

Lyon, C., Medina Villar, S., Sittel, I., Wasmuth, A., Galan, C., & George, S. (2017). Inhibition of smooth muscle cell proliferation and intimal thickening with small peptide mimetics of soluble N-cadherin. In *85th European Atherosclerosis Society Congress: Congress Abstracts Presentations* (pp. e64-e65). [SAG096] (Atherosclerosis; Vol. 263, No. Suppl C). European Atherosclerosis Society/International Atherosclerosis Society. https://doi.org/10.1016/j.atherosclerosis.2017.06.217

Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.atherosclerosis.2017.06.217

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0021915017304665 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

INHIBITION OF SMOOTH MUSCLE CELL PROLIFERATION AND INTIMAL THICKENING WITH SMALL PEPTIDE MIMETICS OF SOLUBLE NCADHERIN

Cressida Lyon, Sandra Medina-Villar, Imke Sittel, Alexandra Wasmuth, Carmen Galan, Sarah George.

University of Bristol, Bristol, United Kingdom

Aim: We investigated whether a small peptide sequence from soluble Ncadherin (SNC) modulated intimal thickening by changing vascular smooth muscle cell (VSMC),fibroblast and endothelial cell (EC) behaviour. Restenosis of vein grafts is a significant problem resulting in failure in 30-50% of patients. Reduction of VSMC proliferation, without preventing re-endothelialisation is desirable. SNC reduced ex vivo intimal thickening and increased endothelial coverage. We wish to produce a smaller therapeutic peptide. Methods: Cells: Human saphenous vein VSMC and fibroblasts; HUVECs. Proliferation: EdU incorporation. Migration: scratch wound assay (distance migrated, mm). Apoptosis: cleaved caspase-3 immunocytochemistry. Human saphenous vein organ culture used as ex vivo model of intimal thickening, analysed by elastin van Gieson staining (intimal size), EdU (proliferation) and Q-Bend-10 (endothelial coverage). Results: The peptide significantly reduced VSMC proliferation (14.4±4.8% vs 3.58±2.2%, n¼4, p<0.05). Conclusions: A peptide mimetic of SNC is an attractive therapeutic for restenosis as it attenuates VSMC proliferation, without detrimental effects on re-endothelialisation. A peptide is inexpensive to produce and easy to deliver.

Atherosclerosis 263 (2017) e29ee110, SAG096.