ⊗PHτ = PG′(iGσ)⊗PH′(iHτ) = PG′⊗H′(iG⊗H(σ, τ))

For coplay,

CG⊗H(σ, τ) = (CGσ ⊗CHτ) ◦ (X1 ⊗ sX2,R1
⊗R2)

= (CG′(iGσ)⊗CH′(iHτ)) ◦ (X1 ⊗ sX2,R1
⊗R2)

= CG′⊗H′(iG⊗H(σ, τ))

For best reponse, similarly to §2.2.3 we first check that there is an equality
of continuations

k⊗τ(h2) = π1 ◦ k ◦ (Y1 ⊗PHτ) ◦ (Y1 ⊗ h2) ◦ ρ−1
Y1

= π1 ◦ k ◦ (Y1 ⊗PH′(iHτ)) ◦ (Y1 ⊗ h2) ◦ ρ−1
Y1

= k⊗iHτ(h2)

and similarly kσ(h1)⊗ = kiGσ(h1)⊗. Then

iG⊗H(σ′, τ ′) ∈ BG′⊗H′(h, k)(iG⊗H(σ, τ))

⇐⇒ (iGσ
′, iHτ

′) ∈ BG′(h1, k⊗iHτ(h2))(iGσ)×BH′(h2, kiGσ(h1)⊗)(iHτ)

⇐⇒ (σ′, τ ′) ∈ BG(h1, k⊗τ(h2))σ ×BH(h2, kσ(h1)⊗)τ

⇐⇒ (σ′, τ ′) ∈ BG⊗H(h, k)(σ, τ)

2.2.8 Functoriality of the tensor product

We will now prove that ⊗ makes GameN (C) into a symmetric monoidal category.
The first step of this is to prove that ⊗ is a bifunctor.

The action of the monoidal product on objects is to pairwise apply the
monoidal product of C, so

(X1, R1)⊗ (X2, R2) = (X1 ⊗X2, R1 ⊗R2)

The action on morphisms, which are games, is exactly the construction given
in §2.2.7. The monoidal unit is (I, I), where I is the monoidal unit of C. The
symmetric monoidal category axioms underly the string diagram language for
GameN (C) introduced in §2.3.5 and used in the remainder of this thesis.

63

2.2. THE CATEGORY OF GAMES

We will first prove the identity law, namely

id(X1,R1) ⊗ id(X2,R2) ∼ id(X1⊗X2,R1⊗R2)

Since Σid(X1,R1)⊗id(X2,R2)
= 1× 1 and Σid(X1⊗X2,R1⊗R2)

= 1, we take the isomor-

phism i(∗, ∗) = ∗. For the play function,

Pid(X1,R1)⊗id(X2,R2)
(∗, ∗) = Pid(X1,R1)

∗ ⊗Pid(X2,R2)
∗

= idX1
⊗ idX2

= idX1⊗X2

= Pid(X1⊗X2,R1⊗R2)
∗

For coplay,

Cid(X1,R1)⊗id(X2,R2)
(∗, ∗)

= (Cid(X1,R1)
∗ ⊗Cid(X2,R2)

∗) ◦ (X1 ⊗ sX2,R1
⊗R2)

= ((idR1
◦ πX1⊗X2→R1

)⊗ (idR2
◦ πX2⊗R2→R2

)) ◦ (X1 ⊗ sX2,R1
⊗R2)

= (idR1
⊗ idR2

) ◦ (πX1⊗R1→R1
⊗ πX2⊗R2→R2

) ◦ (X1 ⊗ sX2,R1
⊗R2)

= idR1⊗R2
◦ πX1⊗X2⊗R1⊗R2→R1⊗R2

= Cid(X1⊗X2,R1⊗R2)
∗

where the canonical projections have been labelled with their types for clarity.
For best response, we note that

∗ ∈ Bid(X1⊗X2,R1⊗R2)
(h, k)∗

always holds, and so does

(∗, ∗) ∈ Bid(X1,R1)⊗id(X2,R2)
(h, k)(∗, ∗)

= Bid(X1,R1)
(h1, k⊗∗(h2))∗ ×Bid(X2,R2)

(h2, k∗(h1)⊗)∗

Now we come to the distributivity law of a bifunctor, namely

(H1 ◦N G1)⊗ (H2 ◦N G2) ∼ (H1 ⊗H2) ◦N (G1 ⊗ G2)

We have
Σ(H1◦NG1)⊗(H2◦NG2) = (ΣG1 × ΣH1

)× (ΣG2 × ΣH2
)

and
Σ(H1⊗H2)◦N (G1⊗G2) = (ΣG1 × ΣG2)× (ΣH1

× ΣH2
)

and so we take the isomorphism i((σ1, τ1), (σ2, τ2)) = ((σ1, σ2), (τ1, τ2)). For the
play functions,

P(H1◦NG1)⊗(H2◦NG2)((σ1, τ1), (σ2, τ2)) = PH1◦NG1(σ1, τ1)⊗PH2◦NG2(σ2, τ2)

= (PH1
τ1 ◦PG1σ1)⊗ (PH2

τ2 ◦PG2σ2)

= (PH1
τ1 ⊗PH2

τ2) ◦ (PG1σ1 ⊗PG2σ2)

= PH1⊗H2
(τ1, τ2) ◦PG1⊗G2(σ1, σ2)

= P(H1⊗H2)◦N (G1⊗G2)((σ1, σ2), (τ1, τ2))

64

2.2. THE CATEGORY OF GAMES

The proof for coplay would be extremely tedious to do in a similar style, but
we can instead prove it by drawing string diagrams in the symmetric monoidal
category C [Sel11], and observing that one can be deformed into the other. The
string diagram corresponding to C(H1◦NG1)⊗(H2◦NG2)((σ1, τ1), (σ2, τ2)) is

X1

X2

R1

R2

PG1σ1

PG2σ2

CH1
τ1

CH2
τ2

CG1σ1

CG2σ2

T1

T2

Y1

Y2

S1

S2

and for C((H1⊗H2)◦N (G1⊗G2))((σ1, σ2), (τ1, τ2)) is

X1

X2

R1

R2

PG1σ1

PG2σ2 CH1
τ1

CH2
τ2

CG1σ1

CG2σ2

T1

T2

Y1

Y2

S1

S2

65

2.2. THE CATEGORY OF GAMES

2.2.9 Functoriality of the tensor product, continued

We will first prove the remaining case of the distributivity law for ◦N , namely
that

((σ′1, τ
′
1), (σ′2, τ

′
2)) ∈ B(H1◦NG1)⊗(H2◦NG2)(h, k)((σ1, τ1), (σ2, τ2))

is equivalent to

((σ′1, σ
′
2), (τ ′1, τ

′
2)) ∈ B(H1⊗H2)◦N (G1⊗G2)(h, k)((σ1, σ2), (τ1, τ2))

We begin by expanding B(H1◦NG1)⊗(H2◦NG2)(h, k)((σ1, τ1), (σ2, τ2)) to

BH1◦NG1(h1, k⊗(σ2,τ2)(h2))(σ1, τ1)×BH2◦NG2(h2, k(σ1,τ1)(h1)⊗)(σ2, τ2)

The first term of this is

BG1(h1, (k⊗(σ2,τ2)(h2))τ1◦)σ1 ×BH1
(PG1σ1 ◦ h1, k⊗(σ2,τ2)(h2))τ1

and the second is

BG2(h2, (k(σ1,τ1)(h1)⊗)τ2◦)σ2 ×BH2
(PG2σ2 ◦ h2, k(σ1,τ1)(h1)⊗)τ2

The product of these can be written isomorphically as(
BG1(h1, (k⊗(σ2,τ2)(h2))τ1◦)σ1 ×BG2(h2, (k(σ1,τ1)(h1)⊗)τ2◦)σ2

)
×
(
BH1

(PG1σ1 ◦ h1, k⊗(σ2,τ2)(h2))τ1 ×BH2
(PG2σ2 ◦ h2, k(σ1,τ1)(h1)⊗)τ2

)
On the other hand, B(H1⊗H2)◦N (G1⊗G2)(h, k)((σ1, σ2), (τ1, τ2)) expands to

BG1⊗G2(h, k(τ1,τ2)◦)(σ1, σ2)×BH1⊗H2
(PG1⊗G2(σ1, σ2) ◦ h, k)(τ1, τ2)

for which the first term is

BG1(h1, (k(τ1,τ2)◦)⊗σ2(h2))σ1 ×BG2(h2, (k(τ1,τ2)◦)σ1(h1)⊗)σ2

and the second is

BH1
((PG1⊗G2(σ1, σ2) ◦ h)1, k⊗τ2((PG1⊗G2

(σ1,σ2)◦h)2))τ1

× BH2
((PG1⊗G2(σ1, σ2) ◦ h)2, kτ1((PG1⊗G2

(σ1,σ2)◦h)1)⊗)τ2

Comparing these, it suffices to, firstly, have equalities of histories

PG1σ1 ◦ h1 = (PG1⊗G2(σ1, σ2) ◦ h)1

PG2σ2 ◦ h2 = (PG1⊗G2(σ1, σ2) ◦ h)2

which are both immediate consequences of the comonoid axioms, and secondly
to have equalities of continuations

(k⊗(σ2,τ2)(h2))τ1◦ = (k(τ1,τ2)◦)⊗σ2(h2)

(k(σ1,τ1)(h1)⊗)τ2◦ = (k(τ1,τ2)◦)σ1(h1)⊗

k⊗(σ2,τ2)(h2) = k⊗τ2(PG2
σ2◦h2)

k(σ1,τ1)(h1)⊗ = kτ1(PG1
σ1◦h1)⊗

66

2.2. THE CATEGORY OF GAMES

To prove these, again we draw string diagrams in C. The first equality is the
equivalence between

Y1

PH1
τ1

h

PG2σ2 PH2
τ2

k

CH1
τ1 S1Z1

X1

X2 Y2
Z2

R1

R2

and

Y1

h

PG2σ2

PH1
τ1

PH2
τ2

k

CH1
τ1

CH2
τ2

S1

X1

X2

Y2

Z1

Z2

R1

R2

S2

The second is symmetrical to this. Both sides of the third are directly equal to

Z1
∼= Z1 ⊗ I

Z2⊗h2−−−−→ Z1 ⊗X2

Z1⊗PG2σ2−−−−−−−→ Z1 ⊗ Y2

Z1⊗PH2
τ2−−−−−−−→ Z1 ⊗ Z2

k−→ R1 ⊗R2
π1−→ R1

and again the fourth is symmetrical.

2.2.10 The monoidal category axioms

The remaining work in proving that GameN (C) is a monoidal category is to
prove the monoidal category axioms.

In general, proving these axioms takes a significant amount of work. We
must define three families of morphisms, the left and right unitors and the
associators, prove their naturality, and then prove the commutativity of two
diagrams including the Mac Lane pentagon. To prove that a monoidal category

67

2.2. THE CATEGORY OF GAMES

is symmetric we must additionally define the braiding morphisms, prove their
naturality, and prove commutativity of an additional three diagrams.

Most of this work can be avoided by appealing to Mac Lane’s coherence
theorem [Mac78] and replacing C with a monoidally equivalent strict monoidal
category.2 In that case we have equalities of objects

(I, I)⊗ (X,R) = (I ⊗X, I ⊗R) = (X,R) = (X ⊗ I,R⊗ I) = (X,R)⊗ (I, I)

and so we can take all of the unitors to be the identity morphisms (that is,
computations formed of pairs of identities, see §2.2.3), which are automatically
natural and satisfy the commutative diagrams, simply by the fact that GameN (C)
is a category. Similarly we have equalities

((X1, R1)⊗ (X2, R2))⊗ (X3, R3) = (X1 ⊗X2 ⊗X3, R1 ⊗R2 ⊗R3)

= (X1, R1)⊗ ((X2, R2)⊗ (X3, R3))

and so we can also take the associators to be identities.
For the braiding morphisms we take (the equivalence class of) the computation

s(X1,R1),(X2,R2) = (sX1,X2
, sR2,R1

)

: (X1 ⊗X2, R1 ⊗R2)→ (X2 ⊗X1, R2 ⊗R1)

For a strict monoidal category the the unit law becomes trivial, so we must
prove only the associativity and inverse laws. For this, we will use the result
from §2.2.12, that computations respect N -composition and tensor. This is not
circular, because we will only use the part of the result that does not already
assume that GameN (C) is monoidal, and is really shorthand for copying special
cases of that proof into this section.

We will begin with the inverse law. For an arbitrary symmetric monoidal
category this is

sB,A ◦ sA,B = idA⊗B

We take A = (X1, R1) and B = (X2, R2), and so this is

(sX2,X1
, sR1,R2

) ◦N (sX1,X2
, sR2,R1

)

: (X1 ⊗X2, R1 ⊗R2)→ (X1 ⊗X2, R1 ⊗R2)

Since computation is functorial (§2.2.12), this is

(sX2,X1
◦ sX1,X2

, sR2,R1
◦ sR1,R2

)

and we can apply the inverse law of C.
The associativity axiom for a strict symmetric monoidal category is

A⊗B ⊗ C B ⊗A⊗ C

B ⊗ C ⊗A

sA,B ⊗ C

sA,B⊗C
B ⊗ sA,C

2
This is not ideal, but it is only a ‘temporary solution’ before higher categories are introduced;

see the conclusion.

68

2.2. THE CATEGORY OF GAMES

In GameN (C), we need to take A = (X1, R1), B = (X2, R2) and C = (X3, R3).
As a lemma, we need the equations

(X2, R2)⊗ s(X1,R1),(X3,R3) = (X2 ⊗ sX1,X3
, R2 ⊗ sR3,R1

)

and
s(X1,R1),(X2,R2) ⊗ (X3, R3) = (sX1,X2

⊗X3, sR2,R1
⊗R3)

which are special cases of the fact that computation is a monoidal functor
(§2.2.12).

Now, by functoriality, we have that the computations

((X2, R2)⊗ s(X1,R1),(X3,R3)) ◦N (s(X1,R1),(X2,R2) ⊗ (X3, R3))

and

((X2 ⊗ sX1,X3
) ◦ (sX1,X2

⊗X3), (sR2,R1
⊗R3) ◦ (R2 ⊗ sR3,R1

))

are equal. Therefore we need only check the equations

(X2 ⊗ sX1,X3
) ◦ (sX1,X2

⊗X3) = sX1,X2⊗X3

and
(sR2,R1

⊗R3) ◦ (R2 ⊗ sR3,R1
) = sR2⊗R3,R1

in C, which both hold because C is symmetric monoidal.

2.2.11 Strategic triviality

Next, we will formalise some informal remarks that were made in §2.1.9. A
game G : (X,S)→ (Y,R) will be called strategically trivial if it satisfies two
conditions. Firstly, there must be only one strategy, so ΣG = 1 ∼= {∗}. Secondly,
the unique strategy must be trivial, in the sense that it can never fail to be an
equilibrium. That is, for all contexts (h, k) : homC(I,X)× homC(Y,R) we must
have

i∗ ∈ BG(h, k)(i∗)

where i∗ is a name for the unique element of ΣG , or equivalently the image
of ∗ : 1 under the isomorphism i : 1 → ΣG . Notice that strategic triviality is
well-defined on equivalence classes: if G ∼ G′ and G is strategically trivial, then
so is G′.

We can now give more explanation for why a strategically trivial game should
always be in equilibrium, rather than never: the compositional best response
functions in §2.2.4 and §2.2.7 both use cartesian products, and if the set of best
responses of a computation was empty, everything would cancel and the entire
game would have no equilibria. Put another way, an equilibrium of an aggregate
consists of an equilibrium of each component, with suitably modified contexts,
and so an equilibrium overall must in particular restrict to an equilibrium on
those components that are players.

We directly have that computations and counits (§2.1.9) are strategically
trivial. We will now prove that strategically trivial games are closed under

69

2.2. THE CATEGORY OF GAMES

N -composition and tensor. In each case, the set of strategy profiles is 1× 1 ∼= 1.
For tensor products, the best response function is

BG⊗H(h, k)(∗, ∗) = BG(h1, k⊗∗(h2))∗ ×BH(h2, k∗(h1)⊗)∗
= {∗} × {∗} = {(∗, ∗)}

For N -composition it is

BH◦NG(h, k)(∗, ∗) = BG(h, k∗◦)∗ ×BH(PG∗ ◦ h, k)∗
= {∗} × {∗} = {(∗, ∗)}

This is useful because when reasoning about strategically trivial games, we
can focus only on the play and coplay functions, since we already know the
strategy profiles and best response function. If G : (X,S)→ (Y,R) is strategically
trivial we will moreover often write the play function of G as though it had type
PG : homC(X,Y) and the coplay function as CG : homC(X ⊗R,S), leaving the
strategy ∗ implicit.

N -composition of a game with a strategically trivial game is particularly
simple, because the strategically trivial parts act only by transforming the history
and continuation. Suppose we have a composition of games

(X ′, S′)
H1−−→ (X,S)

G−→ (Y,R)
H2−−→ (Y ′, R′)

in GameN (C) where H1 and H2 are strategically trivial. Then

ΣH2◦NG◦NH1

∼= ΣG

and
BH2◦NG◦NH1

(h, k) = BG(PH1
◦ h, k′)

where

k′ : Y
∆Y−−→ Y ⊗ Y

Y⊗PH2−−−−−→ Y ⊗ Y ′ Y⊗k−−−→ Y ⊗R′
CH2−−−→ R

which, when C = Set, is

k′y = CH2
(y, k(PH2

y))

As can be seen, H1 affects only the history, and H2 affects only the continuation.
Similarly for tensor products, if we have games G : (X1, S1)→ (Y1, R1) and

H : (X2, S2)→ (Y2, R2) where H is strategically trivial3, then

BG⊗H(h, k)σ = BG(h1, k
′)σ

where

k′ : Y1
∼= Y1 ⊗ I

Y1⊗h2−−−−→ Y1 ⊗X2
Y1⊗PH−−−−−→ Y1 ⊗ Y2

k−→ R1 ⊗R2
π1−→ R1

When C = Set this is

BG⊗H((h1, h2), k)σ = BG(h1, λ(y1 : Y1).k1(y1,PHh2))σ

3
The case where G is strategically trivial is symmetric.

70

2.2. THE CATEGORY OF GAMES

2.2.12 Computations as a monoidal functor

We will now prove that computation, defined in §2.1.9, gives us a faithful
monoidal functor

(−,−) : C × Cop ↪→ GameN (C)

This will be used implicitly many times in chapter 3 to simplify calculations
by working in C rather than GameN (C), and it is also needed to justify the
syntax for objects introduced in §2.3.5, and the string diagram notation for
computations in §2.3.6.

We will first prove that we have a bifunctor C × Cop → GameN (C).
In the product category C × Cop the objects are pairs of objects of C, and

the morphisms are pairs of morphisms with the second reversed. The iden-
tity morphism on the object (X,R) of C × Cop is (idX , idR) which, lifted to a
computation, is also the the identity game on (X,R) (see §2.2.3).

The composition

(X,T)
(f1,f2)−−−−→ (Y, S)

(g1,g2)−−−−→ (Z,R)

in C × Cop is, by definition,

(g1, g2) ◦ (f1, f2) = (g1 ◦ f1, f2 ◦ g2)

and we must prove that the games denoted by these two expressions are equal.
Since both are strategically trivial (§2.2.11), we need only check the play and
coplay functions. The play functions are

P(g1◦f1,f2◦g2) : X
g1◦f1−−−→ Z

and

P(g1,g2)◦N (f1,f2) : X
P(f1,f2)−−−−−→ Y

P(g1,g2)−−−−−→ Z

which are equal. The coplay functions are

P(g1◦f1,f2◦g2) : X ⊗R π2−→ R
f2◦g2−−−→ T

and

C(g1,g2)◦N (f1,f2) : X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗P(f1,f2)⊗R−−−−−−−−−−→ X ⊗ Y ⊗R

X⊗C(g1,g2)−−−−−−−−→ X ⊗ S
C(f1,f2)−−−−−→ T

The latter is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R X⊗f1⊗R−−−−−−→ X ⊗ Y ⊗R

X⊗π2−−−−→ X ⊗R X⊗g2−−−−→ X ⊗ S π2−→ S
f2−→ T

and these are equal
Next, we must prove that the embedding also respects the monoidal structure.

The monoidal unit of the product monoidal category C × Cop is (I, I), which is
also the monoidal unit of GameN (C) (see §2.2.10).

71

2.2. THE CATEGORY OF GAMES

Suppose (f1, f2) : (X1, S1)→ (Y1, R1) and (g1, g2) : (X2, S2)→ (Y2, R2) are
morphisms of C × Cop. Their monoidal product is

(f1 ⊗ g1, f2 ⊗ g2) : (X1 ⊗X2, S1 ⊗ S2)→ (Y1 ⊗ Y2, R1 ⊗R2)

We must therefore prove the equality of games

(f1, f2)⊗ (g1, g2) = (f1 ⊗ g1, f2 ⊗ g2)

Again both are strategically trivial, so we need only work with the play and
coplay functions. For the play function we have

P(f1,f2)⊗(g1,g2) = P(f1,f2) ⊗P(g1,g2) = f1 ⊗ g1 = P(f1⊗g1,f2⊗g2)

For coplay, the former is

C(f1,f2)⊗(g1,g2) : X1 ⊗X2 ⊗R1 ⊗R2

∼=−→ X1 ⊗R1 ⊗X2 ⊗R2

C(f1,f2)⊗C(g1,g2)−−−−−−−−−−−−→ S1 ⊗ S2

which is
X1 ⊗X2 ⊗R1 ⊗R2

∼=−→ X1 ⊗R1 ⊗X2 ⊗R2

π2⊗π2−−−−→ R1 ⊗R2
f2⊗g2−−−−→ S1 ⊗ S2

and the latter is

C(f1⊗g1,f2⊗g2) : X1 ⊗X2 ⊗R1 ⊗R2
π2−→ R1 ⊗R2

f2⊗g2−−−−→ S1 ⊗ S2

which is equal.

