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Abstract. Instead of committing to the first source of reward that it
discovers, an agent engaged in ”preferential foraging” continues to choose
between different reward sources in order to maximise its foraging effi-
ciency. In this paper, the effect of preferential source selection on the per-
formance of robot swarms with different recruitment strategies is studied.
The swarms are tasked with foraging from multiple sources in dynamic
environments where worksite locations change periodically and thus need
to be re-discovered. Analysis indicates that preferential foraging leads to
a more even exploitation of resources and a more efficient exploration
of the environment provided that information flow among robots, that
results from recruitment, is regulated. On the other hand, preferential
selection acts as a strong positive feedback mechanism for favouring the
most popular reward source when robots exchange information rapidly
in a small designated area, preventing the swarm from foraging efficiently
and from responding to changes.

1 Introduction

Instead of committing to the first source of reward that it discovers, an agent
engaged in ”preferential foraging” continues to choose between different reward
sources in order to maximise its foraging efficiency [13]. This foraging behaviour
appears in nature at the level of individual creatures, for example in fish [13] and
birds [5], as well as at the collective level, for instance in honey bee [2] and ant
[28] colonies. While numerous studies have shown that preferential foraging is
advantageous for animals, the conditions under which these advantages transfer
to biologically-inspired robot swarms are currently unclear.

During robot swarm foraging, individuals are required to search an unknown
environment for worksites that contain reward. The robots may perform work
directly at the worksite locations during general foraging (e.g., [16, 24]) or trans-
port resource collected at worksites to a designated deposition area in central-
place foraging (e.g., [14, 4]). Robots may communicate information about work-
sites, such as their locations, to other members of the swarm in order to facilitate



faster exploitation of the environment (e.g., [3, 23]). In this paper, the effect of
robots preferring worksites with higher utilities, i.e., higher reward returns, is
explored in general and central-place foraging tasks, where worksite locations are
not known in advance and change over time. The foraging tasks presented here
are a paradigm for a number of real-world robot swarm tasks, such as package
delivery, environment sampling and resource collection.

Two robot swarms with different communication strategies are studied. In
Broadcaster swarms, individuals advertise worksite information to nearby robots
while they are near worksites. In Bee swarms, robots exchange information in
a designated area, that they return to periodically. Our previous work [20, 22]
suggests that Broadcaster swarms outperform Bee swarms in many foraging
environments due to their ability to respond to environmental changes faster, but
that Bee swarms are more suitable during central-place foraging in environments
with a low worksite density, since their recruitment strategy allows the robots
to share information with each other relatively quickly. Here we show that the
rapid spread of information through Bee swarms damages their performance
when individuals preferentially choose worksites with higher utility, since most of
the swarm may tend to concentrate on a single worksite, increasing the negative
effects of congestion. On the other hand, Broadcasters form small sub-groups
that can use preferential foraging to choose non-congested worksites, because the
information spread in these swarms is regulated by the limited communication
range of robots.

2 Methods

2.1 Simulated environment

A continuous-space experimental arena, identical to that in [22] and containing a
central circular base surrounded by circular worksites, was created in the ARGoS
simulator [18]. An experimental environment was characterised by the number
of worksites, NW , and worksite distance from the base, D ∈ {5, 9, 13, 17} m.
There were two types of environment (Figure 1a,b):

– HeapNW : NW ∈ {1, 2, 4} high-volume worksites evenly distributed around
the base at a distance D from the base edge.

– Scatter25: NW = 25 worksites randomly distributed between distance D
and D − 5m from the base edge.

The total amount of resource in each environment was set to 100 units and
the amount of resource units per worksite, VW = 100/NW . Each worksite had
a 0.1 m radius and there was a colour gradient with 1 m radius around it, that
the robots could use to “sense” and navigate towards the worksite (Figure 1c).
The base had a radius of 3 m and featured a light source above its centre that
the robots could use to navigate towards the base.

At the beginning of each experiment, a number, NR ∈ {10, 25, 50} of robots
were placed at random positions and with random orientations in the base.

