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Abstract. The Old World screwworm fly (OWSF), Chrysomya bezziana 

(Diptera: Calliphoridae), is an important agent of traumatic myiasis and, as such, a 

major human and animal health problem. In order to implement OWSF control 

operations it is important to be able to determine the geographical origin of these 

disease vectors to discriminate between invading and endemic populations. Gross 

morphological and molecular studies have demonstrated the existence of two 

distinct lineages of this species, one African and the other Asian. Wing 

morphometry can be of substantial assistance in identifying the geographical 

origin of introductions of this pest species by providing diagnostic markers that 

complement molecular diagnostics. However, the location of the landmarks used 

in traditional geometric morphometric analysis can be time consuming and is 

subject to error caused by operator subjectivity. Here we report results of an 

image-based approach to geometric morphometric analysis for delivering wing-

based geographic classifications. Results indicate that this approach can produce 

discriminations that are practically indistinguishable from more traditional 

landmark-based results. In addition, we show that the direct analysis of digital 

wing images can be used to discriminate between three species of Chrysomya 

blow flies of veterinary and forensic importance and between C. bezziana genders. 

Key Words. morphometrics, Old World screwworm fly, Chrysomya, 

biogeography, species identification, sexual dimorphism. 
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Introduction 

The Old World screwworm fly (OWSF), Chrysomya bezziana (Diptera: Calliphoridae), is an 

important agent of traumatic myiasis in humans, but more importantly in animals who cannot 

protect themselves from fly infestation as efficiently as humans. As a result, traumatic myiasis is a 

worldwide animal health problem and the cause of severe economic losses, especially in developing 

countries (Hall et al., 2016). In organizing efforts to control outbreaks of traumatic myiasis in both 

animal and/or human populations it is important to determine the origin of the disease vectors as 

control strategies, and their targets, will differ depending on whether the outbreak is being caused 

by infestations of this species from indigenous or exogenous populations. Molecular studies have 

demonstrated the existence of considerable mitochondrial DNA cytochrome-b gene diversity 

between African and Asian populations (Hall et al., 2001; Wardhana et al., 2012). While these 

differences suggest that DNA barcoding may be used to make correct identification of specimens 

from African and Asian populations, as a practical consideration, Chrysomya monitoring efforts 

would be facilitated greatly if reliable morphological markers capable of performing these same 

identifications could be found. Fortunately, it is often the case that, once genetic distinctions 

between populations have been established, the careful comparison of patterns of morphological 

variation between genotypic variants has resulted in the recognition of such morphological markers 

(e.g., Hendrichs et al., 2015 and references therein). 

In terms of seeking morphological targets that might potentially be useful for this purpose, the 

placement and form of wing-support veins, as well as the configuration of landmark point locations 

defined by wing-vein intersections or vertices, have often been found to be highly informative 

indicators of family, genus and species-level identification across many insect orders (Comstock 

and Needham, 1898, Johnson and Triplehorn, 2000). In particular, the configuration of support-vein 

vertices has proven especially well-suited to geometric morphometric studies as these vertices are 

one of the comparatively rare instances in which specific landmark locations conform to the 

definitions of both biological and topological homology (Morgan, 1912; Bookstein, 1991; Rohlf, 

1993; Chesters et al., 2012; Hall et al., 2014; Quezada-Euán et al., 2015). Unfortunately, the 

location of support-vein vertices across an insect wing rarely exhibit an even distribution across the 

entire wing surface owing to the coalescence of the major veins in the pteralia, the hierarchical 

branching and radiation of these veins across the wing, the uneven spacing of major vein 

branchings, the uneven distribution of cross veins, and the progressive reduction in the sizes of 

post-branching secondary, tertiary and quaternary veins which often make the forms of these 
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branches, and configuration of their vertices, indistinct under microscopic inspection as well as in 

photomicrographs (Fig. 1A). Moreover, the exclusive (e.g., Rohlf, 1993; Chesters et al., 2012; Hall 

et al., 2014), and/or near exclusive (e.g., Quezada-Euán et al., 2015) morphometric focus on the 

configuration of wing-vein vertices effectively discards all non-vertex information about the forms 

of the wing margin and the geometry of the wing veins themselves, thus providing a highly biased 

sample of the actual wing morphology. Last, but not least, the collection of large numbers of 

landmark points from insect wing images is a labour-intensive, time-consuming, and error-prone 

process, thus compromising the utility of geometric morphometric data collection and analysis 

procedures in making a practical contribution to population and species-identification process. 

These issues will be especially problematic and limiting for animal husbandry and medical workers 

located in rural regions far from the locations of laboratories containing even basic microscopic 

imaging and morphometric data-collection systems (MacLeod, 1990; Beccara et al., 1993; Beccara, 

1996).

Recently, geometric morphometric-style procedures have become available for use directly on 

digital images of the specimens of interest. Use of such image-bases data circumvents the need — 

at least in the first instance — to laboriously collect, process and analyze landmark and/or 

semilandmark data while still providing access to all the data-analysis tools, summaries, and model-

based interpretive aids that give geometric morphometrics its extraordinary power to test 

morphology-based biological hypotheses (MacLeod et al., 2014; MacLeod, 2015, in press a). While 

the results of such digital image-based investigations are often sufficient to resolve morphological 

issues by themselves, these results can also be used in an exploratory mode to guide the 

development of more traditional geometric morphometric, landmark and semilandmark-based 

sampling schemes so that they can more informatively, more objectively, and more adequately 

capture those aspects of a sample’s morphology that either exhibit pronounced patterns of variation 

or whose variation is especially pertinent to the resolution of a particular biological question or 

issue. In addition, this approach opens the door to full automation of a wide variety of taxonomic-

identification procedures across the fields of biology, ecology, archaeology, anthropology, 

astronomy, acoustics, linguistics — essentially to any field in which the primary data of interest can 

be represented as a collection of digital images (see MacLeod, 2007a; MacLeod et al., 2013 for 

examples).

Owing to the recency of its development, applications of this new image-based approach to 

morphometric analysis have been few to date. In particular, no head-to-head comparisons of the 

identification results that can be achieved by this traditional approach and a traditional landmark-
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based geometric morphometric analysis, have been published. So that such a comparison can be 

made in the context of population-level identifications of a well-known and economically 

deleterious disease vector, we herein present experimental results that document the extent to which 

either a traditional, landmark-based, geometric morphometric analysis of wing support vertex 

configurations, or a direct analysis of whole-wing morphologies, can be used to distinguish between 

African and Asian populations of C. bezziana.

In addition to our primary consideration of Chrysomya bezziana biogeography, this genus 

includes two other species that are facultative agents of traumatic myiasis in Asia, C. megacephala 

and C. rufifacies (Sukontason et al., 2005). Both field and laboratory experience has shown that it 

can sometimes be difficult to discriminate between adults of these species via visual inspection, 

especially between females of C. bezziana and C. megacephala which most identification keys 

separate on the basis of subtle differences in frons morphology (Irish et al., 2014). Therefore, in 

addition to its use to identify the geographic affinities of disease agents and pathogen vectors, a 

simple morphometric tool that could deliver swift and accurate identifications of these species 

would be of considerable value. Such a tool would also benefit forensic studies as C. megacephala 

and C. rufifacies can develop on animal carrion, and thus would have forensic value as and 

indicator of minimum post-mortem interval. Accordingly, as a secondary objective of our 

investigation, we evaluate the utility of the direct analysis of whole-wing morphology to support the 

automated, species-level identification of C. bezziana, C. megacephala and C. rufifacies. Finally, 

we apply and compare the results obtained by the C. bezziana dataset to the question of sexual 

dimorphism, since it is only gravid females of this species that are vectors of traumatic myiasis. 

Materials 

The samples of African C. bezziana were taken from the pinned collections of the Natal Museum 

and the National Collection of Insects, Pretoria, both in South Africa, and from The Natural History 

Museum, London (Hall et al., 2014). Male and female C. bezziana specimens from the island of 

Sumba were taken from a colony at the Parasitology Department of the Indonesian Research Centre 

for Veterinary Science, Bogor, established from larvae collected from a case of traumatic myiasis on 

Sumba, Indonesia (Hall et al., 2014). Samples of C. megacephala and C. rufifacies were collected 

as adults on Bezzilure-baited sticky traps (Sulston et al., 2014) located in Indrapuri District on the 
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island of Sumatra, Indonesia. The Sumba and Sumatra samples of all species were preserved in 80 

percent ethanol and maintained at -20°C until analysis. 

Methods 

Digital images of isolated and slide-mounted wings were obtained using standard entomological 

photomicrography (Fig. 1A; Hall et al., 2014). The majority of wings imaged were right wings. If 

left wings were imaged they were transformed into pseudo-right wing images by mirroring them 

across the anterior-posterior (y) axis using standard image processing procedures. No effort was 

made to ‘clean up’ these images or select only well-preserved, complete and intact (non-torn or 

damaged) specimens.  

For the traditional geometric morphometric analysis 21 landmarks were selected to quantify 

wing morphology (Fig. 1B). These landmarks were defined on the basis of articulations between 

wing basal sclerites and wing veins, bifurcations of wing veins, intersections between primary and 

transverse wing veins, intersections between primary wing veins and the wing periphery, and the 

peripheral indentation that marks the boundary between the alulae and anal wing regions along the 

anal margin. Since these structures are biological homologues across the species consider by this 

investigation the majority of these landmarks are of the “type 1” variety (Bookstein, 1991). Owing 

to their unquestioned biological identity type 1 landmarks are widely considered to be the most 

reliable sources of evidence for documenting morphological similarities and differences in an 

