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Highlights

 We search for the Mediterranean-Atlantic gateway that delivered the marine salt during 
the Messinian Salinity Crisis

 All previously proposed late Miocene gateways through southern Spain and northern 
Morocco are shown to have closed during the latest Tortonian-earliest Messinian

 The Gibraltar Corridor is considered to sole candidate gateway and was most likely open 
during most of the Messinian Salinity Crisis

 The dimensions of the Gibraltar Corridor during the MSC are estimated based on 
Mediterranean salinity fluctuations using geophysical models

 A revised palaeogeographic evolution of the Gibraltar region is presented for the late 
Tortonian to early Zanclean. 
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14
15 ABSTRACT 

16 The existence and evolution of a Messinian salt giant in the Mediterranean Sea has caused much 

17 debate in the marine science community. Especially the suggestion that the Mediterranean was a 

18 deep desiccated basin during the Messinian Salinity Crisis (MSC, 5.97–5.33 Ma), triggered by a 

19 temporal disconnection from the global ocean, made it a well-known crisis beyond the scientific 

20 boundaries. Approximately ~50 years after this provocative statement, it remained unknown 

21 which Mediterranean–Atlantic seaway delivered the 5-6 % of the global ocean’s salt into the 

22 Mediterranean basin. Here, we review the changes in Mediterranean-Atlantic connectivity 

23 throughout the late Miocene in order to locate, date and quantify the missing Messinian gateway 

24 that provided the salt water inflow during the MSC. We conclude that all the known pre-MSC 

25 gateways through southern Spain and northern Morocco were closed, leaving the “Gibraltar 

26 Corridor” at its Messinian configuration as the sole candidate. We consider the possibility of longer 

27 and narrower straits existing at depth below the present Gibraltar region, and using strait dynamic 

28 theory we calculate its dimensions during the Messinian based on the salinity changes in the 

29 Mediterranean. A marine Messinian gateway through the Gibraltar Corridor is in agreement with 

30 growing evidence that Atlantic waters reached the Mediterranean Sea during all three stages of 

31 the MSC. 

32

33 Keywords: Miocene, Mediterranean, Atlantic, gateways, evaporites, paleoceanography 
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34 1. PROLOGUE

35 The initial picture of a deep-desiccated Mediterranean filled with km-thick evaporites (Fig. 1) 

36 developed from the scientific results of the Deep Sea Drilling Project (DSDP) Leg 13 in deep 

37 Mediterranean basins (Hsü et al., 1973a,b). The Mediterranean-wide extent of the Messinian 

38 evaporites (gypsum and halite) was further established from seismic profiles, deep-sea cores and 

39 land-based sections (see Roveri et al., 2014a for a review). This re-fueled the older concept of a 

40 “Messinian salinity crisis” (MSC) (Selli, 1954, 1960), which is considered as one of the most 

41 dramatic paleoceanographic crises in Earth’s history (e.g., Ruggieri, 1967; Ryan, 2009). The 

42 widespread canyon incisions of the rivers draining into the Mediterranean indicated a MSC water 

43 level of ~1500m below global sea-level (Chumakov, 1973; Ryan, 1978; 2008; Clauzon, 1982). 

44 Consequently, the "desiccated-deep basin" model of the MSC has been used as an argument for 

45 temporal disconnections of the Mediterranean from the Atlantic (Hsü et al., 1973a). It was realized 

46 from the beginning that intermittent input of Atlantic water to the Mediterranean was necessary 

47 to explain the huge amount of halite in the deep basins and it was estimated that eight or ten 

48 marine invasions could have been sufficient to account for all the salts (Hsü et al., 1973). 

49 Spectacular though this model is, the exact location of the marine Messinian gateway(s) remained 

50 enigmatic over the years.