Two types of foraging tasks were investigated, as in [22]:



Fig. 1. The (a) Heap2 and (b) Scatter25 environments with worksite distance D = 13
m. (c) The base and nearby worksites. Figure reproduced from [22]

– Consumption: Worksites represented “jobs” that could be completed at
the worksite locations. A robot that was at a worksite gradually depleted its
volume, increasing the swarm’s total reward at the rate of 1/400 units per
second. Similar tasks were explored in, e.g., [16, 24].

– Collection: Worksites represented resource deposits. A robot could collect
one unit of resource at a time, after which the resource had to be deposited
in the base. Similar tasks were explored in, e.g., [14, 4].

Additionally, each task had two variants, slow and fast, that represented
different degrees of challenge. In each variant, worksite locations changed every
TC seconds and were chosen randomly according to the environment type. For
example, in the Heap2 environment with D = 5 m, the two worksites were
relocated every TC seconds, remaining 5 m from the edge of the base. Worksite
volumes were replenished after each change. The value of TC , as well as the total
simulation time, T , were set as in [22], so that the environment changed 10 times
in the slow variant and 20 times in the fast variant and so that a swarm could
deplete around 50% of total worksite volume in each slow change interval. For
example, TC = 45 min and T = 7.5 h for 50-robot swarms.

2.2 Robots

The simulated MarXbots [1] were differentially steered circular robots with a
radius of 8.5cm. The robots could communicate with each other using a range
and bearing module with a signal range of 5 m. We have previously described the
robot model in [20]. There were two types of robot swarm, that we parametrised
for the best performance in a series of environments [22]:

– Broadcaster (Figure 2a): Robots left the base immediately at the beginning
of an experiment to start scouting for worksites. Upon discovering a worksite,
a scout started working on it, meaning that it either started depleting its
volume (in the Consumption task) or started travelling between the worksite



Fig. 2. BDRML [21] representations of the (a) Broadcaster and (b) Bee robot con-
trollers.

and the base to gradually deposit resource (in the Collection task). The
robot kept track of worksite location by using odometry. A robot that was
located on the gradient surrounding a worksite also broadcasted the worksite
location to other robots that were within the communication range. A scout
that received the message was recruited to the worksite and started working
from it.

– Bee (Figure 2b): Robots left the base with probability p(S) = 10−3 to start
scouting for worksites. In the Consumption task, a robot that discovered a
worksite first returned to the recruitment area of the base (Figure 1c) in
order to recruit any “observing” robots for TR = 120 s and then resumed
working. In the Collection task, a robot recruited after each time that it
deposited resource in the base. A scout that could not find any worksites for
TS = 18 min returned to the base in order to start observing recruitment
signals.

The Broadcaster control strategy was inspired by the behaviour of animals
such as sheep [17] and fish [15], where individuals observe each other during
foraging and are attracted to locations that others forage from. A similar strategy
has also been implemented in robot swarms, e.g. in [3, 8, 30]. The Bee control
strategy was inspired by the foraging behaviour of honey bees [27] and has also
been implemented in robot swarms, e.g. in [14, 23, 9].

Differential steering sensors and motors of the robots were subject to minor
noise, which could result in accumulation of errors in the relative vector to a
robot’s worksite. Therefore, upon arriving to a supposed worksite location that
was empty, a robot performed neighbourhood search around the location that
lasted for 5 minutes.

Experiments were performed with Committed and Preferential swarms. Robots
in the Committed swarms remained foraging from the same worksite that they



discovered or were recruited to until the worksite was depleted. Robots in Pref-
erential swarms exchanged both worksite locations and worksite utilities and
always preferred to forage from a worksite with a higher utility. In the Con-
sumption task, worksite utility, UW , was equal to its current volume, VW :

UW = VW (1)

In the Collection task, the distance, DW , between a worksite and the base
was also considered, so that worksites that were further away from the base had
a lower utility:

UW = VW /DW (2)

