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Abstract

While common Descent and Landing strategies involve extended periods of

forced motion, significant fuel savings could be achieved by exploiting the nat-

ural dynamics in the vicinity of the target. However, small bodies are charac-

terised by perturbed and poorly known dynamics environments, calling for ro-

bust autonomous guidance, navigation and control. Airbus Defence and Space

and the University of Bristol have been contracted by the UK Space Agency to

investigate the optimisation of landing trajectories, including novel approaches

from the dynamical systems theory, and robust nonlinear control techniques,

with an application to the case of a landing on the Martian moon Phobos.

Keywords: Landing, Small Bodies, Libration Point Orbits, Invariant

Manifolds, Trajectory Design, Guidance

1. Introduction

Space sample return missions have a record of revolutionising planetary sci-

ence. In 2012, new chemical analyses carried out by the University of Chicago

on the lunar material collected by Apollo 14 fifty years earlier brought new ele-

ments to the disputed question of the origin of the Moon, casting a new doubt5

on the most widely accepted Giant Impact theory [1]. The US manned missions

to the Moon of the Apollo programme were the first missions to return extra-

terrestrial samples, then followed by the Soviet Luna missions, relying solely
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on advanced robotics. Technological advances have recently enabled sample re-

turn from farther celestial bodies: NASA’s Stardust mission returned cometary10

dust in 2006, JAXA’s Hayabusa mission returned microscopic grains of asteroid

material in 2010 and NASA recently launched OSIRIS-REx to collect a sample

from the Bennu asteroid, with the objective to return it to Earth in 2023.

Among the future candidates for exploration missions are the low-gravity

and irregularly-shaped Martian moons. In particular, Phobos is receiving sig-15

nificant attention from the international community both for the wide scientific

interest to finally solve the unknowns surrounding the nature of its formation,

and because such a precursor mission could represent the technology drive to

test some key components for a future international Mars Sample Return mis-

sion. The results of the analysis on Earth of a sample from Phobos will also20

characterise the exploitable in-situ resources, possibly enabling to use the moon

as a waypoint for the future human exploration of the Martian System.

Close proximity operations including descent and landing are critical phases

for sample return missions, typically characterised by challenging propellant

consumption requirements. While common descent strategies involve an ex-25

tended period of forced motion, either by translating to the surface from a close

hovering station-keeping point or by starting the descent from a distant orbit,

significant fuel savings could be achieved by further exploiting the natural dy-

namics in the vicinity of the target. However, a common characteristic of the

gravitational environments around asteroids and small bodies is that they are30

both highly perturbed and essentially poorly known, calling for the development

of reliable autonomous guidance, navigation and robust control strategies.

In parallel to the European Space Agency’s Phobos Sample Return Phase

A system study, Airbus Defence and Space has been awarded a grant by the

UK Space Agency to investigate innovative strategies for the optimisation and35

robust control of the landing trajectories, in collaboration with the University

of Bristol.
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2. Phobos Sample Return mission and associated constraints

2.1. Airbus Defence and Space heritage on landing and sample return missions

Landing and sample return missions to the Moon, asteroids, Mars and its40

moons have been studied for many years by Airbus Defence and Space. Follow-

ing the successful launch of the Rosetta mission towards Comet 67P/Churyumov-

Gerasimenko, some of the recent system studies conducted for the European

Space Agency are illustrated on Figure 1 below ([2, 3, 4]).

Figure 1: Airbus Defence and Space involvement in landing and sample return system studies.

From left to right and top to bottom: Marco-Polo, Marco-Polo-R, Mars Precision Lander,

Phootprint, Mars Sample Return Orbiter.

These projects have involved multidisciplinary teams of engineers in com-45

prehensive system studies, thus providing a deep understanding of the con-

straints associated with the major subsystems for such missions, in particular:
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the touch-down and landing system, the sample handling system, the Earth

Re-entry Capsule (ERC), and the Guidance Navigation and Control (GNC) for

proximity operations, which is the object of the study presented in this paper.50

2.2. Phobos Sample Return mission overview and specific landing requirements

Phobos Sample Return is the continuation of the Phootprint pre-phase A,

conducted by Airbus Defence and Space in 2014, with the renewed high-level

objective to bring back 100 g of the moon surface regolith back to Earth for

analysis. Reference mission scenarios and associated spacecraft designs have55

been baselined for the mission, including a joint ESA-Roscosmos scenario, with

a Proton-M1 launch from Baikonour in 2024 (baseline) or 2026 (backup), fol-

lowed by an interplanetary transfer of about 11 months, and an ESA standalone

scenario, with an Ariane 5 ECA1 launch from Kourou in 2024/2025 (baseline)

or 2026 (backup), followed by an interplanetary transfer of about 2 years. After60

a Mars Orbit Insertion (MOI) bringing the spacecraft into a highly elliptical or-

bit, a sequence of manoeuvres puts it on a Quasi-Satellite Orbit2 (QSO) around

Deimos for a first science phase to characterise Mars’ smaller moon, orbiting the

planet at about 20,000 km. Manoeuvres are then performed to reach a Phobos

QSO, for a new characterisation phase aimed at identifying the landing sites.65

After a minimum of 3 fly-by trajectories for high resolution measurements of po-

tential landing sites at low altitude (typically 5 km), the descent is initiated via

a hovering point about 10 km above the surface of Phobos, for communication

and navigation purposes. On Phobos’ surface, images of the site are commu-

nicated to Earth for the selection of the samples, then collected by means of a70

robotic arm. Following ascent and return transfer, the Earth Re-entry Capsule

(ERC) containing the samples is set to land in Kazakhstan or Australia.

