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Abstract

Instrumental variables (IV) estimates show strong class size effects in Southern Italy.
But Italy’s Mezzogiorno is distinguished by manipulation of standardized test scores as
well as by economic disadvantage. IV estimates suggest small classes increase manip-
ulation. We argue that score manipulation is a consequence of teacher shirking. IV
estimates of a causal model for achievement as function of class size and score manip-
ulation show that class size effects on measured achievement are driven entirely by the
relationship between class size and manipulation. These results show how consequen-
tial score manipulation can arise even in assessment systems with few accountability
concerns.
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1 Introduction

School improvement efforts often focus on inputs to education production, the most important

of which is staffing ratios. Parents, teachers, and policy makers look to small classes to boost

learning. The question of whether changes in class size have a causal effect on achievement

remains controversial, however. Regression estimates often show little gain to class size re-

ductions, with students in larger classes sometimes appearing to do better (Hanushek, 1995).

At the same time, a large randomized study, the Tennessee STAR experiment generated

evidence of substantial learning gains in smaller classes (Krueger, 1999). An investigation

of longer-term effects of the STAR experiment also suggests small classes increased college

attendance (Chetty et al., 2011).

Standardized tests provide the yardstick by which school quality is most often assessed

and compared. As testing regimes have proliferated, however, so have concerns about the

reliability and fidelity of assessment results (Neal, 2013, lays out the issues in this context).

Evidence on this point comes from Jacob and Levitt (2003), who documented substantial

cheating on standardized tests in Chicago public schools, while a recent system-wide cheating

scandal in Atlanta sent some school administrators and teachers to jail (Severson, 2011). Of

course, students may cheat as well, especially on tests that have consequences for them. In

many cases, however, the behavior of staff who administer and (sometimes) grade assessments

is of primary concern. For example, Dee et al. (2016) show that New York’s Regents exam

scores are very likely manipulated by the school staff who grade them. Concerns regarding

score manipulation have also been raised in discussions of Sweden’s school choice reform

(Böhlmark and Lindahl, 2012, Diamond and Persson, 2016) and in the United Kingdom and

Israel, where important nationally administered tests are locally marked. In public school

systems with few or no employee performance standards, such as the Italian public school

system studied here, fidelity of school staff to test administration protocols may be especially
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weak.1

Our investigation of the effect of score manipulation on the measurement of education

production in Italy begins by applying the quasi-experimental research design introduced by

Angrist and Lavy (1999). This design exploits variation in class size induced by rules stipu-

lating a class size cutoff. In Israel, with a cutoff of 40, we expect to see a single class of size 40

in a grade cohort of 40, while with enrollment of 41, the cohort is typically split into two much

smaller classes. Angrist and Lavy called this Maimonides’ Rule, after the medieval scholar

and sage Moses Maimonides, who commented on a similar rule in the Talmud. Maimonides-

style instrumental variables (IV) estimates of the effects of class size on achievement for the

population of Italian second and fifth graders, most of whom attend much smaller classes

than those seen in Israel, suggest a statistically significant though modest return to decreases

in class size. Importantly, however, our estimated returns to class reductions in Southern

Italy are roughly three times larger than in the rest of the country.2

Why is there a large return to small classes in Southern Italy but not in the North?

Differences in class size effects on learning may explain this, of course. Southern Italy is poorer

and the returns to class size may be inversely related to family income, for example. Among

other important distinctions, however, the Italian Mezzogiorno is characterized by widespread

score manipulation on the standardized tests given in primary schools. This can be seen

in Figure 1, which reproduces provincial estimates of score manipulation from the Italian

Instituto Nazionale per la Valutazione del Sistema dell’Istruzione (INVALSI), a government

agency charged with educational assessment. Classes in which scores are likely to have been

manipulated are identified through a statistical model that looks for surprisingly high average

scores, low within-class variability, and implausible missing data patterns.3 Measured in this
1Local teachers grade the UK’s Key Stage 1 assessments (given in year 2, usually at age 7).

Key Stage 2 assessments given at the end of elementary school (usually at age 11) are locally
proctored, with unannounced external visits, and are externally graded (documents and links at
http://www.education.gov.uk/sta/assessment). See Battistin and Neri (2016) for evidence on UK manip-
ulation. Lavy (2008) documents gender bias in the local grading of Israel’s matriculation exams. De Paola et
al. (2014) estimate the effects of workplace accountability on productivity in the Italian public sector. Ichino
and Tabellini (2014) discuss possible benefits from organizational reform and increased choice in Italian public
schools.

2The South, also known as Mezzogiorno, consists of the administrative regions of Basilicata, Campania,
Calabria, Puglia, Abruzzo, Molise, and the islands of Sicily and Sardinia. Italy’s 20 Administrative regions
are further divided into over 100 provinces.

3The INVALSI testing program is described below and in INVALSI (2010). The INVALSI score manip-
ulation variable identifies classes with substantially anomalous score distributions, imputing a probability of
manipulation for each (see Quintano et al., 2009). Figure 1 uses this variable for the 2009-2011 scores of
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way, roughly 5 percent of Italian scores are compromised, about the same rate reported for

Chicago elementary schools by Jacob and Levitt (2003). In Southern Italy, however, the

proportion of compromised exams averages about 14 percent (see Table 1) and reaches 25

percent in some provinces. Further evidence suggesting extensive score manipulation on

the South comes from Bertoni et al. (2013), who analyze data generated by the random

assignment of external monitors sent to observe test administration.

The purpose of this paper is to document and explain the effects of class size on score

manipulation, with a special focus on how manipulation distorts estimates of class size effects

on learning. IV estimates show that large classes reduce manipulation, especially in the

South. We argue that manipulation of INVALSI scores reflects teacher behavior - specifically,

dishonest transcription of hand-written answer sheets onto machine-readable score report

forms. Dishonest score reporting appears to be largely a form of shirking, that is, moral

hazard in grading effort, rather than cheating motivated by accountability concerns. The

theoretical and institutional case for a link between teacher shirking in score transcription

and class size is made with the aid of a simple model of teacher behavior. A likely factor

in this model is the social constraint imposed by peers: just as randomly assigned monitors

inhibit manipulation, score sheets for larger classes are likely to be transcribed by a team of

teachers rather than only one.

Motivated by empirical and theoretical results linking class size and external monitoring

with score manipulation, we develop an empirical model for achievement as a function of

two endogenous variables, class size and score manipulation. The model is identified by a

combination of Maimonides’ Rule and random assignment of external monitors. The result-

ing estimates suggest that the relationship between class size and INVALSI test scores is

explained entirely by score manipulation: class size is unrelated to student learning in Italy,

at least insofar as learning is measured by standardized tests.

The fact that score manipulation explains class size effects in Italy should be of interest

to policy makers and to researchers studying the causal effects of school inputs. The Mai-

monides’ Rule research design is not guaranteed to work. Urquiola and Verhoogen (2009)

show how systematic sorting induces selection bias in comparisons across class size caps in

Chilean private schools. By contrast, our analysis uncovers a new substantive problem in-

second and fifth graders.
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herent in analyses of the causal effects of class size, a problem that arises independently

of the research design. Class size has a causal effect on measured achievement, but these

measurements are compromised. Even when the research design is uncompromised, statisti-

cally significant and credibly identified class size effects need not signal increased learning in

smaller classes.

Our behavioral model suggests class size can affect manipulation in any setting where

exams are marked with discretion. The findings reported here also provide evidence of a pre-

viously unrecognized source of moral hazard in school assessments. In contrast with teacher

and administrator cheating in response to high-stakes testing, the manipulation problem un-

covered here emerges in a low-stakes assessment program meant to guide national education

policy rather than through specific school and personnel decisions. Italian teachers work in

a highly regulated public sector, with little risk of termination, and are subject to a pay and

promotion structure largely independent of their performance. Although employees might

not like to be seen by their colleagues as slouches or free riders, regulation and employment

protection make formal disciplinary actions costly and unlikely. Manipulation appears to

arise in the Mezzogiorno in part because worker performance standards are weak; in fact,

it seems fair to say that moral hazard arises here from diminished rather than excessive ac-

countability pressures. Finally, it bears emphasizing that concerns with teacher shirking are

not unique to Italy. For example, Clotfelter et al. (2009) discusses distributional and other

consequences of American teacher absenteeism, while teacher absenteeism and other forms

of public sector shirking are a perennial concern in developing countries (see, e.g., Banerjee

and Duflo, 2006, and Chaudhury et al., 2006).

The rest of the paper is organized as follows. The next section presents institutional back-

ground on Italian schools and tests. Section 3 describes our data and documents the Mai-

monides’ Rule first stage. Following a brief graphical analysis, Section 4 reports Maimonides-

style estimates of effects of class size on achievement and score manipulation. Section 5 ex-

plores the nature of score manipulation by linking score distributions and response patterns

with class size and item difficulty. Finally, Section 6 uses the monitoring experiment and

Maimonides’ Rule to jointly estimated class size and manipulation effects. This section also

reviews possible threats to validity in our research design. Section 7 concludes.
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2 Background and Context

Italian Schools and Tests

Primary schooling (scuola elementare) in Italy is compulsory from ages 6 to 11. Schools

are administrated as single- or multi-unit institutions, a distinction that’s important to us

because some of the instrumental variables used below are defined at the school level and

some are defined at the institution level. Families apply for school admission in February,

well before the beginning of the new academic year in September. Parents or legal guardians

typically apply to a school in their province, located near their homes. In (rare) cases

of over-subscription, distance usually determines who has a first claim on seats. Rejected

applicants are assigned other schools, mostly nearby. School principals group students into

classes and assign teachers over the summer, but parents learn about class composition only

in September, shortly before or at school starts. At this point, parents who are unhappy

with a teacher or classroom assignment are likely to find it difficult to change schools.

Italian schools have long used matriculation exams for tracking and placement in the

transition from elementary to middle school and throughout high school, but standardized

testing for evaluation purposes is a recent development. In 2008, INVALSI piloted volun-

tary assessments in elementary school; in 2009 these became compulsory for all schools and

students. INVALSI assessments cover mathematics and Italian language skills in a national

administration lasting two days in the Spring. INVALSI reports school and class average

scores to schools, but not to students. School leaders may choose to release this information

to the public.4

Test administration protocols play an important role in our story. INVALSI tests include

multiple choice questions and open-response items, for which some grading is required. Proc-

toring and grading are done by local teachers. In addition, teachers are expected to copy

students’ original responses onto machine-readable answer sheets (called scheda risposta, il-

lustrated in Appendix Figure A1), a burdensome clerical task that’s meant to be completed

shortly within a few days of testing. Teachers tasked with grading and transcription can en-
4INVALSI regulations state that folders containing students’ answer sheets must identify students using

a code unrelated to student names. Only school administrators (and the external monitor, if any) can link
these codes with student identities. Individual test scores are never reported or released to students or the
public (see http://www.invalsi.it/snv1011/documenti/Informativa_privacy_SNV2010_2011.pdf).
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list colleagues for help. Specifically, INVALSI memos on grading protocols allow for multiple

teachers to be involved in grading and transcription. It seems likely that multi-teacher grad-

ing and transcription appears are the norm for larger classes, as anecdotal evidence and our

discussions with administrators suggest. Peer monitoring may therefore reduce manipulation

in larger classes. All test-related clerical tasks must be completed at the institution, typically

after school, but this is not paid overtime work. Once transcription onto scheda risposta is

accomplished, the original student test sheets remain at school while the transcribed answer

sheets are sent to INVALSI. These procedures, combined with the extra uncompensated work

they require, open the door to score manipulation.

