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Summary 

Although plamsa proteins play important roles in biological processes and are the direct targets of many 

drugs, there is limited knowledge of the genetic factors determining inter-individual variation in plasma 

protein levels. Here we characterize the genetic architecture of the human plasma proteome in healthy blood 

donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a 4-fold 

increase on existing knowledge, including trans associations for 1,104 proteins. To understand 

consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic 

variation with biological pathway, disease, and drug databases. We show overlap of pQTL with eQTL, as 

well as with disease-associated loci, and show support for  causal roles for protein biomarkers in disease 

using Mendelian randomisation analysis. By linking genetic factors to disease via specific proteins, our 

analyses suggests potential therapeutic targets, opportunities for matching existing drugs with new disease 

indications, and potential safety concerns for drugs under development.  



 

Plasma proteins play key roles in various biological processes including signalling, transport, growth, repair, 

and defence against infection. They are frequently dysregulated in disease and are important drug targets. 

Identifying factors that determine inter-individual protein variability should, therefore, furnish biological 

and medical insights1. Despite evidence of the heritability of plasma protein abundance2, however, 

systematic assessment of how genetic variation influences plasma protein levels has been limited3-5. Studies 

have examined intracellular ‘protein quantitative trait loci’ (pQTLs)6,7, but they have tended to be small and 

involved cell lines rather than primary human tissues. 

 

Here we create and interrogate a genetic atlas of the human plasma proteome, using an expanded version of 

an aptamer-based multiplex protein assay (SOMAscan)8 to quantify 3,622 plasma proteins in 3,301 healthy 

participants from the INTERVAL study, a genomic bioresource of 50,000 whole blood donors from 25 

centres across England recruited into a randomised trial of blood donation frequency9,10. We identify 1,927 

genotype-protein associations, including trans-associated loci for 1,104 proteins, providing new 

understanding of the genetic control of protein regulation. 88 pQTLs overlap with disease susceptibility loci, 

suggesting the molecular effects of disease-associated variants. Using the principle of Mendelian 

randomisation11, we find evidence to support causal roles in disease for several protein pathways, and cross-

reference our data with disease and drug databases to highlight potential therapeutic targets. 

 

RESULTS 

Genetic architecture of the plasma proteome 

We performed genome-wide testing of 10.6 million imputed autosomal variants against levels of 2,994 

plasma proteins in 3,301 European-ancestry individuals (Methods, Extended Data Figure 1). We 

demonstrated robustness of protein measurements in several ways (Supplementary Note), including: highly 

consistent measurements in replicate samples; temporal consistency of protein levels within individuals over 

two years (Extended Data Figure 2b); replication of known associations with non-genetic factors 

(Supplementary Tables 1-2). To assess potential off-target cross-reactivity, we tested 920 aptamers 

(“SOMAmers”) for detection of proteins with ≥40% sequence homology to the target protein (Methods). 



 

Although 126 (14%) SOMAmers showed comparable binding with a homologous protein (Supplementary 

Table 3), nearly half of these were binding to alternative forms of the same protein. 

 

We found 1,927 significant (p<1.5x10-11) associations between 1,478 proteins and 764 genomic regions 

(Figure 1a, Supplementary Table 4, Supplementary Video 1), with 89% of pQTLs previously unreported. Of 

the 764 associated regions, 502 (66%) had local-acting (‘cis’) associations only, 228 (30%) trans only, and 

34 (4%) both cis and trans (Supplementary Note Table 1). 95% and 87% of cis pQTL variants were located 

within 200Kb and 100Kb, respectively, of the relevant gene’s canonical transcription start site (TSS) (Figure 

1b), and 44% were within the gene itself. The p-values for cis associations increased with distance from the 

TSS, mirroring findings for expression QTLs (eQTLs)12. Of proteins with a significant pQTL, 88% had 

either cis (n=374) or trans (n=925) associations only, while 12% (n=179) had both (Supplementary Note 

Table 1). The majority of significantly associated proteins (75%; n=1,113) had a single pQTL, while 20% 

had two and 5% had >2 (Figure 1c). To detect multiple independent signals at the same locus we used 

stepwise conditional analysis, identifying 2,658 conditionally significant associations (Supplementary Table 

5). Of the 1,927 locus-protein associations, 414 (21%) had multiple conditionally significant signals (Figure 

1d), of which 255 were cis. 

 

We tested replication of 163 pQTLs in 4,998 individuals using an alternative protein assay 

(Olink, Methods)13. Effect-size estimates were strongly correlated between the SOMAscan and Olink 

platforms (r=0.83; Extended Data Figure 2c). 106/163 (65% overall; 81% cis, 52% trans) pQTLs replicated 

after Bonferroni correction (Supplementary Tables 4,6). The lower replication rate of trans signals may 

reflect various factors, including differences between protein assays (e.g., detection of free versus 

complexed proteins) and the higher ‘biological prior’ for cis associations. 

 

Of 1,927 pQTLs, 549 (28.5%) were cis-acting (Supplementary Table 4). Genetic variants that change 

protein structure may result in apparent cis pQTLs due to altered aptamer-binding rather than true 

quantitative differences in protein levels. We found evidence against such artefactual associations for 371 



 

(67.6%) cis pQTLs (Methods, Supplementary Tables 4, 7-8). Results were materially unchanged when we 

repeated downstream analyses excluding pQTLs without evidence against binding effects. 

 

The median variation in protein levels explained by pQTLs was 5.8% (interquartile range: 2.6-

12.4%, Figure 1e). For 193 proteins, genetic variants explained >20% of the variation. There was a strong 

inverse relationship between effect-size and minor allele frequency (MAF) (Figure 1f), consistent with 

previous genome-wide association studies (GWAS) of quantitative traits7,10,14. We found 23 and 208 

associations with rare (MAF <1%) variants and low-frequency (MAF 1-5%) variants, respectively 

(Supplementary Table 4). Of the 36 strongest associations (per-allele effect-size >1.5 standard deviations), 

29 were with rare or low-frequency variants. 

 

Both cis and trans pQTLs were strongly enriched for missense variants (p<0.0001) and for location in 3’ 

untranslated (p=0.0025) or splice sites (p=0.0004) (Figure 1g, Extended Data Figure 3a). We found ≥3-fold 

enrichment (p<5x10-5) of pQTLs at features indicative of transcriptional activation in blood cells and at 

hepatocyte regulatory elements, consistent with the liver’s role in protein synthesis and secretion 

(Methods, Extended Data Figure 4, Supplementary Table 9). 

 

Overlap of eQTLs and pQTLs 

To help evaluate the extent to which genetic associations with plasma protein levels are driven by effects at 

the transcription level rather than other mechanisms (e.g., altered protein clearance or secretion), we cross-

referenced our cis pQTLs with previous eQTL studies (Supplementary Table 10), initially defining overlap 

between an eQTL and pQTL as high linkage disequilibrium (LD) (r2≥0.8) between the lead pQTL and 

eQTL variants. 40% (n=224) of cis pQTLs were eQTLs for the same gene in ≥1 tissue or cell-type 

(Supplementary Table 8). The greatest overlaps were in whole blood (n=117), liver (n=70) and 

lymphoblastoid cell-lines (LCLs) (n=52), consistent with biological expectation, but also likely driven by 

the larger eQTL study sample sizes for these cell-types. To examine whether the same causal variant was 

likely to underlie overlapping eQTLs and pQTLs, we performed colocalisation testing (Methods). Of 228 



 

non-HLA pQTLs for which testing was possible, colocalisation in ≥1 tissue or cell-type was highly likely 

(posterior probability[PP]>0.8) in 179 (78.5%) and the most likely explanation (PP>0.5) in 197 (86.4%) 

(Supplementary Table 8). Cis pQTLs were significantly enriched for eQTLs for the corresponding gene 

(p<0.0001) (Methods, Supplementary Table 11). To address the converse (i.e., to what extent are eQTLs 

also pQTLs), we selected well-powered eQTL studies in relevant tissues (whole blood, LCLs, liver and 

monocytes15-18). Of the strongest cis eQTLs (p<1.5x10-11) in whole blood, LCLs, liver and monocytes, 

12.2%, 21.3%, 14.8% and 14.7%, respectively, were plasma cis pQTLs . 