1subject to launchers continued availability, as Angara-5 and Ariane 64 are planned to

progressively replace Proton and Ariane 5 ECA respectively.
2In a three-body problem, Quasi-Satellite Orbits, also known as Distant Retrograde Orbits

are 1:1 resonant orbits with the smaller primary, lying outside its Hill sphere but remaining

in its vicinity following ellipse-like relative trajectories.
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Figure 2: Phobos Sample Return main mission phases: launch and interplanetary transfer,

Phobos proximity and surface operations, Earth re-entry following ascent and return transfer.

The work presented in this paper investigates alternative landing strategies

that take further advantage of the natural dynamics in the vicinity of the small

body. Specific requirements applicable to the landing include the following:75

• 20% accessibility of Phobos surface (50% goal)

• landing accuracy on Phobos better than 50 m at a 95 % confidence level,

• landing velocities at Phobos: vertical < 1.5 m/s, horizontal < 1 m/s,

• final free-fall (no thrust) of 20 m, to avoid surface contamination.

3. Mission analysis and reference landing trajectory design80

The objective of this section is to describe the dynamics environment appli-

cable for the study, the models used for the simulations, and the derivation of

reference open-loop landing trajectories.

3.1. Dynamics in the vicinity of Phobos and reference frames

Mars’ largest moon Phobos is a small body with dimensions 13.1 km × 11.185

km × 9.3 km (mean ellipsoid), orbiting the Red Planet at a mean altitude of less

than 6,000 km and a period of about 7 hours and 40 minutes3. Table 1 below

3shorter than the Mars rotation period: an observer on Mars would see Phobos rise in the

West and set in the East.
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provides some physical constants and orbital parameters4 used in the study,

both for Mars (orbit around the Sun) and Phobos [5] (orbit around Mars).

Body Mass (kg) sma (km) e (-) i (deg)

Mars 6.4185× 1023 227.9478× 106 0.0934 0.0323

Phobos 1.0659× 1016 9379.2557 0.0156 0.0186

Table 1: Mars and Phobos parameters: mass, semi-major axis, eccentricity and inclination

Given the low value for Phobos’ orbit eccentricity, the first level of approxi-90

mation for the dynamics of a spacecraft in the Mars-Phobos system is described

by the Circular Restricted Three Body Problem (CRTBP) [6]: even though this

model is simplified, it gives some insight into the main characteristics of the

dynamics. In particular, given the reduced mass ratio of mPhobos/(mMars +

mPhobos) = 1.65× 10−8, and the dimensions of Phobos, the L1 and L2 collinear95

Libration Points of the Mars-Phobos system lie only a few kilometers (about

3.5 km) above the surface of the moon. An important consequence of this prop-

erty is that there is no possibility for a Keplerian orbit around Phobos, and the

third-body perturbation of Mars gravity cannot be neglected for the design and

simulation of descent and landing trajectories5. Figure 3 shows the location100

of the L1 and L2 Lagrangian points assuming a CRTBP model, together with

the (in-plane) zero-velocity curves associated with their corresponding levels of

Jacobi Integral [6].

The dominant perturbations to this model are the ellipticity of Phobos’

orbit around Mars, and the non-spherical gravitational field of Phobos [7, 8].105

Owing to its high inhomogeneity and very irregular shape, the gravity field of

the moon cannot be described properly by a spherical (Keplerian) potential.

4Source: NASA JPL ephemeris at epoch 25 July 2012 00.00 UTC
5This property, very specific to the Mars-Phobos system, will generally not be observed in

the vicinity of another small body, and in particular for an asteroid. Not only thought to be

strategic for application in a future Phobos Sample Return mission, the Phobos study case

has been selected as a challenging dynamical system capturing all the nonlinearity of a three

body problem, to test the robustness and performance of the landing guidance and control.

6
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Using spherical coordinates r for the radius, θ for the co-latitude, and φ for

the longitude, and a reference radius R, the gravity potential is described by a

spherical harmonics double expansion:110

Ug(r, θ, φ) =
µgPhobos

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

Cmn (φ)Pmn (cos (θ)) (1)

where:


Cmn (φ) = Cn,m cos (mφ) + Sn,m sin (mφ)

Pmn (x) =
(
1− x2

)m/2 dm
dxm

Pn(x)

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n (2)

Figure 3 below illustrates the location of the CRTBP L1 and L2 Lagrangian

points, and provides the Gravity Harmonics coefficients Cn,m and Sn,m for a

reference radius of R = 11 km. [9]

(n,m) Cn,m Sn,m

(2,0) -0.04698 0

(2,1) 0.00136 0.00138

(2,2) 0.02276 -0.000202

(3,0) 0.00293 0

(3,1) -0.00309 0.00181

(3,2) -0.00847 -0.000655

(3,3) 0.00224 -0.01392

(4,0) 0.00762 0

(4,1) 0.00347 -0.000776

(4,2) -0.00288 -0.00112

(4,3) -0.0028 0.00337

(4,4) -0.0012 -0.000622

Figure 3: Phobos reference frames, CRTBP Lagrangian Points L1, L2 and associated in-plane

zero-velocity curves (left), gravity harmonics coefficients [9] (right)

Mars non-spherical gravitational perturbation, and in particular its first

zonal coefficient J2 due to the planet’s oblateness, also has a non-negligible115

contribution, but it remains one order of magnitude below the aforementioned

perturbations for the application considered.
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The previous figure also illustrates the reference frames used in the study:

• The Hill’s frame has its origin at the moon’s barycentre and rotates with

a fixed attitude with respect to its orbit around Mars: the vertical z-axis120

is perpendicular to the orbital plane, and the radial x-axis is pointing

outwards from the Mars-Phobos barycentre. This is the usual frame con-

sidered for the description of the motion in a three-body problem.

• The Body-Centred Body-Fixed frame (BCBF) also has its origin at the

moon’s barycentre but its attitude is fixed with respect to the body’s125

geometry: the vertical z-axis is aligned along the body’s spin axis, and

the x-axis is pointing towards the intersection of a body’s reference Prime

Meridian and the equatorial plane.