In an effort to reduce score manipulation, INVALSI randomly assigns external monitors

to about 20% of institutions in the country. Monitors supervise test administration, encour-

aging compliance with INVALSI testing standards. Monitors are also responsible for score

sheet transcription in some (non-randomly) selected classes. Regional education offices select

monitors from a pool consisting of retired teachers and principals who have not worked in the

towns or at the schools they are assigned to monitor for the preceding two years. Monitors

are paid for their work and are required to complete transcription by the end of the test day.

Related Work

Maimonides-style empirical strategies have been used to identify class size effects in many

countries, including the US (Hoxby, 2000), France (Piketty, 2004 and Gary-Bobo and Mahjoub,

2013), Norway (Bonesronning, 2003 and Leuven et al., 2008) and the Netherlands (Dobbel-

steen et al., 2002). On balance these results point to modest returns to class size reductions,

though mostly smaller than those reported by Angrist and Lavy (1999) for Israel. A natural

explanation for this finding is the relatively large class size in Israeli elementary schools. In

line with this view, Woessmann (2005) finds a weak association between class size and achieve-

ment in a cross-country panel covering Western European school systems in which classes

tend to be small. Results in Sims (2008) suggest class size reduction obtained throught

combination classes has a negative effect on students’ achievement.

The returns to class size in Italy have received little attention from researchers to date,

in large part because test score data have only recently become available. One of the few

Italian micro-data studies we’ve seen, Bratti et al. (2007), reports estimates showing an
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insignificant class size effect. In an aggregate analysis, Brunello and Checchi (2005) look at

the relationship between staffing ratios and educational attainment for cohorts born before

1970; they find that lower pupil-teacher ratios at the regional level are associated with higher

average schooling. We haven’t found other quantitative explorations of Italian class size,

though Ballatore et al. (2014) use a Maimonides-type identification strategy to estimate the

effects of the number of immigrants in the classroom on native students’ achievement.

As noted above, many scholars have documented manipulation in standardized tests. The

(natural) experiment used here to identify the effects of Italian score manipulation and class

size jointly was first analyzed by Bertoni et al. (2013), who focus on the effects of external

classroom monitors on scores. Our analysis of this experiment looks at monitoring effects by

region, while also adjusting for features of the scheme that INVALSI uses to assign monitors

not fully accounted for in earlier work.

A final closely related set of findings documents a range of economic and behavioral

differences across Italian regions. Southern Italy is characterized by low levels of social capital

(Guiso et al., 2004; Guiso et al., 2010) and relatively widespread opportunistic behavior and

public corruption (Ichino and Ichino, 1997; Ichino and Maggi, 2000). Differences along these

dimensions have been used to explain persistent regional differentials in economic outcomes

(Costantini and Lupi, 2006) and differences in the quality of governance and civic life (Putnam

et al., 1993). Finally, as noted in the Introduction, our work connects with research on teacher

shirking around the world.

3 Data and First Stage

Data and Descriptive Statistics

The standardized test score data used in this study come from INVALSI’s testing program

in Italian elementary schools in the 2009-11 academic school years. Raw scores indicate the

number of correct answers. We standardized these by subject, year of survey, and grade

to have zero mean and unit variance. Data on test scores were matched to administrative

information describing institutions, schools, classes, and students. Class size is measured by

administrative enrollment counts at the beginning of the school year. Student data include

gender, citizenship, and parents’ employment status and educational background. These
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data are collected as part of test administration and supposed to be provided by school staff

when scores are submitted. Italian students attending private primary schools are omitted

from this study (these account for less than 10 percent of enrollment).

Our statistical analysis focuses on class-level averages since this is the aggregation level

at which the regressor of interest varies. The empirical analysis is restricted to classes with

more than the minimum number of students set by law (10 before 2010 and 15 from 2011).

This selection rule eliminates classes in the least populated areas of the country, mostly

mountainous areas and small islands. We also drop schools with more than 160 students in

a grade, as these are above the threshold where Maimonides’ Rule is likely to matter (this

trims classes above the 99th percentile of the enrollment-weighted class size distribution).

The matched analysis file includes about 70,000 classes in each of the two grades covered

by our three-year window (these are repeated cross-sections; the data structure doesn’t follow

the same classes over time). Table 1 shows descriptive statistics for the estimation sample

by grade. Statistics are reported at the class level in Panel A, at the school level in Panel

B, and at the institution level in Panel C. Class size averages around 20 in both grades, and

is slightly lower in the South. Although our statistical analyses use standardized scores, the

score means reported in Panel A give the class average percent correct. Scores are higher in

language than in math and higher in grade 5 than in grade 2. The table also shows averages

for an indicator of score manipulation (the construction of this variable is detailed below).

Manipulation rates are higher in the South and in math.

Maimonides in Italy

Our identification strategy for class size effects exploits minimum and maximum class sizes

(these rules are a laid out in a regulation known as Decreto Ministeriale 331/98 ). Until the

2008 school year, primary school classes had to be between 10 and 25. Grade enrollment

beyond 25 or a multiple thereof usually prompted the addition of a class. The rule allows

exceptions, however. Principals can reduce the size of any class attended by one or more

disabled students, and schools in mountainous or remote areas are allowed to open classes with

fewer than 10 students. The law allows a 10% deviation from the maximum in either direction

(that is, the Ministry of Education may fund an additional class when enrollment exceeds 22

and typically requires a new class when average enrollment would otherwise exceed 28). A
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2009 reform changed size limits to 15 and 27, again with a tolerance of 10% (promulgated

through Decreto del Presidente della Repubblica 81/2009 ). This reform was rolled out one

grade per year, starting with first grade. In our data, second graders in 2009 and fifth graders

in any year were subject to the old rule, while second graders in 2010 and 2011 were subject

to the new rule.

Ignoring discretionary deviations near class size cutoffs, Maimonides’ Rule predicts class

size to be a non-linear and discontinuous function of enrollment. Writing figkt for the pre-

dicted size of class i in grade g at school k in year t, we have

figkt =
rgkt

[int ((rgkt − 1) /cgt) + 1]
, (1)

where rgkt is beginning-of-the-year grade enrollment at school k, cgt is the relevant cap (25

or 27) for grade g, and int(x ) is the largest integer smaller than or equal to x . Figures 2 and

3 plot average class size and figkt against enrollment in grade, separately for pre- and post-

reform periods. Plotted points show the average actual class size at each level of enrollment.

Actual class size follows predicted class size reasonably closely for enrollments below about

75, especially in the pre-reform period. Predicted discontinuities in the class size/enrollment

relationship are rounded by the soft nature of the rule. Many classes are split before reaching

the theoretical maximum of 25. Earlier-than-mandated splits occur more often as enrollment

increases. In the post-reform period, class size tracks the rule generated by the new cap of

27 poorly when enrollment exceeds about 70.

Measuring Manipulation

Our score manipulation variable is a function of implausible score levels, the within-class

average and standard deviation of test scores, the number of missing items, and a Herfindahl

index of the share of students with similar response patterns. These indicators are used

as inputs for a cluster analysis that flags as suspicious classes with abnormally high perfor-

mance, an unusually small dispersion of scores, an unusually low proportion of missing items,

or a high concentration in response patterns. This procedure yields class-level indicators of

compromised scores, separately for math and language. The resulting manipulation indi-

cator is similar to the manipulation variable used in Quintano et al. (2009) and INVALSI

publications (e.g., INVALSI, 2010). The INVALSI version generates a continuous class-level
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probability of manipulation. The procedure used here generates a dummy variable indicating

classes where score manipulation seems likely. Methods and formulas used to identify score

manipulation are detailed in the Appendix. A section on threats to validity considers the

consequences of possible misclassification of manipulation for our empirical strategy.5

4 Class Size Effects: Achievement and Manipulation

Graphical Analysis

We begin with non-parametric RD plots that capture class size effects near enrollment cutoffs.

The first in this sequence, Figure 4, documents the relationship between cutoffs (multiples of

25 or 27) and class size. This figure was constructed from a sample of classes at schools with

enrollment that falls in a [-12,12] window around the first four cutoffs shown in Figures 2 and

3. Enrollment values in each window are centered to be zero at the relevant cutoff. The y-axis

shows average class size conditional on the centered enrollment value shown on the x-axis,

reported as a 3-point moving average. Figure 4 also plots fitted values generated by local

linear regressions (LLR) fits to class-level data. In this context, the LLR smoother uses data

on one side of the cutoff only, smoothed with an edge kernel and Imbens and Kalyanaraman

(2012) bandwidth.6

In view of the 2-3 student tolerance around the cutoff for the addition of a class, enrollment

within two points of the cutoff is excluded from the local linear fit. As a result of this

tolerance, class size can be expected to decline at enrollment values shortly before the cutoff

and to continue to decline thereafter. Consistent with this expectation, the figure shows

a clear drop at the cutoff, with the sharpness of the break moderated by values near the

cutoff. Class size is minimized at about 3-5 students to the right of the cutoff instead of

immediately after, as we would expect were Maimonides’ Rule to be tightly enforced. The

parametric identification strategy detailed below exploits both the discontinuous variation
5Our procedure also follows Jacob and Levitt (2003) in inferring score manipulation from patterns of

answers within and across tests in a classroom. Jacob and Levitt (2003) also compare test scores over time,
looking for anomalous changes. Values in the upper tail of the Jacob-Levitt suspicious answer index are highly
predictive of their cheating variable in the cross section. Our main results are unchanged when manipulation
is measured continuously. A binary indicator leads to parsimonious models and easily interpreted estimates,
however, while also facilitating the discussion of misclassification bias.

6The figures here plot residuals from a regression of class size on the controls included in equation (2),
below.

10



in class size generated when enrollment moves across cutoffs, changes in slope as a cohort is

divided into classes more finely, and the change in the nominal maximum introduced by the

2009/10 reform. Looking only at points immediately adjacent to the cutoff, the change in

size generated by moving across a cutoff is on the order of 2-3 students.

When plotted as a function of enrollment values near Maimonides cutoffs, test scores in

the South show a jump that mirrors the drop in class size seen at Maimonides cutoffs. By

contrast, there’s little evidence of such a jump in schools outside the South. These patterns

are documented in Figure 5, which plots math and language scores against enrollment in

a format paralleling that of Figure 4. The reduced-form achievement drop for schools in

Southern Italy is about 0.02 standard deviations (hereafter, σ). Assuming this reduced-form

change in test scores in the neighborhood of Maimonides cutoffs is driven by a causal class size

effect, the implied return to a one-student reduction in class size is about 0.01σ in Southern

Italy (this comes from dividing 0.02 by a rough first stage of about 2). The absence of a

jump in scores at cutoffs in data from schools elsewhere in the country suggests that outside

the South class size reductions leave scores unchanged.

Score manipulation also varies as a function of enrollment in the neighborhood of class

size cutoffs, with a pattern much like that seen for achievement. This is apparent in Figure

6, which puts the proportion of classes identified as having compromised scores on the y-axis,

in a format like that used for Figures 4 and 5. Mirroring the pattern of achievement effects, a

discontinuity in score manipulation rates emerges most clearly for schools in Southern Italy.

This pattern suggests that the achievement gains generated by class size in Figure 5 may

reflect the manipulation behavior captured in Figure 6.

A possible caveat here is the role of mismeasured manipulation might have in generating

this pattern. The implications of misclassification for 2SLS estimates of class size effects are

explored in detail in a separate section, below. We note here, however, that classification

error is unlikely to change discontinuously at Maimonides class size cutoffs. Moreover, the

fact that manipulation is essentially smooth through the cutoff for schools outside the South

weighs against purely mechanical explanations of the pattern in Figure 6 (mechanical in

the sense that components of the manipulation variable might be determined by class size

through channels other than changing teacher or student behavior).
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Empirical Framework for Class Size Effects

Figure 5 suggests that variation in class size near Maimonides cutoffs can be used to identify

class size effects in a non-parametric fuzzy regression discontinuity (RD) framework. In what

follows, however, we opt for parametric models that exploit variation in enrollment arising

from changes in the slope of the relationship between enrollment and class size, as well as

discontinuities. The parametric strategy gains statistical power by combining features of

both RD and regression kink designs, while easily accommodating a setup with multiple

endogenous variables and covariates.