 

Comparisons between eQTL and pQTL studies have inherent limitations, including differences in the 

tissues, sample sizes and technological platforms used. Moreover, plasma protein levels may not reflect 

levels within tissues or cells. Nevertheless, our data suggest that genetic effects on plasma protein 

abundance are often, but not exclusively, driven by regulation of mRNA. Cis pQTLs without corresponding 

cis eQTLs may reflect genetic effects on processes other than transcription, including protein degradation, 

binding, secretion, or clearance from circulation. 

 

Trans pQTLs identify pathways to disease 

Of the 764 protein-associated regions, 262 had trans associations with 1,104 proteins (Supplementary Table 

4, 12). There was no enrichment of cross-reactivity in SOMAmers with a trans pQTL versus those without 

(Supplementary Note). We replicated known trans associations including TMPRSS6 with transferrin 

receptor protein 119 and SORT1 with granulins20 and identified several novel biologically plausible trans 

associations (Supplementary Table 13), including known or presumed ligand:receptor pairs (e.g., the CD320 

locus, encoding the transcobalamin receptor, was associated with transcobalamin-2 levels). 

 

Most (82%) trans loci were associated with <4 proteins, but 12 ‘hotspot’ regions were associated with >20 

(Figure 1a, Extended Data Figure 3b), including well-known pleiotropic loci (e.g., ABO, CFH, APOE, 

KLKB1) and loci associated with many correlated proteins (e.g., the ZFPM2 locus encoding the transcription 

factor FOG2). Similar pleiotropy at these loci has been seen in other plasma pQTL studies3-5, albeit with 



 

fewer proteins due to limited assay breadth. rs28929474:T in SERPINA1 was associated with 13 proteins at 

p<1.5x10-11 and a further six at p<5x10-8 (Figure 2). This missense variant (the ‘Z-allele’, p.Glu366Lys) 

results in defective secretion and intracellular accumulation of alpha1-antitrypsin (A1AT), an anti-protease. 

ZZ homozygotes have deficiency of circulating A1AT and increased risk of emphysema, liver cirrhosis and 

vasculitis. The ‘protease-antiprotease’ hypothesis posits that these clinical manifestations result from 

unchecked protease activity. However, our discovery of multiple trans-associated proteins at this locus 

highlights additional pathways potentially relevant to pathogenesis, a hypothesis supported by accumulating 

data21. 

 

GWAS have identified thousands of loci associated with common diseases, but the mechanisms by which 

most variants influence disease susceptibility await discovery. To identify intermediate links between 

genotype and disease, we overlapped pQTLs with disease-associated variants from GWAS. 88 of our 

sentinel pQTL variants were in high LD (r2≥0.8) with sentinel disease-associated variants (Supplementary 

Table 14), including 30 with cis associations, 54 with trans, and 4 with both. Since some genetic loci are 

associated with multiple diseases, these 88 genetic loci represent 253 distinct genotype-disease associations. 

Overlap of a pQTL and a disease association signal does not necessarily imply that the same genetic variant 

underlies both traits, since there may be distinct causal variants for each trait that are in LD. We therefore 

performed colocalisation testing (Methods). Of 108 non-MHC locus-disease associations for which testing 

was possible, colocalisation was highly likely (PP>0.8) for 96 (88.9%), and the most likely explanation 

(PP>0.5) for 106 (98.1%) (Supplementary Table 14).  

 

Trans pQTLs that overlap with disease associations can highlight previously unsuspected candidate proteins 

through which genetic loci may influence disease risk. To help identify such candidates, we applied the 

ProGeM framework22 (Methods, Supplementary Table 12, Extended Data Figure 5). We show that an 

inflammatory bowel disease (IBD) risk allele23 (rs3197999:A, missense p.Arg703Cys) in MST1 on 

chromosome 3, that decreases plasma MST1 levels24, is a trans pQTL for eight additional proteins 

(Supplementary Table 4, Figure 3). Notably, genes that encode three of these proteins (PRDM1, FASLG, 



 

and DOCK9) each lie within 500kb of IBD GWAS loci where the causal gene is ambiguous25. For instance, 

the IBD-associated variant rs6911490 lies on chromosome 6 in the intergenic region between PRDM1 

(encoding BLIMP1, a master regulator of immune cell differentiation) and ATG5 (involved in autophagy) 

(Figure 3c). Neither fine-mapping nor eQTL colocalisation analyses have unequivocally resolved the causal 

gene at this locus25; both PRDM1 and ATG5 are plausible candidates. Our data provide support for PRDM1.  

 

Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) is an autoimmune disease characterised 

by vascular inflammation and autoantibodies to the neutrophil proteases proteinase-3 (PR3) or 

myeloperoxidase. GWAS reveal distinct genetic signals according to antibody specificity26, with variants 

near PRTN3 (encoding PR3) and at the Z-allele of SERPINA1 (encoding alpha1-antitrypsin, an inhibitor of 

PR3) associated specifically with PR3-antibody positive AAV. The SOMAscan assay has two SOMAmers 

targeting PR3; we identified a cis pQTL signal immediately upstream of PRTN3 for both, and replicated it 

with the Olink assay (Supplementary Table 4, Figures 4a-b). Conditional analysis revealed multiple 

independently associated variants (Supplementary Table 5), one of which (rs7254911) was in high LD with 

the PR3+ vasculitis tag SNPs (Supplementary Note). We show that the vasculitis risk allele at PRTN3 is 

associated with higher plasma levels of PR3 (Supplementary Note Table 4). 

 

For one PR3 SOMAmer, we also found a trans pQTL at SERPINA1, with the Z-allele associating with lower 

plasma PR3 (Figure 4a). To understand the SOMAmer-specific nature of this signal, we assayed the relative 

affinity of these SOMAmers for the free and complexed states of PR3 and A1AT (which binds and inhibits 

proteases including PR3). We found that the SOMAmer showing cis and trans associations predominantly 

measures the PR3:A1AT complex rather than free PR3, whereas the SOMAmer with only cis association 

measures both the free and complexed forms. Importantly, neither SOMAmer bound free A1AT, 

demonstrating that the SERPINA1 pQTL did not reflect non-specific cross-reactivity (Supplementary Note).  

 

These data show that the vasculitis risk allele at PRTN3 increases total PR3 plasma levels, consistent with its 

effect on PRTN3 mRNA abundance in whole blood in GTEx data27. The SERPINA1 Z-allele results in a 



 

reduced proportion of PR3 bound to A1AT. We thus demonstrate how altered availability of PR3, conferred 

by two independent genetic mechanisms, is a key susceptibility factor for breaking immune tolerance to PR3 

and the development of PR3+ vasculitis (Figure 4c).  

 

Causal evaluation of candidate proteins in disease 

Association of plasma protein levels with disease risk does not necessarily imply causation. To help 

establish causality, we used Mendelian randomisation (MR) analysis11 (Extended Data Figure 6). The 

concept is that if a genetic variant that specifically influences levels of a protein is also associated with 

disease risk, then this provides evidence of the protein’s causal role. For example, serum levels of PSP-94 

(MSMB) are lower in patients with prostate cancer28, but it is debated whether this association is correlative 

or causal. We identified a cis pQTL associated with lower PSP-94 plasma levels that overlaps with the 

prostate cancer susceptibility variant rs1099399429, supporting a protective role for PSP-94 in prostate 

cancer (Supplementary Table 14). 

 

Next, we leveraged multi-variant MR analysis methods to distinguish causal proteins among multiple 

plausible candidates, exemplified by the IL1RL1-IL18R1 locus, which is associated with multiple immune-

mediated diseases including atopic dermatitis30. We identified four proteins that each had cis pQTLs at this 

locus (Supplementary Table 4), and created a genetic score for each protein (Methods). Initial ‘one-protein-

at-a-time’ analysis identified associations of the scores for IL18R1 (p=9.3x10-72) and IL1RL1 (p=5.7x10-27) 

with atopic dermatitis risk (Figure 5a), and a weak association for IL1RL2 (p=0.013). We then mutually 

adjusted these associations for one another to account for the effects of the variants on multiple proteins. 

While the association of IL18R1 remained significant (p=1.5x10-28), the association of IL1RL1 (p=0.01) 

was attenuated. In contrast, the association of IL1RL2 (p=1.1x10-69) became much stronger, suggesting that 

IL1RL2 and IL18R1 underlie atopic dermatitis risk at this locus. 