As a long-term effect of Mars’ gravity gradient (tidal force), Phobos has the

interesting property that its revolution around Mars and rotation around its130

spin axis are synchronous, and almost non-tilted: Phobos is said to be tidally

locked, like our Moon, always showing the same face to the planet. With this

approximation, Hill and BCBF frames z-axes are coincident, while their x-axes

differ only by the definition of the Prime Meridian. In particular, Phobos’ Prime

Meridian is formally identified by the location of the point constantly pointing135

towards Mars on the body’s equator: therefore the two frames differ by a ro-

tation of 180 deg of their x-y plane’s axes. In reality, an additional oscillation

between a minimum of 0.30 deg and a maximum of 1.90 deg is observed. How-

ever the dynamics of this motion, seen from Phobos as a Mars’ libration in

latitude is much slower (period of 2.26 terrestrial years) than the time-scale of140

a mission segment around Phobos. [10]

3.2. Dynamics models: Mission Analysis and Guidance (MAG) and Dynamics,

Kinematics and Environment (DKE)

The BCBF frame is the most natural coordinate system to be used for a

landing problem, and will serve as the reference frame for the expression of145

the equations of motion, as well as all subsequent trajectory representations in

8
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the next sections. As the main challenge to be addressed in the context of the

study is the derivation of robust closed-loop landing strategies in perturbed and

poorly known environments, two different models for the descent and landing

have been implemented:150

• A first model represents the dynamics environment that would be used

on the ground for the mission analysis, the definition and design of sets

of reference landing trajectories. Assumed to be representative enough of

the dynamics in flight, this is also the model to be used by the on-board

guidance function. Therefore, this model will be referred to as the Mission155

Analysis and Guidance (MAG) model.

• As the dynamics in orbit will differ from the dynamics predicted on the

ground, and in order to be able to assess the robustness of closed-loop

landing guidance and control, a second model is needed to simulate the

actual dynamics experienced by the spacecraft. This model will be referred160

to as the Dynamics, Kinematics and Environment (DKE). This model is a

statistical model with some parameters drawn from predefined probability

distributions: each DKE simulation is therefore a single realisation of the

statistical model. It also includes second order perturbations such as Mars’

J2 and Mars’ libration apparent motion from Phobos’s BCBF frame.165

Based on the previous description of the various contributors to the orbital

dynamics in the vicinity of Phobos, the table 2 summarises the assumptions

considered for each of these models.

The equations of motion are fairly complex to account for all the effects

described above, and further detail is provided in [10]. However, they can be

written in a compact and generic state-space form, with the state vector X

(BCBF position and velocity), vector field f (MAG or DKE), command matrix

B and propulsive acceleration U , as:

Ẋ = f(X, t) +B · U (3)

9
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Dynamics model

Contributors MAG DKE

Mars gravity

model
Keplerian (Spherical potential)

Kepler + J2 (GHs = first zonal

coefficient)

BCBF wrt Hill
Fixed and non-tilted

(equatorial)
Librating

Phobos gravity

model

Full GHs (m = 4, n = 4)

Deterministic

Full GHs (m = 4, n = 4)

Probabilistic

Probabilistic

parameters
None

GHs coefficients Cn,m and Sn,m

N (µMAG, σ = 100%|µMAG|)

Table 2: Differences in assumptions for the MAG and DKE dynamics models

Due to Phobos’ orbit ellipticity, the system is non autonomous and it must

be augmented with an equation for Phobos true anomaly ν on its orbit around170

Mars. This standalone equation can be written as follows, e being Phobos’ orbit

eccentricity and n its mean motion:

ν̇ = n
(1 + e cos(ν))2

(1− e2)3/2
(4)

3.3. Initial guess for landing trajectories using Libration Point Orbits and in-

variant manifolds

As described in the previous paragraph, it is impossible to design an orbit175

around Phobos that is not strongly perturbed by the gravity of Mars. Therefore,

instead of using distant Quasi-Satellite Orbits (QSOs) for the selection of the

landing site, followed by a sequence of costly forced manoeuvres for the descent

and landing, the solution investigated in this study consists in using Libration

Point Orbits (LPOs) as natural close observation platforms, and their invariant180

manifolds, initiated by a small magnitude ∆V on the LPO, as an initial guess

for a landing trajectory. In order to simulate such trajectories, the first step is

to derive the conditions for suitable LPOs. The derivation of Periodic Orbits

[11, 12] (POs) and Quasi-Periodic Orbits [13, 14] (QPOs) in the CRTBP has

10
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been studied extensively in the past. The figure 4 below illustrates families185

of Lyapunov planar, vertical and Halo periodic orbits around the L1 and L2

Lagrangian Points of the Mars-Phobos system. However, such orbits are un-

stable and, as the dynamics is strongly perturbed, trying to remain on an LPO

computed in the CRTBP would come at a significant station-keeping cost. The

procedure used [8] is to identify LPOs in the Mars-Phobos-spacecraft CRTBP190

and then numerically continue a parameter that incrementally increases the

effect of perturbations: the gravity harmonics and then the eccentricity. Even-

tually, families of POs, Quasi-Halo and Lissajous QPOs are derived in the full

MAG nonlinear dynamical system. The invariant manifolds associated with all

these orbits are then computed and those intersecting with Phobos are selected,195

as illustrated by the figure 4 below.

Figure 4: Families of L1 and L2 POs (left), and LPO manifolds interesecting Phobos (right)

The procedure used to derive the invariant manifolds associated with a Peri-

odic Orbit of a nonlinear dynamical system consists in propagating numerically

the State Transition Matrix together with the equations of motion. The mon-

odromy matrix is then obtained by evaluating this matrix after a full period.200

The analysis of the eigenspace of the monodromy matrix provides the initial

conditions to reach the unstable manifolds associated with the orbit, in prac-

tice by applying a very small ∆V in a direction derived from the eigenvectors.