evolutionary context. 
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Figure 1. Morphology (A) and landmark-based sampling (B) of the Chrysomya wing. Morphological characters 
included the following humerus-radius articulation (H-RA), humerus-costa transverse vein (H-CT), costal margin 
(C), subcostal vein (SC), anterior radius vein (AR), first post-anterior radius vein (PA1R), second post-anterior 
radius vein (PA2R), wing tip (Tip), medial vein (M), radius-medial transverse vein (R-MT), cubital vein (Cu), 
proximal medial-cubital transverse vein (M-CT1), distal medial-cubital transverse vein (M-CT2), distal anal vein 
(A1), proximal anal vein (A2), cubital-distal anal transverse vein, alulal-anal indentation (Al-An). Landmarks: 1 - 
intersection between the humeral transverse vein and costal vein, 2 - position of the humeral articulation or break, 3 - 
intersection between the subcostal and costal veins, 4 - intersection between the anterior branch of the anterior radius 
vein (AR) and the costal margin (C), 5 - intersection between the first post-anterior branch of the radius vein (PA1R) 
and the costal margin (C), 6 - intersection between the second post-anterior branch of the radius vein (PA2R) and the 
costal margin (C), 7 - intersection between the medial vein (M) and the costal margin (C) or wing periphery, 8 - 
intersection between the cubital vein (Cu) and wing periphery, 9 - distal intersection between the anal and alulal 
areas (Al-Au), 10 - articulation between the humeral sclerite and the radius vein (H-RA), 11 - first bifurcation of the 
radius vein (AR) resulting the creation of this vein’s anterior (AR) and first post-anterior (PA1R) branches, 12 - 
second bifurcation of the radius vein (AR) resulting the creation of this vein’s first post-anterior (PA1R) and second 
post-anterior (PA2R) branches, 13 - anterior intersection between the radius-medial transverse vein (R-MT) and the 
second post-anterior radius vein (PA2R), 14 - anterior intersection between the distal medial-cubital transverse vein 
(M-CT1) and the medial vein (M), 15 - posterior intersection between the radius-media transverse (R-MT) vein and 
the medial vein (M), 16 - anterior intersection between the distal medial-cubital transverse vein (M-CT2) and medial 
vein (M), 17 - maxima of curvature in the distal portion of the medial vein (M), 18 - bifurcation between the cubital 
(Cu) and first anal (A1) veins, 19 - posterior intersection between the proximal medial-cubital transverse vein (M-
CT1) and the cubital vein (Cu), 20 - posterior intersection between the proximal medial-cubital transverse vein (M-
CT2) and cubital vein (CU), 21 - posterior intersection between the cubital-first anal transverse vein (C-AnT) and 
the first anal vein (A1). Specimen shown is BMNH E 1195306 which is a female African C. bezziana.
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Despite the obvious utility of being able to match biologically corresponding point locations 

across a sample of forms, the level of biological specificity required to define these point locations 

accurately and completely also places severe constraints on the number and location of such 

landmarks on biological structures of interest. In this context, insect wings represent something of a 

‘best-case’ scenario insofar as the density of sclerite articulations and vein bifurcations/intersections 

is such that a credible case can be made for the recognition of a comparatively large proportion of 

type 1 landmarks across these wings. However, even in this ‘best-case’ situation, the limitations of 

any attempt to represent complex biological structures via reference to a small number of carefully 

defined and corresponding landmark locations are apparent (see Introduction).  

So long as the hypotheses under consideration are specifically and deterministically tied to 

landmark locations that can be sampled, this limitation does not present an insurmountable problem. 

Nevertheless, it is often the case that morphometric data analysts are asked to address hypotheses of 

a general and exploratory nature (e.g., Are two sets of forms or shape distinguishable 

morphologically from one another?). In such situations the limitations on the sampling of a form of 

interest via recourse to only a few relocateable mathematical points can result in the generality of 

the form’s representation being compromised by the act of quantification. In effect, the constraints 

of traditional geometric morphometrics (see Bookstein, 1991; Costa and Cesar, 2000; Zelditch et 

al., 2004) can serve to enforce a confusion between the object under consideration — in this case 

the Chrysomya wing — and the manner in which these objects are being sampled for morphometric 

analysis.  

Traditional geometric morphometrics forces the data analyst to select landmark locations a 

priori, for the most part without recourse to any information concerning which parts of the structure 

actually exhibit the greatest or least variation across the sample simply because it is those locations 

that can be represented by a landmark location, and then to accept the results of a morphometric 

analysis of that specific landmark configuration under the assumption that this configuration 

represents an adequate summary of geometric shape variation for the collection of forms or 

structures as a whole. This convention has become established as a result of geometric 

morphometrics conceptual derivation from multivariate morphometrics (under which identical 

sampling limitations apply, see Blackith and Reyment, 1971; Pimentel, 1979; Reyment et al., 1985, 

MacLeod in press) and as a result of the simple lack of any easily accessible alternative.  

Such an alternative, however, now exists in the form of the direct analysis of digital image data 

that employs the same data-analysis conventions as geometric morphometrics (Turk and Pentland, 

1991; MacLeod, 2014; 2015). Under this “eigenimage” approach the digital image frame is 
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regarded as constituting a Cartesian coordinate system analogous to that used to represent landmark 

configurations in traditional geometric morphometrics. But rather than representing forms in the 

sample by the Cartesian coordinates of point locations that are all regarded as being identical (= 

distinguishable from one another only by their differing locations with the Cartesian measurement 

system), the digital image-based analogue to geometric morphometrics regards the pixel grid (= the 

Cartesian coordinate system) as being a fixed set of topologically homologous locations whose 

individual coordinate locations need not be specified because they are all recorded for all images of 

interest. Rather, the form configuration of objects located within this system are specified by the 

brightness or color values of the individual pixels themselves. If these data are conceived as a 

topographic surface whose elevations above a base level are determined by the brightness of color 

values of the pixel elements, forms that are similar to one another will exhibit similarities in their 

pixel brightness/colour topologies while forms that differ will exhibit differences. Points of interest, 

such as the dark wing-vein vertices which, under a geometric morphometric sample scheme would 

be represented by different coordinate values would, in the image-based analogue to geometric 

morphometrics, be represented as brightness/color decreases at different pixel locations. But 

importantly, whereas traditional geometric morphometrics contains no information about the size, 

brightness, colour, etc. of the structures being represented by landmark coordinates, the image-

based analogue to geometric morphometric quantification can easily be used to distinguish between 

such varying components of the form, or not, as the data-analysis situation demands. 

The greater complexity — and so the information content — of pixel-based morphometric 

configurations can also be appreciated from the standpoint of that most basic of geometric 

morphometric form representations, the thin plate spline (Bookstein, 1989, 1991). In traditional 

geometric morphometrics thin plate splines are used to interpolate patterns of deformation across 

regions of the form not covered by landmarks based on the deformations observed at corresponding 

landmark locations. Thin plate splines can be used in an analogous way to represent interpolations 

of pixel colour/brightness values. But because these interpolations are tied to the pixel locations - 

locations that are arranged in an even grid across the entire form, the interpolation is able to take 

advantage of a much denser and more over sample spacing in the comparisons made between 

forms. Accordingly, the interpolation is more accurate and representative of the complete pattern of 

morphological variations that characterize forms. It is also possible to weight comparisons between 

forms in order to emphasize (or de-emphasize) the influence of particular features of the 

morphology by combining image-based, or eigenimage, morphometric analysis with various types 

of image processing procedures. 
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Under both traditional (landmark) and image-based approaches to morphometric analysis 

corrections for differences in the location, size and rotation of the forms in question can be made 

such that the conventions of Procrustes superposition are respected across datasets. In both cases the 

migration of particular features of the morphology can be tracked by their spatial displacements 

relative to the locations of surrounding features within other form or shape configurations. Most 

importantly, because the pixel-based representation of forms of interest includes all information 

present in the digital image there is no need to (1) define the location of particular features of 

interest a priori, (2) limit the analysis only to the tracking of those aspects of the form that can be 

defined by small sets of landmarks or by outline semilandmarks, and (3) limit the sample to include 

only those specimens that exhibit all a priori-selected features used to define the landmark and/or 

semilandmark locations. The relaxation of these strict comparability requirements that have become 

part and parcel of the traditional geometric morphometric approach to form and shape analysis 

renders this image and pixel-based approach a far more flexible — and so a more useful — tool for 

the exploration, discovery, documentation and interpretation of patterns of morphological variation 

within a sample. In addition, all the results-visualization and form/shape modeling tools that have 

been developed to facilitate geometric morphometric analysis can be applied in image-based 

morphometric investigations. Indeed, these tools are, if anything, more informative in the context of 

image-based morphometric analyses insofar as the entire set of features included in the image 

frame/matrix can be modeled and portrayed in a manner with which most researchers — and most 

audiences — are already familiar. 

!  

!  
Figure 2. Original (upper row) and reduced resolution grayscale digital images of representative female specimens 
of the three species considered in this investigation.
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In our Chrysomya investigation the same digital images that were used to quantify the positions 

of the 21 wing landmarks were trimmed to remove the background pixels while leaving a 10 

percent pixel margin around the wing, down-sampled to ensure each frame conformed to a 40 x 100 

pixel matrix, and converted from an 8-bit RBG to a 8-bit greyscale colorspace in order to minimize 

variation that might result from differences in specimen color (Fig. 2). Once in this format all wing 

images were aligned to such that their major axis was horizontal to, and centred within, the pixel 

frame. After alignment, each image was reformatted into a 4,000-term column vector of pixel 

brightness values, assembled into a data matrix, and submitted to a singular value decomposition 

(SVD)-based PCA in order to repack the observed image variation into the smallest number of 

statistically independent variables consistent with preservation of 95 percent of the original signal 

and projected as scores on these component axes. Following the placement of these image-based 

data in the PCA space their scores on all principal components comprising this 95 percent variation 

subset were submitted to a secondary canonical variates analysis (CVA, see MacLeod, 2007b) to 

create a space that maximized between-group separation relative to within-group dispersion 

(MacLeod, 2014; 2015a; 2015b). A bootstrap variant of the standard log-likelihood ratio test was 

used to estimate the statistical significance of the resultant group separations (Manly, 2006; 

MacLeod, 2015a; 2015b). Image models for both PCA and CVA axes were calculated using the 

method described by MacLeod (2009). 

Results 

Geography-Difference Test 

The dataset for this test consisted of 26 images of African C. bezziana female wings (20/26 right 

wings) and 20 images of Asian (Sumba) C. bezziana female wings (13/20 right wings). An initial 

PCA of the pooled landmark and image pixel brightness data showed that a comparatively small 

number of principal components were able to represent 95 percent of the shape variation recovered 

by the two alternative sampling schemes, 18 and 28 components respectively. Relative to the total 

number of specimens present in the original data matrices this operation resulted in a reduction of 

the effective dimensionality of these data of 60.9 and 39.1 percent. 
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Landmark Results.— A PCA of the landmark dataset identified the first three principal components 

as accounting for 26.6, 12.0 and 10.9 percent of the recorded shape variation respectively. All other 

principal components individually accounted for less than ten percent of the total shape variation. 

Scatterplots of this sample’s landmark configurations projected into the space of these first three 

components shows clearly that the major source of variation in these data is accounted for by shape 

distinctions between the landmarked aspects of the wings of African and Asian populations (Fig. 3). 