 

MMP-12 plays a key role in lung tissue damage, and MMP-12 inhibitors are being tested for chronic 

obstructive pulmonary disease31. We created a multi-allelic genetic score that explains 14% of the variation 



 

in plasma MMP-12 levels (Methods). Observational studies reveal an association of higher levels of plasma 

MMP-12 with recurrent cardiovascular events32, stimulating interest in MMP-12 inhibitors for 

cardiovascular disease. In contrast, we found that genetic predisposition to higher MMP-12 levels is 

associated with decreased coronary disease risk (p=2.8x10-13) (Figure 5b) and decreased large artery 

atherosclerotic stroke risk33. Understanding the discordance between the observational epidemiology and the 

genetic risk score will be important given the therapeutic interest in this target. 

 

Drug target prioritisation 

Drugs directed at therapeutic targets implicated by human genetic data have a greater likelihood of 

success34. Of the proteins for which we identified a pQTL, 244 (17%) are established drug targets in the 

Informa Pharmaprojects database (Supplementary Table 15). 31 pQTLs for drug target proteins were highly 

likely to colocalise (posterior probability>0.8) with a GWAS disease locus, including some that are targets 

of approved drugs such as tocilizumab (anti-IL6R) and ustekinumab (anti-IL12/23) (Supplementary Table 

16a).  

 

To identify additional indications for existing drugs, we investigated disease associations of pQTLs for 

proteins already targeted by licensed drugs. Our results suggest potential drug ‘re-purposing’ opportunities. 

For example, we identified a cis pQTL for RANK (encoded by TNFRSF11A) at rs884205, a variant  

associated with Paget’s disease35, a condition characterised by excessive bone turnover, deformity and 

fracture (Supplementary Table 16b). Standard Paget’s disease treatment is osteoclast inhibition with 

bisphosphonates, originally developed as anti-osteoporotic drugs. Denosumab, another anti-osteoporosis 

drug, is a monoclonal antibody targeting RANKL, the ligand for RANK. Our data suggest denosumab may 

be an alternative for Paget’s disease when bisphosphonates are contra-indicated, a hypothesis supported by 

clinical case reports36. 

 

Next we evaluated targets of drugs currently under development. Drugs targeting GP1BA, the receptor for 

von Willebrand factor, are in pre-clinical development as anti-thrombotic agents and in phase 2 trials for 



 

thrombotic thrombocytopenic purpura. We found a cis pQTL associated with both higher GP1BA 

abundance and higher platelet count, suggesting a link between GP1BA and platelet count (Supplementary 

Table 16). Furthermore, we identified a trans pQTL for GP1BA at the SH2B3/BRAP locus, which 

colocalised with associations with platelet count10, myocardial infarction and stroke (Supplementary Table 

16b). The risk allele for cardiovascular disease increases both plasma GP1BA and platelet count, suggesting 

GP1BA influences vascular risk via platelets. Collectively, these results support targeting GP1BA in 

conditions characterised by platelet aggregation such as arterial thrombosis. More generally, our data 

provide a substrate for generating hypotheses about potential therapeutic targets through linking genetic 

factors to disease via specific proteins. 

 

DISCUSSION 

This study elucidates the genetic control of the human plasma proteome and uncovers intermediate 

molecular pathways connecting the genome to disease endpoints. We applied our discoveries to evaluate 

causal roles for proteins in human disease using the principle of Mendelian randomisation (MR). Proteins 

provide an ideal paradigm for MR analysis because they are under proximal genetic control. However, 

application of protein-based MR has been constrained by limited availability of suitable genetic instruments, 

a bottleneck remedied by our data. Our study provides a resource for studying complex traits and an 

example for application of novel bioassay technologies to population biobanks.  
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FIGURE LEGENDS 

Figure 1. The genetic architecture of plasma protein levels. 
n=3,301 participants. (a) Genomic location of pQTLs. Red=cis, blue=trans. X- and Y-axes indicate the 
positions of the sentinel variant and the gene encoding the associated protein, respectively. Highly 
pleiotropic genomic regions are annotated. (b) Significance of cis associations (linear regression) versus 
distance from TSS. (c) Number of significantly associated loci per protein. (d) Number of conditionally 
significant signals within each associated locus. (e) Histogram of variance explained by conditionally 
significant variants. (f) Effect-size versus MAF. (g) Distributions of the predicted functional annotation class 
of sentinel pQTL variants versus null sets of variants from permutation. Bar height represents the mean 
proportion of variants within each class and error bars reflect one standard deviation from the mean. 
*=significant enrichment (permutation test, Bonferroni-corrected threshold, p<0.005). 
 
Figure 2. Missense variant rs28929474 in SERPINA1 is a trans pQTL hotspot. 
Numbers (outermost) indicate chromosomes. Lines link the genomic location of rs28929474 with genes 
encoding significantly associated proteins. Associations with and without asterixes indicate significance at 
p<5x10-8 and p<1.5x10-11, respectively. Line thickness is proportional to effect-size (red=positive, blue 
=negative). n=3,301 participants. 
 
Figure 3. Trans pQTL for BLIMP1 at an inflammatory bowel disease (IBD) associated missense 
variant (rs3197999:A) in MST1. 
(a) rs3197999:A is associated with multiple proteins. Lines link rs3197999 and the genes encoding 
significantly associated proteins. Line thickness is proportional to effect-size. Line thickness is proportional 
to effect-size of the IBD risk allele (red=positive, blue=negative). n=3,301 participants. *=genes in IBD 
GWAS loci. (b) Regional association plots at MST1, showing IBD association (top) and trans pQTLs for 
BLIMP1, DOCK9 and FASLG. Colour key indicates r2 with rs3197999. (c) Regional association plot of the 
IBD susceptibility locus at PRDM1, which encodes BLIMP1. IBD association data are for European 
participants from Liu et al., 2015. 
 
Figure 4. Proteinase-3, SERPINA1, and vasculitis. 
(a) Manhattan plots for plasma PR3 measured with two SOMAmers and the Olink assay.  
(b) PRTN3 regional association plots. Colour key indicates r2 with sentinel variant rs10425544. ‘Vasculitis 
GWAS’: previously reported vasculitis-associated variants (see Supplementary Note). EVGC=rs62132295 
(from European Vasculitis Genetics Consortium39); VCRCi=rs138303849 and VCRCt=rs62132293, most 
significant imputed and genotyped variants, respectively, from Vasculitis Clinical Research Consortium69. 
‘Independent pQTLs’: conditionally independent PR3 pQTL variants (black lettering=lead variant for both 
SOMAmers; purple=conditionally independent variant for SOMAmer PRTN3.3514.49.2; green for 
PRTN3.13720.95.3). 
(c) Proposed mechanisms by which PRTN3 and SERPINA1 impact PR3 levels and thus vasculitis risk. 
Left:individuals without either the PRTN3 or SERPINA1 vasculitis risk alleles. Middle:SERPINA1 Z-allele 
carriers have lower circulating A1AT, resulting in higher free plasma PR3. Right:cis-acting variant at the 
PRTN3 locus results in higher total plasma PR3. Increases in either free or total PR3 predispose to loss of 
immune tolerance. 
 
Figure 5. Evaluation of causal role of proteins in disease. 
n=3,301 participants. (a) MR estimates with 95% CIs (instrumental variable analysis) for proteins encoded 
in the IL1RL1-IL18R1 locus and atopic dermatitis (AD) risk. Univariable MR not possible for IL1R1 and 
IL18RAP (no significant pQTLs to select as “genetic instruments”). (b) MMP-12 levels and risk of coronary 
heart disease (CHD). Above:MR estimates with 95% CIs. Below:estimated effect-sizes (with 95% CIs) on 
plasma MMP-12 (from linear regression) and CHD risk (from logistic regression) for each variant used in 
the genetic score. 
 