For further details on the implementation of this technique to the derivation of

trajectories in proximity of Phobos, the reader is referred to [10].205

If the landing site is not imposed, several trajectories are generally suitable

11
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candidates, and can be filtered according to an additional criterion. On the ex-

ample considered, for each reachable landing site, the manifold with the highest

incidence at touch-down (the most vertical) is selected. Finally the landing site

is chosen as the one with the lowest touch-down velocity.210

Figure 5: Touch-down velocity map (left) and selected manifold (right)

3.4. Soft landing manifold trajectory optimisation

As the previously described ballistic manifold trajectory does not achieve

a soft landing (zero velocity at touch-down), the next step consists in imple-

menting thrust to command the spacecraft to the landing site, described by the

position vector rf , with no final velocity, i.e. vf = 0.6 The Open-Loop Guid-215

ance (OLG) profile is searched as a fixed order polynomial expression between

a start time tb and and a final time tf > tb, with time normalised by Phobos

orbital period T .

U(t > tb) =
n∑
k=0

Uk

(
t− tb
T

)k
(5)

Such a fixed structure parametrisation of the OLG profile will lead to a

suboptimal solution, but it has two important advantages: first, it is easy to220

6In the context of this work, no final free fall requirement has been considered for the

derivation of the Open-Loop Guidance and subsequent closed-loop tests. This is without loss

of generality as it would only modify the numerical values for the target position rf and

velocity vf , the free fall problem being addressed separately.

12
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implement in an on-board software, and besides it allows using parametric Non-

linear Programming (NLP) algorithms with a reduced set of parameters, for

a faster optimisation process. An interior-point method [15] has been used to

solve the optimisation problem, with a convergence in the order of a few seconds.

The optimisation parameters are the polynomial coefficients of the propulsive225

acceleration, as well as the burn start (tb) and end (tf ) dates. The objective

is to minimise the propulsive ∆V , while keeping an admissible level of error on

the final state, enforced as constraints on the final position and velocity errors,

with tolerance derived from the landing accuracy requirements. Conservative

assumptions of ∆rtol = 10 m and ∆vtol = 10 cm/s have been considered. The230

formulation of the optimisation problem can be summarised as follows:

min
tb,tf ,{Uk}k∈[[0,n]]

J(tb, tf , {Uk}k∈[[0,n]]) =

∫ tf

t0

‖U(t)‖dt

Landing accuracy constraints:

 ‖r(tf )− rf‖ < ∆rtol

‖v(tf )− vf‖ < ∆vtol

(6)

Figure 6 illustrates the solution trajectory reached, using the ballistic man-

ifold described in the previous section as the initial guess (Uk = 0, tb = 0, tf

= impact time of the ballistic manifold). Arrows represent the direction and

relative magnitude of the optimal OLG propulsive acceleration: the thrusters235

are activated as soon as the spacecraft leaves the Libration Point Orbit (tb = 0).

Figure 7 shows the velocity profile, driven to 0 at the final time, compared

to the initial guess ballistic trajectory, and the optimised command profile. The

optimised open-loop soft landing has a duration of less than 2 hours and requires

a propulsive ∆V of about 7 m/s.240

Local optima were reached by the optimiser with different values of tb > 0,

when initialised with initial guesses far from t0. However, as a general rule,

and despite the fact that the thrust duration is less, the required propulsive

acceleration is significantly increased, and its time integral, which corresponds

to the propulsive ∆V , is increased as well.245
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Figure 6: Manifold landing trajectory: the black line represents the trajectory and the coloured

arrows the optimised propulsive acceleration profile.
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Figure 7: Optimised OLG manifold landing velocity (left) and command (right) profiles

3.5. Forced translation descent trajectory optimisation

In order to compare the manifold-based landing to a more classical approach,

a second open-loop reference trajectory is computed as a forced translation from

a hovering Station-Keeping (SK) point 10 km above the surface towards the

same landing site, along the local normal to the surface.250

This case is easier since a parametric analytical expression of the reference

kinematics can be given so as to meet the soft landing requirement. The trajec-

tory to follow is a straight line from the initial hovering position to the targeted

landing site. However, the velocity profile to be followed by the spacecraft along

this straight line can be optimised. Starting with a velocity equal to 0, and aim-255
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ing for a zero velocity at the final time, a simple admissible solution is given by a

trapezoidal profile: ramping up between t0 and ∆t1 until the spacecraft reaches

the maximum descent velocity vd, then ramping down between tf −∆t2 and tf

to reach vf = 0. This velocity profile can be described by only four parameters

(∆t1, ∆t2, vd, tf ) that fully define the descent kinematics: by integration of260

this continuous piecewise function, one can derive the analytical expression of

the position vector, with initial, final and continuity constraints used to derive

the integration constants. Table 3 below summarises these expressions.

Time Position Velocity Acceleration

[t0,∆t1] r(t) = r0 +
vdt

2

2∆t1
v(t) =

vdt

∆t1
a(t) =

vd
∆t1

[∆t1, tf −∆t2] r(t) = r0 + vd

(
t− ∆t1

2

)
v(t) = vd a(t) = 0

[tf −∆t2, tf ] r(t) = rf −
vd(tf − t)2

2∆t2
v(t) =

vd(tf − t)
∆t2

a(t) = − vd
∆t2

Table 3: Kinematics equations for the forced translation

An additional constraint is imposed by the continuity of the position of the

spacecraft at t = tf − ∆t2, reducing the number of free parameters down to265

three. This constraint is expressed as:

vd =
rf − r0

tf −
(

∆t1+∆t2
2

) (7)

The propulsive acceleration required is obtained as the difference between

the total acceleration and the apparent gravitational acceleration given by the

MAG vector field velocity components:

U(t) = a(t)− fv(X, t) (8)

This time the soft landing requirement is ensured by design, and the ∆V270

minimisation problem to solve can be written again as a parametric minimisa-

tion problem, with a single inequality:

min
∆t1,∆t2,tf≥∆t1+∆t2

J(∆t1,∆t2, tf ) =

∫ tf

t0

‖U(t)‖dt (9)
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Figure 8 illustrates the solution trajectory, the arrows representing the di-

rection and relative magnitude of the optimal OLG propulsive acceleration.