Despite the small size of these samples no obvious shape outliers appear to be present in these plots, 

suggesting that these samples are fully representative of the populations from which they were 

derived. 

A clear separation between geographic populations is evident along PC-1. A chord connecting the 

centroids of these populations in the PC-1 versus PC-2 subspace lies at an angle to the PC-1 axis, 

indicating that as aspect of wing-shape variation captured by this axis is also responsible for the 

observed shape variation. This orientation indicates that the optimal discriminant axis between these 

two populations incorporates aspects of shape variation represented by both PC-1 and PC-2, as well 

as (most likely) by other PC axes along which the distribution of these populations is more difficult 

to interpret qualitatively. In order to optimize this geographic discrimination and test the hypothesis 

of consistent and statistically significant group separation, the scores obtained from the projections 

of these landmark configurations on all 18 PC axes necessary to summarize 95 percent of the 

recovered shape variation were submitted to a CVA and the projections of these geographic group-

specific configurations upon the single discriminant axis inspected for their distribution (Fig. 4). 

Figure 3. Projection of the C. bezziana Procrustes-aligned, wing landmark configurations into the space 
formed by the first three principal components of the shape covariance matrix. This subspace represents c. 
50% of the shape variation recorded by these landmarks. Note strong separation between African and Asian 
populations within the PC-1 vs. PC-2 subspace and lack of obvious shape outliers.
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As was indicated by the PCA result, the configurations of these 21 wing landmarks contain 

sufficient information to allow African C. bezziana populations to be distinguished cleanly and 

consistently from Asian (Sumba) populations. The small number of specimens that were able to be 

included in this analysis might lead some to suspect the statistical significance and stability of this 

result. However, a bootstrapped test for the significance of the log likelihood ratio value (𝜙 = 106.1) 

was found to exceed all 𝜙-values calculated for 1,000 nonparametric, random pseudoreplicate 

datasets drawn from the original data (with replacement) by a considerable degree. Based on this 

result the statistical significance of the landmark configurations representing African and Asian 

population wing-shape difference is high, at least insofar as these populations are represented by 

this sample. With regard to the stability of this discriminant result, a jackknife (leave one out) 

analysis of the ability of this dataset to identify specimens of known geographic provenance as if 

they were unknown specimens (pseudo-unknowns) resulted in only a single misidentification of an 

African specimen for an Asian specimen. For the sample under consideration this translates into a 

robust estimated correctness ratio of 97.9 percent. 

A precise morphological interpretation of this discriminant result can be formulated by back-

projecting the coordinate locations of different steps along this between-group discriminant axis 

(see Fig. 4) into the PCA space and using the eigenvector equations that define this space to 

reconstruct landmark configurations that summarize shape difference between typical African and 

Figure 4. Frequency histogram of projected C. bezziana wing landmark configurations 
on the CVA discriminant axis separating African and Asian (Sumba) populations. This 
between-groups separation is significant at the α < 0.01 level as assessed by a 
bootstrap test of the log-likelihood ratio index.
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typical Asian conditions. Figure 5 summarizes results of this modelling exercise for models 

calculated from all 18 of the PC variables that contributed to the CVA result. 

!  

!  

Using these landmark displacement patterns as a guide to regional differences between typically 

African and typically Asian (Sumba) C. bezziana wings it would appear the former are 

characterized by a relatively larger basal region exhibiting greater distances between the humerus-

radius articulation, intersection between the humerus-costal transverse vein, the humeral break and 

both the first proximal radius and cubital-anal vein bifurcations. Asian populations of this species 

exhibit a more compact placement of these features in the basal area typically. Along the costal 

wing margin Asian (Sumba) populations exhibit a modest outboard migration of the subcostal and 

first anterior radius vein termini accompanied by an inboard migration of the first and second post-

anterior radius vein and medial vein termini. This contrast appears to grow more intense with 

distance along the wing margin. The strong inboard migration of the two outermost costal margin 

landmarks imparts an increase in the overall rounding of the wing tips in Asian (Sumba) 

populations relative to their African counterparts. This wing-tip rounding is also associated with an 

overall distal broadening of wing in Asian (Sumba) populations, which is reflected in these 

Figure 5. Directions of landmark migration between typical African (landmark configuration 
and displacement vector tails) and Asian (displacement vector heads) wings. See Fig. 1 for 
landmark names and defining criteria. The length of these vectors has been exaggerated (x3) in 
order to illustrate their directions and relative magnitudes. In addition, the landmark icons have 
been colour-coded to classify them into relative change categories: blue - no or small change, 
white - moderate change, yellow and orange - strong change, red - strongest change. See text 
for discussion.
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landmark locations by the strong outboard and posterior migration of the medial-cubitus transverse 

vein, and the distal portion of the medial vein. Finally, the most striking single distinction between 

African and Asian (Sumba) C. bezziana wings is the very strong inboard migration of the marginal 

boundary between the alulal and anal regions of the wing in the vicinity of the jugal fold that 

appears characteristic of Asian (Sumba) populations. 

Image Results.— A PCA of the image covariance matrix of the pooled African/Asian (Sumba) C. 

bezziana sample indicated that 28 latent variables were needed to represent 95 percent of the 

morphological variation recorded by these 40 x 100 pixel images. The first three of these 

components represent almost 60 percent of this variation with no subsequent component 

representing more than five percent of the total. Figure 6 illustrates the distribution of image pixel 

configurations projected into the subspace formed by these first three components. 

!  

!  

Direct comparison of these PCA results with those obtained from the landmark-based 

representation of these same images (Fig. 3) is instructive. First and most notably, although the 

major axis of wing image variation is obviously aligned with the distinction between African and 

Asian (Sumba) populations, the separation between these two groups for the image dataset is not 

mutually exclusive as it was in the landmark dataset. Rather, one — possibly two — distinct 

subgroups of African C. bezziana wings occupy the region of the Asian (Sumba) wing image space 

along the lower reaches of PC-1 and PC-2 as well as across the whole of PC-3. As is obvious from 

the PC-3 versus PC-2 subspace plot, this overlap between geographic populations is not as large as 

Figure 6. Projection of the African and Asian (Sumba) C. bezziana major axis-aligned, wing image configuration 
data into the subspace formed by the first three principal components of the image covariance matrix. This 
subspace represents c. 60% of the shape variation recorded by the reduced resolution wing images. Note strong, but 
not perfect, separation between African and Asian (Sumba) populations within the PC-1 vs. PC-2 subspace, 
presence of several morphological subclusters, and presence of obvious shape outliers
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it appears in the PC-1 versus PC-2 subspace. But overlap does exist. Moreover, the morphological 

diversity structure of these wings is far more evident in this image-based summary of shape 

variation than it was in the landmark-based summary. A very prominent discontinuity in image 

variation is evident in the image-based PC-1 vs PC-2 subspace as is the existence of several 

subsidiary subclusters of the African dataset as well as the existence of at least two distinct image 

outliers.

Figure 7 summarizes the patterns of wing image shape variation represented by the first three PC 

axes in the form of geometric models constructed at steps along each axis and summarized in the 

form of colorized image-difference maps. These synthetic images allow areas of weak (blue), 

intermediate (white) and strong (yellow-red) changes in pixel brightness values along each axis to 

be identified, tracked and interpreted in a manner that facilitates detailed geometric comparison/

interpretation of these models and, by extension, the image-based geometric spaces they represent. 

As was the case with the image-based PCA ordination space, it is instructive to compare these 

images with the analogous plot created for the landmark-based representation of these same images 

(Fig. 5) based on the CVA discriminant function which is dominantly aligned with the pooled-

groups landmark data PC-1. 

!  
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Along PC-1 the primary mode of image-shape transformation involves the distinction between 

relatively light (low values) and relatively dark (high values) basal areas. Detailed comparison of 

modeled images at the ends of the PC-1 axis reveals that this darkening is associated with an inward 

migration for wing structural elements that involves a general shortening of the lengths of veins, 

vein articulations and the distances to vein bifurcations. It is noteworthy that this image-based PCA 

analysis was able to distinguish between a pronounced darkening of the inter-vein areas (coloured 

yellow on the PC-1 difference map in Fig. 7) and a stronger darkening that denotes a shift in the 

positions of the proximal portions of the costal margin, medial, cubital and first anal veins (coloured 

orange and red). As landmark datasets have no way to record any but spatial information this 

obvious darkening of the wing’s basal area played no role in the landmark-based analysis. However, 

as can be seen in figures 6 and 7, all wings in our sample exhibiting dark basal areas dark basal 

areas are African with no Asian (Sumba) specimens exhibiting this wing characteristic (see 

supplementary data). Based on these results, a quick, easy, and relatively reliable test for Asian-

African (Sumba) affinity might be implemented simply by looking for a dark, irregular splodge in 

the basal area of C. bezziana specimens.

Moderate levels of wing image shape change are also present in the traces of the subcostal, 

radius medial, cubital and anal veins with particularly pronounced variations occurring in the 

position of the radius-media transverse vein. On the whole these changes involve a migration of 

these features in anterior and basal directions to accommodate a general reduction in the width of 

the wing blade along a trend that becomes more pronounced along the wing’s length. As a result, 

African C. bezziana wings exhibit more elliptical wings than Asian (Sumba) populations. In 

addition the anterio-posterior length of the alular area increases as PC-1 score increases or from 

typically Asian (Sumba) to typically African populations. The well-defined subcluster of African 

individuals (Fig. 6) lacks the darkened basal area and exhibits the less elliptical wing outline that 

characterizes the typically Asian (Sumba) morphology. The pronounced character of this 

morphological discontinuity is quite striking, both in the graphic summary provided by Figure 6 and 

in a visual overview of the entire African sample (see supplementary data).

Figure 7. Chrysomya bezziana wing image models constructed at the ends of the of the distributions of image 
projections along each of the first three principal components of the image covariance matrix for the pooled (African-
Asian [Sumba]) wing image data. Distinctions between these images represent the major modes of image variation on 
a pixel-by-pixel basis. Numbers below the hypothetical image models represent the coordinate values at which the 
models were constructed. The final column contains image difference maps in which the values of the differences 
between pixel brightness values have been colour-coded on the same continuous scale described in the Fig. 5 caption. 
See text for discussion.



!17

Subsidiary modes of morphological variation in these wing images are expressed along the 

image-shape PC-2 and PC-3 axes. Along PC-2 this variation takes the form of an anterior migration 

of the costal margin relative to the traces of the subcostal and radius veins accompanied by a 

moderate posterior migration of the wing margin in the anal area along with a moderate left lateral 

migration of the alular margin. Both African and Asian (Sumba) populations exhibit wing 

morphologies that project to positions across the entire range of the PC-2 axis.