 



 

ONLINE METHODS 

Study participants 

The INTERVAL study comprised about 50,000 participants nested within a randomised trial of varying 

blood donation intervals9. Between mid-2012 and mid-2014, whole-blood donors aged 18 years and older 

were recruited at 25 centres of England’s National Health Service Blood and Transplant (NHSBT). All 

participants gave informed consent before joining the study and the National Research Ethics Service 

approved (11/EE/0538) this study. Participants completed an online questionnaire including questions about 

demographic characteristics (e.g., age, sex, ethnic group), anthropometry (height, weight), lifestyle (e.g., 

alcohol and tobacco consumption) and diet. Participants were generally in good health because blood 

donation criteria exclude people with a history of major diseases (such as myocardial infarction, stroke, 

cancer, HIV, and hepatitis B or C) and those who have had recent illness or infection. For protein assays, we 

randomly selected two non-overlapping subcohorts of 2,731 and 831 participants from INTERVAL. After 

genetic QC, 3,301 participants (2,481 and 820 in the two subcohorts) remained for analysis (Supplementary 

Table 17). 

 

Plasma sample preparation 

Sample collection procedures for INTERVAL have been described previously37. In brief, blood samples for 

research purposes were collected in 6ml EDTA tubes using standard venepuncture protocols. The tubes were 

inverted three times and transferred at room temperature to UK Biocentre (Stockport, UK) for processing. 

Plasma was extracted into two 0.8ml plasma aliquots by centrifugation and subsequently stored at -80°C 

prior to use. 

 

Protein measurements 

We used a multiplexed, aptamer-based approach (SOMAscan assay) to measure the relative concentrations 

of 3,622 plasma proteins/protein complexes assayed using 4,034 modified aptamers (“SOMAmer reagents”, 

hereafter referred to as ‘SOMAmers’; Supplementary Table 18). The assay extends the lower limit of 



 

detectable protein abundance afforded by conventional approaches (e.g., immunoassays), measuring both 

extracellular and intracellular proteins (including soluble domains of membrane-associated proteins), with a 

bias towards proteins likely to be found in the human secretome (Extended Data Figure 7a)8,38. The proteins 

cover a wide range of molecular functions (Extended Data Figure 7b). The selection of proteins on the 

platform reflects both the availability of purified protein targets and a focus on proteins suspected to be 

involved in pathophysiology of human disease. 

 

Aliquots of 150 µl of plasma were sent on dry ice to SomaLogic Inc. (Boulder, Colorado, US) for protein 

measurement. Assay details have been previously described38-40 and a technical white paper with further 

information can be found at the manufacturer’s website (http://somalogic.com/wp-

content/uploads/2017/06/SSM-002-Technical-White-Paper_010916_LSM1.pdf). In brief, modified single-

stranded DNA SOMAmers are used to bind to specific protein targets that are then quantified using a DNA 

microarray. Protein concentrations are quantified as relative fluorescent units. 

 

Quality control (QC) was performed at the sample and SOMAmer level using control aptamers, as well as 

calibrator samples. At the sample level, hybridisation controls on the microarray were used to correct for 

systematic variability in hybridisation, while the median signal over all features assigned to one of three 

dilution sets (40%, 1% and 0.005%) was used to correct for within-run technical variability. The resulting 

hybridisation scale factors and median scale factors were used to normalise data across samples within a run. 

The acceptance criteria for these values are between 0.4 and 2.5 based on historical runs. SOMAmer-level 

QC made use of replicate calibrator samples using the same study matrix (plasma) to correct for between-

run variability. The acceptance criterion for each SOMAmer was that the calibration scale factor be less than 

0.4 from the median for each of the plates run. In addition, at the plate level, the acceptance criteria were 

that the median of the calibration scale factors be between 0.8 and 1.2, and that 95% of individual 

SOMAmers be less than 0.4 from the median within the plate. 

 

http://somalogic.com/wp-content/uploads/2017/06/SSM-002-Technical-White-Paper_010916_LSM1.pdf
http://somalogic.com/wp-content/uploads/2017/06/SSM-002-Technical-White-Paper_010916_LSM1.pdf


 

In addition to QC processes routinely conducted by SomaLogic, we measured protein levels of 30 and 10 

pooled plasma samples randomly distributed across plates for subcohort 1 and subcohort 2, respectively. 

Laboratory technicians were blinded to the presence of pooled samples. This approach enabled estimation of 

the reproducibility of the protein assays. We calculated CVs for each SOMAmer within each subcohort by 

dividing the standard deviation by the mean of the pooled plasma sample protein read-outs. In addition to 

passing SomaLogic QC processes, we required SOMAmers to have a CV≤20% in both subcohorts. Eight 

non-human protein targets were also excluded, leaving 3,283 SOMAmers (mapping to 2,994 unique 

proteins/protein complexes) for inclusion in the GWAS. 

 

Protein mapping to UniProt identifiers and gene names was provided by SomaLogic. Mapping to Ensembl 

gene IDs and genomic positions was performed using Ensembl Variant Effect Predictor v83 (VEP)41. 

Protein subcellular locations were determined by exporting the subcellular location annotations from 

UniProt42. If the term ‘membrane’ was included in the descriptor, the protein was considered to be a 

membrane protein, whereas if the term ‘secreted’ (but not ‘membrane’) was included in the descriptor, the 

protein was considered to be a secreted protein. Proteins not annotated as either membrane or secreted 

proteins were classified (by inference) as intracellular proteins. Proteins were mapped to molecular 

functions using gene ontology annotations43 from UniProt. 

 

Non-genetic associations of proteins 

To provide confidence in the reproducibility of the protein assays, we attempted to replicate the associations 

with age or sex of 45 proteins previously reported by Ngo et al and 40 reported by Menni et al39,44. We used 

Bonferroni-corrected p-value thresholds of p=1.1x10-3 (0.05/45) and p=1.2x10-3 (0.05/40) respectively. 

Relative protein abundances were rank-inverse normalised within each subcohort and linear regression was 

performed using age, sex, BMI, natural log of estimated glomerular filtration rate (eGFR) and subcohort as 

independent variables. 

 

Genotyping and imputation 



 

The genotyping protocol and QC for the INTERVAL samples (n~50,000) have been described previously in 

detail10. Briefly, DNA extracted from buffy coat was used to assay approximately 830,000 variants on the 

Affymetrix Axiom UK Biobank genotyping array at Affymetrix (Santa Clara, California, US). Genotyping 

was performed in multiple batches of approximately 4,800 samples each. Sample QC was performed 

including exclusions for sex mismatches, low call rates, duplicate samples, extreme heterozygosity and non-

European descent. An additional exclusion made for this study was of one participant from each pair of 

close (first- or second-degree) relatives, defined as π�>0.187. Identity-by-descent was estimated using a 

subset of variants with a call rate >99% and MAF >5% in the merged dataset of both subcohorts, pruned for 

linkage disequilibrium (LD) using PLINK v1.945. Numbers of participants excluded at each stage of the 

genetic QC are summarised in Extended Data Figure 1. Multi-dimensional scaling was performed using 

PLINK v1.9 to create components to account for ancestry in genetic analyses. 

 

Prior to imputation, additional variant filtering steps were performed to establish a high-quality imputation 

scaffold. In summary, 654,966 high quality variants (autosomal, non-monomorphic, bi-allelic variants with 

Hardy Weinberg Equilibrium (HWE) p>5x10-6, with a call rate of >99% across the INTERVAL genotyping 

batches in which a variant passed QC, and a global call rate of >75% across all INTERVAL genotyping 

batches) were used for imputation. Variants were phased using SHAPEIT3 and imputed using a combined 

1000 Genomes Phase 3-UK10K reference panel. Imputation was performed via the Sanger Imputation 

Server (https://imputation.sanger.ac.uk) resulting in 87,696,888 imputed variants. 

 

Prior to genetic association testing, variants were filtered in each subcohort separately using the following 

exclusion criteria: (1) imputation quality (INFO) score<0.7, (2) minor allele count<8, (3) HWE p<5x10-6. In 

the small number of cases where imputed variants had the same genomic position (GRCh37) and alleles, the 

variant with the lowest INFO score was removed. 10,572,788 variants passing all filters in both subcohorts 

were taken forward for analysis (Extended Data Figure 1). 

 

Genome-wide association study 

https://imputation.sanger.ac.uk/


 

Within each subcohort, relative protein abundances were first natural log-transformed. Log-transformed 

protein levels were then adjusted in a linear regression for age, sex, duration between blood draw and 

processing (binary, ≤1 day/>1day) and the first three principal components of ancestry from multi-

dimensional scaling. The protein residuals from this linear regression were then rank-inverse normalised and 

used as phenotypes for association testing. Simple linear regression using an additive genetic model was 

used to test genetic associations. Association tests were carried out on allelic dosages to account for 

imputation uncertainty (“-method expected” option) using SNPTEST v2.5.246.  