2.2.13 The counit law

We will now prove a result, which we will return to in §2.3.6, that connects com-
putations with the counit game, both introduced in §2.1.9. Let f : homC(X,Y).
Then the following diagram commutes in GameN (C):

(X,Y) (X,X)

(Y, Y) (I, I)

(idX , f)

(f, idY) τX

τY

This will be called the counit law. Since both games are strategically trivial,
we need only check the behaviour of the play and coplay functions.

72

2.2. THE CATEGORY OF GAMES

The definitions in §2.1.9 give us

P(idX ,f) : X
idX−−→ X C(idX ,f) : X ⊗X π2−→ X

f−→ Y

P(f,idY) : X
f−→ Y C(f,idY) : X ⊗ Y π2−→ Y

idY−−→ Y

PεX
: X

!X−→ I CεX
: X ⊗ I π1−→ X

PεY
: Y

!Y−→ I CεY
: Y ⊗ I π1−→ Y

Composing these sequentially gives us the play functions

PτX◦N (idX ,f) : X
idX−−→ X

!X−→ I

PτY ◦N (f,idY) : X
f−→ Y

!Y−→ I

which are equal, and the coplay functions

CεX◦N (idX ,f) : X ⊗ I ∆X⊗I−−−−→ X ⊗X ⊗ I X⊗π1−−−−→ X ⊗X π2−→ X
f−→ Y

and

CεY ◦N (f,idY) : X ⊗ I ∆X⊗I−−−−→ X ⊗X ⊗ I X⊗f⊗I−−−−−→ X ⊗ Y ⊗ I
X⊗π1−−−−→ X ⊗ Y π2−→ Y

which are both equal to

X ⊗ I π1−→ X
f−→ Y

The game denoted by these two equal expressions is important, because when
post-composed with another game it will behave like a continuation, and we will
generally use it when f is an outcome function. Let G : (X,S) → (Y,R) be a
game, and let k : homC(Y,R) be a continuation for G. Consider the game

(X,S)
G−→ (Y,R)

(k,idR)−−−−→ (R,R)
εR−−→ (I, I)

which by the counit law, can be equivalently written

(X,S)
G−→ (Y,R)

(idY , k)−−−−−→ (Y, Y)
εY−−→ (I, I)

Then
ΣεR◦N (k,idR)◦NG

∼= ΣG

and for any h : homC(I,X) and σ : ΣG we have

BG(h, k)σ ∼= BεR◦N (k,idR)◦NG(h, idI)σ

under the same isomorphism.
To see this, the right hand side by the definition in §2.2.4 is

BεR◦N (k,idR)◦NG(h, idI)σ

= BG(h, (idI)∗◦)σ ×
⋂
σ
′
:ΣG

BεR◦(k,idR)(PGσ
′ ◦ h, idI)∗

73

2.2. THE CATEGORY OF GAMES

and, since εR ◦N (k, idR) is strategically trivial, this is

BG(h, (idI)∗◦)σ × {∗}

The final step is to see that (idI)∗◦ = k. By definition it is

(idI)∗◦ : Y
∆Y−−→ Y ⊗ Y

Y⊗PεR◦(k,idR)−−−−−−−−−−→ Y ⊗ I Y⊗idI−−−−→ Y ⊗ I
CεR◦(k,idR)−−−−−−−→ R

which reduces to

Y
∆Y−−→ Y ⊗ Y Y⊗!Y−−−−→ Y ⊗ I π1−→ Y

k−→ R

and hence to k.
The equations

BεR◦N (k,idR)◦NG(h, idI)σ ∼= BG(h, k)σ ∼= BεY ◦N (idY ,k)◦NG(h, idI)σ

are very important because they allow us to move between ‘internal’ and ‘external’
views of the continuation k. We will see this used several times in §2.3, §3.1 and
§3.2, when k is an outcome or utility function.

2.2.14 Information flow in games

In §2.1 and §2.2 we have given several definitions whose intuitive justifications
have been incomplete at best. This will remain the case until chapter 3, in
which we will demonstrate that game theory can be done inside the category
GameN (C). However we would also like to have a separate justification of
the ‘low level’ operations, especially for readers whose motivations come from
category theory.

There is, however, one known and very surprising connection to existing
mathematics. The data (ΣG ,PG ,CG ,BG) specifying a game G could be divided
into two kinds of data: the strategy profiles ΣG and best response functions BG
are motivated in terms of game theory, whereas the play and coplay functions
PGσ, CGσ for a fixed strategy σ are used for information flow. These latter are
strongly reminiscent of dialectica categories.

The dialectica categories are categorical models of intuitionistic logic intro-
duced in [dP91], which are based on Gödel’s dialectica interpretation [AF98].
The dialectica category D(Set) has as objects relations ϕ ⊆ X × R, which in
particular specifies a pair4 of sets (X,R). A morphism from ϕ ⊆ X × S to
ψ ⊆ Y ×R is a pair (f, g) where

f : X → Y

and
g : X ×R→ S

4
There are several constructions in category theory besides dialectica categories that take

objects to be pairs, generally to obtain some form of duality. Chu spaces are already known
to be related to dialectica categories [dP07]. The Int-construction [JSV96] is better known,
but has a quite different structure. That paper explicitly says that the pair (X,R) should
be considered as a formalisation of X ⊗R

∗
, as we will begin to do in §2.3.5. For remarks on

duality in GameN (C), see §2.3.6 and §2.3.7.

74

2.3. STRING DIAGRAMS

such that for all x : X and r : R we have

ϕ(x, g(x, r)) =⇒ ψ(fx, r)

This has a notable similarity with f = PGσ and g = CGσ, if we take the relations
to be trivial (either both empty or both full). More importantly, the definition
of categorical composition is essentially the same in GameN (C) as in D(C), so
the definition that was claimed in §2.2.3 to not be intuitively justifiable is in fact
largely an instance of something already known, and the proofs in §2.2.5 and
§2.2.6 partly resemble the corresponding proofs for dialectica categories.

It should be mentioned that dialectica categories (and functional interpre-
tations in proof theory) can be seen in game semantic terms, see for example
[Bla97] and [Hed15a]. The relations ϕ and ψ are seen as games, in the game-
semantic sense of two-player win/lose games, with (f, g) being a strategy for
the first player (proponent) and (x, r) being a strategy for the second player
(opponent), in a relative game ϕ→ ψ. Then the existence of a morphism ϕ→ ψ,
which logically relates to provability of the implication, amounts to the existence
of a winning strategy for the first player for ψ relative to ϕ. However, this
apparent connection between game theory and game semantics seems to be only
coincidental (see §0.3).

Finally, morphisms between indexed containers [AGH+06] have a similar
form again, and a corresponding game-semantic view appears in [Hyv14].

2.3 String diagrams

2.3.1 Discussion

String diagrams are a graphical calculus that can be used to visualise information
flow in monoidal categories. Their earliest appearance may be Penrose’s graphical
tensor notation in [Pen71], with another precursor being Girard’s proof nets for
linear logic [Gir87], and the mathematical foundations were formalised in [JS91].
They became well known through the work of Samson Abramsky, Bob Coecke
and others on quantum information theory [Coe11], and later through the work
of Bob Coecke, Mehrnoosh Sadrzadeh and others on distributional semantics in
linguistics [HSG13]. String diagrams are also being applied in other areas such
as bialgebra [McC12] and computability [Pav13].

As is the case in quantum physics and linguistics, string diagrams can be used
in game theory to visualise information flow. This visualisation is a separate
issue to compositionality (although being able to compose string diagrams is a
crucial requirement), and is a separate contribution of this thesis. The concept
of information flow in games will only be introduced informally and by example,
starting in §2.3.9. The effect of the counit game on information flow, described
in §2.3.6, is particularly interesting, but again will only be discussed informally.

For readers unfamiliar with string diagrams, §2.3.2 and §2.3.3 introduce them
in an informal way that will be sufficient for our purposes. Alternatively, [BS10]
is a good introduction. A survey of the many types of string diagrams is given
in [Sel11], although the exact variant we introduce in §2.3.5 does not match any
of the usual definitions.

The purpose of string diagrams varies by discipline. In quantum information
theory, the emphasis is generally on the ability of string diagrams to reduce

75

2.3. STRING DIAGRAMS

complex calculations in tensor calculus to trivial topological deformation, a point
made forcibly in [Coe05]. In linguistics, there is more emphasis on the use of
string diagrams as a device for visualising the logical structure of sentences,
whereas the underlying categorical structure is used in a more formal way by
considering functorial semantics.

In game theory, we will similarly emphasise string diagrams as a visualisation
tool. However, more so than in linguistics, the algebraic expressions denoting
even simple games can be quite complicated, and we will make use of string
diagrams as a tool for making definitions. A good example is in §3.2.2, where we
will define a particular game by its (simple) string diagram, and the subsequent
work to compute the denotation of the string diagram is quite involved. However,
this work could quite easily be automated, as described in the conclusion.

It should be noted that this thesis does not contain a theorem that charac-
terises exactly the topological moves which are allowed on string diagrams; many
are proved to be valid, and some are known to be invalid, but it has not been
proved that this exhausts all possible moves. In the absence of such a theorem,
we cannot strictly speak about ‘the game denoted by a string diagram’, because
it cannot be ruled out that a topologically equivalent string diagram denotes
a different game. Therefore every string diagram should, for the time being,
be accompanied by an algebraic term (with operators ◦N and ⊗) showing the
intended reading.

2.3.2 String diagrams for monoidal categories

The basic components of string diagrams are strings and beads. A simple
string diagram has the form

X Yf

This string diagram denotes a morphism f : X → Y in some monoidal category.
The strings in the diagram are labelled by objects of the category, and the beads
by morphisms.

The composition of the category is denoted by end-to-end composition of
string diagrams. If we have morphisms f : X → Y and g : Y → Z, the
composition g ◦ f : X → Z is denoted by

X Zf gY

Notice that the associativity of composition is trivialised, because there is only
one way to graphically compose three morphisms. This is the simplest example
of a powerful fact about string diagrams, that coherence conditions in a category
are reduced to graphical identity or topological deformation.

The other way of composing morphisms, namely the tensor product, is
denoted by side-by-side composition. If we have morphisms f1 : X1 → Y1 and
f2 : X2 → Y2, the tensor product f1 ⊗ f2 : X1 ⊗X2 → Y1 ⊗ Y2 is denoted by

76

2.3. STRING DIAGRAMS

X1 Y1

X2 Y2

f1

f2

Again, notice that the associator of the tensor product is reduced to graphical
identity. According to these rules, the string diagram

X1 Z1

X2 Z2

f1 g1

f2 g2

Y1

Y2

could denote either (g1◦f1)⊗(g2◦f2) or (g1⊗g2)◦(f1⊗f2) : X1⊗X2 → Z1⊗Z2,
but these are equal.

A morphism f : X1 ⊗ X2 → Y1 ⊗ Y2 ⊗ Y3 is denoted by a bead with two
strings entering on the left and three exiting on the right:

X1

X2

f

Y1

Y2

Y3

The unit object of the tensor product is denoted by empty space. For example,
if we have morphisms f : I → X and g : X → I, the composition g ◦ f : I → I
is denoted by

f gX

The identity morphism on an object X is denoted by simply a string labelled
with X. The coherence laws for the identity morphisms and unit object are
again reduced to topological deformations.

2.3.3 Compact closed categories

An important structure that a monoidal category C can carry, which has a
particularly elegant interpretation in string diagrams, is that of a compact closed
category. In a compact closed category we have a duality, which is a monoidal
functor −∗ : C → Cop. The prototypical example of a compact closed category
is the category of finite-dimensional vector spaces and linear maps over a fixed
field, with duality given by duality of vector spaces; another well known example
is the category of sets and relations, with duality being the identity on sets, and
giving inverse relations.

77

2.3. STRING DIAGRAMS

Whereas an object X is denoted by an X-labelled string running from left
to right, the dual object X∗ is denoted by an X-labelled string running from
right to left. Then, given a morphism f : X → Y denoted by

X Yf

we will denote the dual morphism f∗ : Y ∗ → X∗ by its rotation:

Y Xf

The tensor product is still denoted by side-by-side composition, and so for
example a morphism f : X ⊗ S∗ → Y ⊗R∗ in a compact closed category would
be denoted by

X

S

f

Y

R

We additionally have unit morphisms ηX : I → X ⊗X∗ denoted by a cap

X

X

and counits εX : X ⊗X∗ → I denoted by a cup

X

X

The axioms of a compact closed category specify precisely that the units and
counits behave in graphically intuitive ways. For example, a bent string can be
straightened (this is called the ‘yanking equation’),

X X = X X

and a bead can be slid around a cap or cup:

X

Y

f

=

X

Y f

78

2.3. STRING DIAGRAMS

Combining these, we can topologically deform a string diagram in arbitrary ways,
for example we can equally denote a morphism f : X → Y by the string diagram

X Yf

2.3.4 Boxing and compositionality

A simple but very important observation is that string diagrams are inherently
fully compositional. Given an arbitrary string diagram, we could make it
definitionally equal to a single bead, preserving only the strings entering and
leaving the diagram. Such strings will be called open ports. To give an example,
suppose we have morphisms f : X → Y and g : Y → Z, and we define a new
morphism

(Y ⊗ g) ◦∆Y ◦ f : X → Y ⊗ Z

which is denoted by the string diagram

X f

g

Y

Z

This string diagram has an X-labelled open port entering to the left, and Y -
and Z-labelled open ports leaving to the right. If we define h : X → Y ⊗ Z to
be this morphism, then we can replace this string diagram with

X h

Y

Z

This amounts to forgetting the definition of h and remembering only its type,
that is to say, the types, order and variance of its open ports.

We can imagine that if we zoom in to the h-labelled bead in this string
diagram, we will come to the previous string diagram, with the open ports
being physically the same as the strings attached to the h-labelled bead (see the
conclusion section).

Conversely, the act of obtaining the lower string diagram from the upper
amounts to drawing a box around the entire diagram, so that the points at which
the open strings intersect the box become exactly the points at which the strings
enter and leave the h-labelled bead. We will refer to this as boxing the string
diagram, and it is the graphical analogue of making a definitional equality.

Boxing is the aspect of compositionality that can be used to work in a scalable
way. In a more serious example, the morphism h could be a very complicated

79

2.3. STRING DIAGRAMS

process, which we can then use and re-use without worrying (or even knowing)
how it is defined. In software engineering, the boxed morphism would variously
be known as a ‘type’, a ‘signature’ or an ‘interface’.

2.3.5 The geometry of games

The idea behind string diagrams in game theory is that although GameN (C)
does not have as much structure as the categories usually considered with string
diagrams, we will abuse notation as though we had this structure. A game
G : (X,S)→ (Y,R) will be denoted by the string diagram

X

S

G

Y

R

That is, we are pretending that GameN (C) has a duality −∗, and that G is a
morphism G : X ⊗ S∗ → Y ⊗R∗.

This is a reasonable thing to do. If we define an operation on objects by
(X,R)∗ = (R,X), we find that this operation can be extended in a compatible
way to some morphisms, but not all. Thus we can consider −∗ to be a partial
functor, which is total on objects (that is, a ‘functor’ whose underlying function
on morphisms is weakened to only a partial function; alternatively it is a functor
defined on a suitable wide subcategory). Since we have a symmetric monoidal
embedding C ↪→ GameN (C) (§2.2.12), we can write X and R for (X, I) and
(R, I). Thus R∗ = (I,R), and so X⊗R∗ = (X, I)⊗(I,R) = (X⊗I, I⊗R) which,
treating natural isomorphism as though it is identity, gives X ⊗R∗ = (X,R).

We will extend this notation in several intuitive ways. For example, if we
have a game

G : (X1 ⊗X2, S1 ⊗ S2)→ (Y1 ⊗ Y2, R1 ⊗R2)

we may write it as

G : X1 ⊗ S
∗
1 ⊗X2 ⊗ S

∗
2 → Y1 ⊗R

∗
1 ⊗ Y2 ⊗R

∗
2

(among many other possibilities, one for each permutation), and the string
diagram as

X1

X2

Y1

Y2

R1

R2

S1

S2

G

80

2.3. STRING DIAGRAMS

In general, we will be unconcerned but consistent with the order of the types in
such situations.

Of course this comes at a cost: not all topological operations on our string
diagrams preserve meaning, or even well-formedness. This is something we
will need to take extra care about. For example, in a compact closed category
there is no real distinction between ‘past’ and ‘future’, but in GameN (C) they
are distinct: a game G : X → Y cannot be turned into G : I → X∗ ⊗ Y . An
explanation for this is given in §2.3.12.

We will omit some strings when some of the types involved are the monoidal
unit. For example, if we have a decision D : (X, I)→ (Y,R) then we will write
D : X → Y ⊗R∗, and the string diagram denoting it is

X D

Y

R

A closed game could be denoted simply by a bead with no strings attached.

2.3.6 Partial duality

A computation (f, g) : (X,S)→ (Y,R) will be denoted by the string diagram

X Y

RS

f

g

That is, we are pretending that (f, g) = f ⊗ g∗, where g∗ : S∗ → R∗ is the
dual of g. This is another case of treating −∗ as a partial functor, this time
defined on morphisms of C. From this point onwards we will no longer treat
computations formally as pairs (f, g), but as individual games f and g∗ which we
tensor together when necessary. This is an extension of the fact that computation
is a monoidal embedding (§2.2.12). For example, if g : R→ S then we can write
g∗ = (idI , g) : S∗ → R∗ and use the string diagram

RS g

since idI is denoted by empty space.
The counit game εX : (X,X)→ (I, I) can now be written εX : X ⊗X∗ → I,

and will be denoted by a cup

X

X

The counit law
εY ◦ (f, idY) = εX ◦ (idX , f)

81

2.3. STRING DIAGRAMS

which we proved in §2.2.13 now appears as a coherence law

X

Y

f

=

X

Y f

telling us that we can slide a computation around the counit like a bead. This
takes the same form as the coherence law for the counit of a compact closed
category (see §2.3.3), but applies only to computations.

The partiality of the duality means that, unlike in a compact closed category,
we cannot rotate beads. For example, in a compact closed category we have a
valid equation

X X = X X

but we cannot do so here because the cap does not denote a morphism of
GameN (C), so the left hand side is not a well formed string diagram.

2.3.7 Covariance, contravariance and symmetries

This kind of duality has one strange consequence, concerning how covariant and
contravariant (or forward and backward) strings interact. If we have two strings
pointing in the same direction which cross, such as

X

Y

Y

X

then the denoted morphism is a symmetry σX,Y : X ⊗ Y → Y ⊗X, or more
formally, the computation

(σX,Y , idI) : (X ⊗ Y, I)→ (Y ⊗X, I)

Similarly, in the contravariant direction, the string diagram

Y

X

X

Y

82

2.3. STRING DIAGRAMS

denotes σ∗X,Y : Y ∗ ⊗X∗ → X∗ ⊗ Y ∗, or again more formally,

(idI , σX,Y) : (I, Y ⊗X)→ (I,X ⊗ Y)

However, now consider the string diagram

X

Y

Y

X

The object on the left is X ⊗ Y ∗, which formally denotes (X,Y). The object on
the right is Y ∗ ⊗X, which again formally denotes (X,Y). Thus, the denotation
σX,Y ∗ of this string diagram is an identity, not a symmetry.

More generally, if we have a string diagram which consists only of crossings
of covariant and contravariant strings, the denoted game is an identity. We will
see this in practice in the coming sections, for example in §2.3.9.

Another example of the same idea is drawing a counit with the opposite
orientation than in §2.3.6. This is justified by the topological deformation

X

X

=

X

X

where the right hand side is the composition εX ◦ σX∗,X , because the symmetry
σX∗,X is trivial.

2.3.8 Copying and deleting information

The underlying categories C introduced in §2.1.2 are not compact closed in
general, but they do have one piece of additional structure assumed, namely
that every object is a cocommutative coalgebra in a canonical way. This means
that we have canonical morphisms

!X : X → I

and
∆X : X → X ⊗X

for each object X. These morphisms can be lifted into GameN (C) either
covariantly, or contravariantly as

!∗X : I → X∗

and
∆∗X : X∗ ⊗X∗ → X∗

83

2.3. STRING DIAGRAMS

Thus, the covariant objects5 of GameN (C) are cocommutative coalgebras, and
contravariant objects are commutative algebras.

As is usual with string diagrams, we will denote the algebraic and coalgebraic
operators by small filled circles. That is, the coalgebraic operators on a covariant
object are denoted by

X X

X

X

and the algebraic operators on a contravariant object by their rotations

X

X

X

X

These operators are not as ubiquitous in game theory as they are, for
example, in quantum information theory, but nearly every game will involve
copying information at some point in its definition, for example if both a player
and a utility function need to be aware of the same value.