Similarly, patterns of morphological variation across PC-3 also dominantly involve the character 

of the costal margin, though in this case the primary focus of variation has shifted inboard to a 

position much more proximal to the wing’s basal area. In addition, there appears to be a 

stabilization of variation involving the outline of the alular area from a multicharacter-state 

condition for wings that project to positions low on the PC-3 axis to a long and narrow form in 

wings that project to positions high on this axis. Although the present sample is too small to be 

certain, extreme African C. bezziana wings tend to project to positions low on this PC-3 axis while 

extreme Asian (Sumba) wings tend to project to positions high along this axis. 

!  

!  

Despite the apparent overlap between African and Asian (Sumba) wing image configuration 

fields along PC-1 (see Fig. 6), when all 28 PC variables required to represent 95 percent of the 

recorded image configuration variation are included in a CVA analysis of these data African and 

Asian (Sumba) wing images are discriminated into mutually exclusive fields along the single linear 

Figure 8. Frequency histogram of projected C. bezziana wing image configuration 
scores on PCs 1-28 onto the CVA discriminant axis separating African and Asian 
(Sumba) populations. The between-groups separation is significant at the α < 0.01 level 
as assessed by a bootstrap test of the log-likelihood ratio index.
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discriminant axis (Fig. 8). A non-parametric, bootstrapped, log-likelihood ratio test of group 

separation along this axis found that none of 1,000 pseudoreplicate datasets created randomly from 

these data (with replacement) produced 𝜙-index values greater than that calculated for this result (𝜙 

= 85.7). Accordingly, this result is interpreted as being statistically significant at greater than the 𝛼 = 

0.01 level.

While the raw confusion matrix for this result produced 100 percent correct results for the 

training set, a more rigorous jackknifed (leave one out) post-hoc identification test did detect a 

degree of instability in the CVA discriminant function with 7 of the 47 specimens being 

misidentified as a result of being treated as unknowns. This result translates into an overall stability-

correctness estimate of 85.1 percent, which, while high, is substantially lower than the stability 

estimate achieved for the landmark data. Misidentifications were subequally divided among the two 

geographic populations with three African specimens being identified as Asian (Sumba) individuals 

and four Asian (Sumba) specimens being identified as African individuals.  

Given the clear and unambiguous character of the between-groups separation achieved by the 

full CVA analysis, and in light of the observation that the African group, which was represented by 

the greater number of specimens (n = 27 as opposed to n = 20 for the Asian [Sumba] group), we feel 

confident that the stability of this discriminant result can be improved upon once a larger sample of 

both populations has been obtained. It might also be the case that increasing the spatial resolution of 

the images used in the analysis will also improve this result. But regardless of the fact that we do 

not advocate use of these geographic discriminant functions obtained for either the landmark or 

image configuration data until a larger sample of wing variation in these populations has been 

obtained, what these results do show, clearly, is that it is possible to reliably discriminate between 

geographic races of C. bezziana based on a morphometric characterization of wing shape alone. 

Moreover, given the time-consuming and somewhat specialist amount of labour involved in 

collecting landmark data from these wing images, it may be that, even if the wing image 

configuration results exhibit intrinsically more identification error than landmark-based results for 

the purpose of distinguishing between African and Asian C. bezziana populations by non-specialist 

agricultural workers in the field, a lower rate of identification accuracy would be tolerable, 

especially given the time, expense and contamination issues involved with implementation of both 

the landmark and molecular data-based alternatives. [Note: The presence of foreign material or 

damage can render landmark placement uncertain. Since landmark analysis are constrained by the 

need to be able to place all landmarks on all specimens both in the training set and on unknown 

specimens to be identified this source of error can have a large disruptive effect on “real world” 
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morphometric analyses. However, the greater information content of image data renders these 

sources of error less problematic for image-based morphometric analyses.] 

�  

!  

Figure 9 illustrates two hypothetical, end-member images calculated from the projected positions 

of typical African and Asian (Sumba) coordinate locations along the image CV-1 discriminant axis 

along with a pixel brightness difference map for the comparison of these two images. Close 

comparison with the PC-1 axis models included in Figure 7 shows that these models, along with the 

difference map, are almost identical with the pooled-groups PC-1 axis, an assessment that was 

confirmed by calculating the angle between these two vectors and computing a meta-difference 

map. Given the distribution of projected positions of African and Asian (Sumba) image 

configurations in the PC-1 versus PC-2 subspace (Fig. 6) this result is not surprising. Accordingly, 

the geometric interpretation detailed above for the pooled-groups PC-1 is essentially identical to 

that for the between-groups CV-1. 

Species-Difference Test 

As an additional test of the utility of morphometric procedures for extracting identifications from 

blowfly wing data that would be useful to medical and forensic researchers we summarize results of 

a species identification test. The dataset used for this test consisted of 20 wings from Asian (Sumba) 

female C. bezziana, 20 wings from Asian (Sumatra) female C. rufifacies, and 20 wings from Asian 

(Sumatra) female C. megacephala. The left-right composition of the former species was reported 

above. The C. rufifacies sample consisted of 16 right and 4 left wings. The C. megacephala sample 

Figure 9. Chrysomya bezziana wing image models constructed at the ends of the of the distributions of image 
projections onto the linear discriminant axis (CV-1) that separates African and Asian (Sumba) wing image data. 
Distinctions between these images represent the major morphological distinctions between the wings of these 
populations on a pixel-by-pixel basis. Numbers below the hypothetical image models represent the coordinate values 
at which the models were constructed. The final graphic is an image difference map in which the values of the 
differences between pixel brightness values have been colour-coded on a continuous scale as described in the Fig. 5 
caption. See text for discussion.



!20

consisted only of right wings. As described in the Methods section, after tests for consistent 

differences between right and left wings of C. rufifacies returned negative results, the four left 

wings were transformed into pseudo-right wing images. Subsequent to this operation all images 

were processed according to the procedure described above (see Methods) This resulted in each 

wing being represented by a 100 x 40 pixel, major axis-aligned, grayscale image with the wing 

image centred on a white background (see supplementary files). The pixel matrices that constituted 

these images were then reformatted to constitute a 60 x 4000 data matrix and submitted to a SVD-

based PCA for preliminary analysis. 

!  

!  

Figure 10 illustrates the major dimensions of variation in the pooled species dataset. Together 

these three axes account for 58.35 percent of the pooled image configuration variation with only a 

single subsequent axis accounting for more than five percent of the remainder. For this PCA 

analysis 32 eigenvectors were necessary to represent 95 percent of the recorded image configuration 

variation. This represents a reduction in effective dimensionality of 46.7 percent in terms of the 

maximum number of components with positive eigenvalues and over a 99 percent reduction in 

dimensionality in terms of the number of variables that characterize the original images.  

Based on these ordinations it is clear that typical C. bezziana wings differ in terms of their pixel 

configurations from C. megacephala and C. rufifacies and that this difference accounts for the 

major source of variation within the pooled dataset. What is less clear, however, is whether C. 

megacephala A and C. rufifacies can be distinguished from each other reliably from wing image 

Figure 10. Projection of the C. bezziana, C. megacephala, and C. rufifacies, Procrustes-aligned, wing image 
configuration data into the space formed by the first three principal components of the image covariance matrix. 
This subspace represents c. 60% of the image variation recorded by the reduced resolution wing image dataset. 
Note the pronounced, but far from perfect, tendency toward species separation, relative distinctiveness of C. 
bezziana, and presence of wing configuration subgroups and outliers within both C. bezziana and C. megacephala 
within the PC-1 vs. PC-2 subspace. 



!21

data alone. In terms of intrinsic variation within this dataset it is also clear that C. bezziana exhibits 

the greatest variance in wing pixel configuration and C. rufifacies the least.

Contrary to the previous two species-specific PCA results, the eigenvector orientations produced 

by this inter-specific analysis do not appear to be controlled by intra-specific variation in wing 

morphology. To be sure, one prominent pattern of intra-specific differentiation exists — the small 

subgroup of three C. megacephala specimens that exhibit anomalously high scores (for this species) 

along PC-2. However, since the PCA analysis is conducted on the pooled dataset, this intra-specific 

distinction does not exert a primary control on the placement of PC-2 as specimens as similar 

projected scores on this axis exist within the C. bezziana and C. rufifacies datasets. 

!  

!  

Notwithstanding the fact that the PCA analysis did not result in the complete separation of these 

three species along any the first three eigenvectors of the pooled image covariance matrix, when the 

information on wing morphological variation encoded by all 32 PCA scores necessary to represent 

95 percent of the image-covariance structure are submitted to a CVA, the between-species 

differentiation that resulted was both clear and compelling (Fig. 11). Interestingly, the distinction 

between C. bezziana wing images and those of the other two species is not the most prominent 

differentiation pattern recorded by these data. Rather, C. rufifacies was identified as exhibiting the 

Figure 11. Projection of the C. bezziana, C. megacephala A, and C. rufifacies, scores on PCs 1-32 into the space 
formed by the two CVA discriminant axes. These axes represent 100% of the difference between group centroids in 
the linear, eigenvalue-standardized ordination space. Note tightness of variation within each of the species clusters, 
the clear and clean separation of species clusters from one another and the orientation of between-species 
distinctions relative to those of the discriminant axis vectors.
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most distinctive wing morphology, though only by a marginal amount. A more conservative — and 

perhaps more reasonable — interpretation of this discriminant result is that all three species’ wing 

morphologies exhibit sub-equal patterns of uniqueness.  

A non-parametric bootstrapped log-likelihood ratio test of group separation along this axis found 

that none of the 1000 pseudoreplicate datasets created randomly from these data (with replacement) 

produced 𝜙-index values greater than 120.0 whereas the 𝜙-index value calculated for this species-

difference test was 261.1. Accordingly, this result is interpreted as being statistically significant at a 

level much greater than 𝛼 = 0.01. Moreover, irrespective of the small sample sizes involved in this 

test the discriminant result obtained for these data exhibited remarkably good stability (Table 1).  

It is worth noting that the higher level of ambiguity seen in the jackknifed C. bezziana 

identifications is consistent with the PCA ordination having identified this species as exhibiting the 

most variable wing morphology of the three analysed here. This apparent intrinsic variability may 

may have implications for the performance of the PCA-CVA approach employed in this study with 

regard to the characterization of geographic populations (see above). Certainly it further strengthens 

the case for larger sample sizes to be used in order to obtain a more accurate and statistically robust 

model of morphological variation in the wings of these species. However, this result also throws the 

inherent ambiguity of the PCA result obtained for our data — and indeed all PCA results — into 

sharp focus in terms of their ability to deliver true representations of between-species distinctions. 