A preferentially foraging robot switched to a worksite with a higher utility if
it found such a worksite during its journey to its current worksite location. Ad-
ditionally, in Preferential Broadcaster swarms, a scout could receive recruitment
signals from multiple directions and always chose a worksite with the highest
advertised UW . Furthermore, if the distance between worksites was smaller than
the communication range of robots, the robots exchanged information about UW

each second while they were working. If worksite A was being depleted faster
than worksite B (because more robots were working at A), its UW decreased
faster, meaning that robots from A were eventually recruited to B. In Prefer-
ential Bee swarms, robots exchanged information about UW while they were
recruiting in the base. If there were multiple worksites advertised at the same
time, all observing robots and recruiters adopted the worksite with the highest
advertised utility.

2.3 Terminology and data visualisation

Swarm performance analysis is conducted within the Information-Cost-Reward
framework [22]. The framework allows us to identify various costs that the robots
incur each second during foraging instead of obtaining reward. The uncertainty
cost, CU , is incurred by robots that do not know about worksites. The displace-
ment cost, CD is incurred by robots that know where worksites are located, but
are currently not at their worksites, unable to receive reward from them. For
example, Bee swarm robots usually incur high amounts of CD, because they
are recruited in the base, i.e., far away from worksites. The displacement cost
coefficient, d, represents a ratio between the amount of CD and the decrease
in CU paid at a given time. When d = 1, all robots that know about work-
sites are displaced from them and no reward is obtained. Intermediate values of
0 < d < 1 indicate that some robots are displaced and some are receiving re-
ward. Finally, the misinformation cost, CM , is incurred by robots that are away
from their worksites and do not know that the worksites have already been de-
pleted by other robots. There is a high potential for a robot to incur CM during
Collection, since it periodically returns to the base to deposit resource.

In the following two sections, swarm performance and ICR metrics are pre-
sented in the form of box plots. Each data point represents a median result of 50



independent simulation runs. The surrounding boxes represent the inter-quartile
range of the result set, and whiskers represent data in the range of 1.5 times the
inter-quartile. Outliers outside this range are shown as plus signs.

3 The performance of Committed swarms

In each foraging task, the performance of the Committed swarms depended on
the number of worksites, NW , and the distance of worksites from the base, D
(Figure 3). The performance was generally better in environments with a high
worksite density, i.e., when NW was high, or when D was low. However, note that
in the slow Consumption task (Figure 3a), the Bee swarms experienced a high
amount of congestion around worksites in Scatter25 environments when D ≤
9 m, causing their performance to be lower than that in Heap4 environments.
The nature of their recruitment strategy in this particular task and environment
caused many Bee robots to concentrate on a small number worksites, which was
disadvantageous when many worksites needed to be found and exploited.

The Broadcasters outperformed the Bee swarms in the Consumption task,
because they did not return to the base in order to recruit, which allowed them

Fig. 3. The amount of reward collected by 50-robot Committed swarms in various
tasks and environments.



to spend more time working. However, in the Collection task, the displacement
and misinformation costs associated with central-place recruitment were amelio-
rated by the fact that all robots had to return to the base periodically in order
to deposit resource. This allowed the Bee swarms to surpass or match the per-
formance of Broadcasters in many low-density environments, such as Heap1 and
Heap2, especially in the slow Collection task. Similar trends in absolute and rel-
ative swarm performance were discovered for a number of explored swarm sizes
(NR ∈ {10, 25, 50}). However, the largest swarms showed the largest differences
in relative performance to each other.

4 The performance of Preferential swarms

The impact of preferential foraging on swarm performance depended on the en-
vironment and task type, as well as on the control strategy of robots. In general,
swarm performance was affected more strongly when worksites were closer to the
base, i.e., when robots could find worksite information faster. Similarly, larger
swarms were affected in a larger number of environments, since the robots could
receive information from a larger number of recruiters. Broadcasters were able
to improve their performance in the Consumption task, while Bee swarms were
negatively affected in both tasks (Figure 4).