2.3.9 A bimatrix game

We have now, finally, built up enough theory to give some recognisable, textbook
examples of games. We will begin with a bimatrix game, with mixed strategy
Nash equilibrium as the solution concept.

Bimatrix games are two player classical games with mixed strategies, intro-
duced in §1.2.6. Thus we have two players, who simultaneously make choices from
sets X, Y . For simplicity, we will assume that these are finite. We additionally
have utility functions q1, q2 : X × Y → R that give the utility for each player on
each play.

The best response function for such a game is

B(σ1, σ2) =

(σ′1, σ
′
2) : DX ×DY

∣∣∣∣∣∣
E[q1(σ′1, σ2)] ≥ E[q1(x′, σ2)],
E[q2(σ1, σ

′
2)] ≥ E[q2(σ1, y

′)]
for all x′ : X and y′ : Y


and a mixed strategy Nash equilibrium is a fixpoint of this B.

A prototypical example of a bimatrix game is matching pennies. In this
example, we have X = Y = {H,T}, with

q1(x, y) =

{
1 if x = y

0 if x 6= y

and q2(x, y) = 1 − q1(x, y). The unique mixed strategy Nash equilibrium of
this game is the strategy profile in which both players choose either H or T

5
A ‘covariant object’ is an object of the form (X, I), and a ‘contravariant object’ is of the

form (I,X). A general object is the tensor product of a covariant part and a contravariant
part, and carries neither an algebra or a coalgebra structure.

84

2.3. STRING DIAGRAMS

with probability 1
2 , with the expected utility for both players being 1

2 . Other
well known examples of bimatrix games include the prisoner’s dilemma and
the chicken game, and can be found in myriad books and lecture notes on
introductory game theory.

In order to model a bimatrix game, let G be the game in GameN (SRel)
denoted by the string diagram

D1

D2

q1

q2

X

Y

R

R

This diagram is built from pieces that have been introduced, composed
together using ◦N and ⊗:

• The decisions D1 : I → X ⊗ R∗ and D2 : I → Y ⊗ R∗ are expected utility
maximising decisions (§2.1.8), both with histories of type I.

• The two black nodes are comultiplications (§2.3.8).

• The two crossing points are symmetries, one of which is trivial and one of
which is nontrivial (§2.3.7).

• The beads labelled q1 and q2 are the utility functions considered as covariant
computations (§2.3.6).

• The two counits are drawn with opposite orientations (§2.3.7).

If we calculate the type of strategies of G, we indeed get ΣG = DX × DY .
Because G : I → I is closed game (see §2.1.6), the best response function has
type

BG : ΣG →PΣG

Moreover, BG is equal to the best response function B of the bimatrix game
we began with. In particular, the equilibria of G are exactly the mixed strategy
Nash equilibria of the bimatrix game. The proof of this is quite involved, and is
mostly given in §3.1.7.

2.3.10 A sequential game

As a second example, we will model a two-player game of perfect information,
with players modelled by arbitrary multi-valued selection functions, giving an
instance of the sequential games defined in §1.3.4. Let X, Y and R be arbitrary

85

2.3. STRING DIAGRAMS

sets, and consider the game defined by the outcome function q : X ×Y → R and
the multi-valued selection functions

E1 : (X → R)→PX

E2 : (Y → R)→PY

Recall that a subgame perfect equilibrium of this game is a strategy profile

(σ, τ) : X × (X → Y)

such that
σ ∈ E1(U q

〈〉(σ, τ))

and for all x : X,
τx ∈ E2(U q

〈x〉(σ, τ))

where
U q
〈〉(σ, τ)x = q(x, τx)

and
U q
〈x〉(σ, τ)y = q(x, y)

A Nash equilibrium, on the other hand, weakens the second condition to only be
required for x = σ.

Let D1 : I → X ⊗R∗ be the decision in Game(Set) defined by the response
function

RD1
(∗, k) = E1k

and let D2 : X → Y ⊗R∗ be the decision defined by

RD2
(x, k) = {τ ′ : X → Y | τ ′x ∈ E2k}

These are instances of the construction in §2.1.7 of a decision from a multi-valued
selection function.

Let G : I → I be the closed game in GameN (Set) denoted by the string
diagram

D1 D2

q

X

X

X

Y R

R

R

86

2.3. STRING DIAGRAMS

or the algebraic expression

G = τR ◦N (q ⊗∆∗R) ◦N (X ⊗D2 ⊗R
∗) ◦N (∆X ⊗R

∗) ◦N D1

The set of strategy profiles for this game is ΣG = X×(X → Y), and the fixpoints
of BG : ΣG →PΣG are precisely the Nash equilibria.

On the other hand, if we use SP -composition rather than N -composition
then BG is precisely the best response function in §1.3.5, whose fixpoints are the
subgame perfect equilibria. However, because GameSP (Set) is only premonoidal
the string diagram language is not well-defined, and we can only use the algebraic
expression.

This example can also be extended in a graphically intuitive way to games
of imperfect information, in which the second player can only observe some
function of the first player’s choice. The construction will be sketched in §3.2.7,
although full proofs will not be given.

2.3.11 Coordination and differentiation games

As our final introductory example, we will return to the coordinating and
differentiating behaviour of §1.2.9. As in the voting game introduced in §1.2.7,
we will let X be finite and consider the outcomes to also be R = X. We will
consider a pair of decisions

Dfix,Dnonfix : I → X ⊗X∗

in GameN (Set), defined by the response functions given exactly by the multi-
valued selection functions Efix and Enonfix, so

BDfix
(∗, k)σ = Efixk

BDnonfix
(∗, k)σ = Enonfixk

Consider the string diagram

D1

D2

X

X

where D1 and D2 are chosen from Dfix and Dnonfix. One way to write this
algebraically is

G = (εX ⊗ εX) ◦ (sX,X ⊗X
∗ ⊗X∗) ◦ (D1 ⊗D2) : I → I

87

2.3. STRING DIAGRAMS

The type of strategy profiles is ΣG = X ×X. The best response function
BG : X ×X →P(X ×X) is given by

BG(σ, τ) = BD1
(∗, k1)σ ×BD2

(∗, k2)τ

where k1x = τ and k2x = σ are constant functions. Since σ′ ∈ BDfix
(∗, k1)σ iff

σ′ = τ , and τ ′ ∈ BDfix
(∗, k2)τ iff τ ′ = σ, if we take D1 = D2 = Dfix then (σ, τ)

is an equilibrium of G iff σ = τ . Similarly, if we take D1 = D2 = Dnonfix then
(σ, τ) is an equilibrium of G iff σ 6= τ . Thus we again obtain coordinating and
differentiating behaviour.

If we take D1 = Dfix and D2 = Dnonfix then G has no equilibria, because for
(σ, τ) to be an equilibrium we must have both σ = τ and σ 6= τ . It would be
interesting to consider variants of Dfix and Dnonfix in GameN (SRel), because
this game should intuitively have a mixed strategy Nash equilibrium, but this is
not free because we cannot take the mixed extension of a selection function (see
§1.2.6).

This example demonstrates that open games can model non-classical prefer-
ences described by selection functions. It is interesting because the game has no
outcome function in a very literal sense, but instead the string diagram visualises
the information flow where each player directly reasons about the move of the
other. However this issue is orthogonal to compositionality, and we will not
discuss it further.

2.3.12 Designing for compositionality

We now return to theoretical considerations, having gained some intuition about
the possible examples. The fact that the counit εX is not dualisable has some
interesting consequences for information flow in GameN (C). A game of type
G : X ⊗S∗ → Y ⊗R∗ can be thought of as accepting a value of type X from the
past, and a value of type R from the future (see §2.1.4). If we have a value of
type R in the past (for example, because an agent’s utility is determined entirely
by events in the past) then we can use the counit to bend the string around, as
in

X Y

R

S

G

To put it another way: a value known in the past will still be known in the future.
On the other hand, if we only have a value of type X in the future, we cannot

use it (unlike in a compact closed category) because an agent cannot directly
observe the future, but only reason about it (which is the purpose of R). This
‘causality’ point of view suggests a heuristic explanation of why GameN (C) has
the structure that it does, namely that −∗ behaves in some ways like a duality,
but is not a functor. Indeed, if GameN (C) were compact closed it would be
straightforward to construct a paradoxical situation analogous to the grandfather

88

2.3. STRING DIAGRAMS

paradox, in which a strategy negates the value chosen by itself. Categories with
more structure typically get around this problem using a ‘failure’ state such as
the zero vector, the empty relation or the nonterminating computation.

This will have a major impact on design for compositionality, which may
become an important research topic in applied compositional game theory. In
§3.1 and §3.2 we will show that certain known, simple classes of classical games
can be faithfully represented as closed games. The purpose of this, as described
in §0.5, is to show formally that compositional game theory is indeed game
theory. However, a practical use of compositional game theory will likely look
quite different.

In §2.3.9 we represented a bimatrix game as a closed game G : I → I. Since
the game is closed, there is no nontrivial way in which it can interact with its
environment, and consequently there is no nontrivial way to compose it with
other games. This is unsurprising, because the point was to produce a faithful
model of a classical bimatrix game, and classical bimatrix games do not interact
with their environment, that is to say, they cannot be composed.

The question of how a bimatrix game should be represented in order to
allow compositionality is a nontrivial modelling problem: we want to model
the bimatrix game as an open game so that it could be reused in later, more
complicated problems. The simpler half of this problem is what to take for Y and
S, the types of values flowing from the game to its environment: a reasonable
choice is Y = X ′ ⊗ Y ′, where X ′ and Y ′ are the types of choices made by the
two players, and S = I, because there is no useful sense in which the bimatrix
game can generate coutility.

The type X, given suitable features of the underlying category C, could vary
over all nonempty finite sets, with the game being parametrically polymorphic
in X. The decisions, as defined in §2.1.8, do indeed seem to be parametrically
polymorphic in X. The non-compositional example in §2.3.9 is recovered by
setting X = I.

The difficult case is R. The problem is to determine how the utility of two
concrete players should be affected by unknown events in the future. The simplest
way to deal with this is to take R = R⊗R and use the well-understood ubiquity
of real-valued utility as a ‘universal representation’, receiving an additional utility
from the future that is simply added to the utility for each player from the game
itself. The string diagram corresponding to this description is

89

2.3. STRING DIAGRAMS

D

D

q1

q2

+

+

R

R

X

Y

R

R

R

R

One notable drawback of this is that the preferences of the players, which
determine the appropriate utilities, become distributed throughout the string
diagram rather than being localised. A possible alternative approach would be
to have a game that is parametric in both a type R and in a rational preference
relation on R. In any particular instantiation, the type and preference relation
could be chosen depending on the modelling problem at hand.

90

Chapter 3

Game theory via open
games

3.1 Normal form games

3.1.1 Discussion

In chapter 2 of this thesis we have built up an abstract theory, and this will be
continued in §3.3 when we study solvability of games. The central argument being
laid out (see the conclusion for a self-contained version) is that this approach
to game theory is better than classical approaches, at least insofar as it is more
scalable. However a vital piece of the argument is missing: other than the
language used in the informal explanations, and the examples without proof at
the end of §2.3, we have not demonstrated that open games have any connection
at all with game theory.

The purpose of this chapter is to show that our theory does agree with
classical game theory in certain situations, specifically normal form games with
pure and mixed Nash equilibria, and certain extensive form games with subgame
perfect equilibria. Given a classical game theoretic situation, we should be able to
draw a string diagram that looks like the information flow in the target situation,
and which moreover denotes the same game. In order to discuss sameness of
games, without even having a common framework, we will use the approach
discussed in §1.2.4: two games will be considered the same if they have the
same sets of strategies Σ, and the same best response functions B : Σ→PΣ.
As we saw in §2.1.6, an abstract scalar in GameN (Set) or GameN (SRel) is
defined precisely by Σ and B of this type. Therefore our aim is, given some
existing notion of game, to construct an abstract scalar whose strategies and
best responses are the same.

Game theory is a large subject, with entire areas devoted to various extensions
and special cases of the basic definitions. For this reason there cannot be (and
nor should there be) a single theorem that subsumes classical game theory into
our new framework. For now, we are going to focus on some simple and common
special cases. In this section, we begin with normal form finite games and pure
strategies, as introduced in §1.2, and we will prove that every such game can
be translated into a string diagram, whose strategies and Nash equilibria are

91

3.1. NORMAL FORM GAMES

the same. For additional simplicity we will work only with classical games (see
§1.2.5), in order that this section can be understood only in terms of classical
game theory, such as is introduced in [LBS08], without requiring knowledge of
selection functions. The proofs in this section and §3.2 generalise immediately to
arbitrary selection functions, using the translation from multi-valued selection
functions to decisions in §2.1.7.

Beginning with §3.1.6, we will also show the same result for normal form
games and mixed strategies, which is the setting in which Nash proved his famous
existence theorem [Nas50].

3.1.2 Tensor products of decisions

Consider a finite normal form classical game, in the sense of §1.2.5. We have
N ≥ 1 players, where the ith player makes a choice from the finite set Xi, and
receives a real-valued utility, which she aims to maximise. Since the choices in
normal form games take place simultaneously, no player observes any history.
Since we are intending to model pure strategies, which involve no side effects,
we will work in the category GameN (Set). The choice of the ith player will
therefore be modelled by the utility-maximising decision

Di : I → Xi ⊗ R∗

which is given as the first example in §2.1.8. For completeness, this is defined by
the data

• ΣDi = Xi

• PDiσ∗ = σ

• CDiσ(x, u) = ∗

• BDikσ = {σ′ : Xi | kσ
′ ≥ kx′ for all x′ : Xi}

The purpose of this section is to study the tensor product of finitely many such
decisions.

We will work by induction on N , the number of players. Define a game

GN : I →
N⊗
i=1

Xi ⊗ (R∗)⊗N

where (R∗)⊗N denotes the N -fold tensor R∗ ⊗ · · · ⊗ R∗, by

GN =

N⊗
i=1

Di

More formally, we recursively define G1 = D1, and GN+1 = GN ⊗DN+1.
Our task is to find a closed form description of GN . It is simple to see that

the set of strategy profiles is a cartesian product

ΣGN =

N∏
i=1

Xi

92

3.1. NORMAL FORM GAMES

The play function, whose type is isomorphic to

PGN :

N∏
i=1

Xi →
N∏
i=1

Xi

is given by the identity function, because in the inductive case we have

id∏N
i=1Xi

× idXN+1
= id∏N+1

i=1 Xi

Notice that this is equal to the play function P for normal form games defined
in §1.2.2. The coplay function has type isomorphic to

CGN :

N∏
i=1

Xi × Rn → 1

and so is uniquely defined.

3.1.3 Best response for a tensor of decisions

The best response function has type isomorphic to

BGN :

(
N∏
i=1

Xi → RN
)
→

N∏
i=1

Xi →P
N∏
i=1

Xi

and is given by

BGNkσ =

{
σ′ :

N∏
i=1

Xi

∣∣∣∣∣ ki(σ′i, σ−i) ≥ ki(x′, σ−i)
for all 1 ≤ i ≤ N, x′ : Xi

}

where ki = πi ◦ k, and the notation (σi, σ
′
−i) was introduced in §1.2.2. We will

prove this by induction on N , the number of players.
This is the key step to connect our games with classical normal form games,

because it has exactly the same form as the best response function in §1.2.5, and
can be stated equivalently as saying that BGNkσ is the set of best responses to
σ in the N -player normal form game whose outcome function is k.

We begin with the case N = 1. Since G1 = D1 is a decision, by definition we
directly have

BG1kσ = {σ′ : X1 | kσ
′ ≥ kx′1 for all x′1 : X1}

To see that this is of the required form, simply note that for N = 1 we have
(x1, σ−1) = x1, and that the projection (−)1 is the identity.

For the inductive step, by definition of the tensor product,

BGN+1
kσ = BGN⊗DN+1

k(σ−(N+1), σN+1)

= BGNk⊗σN+1
σ−(N+1) ×BDN+1

kσ−(N+1)⊗σN+1

93

3.1. NORMAL FORM GAMES

We introduce here the less cluttered notation k⊗σN+1
and kσ−(N+1)⊗ as shorthand

for k⊗σN+1(∗) and kσ−(N+1)(∗)⊗ (see §2.2.7), because all histories are trivial for
decisions in normal form games.

Before we proceed further, we must explicitly calculate k⊗σN and kσ−(N+1)⊗.
The original continuation is

k :

N+1∏
i=1

Xi → RN+1

which we will write in the isomorphic form

k :

N∏
i=1

Xi ×XN+1 → RN × R

The left continuation k⊗σN+1
:
∏N
i=1Xi → RN is, by the definition in §2.2.7,

given by

N∏
i=1

Xi

∼=−→
N∏
i=1

Xi × 1

∏N
i=1Xi×PDN+1

σN+1

−−−−−−−−−−−−−−−→
N∏
i=1

Xi ×XN+1

k−→ RN × R
π−(N+1)−−−−−→ RN

Since DN+1 is a decision in GameN (Set) its play function is

PDN+1
σN+1∗ = σN+1

so this is simply
k⊗σN+1

σ′ = k−(N+1)(σ
′, σN+1)

Similarly the right continuation kσ−(N+1)⊗ : XN+1 → R by definition is

XN+1

∼=−→ 1×XN+1

PGN
σ−(N+1)∗×XN+1−−−−−−−−−−−−−−→

N∏
i=1

Xi ×XN+1

k−→ RN × R
πN+1−−−→ R

Since we have already checked in the previous section that

PGNσ−(N+1)∗ = σ−(N+1)

this is explicitly
kσ−(N+1)⊗σ

′ = kN+1(σ−(N+1), σ
′)

3.1.4 Best response for a tensor of decisions, continued

We can now expand

BGN+1
kσ = BGNk⊗σN+1

σ−(N+1) ×BDN+1
kσ−(N+1)⊗σN+1

The first term BGNk⊗σN+1
σ−(N+1), by the inductive hypothesis, is the set of

σ′ :
∏N
i=1Xi such that for all 1 ≤ i ≤ N and x′i : Xi,

(k⊗σN+1
)i(σ

′
i, (σ−(N+1))−i) ≥ (k⊗σN+1

)i(x
′
i, (σ−(N+1))−i)

94

3.1. NORMAL FORM GAMES

Expanding the definition of k⊗σN+1
, this is

(k−(N+1))i(σ
′
i, (σ−(N+1))i, σN+1) ≥ (k−(N+1))i(x

′
i, (σ−(N+1))i, σN+1)

Noticing that the composition of the projections

N+1∏
i=1

Xi

π−(N+1)−−−−−→
N∏
i=1

Xi
πi−→ Xi

is itself just a projection, this can be simplified to

ki(σ
′
i, σ−i, σN+1) ≥ ki(x

′
i, σ−i, σN+1)

This notation is the obvious extension of that introduced in §1.2.2, namely

(x′i, σ−i, σN+1)j =


x′i if j = i

σi if 1 ≤ j ≤ N and j 6= i

σN+1 if j = N + 1

Similarly, the second term BDN+1
kσ−(N+1)⊗σN+1 is by definition the set of

σ′ : XN+1 such that for all x′N+1 : XN+1,

kσ−(N+1)⊗σ
′ ≥ kσ−(N+1)⊗x

′
N+1

and this expands to

kN+1(σ−(N+1), σ
′) ≥ kN+1(σ−(N+1), x

′
N+1)

Putting these together, the cartesian product

BGN+1
kσ = BGNk⊗σN+1

σ−(N+1) ×BDN+1
kσ−(N+1)⊗σN+1

is equal to the set of σ′ :
∏N+1
i=1 Xi, such that both of these conditions hold. The

first holds for all i ≤ N , and we notice that the second is equal to the first for
i = N + 1. This means that the set BGN+1

kσ has exactly the form we required,
and we are done.

3.1.5 The payoff functions

It may be that the game GN we have constructed is the properly idiomatic
representation of a normal form game as an open game, leaving the utility
function as a continuation parameter in the best response function. However, if
we have in mind some concrete utility function

q :

N∏
i=1

Xi → RN

then we can use the result proved in §2.2.13, that the closed game1

H = εR⊗N ◦N (q ⊗ (R∗)⊗N) ◦N GN : I → I

1
Note that the subscript in ◦N is not related to the number of players N .

95

3.1. NORMAL FORM GAMES

has the property that
BGN qσ = BH∗σ

Therefore ΣH = ΣGN and BH : ΣGN →PΣGN specify the same strategies and
best responses for H as for the classical normal form game we began with. As
discussed in §3.1.1, this is precisely the aim we began with.

Because computations are a monoidal embedding, we can go further and
decompose q, so that the information flow inside q is visible in the string diagram.
Typically, q is constructed by beginning with a utility function

qi :

N∏
i=1

Xi → R

for each player i. The tensor product of these, considered as covariant computa-
tions, is

N⊗
i=1

qi :

N⊗
i=1

N⊗
j=1

Xj → R⊗N

Since each of the N utility functions requires access to all N choices, we need
to copy each choice N times and then braid them into the right order. This is
implemented by a copy followed by symmetries. For example, when N = 3 we
use

X1

X2

X3

q1

q2

q3

R

R

R

In general, the copying is implemented by a covariant computation

N⊗
i=1

Xi →
N⊗
i=1

N⊗
j=1

Xj

whose play function is

P(x1, . . . , xN) = (x1, . . . , xN , . . . , x1, . . . , xN)

Of course, particular features such as common subexpressions can be used to
simplify such a string diagram in many examples.

