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RUNNING TITLE 9 

Mpl loss and β-lactamase production 10 

 11 

ABSTRACT 12 

The hyperproduction of chromosomally encoded β-lactamases is a key method of acquired 13 

resistance to ceftazidime, aztreonam, and when seen in backgrounds having reduced envelope 14 

permeability, carbapenems. Here we show that loss of Mpl, a UDP-muramic acid/peptide ligase, 15 

is a common and previously overlooked cause of chromosomally encoded β-lactamase 16 

hyperproduction in clinical isolates of Stenotrophomonas maltophilia and Pseudomonas 17 

aeruginosa, important pathogens notorious for their β-lactam resistant phenotypes. 18 

 19 

TEXT 20 

Stenotrophomonas maltophilia clinical isolates are resistant to almost all β-lactams because of the 21 

production of two β-lactamases: L1, a subclass B3 metallo-β-lactamase and L2, a class A extended 22 

spectrum β-lactamase (1) Production of L1 and L2 is co-ordinately controlled by AmpR, a LysR-type 23 

transcriptional activator and induced during β-lactam challenge of cells (2). Where previously 24 

characterised, AmpR regulators have been shown to bind two ligands in a competitive manner (3, 4). 25 

As summarised in Figure 1, the AmpR activator ligand, an anhydro-muramyl-penta-peptide is produced 26 

during β-lactam challenge via the concerted actions of lytic transglycosylases, which release 27 

N-acetylglucosamine-anhydro-muramyl-peptides from peptidoglycan (5) and AmpG, a permease that 28 

transports them into the cytoplasm (6, 7). NagZ, an enzyme that removes the N-acetylglucosamine 29 

moiety is also necessary to release the AmpR activator ligand in some species (8), though not in 30 

S. maltophilia (9). The AmpR repressor ligand is a UDP-muramyl-penta-peptide (10). It is produced 31 



 

2 
 

via sequential addition of amino acids to a UDP-muramyl substrate, via four separate ligase enzymes, 32 

MurC (11), MurD (12), MurE (13) and MurF (14), with the last adding a D-alanine/D-alanine dipeptide 33 

made by a fifth ligase enzyme, Ddl (15). Mpl is an enzyme that can ligate a ready-made penta-peptide 34 

onto the UDP-muramyl substrate, skipping the MurC, D, E, Ddl and MurF ligation reactions, each of 35 

which requires ATP hydrolysis (16). This Mpl catalysed reaction therefore saves considerable amounts 36 

of energy for the cell. Its penta-peptide substrate comes from breakdown of 37 

anhydro-muramyl-penta-peptides by the peptide amidase AmpD. In this way, breakdown of the 38 

anhydro-muramyl-penta-peptide AmpR activator ligand by AmpD is also directly linked to production 39 

of the UDP-muramyl-penta-peptide AmpR repressor ligand by Mpl (2, 5, 17, 18) (Fig. 1). 40 

Ceftazidime is a relatively weak substrate for both L1 and L2 β-lactamases from S. maltophilia, and so 41 

many clinical isolates remain ceftazidime susceptible (1). However, mutants that have acquired 42 

ceftazidime resistance can easily be identified in the laboratory, and ceftazidime resistant isolates are 43 

commonly encountered in the clinic. In most cases, these mutants hyperproduce L1 and L2 (19). 44 

Mutations that reduce AmpD function are known to boost L1/L2 production, because the AmpR 45 

activator ligand is broken down much less if AmpD is damaged (20). Mutations that (presumably) 46 

increase peptidoglycan turnover, releasing more muropeptides, also activate L1/L2 production, e.g. 47 

those in PBP1A, encoded by mcrA (21) and in the lytic transglycosylase MltD, because this mutation 48 

stimulates the net production of lytic transglycosylase activity in the cell (22). Mutations in AmpR also 49 

activate L1/L2 production (4). We have previously characterised ceftazidime resistant, β-lactamase 50 

hyper-producing laboratory selected mutants derived from the extremely well studied clinical isolate 51 

K279a. One of these mutants, KCAZ14, was wild-type for ampR, ampD, and mcrA (19). To identify 52 

the mutation responsible, whole genome resequencing was performed by MicrobesNG (Birmingham, 53 

UK) on a HiSeq 2500 instrument (Illumina, San Diego, CA, USA). Reads were trimmed using 54 

Trimmomatic (23) and assembled into contigs using SPAdes 3.10.1 55 

(http://cab.spbu.ru/software/spades/). Assembled contigs were mapped to reference genome for 56 

S. maltophilia K279a (24) obtained from GenBank (accession number NC_010943) using 57 

progressiveMauve alignment software (25). The only mutation identified in KCAZ14 was a deletion of 58 

18 nucleotides in mpl gene, deleting amino acids 141-146 of Mpl. The level of β-lactamase production, 59 

measured as previously (19) was similar for the mpl mutant KCAZ14, for an ampD loss of function 60 

mutant KCAZ10 (19) and for KM11, an ampR activatory mutant (4) (Table 1). To confirm involvement 61 

of mpl loss in the β-lactamase hyper-producing, ceftazidime resistant phenotype of KCAZ14, we 62 

attempted complementation in trans. K279a mpl was amplified by PCR as previously (19) with primers 63 

mpl_F (5’-ACCAGATCCAGGTACCGCC-3’), mpl_R (5’-TCTCACATCCCGTGTAGGACT-3’). 64 

The product was blunt-end ligated into pBBRMCS-5 (GmR) (26, 27) digested with SmaI and the 65 

resulting recombinant plasmid used to transform KCAZ14 to gentamicin resistance (15 µg.mL-1) via 66 

electroporation. The ceftazidime MIC against KCAZ14(pBBRMCS-5) was 64 µg.mL-1 and reduced to 67 
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4 µg.mL-1 in KCAZ14(pBBRMCS-5::mpl), the same as the MIC against wild-type K279a. Production 68 

of β-lactamase was also reduced to wild-type levels in KCAZ14(pBBRMCS-5::mpl) (Table 1) adding 69 

further confirmation of successful complementation.  70 

We have four ceftazidime resistant, β-lactamase hyperproducing clinical S. maltophilia clinical isolates 71 

in our collection: isolates 49-6147, 3800 and 98 (19) and ULA-511 (28) (Table1). Isolate 98 has an 72 