 

Meta-analysis and statistical significance 

Association results from the two subcohorts were combined via fixed-effects inverse-variance meta-analysis 

combining the betas and standard errors using METAL47. Genetic associations were considered to be 

genome-wide significant based on a conservative strategy requiring associations to have (i) a meta-analysis 

p-value<1.5x10-11 (genome-wide threshold of p=5x10-8 Bonferroni-corrected for 3,283 aptamers tested), (ii) 

at least nominal significance (p<0.05) in both subcohorts, and (iii) consistent direction of effect across 

subcohorts. We did not observe significant genomic inflation (mean inflation factor was 1.0, standard 

deviation=0.01) (Extended Data Figure 2d).  

 

Refinement of significant regions 

To identify distinct non-overlapping regions associated with a given SOMAmer, we first defined a 1Mb 

region around each significant variant for that SOMAmer. Starting with the region containing the variant 

with the smallest p-value, any overlapping regions were then merged and this process was repeated until no 

more overlapping 1Mb regions remained. The variant with the lowest p-value for each region was assigned 

as the “regional sentinel variant”. Due to the complexity of the Major Histocompatibility Region (MHC) 

region, we treated the extended MHC region (chr6:25.5-34.0Mb) as one region. To identify whether a region 

was associated with multiple SOMAmers, we used an LD-based clumping approach. Regional sentinel 

variants in high LD (r2≥0.8) with each other were combined together into a single region.  

 



 

Conditional analyses 

To identify conditionally significant signals, we performed approximate genome-wide step-wise conditional 

analysis using GCTA v1.25.248 using the “cojo-slct” option. We used the same conservative significance 

threshold of p=1.5x10-11 as for the univariable analysis. As inputs for GCTA, we used the summary statistics 

(i.e. betas and standard errors) from the meta-analysis. Correlation between variants was estimated using the 

‘hard-called’ genotypes (where a genotype was called if it had a posterior probability of >0.9 following 

imputation or set to missing otherwise) in the merged genetic dataset, and only variants also passing the 

univariable genome-wide threshold (p<1.5x10-11) were considered for step-wise selection. As the 

conditional analyses use different data inputs to the univariable analysis (i.e. summarised rather than 

individual-level data), there were some instances where the conditional analysis failed to include in the step-

wise selection sentinel variants that were only just statistically significant in the univariable analysis. In 

these instances (n=28), we re-conducted the joint model estimation without step-wise selection in GCTA, 

using the variants identified by the conditional analysis in addition to the regional sentinel variant. We report 

and highlight these cases in Supplementary Table 5. 

 

Replication of previous pQTLs 

We attempted to identify all previously reported pQTLs from GWAS and to assess whether they replicated 

in our study. We used the NCBI Entrez programming utility in R (rentrez) to perform a literature search for 

pQTL studies published from 2008 onwards. We searched for the following terms: ‘pQTL’, ‘pQTLs’, and 

‘protein quantitative trait locus’. We supplemented this search by filtering out GWAS associations from the 

NHGRI-EBI GWAS Catalog v.1.0.149
 (https://www.ebi.ac.uk/gwas/, downloaded November 2017), which 

has all phenotypes mapped to the Experimental Factor Ontology (EFO)50, by restricting to those with EFO 

annotations relevant to protein biomarkers (e.g., ‘protein measurement’, EFO_0004747). Studies identified 

through both approaches were manually filtered to include only studies that profiled plasma or serum 

samples and to exclude studies not assessing proteins. We recorded basic summary information for each 

study including the assay used, sample size and number of proteins with pQTLs (Supplementary Table 19). 

To reduce the impact of ethnic differences in allele frequencies on replication rate estimates, we filtered 

https://www.ebi.ac.uk/gwas/


 

studies to include only associations reported in European-ancestry populations. We then manually extracted 

summary data on all reported associations from the manuscript or the supplementary material. This included 

rsID, protein UniProt ID, p-values, and whether the association is cis/trans (Supplementary Table 20). 

 

To assess replication we first identified the set of unique UniProt IDs that were also assayed on the 

SOMAscan panel. For previous studies that used SomaLogic technology, we refined this match to the 

specific aptamer used. We then clumped associations into distinct loci using the same method that we 

applied to our pQTLs (see Refinement of significant regions). For each locus, we asked if the sentinel SNP 

or a proxy (r2>0.6) was associated with the same protein/aptamer in our study at a defined significance 

threshold. For our primary assessment, we used a p-value threshold of 10-4 (Supplementary Table 21). We 

also performed sensitivity analyses to explore factors that influence replication rate (Supplementary Note). 

 

Replication study using Olink assay 

To test replication of 163 pQTLs for 116 proteins, we performed protein measurements using an alternative 

assay, i.e., a proximity extension assay method (Olink Bioscience, Uppsala, Sweden)51 in an additional 

subcohort of 4,998 INTERVAL participants. Proteins were measured using three 92-protein ‘panels’ – 

‘inflammatory’, ‘cvd2’ and ‘cvd3’ (10 proteins were assayed on more than 1 panel). 4,902, 4,947 and 4,987 

samples passed quality control for the ‘inflammatory’, ‘cvd2’ and ‘cvd3’ panels, respectively, of which, 712, 

715 and 721 samples were from individuals included in our primary pQTL analysis using the SOMAscan 

assay. Normalised protein levels (‘NPX’) were regressed on age, sex, plate, time from blood draw to 

processing (in days), and season (categorical – ‘Spring’, ‘Summer’, ‘Autumn’, ‘Winter’). The residuals were 

then rank-inverse normalized. Genotype data was processed as described earlier. Linear regression of the 

rank-inversed normalised residuals on genotype was carried out in SNPTEST with the first three 

components of multi-dimensional scaling as covariates to adjust for ancestry. pQTLs were considered to 

have replicated if they met a p-value threshold Bonferroni-corrected for the number of tests (p<3.1x10-4; 

0.05/163) and had a directionally concordant beta estimate with the SOMAscan estimate. 

 



 

Candidate gene annotation 

We defined a pQTL as cis when the most significantly associated variant in the region was located within 

1Mb of the transcription start site (TSS) of the gene(s) encoding the protein. pQTLs lying outside of the 

region were defined as trans. When considering the distance of the lead cis-associated variant from the 

relevant TSS, only proteins that map to single genes on the primary assembly in Ensembl v83 were 

considered.  

 

For trans pQTLs, we sought to prioritise candidate genes in the region that might underpin the genotype-

protein association. We applied the ProGeM framework22 that leverages a combination of databases of 

molecular pathways, protein-protein interaction networks, and variant annotation, as well as functional 

genomic data including eQTL and chromosome conformation capture. In addition to reporting the nearest 

gene to the sentinel variant, ProGeM employs complementary ‘bottom up’ and ‘top down’ approaches, 

starting from the variant and protein respectively. For the ‘bottom up’ approach, the sentinel variant and 

corresponding proxies (r2>0.8) for each trans pQTL were first annotated using Ensembl VEP v83 (using the 

‘pick’ option) to determine whether variants were (1) protein-altering coding variants; (2) synonymous 

coding or 5’/3’ untranslated region (UTR); (3) intronic or up/downstream; or (4) intergenic. Second, we 

queried all sentinel variants and proxies against significant cis eQTL variants (defined by beta distribution-

adjusted empirical p-values using an FDR threshold of 0.05, 

see http://www.gtexportal.org/home/documentationPage for details) in any cell type or tissue from the 

Genotype-Tissue Expression (GTEx) project v627 (http://www.gtexportal.org/home/datasets). Third, we also 

queried promoter capture Hi-C data in 17 human primary hematopoietic cell types52 to identify contacts 

(with a CHICAGO score >5 in at least one cell type) involving chromosomal regions containing a sentinel 

variant. We considered gene promoters annotated on either fragment (i.e., the fragment containing the 

sentinel variant or the other corresponding fragment) as potential candidate genes. Using these three sources 

of information, we generated a list of candidate genes for the trans pQTLs. A gene was considered a 

candidate if it fulfilled at least one of the following criteria: (1) it was proximal (intragenic or ±5Kb from the 

gene) or nearest to the sentinel variant; (2) it contained a sentinel or proxy variant (r2>0.8) that was protein-

http://www.gtexportal.org/home/documentationPage
http://www.gtexportal.org/home/datasets)


 

altering; (3) it had a significant cis eQTL in at least one GTEx tissue overlapping with a sentinel pQTL 

variant (or proxy); or (4) it was regulated by a promoter annotated on either fragment of a chromosomal 

contact52 involving a sentinel variant. 