96

3.1. NORMAL FORM GAMES

The example game in §2.3.9 has this form, but uses mixed strategies, which
we will now develop. In the remainder of this section, and in §3.2, we will
work with the open form of a game, leaving the outcome function implicit as a
continuation parameter in the best response function.

3.1.6 Stochastic decisions

The result that normal form games can be faithfully represented as open games
also holds if we change our solution concept from pure to mixed strategy Nash
equilibrium. Mixed strategy Nash equilibria of classical games were introduced
in §1.2.6. Following the example in §2.3.9 we now describe the general case,
making use of the probability distribution monad D introduced in §2.1.3.

We will now work in the category GameN (SRel), where SRel is the Kleisli
category of D . Following §3.1.2, we have a sequence of decisions

Di : I → Xi ⊗ R∗

which are defined by the rationality function

R : (Xi → DR)→P(DXi)

given by
Rk = {σ : DXi | E[k∗σ] ≥ E[kx′] for all x′ : Xi}

These are the expected utility maximising decisions introduced in §2.1.8. To
recall, Di has the set of strategies

ΣDi = homSRel(I,Xi) = DXi

Its play function has type

PDi : ΣDi → homSRel(I,Xi) = DXi → DXi

and is equal to the identity function, and its coplay function

CDi : ΣDi → homSRel(I ⊗ R, I) = DXi → R→ D1

and is uniquely defined as the function onto D1 = 1, the only probability
distribution on a one-element set. Finally, its best response function is

BDi : homSRel(I, I)× homSRel(Xi,R)→ ΣDi →PΣDi
= (Xi → DR)→ DXi →P(DXi)

given by
BDikσ = {σ′ : DXi | E[k∗σ] ≥ E[kx′] for all x′ : Xi}

As in §3.1.2, we will define the game

GN : I →
N⊗
i=1

Xi ⊗ (R∗)⊗N

by

GN =

N⊗
i=1

Di

97

3.1. NORMAL FORM GAMES

By induction we get a closed form for the strategy set

ΣGN =

N∏
i=1

DXi

and also a closed form for the play function

PGN :

N∏
i=1

DXi → D
N∏
i=1

Xi

given by the monoidal product of the monad D , in other words,

P
[
PGNσ = x

]
=

N∏
i=1

P [σi = xi]

The coplay function is uniquely defined by its type

CGN :

N∏
i=1

DXi → RN → D1

again because D1 = 1.

3.1.7 Best response for a tensor of stochastic decisions

We will prove by induction that the best response function

BGN :

(
N∏
i=1

Xi → DRn
)
→

N∏
i=1

DXi →P
N∏
i=1

DXi

has the closed form

BGNkσ =

{
σ′ :

N∏
i=1

DXi

∣∣∣∣∣ E[ki(σ
′
i, σ−i)] ≥ E[ki(x

′
i, σ−i)]

for all x′i : Xi, 1 ≤ i ≤ N

}

This is exactly the best response function for games with mixed strategies given
in §1.2.6. In the case N = 1, it is

BGNkσ = {σ′ : DX1 | E[kσ′] ≥ E[kx′1] for all x′1 : X1}

which holds by definition.
Note that from this point, we begin to abuse notation by leaving the Kleisli

extension of D implicit. This is standard practice in mathematics, where for
example an ordinary non-stochastic function f can be applied to a random
variable α, resulting in a random variable fα.

By the same reasoning as in §3.1.3, the condition

(σ′−(N+1), σ
′
N+1) ∈ BGN+1

k(σ−(N+1), σN+1)

98

3.1. NORMAL FORM GAMES

is equivalent to the pair of conditions

σ′−(N+1) ∈ BGNk⊗σN+1
σ−(N+1)

and
σ′N+1 ∈ BDN+1

kσ−(N+1)⊗σN+1

The former, by the inductive hypothesis, is equivalent to the claim that for all
1 ≤ i ≤ N and x′i : Xi,

E[(k⊗σN+1
)i((σ

′
−(N+1))i, (σ−(N+1))−i)] ≥ E[(k⊗σN+1

)i(x
′
i, (σ−(N+1))−i)]

The latter, by definition of DN+1, is equivalent to the claim that for all deviations
x′N+1 : XN+1,

E[kσ−(N+1)⊗σ
′
N+1] ≥ E[kσ−(N+1)⊗x

′
N+1]

We must prove that for all 1 ≤ i ≤ N + 1 and x′i : Xi,

E[ki(σ
′
i, σ−i)] ≥ E[ki(x

′
i, σ−i)]

In order to obtain this from the inductive hypothesis, it remains to prove
that

(k⊗σN+1
)i(x

′
i, (σ−(N+1))−i) = ki(x

′
i, σ−i)

for 1 ≤ i ≤ N and x′i : Xi, and

kσ−(N+1)⊗x
′
N+1 = kN+1(σ−(N+1), x

′
N+1)

for x′N+1 : XN+1. Continuing to abuse notation, for the former we can say that

(k⊗σN+1
)i(x

′
i, (σ−(N+1))−i) = (k−(N+1))i(x

′
i, (σ−(N+1))−i, σN+1)

= ki(x
′
i, σ−i)

and similarly,
kσ−(N+1)⊗x

′
N+1 = kN+1(σ−(N+1), x

′
N+1)

holds by definition. More carefully, both sides of the former are given by

P
[
ki(x

′
i, σ−i) = ui

]
=

∑
u−i:R

N

x−i:
∏
j 6=iXj

∏
j 6=i

P
[
σj = xj

] · P [k(x′i, x−i) = u
]

and the latter by

P
[
kN+1(σ−(N+1), x

′
N+1) = uN+1

]
=

∑
u−(N+1):R

N

x−(N+1):
∏N
j=1Xj

 N∏
j=1

P
[
σj = xj

] · P [k(x−(N+1), x
′
N+1) = u

]

99

3.2. EXTENSIVE FORM

3.2 Extensive form

3.2.1 Discussion

In §3.1 we showed that normal form games can be translated into abstract scalars
in GameN (Set) or GameN (SRel) in a way that preserves the pure or mixed
strategies and Nash equilibria, respectively. In this chapter, we will focus on
translating extensive form games into abstract scalars in GameSP (Set), while
preserving pure strategies and subgame perfect equilibria. GameSP (Set) is
the category whose composition operation is SP -composition, defined in §2.2.4,
which is proved in the appendix to be symmetric premonoidal.

We give a complete proof for the case of sequential games, that is, perfect
information games in which the type of choices of a player may not depend on
the values of previous choices (see §1.3.1 and §1.3.4). In §3.2.7 we additionally
discuss the representation of imperfect information. Giving a general translation
of an arbitrary extensive form game into an abstract scalar of GameSP (Set)
would be more work, and is left for the future.

We will see in §3.3.7 that using the same method to translate extensive
form games with mixed strategies into GameSP (SRel) goes wrong, in the sense
that it gives an implausible solution concept, and that the most fundamental
definitions in §2.1 and §2.2 will need to be changed as a result. This is why we
restrict to pure strategies in this chapter.

This section is, technically speaking, the most difficult of this thesis, with
§3.2.4 and §3.2.5 being particularly dense. Verifying these proofs is made more
difficult by the fact that it is necessary for readability to leave many isomorphisms
of sets implicit, such as when using the notation (x′i, x−i) for unilateral deviation.
An implementation in a proof assistant such as Coq would be useful, and will be
even more important when scaling this style of proof beyond such simple types
of games as are considered in this thesis.

3.2.2 Composition with perfect information

We will begin with a sequence of decisions

Di :

i−1⊗
j=1

Xj → Xi ⊗ R∗

in GameSP (Set). The ith decision represents a player who observes the first
i− 1 choices. Note that since the empty tensor is the identity, the first of these
is D1 : I → X1 ⊗ R∗. We will define a game

GN : I →
N⊗
i=1

Xi ⊗ (R∗)⊗N

which behaves like their perfect information composition, by induction on N .
Like for simultaneous games, the base case is G1 = D1.

For the inductive step, we are given GN and DN+1, and we must produce
GN+1. In this game, GN must play first, and then DN+1 must play observing
the choices of GN . However, the choices of GN must also be preserved in the

100

3.2. EXTENSIVE FORM

output of GN+1, and hence must be copied in parallel with DN+1. The string
diagram to keep in mind is

GN DN+1

N⊗
i=1

Xi

XN+1

R⊗N

R

N⊗
i=1

Xi

However, because GameSP (Set) is not a monoidal category we do not actually
have a string diagram language, and so the real definition is given by the algebraic
term below.

We will translate this diagram into monoidal category notation in stages.
The decision is

DN+1 :

N⊗
i=1

Xi → XN+1 ⊗ R∗

To add the string above it we tensor with the identity

N⊗
i=1

Xi ⊗DN+1 :
N⊗
i=1

Xi ⊗
N⊗
i=1

Xi →
N+1⊗
i=1

Xi ⊗ R∗

The copying node is the computation

∆∏N
i=1Xi

:

N⊗
i=1

Xi →
N⊗
i=1

Xi ⊗
N⊗
i=1

Xi

The top-right part of the diagram is therefore(
N⊗
i=1

Xi ⊗DN+1

)
◦SP ∆∏N

i=1Xi
:

N⊗
i=1

Xi →
N+1⊗
i=1

Xi ⊗ R∗

Before the lower-right crossing, we can tensor with the lower R⊗N -labelled
contravariant string to get((

N⊗
i=1

Xi ⊗DN+1

)
◦SP ∆∏N

i=1Xi

)
⊗ (R∗)⊗N

101

3.2. EXTENSIVE FORM

:

N⊗
i=1

Xi ⊗ (R∗)⊗N →
N+1⊗
i=1

Xi ⊗ R∗ ⊗ (R∗)⊗N

The crossing is the dual of the computation

σRN ,R : R⊗(N+1) → R⊗ R⊗N

and we must also tensor with the identity above it, to give

N+1⊗
i=1

Xi ⊗ σ
∗
RN ,R :

N+1⊗
i=1

Xi ⊗ R∗ ⊗ (R∗)⊗N →
N+1⊗
i=1

Xi ⊗ (R∗)⊗(N+1)

Finally, we can give the denotation of the entire string diagram as

GN+1 = HN+1 ◦SP GN : I →
N+1⊗
i=1

Xi ⊗ (R∗)⊗(N+1)

where

H :

N⊗
i=1

Xi ⊗ (R∗)⊗N →
N+1⊗
i=1

Xi ⊗ (R∗)⊗(N+1)

is given by

H =

(
N+1⊗
i=1

Xi ⊗ σ
∗
RN ,R

)
◦SP

(((
N⊗
i=1

Xi ⊗DN+1

)
◦SP ∆∏N

i=1Xi

)
⊗ (R∗)⊗N

)

3.2.3 Building the composition

Since the strategy sets of the decisions are

ΣDi =

i−1∏
j=1

Xj → Xi

it can easily be seen that the strategy sets of the Gi are isomorphic to the
cartesian product of these,

ΣGN =

N∏
i=1

i−1∏
j=1

Xj → Xi


The coplay function of GN has type

CGN :

N∏
i=1

i−1∏
j=1

Xj → Xi

→ 1→ 1

and hence is uniquely defined.
The play function has type

PGN :

N∏
i=1

i−1∏
j=1

Xj → Xi

→ N∏
i=1

Xi

102

3.2. EXTENSIVE FORM

We will prove that PGN = P is the play function for sequential games introduced
in §1.3.4. Explicitly, we will prove that

(PGNσ)i = σi((PGNσ)1, . . . , (PGNσ)i−1)

for all 1 ≤ i ≤ N . This should be compared to the defining equation of the play
function in §1.3.4. In the base case G1 = D1, the play function is by definition

(PD1
σ)1 = PD1

σ = σ = σ1

which satisfies the equation.
For the inductive step, we need to show that

PGN+1
σ = (x, σN+1x)

where x = PGNσ−(N+1). Since

PGN+1
σ = PHN+1

σN+1 ◦PGNσ−(N+1)

it suffices to prove that

PHN+1
σN+1x = (x, σN+1x)

To begin with, we note that

P⊗N
i=1Xi⊗σ

∗
RN,R

= id∏N
i=1Xi

and so

PHN+1
σN+1 = P(

(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

)
⊗(R∗)⊗N

σN+1

= P(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

σN+1

Then

P(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

σN+1x = P⊗N
i=1Xi⊗DN+1

σN+1

(
P∆∏N

i=1 Xi

x

)
= P⊗N

i=1Xi⊗DN+1
σN+1

(
∆∏N

i=1Xi
x
)

= P⊗N
i=1Xi⊗DN+1

(x, x)

=
(
P⊗N

i=1Xi
x,PDN+1

σN+1x
)

= (x, σN+1x)

Having proved this, we have

(PGN+1
σ)i =

{
(PGNσ−(N+1))i if i ≤ N
σN+1(PGNσ−(N+1)) if i = N + 1

For i ≤ N , the inductive hypothesis gives

(PGN+1
σ)i = (PGNσ−(N+1))i

= (σ−(N+1))i((PGNσ−(N+1))1, . . . , (PGNσ−(N+1))i−1)

= σi((PGN+1
σ)1, . . . , (PGN+1

σ)i−1)

103

3.2. EXTENSIVE FORM

and for i = N + 1,

(PGN+1
σ)N+1 = σN+1(PGNσ−(N+1))

= σN+1((PGNσ−(N+1))1, . . . , (PGNσ−(N+1))N)

= σN+1((PGN+1
σ)1, . . . , (PGN+1

σ)N)

3.2.4 Best response for the composition

We will now prove that our best response function

BGN :

(
N∏
i=1

Xi → RN
)
→ ΣGN →PΣGN

where

ΣGN =

N∏
i=1

i−1∏
j=1

Xj → Xi


is such that BGNkσ is the set of all σ′ : ΣGN such that, for all players 1 ≤ i ≤ N
and all partial plays x = x1, . . . , xi−1 of length i− 1, and all possible deviations
xi : Xi, we have

(U k
x σ(σ′ix))i ≥ (U k

x σxi)i

where U k
x is the unilateral deviation operator for sequential games, defined in

§1.3.5.
The proof is again by induction on N . In the base case we have N = 1 and

we need only check i = 1 with the empty partial play and some deviation x1 : X1.
Then

(U kσσ′)1 = kσ′

and
(U kσx1)1 = kx1

and we are done, because by definition BG1 = BD1
takes k : X1 → R and σ : X1

to the set of all σ′ : X1 such that

kσ′ ≥ kx′

for all x′ : X1

Next, by the definition of composition,

BGN+1
kσ = BGNkσN+1◦σ−(N+1)

×
⋂
σ
′
:ΣG

BHN+1
(PGNσ

′, k)σN+1

For BGN+1
kσ to contain some σ′, it must be that

σ′−(N+1) ∈ BGNkσN+1◦σ−(N+1)

and for all σ′′−(N+1),

σ′N+1 ∈ BHN+1
(PGNσ

′′
−(N+1), k)σN+1

104

3.2. EXTENSIVE FORM

The first condition, by the inductive hypothesis, is equivalent to the claim
that for all 1 ≤ i ≤ N , partial plays x = x1, . . . , xi−1 :

∏
j<iXj and devations

xi : Xi,

(U
kσN+1◦
x σ−(N+1)((σ

′
−(N+1))ix))i ≥ (U

kσN+1◦
x σ−(N+1)xi)i

We claim that there is an equality of continuations

U
kσN+1◦
x σ−(N+1) = π−(N+1) ◦U k

x σ : Xi → RN

which immediately gives us the inductive hypothesis for N + 1 when 1 ≤ i ≤ N .
To show this, by definition

kσN+1◦ :

N∏
j=1

Xj → RN

is given by
kσN+1◦x = k−(N+1)(x, σN+1x)

Now we have

U
kσN+1◦
x σ−(N+1)xi = kσN+1◦(ν

σ−(N+1)
x,xi)

= k−(N+1)(ν
σ−(N+1)
x,xi , σN+1(ν

σ−(N+1)
x,xi))

where ν is defined in §1.3.5, because by definition

U k
x σxi = k(νσx,xi)

Therefore it suffices to prove that

νσx,xi = (ν
σ−(N+1)
x,xi , σN+1(ν

σ−(N+1)
x,xi))

By definition
(νσx,xi)N+1 = σN+1((νσx,xi)1, . . . , (ν

σ
x,xi

)N)

so it suffices to prove that

(νσx,xi)j = (ν
σ−(N+1)
x,xi)j

for 1 ≤ j ≤ N . This is easily proved by strong induction on j.

3.2.5 Best response for the composition, continued

We now return to the second condition for

σ′ ∈ BGN+1
kσ

namely that for all σ′′−(N+1) : ΣGN ,

σ′N+1 ∈ BHN+1
(PGNσ

′′
−(N+1), k)σN+1

We claim that this is equivalent to

σ′N+1 ∈ BDN+1
(PGNσ

′′
−(N+1), k

′)σN+1

105

3.2. EXTENSIVE FORM

where k′ : XN+1 → R is given by

k′xN+1 = kN+1(PGNσ
′′
−(N+1), xN+1)

We will prove the slightly more general claim where PGNσ
′′
−(N+1) is replaced

with a general play x−(N+1). To begin, since
⊗N+1

i=1 Xi ⊗ σ
∗
RN ,R is strategically

trivial,

BHN+1
(x−(N+1), k)σN+1

= B(
(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

)
⊗(R∗)⊗N

(x−(N+1), k∗◦)σN+1

where

k∗◦ :

N+1∏
i=1

Xi → RN+1

is the extended continuation defined in §2.2.3, given explicitly by

k∗◦x = C⊗N+1
i=1 Xi⊗σ

∗
RN,R

(x, k(P⊗N+1
i=1 Xi⊗σ

∗
RN,R

x))

= σRN ,R(k(id∏N
i=1Xi

x))

= (kN+1x, k−(N+1)x)

Next, because the identity on (R∗)⊗N is strategically trivial,

B(
(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

)
⊗(R∗)⊗N

(x−(N+1), k∗◦)σN+1

= B(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

(x−(N+1), (k∗◦)1)σN+1

where
(k∗◦)1x = kN+1x

Therefore

B(
⊗N
i=1Xi⊗DN+1)◦SP∆∏N

i=1 Xi

(x−(N+1), kN+1)σN+1

= B⊗N
i=1Xi⊗DN+1

(P∆∏N
i=1 Xi

x−(N+1), kN+1)σN+1

= B⊗N
i=1Xi⊗DN+1

(∆∏N
i=1Xi

x−(N+1), kN+1)σN+1

= B⊗N
i=1Xi⊗DN+1

((x−(N+1), x−(N+1)), kN+1)σN+1

= BDN+1
(x−(N+1), (kN+1)∗(x−(N+1))⊗)σN+1

where

(kN+1)∗(x−(N+1))⊗xN+1 = kN+1(P⊗N
i=1Xi

x−(N+1), xN+1)

= kN+1(x−(N+1), xN+1)

= k′xN+1

for the definition of k′ given earlier.

106

3.2. EXTENSIVE FORM

Now, by definition of BDN+1
, the condition

σ′N+1 ∈ BDN+1
(PGNσ

′′
−(N+1), k

′)σN+1

is equivalent to
k′(σ′N+1(PGNσ

′′
−(N+1))) ≥ k

′xN+1

for all xN+1 : XN+1, which is

kN+1(PGNσ
′′
−(N+1), σ

′
N+1(PGNσ

′′
−(N+1))) ≥ kN+1(PGNσ

′′
−(N+1), xN+1)

It remains to show that this, universally quantified over σ′′−(N+1) : ΣGN , implies
the remaining case of the inductive hypothesis for N + 1, namely that for all
partial plays x = x1, . . . , xN :

∏N
j=1Xj and deviations xN+1 : XN+1,

(U k
x σ(σ′N+1x))N+1 ≥ (U k

x σxN+1)N+1

Notice that

(U k
x σxN+1)N+1 = kN+1(νσx,xN+1

) = kN+1(x, xN+1) = k′xN+1

so we must show
kN+1(x, σ′N+1x) ≥ kN+1(x, xN+1)

for all partial plays x.
Given such an x, we take the strategy profile

(σ′′−(N+1))ix
′ = xi

which ignores its observation, and simply plays the move from x. We claim that
PGNσ

′′ = x. Using the characterisation of PGN in §3.2.3, for each 1 ≤ i ≤ N we
have

(PGNσ
′′
−(N+1))i = (σ′′−(N+1))i((PGNσ

′′
−(N+1))1, . . . , (PGNσ

′′
−(N+1))i−1)

= xi

This completes the proof.

3.2.6 Information sets

Information sets are used in [vNM44] to give a general theory of imperfect
information, including games that are intermediate between sequential and
simultaneous. In general, a player may be able to observe partial information
about another player’s earlier move. That is, they may be able to distinguish
some pairs of moves, but not others.