Our parametric framework models yigkt, the average outcome score in class i in grade g

at school k in year t, as a polynomial function of the running variable, rgkt, and class size,

sigkt. With quadratic running variable controls, the specification pooling grades and years

can be written
yigkt = ρ0(t, g) + βsigkt + ρ1rgkt + ρ2r

2
gkt + εigkt, (2)

where ρ0(t, g) is shorthand for a full set of year and grade effects. This model also controls

for the demographic variables described in Table 1, as well as the stratification variables

used in the monitoring experiment to increase precision in the estimates. Standard errors

are clustered on school and grade.7

The instrument used for 2SLS estimation of equation (2) is figkt, as defined in equation

(1). In addition to estimates of equation (2), results are also reported from models that

include a full set of cutoff-segment (window) main effects, allowing the quadratic control

function to differ across segments (we refer to this as the interacted specification).8 The cor-

responding OLS estimates for models without interacted running variable controls are shown

as a benchmark. As can be seen in columns 1-3 of Table 2, these show a negative correlation

between class size and achievement for schools in the Northern and Central regions, but not

in the South (class size effects are scaled for a 10-student change). Larger classes are asso-
7Control variables include percent female in the class, the proportion of immigrants, the proportion of

students whose father is a high school graduate, have unemployed mothers, have mothers not in the labor
force, have employed mothers, and dummies for missing values for these variables. Stratification controls
consist of total enrollment in grade, region dummies, and the interaction between enrollment and region.
Results with linear control in the running variable only, estimated on samples limited to the 12-student
bandwidth, are similar.

8Pre-reform segments cover the intervals 10-37, 38-62, 63-87, 88-112, 113-137, and 138-159; post-reform
segments cover the intervals 15-40, 41-67, 68-94, 95-121, and 122-159. These segments cover intervals of
width +/- 12 in the pre-reform period and +/-13 in the post-reform period, with modifications at the lower
and upper segments to include a few larger and smaller values.
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ciated with somewhat higher language scores in the South while Southern class sizes appear

to be unrelated to achievement in math.

2SLS estimates using Maimonides’ Rule, reported in columns 4-9 of Table 2, suggest that

larger classes reduce achievement in both math and language. The associated first stage

estimates, which can be seen in Appendix Table A1, show that predicted class size increases

actual class size with a coefficient around one-half when regions are pooled, with a first

stage effect of 0.43 in the South and 0.55 elsewhere. 2SLS estimates for Southern schools,

implying something on the order of a 0.10σ achievement gain for a 10-student reduction, are

2-3 times larger than the corresponding estimates for schools outside the South. The 2SLS

estimates are reasonably precise; only estimates of the interacted specification for language

scores from non-Southern schools fall short of conventional levels of statistical significance.

On balance, the results in Table 2 indicate a substantial achievement payoff to class size

reductions, though the gains here are not as large as those reported by Angrist and Lavy

(1999) for Israel. A substantive explanation for this difference in findings might be concavity

in the relationship between class size and achievement, combined with Italy’s much smaller

average class sizes.

Class Size and Manipulation

The estimates in Table 3 suggest that the causal effect of class size on measured achievement

reported in Table 2 need not reflect more learning in smaller classes. This table reports

estimates from specifications identical to those used to construct the estimates in Table 2,

with the modification that a class-level score manipulation indicator replaces achievement

as an outcome. The 2SLS estimates in columns 4-9 show a large and precisely-estimated

negative effect of class size on manipulation rates, with effects on the order of 4-6 percentage

points for a 10-student class size increase in the South. Estimates for schools outside the

South also show a negative relationship between class size and score manipulation, though

here the estimated effects are much smaller and significantly different from zero in only one

case (language scores from the non-interacted specification). OLS estimates of effect of class

size on score manipulation, though smaller in magnitude, reflect the same negative effects as

2SLS.
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5 The Anatomy of Manipulation

INVALSI’s randomized monitoring policy provides key evidence on the nature and conse-

quences of score manipulation. Institutions are sampled for monitoring with a probability

proportional to grade enrollment in the year of the test. Sampling is also stratified by regions.

Table 4 documents balance across institutions with and without randomly assigned mon-

itors. Specifically, this table shows regression-adjusted treatment-control differences from

models that control for strata in the monitoring sample design. These specifications include

a full set of region dummies and a linear function of institutional grade enrollment that varies

by regions. Administrative variables - generated as a by-product of school administration

and INVALSI testing - are well-balanced across groups, as can be seen in the small and

insignificant coefficient estimates reported in Panel A of the table.9 Demographic data and

other information provided by school staff, such as parental information, show evidence of

imbalance. This seems likely to reflect the influence of monitoring on data quality, rather

than a problem with the experimental design or implementation. The hypothesis that moni-

tors induced more careful data reporting by staff is supported by the large treatment-control

differential in missing data rates documented at the bottom of the table. Among other

salutary effects, randomly assigned monitors reduce item non-response by as much as three

percentage points, as can be seen in Panel C of Table 4. Monitoring effects on data quality

at class size cutoffs are discussed in Section 6.

The presence of institutional monitors reduces score manipulation considerably. This is

apparent from the estimated monitoring effects shown in columns 1-3 of Table 5. Specifically,

monitoring reduces manipulation rates by about 3 percentage points for Italy (column 1),

with effects twice as large in the South (column 3). These estimates come from models

similar to those used to check covariate balance with a score manipulation indicator replacing

covariates as the dependent variable. Monitoring also reduces language scores by 0.08σ, while

the estimated monitoring effect on math scores is about −0.11σ. Effects of monitoring in the

South range from −0.13σ for language to −0.18σ for math, estimates that appear in column
9One class in each grade is selected for monitoring in sampled institutions with grade enrollment below

100. Two classes are selected in remaining institutions (randomness of within-institution monitoring appears
to have been compromised in practice). Bertoni et al. (2013) mistakenly treated institutions as schools. Their
identification strategy also presumes random assignment of classroom monitors within institutions, but we
find that monitors are much more likely to be assigned to large classes, probably a consequence of that fact
that in most institutions only one class is monitored.
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6 of the table. The fact that monitoring matters shows teachers prefer not to be identified

as manipulators.10

The estimates reported in columns 1-3 and 4-6 of Table 5 constitute the first stage and

reduced form for a model that uses the assignment of monitors as an instrument for the effects

of score manipulation on test scores. Dividing reduced form estimates by the corresponding

first stage estimates produces second stage manipulation effects of about 3σ for the South,

with even larger second stage estimates for the North. These effects seem implausibly large,

implying a boost in scores that exceeds the range of the dependent variable in some cases.

Because classification error attenuates first stage estimates in this context, the resulting

second stage estimates may be proportionally inflated. This and other implications of miss-

classification are discussed in Section 6.

Manipulation is Curbstoning

The fact that monitoring reduces score manipulation and that manipulation decreases with

class size suggests that teachers are the source of manipulation and not students. Honest

teacher-proctors should have the same deterrent effect as external monitors on cheating stu-

dents: both are likely to catch cheaters, perhaps teachers even more so if they recognize

cheating more readily. Moreover, any class size effect on student cheating is likely to be pos-

itive, that is, larger classes should facilitate student cheating by making cheating harder to

detect. Results in Table 3 showing that score manipulation decreases with class size therefore

weigh against student cheating. Finally, because individual test scores are never disclosed

even to those tested, its hard to see why students might care to cheat (students are informed

of disclosure limits when testing begins). At the same time, the fact that teachers must

transcribe scores - except when monitors do it for them - provides a natural opportunity for

manipulation and misreporting.

The nature of score manipulation is revealed in part by estimation of the difficulty gra-

dient, that is, average reported scores as a function of item difficulty. Reported scores are

assumed to reflect two underlying potential score distributions for each item, j, one revealed in

the presence of manipulation, denoted yjigkt(1), and one revealed otherwise, denoted yjigkt(0).

10We find stronger monitoring effects than those reported in Table 5 in a sample where institutions were
monitored two years in a row. These results provide further evidence of a social constraint on manipulation.
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Observed scores in class i on item j, denoted by yjigkt, are determined by

yjigkt = (1−migkt)y
j
igkt(0) +migkty

j
igkt(1),

where migkt is the class-level manipulation indicator (there are about 45 items per year, grade

and subject).

The mean of the underlying potential scores determining yjigkt is identified adapting meth-

ods developed by Abadie (2002) (an application of this approach to school reform treatment

effects appears in Angrist, Pathak, and Walters, 2013). Specifically, we compute 2SLS esti-

mates of the parameters βj1 and βj0 in models of the form

yjigktmigkt = ρ1(t, g) + βj1migkt + εigkt,

yjigkt(1−migkt) = ρ0(t, g) + βj0(1−migkt) + εigkt,

using data from the South, where manipulation is prevalent. Manipulation indicators, migkt

and 1−migkt, are treated as endogenous and instrumented by randomly assigned institutional

monitoring, Migkt. The resulting estimates of βj1 capture potential scores on item j under

manipulation for complying classes, that is, for classes in which we can expect manipulation

in the absence of monitoring and honest scoring otherwise. Similarly, the parameter βj0 is

the average potential score on item j without manipulation for the same classes. The two

potential scores are then plotted against item difficulty, proxied using percent correct on item

j for monitored institutions in Veneto (a province where manipulation rates are very low).

This follows INVALSI practice, which benchmarks official reports of score manipulation rates

using Veneto as a non-manipulating standard (see, e.g., Falzetti, 2013).

Manipulation indeed changes the relationship between item difficulty and test scores

markedly, pushing an otherwise steep difficulty gradient up to a high level, with scores uni-

formly close to 100 percent correct. This can be seen in Figure 7, which also shows a least

squares fit to the relationship, weighted by the precision of the item-level estimates. When

accountability concerns are paramount, manipulation of difficult items generates the largest

payoff: selective manipulation maximizes gains and minimizes risk if the goal is solely to

boost measured achievement. As an empirical matter, selective manipulation should flat-

ten the score gradient at high levels of difficulty, leaving the gradient unchanged for easy

items. In other words, selective manipulation of difficult items makes the overall relationship
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between manipulated scores and item difficulty convex. By contrast, copying entire answer

sheets should push scores on all items up to the same high (near-perfect) level, as in the

figure.

The figure also distinguishes items by the level of effort required for transcription. Some

items are transcribed quickly and easily onto the machine-readable scheda risposta, but others

require thought and judgment; transcription of these items is more of a grading exercise than

a copying task. Examples of high-grading-effort items are given in the Appendix. In view

of this difference in effort, teachers might target high-grading-effort items for manipulation.

If manipulators focus on high-grading-effort items, we should see large score differences by

manipulation status for such items only. A comparison of the left and right panels in Figure

7, however, offers little evidence of such targeted manipulation behavior: conditional on

difficulty, the difference in scores between manipulators and non-manipulators is similar for

high- and low-grading-effort items.

The item-level analysis offers little evidence of selective manipulation of difficult or harder-

to-grade items. The fact that manipulated scores are well above honest scores also makes

pervasive random transcription unlikely. What sort of behavior is consistent with the pat-

terns apparent in the figure? In this case, the simplest story seems most likely: manipulating

teachers would appear to forgo honest transcription entirely, copying entire answer sheets,

without regard to item characteristics. In other words, manipulation reflects a form of dis-

honest reporting akin to “curbstoning” in survey research.