Figure 8: Forced translation landing: the black line represents the trajectory and the coloured

arrows the optimised propulsive acceleration profile.

The illustrated forced translation landing has a duration of less than 1 hour275

and requires a propulsive ∆V of about 16.5 m/s, which is significantly higher

than the previous manifold-based trajectory. In addition, the hovering station-

keeping point needs to be maintained prior to landing, at an average7 cost of

about 50 m/s per Phobos orbital period or 6.9 m/s per hour.

Figure 9 shows again the velocity profile, and the optimised command profile.280

The reached solution is such that the trapezoidal velocity profile degenerates into

a triangular profile with ∆t1 +∆t2 = tf (active inequality constraint), as shown

by the left figure.

4. Closed-Loop Guidance implementation

In the previous section, open-loop command profiles (referred to as Open-285

Loop Guidance OLG) have been optimised and simulated in the dynamics en-

vironment described by the MAG model. As expected, when injected in an

7The instantaneous SK cost depends on Phobos true anomaly, and the spacecraft’s altitude,

latitude and longitude.
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Figure 9: Forced translation landing velocity (left) and command (right): the optimisation

leads to a triangular velocity profile without any coast arc.

instance of the DKE model to simulate the actual dynamics experienced by the

spacecraft, the OLG command profile generally steers the spacecraft on a trajec-

tory that rapidly diverges from the nominal trajectory. Figure 10 illustrates the290

observed behaviour when simulating the manifold-based OLG in a Monte-Carlo

campaign of 200 DKE runs: as summarised in table 2, the Gravity Harmonics

of Phobos are drawn from a Gaussian distribution with mean values identical

as those of the MAG model (see figure 3), and standard deviations equal to the

absolute value of the corresponding coefficients. As evidenced by the left figure,295

some trajectories will actually crash on Phobos and some others will never reach

its surface (single DKE realisation example on the right, with OLG command

profile), demonstrating the importance of the considered perturbations on the

dynamics, and calling for the implementation of robust closed-loop guidance

strategies.300

4.1. Guidance problem

The role of the guidance function is to compute, from the estimation of

the current state of the spacecraft, the command and associated trajectory to

follow so as to meet the mission’s objectives, while respecting a given set of

constraints and generally optimising a performance index. This function can305

be implemented either on the ground or directly in the on-board software, with

a variety of possible intermediate architectures and subsequent impacts on the
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Figure 10: DKE simulations: the left figure shows the possible trajectories for various instances

of the DKE (Monte-Carlo), the right figure illustrates the example of one that escapes Phobos

when using the manifold landing trajectory OLG command profile (coloured arrows, derived

using the MAG model) in one realisation of the DKE.

overall concept of operations. In the context of the present study, the objective

is to maximise the autonomy of the spacecraft for the descent and landing phase:

given the possibly long communication delays8 as compared to the landing phase310

duration, the spacecraft should be able to complete its mission autonomously

as soon as the descent is initiated.

Ideally, the guidance optimisation problem solved in real-time should be

the same optimisation problem as the one considered for the mission analysis

on the ground before the mission for the derivation of reference trajectories,315

only replacing the initial state by the actual (estimated) state at the current

guidance step. Such an approach, sometimes called fully explicit Closed-Loop

Guidance (CLG), is illustrated by the block-diagram 11 below: in this case the

pre-computed OLG profile is not used, or only to initialise the optimisation

process. At the extreme opposite, a fully implicit strategy would use directly320

the OLG with no feedback of the estimated state to recalculate the command,

which has been demonstrated to be inapplicable for our problem.

8Depending on the orbital configuration of the planets, round-trip communication times

between the Earth and Mars can take from under 10 minutes up to more than 40 minutes.
9The control allocation and navigation functions are not described in this paper, as they
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Mission Analysis

Problem (P1)

Xref

Uref (OLG)

Guidance

Problem (P1)

U (CLG)

Dynamics (MAG)

Init. Control

Allocation

Dynamics

Dynamics (DKE)

X

Navigation
X̂

Figure 11: Fully explicit Closed-Loop Guidance (CLG) architecture9

In most cases however, the resolution of the full optimisation problem is not

compatible with the on-board computational resources and/or time constraints,

so that the guidance optimisation problem must be simplified. This simplifi-325

cation can arise from the description of the dynamics, the expression of the

constraints, or even the selection of the performance index.

A typical example for a space trajectory guidance strategy is to use a

quadratic performance index, instead of a more natural cost functional that

would be associated with the propellant consumption. Let us consider two opti-330

misation problems (P1) and (P2), characterised by distinct cost functionals JL1

and JL2
, defined respectively as the L1 and L2 norms of the control:

JL1(U) =

∫ tf

t0

‖U(t)‖dt ; JL2(U) =

∫ tf

t0

‖U‖2(t)dt (10)

The appendix provides a simple example of a dynamical system for which

both problems can be solved analytically, minimising respectively JL1 and JL2 ,

and illustrating some characteristic differences between the two corresponding335

types of solutions. For a realistic space trajectory optimisation problem, there

is no such analytical solution, however in general:

• From a mission perspective, L1 is a more appropriate definition of the ac-

tuation cost: it is directly associated with the propulsive ∆V , and there-

fore the propellant consumption. Such problems are generally challenging340

are very system-dependent: respectively on the propulsion system and thruster configuration,

and the sensor suite and estimation algorithms, which are not the object of the study.
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to solve, characterised by non-smooth solutions10, requiring iterative and

highly computationally demanding methods. Reference OLG in the pre-

vious sections have been derived using L1 cost functionals.