For simplicity, we will begin with a concrete two-player game. Suppose the
set of moves for the first player is X = {x1, x2, x3} and the set of moves for the
second player is Y = {y1, y2}. The game tree for this game is

107

3.2. EXTENSIVE FORM

x1 x2 x3

y1 y2 y1 y2 y1 y2

An information set for the second player is simply a partitioning of X, that
is to say, an equivalence relation on X. The intention is that two elements of
X that are in the same equivalence class cannot be distinguished by the second
player, whereas elements in different equivalence classes can be. In this example,
the dashed line is the usual notation for specifying that two nodes are in the
same equivalence class. Thus, our partitioning of X is X/∼ = {{x1, x2}, {x3}}.

For simplicity, we will focus on pure strategies, although sequential equilibrium
[LBS08] is a more common solution concept for games with nontrivial information
sets (and see §3.3.7). The informal condition that the second player cannot
distinguish between x1 and x2 can be interpreted formally as a restriction on the
allowed strategies, namely that every strategy for player 2 must be compatible
with the equivalence relation. Thus, a function σ2 : X → Y is an allowed strategy
for player 2 iff σ2x1 = σ2x2. This is equivalent to saying that σ2 is actually a
function σ2 : X/∼ → Y . The set of strategies of this game, therefore, is

Σ = X × (X/∼ → Y)

The general definition of a subgame perfect equilibrium, including with
nontrivial information sets, is a strategy that induces a Nash equilibrium on
every subgame. For this two-stage game, this is the same as a fixpoint of the
best response function B : Σ → PΣ, where B(σ1, σ2) is the set of all (σ′1, σ

′
2)

satisfying the two conditions

q1(σ′1, σ2[σ′1]) ≥ q1(x′, σ2[x′])

for all x′ : X, and
q2(x′, σ′2[x′]) ≥ q2(x′, y′)

for all x′ : X and y′ : Y . Equivalently, we can give the two conditions as

σ′1 = arg max
x
′
:X

q1(x′, σ2[x′])

and for all x′ : X,
σ′2[x′] = arg max

y
′
:Y

q2(x′, y′)

108

3.2. EXTENSIVE FORM

3.2.7 Imperfect information via open games

We will end this section by taking a more general two player game involving
imperfect information, and showing how it can be formalised in GameSP (Set).
The sets of moves are X and Y , and we have an equivalence relation ∼ on X. A
strategy profile is a pair (σ1, σ2) : X × (X/∼ → Y). The definition of subgame
perfect equilibrium is as before.

Intuitively, we use the string diagram

D1 π∼

D2

X

Y

R

R

X
X

X/∼

where π∼ : X → X/∼ is the projection onto information sets, π∼x = [x].
However, as before, this cannot be formalised because GameSP (Set) is not
monoidal. This should be compared to the string diagrams in §2.3.10 and §3.2.2,
which denote perfect information games in which ∼ is the identity relation, and
so π∼ is the identity on X. Notice how we can explicitly see that the information
flowing from D1 to D2 passes through the projection π∼, where it is partially
hidden.

Since most of the analysis is the same as for the perfect information case, we
will focus on the sub-diagram

X

X

Y

R

π∼ D2

X/∼

which is given algebraically by

G = (X ⊗ (D2 ◦SP π∼)) ◦SP ∆X : X → X ⊗ Y ⊗ R∗

109

3.3. SOLVABLE GAMES

The set of strategy profiles is ΣG = X/∼ → Y , with play function

PGσx = (x, σ[x])

The best response function

BG : X × (X × Y → R)→ ΣG →PΣG

is calculated as

BG(h, k)σ = BX⊗(D2◦SPπ∼)((h, h), k)σ

= BD2◦SPπ∼(h, k′)σ

= BD2
([h], k′)σ

where k′y = k(h, y).
Since BD2

is a utility-maximising decision, this is

BG(h, k)σ = {σ′ : X/∼ → Y | k(h, σ[h]) ≥ k(h, y′) for all y′ : Y }

and the condition can be equivalently written

σ[h] = arg max
y
′
:Y

k(h, y′)

This corresponds exactly to the second condition for the best response function
in §3.2.6.

3.3 Solvable games

3.3.1 Discussion

In this section we will introduce a suitable solution concept for open games,
called solvability. Although the best response function of a game contains all
of the information needed to define equilibria, it does not seem to be directly
usable as a solution concept, because there is nothing that corresponds directly
to an ‘equilibrium of an open game’. A solution of a game, on the other hand, is
defined in terms of the best response function and can be directly read as an
analogue of Nash or subgame perfect equilibria for open games.

The solvability of a game should be seen as a witness for an existence theorem.
This is because a solution of an open game implies the existence of equilibria for
a class of closed games obtained by varying its continuation, that is, for a class
of games whose outcome function varies. For example, as mentioned in §3.3.6
there is a single open game whose solvability is equivalent to the Nash existence
theorem for bimatrix games (of fixed size).

The ultimate aim is to show that solvability is respected by the categorical
operations used to construct games, which will allow us to prove existence
theorems by structural induction, and compute equilibria recursively. In §3.3.4
we will show that when applied to categorical composition this yields something
akin to backward induction in classical game theory, and thereby connect solutions
with selection functions. In §3.3.6 and §3.3.7, we will discuss how solvability
behaves with respect to tensor products, which is more subtle and is ongoing
work.

110

3.3. SOLVABLE GAMES

3.3.2 The definition of solvability

Let G : X ⊗ S∗ → Y ⊗ R∗ be a game in GameN (C) or GameSP (C). We will
call G solvable if, for every continuation k : homC(Y,R), there exists a strategy
σ : ΣG , such that for all histories h : homC(I,X), we have σ ∈ BG(h, k)σ.

A solution of G is a function s : homC(Y,R)→ ΣG such that sk is a fixpoint
of BG(h, k) for all contexts (h, k) : homC(I,X)× homC(Y,R). By the axiom of
choice, a game is solvable iff it has a solution.

A first technical issue with solvability is that it is not ‘aware’ of coutility,
because the definition of solvability of G does not refer to S or CG . Consequently,
the solutions of

f

G

X

S′

Y

RS

are independent of the computation f : S → S′.
Notice that all strategically trivial games (§2.2.11) are solvable. Take a

strategically trivial game G : X ⊗ S∗ → Y ⊗ R∗, so we have ΣG = 1, and for
every h : homC(I,X) and k : homC(Y,R) we have

∗ ∈ BG(h, k)∗

Then the unique function s : homC(Y,R)→ ΣG is trivially a solution.
The following is a simple but useful way to obtain new solvable games from

old. Let G : X ⊗ S∗ → Y ⊗ R∗ be solvable, and let f : R′ → R ⊗ T be a
computation. Then

G

f

X Y

R′

S

T

R

is also solvable. When solutions are connected with selection functions in §3.3.5,
this is analogous to modifying the outcome type of a selection function (§1.1.8).
Algebraically, the game denoted by this string diagram is

(Y ⊗ f∗) ◦SP (G ⊗ T ∗) : X ⊗ S∗ ⊗ T ∗ → Y ⊗R′∗

(and the same holds if ◦SP is replaced with ◦N .) It is obtained from G by
composing and tensoring with strategically trivial games, and so

Σ(Y⊗f∗)◦SP (G⊗T∗) = ΣG

111

3.3. SOLVABLE GAMES

Its best response function is

B(Y⊗f∗)◦SP (G⊗T∗) : homC(I,X)× homC(Y,R
′)→ ΣG →PΣG

given by
B(Y⊗f∗)◦SP (G⊗T∗)(h, k)σ = BG(h, k′)σ

where

k′ : Y
k−→ R′

f−→ R⊗ T π1−→ R

Let k : homC(Y,R) be a continuation for (Y ⊗f∗)◦SP (G⊗T ∗). By the solvability
of G with the continuation k′, we have σ : ΣG such that, for all h : homC(I,X),

σ ∈ BG(h, k′)σ

Thus σ ∈ B(Y⊗f∗)◦SP (G⊗T∗)(h, k)σ, as required.

3.3.3 Solvable decisions

We will now provide our first nontrivial examples of a solvable games, namely
the decisions over Set defined in §2.1.8 that maximise with respect to a rational
preference relation � on a set R. These are

D : X → Y ⊗R∗

defined by the rationality function

R : X × (Y → R)→P(X → Y)

given by
R(x, k) = {σ : X → Y | k(σx) � ky for all y : Y }

We will prove that this decision is solvable, if Y is finite.
Let k : Y → R be a continuation. Then since Y is finite and � is a rational

preference relation there is some y : Y for which ky is maximal. Pick the constant
strategy σ : X → Y given by σx = y. Then for all h : X we have σ ∈ BD(h, k)σ
because for all y′ : Y we have

k(σx) = ky � ky′

In GameSP (Set) we can prove a stronger ad-hoc result, namely that

D

X

X

Y

R

112

3.3. SOLVABLE GAMES

is also solvable. Algebraically, this game is (X ⊗D) ◦SP ∆X , which is obtained
from D by tensoring and composing with strategically trivial games. Thus, the
strategy set is

Σ(X⊗D)◦SP∆X
= ΣD = X → Y

Its best response function, by similar reasoning as in §3.2.4, is

B(X⊗D)◦SP∆X
(h, k)σ = {σ′ : X → Y | σ′ ∈ BD(h, k′)σ}

where k′ : Y → R is given by k′y = k(h, y). Explicitly, this is

B(X⊗D)◦SP∆X
(h, k)σ = {σ′ : X → Y | k(h, σ′h) � k(h, y) for all y : Y }

Now let k : X × Y → R be a continuation for (X ⊗ D) ◦SP ∆X . Define a
strategy σ : X → Y by

σx = arg max
y:Y

k(x, y)

where arg max picks some y that attains the �-maximum. Then for every history
h : X we have

k(h, σx) � k(h, y)

by construction, and hence σ ∈ B(X⊗D)◦SP∆X
(h, k)σ.

3.3.4 Backward induction for open games

We will now prove that solvable games are closed under SP -composition. The
proof of this result amounts to backward induction, just as does the product
of selection functions (§1.3.6). This is the main piece of evidence thus far that
solvable games are mathematically natural.

Suppose we have games

G H

X Z

RT

Y

S

with solutions
sG : homC(Y, S)→ ΣG

sH : homC(Z,R)→ ΣH

We define sH◦SPG : homC(Z,R)→ ΣG × ΣH by

sH◦SPGk = (sGksHk◦, sHk)

where ksHk◦ : homC(Y, S) is the extended continuation defined in §2.2.3. We
must prove that sH◦SPG is a solution of H ◦SP G.

Let (h, k) : homC(I,X) × homC(Z,R) be a context for H ◦SP G. We must
prove that

sH◦SPGk ∈ BH◦SPG(h, k)(sH◦SPGk)

This unwinds to the two conditions

sGksHk◦ ∈ BG(h, ksHk◦)(sGksHk◦)

113

3.3. SOLVABLE GAMES

and
sHk ∈ BH(PGσ ◦ h, k)(sHk)

for all σ : ΣG . Both of these follow immediately from the fact that sG and sH
are solutions of G and H respectively.

3.3.5 Selection functions and open games

Given a solution s : homC(Y,R)→ ΣG of a game G : X ⊗S∗ → Y ⊗R∗, we have
an associated selection function

PG ◦ s : homC(Y,R)→ homC(X,Y)

which is a morphism in homJRC(X,Y), where JRC is the category of selection
functions defined in §1.3.2. We will call ε a selection function for G if it has the
form ε = PG ◦ s for a solution s of G.

We will now for the first time relate the composition in the category of
selection functions, or equivalently the Kleisli extension of the selection monad,
with game theory. Unfortunately, this connection does not behave well with
respect to coplay; it remains to be seen whether or not it is a useful idea.

Suppose we have games

G H

X Z

RR

Y

R

in GameSP (C), whose coplay functions are the identity on R. We will prove
that if ε is a selection function for G and δ is a selection function for H, then
δ ◦ ε is a selection function for H ◦SP G, where the composition δ ◦ ε is taken in
the category JRC.

By hypothesis, we have a solution sG : homC(Y,R)→ ΣG of G, and a solution
sH : homC(Z,R) → ΣH of H, such that ε = PG ◦ sG and δ = PH ◦ sH. The
composition of these is

(δ ◦ ε)k = δk ◦ ε(k ◦ δk) = PH(sHk) ◦PG(sG(k ◦PH(sHk)))

The solution sH◦SPG of H ◦SP G is defined by

sH◦SPGk = (sGksHk◦, sHk)

The selection function associated to this solution is

PH◦SPG(sH◦SPGk) = PH(sHk) ◦PG(sG(ksHk◦))

We get that δ ◦ ε is precisely this, and so it is a selection function for H ◦SP G.
Here we need to use the restricted form of the coplay function of H in order to
get that

ksHk◦ = k ◦PH(sHk)

rather than (in pure strategies)

ksHk◦y = CH(sHk)(y, k(PH(sHk)y))

114

3.3. SOLVABLE GAMES

This provides us with a high level way to think about solvability. Given an
object R of C, we consider the subcategory GameSP (C, R) whose objects are
of the form X ⊗ R∗ for X an object of C, and whose morphisms are solvable
games whose coplay function is constant. Then a (compatible) choice of solution
sG for each game G defines a functor F : GameSP (C, R)→JRC whose action
on objects is F (X ⊗R∗) = X and on morphisms is FG = PG ◦ sG . Although it
is possible to do a certain amount of game theory in GameSP (C, R) when R is
suitably chosen, it is unlikely that this way of thinking has enough benefit to
offset the restriction of not having coplay available, which limits compositionality
in practice. One way in which this is useful, however, is to understand the
relationship between selection functions and open games.

3.3.6 Tensor does not preserve solvability

In general, the class of solvable games is not closed under tensor. This is a
high level way of saying that simultaneous games do not have equilibria for
every solution concept, and in particular they do not have pure strategy Nash
equilibria.

We will give a counterexample using matching pennies, which is the simplest
game with no pure strategy equilibrium. In this game two players each simulta-
neously choose H (‘heads’) or T (‘tails’). If both players make the same choice
then player 1 wins, and if the choices are different player 2 wins. This game has
no pure strategy Nash equilibrium, because when playing a strategy in which
both choices are the same player 2 has incentive to deviate, and when playing
a strategy in which the choices are different player 1 has incentive to deviate.
(This game has a unique mixed strategy equilibrium, in which both players mix
with equal probability.)

We will formalise this game by working in GameSP (Set). Let X = {H,T},
and let R be the poset {0 ≺ 1}, where 1 indicates winning and 0 indicates losing.
The maximising decision

D : I → X ⊗R∗

was proved to be solvable in §3.3.3.
We will now prove that the tensor product D ⊗D is not solvable. To show

this, we must exhibit a particular continuation k : X ×X → R × R with the
property that

BD⊗Dk : X ×X →P(X ×X)

has no fixpoints. This is equivalent to saying that the game with outcome
function k has no pure strategy Nash equilibrium. Therefore, we take k to be
the outcome function of matching pennies, namely

k(x, y) =

{
(1, 0) if x = y

(0, 1) if x 6= y

This gives
BD⊗Dk(x, y) = {(y, x)}

where · : X → X interchanges H and T . This function indeed has no fixpoint.
If we reasoned in GameSP (SRel) instead of GameSP (Set) then this does

not happen: by Nash’s theorem, the tensor product of finitely many decisions
over finite sets of choices in GameSP (SRel) is solvable.

115

3.3. SOLVABLE GAMES

3.3.7 Failure of compositional Nash’s theorem

An early motivation for introducing solvable games, besides connecting open
games and selection functions (§3.3.5), was to prove a suitable generalisation of
Nash’s theorem for open games. The fact that solvable games are closed under
composition (§3.3.4), but fail to be closed under tensor because pure strategy
Nash equilibria need not exist (§3.3.6), strongly suggests the conjecture that in
GameSP (SRel), all freely generated games are solvable.

This fails, however, because it is not the case that arbitrary solvable games
in GameSP (SRel) are closed under tensor product. This appears to result from
a much deeper issue with the definitions in §2.1 and §2.2. In §3.1 it was shown
that normal form games with mixed strategies Nash equilibria can be faithfully
represented by open games, and similarly for extensive form games and pure
strategy subgame perfect equilibria in §3.2. However, if the two are combined,
we end up with a uselessly implausible solution concept. The previous conjecture,
that all freely generated games are solvable, can be taken as a requirement for a
repaired theory.

We will end with a specific counterexample to the conjecture. Consider the
game in GameSP (SRel) denoted by

D1 D2 q

X

X
X

R

R

or G = q ◦SP (X ⊗ D2 ⊗ R∗) ◦SP D1, where X = {H,T}. D2 is an ordinary
decision that maximises expected utility, and D1 also maximises expected utility
but chooses a pair from X ×X with a mixed strategy. The strategically trivial
game q (which could be decomposed into computations and counits) implements
the outcome function, which is again that of matching pennies. Specifically, the
coplay function Cq : X ×X → D(R× R) is given by

Cq(x, y) =

{
δ(0, 1) if x = y

δ(1, 0) if x 6= y

where δ is the unit of the monad D (see §2.1.3).
Since G is a scalar, its best response function has the form

BG : ΣG →PΣG

Despite the fact that we are working over SRel and so we have mixed strategies
available, and the fact that G has been built from only expectation-maximising

116

3.3. SOLVABLE GAMES

decisions, computations and counits using composition and tensor, we will prove
that BG has no fixpoints.

The set of strategies is

ΣG = ΣD1
× ΣD2

= D(X ×X)× (X → DX)

Geometrically, this is the product of a tetrahedron and a square, and hence is
closed, convex and finite-dimensional, satisfying the hypotheses of the Kakutani
fixpoint theorem.

To begin with, since q is strategically trivial we have

BG(∗, ∗)(σ, τ) = B(X⊗D2⊗R
∗
)◦SPD1

(∗, k)(σ, τ)

where k : X ×X → D(R× R) is the continuation k = ∗∗◦ = q. This is

BD1
(∗, kτ◦)σ ×

⋂
σ
′
:D(X×X)

BX⊗D2⊗R
∗(PD1

σ′ ◦ ∗, k)τ

We will only need to focus on the second part of this. Since D1 is a decision we
have PD1

σ′ ◦ ∗ = σ′. Then

BX⊗D2⊗R
∗(σ′, k)τ = BX⊗D2

(σ′, k1)τ

where k1 : X ×X → DR is given by

k(x1, x2) =

{
δ0 if x1 = x2

δ1 if x1 6= x2

The game X ⊗D2 : X ⊗X → X ⊗X ⊗R∗ is essentially the component of G
that causes the problems. Its best response function is

BX⊗D2
(h, k1)τ = BD2

(h1, k
′)τ

The continuation k′ = (k1)∗(h1)⊗ : X → DR is given by k′x2 = k1(h1, x2), where
we are abusing notation as in §3.1.7. Explicitly, using the particular k we defined,

P
[
k′x2 = 1

]
= P [h1 6= x2]

Now using the definition of BD2
,

BX⊗D2
(h1, k1)τ = {τ ′ : X → DX | E[k′(τ ′h1)] ≥ E[k′x2] for x2 = H,T}

Putting this together, if we had a fixpoint (σ, τ) of BG , then for every possible
history h : D(X ×X) we would have

E[k1(h1, τh1)] ≥ E[k1(h1, x2)]

for x2 = H,T . We will now prove that this is impossible.
Pick some x1 ∈ supp(τH), so P [τH = x1] > 0. We will take h = δx1 ⊗ δH,

that is, h is the probability distribution with P [h = (x1, H)] = 1. Then

k′(τh1) = k′(τx1) = k1(x1, τH)

and since P [τH = x1] > 0 we have E[k1(x1, τH)] < 1. This means that player 2
has incentive to unilaterally deviate to x2 6= x1, which has

E[k′x2] = E[k′(x1, x2)] = 1

117

Conclusion

The future of compositional game theory

Suppose an economist wants to create a mathematical model of some economic
system, say, a new market. Using her experience as a working economist, she
analyses the market and divides it into a number of interacting components.
Most of these component markets are well known and have been extensively
studied, and she recognises the last component as behaving similarly to part of
another market that was recently studied by a colleague.

She opens her software suite and loads these known models, most of which
come pre-installed, and the last downloaded from a source repository accom-
panying her colleague’s research paper. Each of these specifies an open game,
whose ports specify how it communicates with an arbitrary environment, which
is graphically represented on the screen by a bead with open strings. Although
she has never heard the phrase ‘category theory’ except in a cryptic footnote
in the software’s documentation, she draws strings connecting the beads, in
a way corresponding to her intuition about how the component markets are
communicating and influencing each other.

Behind the scenes, the software compiles the string diagram to an intermediate
representation, and then to Haskell, which is compiled and optimised by ghc.

The economist begins by specifying a plausible strategy profile, for example
by drawing a finite state automaton, and then plays the game with the strategy
profile to obtain a plot showing a probability distribution on outcomes. She
tests this against real econometric data and finds that it does not fit the data.
She then replaces some parameter in the strategy profile by a variable, and runs
an automated optimisation procedure. This takes 30 minutes to complete, and
still does not fit the data well.

By tracing the results through the string diagram, viewing plots of the data
flowing along the intermediate strings, she determines that her colleague’s model
is at fault. She ‘zooms in’ to that model in the editor, seeing visually the
information flow inside that model. It consists of many standard components
interacting, each of which itself can be opened as a string diagram for editing.
She manually tunes several quantitative parameters, and qualitatively changes
the logic of the information flow in a few places, in an iterative process, at each
stage comparing the simulation results to the econometric data.