Through the years many morphometricians have come to rely on PCA ordinations to provide 

reliable estimates of group distinctiveness despite the fact that standard PCA analyses only operate 

on the pooled covariance or correlation matrices. The difference we have obtained between the 

group-level distinctions in the subspace formed by the first few PCA eigenvectors, compared to 

Table 1. Jackknifed confusion matrix for species-difference test CVA result.

Species C. bezziana C. megacephala A C. rufifacies
Total 

Correct
Group 
Total

Percent 
Correct

C. bezziana 16 2 2 16 20 80.0

C. megacephala A - 20 - 20 20 100.0

C. rufifaces 1 - 19 19 20 95.0

Total Correct 16 20 19 55 60 91.7

Group Total 17 22 21 60

Percent Correct 94.1 90.9 90.5 91.7
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those obtained from the same PCA data when subjected to a secondary CVA analysis, is striking and 

should be taken as a cautionary tale for those who rely on PCA-based ordination analyses for all 

morphometric analyses. The excellent stability characteristics of the CVA result obtained from these 

data also indicate that, even in cases when sample sizes are much smaller than the dimensionality of 

the original data, procedures are available that will allow data analysts to test specific hypotheses 

and obtain statistically valid results. 

!  

!  

Going beyond the question of whether wing morphology can be used to identify Chrysomya 

species, the results of our CVA-based analysis of Chrysomya wing images can also be used to guide 

the morphological interpretation of which wing characteristics differ between these three species. 

With regard to the difference between C. rufifacies and C. bezziana/megacephala expressed along 

CV-1, the former species is characterized by wings with thinner, more elliptical primary blades than 

those of the latter two species. This narrowing of the blade is associated with distal migration of the 

intersections between the costal margin and the subcostal, anterior radius and both first and second 

post-anterior radius veins, proximo-lateral migration of the medial cubital, and anal veins, and 

anterior migration of the anal blade margin. As a result of these modifications, C. rufifacies wings 

exhibit the most elliptically eccentric or pointed tips of the three species assessed in our study.  

Figure 12. Wing image models constructed at the ends of the of the distributions of image projections along the two 
species-difference linear discriminant axes (CV-1, CV-2). Distinctions between these images represent the major 
models of digital image distinction on a pixel-by-pixel basis. Numbers below the hypothetical image models represent 
the coordinate values at which the models were constructed. The final column contains pixel difference maps in 
which the values of the differences between pixel brightness values have been colour-coded on a continuous scale as 
described in the Fig. 5 caption. See text for discussion. 
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With regard to the interpretation of CV-2 which primarily captures the distinction between C. 

megacephala and C. bezziana, wings that project to positions low along this axis (= C. 

megacephala) are characterized by relatively narrow subcostal and anterior radial regions with more 

proximally placed intersections between (1) the costal margin, (2) the subcostal, anterior radius, and 

(3) both first and second post-anterior radius veins, with a more anteriorly placed second post-

anterior, medial and cubital veins, and with a moderate posterior migration of the posterior wing 

margin in the mid-region of the blade. Conversely, wings that project to positions high along this 

axis (= C. bezziana) are characterized by slightly expanded subcostal and anterior radial regions 

with more distally placed intersections between the (1) costal margin, (2) the subcostal, anterior 

radius, and (3) both first and second post-anterior radius veins, with more posteriorly placed second 

post-anterior, medial and cubital veins, and with a pronounced posterior migration of the posterior 

wing margin in the distal region of the blade. Overall, these modifications impart a distinctly 

elliptical character to C. rufifacies wing, a moderately elliptical character to the C. megacephala 

wing, and a distinctly quadrate character to the C. bezziana wing. 

Gender-Difference Test 

The gender-difference dataset consisted of 20 images of Asian (Sumba) C. bezziana female 

wings and 24 images of Asian (Sumba) C. bezziana male wings. The female dataset consisted of 13 

images of right wings and 7 images of left wings. The male dataset included 21 images of right 

wings and 3 images of left wings. After a preliminary investigation failed to find any consistent 

shape differences between right and left wings for either dataset, all left wing images were 

transformed into pseudo-right wing images and then processed according to the procedure described 

in the Methods section. At the end of this procedure each wing was represented by a 100 x 40 pixel, 

mean-aligned, grayscale image with the wing centred on a white background (see supplementary 

files). The pixel matrices that constituted these images were then reformatted to constitute a 44 x 

4,000 data matrix and submitted to a PCA for preliminary analysis. 
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Figure 13 illustrates the major dimensions of variation in the pooled gender-difference dataset. 

Together these axes account for 48.65 percent of the pooled image configuration variation with no 

subsequent axis accounting for more than eight percent of the remainder. For the PCA analysis a 

total of 27 component axes were necessary to represent 95 percent of the image configuration 

variation. This represents a reduction in effective dimensionality of 38.6 percent in terms of the 

maximum number of components with positive eigenvalues and a greater than 99.0 percent 

reduction in dimensionality in terms of the number of variables that were needed to characterize the 

original images. Based on these ordinations it is clear that typical male and female C. bezziana 

wings differ in terms of their pixel configurations and that this difference accounts for a major 

source of variation within the pooled dataset.

While both PCA ordination plots (Fig. 13) indicate that a broad difference between the sexes 

exists in terms of wing-shape variability, separation between species is largely the result of 

distinctions captured by PC-2 with a sub-dominant — but no less important — wing shape-

difference component being supplied by PC-1. The shape variances along both PC-2 and PC-3 are 

much larger for the female dataset relative to the male dataset. Close inspection of the PC-1 versus 

PC-2 subspace suggests that this increase in shape variance may be due to the presence of multiple 

wing shape-variation modes within the female dataset. The small sample sizes available for this 

investigation prevent any definitive conclusions from being drawn with regard to the issue complex 

patterns of variation in female C. bezziana at this time. Nevertheless, it is abundantly clear that, 

within this dataset (1) there is a marked difference along PC-1 between female wings that project to 

intermediate and high positions along PC-2, (2) a marked difference between male and female 

Figure 13. Projection of the C. bezziana major axis-aligned, wing image configuration data into the space formed 
by the first three principal components of the image covariance matrix for the gender-difference dataset. This 
subspace represents c. 48% of the image variation recorded by the reduced resolution image set. Note the strong, 
but not perfect, separation between male and female cohorts along PC-2, the presence of image configuration 
subgroups within the female dataset, and the difference in the image configuration variance between the two sexes. 
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wings that project to high positions along PC-1 and (3) a small group of three (possibly four) female 

wings that exhibit anomalously low scores along PC-2. In future investigations it will be important 

to examine the question of whether these apparent distinctions are artifacts of a small sample size or 

represent a fundamental aspect of the morphological structure of female C. bezziana populations. 

!  

!  

As was the case with the previous geography-difference analysis, despite the apparent overlap 

between male and female Asian (Sumba) wing image configuration fields within the subspace 

formed by the first three pooled PCA axes (see Fig. 13), when the projected scores along all 27 

eigenvector variables required to represent 95 percent of the pooled variation in image 

configurations are included, a CVA to test for gender differences, male and female wings are 

separated in markedly different and mutually exclusive shape-configuration fields along the single 

linear discriminant axis (Fig. 14). A non-parametric bootstrapped log-likelihood ratio test of group 

separation along this axis found that none of the 1,000 pseudoreplicate datasets created randomly 

from these data with replacement produced 𝜙-index values greater than 56.0 whereas the 𝜙-index 

value calculated for the gender-difference test was 94.3. Accordingly, this result is interpreted as 

being statistically significant at greater than the 𝛼 = 0.01 level.

In addition, despite the small size of this sample the CV-1 discriminant function exhibits very 

good stability with a jackknife (leave one out) analysis of post-hoc identification power returned a 

Figure 14. Frequency histogram of the projections of C. bezziana scores on PCs 1-27 onto 
the CVA discriminant axis separating Asian (Sumba) male and female populations. The 
between-groups separation is significant at the α < 0.01 level as assessed by a bootstrap test 
of the log-likelihood ratio index.
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result of 93.18 percent correct identifications for training set wings that were treated as unknown 

specimens and prevented from participating in estimating the discriminant function. Once again, the 

group with the largest sample size (males) exhibited the smallest number of misidentifications in 

this test, with one male specimen misidentified, post hoc, as female whereas two female specimens 

were misidentified as male.

In addition to answering the question of whether sexually dimorphic patterns of variation exist in 

these wing-image data, geometric morphometric approaches can also be used to reveal the specific 

aspects of wing morphology that vary between C. bezziana sexes and in which relative directions 

those variations occur. Figure 15 provides illustrates the reconstructed forms of typical male and 

female Asian (Sumba) C. bezziana wing morphologies at specific locations along the discriminant 

axis, along with a colour-coded image-difference map that highlights regions of pronounced 

sexually dimorphic distinction.

!  

!  

Based on a detailed comparison of these images, and guided by the CV-1 image-difference map, 

the primary distinctions between male and female Asian (Sumba) C. bezziana wings fall into three 

regional categories. First and most important is an increase in the space between the costal margin 

and both the lateral segments of the subcostal and primary anterior radius veins in females relative 

to the distinctly more compact arrangement of these features in males. In the context of the images 

used in this investigation, this expansion or narrowing (depending on which sex is considered as the 

basal state) is manifested as a migration of the costal margin in an anterior direction with 

particularly intensive distinctions between pixel grayscale values occurring at the anterior terminus 

of the humeral transverse vein, the humeral articulation or break, and the anterior termini of the 

Figure 15. Chrysomya bezziana wing image models constructed at the ends of the distributions of image projections 
along the Asian (Sumba) male - female linear discriminant axis (CV-1). Distinctions between these images represent 
the major models of digital image distinction on a pixel-by-pixel basis. Numbers below the hypothetical image 
models represent the coordinate values at which the models were constructed. The final column contains a pixel 
difference maps in which the values of the differences between pixel brightness values have been colour-coded on a 
continuous scale as described in the Fig. 5 caption. See text for discussion.
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subcostal, anterior radius and the first and second post-anterior radius veins. Coincident with this 

distinction between males and females in the leading wing edge, males also exhibit wings that are 

much more narrow distally than female wings. In terms of the images used in this investigation this 

apparent sex-linked variation manifests itself as an anterior migration of the posterior wing margin, 

especially in the middle region of the wing blade. This change also involves a more subtle anterior 

migration of the distal medial and medial-cubital transverse veins. In general, these changes can be 

summarized as an overall narrowing of the main wing blade in male Asian (Sumba) C. bezziana 

relative to the typical female condition which results in accentuating the ellipticity of the distal wing 

tip. Finally, the indentation in the posterior wing margin that marks the intersection between the 

anal alular regions is, on the whole, far more distinct and deeper in male, as opposed to typically 

female wings. In female C. bezziana the anal-alular indentation is, on the whole, shallower and 

much less pronounced. 