• Conversely, quadratic (L2) optimisation problems are generally easier to

solve numerically (smooth solutions) and in case the dynamics is simple,345

analytical solutions may even be found.

As a consequence, quadratic (L2) optimisation problems are generally well

adapted for on-board closed-loop guidance schemes, while minimum propel-

lant consumption L1 optimisation problems are considered for the derivation of

initial reference trajectories, part of the Mission Analysis commanding profile350

derivation calculated on the ground. However, as illustrated by the simple ex-

ample in the appendix, penalties are expected to be incurred from the resolution

by the guidance function of a distinct (easier) optimisation problem.

4.2. Guidance survey for autonomous planetary landing

Closed-loop guidance for autonomous landing has been the focus of several355

studies in the past twenty years. Most state-of-practice techniques provide sim-

ple analytical command laws, derived by considering highly simplified exogenous

conditions, such as constant or time-explicit gravitational acceleration. More-

over, optimality is not always sought or achieved with respect to a quadratic

performance index and no path constraint. Some of these guidance schemes are360

reported in the table 4 and further described in [16].

• The first, known as Proportional Navigation Guidance (PNG), inspired

by the missile interception problem, aims at driving the Line-Of-Sight

(LOS) rate to zero by applying an acceleration perpendicularly to the LOS

direction Λ and proportional to the closing velocity Vc. The coefficient k365

is a tunable parameter known as the effective navigation ratio [17].

10The fact that the solutions are singular does not mean that they are not achievable:

saturated bang-bang like optimal control solutions may actually be more representative of the

physical operating of a spacecraft propulsion system.
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Proportional Navigation Guidance (PNG) U = kVcΛ̇

Augmented PNG (APNG) U = kVcΛ̇− k
2
g
⊥

Biased PNG (BPNG) U = 4VcΛ̇− g + 2Vc
tgo

(Λ− Λf )

Free Terminal Velocity (FTVG) U = 3
t2go

(rf − r)− 3
tgo
v − 3

2
g

Constrained Terminal Velocity (CTVG) U = 6
t2go

(rf − r)− 4
tgo
v − g − 2

tgo
vf

FTVG ZEM-ZEV formulation U = 3
t2go
ZEM

CTVG ZEM-ZEV formulation U = 6
t2go
ZEM − 2

tgo
ZEV

Table 4: Classical and optimal autonomous guidance schemes analytical expressions

• The Augmented PNG (APNG) variant accounts for the contribution of

a constant gravity field, and the Biased PNG (BPNG) constrains the

terminal LOS to Λf [18]. The latter involves the time-to-go tgo = tf − t,

defined as the remaining duration until the end of the manoeuvre.370

• Free (FTVG) and Constrained (CTVG) Terminal Velocity Guidance are

solutions of a quadratic optimal control problem, with no path constraint,

assuming a constant gravity field g [19, 20, 21]. These can be equivalently

formulated in terms of Zero Effort Miss (ZEM) and Zero Effort Velocity

(ZEV), respectively defined as the final errors in position and velocity if

no command was to be applied after the current date:

ZEM(t) = rf − r(tf )|U(τ∈[t,tf ])=0 ; ZEV (t) = vf − v(tf )|U(τ∈[t,tf ])=0

(11)

4.3. Guidance implementation and preliminary results

Among the above guidance schemes, the Constrained Terminal Velocity

Guidance (CTVG) is the most appropriate as it results from an optimal control

problem formulation with a fixed final full state, including the velocity. Its di-

rect implementation in the closed-loop model including the DKE dynamics can375

be performed by taking at each guidance step t: the apparent gravitational ac-

celeration given by the MAG vector field velocity components at the estimated

current state g = fv(X̂, t), and the remaining time until the end of the ref-

erence open-loop trajectory as the time-to-go. Considering perfect navigation
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and actuation as well as a time-continuous closed-loop guidance correction for a380

preliminary assessment, the trajectory meets the landing requirements, reaching

the target at zero velocity with a good accuracy. However, the results exhibit

some significant limitations associated with this direct implementation:

• The impossibility to include some path constraints on the trajectory im-

plies that it is not possible to prevent trajectories that would theoretically385

reach the desired final state with intermediate positions passing below the

surface of Phobos, actually leading to a crash.

• As anticipated in the previous paragraph, the ∆V required to follow the

trajectory is significantly increased as compared to the OLG reference.11

Figure 12 illustrates such an example, starting from the initial conditions of390

the manifold-based trajectory, but following a very different path and crashing

into Phobos. The ∆V is 15.4 m/s, which is more than twice the OLG ∆V .

Figure 12: Crashing trajectory DKE simulation: the direct implementation of the CTVG law

does not consider any path constraint, such as maintaining a positive altitude.

Both limitations can be addressed by an adaptation of the guidance strategy,

11In the CTVG formulation, the final time tf is fixed, so that a one-dimensional optimisation

(line search) of this parameter could be performed as part of the guidance update. However

this would lead to consider again an iterative algorithm that was avoided by using an analytical

solution of a pre-solved problem.
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illustrated by the figure 13. Instead of targeting at each guidance step the final

reference date and state (landing site with zero-velocity), the time-to-go, or395

guidance horizon (between the current date and the target date), can be reduced

to target an intermediary state interpolated on the reference trajectory.

t
g

t
h

∆ X
f

 

 Reference trajectory
Guidance trajectory
Actual trajectory
Guidance steps
Guidance horizons

Figure 13: Waypoint based CTVG schematic principle: the targets are intermediary points

on the reference trajectory.