Finally, she obtains a model and a strategy profile that is a good fit for
the data. The next day, a three-hour computation confirms that the strategy
profile is an equilibrium, suggesting that the model is stable. From here, she can
answer questions of economic interest. For example, she can simulate economic

118

3.3. SOLVABLE GAMES

events such as changing the structure of the market in some way, or changing
the response of a neighbouring market. She can test the existing strategy profile
with the modified game, and the software will determine which agents now have
incentive to deviate. In some cases, she is able, through a mixture of intuition
and automatic optimisation procedures, to find a new equilibrium to which the
old strategy profile will plausibly settle given the changes made to the game.
This constitutes an economic prediction, about how the market will respond to
a given event once it settles back into equilibrium.

Realistically, of course, this is very optimistic. However I believe the de-
scription of the technology is entirely plausible; the main question is whether
nontrivial and reasonably accurate predictions about macroeconomic systems can
be made using such a compositional game model, and whether compositionality
of games is a good model for compositionality of macroeconomic systems. I
conjecture that computations made from a user-supplied strategy profile can
be done efficiently, in time linear in the size of the game; although to compute
an approximate equilibrium from nothing we run into the fundamental problem
that equilibria of both perfect information and normal form games are expensive
to compute.

I will now discuss what needs to be done for this vision of the future to come
true, with the exception of the economic questions, which are far outside of my
expertise. These divide into theoretical problems and implementation.

A direct translation of the definitions in §2.1 and §2.2 into a programming
language will consist of combinators for composing games, and each game will
implement the play, coplay and best response functions, each taking as one input
a strategy profile implemented as a tuple of functions. In particular, the play
function will convert a strategy profile into a distribution of strategic plays (in
the case of probabilistic choice), and the best response function can be used to
decide whether a given strategy is a Nash equilibrium. The prototype described
in §0.2 already has these features, and it is not difficult to imagine other features
such as search and optimisation algorithms sitting above these primitive features,
although it might be more difficult to make these run in a feasible amount of
time.

The software Quantomatic [KMS14] is currently able to reason about string
diagrams using graph rewrite rules, but it does not convert the string diagram
into the logical language of composition and tensor, which is what is needed in
game theory. I propose an extensible, language-independent API implementing
the logical language of morphisms of monoidal categories, which can be used as
an intermediate language between Quantomatic (or similar software) and several
backends. For example, different code generators could target MATLAB for
FVect, Maple for Rel and Haskell for GameN (C).

Far more work is needed on the theoretical side. A typical example of a game
in practical economics may have several awkward features simultaneously: de-
pendent types, infinite repetition, incomplete information, learning, irrationality,
. . .

For such practical examples, each of these needs to be represented in com-
positional game theory, in compatible ways. For several of these problems, my
preferred approach is to apply intuition from functional programming and change
the underlying category to successively add new features. Informally, I think of
this in terms of ‘effects stacks’. A simple example may have probabilistic choice
at the bottom of the stack, following by learning, followed by nondeterminism,

119

3.3. SOLVABLE GAMES

followed by selection. As the first step, probabilistic choice is the monad

T1X = DX

introduced in §2.1.3. The second step is to apply the state monad transformer

T2X = St
T1

A X = A→ T1(X ×A) = A→ D(X ×A)

Alternatively, this point can be reached using Lawvere theories rather than
monad transformers. Adding nondeterminism to a stack involving probability
is not straightforward, but there are two approaches discussed in [VW06]. An
alternative possibility is to use synthetically compact sets [Esc04] to represent
nondeterminism, which leads to

T3X = JB(T2X) = ((A→ D(X ×A))→ B)→ A→ D(X ×A)

which is a monad due to the unpublished fact (observed by Fiore and Griffin in
2011) that for every monad T there is a distributive law

λ : T ◦JB →JB ◦ T

Finally, selections can be added using the generalised selection monad in [EO15],
resulting in

T4X = J T3

R X

= (X → R)→ T4X

= (X → R)→ ((A→ D(X ×A))→ B)→ A→ D(X ×A)

where R is a suitable algebra of T4, ultimately derived from the expectation
operator E : DR→ R.

Although this looks complicated, machinery exists in functional programming
to work with compound monads like this. I think it will be necessary to
make a systematic study of this before serious applications of compositional
game theory in economics become possible. In general, the Kleisli categories
of noncommutative monads are symmetric premonoidal (and moreover closed
Freyd). It may be that for premonoidal categories, string diagrams in the sense
of [Jef97] are impractical and should be replaced with a form of arrow notation
[Pat01]. However, in an effects stack in which each player has their own state
variable that is private to the other players (such as Bayesian beliefs), any
computations done by different players will commute past each other. This
results in far more allowed topological moves on string diagrams than for general
premonoidal categories, and so I suggest that the software will also need to keep
track of allowed moves on a string diagram, based on which morphisms of the
category commute.

The status of string diagrams

Although it is often emphasised that string diagrams are a fully formal algebraic
language, as was pointed out in §2.3.1, this is not yet the case for string diagrams
in game theory. In general, string diagrams are made fully formal by a coherence
theorem, which is a statement of both soundness and completeness. The soundness

120

3.3. SOLVABLE GAMES

part says that if two diagrams are equivalent under a certain class of topological
moves then their denotations are naturally isomorphic, and completeness is the
converse. A survey of many such theorems can be found in [Sel11]. Perhaps the
most elegant such theorem is that for compact closed categories, for which the
allowed moves are precisely the topological deformations.

A key difference in game theory is that we have a single, concretely defined
category, rather than a axiomatically defined family. In this situation it should
be expected that we do not have completeness, roughly because there are
equivalences between games that hold for ‘game theoretic reasons’ rather than
‘structural reasons’. For example in classical game theory, games are invariant
under any affine transformation of the utilities, and there is no reason to expect
that these invariances can be visualised with a string diagram.

Although this thesis does prove that many topological moves are sound, most
of them coming from the symmetric monoidal category structure, we have not
proved a sharp theorem giving an explicit list of allowed moves. As a starting
point I make the following conjecture: if two cap-free (that is, unit-free, see
§2.3.6) are equivalent by arbitrary topological deformations then their denotations
are naturally isomorphic. That is to say, the language of string diagrams in
game theory is precisely the language of compact closed categories, with caps
disallowed. Proving this would require a careful geometric analysis, classifying
the possible moves as those that only involve covariant parts, those that only
involve contravariant parts, and those that involve an interaction between the
two (such as the counit law §2.3.6, or a covariant-contravariant crossing §2.3.7).
For example, it would have to be argued that if two cap-free diagrams are
equivalent, then they are equivalent without going via an intermediate point
involving a cap.

Another complication to consider is the behaviour of the copying and deleting
operators. For computations we have a naturality condition: copying the output
of a computation is equivalent to copying the input and applying the computation
to each copy. For players making choices, however, this will not hold in general,
because two copies of the player could choose differently from multiple equilibria.
This is reminiscent of the behaviour of effects in functional programming: running
an effectful computation and copying the result is not equivalent to running the
computation twice, whereas for pure functions they are equivalent.

On the two composition operators

An accidental theme in this thesis has been the contrast between the categories
GameN (C) and GameSP (C). This was never intended, however. Originally the
thesis used only GameSP (C), called simply Game(C), and incorrectly claimed
it was symmetric monoidal; my examiners noticed that I had (accidentally)
omitted the check that ⊗ was a bifunctor, which turned out to be false. As a
result, the structure of the thesis is somewhat awkward, because of this fairly
major change during the corrections process.

My view currently is that the definition of GameSP (C) is wrong, and its use
in this thesis now amounts to a historical accident. There is no particular reason
why the use of subgame perfect equilibrium should lead to only a premonoidal
category, and intuitively, string diagrams should still be valid. The fundamental
problem is the interpretation in GameSP (C) of the following string diagram:

121

3.3. SOLVABLE GAMES

G1 H1

G2 H2

X1 Z1

R1T1

X2 Z2

R2T2

Y1

S1

Y2

S2

The immediate problem is that the two readings of this, namely

(H1 ◦SP G1)⊗ (H2 ◦SP G2)

and
(H1 ⊗H2) ◦SP (G1 ⊗ G2)

are different. The equality between these two readings is precisely the condition
that ⊗ is a bifunctor on the category whose composition is ◦SP , and so is
precisely what fails when trying to interpret string diagrams in a premonoidal
category.

We can see precisely what fails by carefully stepping through the proofs in
§2.2.8, §2.2.9 and §A.4. The difference between the two readings relates to how
the players in G1 reason about those in G2, and vice versa. We fix a strategy
profile

(σ1, τ1, σ2, τ2) : ΣG1 × ΣH1
× ΣG2 × ΣH2

and consider the best responses to it. For each pair of components, the players in
the first component can either reason about those in the second as though they
are using the fixed strategy profile, or as though they can deviate to an arbitrary
strategy profile. In the first reading, H1 reasons as though G1 is deviating, and
H2 reasons as though G2 is deviating, and every other pair reasons as though the
strategy profile is fixed. In the second reading, however, G1 and G2 additionally
reason about each other as though they are deviating.

My current opinion is that one of these two readings should be universally
correct on game theoretic grounds, and the other should be wrong. Since G1 and
G2 happen simultaneously, by analogy to the simpler game G1⊗G2 it seems more
likely that the first reading is correct: G1 and G2 should not consider each other
to be deviating. The challenge is then to find a new composition operator in
which both readings of the diagram are equal, and are equal to the first reading
with ◦SP .

One direct way to do this is to extend the 4-tuple definition of an open game
in §2.1.4 with a fifth component, a recursively-built collection of subgames UG .
Then the best response function should take an element of UG as an additional
parameter, indicating that the best response condition for Nash is being checked
for the given subgame. The best response condition for subgame perfect equilibria
is then equivalent to this holding for every element of UG . This approach is also
better from a computational perspective: the prototype mentioned in §0.2 always
used ◦N , even when this thesis exclusively used ◦SP , because the intersection
over all strategies is not a constructive operation.

122

3.3. SOLVABLE GAMES

This idea, of recursively building a type of subgames, occurred to me early in
the development of compositional game theory; it predates the definition of ◦SP ,
which was intended to be a simplification that achieved the same thing without
needing an additional piece of data defining open games.

Mixed strategies and Bayesian reasoning

The problem discussed in §3.3.7 can be simplified to a single-player situation, by
replacing the first player with a pair of dependent random variables. Consider
the string diagram

(α, β)

D

U

X

Y

Z

R

Here (α, β) : D(X×Y) is a pair of dependent random variables, D is an expected
utility-maximising decision, and U is a utility function combined with a counit.

Before making a decision, the player at D concretely (non-probabilistically)
observes a y : Y . Since the structure of the diagram is common knowledge,
including the exact distributions of the random variables, she can use Bayes’
theorem to obtain a new distribution for α. Most naively, this Bayesian updating
operation could be manually built into the definition of categorical composition.

The main technical difficulty is that the behaviour must be well-defined even
if the concrete observation made is not in the support of the random variable.
Put another way, the problem is what the posterior probability should be, after
observing an event of prior probability zero. A solution to this problem is
provided by sequential equilibrium, which could also naively be built in to the
definition categorical composition.

For purposes of proving theorems (as well as mathematical elegance) it
would be very useful to express the sequential equilibrium condition in a more
abstract way, whereas it is usually written in terms of perturbations, or limits of
sequences of distributions. A nice possibility would be to use †-categories, in
which a morphism f : hom(X,Y) can be reversed to a morphism f† : hom(Y,X).
In the †-category of sets and relations, seen as the kleisli category of the powerset
monad, the converse of a morphism f : X →PY is

f†y = {x : X | y ∈ fx}

This is a sort of possibilistic analogue of Bayesian updating: f†y is the set of
possibilities for x, given that the observed value of fx is y. The category of
stochastic relations fails to be a †-category in the obvious way precisely because
of the problem of observing an event of prior probability zero. It would be most
ideal if the modified Bayesian updating used in sequential equilibrium can be
described as a particular †-category, because then it would be possible to reason
quite abstractly.

123

3.3. SOLVABLE GAMES

Morphisms between games

One of the clear next stages in the development of open games, for several reasons,
is the consideration of morphisms between open games. The primary technical
reason is that it would be natural to define infinite games as final coalgebras of
a functor which composes one additional stage onto a finite approximation of
the infinite game. Since games are themselves morphisms, this brings us into
the realm of higher category theory.

Given a pair of games G,H : X ⊗ S∗ → Y ⊗R∗ of the same type, there is an
obvious definition of 2-cell between them: namely, a function f : ΣG → ΣH which
commutes with the other data specifying G and H. If we no longer quotient
games by isomorphisms of sets as we did in §2.2.2, it appears likely that the
resulting structure will be a monoidal bicategory [SP09], because the categorical
and monoidal structure at the 1-level holds up to isomorphism at the 2-level.

We can also consider morphisms between open games with different types,
resulting in a structure called a monoidal double category [Shu10]. To quote from
that paper: “There is a good case to be made . . . that often the extra morphisms
should not be discarded . . . in many cases symmetric monoidal bicategories are
a red herring, and really we should be studying symmetric monoidal double
categories.”

However, finding a more general definition of 2-cells is not immediately
straightforward. Suppose we would like to define 2-cells α : G =⇒ H, where
G : X1 ⊗ S

∗
1 → Y1 ⊗R

∗
1 and H : X2 ⊗ S

∗
2 → Y2 ⊗R

∗
2, beginning with a function

αΣ : ΣG → ΣH. The obvious next step is to choose functions between X1 and
X2 etc., either in one direction or the other, and demand that these functions
commute with the data specifying G and H. Unfortunately, this puts demands
on the directions of these functions that seem to be impossible to satisfy. A
relation-based definition may still work, however.

The meaning of coplay

The most important test-case for such a definition is the ability to define repeated
games. For simplicity, we will consider a repeated decision problem: a player
repeatedly chooses an element of a set X, having observed the history (of type
X∗, the finite lists of X). The utility function for the player in the stage decision
is q : X → R, which is discounted by a factor 0 < β < 1. Thus, the utility
function q̃ : Xω → R for the repeated decision is

q̃x =

∞∑
i=0

βi · qxi

Consider the string diagram

124

3.3. SOLVABLE GAMES

X∗

D

−,−

X∗

q

+

R×βR

X

R

R

R

This is possibly the most complicated string diagram appearing in this thesis.
More importantly, it is the only example given of a fully-fledged game (rather
than a component of a game) that uses coplay in a nontrivial way, and so it is
key to gaining an intuitive understanding of coplay. We will now discuss this
game in some detail.

The forward-flowing part of the game is relatively straightforward. A finite
history of type x : X∗ is observed from the past. The player observes this and
chooses a next move x′. This new move is appended to the end of the history, to
give x, x′ (the −,− : X∗ ⊗X → X∗ operator is reverse cons, sometimes called
‘snoc’), which is then outputted for future observation.

In the reverse direction, the real number that is inputted from the future
is interpreted by the model as the influence on this stage’s utility from all
future stages. The discounting of each stage is determined, however, not from
the beginning of the game, but relative to the current stage: the immediately
following stage is not discounted, the next stage after that is discounted by a
factor of β, the next stage by β2, etc. Suppose the stage depicted in the string
diagram is the nth, then the value inputted is

∞∑
i=0

βi · qxn+i+1

The first thing done to this value is to multiply the whole by β, which shifts
the discounting amount ‘one stage into the future’, giving

β ·
∞∑
i=0

βi · qxn+i+1 =

∞∑
i=1

βi · qxn+i

This is then added to the utility from the current stage, giving

qxn +

∞∑
i=1

βi · qxn+i =

∞∑
i=0

βi · qxn+i

The decision in the current stage acts to maximise this value, which is equiv-
alent to maximising the entire sum, because the utility from earlier stages is
independent of the current choice. Additionally this value, which is the utility

125

3.3. SOLVABLE GAMES

from this stage and all future stages, is outputted as coutility for the (n− 1)th
stage to input as its own future utility. The value can be equivalently written as

∞∑
i=0

βi · qxn+i =

∞∑
i=0

βi · qx(n−1)+i+1

and hence is in the form that the (n− 1)th stage is expecting.

126

Appendix: The structure of
GameSP (C)

A.1 Discussion

This appendix closely mirrors §2.2, starting with §2.2.5, but uses SP -composition
rather than N -composition. The definition of H ◦SP G differs from H ◦N G only
in the best response function, but for completeness we will reproduce the entire
definition here. The set of strategy profiles is

ΣH◦SPG = ΣG × ΣH

The play function is
PH◦SPG(σ, τ) = PHτ ◦PGσ

The coplay function CH◦SPG(σ, τ) is the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R X⊗CHτ−−−−−→ X ⊗ S

CGσ−−−→ T

The best response function, which is different to that for N -composition, is

BH◦SPG(h, k)(σ, τ) = BG(h, kτ◦)σ ×
⋂
σ
′
:ΣG

BH(PGσ
′ ◦ h, k)τ

Because we are using a different composition operator we have a different
category, which we call GameSP (C). All other definitions remain unchanged,
including the definition of the tensor product operator in §2.2.7. However one
of the conditions for a monoidal category, namely that the tensor product is a
bifunctor (which was proved for N -composition in §2.2.8 and §2.2.9) fails for
SP -composition. As a result, the category GameSP (C) is only a premonoidal
category [PR93], not a monoidal category.

The purpose of this appendix is to give a complete, self-contained proof of
this fact. It is designed to be independent of the proofs in §2.2 both logically
and in presentation. The cost of this is that a large amount of material from
that section has been duplicated here.

A.2 The identity laws

We begin with the identity laws of a category. Let G : (X,S) → (Y,R) be a
game. We first prove that (idY , idR) ◦SP G ∼ G, and hence they are equal after
quotienting.

127

A.2. THE IDENTITY LAWS

For the strategy sets,

Σ(idY , idR)◦SPG = ΣG × Σ(idY , idR) = ΣG × 1

and so we take the isomorphism i : ΣG × 1→ ΣG . For the play function,

P(idY , idR)◦SPG(iσ) = P(idY , idR)∗ ◦PGσ = idY ◦PGσ = PGσ

For coplay, by definition C(idY , idR)◦SPG(iσ) is the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R

X⊗C(idY , idR)∗−−−−−−−−−−→ X ⊗R
CGσ−−−→ S

which, expanding the definitions further, is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗PGσ⊗R−−−−−−−→ X ⊗ Y ⊗R X⊗π2−−−−→ X ⊗R

CGσ−−−→ S

The first part of this is the identity on X ⊗R, so it is equal to CGσ.
For best response we have

iσ′ ∈ B(idY ,idR)◦SPG(h, k)(iσ)

⇐⇒ (σ′, ∗) ∈ BG(h, k∗◦)σ ×
⋂

σ
′′

:ΣG

B(idY ,idR)(PGσ
′′ ◦ h, k)∗

⇐⇒ σ′ ∈ BG(h, k∗◦)σ

The continuation k∗◦ is given by

Y
∆Y−−→ Y ⊗ Y

Y⊗P(idY , idR)∗−−−−−−−−−−→ Y ⊗ Y Y⊗k−−−→ Y ⊗R
C(idY , idR)∗−−−−−−−−→ R

Expanding the definitions and simplifying, this is

Y
∆Y−−→ Y ⊗ Y Y⊗k−−−→ Y ⊗R π2−→ R

which is equal to k, and we are done.
For the other identity law, we will prove that G ◦SP (idX , idS) ∼ G. For the

strategy sets,

ΣG◦SP (idX , idS) = Σ(idX , idS) × ΣG = 1× ΣG ∼= ΣG

now with the isomorphism i : ΣG → 1× ΣG . For the play function,

PG◦SP (idX , idS)(iσ) = PGσ ◦P(idX , idS)∗ = PGσ ◦ idX = PGσ

For coplay we have that CG◦SP (idX , idS)(iσ) is the composition

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗P(idX, idS)∗⊗R−−−−−−−−−−−−→ X ⊗X ⊗R

X⊗CGσ−−−−−→ X ⊗ S
C(idX, idS)∗−−−−−−−−→ S

Expanding and simplifying, this is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗CGσ−−−−−→ X ⊗ S π2−→ S

128

A.3. ASSOCIATIVITY

which is equal to CGσ.
For best response we have

iσ′ ∈ BG◦SP (idX ,idS)(h, k)(iσ)

⇐⇒ (∗, σ′) ∈ B(idX ,idS)(h, kσ◦)∗ ×
⋂

σ
′′

:Σ(idX,idS)

BG(P(idX ,idS)σ
′′ ◦ h, k)σ

⇐⇒ σ′ ∈ BG(P(idX ,idS)∗ ◦ h, k)σ

⇐⇒ σ′ ∈ BG(h, k)σ

because P(idX ,idS)∗ = idX .
In summary, we have proved that the identity for SP -composition on an

object (X,R) is (idX , idR).

A.3 Associativity

Consider games

(W,U)
G−→ (X,T)

H−→ (Y, S)
I−→ (Z,R)

We will prove that

I ◦SP (H ◦SP G) ∼ (I ◦SP H) ◦SP G

For SP -composition, more than for N -composition, this associativity law is not
obvious.