Why Small Classes Increase Manipulation

The mediating role of monitoring in the link between class size and measured achievement

is supported by Table 6, which reports 2SLS estimates of class size effects on test scores

for institutions with and without INVALSI monitors. Specifically, the table reports 2SLS

estimates of coefficients onMigktsigkt and (1−Migkt)sigkt in models like those used to construct

the estimates reported in Table 2. These estimates reveal a strong negative effect of class size

on achievement, but much more so in the absence of monitoring (and, again, in the South).

These findings are consistent with the view that in the absence of monitors, smaller class

sizes increase reported scores because they facilitate or encourage manipulation.

The link between teacher manipulation and class size can be explained using a stylized
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model of grading behavior. Consider a testing system in which scores vary across items and

as a result of manipulation, but not otherwise. Without manipulation, the score on item j is

Lj ∈ (0, 1). As suggested by Figure 7, manipulation boosts scores to one. The average score

on item j in a class of size s is therefore

yj = Lj + τjpj,

where pj =
nj

s
is the manipulation rate for item j, nj is number of score sheets manipulated

and τj ≡ 1− Lj ∈ (0, 1). The score gain from manipulation is p̃j ≡ τjpj, implying ∂p̃j
∂nj

=
τj
s
.

This reflects the fact that the value of a single exam manipulated declines with class size,

and that the gains from manipulation are larger for more difficult items (that is, for large

τj).

Teachers decide to manipulate in view of grading costs, the risk of discovery and score

gains. Although teachers in the Italian public sector are unlikely to be fired for manipulation,

we expect there is still a social constraint; this explains, for example, lower manipulation

rates in the North. Teachers maximize a risk-adjusted utility of class performance minus

grading costs. The latter are assumed to increase linearly in the number of score sheets to be

transcribed, hence in class size, while manipulation reduces grading costs to zero. Assuming

that the risk of disclosure increases linearly across items manipulated, and that utility is

linear in score gains, the teacher’s problem can be written

max
p̃

(
1− γ(s)

∑
j

nj

)
︸ ︷︷ ︸

disclosure risk

α
∑
j

p̃j︸ ︷︷ ︸
utility of score gain

− β
∑
j

(s− nj) ,︸ ︷︷ ︸
honest grading effort

where α
∑

j p̃j is the utility of overall exam performance, γ(s)
∑

j nj is discovery risk, β
∑

j(s−

nj) is the disutility of honest grading, and utility falls to zero when manipulation is discov-

ered. Parameters α and β reflect the relative weight teachers place on grading effort and

discovery-weighted score gains. Consistent with the idea of increased peer monitoring in

large classes, the risk of disclosure increases with class size through the function γ(s).

A single manipulated exam yields a disclosure-weight utility gain that decreases with class

size, specifically a gain of α τj
s
, with the addition utility of a constant reduction in grading

effort, β. Utility gains from manipulation are offset by increased disclosure risk of amount

γ(s). Disclosure risk is presumably lower in small classes where teachers transcribe score
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sheets unassisted by peers. A distribution of manipulation behavior can be generated by

modeling utility and aversion to honest grading as teacher-specific. Even so, when γ(s) ≈ 0,

this model predicts manipulation of entire score sheets for entire classes. This behavior

produces the pattern seen in Figure 7, which shows near-perfect exams on all items in classes

identified as having manipulated scores.

Manipulation effects on achievement are given by dyj
ds

=
τj
s

[
dnj

ds
− pj

]
with dnj

ds
< 0,11 so

dyj
ds

must be negative, while increasing class size reduces scores more for large pj than for

small. This pattern arises even when teachers care little about measured achievement per se,

that is, when the utility of overall exam performance is flat, say, at ū. If we imagine α
∑

j p̃j

is constant, the objective function above amounts to a comparison of β, the utility gained

by not having to grade an item, and γ(s)ū, the utility cost of disclosure, which is more likely

to exceed β in large classes. Allowing for convex disutility of effort moderates the negative

effect of increasing class size on manipulation. For example, when the cost of honest grading

is

c(s, nj) =
∑
j

β1 (s− nj) + β2 (s− nj)2 ,

(with positive β1 and β2) the gains from score manipulation (that is, the reduction in costs

associated with an increase in nj) are larger in larger classes. This can be seen by writing

the marginal cost reduction as

∂c

∂nj
= −(β1 + 2β2s) + 2β2nj.

The bottom line is still unclear, however; what matters is the contrast with the disclosure risk

parameterized by γ(s). Costs might also be concave if honest graders become more efficient

when they grade more.

The Appendix gives a more general version of these results, relaxing linear utility. We’re
11The FOC for optimal nj yields

α

1− γ(s)
∑
j

nj

− γ(s)

τj
α
∑
j

τjnj +
βs

τj
= 0,

and comparative statics shows

dnj
ds

= − β

2τjαγ(s)
< 0.
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especially interested in comparative statics predictions for dyj
ds
, the effect of class size on the

score on item j in a world where class size is unrelated to actual learning. Assuming log-linear

preferences (see, for example, Blundell and McCurdy, 1999) we show that

dyj
ds

= −∆j

s
,

for a positive quantity, ∆j. The Appendix also shows that if teachers are largely indifferent

to achievement, but seek only to reduce effort without discovery, increasing class size reduces

manipulation rates similarly across all items. On the other hand, because dyj
ds

=
τj
s

[
dnj

ds
− pj

]
,

curbstoning does not eliminate item difficulty as a mediating factor in the relationship be-

tween class size and item-level achievement.

6 Score Manipulation Explains Class Size Effects

6.1 Estimates with Two Endogenous Variables

The discussion in the previous section motivates a causal model in which achievement depends

on class size (sigkt) and score manipulation (migkt), both treated as endogenous variables to

be instrumented. This model can be written

yigkt = ρ0(t, g) + β1sigkt + β2migkt + ρ1rgkt + ρ2r
2
gkt + ηigkt, (3)

where ρ0(t, g) is again a shorthand for year and grade effects. We interpret equation (3)

as describing the average achievement that would be revealed by alternative assignments of

class size, sigkt, in an experiment that holds migkt fixed. This model likewise describes causal

effects of changing score manipulation rates in an experiment that holds class size fixed. In

other words, equation (3) represents a model for potential outcomes indexed against two

jointly manipulable treatments.

We estimate equation (3) by 2SLS in a setup that includes the same covariates that

appear in the models used to construct the estimates reported in Table 2. The instrument

list contains Maimonides’ Rule (figkt) and a dummy indicating classes at institutions with

randomly assigned monitors, Migkt. The first-stage equations associated with these two
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instruments can be written:

sigkt = λ10(t, g) + µ11figkt + µ12M igkt + λ11rgkt + λ12r
2
gkt + ξik, (4)

migkt = λ20(t, g) + µ21figkt + µ22M igkt + λ21rgkt + λ22r
2
gkt + υik, (5)

where λ10(t, g) and λ20(t, g) are shorthand for first-stage year and grade effects. First stage

estimates, reported in Table 7, show both a monitoring and a Maimonides’ Rule effect on

score manipulation, both of which are considerably more pronounced in the South. The

Maimonides first stage for class size remains at around one-half, while the presence of a

monitor at institution is unrelated to class size. This is consistent with the hypothesis that

monitors are randomly assigned to institutions.

The 2SLS estimates of β2 in equation (3), reported in Table 8, show large effects of ma-

nipulation on test scores. At the same time, this table reports small and mostly insignificant

estimates of β1, the coefficient on class size in the multivariate model. In an effort to boost

the precision of these estimates, we estimate over-identified models that add four dummies

for values of the running variable that fall within 10% of each cutoff, a specification motivated

by the non-parametric first stage captured in Figure 4.12 The most precise of the estimated

zeros reported in Table 8, generated by the over-identified specification for Italy as a whole,

run no larger than 0.022, with an estimated standard error of 0.015 (for a 10-student increase

in class size); these appear in column 4. It’s also worth noting that the over-identification

p-values associated with these estimates are far from conventional significance levels.

Table 8 also reports 2SLS estimates computed by adding an interaction term, sigktmigkt,

to equation (3), using figktMigkt and the extra dummy instruments interacted with Migkt as

excluded instruments. This specification is motivated by the idea that class size may matter

only in a low-manipulation sub-sample, while an additive model like equation (3) may miss

this. There is little evidence for interactions, however: the estimated interaction effects,

reported in columns 7-9 of Table 8 are not significantly different from zero.

The most important findings in Table 8 are the small and insignificant class size effects

for the Italian Mezzogiorno, a result that contrasts with the much larger and statistically

significant class size effects for the same area reported in Table 2. In column 9 of the latter

table, for example, a 10-student reduction in class size is estimates to boost achievement
12First stage estimates for the over-identified model appear in Appendix Table A2.
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by 0.10σ or more. The corresponding multivariate estimates in Table 8 are of the opposite

sign, showing that larger classes increase achievement, though not by very much. The over-

identified estimates come with estimated standard errors ranging from about 0.02 to 0.04,

so that the estimated class size effects in Table 2 fall well outside the estimated confidence

intervals associated with the multivariate estimates. It seems reasonable, therefore, to in-

terpret the estimated class effects in Table 8 as precise zeros. This in turn aligns with an

interpretation of the return to class size in Italy as due entirely to the causal effect of class

size on score manipulation, most likely by teachers.

6.2 Threats to validity

We briefly consider three possible threats to validity relevant for the causal interpretation of

the estimates in Table 8. An initial concern comes from the fact that one of the four indicators

used to construct the score manipulation dummy, that for unusually high average scores, may

be connected to score outcomes for reasons unrelated to manipulation. RD estimates of the

relationship between class size, score manipulation, and achievement, however, are largely

unaffected by substitution of a manipulation variable that ignores score levels.

Two other concerns relate to measurement error in score manipulation and potentially

endogenous sorting around class size cutoffs.

Score manipulation with misclassification

The large 2SLS estimates of manipulation effects in Table 8 reflect attenuation bias in first

stage estimates if score manipulation is misreported. We show here that, as long as misclas-

sification rates are independent of the instruments, mismeasurement of manipulation leaves

2SLS estimates of class size effects in the multivariate model unaffected. This result is de-

rived using a simplified version of the multivariate model, which can be written with a class

subscript as
yi = ρ0 + β1si + β2m

∗
i + ζi, (6)

where instruments are assumed to be uncorrelated with the error, ζi, as in equation (3).

Here, m∗i is an accurate score manipulation dummy for class i, while mi is observed score

manipulation as before.

Let zi = [fiMi]
′ denote the vector of instruments. Assuming that classification rates are
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independent of the instruments conditional on m∗i , we can write

mi = (1− π0) + (π0 + π1 − 1)m∗i + ωi, (7)

where the residual, ωi, is defined by

ωi = mi − E[mi|zi,m∗i ],

and πd, the probability that score manipulation is correctly detected, satisfies

P [mi = d|zi,m∗i = d] = P [mi = d|m∗i = d] = πd, (8)

for d = 0, 1. Note that E[ziωi] = 0 by definition of ωi. Using (7) to substitute form∗i , equation

(6) can be rewritten

yi =

[
ρ0 −

β2(1− π0)
π0 + π1 − 1

]
+ β1si +

[
β2

π0 + π1 − 1

]
mi +

[
ζi − β2

ωi
π0 + π1 − 1

]
. (9)

We assume that the πd’s are strictly greater than 0.5, so that reported score manipulation is

a better indicator of actual manipulation than a coin toss. This ensures that the coefficient

on mi in (9) is finite and has the same sign as β2.