51 During the last decade, evidence is accumulating that the Messinian sequences in the 

52 Mediterranean require regular sea-level and at least one continuously open Atlantic connection to 

53 provide the salts for repeated events of gypsum and halite deposition (Krijgsman and Meijer, 2008; 

54 Lugli et al., 2010; Simon and Meijer, 2015). A complex network of marine gateways through 

55 Morocco and Spain (the Betic and Rifian Corridors; Fig. 2) is thought to have progressively closed 

56 during the latest Miocene (Flecker et al., 2015). Well before the MSC, the Mediterranean Sea 

57 already underwent significant environmental changes. Step-wise increases in stress tolerant 

58 benthic foraminiferal faunas at ~7.2 Ma and ~6.8 Ma indicate early evidence for a more restricted 

59 basin setting (Kouwenhoven et al., 2003; 2006). With the onset of the Primary Lower Gypsum 

60 (PLG, 5.97-5.6 Ma: Roveri et al., 2014a) during MSC Stage 1, the Mediterranean salinity was 

61 potentially above 130 g/kg, indicating an even further constriction of the Mediterranean-Atlantic 

62 gateway(s). Numerical models have shown that at least one Mediterranean-Atlantic gateway must 

63 have persisted to explain the chemical (strontium) composition (Topper et al., 2011) and the 
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64 Mediterranean-wide evolution of the PLG (Lugli et al., 2010; Simon et al., 2017). This may similar 

65 hold true for the Upper Gypsum/Lago-mare Stage 3 (Carnevale et al., 2006; Grunert et al., 2017; 

66 Vasiliev et al., 2017), which lasted from 5.55 Ma until 5.33 Ma (Roveri et al., 2014a). In between, 

67 the thick halite layer (up to 3 km) was deposited in less than 50-60 kyr during the most extreme 

68 Stage 2, which stored up to 6% of the global ocean salt in the Mediterranean basin (Ryan, 2009). 

69 Due to the lack of a deep Messinian record, several contradicting models have been proposed. Two 

70 extreme scenarios are: (a) ~1500 m sea-level drop (Hsü et al., 1973a; Clauzon et al., 1996; Lofi et 

71 al., 2005; Bache et al., 2012, Fig. 1a) and (b) deposition from dense brines under normal sea-level 

72 (Manzi et al, 2005; Roveri et al., 2014b; Fig. 1b). Both scenarios agree, however, that a marine 

73 connection with the Atlantic must have been present, at least during the first two MSC stages. 

74 The Betic and/or Rifian Corridors are commonly envisaged as the late Miocene Atlantic 

75 connections supplying sea water into the Mediterranean until its complete isolation (Martin et al., 

76 2001; Krijgsman, 2002; Flecker et al., 2015).  Antecedent to the crisis, the Strait of Gibraltar is 

77 believed to be closed and it breached only at the Mio-Pliocene boundary (5.33 Ma) by a 

78 combination of tectonic and river-erosion processes (Loget et al., 2005; Loget and Van der 

79 Driessche, 2006; Garcia-Castellanos and Villaseñor, 2011). The opening is thought to have 

80 originated a catastrophic flood that refilled a deep, desiccated Mediterranean at the end of the MSC 

81 (Blanc, 2002; Garcia-Castellanos et al., 2009; Micallef et al., 2018). 

82 In this paper, we synthesize and integrate newly acquired field data on each of these late 

83 Miocene gateways, obtained within the scope of the European Union Initial Training Network 

84 MEDGATE. This network had the objective to investigate the Atlantic–Mediterranean connectivity 

85 throughout the late Miocene in order to locate, date and quantify the missing Messinian gateway. 

86 We conclude that all gateways through southern Spain and northern Morocco reflect an uplift 

87 trend starting as early as the late Tortonian and show no evidence for a marine MSC connection to 

88 the Atlantic (Capella et al., 2017b, 2018; Tulbure et al., 2017; Van den Berg et al., 2018; Van der 

89 Schee et al., 2018). We thus corroborate the alternative hypothesis of a Messinian connection 

90 through the Gibraltar region and present a computational reconstruction on how the dimensions 

91 of this “Gibraltar Corridor” may have evolved throughout the Messinian.