A parametric analysis of this strategy has been performed for a range of

guidance steps tg and guidance horizons th ≥ tg, still assuming perfect naviga-

tion and actuation to focus on the guidance. The CTVG trajectory illustrated400

earlier then becomes a special case of this generalised waypoint based CTVG

algorithm, with a guidance horizon equal to the full time-to-go until landing

and a continuous guidance correction of the trajectory. The accuracy can be

measured by the 2-norm of a vector defined by the (normalised) error on the

position and velocity at the nominal final time tf .12
405

J(∆rf ,∆vf ) =

∥∥∥∥( ∆rf
∆rtol

,
∆vf
∆vtol

)∥∥∥∥
2

=

√(
∆rf
∆rtol

)2

+

(
∆vf
∆vtol

)2

(12)

A few points on the (tg, th) domain have been selected for further analysis, to

derive some statistics (mean value and standard deviation) for the the propulsive

∆V and final accuracy, drawn from a Monte-Carlo analysis on the DKE model

12While the state errors at time tf and the derived J performance index do indeed measure

the guidance performance as a deviation from the nominal target in state and time, it is not

necessarily representative of actual trajectories, as some will have crashed before tf , and some

others may very well reach the surface of Phobos at a later date.
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realisations, and reported in the tables 5. The normalising values of ∆rtol = 10

m and ∆vtol = 10 cm/s have been used.410

µ[∆V ] (m/s)
tg (s)

10 100 200 400

th (s)

1000 7.34 7.36 7.36 7.66

2000 8.07 8.16 8.23 8.39

3000 9.91 10.1 10.3 10.9

σ[∆V ] (m/s)
tg (s)

10 100 200 400

th (s)

1000 0.96 0.96 0.95 1.10

2000 1.05 1.08 1.12 1.08

3000 1.13 1.17 1.23 1.27

µ[J ] (-)
tg (s)

10 100 200 400

th (s)

1000 0.17 0.55 0.68 4.71

2000 0.15 0.52 0.51 4.63

3000 0.13 0.45 0.53 5.55

σ[J ] (-)
tg (s)

10 100 200 400

th (s)

1000 0.09 0.26 0.57 2.04

2000 0.09 0.39 0.41 2.81

3000 0.09 0.32 0.39 3.71

Table 5: Parametric analysis of the waypoint based CTVG: performance (∆V ) and accuracy

(position and velocity) statistics are derived from a DKE Monte-Carlo campaign for various

values of the guidance frequency and time horizon.

As could be expected, the results show that the guidance performance is

increased for a higher correction frequency (small tg), which in practice will

be limited by the on-board computational time and the delays involved in the

overall closed-loop. Regarding the guidance horizon, shorter times for th > tg

are better for the ∆V , almost asymptotically reaching the reference OLG ∆V ,415

with a lesser impact on the final accuracy, up to a certain limit when the closed-

loop becomes unstable and the trajectories diverge from the reference.

5. Conclusion

This paper presented the work conducted by Airbus Defence and Space and

the University of Bristol on strategies for autonomous landing on small bodies,420

with a focus on the mission analysis, reference trajectory optimisation, and

preliminary closed-loop guidance assessment. The reformulation of the guidance

problem as a tracking-like problem opens the door for a range of control theory

applications. By implementing an inner control loop of a linearised model of

the dynamics in the vicinity of the reference trajectory, as shown schematically425
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by the block-diagram on figure 14, several techniques for the synthesis, tuning

and analysis from modern robust control theory [22, 23, 24] become applicable,

and their application to landing on Phobos have been described in a dedicated

paper [16].

Guidance
+
− Control

Xref Xε +
+

Uref

Uc Control

Allocation

Dynamics

Dynamics (DKE)

X

Navigation

X̂X̂

Inner control loop

Figure 14: Architecture with control inner loop: the reformulation of the guidance problem as

a tracking-like problem opens the door for a wide range of linear control theory applications.

Further selection among of the various architectures and options demon-430

strated to perform properly for an actual Phobos Sample Return mission will

be subject to a more detailed set of requirements for the Guidance, Navigation

and Control subsystem as the project hopefully progresses to an implementation

phase. In particular, the detailed modelling and performance of the navigation,

control allocation and thruster modulation functions as well as other system-435

level constraints could narrow down the range of possible techniques.

In the challenging framework of a landing on Phobos, Libration Point Orbits

have been computed and proposed to be used as natural observation platforms,

while their associated manifolds serve as initial guess for optimising a controlled

landing trajectory towards a selected landing site. Owing to limited on-board re-440

sources, the guidance function considers a simpler optimisation problem, at the

expense of an increased propellant consumption. This can however be mitigated

by making the most of the reference trajectory in a waypoint based adaptation

of a quadratic optimal guidance scheme. Overall, the strategy proved to be

compliant with the surface access requirements, and to cope with highly com-445

plex and uncertain dynamics environments, achieving a significant reduction of

the propellant consumption when compared to more classical approaches.
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Figure 15: Colour composite of Phobos taken by ExoMars TGO in November 2016 (left)

[Credits: ESA/Roscosmos/CaSSIS] and artist’s view of a Phobos Lander (right)
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Appendix A. Notation455

µg Gravity constant = GM

Ug Gravity field scalar potential

r Orbital radius (wrt Phobos)

θ Co-latitude

φ Longitude

Cn,m, Sn,m Cosinus and Sinus Gravity Harmonics coefficients

µ[A] Mean value (of a random variable A)

σ[A] Standard deviation (of a random variable A)

N (µ, σ) Gaussian distribution with mean µ and standard deviation σ

X State vector: position and velocity relative to Phobos BCBF

f(X, t) Dynamics vector field (MAG or DKE)

e Phobos orbit eccentricity

n Phobos orbit mean motion

T Phobos orbital period

ν Phobos true anomaly

r Spacecraft position (Phobos BCBF)

v Spacecraft velocity (Phobos BCBF)

a Spacecraft acceleration (Phobos BCBF)

U Command vector: propulsive acceleration

k Effective navigation ratio (PNG guidance algorithm)