 

For the ‘top down’ approach, we first identified all genes with a TSS located within the corresponding 

pQTL region using the GenomicRanges Bioconductor package53 with annotation from a GRCh37 GTF file 

from Ensembl (ftp://ftp.ensembl.org/pub/grch37/update/gtf/homo_sapiens/; file: 

‘Homo_sapiens.GRCh37.82.gtf.gz’, downloaded June 2016). We then identified any local genes that had 

previously been linked with the corresponding trans-associated protein(s) according to the following open 

source databases: (1) the Online Mendelian Inheritance in Man (OMIM) catalogue54 

(http://www.omim.org/); (2) the Kyoto Encyclopedia of Genes and Genomes (KEGG)55 

(http://www.genome.jp/kegg/); and (3) STRINGdb56 (http://string-db.org/; v10.0). We accessed OMIM data 

via HumanMine web tool57 (http://www.humanmine.org/; accessed June 2016), whereby we extracted all 

OMIM IDs for (i) our trans-affected proteins and (ii) genes local (±500Kb) to the corresponding trans-

acting variant. We extracted all human KEGG pathway IDs using the KEGGREST Bioconductor package 

(https://bioconductor.org/packages/release/bioc/html/KEGGREST.html). In cases where a trans-associated 

protein shared either an OMIM ID or a KEGG pathway ID with a gene local to the corresponding trans-

acting variant, we took this as evidence of a potential functional involvement of that gene. We interrogated 

protein-protein interaction data by accessing STRINGdb data using the STRINGdb Bioconductor package58, 

whereby we extracted all pairwise interaction scores for each trans-affected protein and all proteins with 

genes local to the corresponding trans-acting variants. We took the default interaction score of 400 as 

evidence of an interaction between the proteins, therefore indicating a possible functional involvement for 

the local gene. In addition to using data from open source databases in our top down approach we also 

adopted a “guilt-by-association” (GbA) approach utilising the same plasma proteomic data used to identify 

our pQTLs. We first generated a matrix containing all possible pairwise Pearson’s correlation coefficients 

between our 3,283 SOMAmers. We then extracted the coefficients relating to our trans-associated proteins 

and any proteins encoded by genes local to their corresponding trans-acting variants (where available). 

ftp://ftp.ensembl.org/pub/grch37/update/gtf/homo_sapiens/
http://www.omim.org/
http://www.genome.jp/kegg/
http://string-db.org/
http://www.humanmine.org/
https://bioconductor.org/packages/release/bioc/html/KEGGREST.html


 

Where the correlation coefficient was ≥0.5 we prioritised the relevant local genes as being potential 

mediators of the trans signal(s) at that locus. 

 

We report the potential candidate genes for our trans pQTLs from both the ‘bottom up’ and ‘top down’ 

approaches, highlighting cases where the same gene was highlighted by both approaches. 

 

Functional annotation of pQTLs 

Functional annotation of variants was performed using Ensembl VEP v83 using the ‘pick’ option. We tested 

the enrichment of significant pQTL variants for certain functional classes by comparing to permuted sets of 

variants showing no significant association with any protein (p>0.0001 for all proteins tested). First, the 

regional sentinel variants were LD-pruned at r2 of 0.1. Each time the sentinel variants were LD-pruned, one 

of the pairs of correlated variants was removed at random and for each set of LD-pruned sentinel variants, 

100 sets of equally sized null permuted variants were sampled matching for MAF (bins of 5%), distance to 

TSS (bins of 0-0.5Kb, 0.5-2Kb, 2-5Kb, 5-10Kb, 10-20Kb, 20-100Kb and >100Kb in each direction) and LD 

(± half the number of variants in LD with the sentinel variant at r2 of 0.8). This procedure was repeated 100 

times resulting in 10,000 permuted sets of variants. An empirical p-value was calculated as the proportion of 

permuted variant sets where the proportion that is classified as a particular functional group exceeded that of 

the test set of sentinel pQTL variants, and we used a significance threshold of p=0.005 (0.05/10 functional 

classes tested).  

 

Evidence against aptamer-binding effects at cis pQTLs 

All protein assays that rely on binding (e.g., of antibodies or SOMAmers) are susceptible to the possibility 

of binding-affinity effects, where protein-altering variants (PAVs) (or their proxies in LD) are associated 

with protein measurements due to differential binding rather than differences in protein abundance. To 

account for this potential effect, we performed conditional analysis at all cis pQTLs where the sentinel 

variant was in LD (r2≥0.1 and r2≤0.9) with a PAV in the gene(s) encoding the associated protein. First, 

variants were annotated with Ensembl VEP v83 using the “per-gene” option. Variant annotations were 



 

considered protein-altering if they were annotated as coding sequence variant, frameshift variant, in-frame 

deletion, in-frame insertion, missense variant, protein altering variant, splice acceptor variant, splice donor 

variant, splice region variant, start lost, stop gained, or stop lost. To avoid multi-collinearity, PAVs were 

LD-pruned (r2>0.9) using PLINK v1.9 before including them as covariates in the conditional analysis on the 

meta-analysis summary statistics using GCTA v1.25.2. Coverage of known common (MAF>5%) PAVs in 

our data was checked by comparison with exome sequences from ~60,000 individuals in the Exome 

Aggregation Consortium (ExAC [http://exac.broadinstitute.org], downloaded June 2016)59.  

 

Testing for regulatory and functional enrichment 

We tested whether our pQTLs were enriched for functional and regulatory characteristics using GARFIELD 

v1.2.060. GARFIELD is a non-parametric permutation-based enrichment method that compares input 

variants to permuted sets matched for number of proxies (r2≥0.8), MAF and distance to the closest TSS. It 

first applies “greedy pruning” (r2<0.1) within a 1Mb region of the most significant variant. GARFIELD 

annotates variants with more than a thousand features, drawn predominantly from the GENCODE, 

ENCODE and ROADMAP projects, which includes genic annotations, histone modifications, chromatin 

states and other regulatory features across a wide range of tissues and cell types.  

 

The enrichment analysis was run using all variants that passed our Bonferroni-adjusted significance 

threshold (p<1.5x10-11) for association with any protein. For each of the matching criteria (MAF, distance to 

TSS, number of LD proxies), we used five bins. In total we tested 25 combinations of features (classified as 

transcription factor binding sites, FAIRE-seq, chromatin states, histone modifications, footprints, hotspots, 

or peaks) with up to 190 cell types from 57 tissues, leading to 998 tests. Hence, we considered enrichment 

with a p<5 x10-5 (0.05/998) to be statistically significant. 

  

Disease annotation 

To identify diseases that our pQTLs have been associated with, we queried our sentinel variants and their 

strong proxies (r2≥0.8) against publicly available disease GWAS data using PhenoScanner61. A list of 

http://exac.broadinstitute.org/


 

datasets queried is available at http://www.phenoscanner.medschl.cam.ac.uk/information.html. For disease 

GWAS, results were filtered to p<5x10-8 and then manually curated to retain only the entry with the 

strongest evidence for association (i.e. smallest p-value) per disease. Non-disease phenotypes such as 

anthropometric traits, intermediate biomarkers and lipids were excluded manually.  

 

Cis eQTL overlap and enrichment of cis pQTLs for cis eQTLs 

For each regional sentinel cis pQTL variant, its strong proxies (r2≥0.8) were queried against publicly 

available eQTL association data using PhenoScanner. Cis eQTL results were filtered to retain only variants 

with p<1.5x10-11. Only cis eQTLs for the same gene as the cis pQTL protein were retained. We tested 

whether cis pQTLs were significantly enriched for eQTLs for the corresponding gene compared to null sets 

of variants appropriately matched for MAF and distance to nearest TSS. For this analysis, we restricted 

eQTL data to the GTEx project v6, since this project provided complete summary statistics across a wide 

range of tissues and cell-types, in contrast to many other studies which only report p-values below some 

significance level. GTEx results were filtered to contain only variants lying in cis (i.e., within 1Mb) of genes 

that encode proteins analysed in our study and only variants in both datasets were utilised.  