Insertion Sequence element disrupting ampD (19). Whilst we also found a mutation causing an 73 

Ala85Gly change in Mpl, the same mutation is carried by ~5% of S. maltophilia genomes in the 74 

Genbank database so is probably insignificant. The other three clinical isolates have mpl mutations. In 75 

49-6147, the mutation causes the deletion of amino acids 92-109, which disrupts the conserved 76 

Ser-Gly-Pro region (29). In 3800, there is a frameshift at codon 368 and in ULA-511 there is a nonsense 77 

mutation at codon 360. 78 

The result of Mpl loss in KCAZ14 and these clinical isolates will be a build-up of penta-peptides 79 

released by AmpD (Fig. 1). Even though there are other enzymes that can break down these penta-80 

peptides, it seems reasonable to hypothesise that this net accumulation of penta-peptide will affect 81 

AmpD activity by feedback inhibition, increasing the concentration of its substrate, the AmpR activator 82 

ligand, causing β-lactamase hyper-production (18).  83 

This is the first report of mpl disruption causing β-lactamase hyperproduction in S. maltophilia, and to 84 

find it in 3/4 clinical isolates was striking. It is also interesting to find that mpl loss of function mutations 85 

have been seen to accumulate in Pseudomonas aeruginosa populations carried by people with Cystic 86 

Fibrosis during long term colonisation in two separate studies (30, 31) and also in 3/4 patients with 87 

P. aeruginosa mediated ventilator associated pneumonia (32). Indeed, mpl mutation has been identified 88 

as a cause of AmpC β-lactamase hyperproduction in one P. aeruginosa PAO1 laboratory selected 89 

transposon-insertion mutant (33). Whilst this did not dramatically increase β-lactam MICs (33), PAO1 90 

is relatively permeable to β-lactams, because it lacks many of the efflux pump/porin altering mutations 91 

seen in clinical isolates (34). Therefore, it would seem reasonable to propose that these clinically 92 

acquired P. aeruginosa mpl mutations are being selected by β-lactam therapy. We have a small 93 

collection of ceftazidime resistant P. aeruginosa clinical isolates, of which 2/5 have previously been 94 

confirmed to hyperproduce AmpC (35). Both have a mutation in mpl, according to whole genome 95 

sequencing. The mutations in isolates 86-14571 and 73-56826 cause Met297Val and an Arg103His 96 

changes in Mpl, respectively. We conclude, therefore, that mpl loss in S. maltophilia and P. aeruginosa 97 

is a clinically important and previously under-reported cause of β-lactamase hyperproduction and 98 

acquired β-lactam resistance. 99 

 100 

 101 
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Fig 1 109 

 110 

 111 

Fig 1 Role of Mpl in peptidoglycan recycling and AmpR activation. 112 

The schematic shows that N-acetylglucosamine (black square)-anhydro-muramyl (green diamond)-113 

penta-peptide (purple triangle) is removed from peptidoglycan by lytic transglycosylases such as Slt70 114 

and enters the cytoplasm through the permease AmpG. NagZ removes the N-acetylglucosamine group 115 

to produce the anhydro-muramyl-penta-peptide AmpR activator ligand (“+ve”). AmpD then releases 116 

the penta-peptide ready to be linked to a UDP-muramic acid molecule (red diamond) by Mpl to produce 117 

the UDP-muramyl-penta-peptide AmpR repressor ligand (“-ve”). This can then be further incorporated 118 

into the biosynthetic pathway and processed by MurG and MraY, which add N-acetylglucosamine and 119 

penicillin binding proteins, which add these high energy N-acetylglucosamine-muramyl (white 120 

diamond)-penta-peptide substrates to the nascent peptidoglycan strand. UDP-muramyl-penta-peptide 121 

formation can also occur without peptidoglycan recycling, through the sequential addition of amino 122 

acids to UDP-Muramic acid. However, this requires five moles of ATP per mole of UDP-muramyl-123 

penta-peptide, whilst the recycling pathway only requires one. 124 

 125 

 126 
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Table 1 127 

β-Lactamase activity (nmol.min-1.µg-1 protein nitrocefin hydrolysed in cell extracts) observed in 

S. maltophilia K279a and in ceftazidime resistant K279a mutants and clinical isolates carrying 

different mutations. 

Isolate Mean β-lactamase 

activity ±SEM 

Relevant amino acid changes 

(Relative to K279a) 

K279a 0.02±0.004 WT 

KM11 0.99±0.03 Asp135Asn in AmpR 

KCAZ10 1.52±0.04 159-168del in AmpD 

KCAZ14 0.72±0.01 140-146del in Mpl 

49-6147 0.45±0.12 92_109del Mpl 

3800 0.73±0.03 Truncation at 368 in Mpl 

98 1.76±0.07 IS insertion in ampD; Ala85Gly* in Mpl 

ULA-511 1.19±0.01 Truncation at 360 in Mpl 

   

KCAZ14 (pBBRMCS-5) 1.14±0.10  

KCAZ14 (pBBRMCS-5::mpl) 0.03±0.003  

 128 

*Random Genetic Drift 129 

WT: Wild type 130 

 131 

  132 
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