Λ Line-Of-Sight (LOS) vector

Vc Closing velocity (relative to the target)

tgo Time-to-go

ZEM Zero-Effort-Miss

ZEV Zero-Effort-Velocity
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Appendix B. L1 and L2 optimal control double integrator example

In this appendix, the difference between propellant optimal (L1) and energy

optimal (L2) control problems is illustrated on the double integrator archetypal460

example of a normalised mechanical system, with bounded control:

Ẋ = f(X,U) , with


X = [x1, x2]T

U = u ∈ [−umax,+umax]

f(X,U) = [x2, u]T

(B.1)

In this example, x1 is the scalar position of the system, x2 = ẋ1 is the

velocity, and the acceleration ẍ1 is directly equal to the input command u that

drives the system. For a standard rendezvous problem with zero initial (and

final) velocity with fixed terminal time tf , we must have in addition:465

X(t0) = [a, 0]T ; X(tf ) = [b, 0]T (B.2)

We consider two unconstrained optimisation problems (P1) and (P2), char-

acterised by distinct cost functionals JL1
and JL2

, defined respectively as the

L1 and L2 norms of the control function:

(P1) : JL1
(u) =

∫ tf

t0

|u(t)|dt ; (P2) : JL2
(u) =

∫ tf

t0

u2(t)dt (B.3)

The advantage of the simple dynamical system considered is that analytical

solutions can be derived for both optimal control problems, illustrated on the470

figure B.16 for umax = 1, tf = 10, a = 0, b = 10. As evidenced by the table

B.6, controls u∗L1 and u∗L2 are only optimal for their respective problems, the

solution of (P1) (resp. (P2)) minimising the cost functional JL1
(resp. JL2

).

Problem Optimal control Functional JL1
Functional JL2

(P1) u∗L1 2.25 2.25

(P2) u∗L2 3.00 1.20

Table B.6: L1 and L2 costs of (P1) and (P2) solutions
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Figure B.16: Optimal position x1∗, velocity x2∗ and command u∗ profiles for problems (P1)

and (P2)

This example illustrates some fundamental differences between L1 and L2

categories of optimal control problems, with a smooth solution for the quadratic475

problem, and a discontinuous bang-bang solution for the L1 problem: to the

limit where umax → ∞ (unbounded control), L1 optimal control would tend

to a couple of symmetric Dirac distributions at t0 and tf , corresponding to the

model of impulsive (instantaneous) velocity increments, and asymptotic cost

JL1
= 2(b− a)/tf = 2.00.480
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[13] J. M. Mondelo González, G. Gómez, The dynamics around the collinear

equilibrium points of the rtbp.515

[14] E. Kolemen, N. Kasdin, P. Gurfil, Multiple poincare sections method for

finding the quasiperiodic orbits of the restricted three body problem., Ce-

lestial Mechanics and Dynamical Astronomy 112 (1) (2012) 47 – 74.

30

http://dx.doi.org/10.1029/GL016i008p00859


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[15] R. H. Byrd, M. E. Hribar, J. Nocedal, An interior point algorithm for large-

scale nonlinear programming, SIAM Journal on Optimization 9 (4) (1999)520

877900. doi:10.1137/s1052623497325107.

[16] P. Simplicio, A. Marcos, E. Joffre, M. Zamaro, N. Silva, Synthesis and

analysis of robust control compensators for space descent and landing, In-

ternational Journal of Robust and Nonlinear Control (May 2018). doi:

10.1002/rnc.4109.525

[17] P. Zarchan, Tactical and Strategic Missile Guidance Sixth Edition., Amer-

ican Institute of Aeronautics & Astronautics, 2012.

[18] K. Byung Soo, L. Jang Gyu, H. Hyung Seok, Biased png law for impact

with angular constraint., IEEE Transactions on Aerospace and Electronic

Systems 34 (1) (1998) 277 – 288.530

[19] M. Hawkins, Y. Guo, B. Wie, Zem/zev feedback guidance application to

fuel-efficient orbital maneuvers around an irregular-shaped asteroid., in:

Papers - American Institute of Aeronautics and Astronautics, 7th Edition,

Vol. 7 of AIAA guidance, navigation, and control conference, 2012, pp.

5745 – 5768.535

[20] G. Yanning, M. Hawkins, W. Bong, Applications of generalized zero-effort-

miss/zero-effort-velocity feedback guidance algorithm., Journal of Guid-

ance, Control, and Dynamics 36 (3) (2013) 810 – 820.

[21] M. Hawkins, Y. Guo, B. Wie, Guidance algorithms for asteroid intercept

missions with precision targeting requirements (aas 11-531)., Advances in540

the Astronautical Sciences 142 (2012) 1951 – 1970.

[22] A. Falcoz, C. Pittet, S. Bennani, A. Guignard, C. Bayart, B. Frapard, Sys-

tematic design methods of robust and structured controllers for satellites.,

CEAS Space Journal 7 (3) (2015) 319 – 334.

[23] J. Doyle, A. Packard, K. Zhou, Review of lfts, lmis, and mu., Dept. of545

Electr. Eng., Caltech, Pasadena, CA, USA, 1991.

31

http://dx.doi.org/10.1137/s1052623497325107
http://dx.doi.org/10.1002/rnc.4109
http://dx.doi.org/10.1002/rnc.4109
http://dx.doi.org/10.1002/rnc.4109


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[24] A. Marcos, S. Bennani, Lpv modeling, analysis and design in space systems:

Rationale, objectives and limitations., in: Papers - American Institute of

Aeronautics and Astronautics, 1st Edition, Vol. 1 of Guidance, navigation

and control, 2009, pp. 286 – 308.550

32



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

• Description of the dynamics environment in the vicinity of the Martian Moon Phobos 

• Derivation of orbits and their manifolds as ballistic initial guesses for landing 

• Optimisation of powered landing open-loop reference trajectories 

• Survey and implementation of closed-loop guidance strategies 

• Monte-Carlo campaign for performance assessment in perturbed environment 
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