92
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93 2. QUEST FOR THE MISSING MESSINIAN GATEWAY 

94 During the Tortonian (~11.6 to 7.2 Ma), several marine gateways through southern Spain, 

95 northern Morocco and potentially Gibraltar, connected the Mediterranean Sea with the Atlantic 

96 Ocean (Fig. 2). Most of the gateway sediments that are now exposed on land have been intensively 

97 studied, but the timing of corridor closure is still subject to significant uncertainty (Benson et al., 

98 1991; Martin and Braga, 1994; Krijgsman et al., 1999a; Martin et al., 2001; van Assen et al., 2006; 

99 Achalhi et al., 2016; Capella et al., 2017a). It is very difficult to pinpoint the exact location or timing 

100 of closure from field data alone, because the area which first blocks the marine connection is, by 

101 default, the area that experiences the strongest uplift and erosion and the sedimentary succession 

102 preserved is therefore often incomplete (e.g., Tulbure et al., 2017). In case an erosional surface is 

103 observed, the youngest marine sediments below the unconformity are always older than the final 

104 closure age (e.g., Hüsing et al., 2010). When a gradual marine to continental transition is present it 

105 is in principle possible to date the last marine sediments. In these cases, however, biostratigraphic 

106 dating with planktonic foraminifera is hampered by the absence of deep marine marker species. A 

107 combination of magnetostratigraphy and small mammal biostratighraphy can be applied to 

108 continental deposits, but this technique commonly has lower resolution and higher uncertainties 

109 (e.g., Garcés et al., 2001). It should especially be realized that the absence of evidence for marine 

110 sedimentation is no solid proof for the non-existence of a marine gateway. The interpretation of 

111 seaway closure therefore has to take into account the depositional history of all the connecting 

112 gateway basins, including inferred sedimentation rates, lateral facies development, and regional 

113 tectonics and geodynamics. Here, we present an overview of most recent dating results of the 

114 marine and continental sediments in the late Miocene gateways that may have played a role in the 

115 water exchange between Mediterranean and Atlantic during the MSC.

116

117 2.1 Connections through southern Spain

118 The Betic Corridor (or Iberial Portal sensu Benson et al., 1991) was a system of seaways 

119 forming four distinct connections through Southern Spain (Fig. 2). The northernmost connection 

120 (North-Betic Strait) already became restricted in the early Tortonian (Martin et al., 2009, 2014) 

121 following the onset of compression (Meijninger and Vissers, 2006) and causing the Tortonian 

122 Salinity Crisis (TSC) of the eastern Betics (Krijgsman et al., 2000). In its eastern part, Tortonian 
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123 evaporites (gypsum and halite) of the Lorca and Fortuna basins are overlain by thick successions 

124 of late Tortonian and Messinian continental sediments (Garcés et al., 1998; 2001; Kruiver et al., 

125 2002), indicating the marine connection through the northern Betics had ceased to exist. These 

126 successions were dated by integrated magneto-biostratigraphy (small mammals) and show that 

127 the marine to continental transition takes place at 7.6 Ma (Garcés et al., 2001). The Guadix Strait 

128 connected the eastern end of the Guadalquivir with the Mediterranean; it was open between 8.1 

129 and 7.8 Ma (Betzler et al., 2006; Hüsing et al., 2010), and less than 2 km wide and around 70 m 

130 deep when the last marine sediments were deposited (Martin et al., 2014). A major hiatus 

131 separates its marine sediments from the continental deposits above (Hüsing et al., 2010, 2012; 

132 Minwer-Barakat et al., 2009), but so far no evidence exists that the Guadix seaway persisted during 

133 the Messinian. The Zagra strait connected the Guadalquivir Basin to the Mediterranean via the 

134 Granada Basin. In the Granada basin, the late Miocene sediments show a marine-continental 

135 transition, via a series of shallow-water evaporites, that is dated by biostratgraphic techniques at 

136 7.37-7.24 Ma (Garcia-Garcia et al. 2009; Corbi et al 2012). Lastly, the Guadalhorce Strait was a 2-5 

137 km wide and 30 km long passage that was thought to be the last Betic seaway and the only one 

138 open in the Messinian (Martin et al., 2001, 2014), although previous studies date these marine 

139 deposits as Tortonian (Lopez-Garrido and Sanz de Galdeano 1999). New age constraints on the 

140 fine portion of the sediments from the Arcos, Ronda and Antequera basins, on which the existence 

141 of this strait has been based, all revealed a late Tortonian age (Van den Berg, 2016; Van der Schee 

142 et al., 2018). A late Tortonian closure of the Guadalhorce connection is in agreement with the onset 

143 of compression and uplift of the area (Jimenez-Bonilla et al, 2015) and the changes in depositional 

144 environment in the Malaga region (Guerra-Merchán et al., 2010). 