 

For the enrichment analysis, the cis pQTL sentinel variants were first LD-pruned (r2 <0.1) and the 

proportion of sentinel cis pQTL variants that are also eQTLs (at our pQTL significance threshold [p<1.5x10-

11], conventional genomewide significance [p<5x10-8] or a nominal p-value threshold [p<1x10-5]) for the 

same protein/gene was compared to a permuted set of variants that were not pQTLs (p>0.0001 for all 

proteins). We generated 10,000 permuted sets of null variants for each significance threshold matched for 

MAF, distance to TSS and LD (as described for functional annotation enrichment in Functional annotation 

of pQTLs). An empirical p-value was calculated as the proportion of permuted variant sets where the 

proportion that are also cis eQTLs exceeded that of the test set of sentinel cis pQTL variants.  

 

At a stringent eQTL significance threshold (p<1.5x10-11), we found significant enrichment of cis pQTLs for 

eQTLs (p<0.0001) (Supplementary Table 11) with 19.5% overlap observed compared to a mean overlap of 

http://www.phenoscanner.medschl.cam.ac.uk/information.html


 

1.8% in the null sets. Results were similar in sensitivity analyses using the standard genome-wide or 

nominal significance thresholds as well as when using only the sentinel variants at cis pQTLs that were 

robust to adjusting for PAVs (Supplementary Table 7), suggesting our results are robust to the choice of 

threshold and potential differential binding effects. 

 

Colocalisation analysis 

Colocalisation testing was performed using the coloc package62. For testing colocalisation of pQTLs and 

disease association signals, colocalisation testing was necessarily limited to disease traits where full GWAS 

summary statistics had been made available. We obtained GWAS summary statistics obtained through 

PhenoScanner. For testing colocalisation of pQTLs with eQTLs, we used publically available summary 

statistics for expression traits from GTEx27. We used the default priors. Regions for testing were determined 

by dividing the genome into 0.1cM chunks using recombination data. Evidence for colocalisation was 

assessed using the posterior probability (PP) for hypothesis 4 (that there is an association signal for both 

traits and they are driven by the same causal variant[s]). Signals with PP4>0.5 were deemed likely to 

colocalise as this gives hypothesis 4 the highest likelihood of being correct, while PP4>0.8 was deemed to 

be ‘highly likely to colocalise’. 

 

Selection of genetic instruments for Mendelian randomisation 

In Mendelian randomisation (MR), genetic variants are used as ‘instrumental variables’ (IV) for assessing 

the causal effect of the exposure (here a plasma protein) on the outcome (here disease)11,63 (Extended Data 

Figure 6).  

 

Proteins in the IL1RL1-IL18R1 locus and atopic dermatitis 

To identify the likely causal proteins that underpin the previous genetic association of the IL1RL1-IL18R1 

locus (chr11:102.5-103.5Mb) with atopic dermatitis (AD)30, we used the following approach. For each 

protein encoded by a gene in the IL1RL1-IL18R1 locus, we took genetic variants that had a cis association at 

p<1x10-4 and ‘LD-pruned’ them at r2<0.1 to leave largely independent variants. We then used these genetic 



 

variants to construct a genetic score for each protein. Formally, we used these variants as instrumental 

variables for their respective proteins in univariable MR. For multivariable MR, association estimates for all 

proteins in the locus were extracted for all instruments. We used PhenoScanner to obtain association 

statistics for the selected variants in the European-ancestry population of a recent large-scale GWAS meta-

analysis30. Where the relevant variant was not available, the strongest proxy with r2≥0.8 was used. 

 

MMP-12 and coronary heart disease (CHD) 

To test whether plasma MMP-12 levels have a causal effect on risk of CHD, we selected genetic variants in 

the MMP12 gene region to use as instrumental variables. We constructed a genetic score comprising 17 

variants that had a cis association with MMP-12 levels at p<5x10-8 and that were not highly correlated with 

one another (r2<0.2). To perform multivariable MR, we used association estimates for these variants with 

other MMP proteins in the locus (MMP-1, MMP-7, MMP-8, MMP-10, MMP-13). Summary associations 

for variants in the score with CHD were obtained through PhenoScanner from a recent large-scale GWAS 

meta-analysis which consists mostly (77%) individuals of European ancestry64.  

 

MR analysis 

Two-sample univariable MR was performed for each protein separately using summary statistics in the 

inverse-variance weighted method adapted to account for correlated variants65-66. For each of 𝐺  genetic 

variants (𝑔 = 1, … ,𝐺) having per-allele estimate of the association with the protein 𝛽𝑋𝑔 and standard error 

𝜎𝑋𝑔, and per-allele estimate of the association with the outcome (here, AD or CHD) 𝛽𝑌𝑔 and standard error 

𝜎𝑌𝑔 , the IV estimate ( 𝜃�𝑋𝑌 ) is obtained from generalised weighted linear regression of the genetic 

associations with the outcome (𝛽𝑌) on the genetic associations with the protein (𝛽𝑋) weighting for the 

precisions of the genetic associations with the outcome and accounting for correlations between the variants 

according to the regression model: 

 

𝛽𝑌 = 𝜃𝑋𝑌  𝛽𝑋 + 𝜀,    𝜀 ~ 𝑁(0,Ω) 



 

 

where 𝛽𝑌 and 𝛽𝑋 are vectors of the univariable (marginal) genetic associations, and the weighting matrix Ω 

has terms Ω𝑔1𝑔2 = 𝜎𝑌𝑔1𝜎𝑌𝑔2ρ𝑔1𝑔2, and ρ𝑔1𝑔2 is the correlation between the 𝑔1th and 𝑔2th variants. 

 

The IV estimate from this method is:  

 

𝜃�𝑋𝑌 = (𝛽𝑋
𝑇Ω−1𝛽𝑋)−1𝛽𝑋

𝑇Ω−1𝛽𝑌 

 

and the standard error is:  

 

se�𝜃�𝑋𝑌� = �(𝛽𝑋
𝑇Ω−1𝛽𝑋)−1 

 

where T is a matrix transpose. This is the estimate and standard error from the regression model fixing the 

residual standard error to 1 (equivalent to a fixed-effects model in a meta-analysis). 

 

Genetic variants in univariable MR need to satisfy three key assumptions to be valid instruments:  

(1) the variant is associated with the risk factor of interest (i.e., the protein level), 

(2) the variant is not associated with any confounder of the risk factor-outcome association, 

(3) the variant is conditionally independent of the outcome given the risk factor and confounders. 

 

To account for potential effects of functional pleiotropy67, we performed multivariable MR using the 

weighted regression-based method proposed by Burgess et al68. For each of 𝐾 risk factors in the model 

(𝑘 = 1, … ,𝐾), the weighted regression-based method is performed by multivariable generalized weighted 

linear regression of the association estimates 𝛽𝑌 on each of the association estimates with each risk factor 

𝛽𝑋𝑘 in a single regression model: 

 

𝛽𝑌 = 𝜃𝑋𝑌1 𝛽𝑋1 + 𝜃𝑋𝑌2 𝛽𝑋2 + ⋯+ 𝜃𝑋𝑌𝐾  𝛽𝑋𝐾 + 𝜀,    𝜀 ~ 𝑁(0,Ω) 



 

 

where 𝛽𝑋1 is the vectors of the univariable genetic associations with risk factor 1, and so on. This regression 

model is implemented by first pre-multiplying the association vectors by the Cholesky decomposition of the 

weighting matrix, and then applying standard linear regression to the transformed vectors. Estimates and 

standard errors are obtained fixing the residual standard error to be 1 as above. 

 

The multivariable MR analysis allows the estimation of the causal effect of a protein on disease outcome 

accounting for the fact that genetic variants may be associated with multiple proteins in the region. Causal 

estimates from multivariable MR represent direct causal effects, representing the effect of intervening on 

one risk factor in the model while keeping others constant. 