The 2SLS estimate of the coefficient on reported score manipulation is therefore biased

upward, since π0 + π1 − 1 is strictly between 0 and 1 given these assumptions. This implies

that estimates of β2 for the North/Centre region (columns 2, 5 and 8 of Table 8), where

score manipulation is lower and therefore misclassification is higher, are more inflated than

in the South. Most importantly, because the feasible estimating equation (9) has a residual

uncorrelated with the instruments and the coefficient on class size is unchanged in this model,

misclassification of the sort described by (8) leaves estimates of the class size coefficient,

β1, unchanged. Similar results for the consequences of classification error under the same

assumptions appear in Kane et al. (1999), Mahajan (2006), and Lewbel (2007), among

others, though our work focuses on the consequences for the coefficient on a variable subject

to error rather than implications for other regressors in the model.13

13We can learn whether 2SLS estimates of the coefficient on mi, that is, the size of the estimated manipu-
lation effects, are plausible by experimenting with data from an area where manipulation rates are low and
assuming that true manipulators earn perfect scores. We use data from Veneto, the region with the lowest
score manipulation rate in Italy, to estimate β2 in this scenario by picking 20% of classes at random and
re-coding scores for this group to be 100. The resulting estimates of β2 come out at around 2.25σ. Taking
this as a benchmark, the manipulation effects in Table 8 are consistent with values of πj around .8 for Italy
(since 2.25

2×.8−1 = 3.75), though the implied π′js are closer to .65 for math scores outside the South. These
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Sorting near cutoffs

The Maimonides research design identifies causal class size effects assuming that, after ad-

justing for secular effects of the running variable, predicted class size (figkt) is unrelated to

student or school characteristics. As in other RD-type designs, sorting around cutoffs poses

a potential threat to this assumption. Urquiola and Verhoogen (2009) and Baker and Paser-

man (2013) note that discontinuities in student characteristics near Maimonides cutoffs can

arise if parents or school authorities try to shift enrollment to schools where expected class

size is small. In our setting, however, an evaluation of the sorting hypothesis is complicated

by the link between Maimonides’ Rule and score manipulation documented in Table 7. The

fact that Maimonides’ Rule predicts score manipulation, especially in the South, generates

the results in Table 8. An important channel for the link between Maimonides’ Rule and ma-

nipulation is the fact that monitoring rates are lower in small classes. If the behavior driving

manipulation also affects data quality, a conjecture supported by the effects of monitoring on

data quality seen in Table 4, we might expect Maimonides’ Rule to be related to covariates

for the same reason that monitoring is related to covariates.

This expectation is borne out by Table 9, which reports estimates of the link between

Maimonides’ Rule and covariates in a format paralleling that of Table 4. These estimates

come from the reduced form specifications used to generate the 2SLS estimates reported

in Table 2, after replacing scores with covariates on the left hand side. The pattern of

covariate imbalance in Table 9 mirrors that in Table 4: covariates affected by monitoring are

also correlated with Maimonides’ Rule, while administrative variables that are unrelated to

monitoring are largely orthogonal to Maimonides’ Rule. Tables 4 and 9 also reflect similar

regional differences in the degree of covariate imbalance, with considerably more imbalance in

the South. Additional evidence suggesting that the link between covariates is a data quality

effect unrelated to sorting appears in Appendix Table A3. This table shows that figkt is

largely unrelated to covariates in schools with monitors, where manipulation is considerably

diminished (though not necessarily eliminated, since some classes in monitored institutions

remain unmonitored).

rates seem like reasonable descriptions of the classification process. The possible misclassification of manip-
ulators is further investigated by Battistin et al. (2014) with reference to the problem of regional rankings
of performance at the INVALSI test.
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7 Summary and Directions for Further Work

The causal effects of class size on Italian primary schoolers’ test scores are identified by

quasi-experimental variation arising from Italy’s version of Maimonides’ Rule. The resulting

estimates show small classes boost test scores in Southern provinces, an area known as the

Mezzogiorno, but not elsewhere. Analyses of data on score manipulation and a randomized

institution monitoring experiment reveal substantial manipulation in the Italian Mezzogiorno,

most likely by teachers. For a variety of institutional and behavioral reasons, teacher score

manipulation is inhibited by larger classes as well as by external monitoring. Estimates of a

model that jointly captures the causal effects of class size and score manipulation on measured

achievement suggest the returns to class size in the Italian Mezzogiorno are explained by the

causal effects of class size on score manipulation, with no apparent gains in learning. These

findings show how class size effects can be misleading even where internal validity is probably

given. Our results also show how score manipulation can arise as a result of shirking in an

institutional setting where standardized assessments are largely divorced from accountability.

These findings raise a number of questions, including those of why teacher manipulation

is so much more prevalent in the Italian Mezzogiorno, and what can be done to enhance

accurate assessment in Italy and elsewhere. Manipulation in the Italian Mezzogiorno arises

in part from local exam proctoring and local transcription of answer sheets, a cost-saving

measure. New York’s venerable Regent’s exams were also graded locally until 2013, an

arrangement that likewise appears to have facilitated score manipulation. Moreover, as with

INVALSI assessments, manipulation of Regent’s scores appears to be unrelated to NCLB-

style accountability pressure (Dee et al., 2016). By contrast, the UK’s Key Stage 2 primary-

level assessments are marked by external examiners, a costly effort that our findings suggest

may nevertheless be worthwhile.14 Another reason to favor external anonymous exam grading

is the possibility of gender and ethnicity bias (as documented in Lavy, 2008; Lavy and Sand,

2015; Terrier, 2015; and Greaves and Burgess, 2013). It’s also worth asking why class size

reductions fail to enhance learning in Italy, while evidence from the US, Israel, and a number

of other countries suggest class size reductions often increase learning. We hope to address

these questions in future work.

14See https://home.edexcelgateway.com/pages/job_search_view.aspx?jobId=537 for information on Key
Stage 2 marking costs.
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Table 1: Descriptive Statistics

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Female* 0.49 0.49 0.49 0.49 0.49 0.49
(0,5) (0.5) (0.5) (0.5) (0.5) (0.5)

Immigrant* 0.10 0.14 0.03 0.1 0.14 0.03
(0.30) (0.35) (0.17) (0.3) (0.34) (0.18)

Father HS* 0.34 0.34 0.33 0.32 0.33 0.3
(0.47) (0.48) (0.47) (0.47) (0.47) (0.46)

Mother employed* 0.57 0.68 0.39 0.55 0.66 0.38
(0.49) (0.47) (0.49) (0.5) (0.47) (0.49)

Pct correct: math 47.9 46.1 51.1 64.2 63.3 65.6
(14.6) (12.9) (16.7) (12.9) (10.9) (15.5)

Pct correct: language 69.8 69.2 70.8 74.2 74.3 74.1
(10.9) (9.2) (13.3) (8.9) (7.5) (10.8)

Class size 20.1 20.3 19.9 19.7 19.9 19.3
(3.40) (3.35) (3.48) (3.72) (3.67) (3.76)

Score manipulation: math 0.06 0.02 0.14 0.06 0.02 0.13
(0.24) (0.13) (0.35) (0.25) (0.15) (0.34)

Score manipulation: language 0.05 0.02 0.11 0.06 0.02 0.11
(0.23) (0.14) (0.31) (0.23) (0.15) (0.31)

Number of classes 67,453 42,747 24,706 72,536 44,739 27,797

Number of classes 1.95 1.87 2.11 1.94 1.85 2.10
(1.10) (1.01) (1.27) (1.10) (0.98) (1.28)

Enrollment 40.5 38.8 43.8 38.9 37.3 41.8
(25.2) (23.0) (28.6) (25.2) (22.8) (28.9)

Number of schools 34,591 22,863 11,728 37,476 24,225 13,251

Number of schools 2.00 2.32 1.57 2.10 2.42 1.69
(1.05) (1.13) (0.74) (1.09) (1.17) (0.81)

Number of classes 3.89 4.33 3.31 4.07 4.48 3.55
(1.97) (1.95) (1.85) (1.95) (1.91) (1.88)

Enrollment 86.0 95.3 73.7 85.2 94.0 73.9
(40.6) (39.5) (38.7) (40.5) (39.1) (39.3)

External monitor 0.22 0.20 0.23 0.22 0.20 0.23
(0.41) (0.40) (0.42) (0.41) (0.4) (0.42)

Number of institutions 17,333 9,866 7,467 17,830 9,997 7,833

* conditional on non-missing survey response.

C. Institution Characteristics

Notes: Means and standard deviations are computed using one observation per class in Panel A,
one observation per school in Panel B, and one observation per institution in Panel C

Grade 2 (2009-2011) Grade 5 (2009-2011)

A. Class Characteristics

B. School Characteristics
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Table 2: OLS and IV/2SLS Estimates of the Effect of Class Size on Test Scores

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size -0.0078     -0.0224*** 0.0091     -0.0519***    -0.0436***    -0.0957***    -0.0609***    -0.0417**    -0.1294**
(0.0070) (0.0067) (0.0146) (0.0134) (0.0115) (0.0362) (0.0196) (0.0171) (0.0507)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,010 87,498 52,512 140,010 87,498 52,512 140,010 87,498 52,512

Class size 0.0029     -0.0188***     0.0328***      -0.0395***     -0.0313***    -0.0641**     -0.0409*** -0.0215    -0.0937**
(0.0055) (0.0053) (0.0114) (0.0106) (0.0092) (0.0289) (0.0155) (0.0136) (0.0403)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,010 87,498 52,512 140,010 87,498 52,512 140,010 87,498 52,512

Notes: Columns 1-3 report OLS estimates of the effect of class size on scores. Columns 4-9 report 2SLS estimates using Maimonides' Rule as an
instrument. The unit of observation is the class. Class size coefficients show the effect of 10 students. Models with interactions allow the quadratic
running variable control to differ across windows of ±12 students around each cutoff. Robust standard errors, clustered on school and grade, are shown
in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, %
unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values . All regressions include sampling strata controls
(grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 2. OLS and IV/2SLS Estimates of the Effect of Class Size on Test Scores

OLS IV/2SLS

B. Language

A. Math
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Table 3: OLS and IV/2SLS Estimates of the Effect of Class Size on Score Manipulation

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size     -0.0163***    -0.0074***    -0.0309***     -0.0186*** -0.0042     -0.0542***    -0.0179*** -0.0053    -0.0471**
(0.0025) (0.0017) (0.0058) (0.0047) (0.0031) (0.0143) (0.0069) (0.0045) (0.0202)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 139,996 87,491 52,505 139,996 87,491 52,505 139,996 87,491 52,505

Class size     -0.0166***    -0.0120***    -0.0244***      -0.0202***    -0.0116***     -0.0400***    -0.0161** -0.0059    -0.0379**
(0.0023) (0.0018) (0.0051) (0.0043) (0.0032) (0.0128) (0.0063) (0.0048) (0.0177)

Enrollment ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Enrollment squared ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Interactions ✗ ✗ ✗

N 140,003 87,493 52,510 140,003 87,493 52,510 140,003 87,493 52,510

Notes: Columns 1-3 report OLS estimates of the effect of class size on score manipulation. Columns 4-9 report 2SLS estimates using Maimonides'
Rule as an instrument. Class size coefficients show the effect of 10 students. Models with interactions allow the quadratic running variable control to
differ across windows of ±12 students around each cutoff. The unit of observation is the class. Robust standard errors, clustered on school and grade,
are shown in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate,% employed mothers,
% unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions include sampling strata controls
(grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 3. OLS and IV/2SLS Estimates of the Effect of Class Size on Score Manipulation

OLS IV/2SLS

A. Math

B. Language28



Table 4: Covariate Balance in the Monitoring Experiment

Control Mean Treatment 
Difference

Control Mean
Treatment 
Difference

Control Mean
Treatment 
Difference

(1) (2) (3) (4) (5) (6)

Class size 19.812 0.0348 20.031 0.0179 19.456 0.0623
[3.574] (0.0303) [3.511] (0.0374) [3.646] (0.0515)

Grade enrollment at school 53.119 -0.4011 49.804 -0.5477 58.483 -0.1410
[30.663] (0.3289) [27.562] (0.3913) [34.437] (0.5909)