145 In summary, there is no evidence of any Mediterranean-Atlantic connection through Spain 

146 after the Tortonian. 

147

148 2.2 Connections through northern Morocco

149 The Rifian gateway consisted of two distinct connections: the North and South Rifian 

150 Corridors (Fig. 2). Palaeogeographic reconstructions of depositional environments in the late 

151 Miocene sedimentary basins of Northern Morocco, based on surface–subsurface correlations, 

152 helped to elucidate the temporal and spatial evolution of the Rifian Corridor (Capella et al., 2017a; 
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153 2018). The restriction of the southern branch had already started in the late Tortonian-early 

154 Messinian (Krijgsman et al., 1999b; Ivanovic et al., 2013) and was driven by a phase of enhanced 

155 uplift along high angle faults (Capella et al., 2017b, 2018). Improved biostratigraphic dating of the 

156 continuous transition from marine to continental-lacustrine deposition shows that the South 

157 Rifian Corridor closed at 7.1-6.9 Ma (Capella et al., 2017a; 2018). 

158 The closure age of the North Rifian Corridor is less well-constrained because the marine-

159 continental transition is commonly missing in most of the scattered outcrops (Achalhi et al., 2016; 

160 Tulbure et al., 2017). The open and relatively deep marine sediments deposited in the North Rifian 

161 Corridor are all late Tortonian in age >7.35 Ma (Tulbure et al., 2017). The assemblages of 

162 planktonic foraminifera and calcareous nannoplankton reveal that the Messinian is not reached. 

163 The top parts of the marine successions may have been removed by erosion, but the observed high 

164 sedimentation rates in combination with the shallowing upward trend in the Tortonian suggests 

165 that marine sedimentation is likely to have ended in the earliest Messinian around 7.0 Ma (Tulbure 

166 et al., 2017). We conclude that a connection through the northern basins could have persisted only 

167 for a short time after the enhanced rates of uplift that started during the late Tortonian. 

168 In summary, there is also no evidence of a Mediterranean-Atlantic connection through 

169 Morocco after 6.9 Ma.

170

171 3. SOLVING THE GATEWAY CONUNDRUM

172 3.1 The evidence for an Atlantic connection during the MSC 

173 The large volume of evaporites preserved in the Mediterranean necessitates that one or more 

174 marine connections with the Atlantic remained, at least until the end of the halite stage (5.55 Ma; 

175 Roveri et al., 2014a), and possibly during the entire MSC (Roveri et al., 2014b). The onset of the 

176 Messinian Salinity Crisis occurred at 5.97 Ma (Manzi et al., 2013) with synchronous precipitation 

177 of the Primary Lower Gypsum (PLG) in marginal basins around the Mediterranean during MSC 

178 Stage 1 (Krijgsman et al., 1999a, 2001; 2002; Roveri and Manzi, 2006; Manzi et al., 2007). The PLG 

179 successions are all sufficiently similar in terms of number, vertical facies distribution and overall 

180 stacking pattern of cycles and can be used for basin-wide correlations on a bed-to-bed scale (Lugli 

181 et al., 2010). The stratigraphic similarities combined with the characteristic Sr isotope values, close 

182 to open ocean values, indicate the PLG precipitated from a relatively homogeneous Atlantic-fed 
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183 water body with a restricted outflow (Lugli et al., 2007, 2010). The restricted outflow scenario 

184 implies that Mediterranean water level remained equal to the Atlantic at a level substantially 

185 higher than the Gibraltar sill (Krijgsman and Meijer, 2008).