The two sets of strategy profiles are ΣI◦SP (H◦SPG) = (ΣG × ΣH)× ΣI and
Σ(I◦SPH)◦SPG = ΣG × (ΣH × ΣI), so we take the isomorphism

i : (ΣG × ΣH)× ΣI → ΣG × (ΣH × ΣI)

The case for the play function follows immediately from associativity of
composition in the underlying category C:

PI◦SP (H◦SPG)((σ, τ), υ) = PIυ ◦PH◦SPG(σ, τ)

= PIυ ◦PHτ ◦PGσ

= PI◦SPH(τ, υ) ◦PGσ

= P(I◦SPH)◦SPG(i((σ, τ), υ))

For coplay, by definition CI◦SP (H◦SPG)((σ, τ), υ) is the composition

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PH◦SP G(σ,τ)⊗R
−−−−−−−−−−−−−→W ⊗ Y ⊗R

W⊗CIυ−−−−−→W ⊗ S
CH◦SP G

(σ,τ)
−−−−−−−−−→ U

which is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

W⊗PHτ⊗R−−−−−−−−→W ⊗ Y ⊗R W⊗CIυ−−−−−→W ⊗ S ∆W⊗S−−−−−→W ⊗W ⊗ S

129

A.3. ASSOCIATIVITY

W⊗PGσ⊗S−−−−−−−→W ⊗X ⊗ S W⊗CHτ−−−−−−→W ⊗ T
CGσ−−−→ U

On the other hand C(I◦SPH)◦SPG(i((σ, τ), υ)) is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

W⊗CI◦SPH(τ,υ)
−−−−−−−−−−−→W ⊗ T

CGσ−−−→ U

which is

W ⊗R ∆W⊗R−−−−−→W ⊗W ⊗R
W⊗PGσ⊗R−−−−−−−−→W ⊗X ⊗R

W⊗∆X⊗R−−−−−−−→W ⊗X ⊗X ⊗R W⊗X⊗PHτ⊗R−−−−−−−−−−→W ⊗X ⊗ Y ⊗R
W⊗X⊗CIυ−−−−−−−−→W ⊗X ⊗ S W⊗CHτ−−−−−−→W ⊗ T CIσ−−−→ U

and these two morphisms are equal by the comonoid laws for ∆.
For best response, we have

((σ′, τ ′), υ′) ∈ BI◦SP (H◦SPG)(h, k)((σ, τ), υ)

⇐⇒ ((σ′, τ ′), υ′) ∈ BH◦SPG(h, kυ◦)(σ, τ)

×
⋂

(σ
′′
,τ
′′

):ΣH◦SP G

BI(PH◦SPG(σ′′, τ ′′) ◦ h, k)υ

⇐⇒ (σ′, τ ′, υ′) ∈ BG(h, (kυ◦)τ◦)σ

×
⋂

σ
′′

:ΣG

BH(PGσ
′′ ◦ h, kυ◦)τ ×

⋂
σ
′′

:ΣG
τ
′′

:ΣH

BI(PHτ
′′ ◦PGσ

′′ ◦ h, k)υ

and

i((σ′, τ ′), υ′) ∈ B(I◦SPH)◦SPG(h, k)(i((σ, τ), υ))

⇐⇒ (σ′, (τ ′, υ′)) ∈ BG(h, k(τ,υ)◦)σ ×
⋂

σ
′′

:ΣG

BI◦SPH(PGσ
′′ ◦ h, k)(τ, υ)

⇐⇒ (σ′, (τ ′, υ′)) ∈ BG(h, k(τ,υ)◦)σ

×
⋂

σ
′′

:ΣG

BH(PGσ
′′ ◦ h, kυ◦)τ ×

⋂
τ
′′

:ΣH

BI(PHτ
′′ ◦PGσ

′′ ◦ h, k)υ


⇐⇒ (σ′, τ ′, υ′) ∈ BG(h, k(τ,υ)◦)σ

×
⋂

σ
′′

:ΣG

BH(PGσ
′′ ◦ h, kυ◦)τ ×

⋂
σ
′′

:ΣG
τ
′′

:ΣH

BI(PHτ
′′ ◦PGσ

′′ ◦ h, k)υ

Here kυ◦ is the composition

Y
∆Y−−→ Y ⊗ Y Y⊗PIυ−−−−−→ Y ⊗ Z Y⊗k−−−→ Y ⊗R CIυ−−−→ S

and (kυ◦)τ◦ is the composition

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗kυ◦−−−−−→ X ⊗ S CHτ−−−→ T

130

A.4. FUNCTORIALITY OF THE TENSOR PRODUCT

which expands to

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗∆Y−−−−−→ X ⊗ Y ⊗ Y

X⊗Y⊗PIυ−−−−−−−→ X ⊗ Y ⊗ Z X⊗Y⊗k−−−−−→ X ⊗ Y ⊗R X⊗CIυ−−−−−→ X ⊗ S CHτ−−−→ T

On the other hand k(τ,υ)◦ is the composition

X
∆X−−→ X ⊗X X⊗PI◦H(τ,υ)−−−−−−−−−→ X ⊗ Z X⊗k−−−→ X ⊗R CI◦H(τ,υ)−−−−−−−→ T

which expands to

X
∆X−−→ X ⊗X X⊗PHτ−−−−−→ X ⊗ Y X⊗PIυ−−−−−→ X ⊗ Z X⊗k−−−→ X ⊗R

∆X⊗R−−−−→ X ⊗X ⊗R X⊗PHτ⊗R−−−−−−−−→ X ⊗ Y ⊗R PIυ−−−→ X ⊗ S PHτ−−−→ T

Then (kυ◦)τ◦ = k(τ,υ)◦, and we are done.

A.4 Functoriality of the tensor product

We will now prove that ⊗, defined in §2.2.7, is individually functorial on
GameSP (C) in each of its two arguments, that is to say, it is a premonoidal
product.

The action on objects of GameSP (C) is to pairwise apply the monoidal
product of C, so

(X1, R1)⊗ (X2, R2) = (X1 ⊗X2, R1 ⊗R2)

The unit is (I, I), where I is the monoidal unit of C.
We will first prove the identity law, namely

id(X1,R1) ⊗ id(X2,R2) ∼ id(X1⊗X2,R1⊗R2)

Since Σid(X1,R1)⊗id(X2,R2)
= 1× 1 and Σid(X1⊗X2,R1⊗R2)

= 1, we take the isomor-

phism i(∗, ∗) = ∗. For the play function,

Pid(X1,R1)⊗id(X2,R2)
(∗, ∗) = Pid(X1,R1)

∗ ⊗Pid(X2,R2)
∗

= idX1
⊗ idX2

= idX1⊗X2

= Pid(X1⊗X2,R1⊗R2)
∗

For coplay,

Cid(X1,R1)⊗id(X2,R2)
(∗, ∗)

= (Cid(X1,R1)
∗ ⊗Cid(X2,R2)

∗) ◦ (X1 ⊗ sX2,R1
⊗R2)

= ((idR1
◦ πX1⊗X2→R1

)⊗ (idR2
◦ πX2⊗R2→R2

)) ◦ (X1 ⊗ sX2,R1
⊗R2)

= (idR1
⊗ idR2

) ◦ (πX1⊗R1→R1
⊗ πX2⊗R2→R2

) ◦ (X1 ⊗ sX2,R1
⊗R2)

= idR1⊗R2
◦ πX1⊗X2⊗R1⊗R2→R1⊗R2

= Cid(X1⊗X2,R1⊗R2)
∗

131

A.4. FUNCTORIALITY OF THE TENSOR PRODUCT

where the canonical projections have been labelled with their types for clarity.
For best response, we note that

∗ ∈ Bid(X1⊗X2,R1⊗R2)
(h, k)∗

always holds, and so does

(∗, ∗) ∈ Bid(X1,R1)⊗id(X2,R2)
(h, k)(∗, ∗)

= Bid(X1,R1)
(h1, k⊗∗(h2))∗ ×Bid(X2,R2)

(h2, k∗(h1)⊗)∗

The distributivity laws for a premonoidal product are

(H ◦SP G)⊗ id(X
′
,R
′
) ∼ (H⊗ id(X

′
,R
′
)) ◦SP (G ⊗ id(X

′
,R
′
))

and
id(X

′
,R
′
) ⊗ (H ◦SP G) ∼ (id(X

′
,R
′
) ⊗H) ◦SP (id(X

′
,R
′
) ⊗ G)

Because the definition of ⊗ is completely symmetrical, we will prove the case for
best response only for the first.

For the strategy profiles we have

Σ(H◦SPG)⊗id
(X
′
,R
′
)

= (ΣG × ΣH)× 1

and
Σ(H⊗id

(X
′
,R
′
)
)◦SP (G⊗id

(X
′
,R
′
)
) = (ΣG × 1)× (ΣH × 1)

and so we take the isomorphism i((σ, τ), ∗) = ((σ, ∗), (τ, ∗)).
For the play function we have

P(H◦SPG)⊗id
(X
′
,R
′
)
((σ, τ), ∗) = PH◦SPG(σ, τ)⊗Pid

(X
′
,R
′
)
∗

= (PHτ ◦PGσ)⊗ idX′

= (PHτ ⊗ idX′) ◦ (PGσ ⊗ idX′)

= (PHτ ⊗Pid
(X
′
,R
′
)
∗) ◦ (PGσ ⊗Pid

(X
′
,R
′
)
∗)

= PH⊗id
(X
′
,R
′
)
(τ, ∗) ◦PG⊗id

(X
′
,R
′
)
(σ, ∗)

= P(H⊗id
(X
′
,R
′
)
)◦SP (G⊗id

(X
′
,R
′
)
)((σ, ∗), (τ, ∗))

For the coplay functions, we draw string diagrams in C again, as we did in
§2.2.8. The string diagram representation of C(H◦SPG)⊗id

(X
′
,R
′
)
((σ, τ), ∗) is

132

A.4. FUNCTORIALITY OF THE TENSOR PRODUCT

X

X ′

R

R′

PGσ

CHτ

CGσ T

R′

Y

S

and that for C(H⊗id
(X
′
,R
′
)
)◦SP (G⊗id

(X
′
,R
′
)
) is

X

X ′

R

R′

PGσ

CHτ

CGσ T

R′

Y

S

It can be seen that each can be deformed into the other.
Finally, we come to the best response functions. We must show that

((σ′, τ ′), ∗) ∈ B(H◦SPG)⊗id
(X
′
,R
′
)
(h, k)((σ, τ), ∗)

is equivalent to

((σ′, ∗), (τ ′, ∗)) ∈ B(H⊗id
(X
′
,R
′
)
)◦SP (G⊗id

(X
′
,R
′
)
)(h, k)((σ, ∗), (τ, ∗))

The former expands as

((σ′, τ ′), ∗) ∈ B(H◦SPG)⊗id
(X
′
,R
′
)
(h, k)((σ, τ), ∗)

⇐⇒ ((σ′, τ ′), ∗) ∈ BH◦SPG(h, k⊗∗(h2))(σ, τ)×Bid
(X
′
,R
′
)
(h2, k(σ,τ)(h1)⊗)∗

⇐⇒ (σ′, τ ′) ∈ BG(h1, (k⊗∗(h2))τ◦)σ ×
⋂

σ
′′

:ΣG

BH(PGσ
′′ ◦ h1, k⊗∗(h2))τ

133

A.4. FUNCTORIALITY OF THE TENSOR PRODUCT

and the latter as

((σ′, ∗), (τ ′, ∗)) ∈ B(H⊗id
(X
′
,R
′
)
)◦SP (G⊗id

(X
′
,R
′
)
)(h, k)((σ, ∗), (τ, ∗))

⇐⇒ ((σ′, ∗), (τ ′, ∗)) ∈ BG⊗id
(X
′
,R
′
)
(h, k(τ,∗)◦)(σ, ∗)

×
⋂

(σ
′′
,∗):

ΣG×1

BH⊗id
(X
′
,R
′
)
(PG⊗id

(X
′
,R
′
)
(σ′′, ∗) ◦ h, k)(τ, ∗)

⇐⇒ (σ′, τ ′) ∈ BG(h1, (k(τ,∗)◦)⊗∗(h2))σ

×
⋂

σ
′′

:ΣG

BH((PG⊗id
(X
′
,R
′
)
(σ′′, ∗) ◦ h)1, k⊗∗((PG⊗id

(X
′
,R
′
)
(σ
′′
,∗)◦h)2))τ

Comparing these, we first note that we have equalities of histories

PGσ
′′ ◦ h1 = (PG⊗id

(X
′
,R
′
)
(σ′′, ∗) ◦ h)1

and
h2 = (PG⊗id

(X
′
,R
′
)
(σ′′, ∗) ◦ h)2

The equality of continuations

k⊗∗(h2) = k⊗∗((PG⊗id
(X
′
,R
′
)
(σ
′′
,∗)◦h)2)

follows immediately from the latter. For the remaining equality

(k⊗∗(h2))τ◦ = (k(τ,∗)◦)⊗∗(h2)

we note the equivalence between the diagrams

Y

PH1
τ1

h

k

CH1
τ1 SZ

X

X ′

R

R′

and

134

A.5. THE MONOIDAL CATEGORY AXIOMS

Y

h PH1
τ1

k

CH1
τ1 S

X

X ′

Z

R

R′

A.5 The monoidal category axioms

The remaining work in proving that GameSP (C) is premonoidal is to prove the
monoidal category axioms. (To be clear, the axioms of a premonoidal category
are still usually called the ‘monoidal category axioms’ because they are identical
to those of a monoidal category; the only difference in a premonoidal category is
that ⊗ is not a bifunctor.)

In general, proving these axioms takes a significant amount of work. We
must define three families of morphisms, the left and right unitors and the
associators, prove their naturality, and then prove the commutativity of two
diagrams including the Mac Lane pentagon. To prove that a premonoidal
category is symmetric we must additionally define the braiding morphisms, prove
their naturality, and prove commutativity of an additional three diagrams.

Most of this work can be avoided by appealing to Mac Lane’s coherence
theorem [Mac78] and replacing C with a monoidally equivalent strict monoidal
category. In that case we have equalities of objects

(I, I)⊗ (X,R) = (I ⊗X, I ⊗R) = (X,R) = (X ⊗ I,R⊗ I) = (X,R)⊗ (I, I)

and so we can take all of the unitors to be the identity morphisms (that is, compu-
tations formed of pairs of identities, see §2.2.3), which are automatically natural
and satisfy the commutative diagrams, simply by the fact that GameSP (C) is a
category. Similarly we have equalities

((X1, R1)⊗ (X2, R2))⊗ (X3, R3) = (X1 ⊗X2 ⊗X3, R1 ⊗R2 ⊗R3)

= (X1, R1)⊗ ((X2, R2)⊗ (X3, R3))

and so we can also take the associators to be identities.
For the braiding morphisms we take (the equivalence class of) the computation

s(X1,R1),(X2,R2) = (sX1,X2
, sR2,R1

)

: (X1 ⊗X2, R1 ⊗R2)→ (X2 ⊗X1, R2 ⊗R1)

For a strict premonoidal category the the unit law becomes trivial, so we must
prove only the associativity and inverse laws. For this, we will use the result
from §A.7, that computations respect SP -composition and tensor. This is not

135

A.5. THE MONOIDAL CATEGORY AXIOMS

circular, because we will only use the part of the result that does not already
assume that GameSP (C) is premonoidal, and is really shorthand for copying
special cases of that proof into this section.

We will begin with the inverse law. For an arbitrary symmetric premonoidal
category this is

sB,A ◦ sA,B = idA⊗B

We take A = (X1, R1) and B = (X2, R2), and so this is

(sX2,X1
, sR1,R2

) ◦SP (sX1,X2
, sR2,R1

)

: (X1 ⊗X2, R1 ⊗R2)→ (X1 ⊗X2, R1 ⊗R2)

Since computation is functorial (§A.7), this is

(sX2,X1
◦ sX1,X2

, sR2,R1
◦ sR1,R2

)

and we can apply the inverse law of C.
The associativity axiom for a strict symmetric premonoidal category is

A⊗B ⊗ C B ⊗A⊗ C

B ⊗ C ⊗A

sA,B ⊗ C

sA,B⊗C
B ⊗ sA,C

In GameSP (C), we need to take A = (X1, R1), B = (X2, R2) and C = (X3, R3).
As a lemma, we need the equations

(X2, R2)⊗ s(X1,R1),(X3,R3) = (X2 ⊗ sX1,X3
, R2 ⊗ sR3,R1

)

and
s(X1,R1),(X2,R2) ⊗ (X3, R3) = (sX1,X2

⊗X3, sR2,R1
⊗R3)

which are special cases of the fact that computation is a monoidal functor (§A.7).
Now, by functoriality, we have that the computations

((X2, R2)⊗ s(X1,R1),(X3,R3)) ◦SP (s(X1,R1),(X2,R2) ⊗ (X3, R3))

and
((X2 ⊗ sX1,X3

) ◦ (sX1,X2
⊗X3), (sR2,R1

⊗R3) ◦ (R2 ⊗ sR3,R1
))

are equal. Therefore we need only check the equations

(X2 ⊗ sX1,X3
) ◦ (sX1,X2

⊗X3) = sX1,X2⊗X3

and
(sR2,R1

⊗R3) ◦ (R2 ⊗ sR3,R1
) = sR2⊗R3,R1

in C, which both hold because C is symmetric monoidal.

136

A.6. STRATEGIC TRIVIALITY

A.6 Strategic triviality

The definition of strategic triviality was given in §2.2.11. We will now prove that
strategically trivial games are closed under SP -composition.

Suppose we have strategically trivial games

(X,T)
G−→ (Y, S)

H−→ (Z,R)

We must prove that H ◦SP G has one strategy, which behaves trivially. The
strategy profiles are

ΣH◦SPG = ΣG × ΣG = 1× 1

The best response function is

BH◦SPG(h, k)(∗, ∗) = BG(h, k∗◦)∗ ×
⋂
∗:1

BH(PG∗ ◦ h, k)∗

= {∗} × {∗} = {(∗, ∗)}

We also note the equivalent for SP -composition of the useful result from
§2.2.11, namely that if we have a composition

(X ′, S′)
H1−−→ (X,S)

G−→ (Y,R)
H2−−→ (Y ′, R′)

in GameSP (C), where H1 and H2 are strategically trivial, then

ΣH2◦SPG◦SPH1

∼= ΣG

and
BH2◦SPG◦SPH1

(h, k) = BG(PH1
◦ h, k′)

where

k′ : Y
∆Y−−→ Y ⊗ Y

Y⊗PH2−−−−−→ Y ⊗ Y ′ Y⊗k−−−→ Y ⊗R′
CH2−−−→ R

As before, H1 affects only the history, and H2 affects only the continuation.
It is also useful to note that if either G or H is strategically trivial, then

H ◦SP G = H ◦N G. This is extremely useful because it will quite often be the
case that one of the games being composed is strategically trivial. The two cases
have different proofs. If G is strategically trivial the result holds because the
intersection over the strategies of G is trivial:

BH◦SPG(h, k)(∗, σ) = BG(h, kσ◦)∗ ×
⋂
∗:1

BH(PG∗ ◦ h, k)σ

= BG(h, kσ◦)∗ ×BH(PG∗ ◦ h, k)σ

= BH◦NG(h, k)(∗, σ)

On the other hand, if H is strategically trivial then

BH◦SPG(h, k)(σ, ∗) = BG(h, k∗◦)σ ×
⋂
σ
′
:ΣG

BH(PGσ
′ ◦ h, k)∗

= BG(h, k∗◦)σ ×
⋂
σ
′
:ΣG

{∗}

= BG(h, k∗◦)σ × {∗}
= BG(h, k∗◦)σ ×BH(PGσ ◦ h, k)∗
= BH◦NG(h, k)(σ, ∗)

137

A.7. COMPUTATIONS AS A MONOIDAL FUNCTOR

A.7 Computations as a monoidal functor

We will now prove that computation, defined in §2.1.9, gives us a faithful
monoidal functor

(−,−) : C × Cop ↪→ GameSP (C)

We will first prove that we have a bifunctor C × Cop → GameSP (C). In the
product category C×Cop the objects are pairs of objects of C, and the morphisms
are pairs of morphisms with the second reversed. The identity morphism on the
object (X,R) of C × Cop is (idX , idR) which, lifted to a computation, is also the
the identity game on (X,R) in GameSP (C) (see §A.2).

The composition

(X,T)
(f1,f2)−−−−→ (Y, S)

(g1,g2)−−−−→ (Z,R)

in C × Cop is, by definition,

(g1, g2) ◦ (f1, f2) = (g1 ◦ f1, f2 ◦ g2)

and we must prove that the games denoted by these two expressions are equal.
Since both are strategically trivial (§A.6), we need only check the play and coplay
functions. The play functions are

P(g1◦f1,f2◦g2) : X
g1◦f1−−−→ Z

and

P(g1,g2)◦SP (f1,f2) : X
P(f1,f2)−−−−−→ Y

P(g1,g2)−−−−−→ Z

which are equal. The coplay functions are

P(g1◦f1,f2◦g2) : X ⊗R π2−→ R
f2◦g2−−−→ T

and

C(g1,g2)◦SP (f1,f2) : X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R
X⊗P(f1,f2)⊗R−−−−−−−−−−→ X ⊗ Y ⊗R

X⊗C(g1,g2)−−−−−−−−→ X ⊗ S
C(f1,f2)−−−−−→ T

The latter is

X ⊗R ∆X⊗R−−−−→ X ⊗X ⊗R X⊗f1⊗R−−−−−−→ X ⊗ Y ⊗R

X⊗π2−−−−→ X ⊗R X⊗g2−−−−→ X ⊗ S π2−→ S
f2−→ T

and these are equal.
Next, we must prove that the embedding also respects the monoidal structure.