% in class sitting the test 0.939 0.0001 0.934 0.0006 0.947 -0.0007
[0.065] (0.0005) [0.066] (0.0006) [0.062] (0.0008)

% in school sitting the test 0.938 -0.0001 0.933 0.0005 0.946 -0.0010
[0.054] (0.0005) [0.055] (0.0006) [0.051] (0.0008)

% in institution sitting the test 0.937 -0.0001 0.932 0.0005 0.945 -0.0010
[0.045] (0.0004) [0.043] (0.0005) [0.045] (0.0007)

Female students 0.482 0.0012 0.483 0.0004 0.479 0.0027*
[0.121] (0.0009) [0.1179] (0.0011) [0.126] (0.0016)

Immigrant students 0.097 0.0010 0.137 0.0004 0.031     0.0020***
[0.120] (0.0010) [0.13] (0.0014) [0.056] (0.0007)

Father HS 0.25      0.0060*** 0.258      0.0061*** 0.238    0.0056**
[0.168] (0.0016) [0.163] (0.0019) [0.176] (0.0027)

Mother employed 0.441      0.0085*** 0.532     0.0067** 0.295     0.0117***
[0.267] (0.0024) [0.258] (0.0031) [0.210] (0.0035)

Missing data on father's education 0.223     -0.0217*** 0.225     -0.0186*** 0.221     -0.0271***
[0.341] (0.0034) [0.340] (0.0043) [0.343] (0.0057)

Missing data on mother's occupation 0.195     -0.0168*** 0.196     -0.0083** 0.194      -0.0316***
[0.328] (0.0033) [0.325] (0.0042) [0.333] (0.0054)

Missing data on country of origin 0.033     -0.0115*** 0.025     -0.0078*** 0.045     -0.0178***
[0.163] (0.0013) [0.143] (0.0014) [0.192] (0.0026)

N
Notes: Columns 1, 3 and 5 show means and standard deviations for variables listed at left. Other columns report coefficients from
regressions of each variable on a treatment dummy (indicating classroom monitoring), grade and year dummies, and sampling strata
controls (grade enrollment at institution, region dummies and their interactions). Standard deviations for the control group are in square
brackets, robust standard errors are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 4. Covariate Balance in the Monitoring Experiment 
Italy North/Centre South

A. Administrative Data on Schools

B. Data Provided by School Staff

C. Non-Response Indicators

140,010 87,498 52,512
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Table 5: Monitoring Effects on Score Manipulation and Test Scores

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Monitor at institution (Migkt)     -0.029***     -0.010***     -0.062***     -0.112***     -0.075***     -0.180***
(0.002) (0.001) (0.004) (0.006) (0.005) (0.012)

Means 0.064 0.020 0.139 0.007 -0.074 0.141
(sd) (0.246) (0.139) (0.346) (0.637) (0.502) (0.796)

N 139,996 87,491 52,505 140,010 87,498 52,512

Monitor at institution (Migkt)     -0.025***     -0.012***     -0.047***     -0.081***     -0.054***     -0.131***
(0.002) (0.001) (0.004) (0.004) (0.004) (0.009)

Means 0.055 0.023 0.110 0.01 -0.005 0.035
(sd) (0.229) (0.149) (0.313) (0.523) (0.428) (0.649)

N 140,003 87,493 52,510 140,010 87,498 52,512

Notes: Columns 1-3 report first stage estimates of the effect of a monitor at institution on score manipulation.
Columns 4-6 show the reduced form effect of a monitor at institution on test scores. All models control for a
quadratic in grade enrollment, segment dummies and their interactions. The unit of observation is the class. Robust
standard errors, clustered on school and grade, are shown in parentheses. Control variables include: % female
students, % immigrants, % fathers at least high school graduate, % employed mothers, % unemployed mothers, %
mother NILF, grade and year dummies, and dummies for missing values in these variables. All regressions include
sampling strata controls (grade enrollment at institution, region dummies and their interactions). * significant at
10%; ** significant at 5%; *** significant at 1%.

A. Math

Score manipulation Test scores

B. Language
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Table 6: IV/2SLS Estimates of the Effect of Class Size on Scores by Monitor at Institution

Italy North/Centre South
(1) (2) (3)

Class size* Migkt -0.0351 -0.0389* -0.0347
(0.0237) (0.0211) (0.0605)

Class size* (1- Migkt) -0.0658*** -0.0420** -0.1433***
(0.0207) (0.0180) (0.0526)

Migkt -0.1736*** -0.0815** -0.3947***
(0.0413) (0.0376) (0.0959)

N 140,010 87,498 52,512

Class size* Migkt -0.0307 -0.0208 -0.0485
(0.0188) (0.0169) (0.0480)

Class size* (1- Migkt) -0.0419** -0.0212 -0.0975**
(0.0164) (0.0144) (0.0419)

Migkt -0.1033*** -0.0545* -0.2279***
(0.0328) (0.0300) (0.0764)

N 140,010 87,498 52,512
Notes: This table report 2SLS estimates using the interaction of Maimonides' Rule with monitor at institution (Migkt) as instruments. Class size
coefficients show the effect of 10 students. The unit of observation is the class. Robust standard errors, clustered on school and grade, are shown
in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate,% employed mothers, %
unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions include sampling strata
controls (grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at
1%.

A. Math

B. Language
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Table 7: Twin First Stages

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Maimonides' Rule (figkt)    -0.0009** -0.0003    -0.0019**    -0.0008** -0.0003    -0.0015**
(0.0004) (0.0002) (0.0009) (0.0003) (0.0003) (0.0008)

Monitor at institution (Migkt)     -0.029***     -0.010***     -0.062***     -0.025***     -0.012***     -0.047***
(0.002) (0.001) (0.004) (0.002) (0.001) (0.004)

N 139,996 87,491 52,505 140,003 87,493 52,510

Italy North/Centre South
(1) (2) (3)

Maimonides' Rule (figkt)    0.513***    0.555***    0.433***
(0.0006) (0.0008) (0.0011)

Monitor at institution (Migkt) 0.013 0.032 -0.009
(0.024) (0.027) (0.045)

N 140,010 87,498 52,512

Notes: Panel A report first stage estimates of the effect of the Maimonides' Rule and a monitor at institution on score
manipulation. Panel B report first stage estimates of the effect of the Maimonides' Rule and a monitor at institution on
class size. All models control for a quadratic in grade enrollment, segment dummies and their interactions. The unit of
observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control
variables include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, %
unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values in these variables. All
regressions include sampling strata controls (grade enrollment at institution, region dummies and their interactions). *
significant at 10%; ** significant at 5%; *** significant at 1%.

B. Class size

A. Score Manipulation
LanguageMath
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Table 8: IV/2SLS Estimates of the Effect of Class Size and Score Manipulation on Test Scores

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Class size 0.0075 -0.0029 0.0062 0.0024 -0.0113 0.0133 0.0116 0.0136 0.0473
(0.0213) (0.0298) (0.0441) (0.0190) (0.0251) (0.0378) (0.0316) (0.0482) (0.0675)

Score manipulation     3.82***     7.33***     2.88***     3.82***  7.02***     2.87***     4.10***    9.21**     3.33***
(0.19) (0.79) (0.16) (0.19) (0.73) (0.16) (0.96) (4.41) (0.86)

Class size * Score manipulation -0.1464 -1.2700 -0.2273
(0.4814) (2.1598) (0.4304)

Overid test [P-value] [0.914] [0.600] [0.541] [0.914] [0.475] [0.476]
N 139,996 87,491 52,505 139,996 87,491 52,505 139,996 87,491 52,505

Class size 0.0121 0.0049 0.0127 0.0218 0.0109 0.0491 0.0325 0.0098 0.1337*
(0.0173) (0.0196) (0.0385) (0.0153) (0.0174) (0.0329) (0.0308) (0.0320) (0.0800)

Score manipulation     3.29***     4.50***     2.80***     3.21***     4.34***     2.74***     3.59***  4.31*    4.18***
(0.18) (0.45) (0.18) (0.18) (0.42) (0.18) (1.03) (2.25) (1.30)

Class size * Score manipulation -0.2130 -0.0029 -0.7058
(0.4980) (1.0898) (0.6214)

Overid test [P-value] [ 0.129] [0.796] [0.036] [0.216] [0.844] [0.109]
N 140,003 87,493 52,510 140,003 87,493 52,510 140,003 87,493 52,510

IV/2SLS (overidentified-interacted)

A. Math

B. Language

Notes: Columns 1-3 show 2SLS estimates using Maimonides' Rule and monitor at institution as instruments. Columns 4-6 show overidentified
2SLS estimates which also use dummies for grade enrollment being in a 10 percent window below and above each cutoff (2 students) as instrument.
Columns 7-9 add the interaction between class size and score manipulation and use the interaction of Maimonide's Rule with monitor at institution
and the interactions of dummies for grade enrollment being in a 10 percent window below and above each cutoff with monitor at institution as
instruments. Class size coefficients show the effect of 10 students. All models control for a quadratic in grade enrollment, segment dummies and
their interactions. The unit of observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control
variables include: % female students, % immigrants, % fathers at least high school graduate,% employed mothers, % unemployed mothers, %
mother NILF, grade and year dummies, and dummies for missing values in these variables. All regressions include sampling strata controls (grade
enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; *** significant at 1%.

Table 7. IV/2SLS Estimates of the Effect of Class Size and Score Manipulation on Test Scores
IV/2SLS (overidentified)IV/2SLS

33



Table 9: Maimonides’ Rule and Covariate Balance

Control Mean Treatment 
Difference Control Mean Treatment 

Difference Control Mean Treatment 
Difference

(1) (2) (3) (4) (5) (6)

% in class sitting the test 0.9392 0.0000 0.9345 0.0001 0.9471 0.0000
[0.0643] (0.0001) [0.0657] (0.0001) [0.061] (0.0001)

% in school sitting the test 0.9386 0.0001 0.9339 0.0001 0.9464 0.0001
[0.0534] (0.0001) [0.0548] (0.0001) [0.05] (0.0001)

% in institution sitting the test 0.9374 -0.0001 0.9327 -0.0001 0.9451 -0.0000
[0.0436] (0.0001) [0.0426] (0.0001) [0.0441] (0.0001)

Female 0.482 0.0000 0.4836 0.0002 0.4792 -0.0002
[0.1205] (0.0002) [0.1176] (0.0002) [0.1251] (0.0003)

Immigrant 0.0981     -0.0007*** 0.1375     -0.0007*** 0.0324     -0.0004***
[0.1198] (0.0002) [0.1298] (0.0003) [0.0572] (0.0001)

Father HS 0.2546   0.0006** 0.2613 0.0002 0.2434    0.0013***
[0.1678] (0.0003) [0.1626] (0.0003) [0.1755] (0.0005)

Mother employed 0.4503     0.0012*** 0.5356  0.0010* 0.3082     0.0016***
[0.2658] (0.0004) [0.2574] (0.0005) [0.2138] (0.0006)

Missing data on father's education 0.2187 0.0003 0.2216    0.0015** 0.2139  -0.0018*
[0.3361] (0.0006) [0.3358] (0.0007) [0.3367] (0.0010)

Missing data on mother's occupation 0.1925 0.0002 0.1963    0.0014** 0.1861  -0.0019*
[0.3239] (0.0006) [0.3231] (0.0007) [0.3251] (0.0010)

Missing data on country of origin 0.0296 -0.0001 0.0232 -0.0001 0.0401 -0.0000
[0.1544] (0.0002) [0.1361] (0.0003) [0.1804] (0.0005)

N
Notes: Columns 1, 3 and 5 show means and standard deviations for variables listed at left. Other columns report coefficients from
regressions of each variable on predicted class size (Maimonides' Rule), a quadratic in grade enrollment, segment dummies and their
interactions, grade and year dummies, and sampling strata controls (grade enrollment at institution, region dummies and their interactions).
Standard deviations for the control group are in square brackets, robust standard errors are in parentheses. * significant at 10%; **
significant at 5%; *** significant at 1%.