It should be stressed that these are preliminary findings based on the detailed analysis of a 

relatively small sample. What can be said with confidence is that, based on these data, a clear 

potential exists to identify quite subtle aspects of blowfly biology from disjunct patterns of 

morphological variation that occur in aspects of the phenotype — such as the wing — that are 

readily accessible to monitors with only the most rudimentary training in specimen-handling 

procedures and blow fly taxonomy. Even more importantly, reliable identifications can made 

quickly, efficiently, and on a quantitative basis using appropriate morphometric procedures; 

procedures that can, at least in principle, be fully automated. 

Discussion 

In the same way that mathematics can be defined as the study of patterns in numbers (Delvin, 1994; 

1998; Gowers et al., 2008), natural history can be defined as the study of patterns in nature with a 

non-exclusive emphasis on their origin. This definition unites all attempts to study nature 

(biological and physical) in a manner that is consistent with the history of this field (see Jardine et 

al., 1996) and encompasses its discovery, descriptive (idiographic) and theoretical/conceptual 

(nomothetic) aspects. Such a formulation also emphasizes the utility and importance of mathematics 

in the investigation of natural history phenomena, a tool that has become increasingly important 

during its development over the last century (Sokal and Sneath, 1966; MacArthur and Wilson, 1967; 
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Blackith and Reyment, 1971; Sneath and Sokal, 1973; Reyment et al., 1984; Hull, 1988; Bookstein, 

1991; McGhee, 1999; Sepkoski, 2002; Felsenstein, 2003; McGhee, 2007; Sokal and Rohlf, 2012).

The discipline — some prefer to call it a ‘tool’ — of morphometrics has been a prominent and 

highly successful example of this increasingly mathematical approach to the analysis of natural 

history phenomena (see Adams et al., 2004; Adams et al., 2013; MacLeod in press a; in press b). To 

date, applied morphometrics has been used to investigate a wide range of both intra-specific and 

inter-specific patterns, including growth and development (e.g., Klingenberg, 2016), evolutionary 

rates (e.g., Bookstein, 2012; Adams, 2014), modularity (e.g., Mitteröcker and Bookstein, 2007; 

Klingenberg 2013), comparative morphology (e.g., Felsenstein, 2002; MacLeod, 2002; Catalan et 

al., 2010; Globoff and Catalan, 2011; Klingenberg and Gidaszewski, 2010), and fluctuating 

asymmetry (e.g., Montiero, 2013; Polly et al., 2013). However, few results of investigations that 

seek to discriminate between different intra-specific and inter-specific groups of closely related 

species have been dramatically successful to date (e.g., Zelditch et al., 1995; Walker, 1996; Ibañez 

et al., 2007, but see MacLeod, 2002; 2015; MacLeod and Steart, 2015). Accordingly, we are 

unaware of the identification of any species that is undertaken primarily via reference to 

morphometric data or that has been automated to the extent that identification can be made reliably 

by non-expert taxonomists. Yet, the scientific community is agreed that its inability to obtain 

identifications of biological species (and other types of groupings) quickly, consistency and with a 

high degree of accuracy is a major impediment that not only limits the scope of scientific research, 

but has severe and costly economic and medical implications (Kaesler, 1993; MacLeod et al., 

2010).  

It is highly unlikely that the answer to this dilemma will be found in training up a new generation 

of taxonomists, either in principle (Godfray, 2002; Godfray et al., 2007) or in practice (Culverhouse 

et al., 2013). Use of DNA barcodes poses a practical means of addressing the need for reliable and 

consistent identifications in certain instances (e.g., for parts of specimens and/or in assays of species 

richness for which there is no opportunity and/or no need to recover whole specimen bodies). 

However, controversy continues to surround the routine use of DNA technology for species 

identification on a variety of fronts (Ebach and Carvalho, 2010; Jingo et al., 2011; Shen et al., 

2013). Moreover, in the vast majority of instances, accurate identifications can be made as they 

always have been made, on the basis of morphological criteria alone — especially if the ability of 

humans to perceive such distinctions can be extended, speeded and made more objective via 

recourse to appropriate technologies. In other words, the application of morphometric data 

collection and analysis procedures to the automated identification of plant and animal groups 
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represents an outstanding opportunity for the biometric community; an opportunity with widely 

acknowledged to have important scientific, economic and social implications.

For the past 30 years landmarks and semilandmarks (= the serially arranged analogues of 

landmarks) have been the basic data of morphometrics and the foundation of the geometric 

morphometric approach (Kendall, 1984; Bookstein, 1986; 1991). However, Bookstein (2016) has 

recently argued that, in order to render morphometric results more compatible with process-level 

biological explanations, the fundamental symmetries of the standard morphometric data matrix are 

deficient in precisely the sort of information that is necessary — and in many cases readily available 

— to support this praxis between pattern and process. Landmark-based data matrices contain no 

information about natural aspects of variation among landmark locations which, in turn, reflect 

groupings between different developmental, functional, physiological or phylogenetic aspects of the 

organisms in question. Moreover, landmark-based datasets include only those features of the 

organism that can be reasonably well represented by the specification of a landmark, irrespective of 

whether such locations are known or suspected to be of importance to the resolution of the 

biological problem under investigation. In contrast, digital images of organismal bodies or 

structures of interest (e.g., insect wings) contain informative representations of all features that 

might conceivably be of interest in testing a biological hypotheses or characterizing a biological 

group and do so in a manner that is tractable in terms of standard matrix notation and that supports 

direct visualization/modelling.

By the same token, the standard decomposition of landmark-based morphometric data matrices 

via PCA, and the presentation of patterns of similarity and difference on ordination spaces derived 

from eigenvectors of the pooled shape covariance matrix, often fails to include any information 

about differences among groups known to reside within the sample. The orthogonality constraint 

enforced by an eigenanalysis of pooled-sample data guarantees that the resulting eigenvectors will 

specify sets of contrasts between landmark locations that ignore both the natural structure of groups 

among the landmark locations and the structure of groups among the specimens from which those 

data have been collected. Aspects of structures may be revealed by the PCA analysis of 

morphometric data, but only if they deterministically or coincidentally align with the major 

orthogonal directions of form/shape variation within the pooled-groups sample. Even if this 

alignment is present within a dataset it will rarely be the case that the full measure of group-level 

distinction will be able to be assessed via simple inspection of ordinations formed by form/shape 

configurations projected into low-dimensional spaces formed by the first few eigenvectors. As we 

can see from the detailed analysis of the geographic-difference Chrysomya-wing dataset presented 
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above, even in instances where this turns out to be the case in general, it is virtually always not the 

case in particular. Use of PCA to represent the structure of form/shape variation in a sample can 

only be justified biologically in the absence of any information about such natural groupings among 

the variables (= landmarks) and objects (= specimens) in question or in the event that the major 

directions of pooled group variation happen to coincide with between variable-group and between-

specimen group contrasts.

In order to address this data analysis problem Mitteröcker and Bookstein (2014, see also 

Bookstein 2016, Flury 1983, 1985) have advocated use of relative principal component analysis 

(PCAr) or relative eigenanalysis in order to include information about the presence of, and structure 

of relations between, biological groups residing within morphometric datasets. These relative 

principal components provide an indication of the difference in structure between two or more 

group-specific covariance matrices as a series of vectors whose directions and lengths have been 

adjusted to reflect the ratios of the original variables along with all their linear combinations. Under 

this model, normal PCA can be regarded as the outcome of a relative eigenvector analysis in which 

the covariance matrix of the second (non-present) group is represented by the identity matrix (= unit 

variance for all variables and no covariance between all pairs of different variables). Mitteröcker 

and Bookstein (2014) provide equations for calculating the relative eigenvectors of any two groups 

as a contrast between their covariance matrices. These authors also note that CVA is equivalent to a 

PCAr under the assumption that the covariance matrices are equivalent across all groups, though it 

is actually the projection of the CVA eigenvectors into the space of the original variables that 

constitutes the relative principal components. This can appreciated insofar as CVA eigenvectors are 

orthogonal to one another in the CVA space, but not in the space of the space of the original 

variables. Regardless, so long as it is born in mind that, unlike normal PCA eigenvectors, PCAr 

eigenvectors define a space in which the axes are non-orthogonal and aligned with the directions 

group-level contrasts, the inspection, analysis and modeling of point locations within the PCAr 

space can be both interesting and informative. 

Inspecting results of the CVA for all three of our test datasets (see figs 4, 8, 11 and 14) all groups 

appear to have quite similar variance representations within the canonical variate space. 

Accordingly, results obtained from this investigation can not only be regarded as constituting valid 

representations of group differences, but of also of group-level contrasts, especially if back-

projected into the space of the original variables and used to assess the directions of maximal group 

contrast. This is precisely the procedure that was used in the present analysis to obtain the pixel-

based, image-difference maps for the geographic, gender, and species-difference tests (see figs 9, 12 
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and 15; see also MacLeod 2015 for another example of this visualization procedure). In other 

words, by employing a CVA of PCA score data it is not only possible to calculate and portray the 

major directions of between-group differences within a PCAr-like space as scatterplots of points, the 

entire PCAr ordination space can be used as a mathematical platform from which visualisations of 

the geometric meaning of PCAr axes can be created. Mitteröcker and Bookstein (2014, see also 

Bookstein, 2016) explain how this procedure can work with traditional multivariate morphometric 

and geometric morphometric data. The present study extends this formalism to a direct analysis of 

digital images — a form of morphometric data that has been little used by morphometricians thus 

far, but that is coming to be recognized as having many innate advantages over traditional 

landmark/semilandmark data.

Of course, the implications of using digital images themselves as the subjects of morphometric 

analyses transcends both biology and natural history. The formalism of having to represent objects 

of interest via recourse to landmark configurations and/or sets of serially arranged semilandmarks 

imposes severe limitations on the range of subjects considered amenable to morphometric analysis, 

on the scope of investigations that could be carried out using a collection of specimens or objects, 

and on the acuity of hypotheses that can be considered using geometric morphometric approaches. 