186 The halite deposits of Stage 2 only developed in the deep Mediterranean basins and are 

187 commonly linked to the last two peak glacials TG12–14 of the Messinian glacial interval (Hilgen et 

188 al., 2007; Roveri et al., 2014a). The observed thickness of the halite unit in the seismic profiles of 

189 the western Mediterranean basin is 600–1000 m, while at least 1500 m have been reported from 

190 the eastern Mediterranean basin (Lofi et al., 2005). Quantitative box model analyses indicate that 

191 a scenario of Atlantic inflow with blocked Mediterranean outflow and the evaporative loss of 

192 freshwater, results in the precipitation of a volume of salt that is comparable to the thickness and 

193 extent of the seismic interpretations (Krijgsman and Meijer, 2008). In any case, a Mediterranean-

194 Atlantic gateway is still required to feed the Mediterranean with salt during halite deposition, 

195 although this connection may have been episodic during salt precipitation.

196 The scenarios that envisage a major drawdown of Mediterranean water level during the MSC 

197 generally place the peak desiccation during, or after, the halite unit (Lofi et al., 2005; Ryan, 2008; 

198 Bache et al., 2009, 2015). In terms of Mediterranean–Atlantic gateway exchange, the subsequent 

199 MSC Stage 3 is the most enigmatic phase, with mixed signals coming from the Upper Evaporites 

200 with gypsum beds and rare halite layers indicating high salinities and Lago-mare associations 

201 which contain fresh to brackish water fauna and flora (Londeix et al. 2007; Bassetti et al., 2003, 

202 2006; Orszag-Sperber, 2006; Stoica et al., 2016). During MSC Stage 3 the Mediterranean may have 

203 been completely isolated from the open ocean until the return to normal open marine conditions 

204 after the Miocene–Pliocene boundary at 5.33 Ma (e.g. Hsü et al., 1973; Ryan, 2009). Alternatively, 

205 it may have experienced a two-step flooding (Bache et al., 2012) or (quasi) continuously received 

206 Atlantic inflow (Roveri et al., 2014; Marzocchi et al., 2016). The occurrence of marine fish 

207 (Carnevale et al., 2006, 2008) and long chain alkenones (Vasiliev et al., 2017) strongly hint at the 

208 possible persistence, continuous or episodic, of an Atlantic connection, which could also explain 

209 the sporadic occurrence of anomalously small or “dwarf” foraminifers (Iaccarino et al., 2008) and 

210 the presence of marine dinoflagellates (Pellen et al., 2017) in Stage 3 deposits. 

211

212 3.2 The Gibraltar remedy 
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213 The Strait of Gibraltar is the modern day connection between the Atlantic and the 

214 Mediterranean. The assumption of a catastrophic, early Pliocene opening of this strait is based 

215 upon (i) the requirement of a closed connection during the final phase of the MSC (Hsü et al., 1973, 

216 1978) and (ii) the seismic evidence of an incised channel that dips gently from the Gibraltar sill 

217 towards the Alborán Sea. This incision is not dated directly, but can be followed for at least 300 km 

218 towards the east (Estrada et al., 2011; Fig. 3a) where it merges laterally with the Messinian 

219 erosional surfaces and it is locally filled with Plio-Quaternary sediments (Garcia-Castellanos et al., 

220 2009). The only evidence for a Pliocene opening comes from seismic profiles that show two 

221 canyons cutting into Miocene reflectors in the Alborán Basin (Esteras et al., 2000). The deep 

222 erosional incision of this channel, which is particularly well imaged on the Atlantic side of the 

223 Alborán basin, indicates that lowering of the base level on the Mediterranean side must have taken 

224 place (Garcia-Castellanos et al., 2009). An accurate age determination for these channel reflectors 

225 is lacking, implying that it cannot be completely ruled out that they could have been (partly) 

226 formed earlier during the MSC. In the deepest part of the Western Alborán basin, at site ODP 976 

227 (Comas et al. 1999), this reflector separates lower Messinian pelagic deposits from lower Pliocene 

228 sediments, indicating that this erosion could have formed at the base of the Pliocene or anytime 

229 between the early Messinian and the base of the Pliocene. Anyway, (re-)opening of the Strait of 

230 Gibraltar at the Miocene-Pliocene boundary does not exclude that the gateway was open during 

231 earlier phases of the Messinian, and that the erosional features (partly) formed during stage 2 of 

232 the MSC.  