 

MMP-12 genetic score sensitivity analyses 

We performed two sensitivity analyses to determine the robustness of the MR findings. First, we measured 

plasma MMP-12 levels using a different method (proximity extension assay; Olink Bioscience, Uppsala, 

Sweden51) in 4,998 individuals, and used this to derive genotype-MMP12 effect estimates for the 17 variants 

in our genetic score. Second, we obtained effect estimates from a pQTL study based on SOMAscan assay 

measurements in an independent sample of ~1,000 individuals3. In both cases the genetic score reflecting 

higher plasma MMP-12 was associated with lower risk of CHD.  

 

Overlap of pQTLs with drug targets 

We used the Informa Pharmaprojects database from Citeline to obtain information on drugs that target 

proteins assayed on the SOMAscan platform. This is a manually curated database that maintains profiles for 

>60,000 drugs. For our analysis, we focused on the following information for each drug: protein target, 

indications, and development status. We included drugs across the development pipeline, including those in 

pre-clinical studies or with no development reported, drugs in clinical trials (all phases), and 

launched/registered drugs. For each protein assayed, we identified all drugs in the Informa Pharmaprojects 



 

with a matching protein target based on UniProt ID. When multiple drugs targeted the same protein, we 

selected the drug with the latest stage of development.  

 

For drug targets with significant pQTLs, we identified the subset where the sentinel variant or proxy variants 

in LD (r2>0.8) are also associated with disease risk through PhenoScanner. We used an internal Merck auto-

encoding method to map GWAS traits and drug indications to a common set of terms from the Medical 

Dictionary for Regulatory Activities (MedDRA). MedDRA terms are organised into a hierarchy with five 

levels. We mapped each GWAS trait and indication onto the ‘Lowest Level Terms’ (i.e. the most specific 

terms available). All matching terms were recorded for each trait or indication. We matched GWAS traits to 

drug indications based on the highest level of the hierarchy, called ‘System Organ Class’ (SOC). We 

designated a protein as ‘matching’ if at least one GWAS trait term matched with at least one indication term 

for at least one drug. 

 

Data availability 

Participant-level genotype and protein data, and full summary association results from the genetic analysis, 

are available through the European Genotype Archive (accession number EGAS00001002555). Summary 

association are also available via FTP and through PhenoScanner 

(http://www.phenoscanner.medschl.cam.ac.uk).  

http://www.phenoscanner.medschl.cam.ac.uk/
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Extended Data Figure legends 

Extended Data Figure 1. Flowchart of sample processing and quality control stages for proteomic and 
genetic measurements prior to genetic analyses. 
 
Extended Data Figure 2. Evidence for the reliability of protein measurements made using the 
SOMAscan assay.  
(a) Distribution of coefficients of variation of all proteins on the SOMAscan assay in each subcohort.  
(b) Spearman’s correlations for all proteins passing QC derived from contemporaneous assay of baseline 
and two-year samples from 60 participants.  
(c) Scatterplot of pQTL effect size estimates from SOMAscan versus Olink showing all 163 pQTLs tested 
(top) and the 106 that formally replicated (bottom). r = Pearson’s correlation coefficient.  
(d) Distribution of inflation factors across proteins that underwent genome-wide association testing, 
stratified by subcohort and allele frequency (MAF≥5%, MAF<5%) 
 
Extended Data Figure 3. Genetic architecture of the pQTLs. 
pQTL mapping in n=3,301 individuals. 
(a) Distribution of the predicted consequences of the sentinel pQTL variants compared to matched permuted 
null sets of variants, stratified by cis and trans. Asterisks indicate empirical enrichment using a permutation 
test (10,000 permuted sets of non-associated variants) at a Bonferroni-corrected significance value 
(p<0.005). Bar height represents the mean proportion of variants within each class and error bars reflect one 
standard deviation from the mean. 
(b) Number of proteins associated (p<1.5x10-11) with each sentinel variant across the genome. 
 
Extended Data Figure 4. Enrichment of pQTLs at DNase I hypersensitive sites by tissue/cell-type.  
Circle shows enrichment for DNase I hypersensitive sites (“hotspots”) for each of 55 tissues (183 cell-types) 
available from the ENCODE and Roadmap Epigenomics projects, with tissues/cell-types clustered and 
coloured by anatomical grouping. Some tissues have multiple values due to availability of multiple cell-type 
or multiple tests per cell-type. Radial lines show fold-enrichment, while dots around the inside edge of the 
circle denote statistically significant enrichment at a Bonferroni-corrected significant threshold p<5x10-5. 
Enrichment testing performed using GARFIELD (which tests enrichment against permuted sets of variants 
matched for MAF, distance to TSS and LD). pQTL data from n=3,301 individuals. 
 
Extended Data Figure 5. Scheme outlining the combined “bottom-up” and “top-down” process 
utilised for candidate gene annotation of trans pQTL regions (see Methods).  
GbA; guilt-by-association, KEGG; Kyoto Encyclopedia of Genes and Genomies, OMIM; Online Mendelian 
Inheritance in Man, STRINGdb; STRING database. 
 
Extended Data Figure 6. Comparison between a randomised controlled trial and Mendelian 
randomisation to assess the causal effect of changes in protein biomarker levels on disease risk. 

 
Extended Data Figure 7. Characterisation of protein targets measured using the SOMAscan assay. 
(a) Compartment distribution with annotations of all proteins in the Human Protein Atlas for comparison. 
(b) GO molecular functions. 
 
Extended Data Figure 8. Examples of protein targets for which the SOMAmer is highly specific.  
SDS-PAGE with Alexa-647-labeled proteins captured by the (a) IL1RL2 SOMAmer or (b) GP1BA 
SOMAmer. For each protein target, the protein captured by the SOMAmer is compared to the standard. The 
cognate targets are the only ones with protein visible in the capture lanes. These experiments were 
performed once. 
 
Extended Data Figure 9. Follow-up of PR3 SOMAmers. 
These experiments were repeated three times independently with similar results. 



 

(a) SOMAmer pulldowns with purified PR3, A1AT, and PR3:A1AT complex. SOMAmer 
PRTN3.3514.49.2 enriched PR3:A1AT complex to a much greater degree than free PR3. Conversely, 
SOMAmer PRTN3.13720.95.3 enriched free PR3 to a greater degree than the PR3:A1AT complex. 
(b) Solution Affinity of PRTN3.3514.49.2 and PRTN3.13720.95.3 for PR3, A1AT, and PR3:A1AT 
complex. SOMAmer PRTN3.3514.49.2 has a higher affinity for PR3:A1AT complex than for free PR3. 
SOMAmer PRTN3.13720.95.3, on the other hand, has a higher affinity for free PR3 than SOMAmer 
PRTN3.3514.49.2.  
(c) Competitive binding of SOMAmers PRTN3.13720.95.3 and PRTN3.3514.49.2 to PR3. Limiting amount 
of radiolabeled PRTN3.13720.95.3 was incubated with 1 nM Proteinase-3 and a titration of either cold 
PRTN3.13720.95.3 or cold PRTN3.3514.49.2. 
 
Extended Data Figure 10. The WFIKKN2 region is a trans pQTL for GDF11/8 plasma levels.  
(a) Regional association plots of the trans pQTL (sentinel variant rs11079936) for GDF11/8 before and after 
adjusting for levels of WFIKKN2 (upper panels), and the WFIKKN2 cis pQTL after adjusting for GDF11/8 
levels (bottom panel). A similar pattern of association for WFIKKN2 was seen prior to GDF11/8 adjustment 
(not shown).  
(b) Attenuation of the GDF11/8 trans pQTL upon adjustment for plasma levels of the cis protein 
WFIKKN2. 
 
 
Supplementary Video 1. Three-dimensional interactive plot of sentinel variant-protein associations 
(red-cis, blue-trans). X-axis (“pQTL position”) represents position of the sentinel variant along 
chromosomes 1-22. Y-axis (“Protein position”) represents the start position of the gene encoding the 
protein. Z-axis represents the –log10(p) of the association. Additional details can be viewed when hovering 
over the points. Clicking on cis/trans in the legend toggles display of points by cis/trans. Additional viewing 
controls are available at the top right of the window. For clarity, associations with p<10-300 (diamonds) are 
plotted at -log10(p)=300. 
The plot is generated using “plotly” R package v4.5.6 (Plotly Technologies Inc., Montréal, Canada). 
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Supplementary Information is available in the online version of the paper.  
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