The labour needed to collect even small suites of landmarks, one-at-a-time, by hand, also exerts a 

considerable constraint on the size of morphometric datasets that can be assembled practically and, 

so, on the accuracy of statistical tests based on morphometric data. Moving from a consideration of 

geometric variations between landmarks to a geometric consideration of pixels in the frame of a 

digital image not only means that greater amounts of data can be collected for morphometric 

analysis quickly, efficiently, and in a wide variety of laboratory and field contexts, it also means that 

new aspects of specimen/object morphology can be included in any morphometric investigation 

(e.g., variable colour and texture patterns, such as damselfly wing spots – Upton et al., 2016).

Along with these new capabilities, however, comes a new range of data-collection concerns that 

morphometricians who wish to undertake the direct analysis of images will need to develop 

strategies to cope with and overcome. Because landmark data capture no information about the 

image itself, images of widely varying formats, resolutions, colors and illumination modes may be 

used in morphometric analysis. But in order to be useful in any image-based analysis all of these 

parameters must be standardized. In addition, specimens must be inspected carefully for any 

systematic differences that are not part of the inherent biological or physical aspect of the specimens 

of interest. For example, specimens of different ages in museum collections, or those that have been 

subjected to different processing procedures, may be darker or exhibit a different color or tint 
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relative to other specimens in the collection. As any aspect of the image that causes alteration of the 

pixel color and /or brightness values can affect the images’ covariance with other images in the 

sample, only those that reflect the normal ranges of natural variation should, ideally, be used in 

image-based morphometric analyses. In some cases, the influence of exogenous sources of image 

variation may be minimized via the application of various image-processing procedures (e.g., 

alterations in color patterns can be minimized by converting the images to a grayscale colour mode 

prior to analysis, non-biological variations in brightness or darkness values may be normalized via 

adjustments of the image histogram). In others this difficulty may be able to be overcome during the 

data-analysis phase of the investigation (e.g., via employment of machine learning procedures, see 

MacLeod et al., 2007a; 2007b; 2015b; in press). Regardless, care must be taken to collect images 

using standardized procedures at the outset of any analysis. In addition, if automated specimen 

identification is the goal of the analysis, care must be taken to collect training set images using 

image-capture equipment and under illumination conditions that can be reproduced in remote 

laboratories and/or in the field. 

This having been said, the amount of information residing within digital images is sufficiently 

large that imperfect specimens can often be used to construct training sets and obtain 

identifications. Missing data has been a long-standing issue in geometric morphometrics insofar as 

there it is difficult to locate a landmark or semilandmark at a position corresponding to an aspect of 

an organismal body that is not present or that has been obscured in any way (see Strauss et al., 

2003; Strauss and Atabassov, 2006; Brown et al., 2014). Several procedures have been developed to 

meet surmount this challenge in particular instances (e.g., Clavel et al., 2014; Arbour et al., 2014). 

Under the direct image analysis approach, however, similarity and difference estimates are based on 

the total set of pixels comprising the image — even in the cases where the dimensionality of the 

image data has been reduced via PCA. As a result, relatively minor, localized imperfections in the 

specimen included in a sample are usually insufficient to cause major perturbations in the structure 

of either pooled or group-specific image covariance matrices. Moreover, there is usually little need 

to employ special procedures to cope with such imperfections so long as the major characteristics of 

the specimen or structure in questions are retained. Indeed, stepping the image resolution down to a 

relatively low value in order to address the pixel-value redundancy issue often has the effect of 

minimizing the influence of minor, localized imperfections such to the point that these play little on 

no role in determining the result of an image-based morphometric analyses (see Fig. 2). Large or 

generalized deformations of the specimen — and so the specimen’s digital image — can be 

problematic. But even in these cases the higher information content of images, coupled with either 
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the smoothing effect of resolution reduction prior to PCA/CVA analyses or the use of robust 

machine-learning procedures, can mitigate the effects of imperfections that would render a 

specimen unsuitable for inclusion in a traditional landmark-based morphometric sample.  

Close inspection of the images used in this investigation (see supplementary data) will show that 

many contain minor imperfections such as tears in the wing membrane, dust particles in the image 

frame, variable degrees of overlap between the anal and alular areas of the wing blade, variable 

degrees of wing darkening, and variable degrees of pigmentation of the pteralia or auxiliary area 

along with a wide range of variable damage at the base where the wing has been detached from the 

specimen’s body. None of these sources of variation were sufficient to mask the clear and 

statistically significant differences found between Chrysomya species, geographic populations or 

genders.

In addition, the direct analysis of images in a quantitative geometric context represents the 

critical link between the heretofore separate fields of morphometrics and computer vision. 

Conceptually, the growing field of computer vision overlaps strongly with that of morphometrics 

insofar as both involve the acquisition, processing, analysis and understanding of images. In the 

case of morphometrics images are regarded as representing a proxy for the specimen or set of 

specimens under consideration. But in the vast majority of cases both landmarks and semilandmarks 

are acquired from 2D or 3D digital representations (= digital images) of these specimens rather than 

from the specimens themselves.  

Computer vision and morphometrics have different origins and were developed in different 

contexts to meet different needs. To date there has been minimal crossover between these fields. 

Nevertheless, their ultimate goals of extracting information from images that is pertinent to 

understanding the world around us is very similar. Both could — and in some cases do — take 

advantage of developments and discoveries made in the other field. The purpose of both Sirovich 

and Kirby’s (1987) and Turk and Pentland’s (1991) original application of PCA to digital images 

was to facilitate the automated identification of human faces for the purpose of developing 

computer vision procedures. Similarly, image keypoints (see Lowe, 1999; 2004; Key et al., 2004) 

represent a generalized and mathematically sophisticated attempt to algorithmically identify and 

operate on corresponding landmark locations in two or more images - a procedure 

morphometricians are very familiar with but, at the moment, are forced to do by hand. Computer-

vision specialists recognize the value of being able to locate topologically corresponding landmark 

locations that make sense in various contexts (e.g., functional, phylogenetic, ecological). For the 

most part, however, they lack the understanding of these contexts necessary to build this capability 
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into their image-processing algorithms. Similarly, the form/shape modelling aspects of 

morphometric techniques that have been developed by morphometricians and that have become so 

important in enhancing the interpretability of morphometric analyses are, if anything, under-

appreciated by computer-vision researchers. Perhaps most importantly, practitioners in both fields 

are increasingly coming to realize that the real purpose of morphometrics and computer vision is 

not to be found in the development of algorithms, image processing procedures or data analysis 

techniques, but rather in the practical uses to which such information can be put to solve real-world 

problems. The Chrysomya study presented above represents an example of how these two fields can 

be brought together in ways that lead to increased scientific understanding of variation in natural 

populations.  

Of course, an obvious additional implication of our findings is that, by using the methods we 

have employed, it may now be possible to produce a much-needed, accurate and inexpensive fully 

automated software tool that can be used by a wide variety of groups (e.g., agriculturalists, medical 

researchers, epidemiologists, ecologists and taxonomists) to support a wide range of quick, easy and 

accurate identifications of importance in economic, human health and biological contexts. Based on 

the results we have obtained in the course of this study, the potential of a digital image-based 

approach to the practical investigation and analysis of the natural world seems clear and its scope 

virtually unlimited. 

Conclusions 

The ability to make routine, automated identifications of the Old World screwworm fly species C. 

bezziana and its relatives would be beneficial in a wide variety of scientific, medical, forensic, and 

agricultural contexts. While DNA barcoding could be employed for this purpose in principle, a 

more efficient, practical, rapid, and in many ways interesting approach to this problem would be to 

identify a morphological character complex with sufficiently well-structured patterns of variation to 

support automated or quasi-automated identification, especially if such identification systems could 

be located in the field and employ widely available technology (e.g., smartphone cameras). Based 

on results obtained from our investigation of African and Asian (Sumba) Chrysomya species it is 

clear that the morphology of the wing may represent such a character complex.

Analyses of a small sample of isolated wing images from C. bezziana, C. megacephala, and C. 

rufifacies has shown that this appendage not only contains sufficiently well-structured variation to 
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distinguish between these three species to a better than 90 percent accuracy level, but that similar 

analyses can also distinguish between Asian and African (Sumba) populations of C. bezziana and 

between the genders of this species. These identification accuracy ratios were obtained via the direct 

analysis of digital wing images with minimal image pre-processing and on wings that included a 

wide variety of imperfections. All statistical test results were significant as assessed using 

nonparametric bootstrap versions of standard discriminant analysis tests and all identification 

accuracy ratios were generated using robust, jackknife (leave-one-out) test procedures. Our image-

based approach avoids the laborious and time-consuming need for trained taxonomists and/or 

parataxonomists to take specimens to a laboratory equipped with specialist image-analysis software 

in order to collect landmark and/or semilandmark data for geometric morphometric analysis. 

Moreover, the results obtained from our training set sample provide indications of between-group 

differences that might even allow such identifications to be made visually via simple inspection.  

A landmark analysis of the wings used in the geographic population difference test confirmed the 

existence of differences between African and Asian (Sumba) wing morphologies — thus also 

confirming the appropriateness of the image-based results — and returned a marginally higher 

population identification accuracy ratio. However, the ease, speed, and convenience of the analysis 

of wing images directly, along with the high identification accuracy ratios achieved by our 

investigation, lead us to conclude that this strategy would be sufficient to provide field taxonomists, 

forensic researchers, medical specialists and agricultural workers with a reliable indication of 

species identity, population of origin and gender in the field. If more accurate identifications are 

needed and would be cost-effective, these could be generated by specialists in adequately equipped 

research laboratories on morphometric discrimination systems trained using traditional landmark/

semilandmark data from the same set of wings used to train the direct image analysis system.

With regard to the larger implications of the approach to morphometric analysis we have taken, 

our study occupies the nexus between geometric morphometrics and computer vision. Our primary 

goals for this investigation were resolutely biological and, owing to the complex vein patterns that 

characterize insect wings, focused on structures which have been classic subjects for landmark-

based geometric morphometrics (e.g., Rohlf, 1993). Our overall data-analysis procedure was also 

identical to that used in a standard geometric morphometric analysis whose purpose is to distinguish 

between groups. But rather than base our analysis on the spatial configurations of a relatively small 

number of landmark or semilandmark locations selected at the outset of our analysis, we chose to 

adopt a more exploratory strategy that did not require any a priori decisions to be made regarding 

what aspects of the wing may, or may not, be important sources of structured covariation that 
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characterize the different specimen groups. The digital images of insect wings that were used in our 

investigation captured all the biologically relevant morphological information available in our 

sample of wing specimens and used the totality of this information as the basis for our analysis. 