B. Data Provided by School Staff

Table 8. Maimonides' Rule and Covariate Balance 
Italy North/Centre South

A. Administrative Data on Schools

140,010 87,498 52,512

C. Non-Response Indicators
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Figure 1: Manipulation Rates by Province
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Figure 2: Class Size by Enrollment in Pre-reform Years

Notes: The figure shows actual class size and as predicted by Maimonides' Rule in 
pre-reform years 
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Figure 3: Class Size by Enrollment in Post-reform Years

Notes: The figure shows actual class size and as predicted by Maimonides' Rule in 
post-reform years
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Figure 4: Class Size and Enrollment, centered at Maimonides Cutoffs

    Notes:  The solid line shows a one-sided LLR fit.
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Figure 5: Test Scores and Enrollment, centered at Maimonides Cutoffs

Notes:  The solid line shows a one-sided LLR fit.
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Figure 6: Score Manipulation and Enrollment, centered at Maimonides Cutoffs

   Notes: The solid line shows a one-sided LLR fit.

−.
04

−.
02

0
.0

2
.0

4

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
enrollment

North and Centre

−.
04

−.
02

0
.0

2
.0

4

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
enrollment

South

Note: graphs computed from residuals

Math Score Manipulation
−.

04
−.

02
0

.0
2

.0
4

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
enrollment

North and Centre

−.
04

−.
02

0
.0

2
.0

4

−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12
enrollment

South

Note: graphs computed from residuals

Language Score Manipulation

40



Figure 7: Score Gradient by Item Difficulty

Notes: The figures plot the average potential score on item j under manipulation for complying classes   
and the average potential score on item j without manipulation for the same classes against the percent 
correct answers in monitored institutions in Veneto.The sample is restricted to the South.
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Appendix (for online publication)

Score Manipulation Imputation

Our imputation is closely related to that used by INVALSI and described in Quintano et al.

(2009). INVALSI assigns a manipulation probability to each class in three steps.

The first step computes the following four summary statistics.

(1) Within-class average score

p̄i =

Ni∑
j=1

pji

Ni

, (10)

where pji denotes the score of student j in class i; Ni denotes the number of test-takers in

class i.

(2) Within-class standard deviation of scores

σi =

√√√√√√
Ni∑
j=1

(pji − p̄i)2

Ni

. (11)

(3) Within-class average percent missing

MCi =

Ni∑
j=1

Mji

Ni

, (12)

where Mji is the fraction of test items skipped by student j in class i.

(4) Within-class index of answer homogeneity

Ēi =

Q∑
q=1

Eqi

Q
, (13)

where q = 1, .., Q indexes test items and Eqi is a Gini measure of homogeneity that equals

value zero if all students in class i provide the same answer to item q. This can be interpreted

as the Herfindahl index of the share of students with similar response patterns in the class.

In the second step, the first two principal components are extracted from the 4 × 4 cor-

relation matrix determined by these indicators, yielding a percentage of explained variance

which is - across years, subjects and grades - well above 90%. Denote these principal com-
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ponents by ψ1i and ψ2i. The third step consists of a cluster analysis that creates G groups

from the distribution of (ψ1i, ψ2i). INVALSI sets G = 8, yielding a matrix whose elements

are, for each class, eight group membership probabilities. This procedure is known as “fuzzy

clustering” (see Bezdek, 1981), since data elements (classes, in our setting) can be assigned

to one or more groups. With “hard clustering”, data elements belong to exactly one cluster.

INVALSI identifies likely manipulators as those in the group with values of (ψ1i, ψ2i) that

are most extreme (see Figure 8 in Quintano et al. 2009). In practice, the suspicious group is

characterized by (i) abnormally large values of p̄i, and (ii) small values of σi, MCi and Ēi,

relative to the population average of these indicators. This group is flagged as the “outlier”

or manipulating cluster. The INVALSI manipulation indicator gives, for each class, the

membership probability for this cluster. Our hard clustering computations codes a dummy

for manipulating classes. This dummy indicates classes whose values of (ψ1i, ψ2i) belong to

the manipulating cluster identified by INVALSI.

Manipulation and Class Size

Class size is denoted by s and, in the absence of manipulation, the score on item j is Lj ∈

[0, 1]. Manipulated scores are equal to 1. The manipulated class average score is therefore

yj = (1−Lj)pj+Lj, where pj =
nj

s
is the fraction of score sheets manipulated for item j. The

score gain from manipulation is p̃j ≡ τjpj, with τj = 1 − Lj ≥ 0. Large τj denotes difficult

items, so the returns to manipulation vary with item difficulty. Probability of exposure

cumulates across items, γ
∑

j nj, where nj is number of score sheets manipulated for item

j. Assuming additively separable across items utility, teachers have the following objective

function (assuming utility is zero if caught)(
1− γ

∑
j

nj

)
︸ ︷︷ ︸
disclosure risk

U

(∑
j

p̃j

)
︸ ︷︷ ︸

utility of score gain

− β
∑
j

(s− nj)︸ ︷︷ ︸
honest grading effort

.

Divide by s to write the problem as

max
p̃

(
1

s
− γ

∑
j

p̃j
τj

)
U

(∑
j

p̃j

)
− β

∑
j

(
1− 1

τj
p̃j

)
.

The first order condition for optimal p̃j yields
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(
1

s
− γ

∑
j

p̃j
τj

)
h

(∑
j

p̃j

)
+
β

τj
g

(∑
j

p̃j

)
− γ

τj
= 0, (14)

where g(p) = 1
U(p)

> 0 and h(p) = U ′(p)
U(p)

> 0. Using g′(p)
h(p)

= −g(p), comparative statics implies

dp̃j
ds

=
τj
s

τj (1− γ
∑
j

nj

)
h′
(∑

j p̃j

)
h
(∑

j p̃j

) − βsg(∑
j

p̃j

)
− γs

−1 .
This is negative if

h′
(∑

j p̃j

)
h
(∑

j p̃j

) ≤ s

τj

(
βg

(∑
j

p̃j

)
+ γ

)(
1− γ

∑
j

n

)−1
,

which is more likely to hold in large classes. A sufficient condition is h′(p) < 0, a diminishing

condition for marginal log-utility. With commonly used log-linear preferences we have

h′
(∑

j p̃j

)
h
(∑

j p̃j

) = − 1∑
j p̃j

,

and

dp̃j
ds

= −τj
s

[
τj

(
1− γ

∑
j

nj

)
1∑
j p̃j

+ βsg

(∑
j

p̃j

)
+ γs

]−1
,

which is clearly negative. If τj = 0, then dp̃j
ds

= 0. If τj grows, the class size gradient also

depends on γ. This can be used to obtain the score gradient

dyj
ds

=
d [(1− Lj)pj + Lj]

ds
=
dp̃j
ds
.

We can also write

dpj
ds

=
1

τj

dp̃j
ds

= −1

s

[
τj

(
1− γ

∑
j

nj

)
1∑
j p̃j

+ βsg

(∑
j

p̃j

)
+ γs

]−1
,

which shows that, keeping
∑

j p̃j constant, the effect of class size on manipulation rates

flattens as item difficulty increases.

Finally, we consider the quantity dpj
ds

for teachers motivated solely by grading effort. When

teachers care little about measured achievement, the utility of overall exam performance is

constant. In this case, the first order condition in equation (14) becomes

β

τj
g

(∑
j

p̃j

)
− γ

τj
= 0,
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and we have that
dpj
ds

= − 1

s2

[
βg

(∑
j

p̃j

)
+ γ

]−1
.

This suggests that in a curbstoning scenario, item-level manipulation rates should decrease

similarly as class size increases.
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Table A1: Reduced Form Estimates of the Effect of Maimonides’ Rule on Class Size, Test Scores, and Score Manipulation

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

Maimonides' Rule    0.513***    0.555***    0.433***
(0.006) (0.008) (0.011)

Means 19.88 20.07 19.58
(sd) (3.58) (3.52) (3.64)

N 140,010 87,498 52,512

Maimonides' Rule     -0.0031***     -0.0023**    -0.0056**     -0.0021*** -0.0012    -0.0041**
(0.0010) (0.0009) (0.0022) (0.0008) (0.0008) (0.0017)

Means 0.007 -0.074 0.141 0.01 -0.005 0.035
(sd) (0.637) (0.502) (0.796) (0.523) (0.428) (0.649)

N 140,010 87,498 52,512 140,010 87,498 52,512

Maimonides' Rule     -0.0009*** -0.0003    -0.0020**    -0.0008** -0.0003    -0.0016**
(0.0004) (0.0002) (0.0009) -0.0003 -0.0003 -0.0008

Means 0.065 0.02 0.139 0.055 0.023 0.110
(sd) (0.246) (0.139) (0.346) (0.229) (0.149) (0.313)

N 139,996 87,491 52,505 140,003 87,493 52,510

Math

Notes: This table shows the reduced form effect of the Maimonides' Rule on class size (Panel A), test scores (Panel B), score
manipulation (Panel C). All models control for a quadratic in grade enrollment, segment dummies and their interactions. The unit
of observation is the class. Robust standard errors, clustered on school and grade, are shown in parentheses. Control variables
include: % female students, % immigrants, % fathers at least high school graduate, % employed mothers, % unemployed
mothers, % mother NILF grade and year dummies, and dummies for missing values in these variables. All regressions include
sampling strata controls (grade enrollment at institution, region dummies and their interactions). * significant at 10%; **
significant at 5%; *** significant at 1%.

Table A1. Reduced Form Estimates of the Effect of Maimonides' Rule on Class Size, Test Scores, and Score Manipulation

Language

B. Test Scores

C. Score Manipulation

A. Class size
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Table A2: First Stage Estimates for Over-Identified Models

Italy North/Centre South Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Maimonides' Rule (figkt)    0.704***    0.753***    0.617***     -0.0009** -0.0003    -0.0021*     -0.0014***    -0.0008**    -0.0024**
(0.0059) (0.0069) (0.0107) (0.0005) (0.0003) (0.0011) (0.0004) (0.0003) (0.0010)

Monitor at institution (Migkt) 0.010 0.029 -0.013     -0.029***     -0.010***     -0.062***     -0.025***     -0.012***     -0.047***
(0.023) (0.026) (0.044) (0.002) (0.001) (0.004) (0.002) (0.001) (0.004)

2 students below cutoff   -1.427***   -1.154***   -1.865*** 0.002 -0.002 0.008 0.010** 0.005 0.018
(0.083) (0.101) (0.138) (0.005) (0.003) (0.012) (0.005) (0.004) (0.011)

1 student below cutoff   -2.258***   -2.053***   -2.580*** 0.001 0.001 0.000 0.007 0.009** 0.002
(0.093) (0.116) (0.150) (0.005) (0.004) (0.012) (0.005) (0.004) (0.011)

1 student above cutoff   2.411***   3.026***   1.519*** 0.000 0.003 -0.004 -0.001 -0.001 -0.001
(0.097) (0.132) (0.138) (0.006) (0.005) (0.013) (0.005) (0.004) (0.012)

2 students above cutoff    1.247***    1.546***    0.826*** 0.001 -0.004 0.007 -0.007 -0.005 -0.012
(0.083) (0.114) (0.120) (0.006) (0.004) (0.013) (0.005) (0.004) (0.009)

N 140,010 87,498 52,512 139,996 87,491 52,505 140,003 87,493 52,510

Notes: Columns 1-3 report first stage estimates of the effect of the Maimonides' Rule, a monitor at institution and dummies for grade enrollment being in a
10 percent window below and above each cutoff on class size. Columns 4-9 show first stage estimates of the effect of the Maimonides' Rule, a monitor at
institution and dummies for grade enrollment being in a 10 percent window (2 students) above and below each cutoff on score manipulation. All models
control for a quadratic in grade enrollment, segment dummies and their interactions. The unit of observation is the class. Robust standard errors, clustered
on school and grade, are shown in parentheses. Control variables include: % female students, % immigrants, % fathers at least high school graduate, %
employed mothers, % unemployed mothers, % mother NILF, grade and year dummies, and dummies for missing values in these variables. All regressions
include sampling strata controls (grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%; ***
significant at 1%.