The monoidal unit of the product monoidal category C × Cop is (I, I), which is
also the monoidal unit of GameSP (C) (see §A.5).

Suppose (f1, f2) : (X1, S1)→ (Y1, R1) and (g1, g2) : (X2, S2)→ (Y2, R2) are
morphisms of C × Cop. Their monoidal product is

(f1 ⊗ g1, f2 ⊗ g2) : (X1 ⊗X2, S1 ⊗ S2)→ (Y1 ⊗ Y2, R1 ⊗R2)

138

A.8. THE COUNIT LAW

We must therefore prove the equality of games

(f1, f2)⊗ (g1, g2) = (f1 ⊗ g1, f2 ⊗ g2)

Again both are strategically trivial, so we need only work with the play and
coplay functions. For the play function we have

P(f1,f2)⊗(g1,g2) = P(f1,f2) ⊗P(g1,g2) = f1 ⊗ g1 = P(f1⊗g1,f2⊗g2)

For coplay, the former is

C(f1,f2)⊗(g1,g2) : X1 ⊗X2 ⊗R1 ⊗R2

∼=−→ X1 ⊗R1 ⊗X2 ⊗R2

C(f1,f2)⊗C(g1,g2)−−−−−−−−−−−−→ S1 ⊗ S2

which is
X1 ⊗X2 ⊗R1 ⊗R2

∼=−→ X1 ⊗R1 ⊗X2 ⊗R2

π2⊗π2−−−−→ R1 ⊗R2
f2⊗g2−−−−→ S1 ⊗ S2

and the latter is

C(f1⊗g1,f2⊗g2) : X1 ⊗X2 ⊗R1 ⊗R2
π2−→ R1 ⊗R2

f2⊗g2−−−−→ S1 ⊗ S2

which is equal.

A.8 The counit law

Let f : homC(X,Y). Then the following diagram commutes in GameSP (C):

(X,Y) (X,X)

(Y, Y) (I, I)

(idX , f)

(f, idY) τX

τY

Since both games are strategically trivial, we need only check the behaviour of
the play and coplay functions.

The definitions in §2.1.9 give us

P(idX ,f) : X
idX−−→ X C(idX ,f) : X ⊗X π2−→ X

f−→ Y

P(f,idY) : X
f−→ Y C(f,idY) : X ⊗ Y π2−→ Y

idY−−→ Y

PεX
: X

!X−→ I CεX
: X ⊗ I π1−→ X

PεY
: Y

!Y−→ I CεY
: Y ⊗ I π1−→ Y

139

A.8. THE COUNIT LAW

Composing these sequentially gives us the play functions

PτX◦SP (idX ,f) : X
idX−−→ X

!X−→ I

PτY ◦SP (f,idY) : X
f−→ Y

!Y−→ I

which are equal, and the coplay functions

CεX◦SP (idX ,f) : X ⊗ I ∆X⊗I−−−−→ X ⊗X ⊗ I X⊗π1−−−−→ X ⊗X π2−→ X
f−→ Y

and

CεY ◦SP (f,idY) : X ⊗ I ∆X⊗I−−−−→ X ⊗X ⊗ I X⊗f⊗I−−−−−→ X ⊗ Y ⊗ I
X⊗π1−−−−→ X ⊗ Y π2−→ Y

which are both equal to

X ⊗ I π1−→ X
f−→ Y

The game denoted by these two equal expressions is important, because when
post-composed with another game it will behave like a continuation, and we will
generally use it when f is an outcome function. Let G : (X,S) → (Y,R) be a
game, and let k : homC(Y,R) be a continuation for G. Consider the game

(X,S)
G−→ (Y,R)

(k,idR)−−−−→ (R,R)
εR−−→ (I, I)

in GameSP (C), which by the counit law, can be equivalently written

(X,S)
G−→ (Y,R)

(idY , k)−−−−−→ (Y, Y)
εY−−→ (I, I)

Then
ΣεR◦SP (k,idR)◦SPG

∼= ΣG

and for any h : homC(I,X) and σ : ΣG we have

BG(h, k)σ ∼= BεR◦SP (k,idR)◦SPG(h, idI)σ

under the same isomorphism.
To see this, the right hand side is

BεR◦SP (k,idR)◦SPG(h, idI)σ

= BG(h, (idI)∗◦)σ ×
⋂
σ
′
:ΣG

BεR◦SP (k,idR)(PGσ
′ ◦ h, idI)∗

and, since εR ◦SP (k, idR) is strategically trivial, this is

BG(h, (idI)∗◦)σ × {∗}

The final step is to see that (idI)∗◦ = k. By definition it is

(idI)∗◦ : Y
∆Y−−→ Y ⊗ Y

Y⊗PεR◦SP (k,idR)−−−−−−−−−−−−→ Y ⊗ I Y⊗idI−−−−→ Y ⊗ I
CεR◦SP (k,idR)−−−−−−−−−→ R

which reduces to

Y
∆Y−−→ Y ⊗ Y Y⊗!Y−−−−→ Y ⊗ I π1−→ Y

k−→ R

and hence to k.

140

Bibliography

[Abr05] Samson Abramsky. Abstract scalars, loops, and free traced and
strongly compact closed categories. In Proceedings of CALCO’05,
volume 3629 of Lectures notes in computer science, pages 1–29, 2005.

[Abr15] Samson Abramsky. Arrow’s theorem by arrow theory. In Logic
without borders: essays on set theory, model theory, philosophical
logic and philosophy of mathematics, volume 5 of Ontos mathematical
logic, pages 15–30. De Gruyter, 2015.

[AC04] Samson Abramsky and Bob Coecke. A categorical semantics of quan-
tum protocols. In Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science: LICS 2004, 2004.

[AF98] Jeremy Avigad and Solomon Feferman. Gödel’s functional (“Dialec-
tica”) interpretation. In S. Buss, editor, Handbook of proof theory,
volume 137 of Studies in logic and the foundations of mathematics,
pages 337–405. North Holland, Amsterdam, 1998.

[AGH+06] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride,
and Peter Morris. Indexed containers. Unpublished manuscript,
2006.

[AKLW15] Samson Abramsky, Alexander Kurz, Pierre Lescanne, and Viktor
Winschel. Coalgebraic semantics of reflexive economics (Dagstuhl
seminar 15042). Dagstuhl reports, 5(1), 2015.

[Ati08] Michael Atiyah. Advice to a young mathematician. In Timothy
Gowers, editor, The Princeton companion to mathematics. Princeton
university press, 2008.

[AW15] Samson Abramsky and Viktor Winschel. Coalgebraic analysis of
subgame-perfect equilibria in infinite games without discounting. To
appear in Mathematical Structures in Computer Science, 2015.

[BIB13] Nicola Botta, Cezar Ionescu, and Edwin Brady. Sequential decision
problems, dependently typed solutions. In Proeedings of PLMMS13,
2013.

[BKP15] Pierre Boudes, Antoine Kaszczyc, and Luc Pellisser. Monetary
economics simulation: Stock-flow consistent invariance, monadic
style. HAL ID: hal-01181278, 2015.

141

BIBLIOGRAPHY

[Bla97] Andreas Blass. Some semantical aspects of linear logic. Logic journal
of the interest group in pure and applied logic, 5(4):487–503, 1997.

[BMI+11] Nicola Botta, Antoine Mandel, Cezar Ionescu, Mareen Hofmann,
Daniel Lincke, Sibylle Schupp, and Carlo Jaeger. A functional
framework for agent-based models of exchange. Applied mathematics
and computation, 218(8):4025–4040, 2011.

[BS10] John Baez and Mike Stay. Physics, topology, logic and computation:
a Rosetta stone. In Bob Coecke, editor, New structures for physics,
pages 95–172. Springer, 2010.

[BW13] Achim Blumensath and Viktor Winschel. A coalgebraic framework
for games in economics. Working paper, 2013.

[Coe05] Bob Coecke. Kindergarten quantum mechanics. ArXiV, 2005.

[Coe06] Bob Coecke. Introducing categories to the practicing physicist. In
What is category theory? Advanced studies in mathematics and logic,
volume 30, pages 45–74. Polimetrica, 2006.

[Coe11] Bob Coecke, editor. New structures for physics. Springer, 2011.

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. The complexity of computing a Nash equilibrium.
STOC ’06 Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 71–79, 2006.

[dP91] Valeria de Paiva. The dialectica categories. Technical report, Uni-
versity of Cambridge, 1991.

[dP07] Valeria de Paiva. Dialectica and Chu construtions: Cousins? Theory
and applications of categories, 17(7):127–152, 2007.

[EK06] Martin Erwig and Steve Kollmansberger. Probabilistic functional
programming in Haskell. Journal of functional programming,
16(1):21–34, 2006.

[EO10a] Martin Escardó and Paulo Oliva. Selection functions, bar recur-
sion and backward induction. Mathematical structures in computer
science, 20(2):127–168, 2010.

[EO10b] Martin Escardó and Paulo Oliva. What sequential games, the
Tychonoff theorem and the double-negation shift have in common.
In Proceedings of MSFP’10, 2010.

[EO11] Martin Escardó and Paulo Oliva. Sequential games and optimal
strategies. Proceedings of the Royal Society A, 467:1519–1545, 2011.

[EO12] Martin Escardó and Paulo Oliva. Computing Nash equilibria of
unbounded games. Proceedings of the Turing centenary conference,
2012.

[EO15] Martin Escardó and Paulo Oliva. The Herbrand interpretation of
the double negation shift. Submitted, 2015.

142

BIBLIOGRAPHY

[Esc04] Martin Escardó. Synthetic topology of data types and classical
spaces. ENTCS, 87:21–156, 2004.

[Fri09] Tobias Fritz. Convex spaces I: Definitions and examples. ArXiV,
2009.

[FT91] Drew Fudenberg and Jean Tirole. Game theory. MIT Press, 1991.

[GH16] Neil Ghani and Jules Hedges. A compositional approach to economic
game theory. Submitted, 2016.

[Gir82] Michèlle Giry. A categorical approach to probability theory. Cate-
gorical aspects of topology and analysis, pages 68–85, 1982.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical computer science, 1987.

[Gir01] Jean-Yves Girard. Locus solum: from the rules of logic to the logic
of rules. Mathematical structures in computer science, 11(3):301–506,
2001.

[Hed13] Jules Hedges. A generalisation of Nash’s theorem with higher-order
functionals. Proceedings of the Royal Society A, 469, 2013.

[Hed14] Jules Hedges. Monad transformers for backtracking search. In
Proceedings of MSFP’14, EPTCS, pages 31–50, 2014.

[Hed15a] Jules Hedges. Dialectica categories and games with bidding. In
Post-proceedings of TYPES’14, volume 39 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 89–110, 2015.

[Hed15b] Jules Hedges. The selection monad as a CPS translation. ArXiV,
2015.

[HOS+15a] Jules Hedges, Paulo Oliva, Evguenia Sprits, Viktor Winschel, and
Philipp Zahn. Higher-order decision theory. ArXiV, 2015.

[HOS+15b] Jules Hedges, Paulo Oliva, Evguenia Sprits, Viktor Winschel, and
Philipp Zahn. Higher-order game theory. Submitted, 2015.

[Hoy08] Doug Hoyte. Let over lambda. lulu.com, 2008.

[HS16] Jules Hedges and Mehrnoosh Sadrzadeh. A generalised quantifier
theory of natural language in categorical compositional distributional
semantics with bialgebras. Submitted, 2016.

[HSG13] Chris Heunen, Mehrnoosh Sadrzadeh, and Edward Grefenstette,
editors. Quantum physics and linguistics. Oxford University Press,
2013.

[Hyv14] Pierre Hyvernat. A linear category of polynomial diagrams. Mathe-
matical structures in computer science, 24(1), 2014.

[IJ13] Cezar Ionescu and Patrik Jansson. Dependently-typed programming
in scientific computing: examples from economic modelling. In
Implementation and application of functional languages, Lectures
notes in computer science, pages 140–156. Springer, 2013.

143

BIBLIOGRAPHY

[Jef97] Alan Jeffrey. Premonoidal categories and a graphical view of pro-
grams. Unpublished manuscript, 1997.

[Joh02] Peter Johnstone. Sketches of an Elephant: a topos theory com-
pendium, volume 1. Oxford University Press, 2002.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus I.
Advances in mathematics, 88(1):55–112, 1991.

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical proceedings of the Cambridge philosophical
society, 119:447–468, 1996.

[JWW15] Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. States of con-
vex sets. In Proceedings of FoSSaCS’15, Lectures notes in computer
science, pages 87–101, 2015.

[Kak41] Shizuo Kakutani. A generalisation of brouwer’s fixed point theorem.
Duke Math. J., 8(3):457–459, 1941.

[Key36] John Maynard Keynes. The general theory of employment, interest
and money. Macmillan, 1936.

[KL80] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. Journal of pure and applied algebra, 19(193–213), 1980.

[KM03] Daphne Koller and Brian Milch. Multi-agent influence diagrams for
representing and solving games. Games and economic behaviour,
45(1):181–221, 2003.

[KMS14] Aleks Kissinger, Alex Merry, and Matvey Soloviev. Pattern graph
rewrite systems. Proceedings of DCM’12, 143:54–66, 2014.

[Koc71] Anders Kock. On double dualisation monads. Mathematica Scandi-
navica, 27(2):151–165, 1971.

[Koc72] Anders Kock. Strong functors and monoidal monads. Archiv der
Mathematik, 23(1):113–120, 1972.

[Kre90] David Kreps. A course in microeconomic theory. Princeton university
press, 1990.

[Kre91] David Kreps. Game theory and economic modelling. Clarendon
lectures in economics. Oxford University Press, 1991.

[LaV06] Steven M. LaValle. Planning algorithms. Cambridge University
Press, 2006.

[LBS08] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory:
a concice, multidisciplinary introduction. Morgan and Claypool,
2008.

[LP12] Pierre Lescanne and Matthieu Perrinel. “Backward” coinduction,
Nash equilibrium and the rationality of escalation. Acta Informatica,
49(3):117–137, 2012.

144

BIBLIOGRAPHY

[lR14] Stephane le Roux. From winning strategy to Nash equilibrium.
Mathematical logic quarterly, 60(4–5):354–371, 2014.

[lRP14] Stéphane le Roux and Arno Pauly. Infinite sequential games with
real-valued payoffs. In Proceedings of CSL-LICS’14, pages 62:1–
62:10, 2014.

[Mac78] Saunders Mac Lane. Categories for the working mathematician.
Springer, 1978.

[McC12] Micah McCurdy. Graphical methods for Tannaka duality of weak
bialgebras and weak Hopf algebras. Theory and applications of
categories, 26(9):233–280, 2012.

[MI04] Lawrence Moss and Ignacio Iglizzo. Harsanyi type spaces and final
coalgebras constructed from satisfied theories. In Proceedings of
CMCS’04, volume 106 of ENTCS, pages 279–295, 2004.

[Mog89] Eugenio Moggi. Computational lambda calculus and monads. In
Proceedings of fourth annual symposium on logic in computer science,
1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information
and Computation, 93:55–92, 1991.

[Mos57] A. Mostowski. On a generalisation of quantifiers. Fundamenta
mathematicae, 44:12–36, 1957.

[Nas50] John Nash. Equilibrium points in n-person games. Proceedings of
the national academy of sciences, 36(1):48–49, 1950.

[Nas51] John Nash. Non-cooperative games. Annals of mathematics,
54(2):286–295, 1951.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani,
editors. Algorithmic game theory. Cambridge University Press, 2007.

[OP14] Paulo Oliva and Thomas Powell. A constructive interpretation of
Ramsey’s theorem via the product of selecion functions. Mathemat-
ical structures in computer science, 2014.

[OP15] Paulo Oliva and Thomas Powell. A game-theoretic computational
interpretation of proofs in classical analysis. In Gentzen’s centenary:
The quest for consistency, pages 501–531. Springer, 2015.

[Pan99] Prakash Panangaden. The category of Markov kernels. Proceed-
ings of the first international workshop on probabilistic methods in
verification, 22:171–187, 1999.

[Pat01] Ross Paterson. A new notation for arrows. In Proceedings of
the sixth ACM SIGPLAN international conference on functional
programming, pages 229–240. ACM, 2001.

[Pav09] Dusko Pavlovic. A semantical approach to equilibria and rational-
ity. In Algebra and coalgebra in computer science, volume 5728 of
Lectures notes in computer science, pages 317–334. Springer, 2009.

145

BIBLIOGRAPHY

[Pav13] Dusko Pavlovic. Monoidal computer I: Basic computability by string
diagrams. Information and Computation, 226:94–116, 2013.

[Pen71] Roger Penrose. Applications of negative dimensional tensors. In
D. J. A. Welsh, editor, Combinatorial mathematics and its applica-
tions, pages 221–244. Academic Press, 1971.

[Pow13] Thomas Powell. On Bar Recursive Interpretations of Analysis. PhD
thesis, Queen Mary University of London, 2013.

[PP02] Gordon Plotkin and John Power. Notions of computation determine
monads. In Proceedings of FoSSaCS’02, volume 2303 of Lectures
notes in computer science, pages 342–356. Springer, 2002.

[PR93] John Power and Edmund Robinson. Premonoidal categories and
notions of computation. Mathematical structures in computer science,
1993.

[PT99] John Power and Hayo Thielecke. Closed Freyd and κ-categories.
In Proceedings of the 26th International Colloquium on Automata,
Languages and Programming, pages 625–634. Springer-Verlag, 1999.

[Sea13] Gavin Seal. Tensors, monads and actions. Theory and applications
of categories, 28(15):403–434, 2013.

[Sel11] Peter Selinger. A survey of graphical languages for monoidal cat-
egories. In Bob Coecke, editor, New structures for physics, pages
289–355. Springer, 2011.

[Shu10] Mike Shulman. Constructing symmetric monoidal bicategories.
ArXiV, 2010.

[SP09] Chris Schommer-Pries. The classification of two-dimensional ex-
tended topological field theories. PhD thesis, University of California,
Berkeley, 2009.

[vNM44] John von Neumann and Oskar Morgenstern. Theory of games and
economic behaviour. Princeton university press, 1944.

[VW06] Daniele Varacca and Glynn Winskel. Distributing probability over
nondeterminism. Mathematical structures in computer science,
16(1):87–113, 2006.

146

	Foreword
	Acknowledgements
	A note on style
	Intended audience

	Introduction
	Background: game theory
	Background: functional programming
	Background: logic for social behaviour
	On compositionality
	Overview of the thesis
	Publications
	Notation and conventions

	Higher order game theory
	Decision theory
	Discussion
	Quantifiers
	The continuation monad
	Selection functions
	Attainment
	Multi-valued variants
	Multi-valued attainment
	Modifying the outcome type

	Normal form games
	Discussion
	Games, strategies and unilateral continuations
	Nash equilibria of normal form games
	Best responses
	Classical games
	Mixed strategies
	Voting games
	Modelling with selection functions
	Coordination and differentiation
	Illustrating the solution concepts

	Sequential games
	Discussion
	The category of selection functions
	The product of selection functions
	Sequential games
	Subgame perfection
	Backward induction
	The inductive step

	The algebra and geometry of games
	Open games
	Discussion
	The underlying model of computation
	The category of stochastic relations
	Open games
	The best response function
	Closed games
	Decisions
	Preliminary examples of decisions
	Computations and counit

	The category of games
	Discussion
	Equivalences of games
	Categorical composition of games
	Best response for sequential compositions
	The identity laws
	Associativity
	Tensor product of games
	Functoriality of the tensor product
	Functoriality of the tensor product, continued
	The monoidal category axioms
	Strategic triviality
	Computations as a monoidal functor
	The counit law
	Information flow in games

	String diagrams
	Discussion
	String diagrams for monoidal categories
	Compact closed categories
	Boxing and compositionality
	The geometry of games
	Partial duality
	Covariance, contravariance and symmetries
	Copying and deleting information
	A bimatrix game
	A sequential game
	Coordination and differentiation games
	Designing for compositionality

	Game theory via open games
	Normal form games
	Discussion
	Tensor products of decisions
	Best response for a tensor of decisions
	Best response for a tensor of decisions, continued
	The payoff functions
	Stochastic decisions
	Best response for a tensor of stochastic decisions

	Extensive form
	Discussion
	Composition with perfect information
	Building the composition
	Best response for the composition
	Best response for the composition, continued
	Information sets
	Imperfect information via open games

	Solvable games
	Discussion
	The definition of solvability
	Solvable decisions
	Backward induction for open games
	Selection functions and open games
	Tensor does not preserve solvability
	Failure of compositional Nash's theorem

	Conclusion
	The future of compositional game theory
	The status of string diagrams
	On the two composition operators
	Mixed strategies and Bayesian reasoning
	Morphisms between games
	The meaning of coplay

	Appendix: The structure of Game_SP (C)
	Discussion
	The identity laws
	Associativity
	Functoriality of the tensor product
	The monoidal category axioms
	Strategic triviality
	Computations as a monoidal functor
	The counit law

	Bibliography