233 The area of the Gibraltar Corridor lacks clear evidence for crustal extension as a driving 

234 mechanism for its Pliocene opening; consequently, erosional processes are preferred (see review 

235 in Loget and Van Den Driessche, 2006). However, the Messinian Gibraltar Corridor was likely to 

236 be influenced by the evolution of the contiguous Western Alborán Basin, which is thought to record 

237 the constant pull of the Gibraltar slab throughout the Miocene (Do Couto et al., 2016). During the 

238 Tortonian, the Western Alborán Basin documented partial inversions and transpressional 

239 structures accompanied by localised subsidence (Comas et al., 1999; Do Couto et al., 2016). Models 

240 showed that slab sinking would lead to dynamic subsidence (Govers and Wortel, 2005), which can 

241 occur coevally with regional uplift trends and without requiring surface extension.  Slab-sinking in 

242 the Gibraltar area has therefore been proposed as the main mechanism to provide the required 
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243 topographic lowering for the modern Gibraltar Straits to form (Govers, 2009). Given the western 

244 Alborán was always affected by the slab-sink (Do Couto et al., 2016), which steepened after the 

245 cessation of slab-roll back around ca. 8 Ma (Govers, 2009), we propose that shallow connections 

246 through the Gibraltar Corridor could have been always present from a dynamic topography 

247 perspective. The paleo-channel may have been subdivided in a northern and southern strait, as 

248 suggested by reconstructed stratigraphy from drill cores (Esteras et al., 2000; Fig 3b). These two 

249 straits are filled with ca. 300 m of undated, mud and flysch breccia, void of recognizable 

250 foraminifera (Sierro, unpublished data).  

251

252 3.3 Dimensions of the Messinian Gibraltar Corridor 

253 The conclusion that the Gibraltar Corridor was the only, but previously ignored, 

254 Mediterranean-Atlantic gateway during MSC times raises the question if there is anything that can 

255 be deduced about its depth, width and length. All numerical investigations on Messinian gateways 

256 (e.g., Meijer, 2006; Meijer, 2012; Rohling et al., 2008; Simon and Meijer, 2015; Simon et al., 2017; 

257 Topper et al., 2011; Topper and Meijer, 2013, 2015) agree that to increase the salinity of the 

258 Mediterranean Sea, its outflow into the Atlantic has to decrease greatly relative to the Atlantic 

259 inflow. One possibility to do so is by restricting the dimension of the Atlantic-Mediterranean 

260 connection. The exact geometry of the Messinian Gibraltar Corridor is arguably impossible to 

261 reconstruct, eroded subsequently by episodes of erosions and slumps (Blanc, 2002). However, 

262 given the longer (100-150 km) and narrower (10-15 km) morphology of the Corridor at depth (-

263 200 m isobaths; Fig. 3), a possible option is that the region of the modern Mediterranean-Atlantic 

264 connection underwent a similar magnitude (~200 m) subsidence from the late Miocene to present 

265 day, driven by slab-pull (Govers, 2009).

266 The presence of an E-W oriented rectilinear incision, four times longer than today (following 

267 isobaths -200 m; Fig. 3b) suggests that the Gibraltar Corridor may have been a long, narrow and 

268 elongated channel. The buried strait is represented by isobaths -100 or -200 m; for these 

269 submarine features the reconstructed portion of straight line is much longer (ca. 40 and 80 km, 

270 respectively) than present-day, and trends approximately the same (N70E to N80E).  The width of 

271 the paleo-channels spans 10-15 km at isobaths -100 m, and 10-30 km at -200 m. These rectilinear 
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272 features may reflect hydrological incision during the formation of the Corridor (Blanc, 2002), 

273 caused by a relatively lower sea-level in the area. 

274 If the palaeo-coastline was to be set at -200 m in Gibraltar bathymetry, and the sediment infill 

275 removed from the channels, then the strait would be ca. 80 km long and divided in two channels 

276 in a cross-section (Fig. 3b), with the southern one approximately two km wide and 400 m deep, 

277 and the northern one four km wide and 400 m deep. 