Class size Score manipulation math Score manipulation language
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Table A3: Covariates and Maimonides’ Rule with and without External Monitors

Italy North/Centre South Italy North/Centre South
(1) (2) (3) (4) (5) (6)

% in class sitting the test 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000
(0.0002) (0.0002) (0.0003) (0.0001) (0.0001) (0.0002)

% in school sitting the test 0.0003 0.0003 0.0002 0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0003) (0.0001) (0.0001) (0.0002)

% in institution sitting the test -0.0000 -0.0000 0.0001 -0.0001* -0.0002* -0.0000
(0.0001) (0.0002) (0.0003) (0.0001) (0.0001) (0.0001)

Female -0.0003 -0.0006 0.0001 0.0001 0.0005* -0.0003
(0.0003) (0.0004) (0.0006) (0.0002) (0.0002) (0.0003)

Immigrant -0.0005 -0.0002    -0.0007**     -0.0007***    -0.0009***  -0.0003*
(0.0003) (0.0005) (0.0003) (0.0002) (0.0003) (0.0002)

Father HS -0.0005 -0.0002 -0.0014     0.0010*** 0.0003     0.0020***
(0.0005) (0.0006) (0.0010) (0.0003) (0.0004) (0.0005)

Mother employed 0.0001 0.0003 -0.0004     0.0015***     0.0012**     0.0022***
(0.0008) (0.0010) (0.0012) (0.0004) (0.0006) (0.0006)

Missing data on father's education 0.0014 0.0012 0.0019 0.0000     0.0016**     -0.0026**
(0.0011) (0.0013) (0.0020) (0.0007) (0.0008) (0.0012)

Missing data on mother's occupation 0.0018* 0.0017 0.0020 -0.0002 0.0012     -0.0028**
(0.0011) (0.0013) (0.0019) (0.0007) (0.0008) (0.0011)

Missing data on country of origin 0.0006 0.0003 0.0011 -0.0002 -0.0002 -0.0003
(0.0004) (0.0004) (0.0008) (0.0003) (0.0003) (0.0006)

N 34,325 22,174 12,151 105,685 65,324 40,361

Table A3. Covariate Balance in Maimonides' Rule for Institutions with and without External Monitor 

Notes: This table reports coefficients from regressions of the variables listed at left on Maimonides' Rule, controlling for a
quadratic in grade enrollment, enrollment segment dummies and their interactions, grade and year dummies, and sampling
strata controls (grade enrollment at institution, region dummies and their interactions). Columns 1-3 show results for the
sample with monitors; columns 4-6 show results for the sample without monitors. Robust standard errors, clustered on school
and grade, are shown in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.

Institutions with Monitor Institutions without Monitor

A. Administrative Data on Schools

B. Data Provided by School Staff

C. Non-Response Indicators
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Figure A1: Answer sheet for V grade in 2010/11
 Servizio Nazionale di Valutazione a.s. 2010/11   

 CLASSE:  
  Scheda Risposte Studente n°  

Risultati delle prove 
 

Codice istituto:� Codice�Scuola: 
Codice plesso: Livello:

Codice Classe:� NON CAMPIONE
Codice studente: Numero progressivo studente:

PROVA ITALIANO (1) PROVA MATEMATICA (1) 
A1 ƑA ƑB ƑC ƑD ƑNV C1_a1 Ƒ0 Ƒ1 ƑNV   D1_a ƑV ƑF ƑNV   
A2 ƑA ƑB ƑC ƑD ƑNV C1_a2 Ƒ0 Ƒ1 ƑNV   D1_b ƑV ƑF ƑNV   
A3 ƑA ƑB ƑC ƑD ƑNV C1_b1 Ƒ0 Ƒ1 ƑNV   D1_c ƑV ƑF ƑNV   
A4 ƑA ƑB ƑC ƑD ƑNV C1_b2 Ƒ0 Ƒ1 ƑNV   D1_d ƑV ƑF ƑNV   
A5 ƑA ƑB ƑC ƑD ƑNV C1_b3 Ƒ0 Ƒ1 ƑNV   D2 ƑA ƑB ƑC ƑD ƑNV 
A6 ƑA ƑB ƑC ƑD ƑNV C2 ƑA ƑB ƑC ƑD ƑNV D3 Ƒ0 Ƒ1 ƑNV   
A7 ƑA ƑB ƑC ƑD ƑNV C3_a ƑNome ƑNon_Nome ƑNV D4_a ƑA ƑB ƑC ƑD ƑNV 
A8 ƑA ƑB ƑC ƑD ƑNV C3_b ƑNome ƑNon_Nome ƑNV D4_b Ƒ0 Ƒ1 ƑNV   
A9 ƑA ƑB ƑC ƑD ƑNV C3_c ƑNome ƑNon_Nome ƑNV D5 ƑA ƑB ƑC ƑD ƑNV 
A10 ƑA ƑB ƑC ƑD ƑNV C3_d ƑNome ƑNon_Nome ƑNV D6 ƑA ƑB ƑC ƑD ƑNV 
A11 ƑA ƑB ƑC ƑD ƑNV C3_e ƑNome ƑNon_Nome ƑNV D7 ƑA ƑB ƑC ƑD ƑNV 
A12 ƑA ƑB ƑC ƑD ƑNV C3_f ƑNome ƑNon_Nome ƑNV D8 ƑA ƑB ƑC ƑD ƑNV 
A13 ƑA ƑB ƑC ƑD ƑNV C3_g ƑNome ƑNon_Nome ƑNV D9 Ƒ0 Ƒ1 ƑNV   
A14 ƑA ƑB ƑC ƑD ƑNV C3_h ƑNome ƑNon_Nome ƑNV D10 ƑA ƑB ƑC ƑD ƑNV 
A15 ƑA ƑB ƑC ƑD ƑNV C3_i ƑNome ƑNon_Nome ƑNV D11 ƑA ƑB ƑC ƑD ƑNV 
A16 ƑA ƑB ƑC ƑD ƑNV C3_l ƑNome ƑNon_Nome ƑNV D12 Ƒ0 Ƒ1 ƑNV   
A17 ƑA ƑB ƑC ƑD ƑNV C3_m ƑNome ƑNon_Nome ƑNV D13 ƑA ƑB ƑC ƑD ƑNV 
B1 ƑA ƑB ƑC ƑD ƑNV C3_n ƑNome ƑNon_Nome ƑNV D14 ƑA ƑB ƑC ƑD ƑNV 
B2 ƑA ƑB ƑC ƑD ƑNV C3_o ƑNome ƑNon_Nome ƑNV D15 ƑA ƑB ƑC ƑD ƑNV 
B3 ƑA ƑB ƑC ƑD ƑNV C3_p ƑNome ƑNon_Nome ƑNV D16_a Ƒ0 Ƒ1 ƑNV 
B4 ƑA ƑB ƑC ƑD ƑNV C3_q ƑNome ƑNon_Nome ƑNV D16_b Ƒ0 Ƒ1 ƑNV 
B5 ƑA ƑB ƑC ƑD ƑNV C3_r ƑNome ƑNon_Nome ƑNV D17_a ƑV ƑF ƑNV 
B6 ƑA ƑB ƑC ƑD ƑNV C4 Ƒ0 Ƒ1 ƑNV   D17_b ƑV ƑF ƑNV 
B7 ƑA ƑB ƑC ƑD ƑNV C5 Ƒ0 Ƒ1 ƑNV   D17_c ƑV ƑF ƑNV 
B8 ƑA ƑB ƑC ƑD ƑNV C6 ƑA ƑB ƑC ƑD ƑNV D17_d ƑV ƑF ƑNV 
B9 ƑA ƑB ƑC ƑD ƑNV C7 Ƒ0 Ƒ1 ƑNV   D18 ƑA ƑB ƑC ƑD ƑNV 
B10 ƑA ƑB ƑC ƑD ƑNV C8 ƑA ƑB ƑC ƑD ƑNV D19 Ƒ0 Ƒ1 ƑNV 
B11 ƑA ƑB ƑC ƑD ƑNV C9 ƑA ƑB ƑC ƑD ƑNV D20 ƑA ƑB ƑC ƑD ƑNV 
B12 ƑA ƑB ƑC ƑD ƑNV C10 Ƒ0 Ƒ1 ƑNV   D21_a Ƒ0 Ƒ1 ƑNV 
B13 ƑA ƑB ƑC ƑD ƑNV       D21_b Ƒ0 Ƒ1 ƑNV 
B14 ƑA ƑB ƑC ƑD ƑNV       D22 ƑA ƑB ƑC ƑD ƑNV 
B15 ƑA ƑB ƑC ƑD ƑNV       D23_a Ƒ0 Ƒ1 ƑNV 
            D23_b Ƒ0 Ƒ1 ƑNV 
            D24_a Ƒ0 Ƒ1 ƑNV 
            D24_b Ƒ0 Ƒ1 ƑNV 
            D24_c Ƒ0 Ƒ1 ƑNV 

            D25 Ƒ0 Ƒ1 ƑNV 
            D26 ƑA ƑB ƑC ƑD ƑNV 
            D27 ƑA ƑB ƑC ƑD ƑNV 
            D28_a Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D28_b Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D28_c Ƒkm Ƒm Ƒcm Ƒmm ƑNV 
            D29_a ƑV ƑF ƑNV 
            D29_b ƑV ƑF ƑNV 
            D29_c ƑV ƑF ƑNV 
            D29_d ƑV ƑF ƑNV 
            D30 ƑA ƑB ƑC ƑD ƑNV 

 
 
 

(1) Barrare NV per risposta non valida (2 risposte o risposta incomprensibile) e non barrare nulla in caso di risposta omessa 
(ATTENZIONE Non spillare, non modificare per nessun motivo i dati precompilati della scheda)�
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Figure A2: Example of open-ended question in math test - V grade 2010/11
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Figure A3: Example of open-ended question in language test - V grade 2010/11

ITA5  18 

C4. Nella frase che segue inserisci le parole mancanti scegliendole da 

questa lista: così, dove, perché, però, se, siccome. 

……………. non conoscevo la strada, ho chiesto a una signora ……….  

dovevo andare; …………….. non mi sono perso.    

  

 

 

C5. Nella frase che segue inserisci i sei segni di punteggiatura mancanti. 

L a  m a m m a  c h i a m ò  C a p p u c c e t t o  R o s s o  e  l e  d i s s e  P e r  

p i a c e r e ,  v a i  d a l l a  n o n n a ;  p o r t a l e  q u e s t e  c o s e  i l  b u r r o  

l e  u o v a  e  l o  z u c c h e r o         

 

 

C6. Leggi le parole nell’ovale. Una non c’entra con le altre. Cerchiala e 

poi indica il perché scegliendo tra le quattro alternative date sotto. 

 

 

 

 

 

 

 

 

□ A. È una parola non usata 

□ B. Non si scrive con “cq” 

□ C. Non è un derivato di acqua 

□ D. Non è un nome, è un verbo 

acqua acquazzone acquarello 

acquitrino  acquedotto acquario 

annacqua nacque sciacqua 
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