This approach to morphometric investigation is consistent with the spirit, if not entirely with the 

letter, of recent criticisms made by Bookstein (2016) regarding the appropriateness of standard 

geometric morphometric data and procedures for characterizing and resolving questions pertaining 

to biological hypotheses. But even more than this, the productive cross-fertilization that can exist 

between image-based morphometrics and image-based computer vision, as hinted at by Bookstein 

(2016), and as demonstrated by our results, provide a clear signpost pointing in the direction both 

fields may want to move in the future. 

Geometric morphometrics can bring to complex biological issues an elegant and mathematically 

rigorous understanding of form variation along with a wide variety of tools through which the 

geometric implications of quantitative morphological data analyses can be portrayed in a manner 

that is both natural and easy to understand. But the methods employed in this field at present are not 

able to take adequate advantage of a wide variety of biological data that could, and we believe 

should, be included in the biological morphometric analyst’s toolkit, along with an overall approach 

to analysis that is more confirmatory than exploratory in character. Computer vision can bring a far 

more extensive and mathematically sophisticated array of data and data-analysis tools to the classic 

problems posed by morphological variation. Nevertheless, the methods employed by this field, to 

date, lack an appreciation for the special character of biological data (e.g., the fact that all biological 

observations are embedded causally within a phylogenetic hierarchy and that biologically 

informative comparisons among organisms are best made accordingly to the principles of biological 

homology insofar as possible) and, in many instances, have been employed in the context of 

underdeveloped results-visualization tools. Both fields have much to learn from each other. But 

irrespective of these considerations, we expect results similar to those we have detailed above will 

likely be obtained from any investigation of other insect groups via the direct analysis of digital 

images of bodies and/or parts thereof and, indeed, from subjecting a wide variety of images of other 

plant, animal, and physical object groups to similar analyses. 
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Figure Captions 

Figure 1.  Morphology (A) and landmark-based sampling (B) of the Chrysomya wing. 
Morphological characters included the following humerus-radius articulation (H-RA), 
humerus-costa transverse vein (H-CT), costal margin (C), subcostal vein (SC), anterior 
radius vein (AR), first post-anterior radius vein (PA1R), second post-anterior radius vein 
(PA2R), wing tip (Tip), medial vein (M), radius-medial transverse vein (R-MT), cubital 
vein (Cu), proximal medial-cubital transverse vein (M-CT1), distal medial-cubital 
transverse vein (M-CT2), distal anal vein (A1), proximal anal vein (A2), cubital-distal 
anal transverse vein, alulal-anal indentation (Al-An). Landmarks: 1 - intersection 
between the humeral transverse vein and costal vein, 2 - position of the humeral 
articulation or break, 3 - intersection between the subcostal and costal veins, 4 - 
intersection between the anterior branch of the anterior radius vein (AR) and the costal 
margin (C), 5 - intersection between the first post-anterior branch of the radius vein 
(PA1R) and the costal margin (C), 6 - intersection between the second post-anterior 
branch of the radius vein (PA2R) and the costal margin (C), 7 - intersection between the 
medial vein (M) and the costal margin (C) or wing periphery, 8 - intersection between 
the cubital vein (Cu) and wing periphery, 9 - distal intersection between the anal and 
alulal areas (Al-Au), 10 - articulation between the humeral sclerite and the radius vein 
(H-RA), 11 - first bifurcation of the radius vein (AR) resulting the creation of this vein’s 
anterior (AR) and first post-anterior (PA1R) branches, 12 - second bifurcation of the 
radius vein (AR) resulting the creation of this vein’s first post-anterior (PA1R) and 
second post-anterior (PA2R) branches, 13 - anterior intersection between the radius-
medial transverse vein (R-MT) and the second post-anterior radius vein (PA2R), 14 - 
anterior intersection between the distal medial-cubital transverse vein (M-CT1) and the 
medial vein (M), 15 - posterior intersection between the radius-media transverse (R-
MT) vein and the medial vein (M), 16 - anterior intersection between the distal medial-
cubital transverse vein (M-CT2) and medial vein (M), 17 - maxima of curvature in the 
distal portion of the medial vein (M), 18 - bifurcation between the cubital (Cu) and first 
anal (A1) veins, 19 - posterior intersection between the proximal medial-cubital 
transverse vein (M-CT1) and the cubital vein (Cu), 20 - posterior intersection between 
the proximal medial-cubital transverse vein (M-CT2) and cubital vein (CU), 21 - 
posterior intersection between the cubital-first anal transverse vein (C-AnT) and the first 
anal vein (A1). Specimen shown is BMNH E 1195306 which is a female African C. 
bezziana. 

Figure 2.  Original (upper row) and reduced resolution grayscale digital images of representative 
female specimens of the three species considered in this investigation. 

Figure 3.  Projection of the C. bezziana Procrustes-aligned, wing landmark configurations into the 
space formed by the first three principal components of the shape covariance matrix. 
This subspace represents c. 50% of the shape variation recorded by these landmarks. 
Note strong separation between African and Asian populations within the PC-1 vs. PC-2 
subspace and lack of obvious shape outliers. 
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Figure 4.  Frequency histogram of projected C. bezziana wing landmark configurations on the 
CVA discriminant axis separating African and Asian (Sumba) populations. This 
between-groups separation is significant at the α < 0.01 level as assessed by a bootstrap 
test of the log-likelihood ratio index. 

Figure 5.  Directions of landmark migration between typical African (landmark configuration and 
displacement vector tails) and Asian (displacement vector heads) wings. See Fig. 1 for 
landmark names and defining criteria. The length of these vectors has been exaggerated 
(x3) in order to illustrate their directions and relative magnitudes. In addition, the 
landmark icons have been colour-coded to classify them into relative change categories: 
blue - no or small change, white - moderate change, yellow and orange - strong change, 
red - strongest change. See text for discussion. 

Figure 6.  Projection of the African and Asian (Sumba) C. bezziana major axis-aligned, wing 
image configuration data into the subspace formed by the first three principal 
components of the image covariance matrix. This subspace represents c. 60% of the 
shape variation recorded by the reduced resolution wing images. Note strong, but not 
perfect, separation between African and Asian (Sumba) populations within the PC-1 vs. 
PC-2 subspace, presence of several morphological subclusters, and presence of obvious 
shape outliers. 

Figure 7.  Chrysomya bezziana wing image models constructed at the ends of the of the 
distributions of image projections along each of the first three principal components of 
the image covariance matrix for the pooled (African-Asian [Sumba]) wing image data. 
Distinctions between these images represent the major modes of image variation on a 
pixel-by-pixel basis. Numbers below the hypothetical image models represent the 
coordinate values at which the models were constructed. The final column contains 
image difference maps in which the values of the differences between pixel brightness 
values have been colour-coded on the same continuous scale described in the Fig. 5 
caption. See text for discussion. 

Figure 8.  Frequency histogram of projected C. bezziana wing image configuration scores on PCs 
1-28 onto the CVA discriminant axis separating African and Asian (Sumba) populations. 
The between-groups separation is significant at the α < 0.01 level as assessed by a 
bootstrap test of the log-likelihood ratio index. 

Figure 9.  Chrysomya bezziana wing image models constructed at the ends of the of the 
distributions of image projections onto the linear discriminant axis (CV-1) that separates 
African and Asian (Sumba) wing image data. Distinctions between these images 
represent the major morphological distinctions between the wings of these populations 
on a pixel-by-pixel basis. Numbers below the hypothetical image models represent the 
coordinate values at which the models were constructed. The final graphic is an image 
difference map in which the values of the differences between pixel brightness values 
have been colour-coded on a continuous scale as described in the Fig. 5 caption. See 
text for discussion. 

Figure 10.  Projection of the C. bezziana, C. megacephala, and C. rufifacies, Procrustes-aligned, 
wing image configuration data into the space formed by the first three principal 
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components of the image covariance matrix. This subspace represents c. 60% of the 
image variation recorded by the reduced resolution wing image dataset. Note the 
pronounced, but far from perfect, tendency toward species separation, relative 
distinctiveness of C. bezziana, and presence of wing configuration subgroups and 
outliers within both C. bezziana and C. megacephala within the PC-1 vs. PC-2 
subspace.  

Figure 11.  Projection of the C. bezziana, C. megacephala A, and C. rufifacies, scores on PCs 1-32 
into the space formed by the two CVA discriminant axes. These axes represent 100% of 
the difference between group centroids in the linear, eigenvalue-standardized ordination 
space. Note tightness of variation within each of the species clusters, the clear and clean 
separation of species clusters from one another and the orientation of between-species 
distinctions relative to those of the discriminant axis vectors. 

Figure 12.  Wing image models constructed at the ends of the of the distributions of image 
projections along the two species-difference linear discriminant axes (CV-1, CV-2). 
Distinctions between these images represent the major models of digital image 
distinction on a pixel-by-pixel basis. Numbers below the hypothetical image models 
represent the coordinate values at which the models were constructed. The final column 
contains pixel difference maps in which the values of the differences between pixel 
brightness values have been color coded on a continuous scale as described in the Fig. 5 
caption. See text for discussion.  

Figure 13.  Projection of the C. bezziana major axis-aligned, wing image configuration data into the 
space formed by the first three principal components of the image covariance matrix for 
the gender-difference dataset. This subspace represents c. 48% of the image variation 
recorded by the reduced resolution image set. Note the strong, but not perfect, 
separation between male and female cohorts along PC-2, the presence of image 
configuration subgroups within the female dataset, and the difference in the image 
configuration variance between the two sexes.  

Figure 14.  Frequency histogram of the projections of C. bezziana scores on PCs 1-27 onto the CVA 
discriminant axis separating Asian (Sumba) male and female populations. The between-
groups separation is significant at the α < 0.01 level as assessed by a bootstrap test of 
the log-likelihood ratio index. 

Figure 15.  Chrysomya bezziana wing image models constructed at the ends of the distributions of 
image projections along the Asian (Sumba) male - female linear discriminant axis 
(CV-1). Distinctions between these images represent the major models of digital image 
distinction on a pixel-by-pixel basis. Numbers below the hypothetical image models 
represent the coordinate values at which the models were constructed. The final column 
contains a pixel difference maps in which the values of the differences between pixel 
brightness values have been colour-coded on a continuous scale as described in the Fig. 
5 caption. See text for discussion. 