There were two different ways in which Preferential Broadcasters improved
their performance in the Consumption task. In Scatter25 environments with a
short D, where it was possible for multiple worksites to be located within the
communication range of robots, a recruited robot was able to find worksites with
larger volumes, i.e. a larger utility, on its way to the location that it was originally
recruited to. This allowed the Preferential Broadcaster swarms to spread their
foraging effort across multiple worksites better and prevent congestion, which
in many environments decreased their displacement cost coefficient compared to
the Committed swarms (Figure 5a,c). This was especially advantageous when
the environment changed quickly, i.e., when it was more important to exploit as
many worksites as possible in a relatively short amount of time. For example,
50-robot Preferential broadcaster swarms obtained around 12% more reward in
the Scatter25 environment when D = 5 m (Figure 4b). Secondly, in Heap envi-
ronments with a small D, recruits often could not reach an advertised worksite
due to congestion around it. Robots in congested areas often made a lot of turns
while avoiding each other, causing their odometry-based vector to the worksite
to become increasingly incorrect due to the cumulative effect of sensory-motor
noise. Preferential Broadcasters communicated about the worksite utility and lo-
cation periodically, meaning that some recruits were sent to incorrect locations.
This cleared congestion and allowed the recruits to explore a new area after they
could not find the advertised worksite.

On the other hand, in the Collection task, where robots deposited resource
in the base and where congestion around worksites was thus cleared periodically,
recruitment to incorrect worksite locations decreased the performance of Prefer-
ential Broadcasters in Heap environments with a small D (Figure 4c,d). In these



Fig. 4. The amount of reward collected by 50-robot Preferential swarms in various
tasks and environments. The up and down arrows above the data points for each envi-
ronment indicate statistically significant (ANOVA, p = 0.01) increase and decrease in
performance of the Broadcaster (orange) and Bee (green) Preferential swarms, when
compared to the corresponding Committed swarms from Figure 3 in the same en-
vironment. When no arrow is shown for a given environment and swarm type, the
Preferential and the Committed swarms of that type performed similarly.

cases, it was more advantageous for robots to wait until the path to their worksite
became less congested, rather than to travel away and search for new worksites.
Secondly, in Scatter25 environments, robots could not share information about
worksite utilities with each other as frequently as in the Consumption task, since
they spent most of the time travelling between the base and worksites, rather
than recruiting near worksites.

Preferential Bee swarms exploited the environment less efficiently than the
Committed Bee swarms. Since Bee swarm robots utilised central-place recruit-
ment, the preference for a single worksite with the highest utility often spread
to the majority of robots. This increased the amount of congestion around that
worksite, preventing the robots from exploiting it, as well as from exploring the
rest of the arena. In the Consumption task, the swarm’s displacement cost coeffi-
cient, d, increased as a result of congestion in environments with multiple work-



Fig. 5. The displacement cost coefficient, d, of the Committed and Preferential swarms
in various tasks and environments with D = 5 m.

Fig. 6. The misinformation cost, CM , paid per minute by the Committed and Prefer-
ential swarms in various tasks and environments with D = 5 m.

sites (Figure 5b,d), while the d of Broadcasters remained similar or decreased
(Figure 5a,c). Additionally, in the slow Collection task, where recruitment to a
single worksite in Bee swarms was much stronger as the robots exchanged in-
formation every time they returned to the base, the amount of misinformation
cost that the robots incurred increased (Figure 6b).

As a result of these effects, Preferential foraging decreased the performance
of Bee swarms in both tasks, and its impact was significantly stronger than in
the Broadcaster swarms (Figure 4). Consequently, the differences between the
performance of Preferential Broadcaster and Bee swarms were stronger than be-
tween the Committed swarms. Most notably, Preferential Bee swarms performed
significantly worse than Broadcasters in environments with a high worksite den-
sity due to the increased amount of costs that they incurred.



5 Discussion

While preferential foraging may be beneficial to a foraging swarm, the results
presented here indicate that the spread of preference for a selected source needs
to be regulated via a negative feedback mechanism, especially when the envi-
ronment is dynamic and changes over time.