278 Simon and Meijer (2015) indicated that Atlantic-Mediterranean exchange during the PLG was 

279 approximately 25-10% of the present-day value at the Strait of Gibraltar. Their correlation of 

280 exchange flux to gateway dimensions indicates that the gateway present prior to a potential 

281 disconnection from the Atlantic must have been relatively small (in the order of width ~2-5km and 

282 depth ~20-10 m, if length is taken to be short at ~25-50 km). However, (1) a longer gateway length 

283 allows for a greater cross-sectional area, while sustaining the same basin salinity due to friction 

284 (Simon and Meijer, 2015) and (2) a heavily stratified Mediterranean basin allows for more 

285 vigorous and therefore larger strait dimensions than previously thought (Simon and Meijer, 2017).

286 In the following we use the Mediterranean environmental constraints on salinity to 

287 reconstruct the possible dimensions of the Gibraltar Strait during the Messinian. Meijer (2012) 

288 used hydraulic control theory for a rectangular sill geometry in combination with a full 

289 Mediterranean Sea to calculate the exchange fluxes and basin salinity for a certain gateway depth 

290 and width. Figure 4 uses the same equations in reverse to estimate the gateway depth and width 

291 for the Mediterranean salinities associated with the different MSC stages (Roveri et al., 2014; 

292 Flecker et al., 2015; Kouwenhoven et al., 2003): pre-7.2 Ma, the Mediterranean salinity was similar 

293 to the present, only a couple of g/kg higher than open ocean salinity; at 7.2 Ma and 6.8 Ma the 

294 salinity stepped up, but did not reach gypsum saturation; around 6.0 Ma, gypsum saturation (~130 

295 g/kg) was reached; at 5.6 Ma halite saturation (~350 g/kg) was reached; at 5.55 Ma the basin 

296 returned to gypsum saturation and at 5.33 Ma normal marine conditions were established. To 

297 estimate the gateway dimensions for these salinities we assume a constant mean Mediterranean 

298 freshwater forcing following recent estimates (Simon et al., 2017) and no additional input from 

299 Paratethys. Figure 4 clearly demonstrates that the gateway size needs to be drastically reduced; 

300 potentially by mechanisms described above. The estimates given here illustrate a lower 

301 dimensional bound; likely the gateway was slightly wider or deeper and effective restriction was 
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302 caused by factors such as friction (Simon and Meijer, 2015) or basin stratification (Simon and 

303 Meijer, 2017). In addition, water may have been transported through extensive karst connections.

304

305 4. EPILOGUE

306 The late Miocene-early Pliocene palaeogeographic evolution of Mediterranean-Atlantic 

307 connectivity took place in several distinct steps. During the late Tortonian numerous connections 

308 still existed through southern Spain and northern Morocco and probably also through the Gibraltar 

309 Corridor (Fig. 5a). Slab retreat in the western Mediterranean subduction zone underneath the 

310 Gibraltar Arc came to a hold in the late Tortonian (Van Hinsbergen et al., 2014) after which tectonic 

311 uplift processes took over in the Betic (at ~7.8 Ma; Betzler et al., 2006; Krijgsman et al., 2006) and 

312 slightly later in the Rif orogeny (at ~7 Ma; Capella et al., 2017a; Tulbure et al., 2017). During the 

313 early Messinian, all the Betic connections and the North Rifian Corridor were closed by Africa-

314 Iberia convergence processes (e.g., Spakman et al., 2018). The South Rifian Corridor was still open 

315 during the earliest Messinian, but a marked transition to continental and lacustrine deposits dates 

316 its closure at <6.9 Ma (Capella et al., 2017b). A gap of one million year separates the last field 

317 evidence of marine connection and the onset of the MSC in the Mediterranean. Based on the new 

318 MEDGATE age constraints and gateway analyses, there is no direct evidence of a Mediterranean-

319 Atlantic gateway through southern Spain or northern Morocco from 6.9 Ma until 5.33 Ma. 

320 Consequently, the Gibraltar Corridor became the sole Atlantic gateway during the Messinian and 

321 its paleogeographic reconstruction indicates a slightly different configuration than today, 

322 picturing a potential gateway with two small channels towards the Alboran basin (Fig. 5b, c). The 

323 Gibraltar Corridor probably delivered salt waters to the Mediterranean during all successive 

324 stages of the MSC, but it changed from an open marine two-way connection during PLG times (e.g. 