For instance, bee-inspired swarms in [29] were successfully able to distribute
their foraging effort between worksites based on worksite utility. Better worksites
were advertised in the base for a longer amount of time, while the regulation of
information flow was achieved by allowing agents to choose randomly between
advertised worksites, preventing all robots from adopting the same choice. In [20],
we explored preferentially foraging bee-inspired swarms in dynamic environments
where worksite locations remained the same, but where worksite utilities changed
over time. The task of the swarms was to collect resource from the worksites into
the base and to switch to a worksite with a higher utility when the environment
changed. In line with the results presented here, it was shown that bee swarms
employing preferential foraging performed worse than other swarms due to their
strong commitment to a small portion of worksites. However, presence of negative
feedback in the form of utility-dependent worksite abandonment significantly
improved the swarm performance.

Studies with other control strategies also showed that maximising informa-
tion spread within the swarm is not appropriate when a swarm needs to react to
a randomly changing environment. In [24], foraging swarms with localised com-
munication outperformed those with a global communication strategy, where
all robots were informed about worksite location and urgencies (analogous to
our worksite utilities). Localised communication prevented robots from costly
travel to distant worksite locations and from interfering with each other near
worksites. In ant-inspired foraging swarms, where robots dropped beacons into
the environment in order to form virtual trails to worksites, a disrupted trail
could be re-established provided that robots sometimes stopped following social
information stored in the beacons and started exploring the environment instead
[11]. The importance of maintaining a balance between exploration, exploitation
and information sharing has also been demonstrated for other collective tasks,
such as area clearing [25] and labour division [12].

It is important to note that other aspects of information exchange, for in-
stance, the granularity of data, also impact foraging performance. In [10], ant-
inspired swarms formed virtual pheromone trails using beacons between a base
and food sources. It was shown that more efficient foraging routes were formed
when the beacons stored simple “hop count” integers rather than fine-grained
floating point numbers.

Finally, it is interesting that studies of honey bee foraging, contrary to the
results presented here, showed that direct exchange of information about nectar
profitability among worker bees improves the ability of bee colonies to forage
efficiently [2]. Workers sample the nectar that other bees bring into the nest,
which helps the colony as a whole to react to rapid changes in nectar quality
of different flower patches. However, it is important to point out that bees ex-



hibit preferential nectar source selection in addition to a large repertoire of other
self-regulatory and communication behaviours. For example, bees also regularly
scout the environment in order to discover new flower patches [26] and they
periodically check the profitability of old abandoned patches [6]. The colony
also monitors and maintains a healthy nectar intake in order to prevent energy
wastage resulting from congestion in the nest [7]. Similarly, ants prefer to fol-
low stronger pheromone trails, but pheromone evaporation [28], and in some
ant species, time-dependent decrease of interest of free workers in foraging [19],
represent negative feedback mechanisms that regulate the colony’s responses.

6 Conclusion

In order for preferential source selection to improve swarm performance, the
flow of information about worksite utility should be sufficient, but also regulated
through a negative feedback mechanism. Sufficient information flow can occur,
for example, in environments with an adequate worksite density, or in swarms
where robots can meet each other frequently and thus evaluate different sources
of information at the same time. Regulation of information flow can be achieved,
e.g., by using the Broadcaster recruitment strategy, where recruitment is limited
by the communication range of robots. On the other hand, if many robots are
allowed to communicate their preferences at the same time, and when robots
adopt the best option with a 100% probability, as was the case in our Bee
swarms, the environment is exploited and explored inefficiently, preventing the
swarm from responding to changes.

These results point to the importance of studying the context in which a par-
ticular behaviour is used in a swarm, especially when nature-inspired behaviours
are taken out of their biological context and are applied in an engineered robot
control algorithm. A new behaviour, such as preferential foraging, adds a new
feedback mechanism that interacts with other feedback mechanisms in unique
ways. In the experiments presented here, preferential foraging acted as a strong
positive feedback mechanism for the most popular worksite choice when robots
exchanged information in a small designated area. On the other hand, the same
behaviour facilitated a more even exploitation of resources and a more efficient
exploration when recruitment was regulated through negative feedback mecha-
nisms.
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