325 Simon and Meijer, 2017) towards a putative unidirectional flow into the Mediterranean during the 

326 halite and Lago-mare phases. The basal Zanclean re-flooding of the Mediterranean could then 

327 correspond to a dramatic change in the inflow-outflow balance, effectively starting a 

328 Mediterranean pump scenario conform Marzocchi et al. (2016). The re-enlargement of the 

329 gateway at 5.33 Ma does not correlate to a major deglaciation or sea level increase in the global 

330 paleoclimatic records (Van der Laan et al., 2006). The deepening of the Gibraltar Strait at the 
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331 beginning of the Pliocene has most likely a geodynamic forcing, e.g., being related to slab dynamics 

332 in the upper mantle (Garcia-Castellanos and Villasenor, 2011; Spakman et al., 2018). 

333  An early, pre-Pliocene connection through Gibraltar is in agreement with growing evidence 

334 that the Mediterranean Sea was principally a deep, non-desiccated basin during most of the MSC. 

335 A proper reconstruction of Mediterranean water level changes, especially during MSC stages 2 and 

336 3, is currently one of the most crucial tipping points to finally resolve the complete story of water 

337 exchange between the Atlantic and Mediterranean during the MSC.  We conclude that the Gibraltar 

338 Corridor being open during the Messinian is a more plausible scenario than several hundred km 

339 long and shallow straits through Morocco and/or Spain, although it still requires direct evidencing 

340 of a Messinian connection through Gibraltar to substantiate its exact configuration. We therefore 

341 suggest that future field and drilling campaigns should target the western Alborán and Gibraltar 

342 Strait regions directly in order to confirm the geological conundrum of a Messinian watergate.
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617 FIGURE CAPTIONS

618

619 Figure 1: Map of the wider Mediterranean region. Two extreme MSC scenarios are shown; top 

620 panel: a 1500 m sea-level drop; bottom panel: deposition with normal sea-level. Modified after 

621 “The First Eden: The Mediterranean World and Man” by David Attenborough (1987).

622

623 Figure 2: Top-right: Map of the western Mediterranean region with most relevant orogenic fronts. 

624 Top-left: Zoom into the Gibraltar region indicating locations of all known Mediterranean-Atlantic 

625 seaways that existed during late Miocene and Pliocene. Bottom: Temporal evolution of the marine-

626 continental transitions of the gateways and a simplified Mediterranean sedimentary succession, 

627 following Flecker et al., 2015. The open marine nature of the Strait of Gibraltar since 5.3 Ma is 

628 based on the contourite record in the Atlantic Ocean to the west of the Strait, in the Gulf of Cádiz 

629 (Van der Schee et al., 2016).

630

631 Figure 3: A) Present-day coastline and bathymetric contours (200 m, 400 m, 800 m) of the Strait 

632 of Gibraltar region (after Blanc, 2002). B) N-S cross-section cutting through the Gibraltar Straits 

633 after Esteras et al. (2000) and Garcia-Castellanos et al. (2009). Location of transect in inset A. 

634 Combined, these two insets indicate two long paleo-strait-channels potentially active before the 

635 Zanclean flood.

636

637 Figure 4: Correlation of Mediterranean salinity environments (A) to the gateway dimensions (B) 

638 throughout the late Miocene, following Meijer (2012).

639

640 Figure 5: Late Miocene Pliocene palaeogeographic evolution of the Mediterranean-Atlantic 

641 gateways updated with results of the present study. Blue arrows represent palaeocurrents derived 

642 from the literature (e.g., Martin et al., 2014; Capella et al., 2018). The eastern Alborán volcanic arc 

643 may have created a system of interconnected islands in the Messinian (Booth-Rea et al., 1016). The 

644 Strait of Gibraltar is here put forward as the last Messinian gateway. Sketch modified after Martin 

645 et al., 2001, 2009, 2014; Achalhi et al., 2016.
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