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Highlights 

We proposed a novel approach to support consensus reaching processes in multi-attribute large-group 

decision making, based on comprehensive behavior classification and adaptive weight updating. The main 

contributions are as follows: 

 Comprehensively classify modification behaviors of decision makers into 3 categories using the 

constructed cooperative index and non-cooperative index. 

  Uninorm aggregation operator is used for decision weight updating, laying either award or penalty on 

decision makers in accordance with their modification behavior. 

 In order to lay stricter behavior supervision on highly-weighted clusters, the adaptive weight updating 

scheme is formulated based on a uninorm aggregation operator with floating neutral element. 
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Abstract 

Consensus reaching process (CRP) has received increasing attention in recent years, as the demand for 

decision results with mutual agreement has greatly grown. With the current tendency to introduce 

e-democracy and public participation into decision making for public issues, decision makers from various 

backgrounds are more likely to encounter conflict when attempting to reach a consensus, especially under a 

multi-attribute large-scale group decision making framework. In order to improve the efficiency of the CRPs, 

different consensus models have been proposed. Specific patterns of behaviors presented by decision makers, 

such as non-cooperative behaviors and minority opinions, are also strictly supervised in these models. 

However, not every type of behaviors is specifically defined and given directed treatment, this includes the 

behavior of highly-weighted clusters, which may seriously bias group consensus. In this paper, we present a 

novel CRP model named uninorm-based comprehensive behavior classification (UBCBC) model with 

enhanced efficiency and rationality. First, a behavior classification model based on the calculation of a 

cooperative index and a non-cooperative index is proposed to classify three kinds of modification behaviors. 

                                                      
*
 Corresponding author 
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Second, decision weights in the next iteration of the CRP are updated using a uninorm aggregation operator 

to reward or penalize the behaviors of clusters. Furthermore, a floating neutral element is introduced into the 

uninorm aggregation operator to lay stricter supervision upon highly-weighted clusters. Finally, an 

illustrative example and a numerical simulation are implemented to prove that this model is of high 

efficiency and feasibility.  

Keywords: Multi-attribute large-scale group decision making; Consensus reaching process; Comprehensive 

behavior classification; Adaptive weight updating  

1. Introduction 

Group decision making (GDM) is an indispensable component in our daily lives. As the decision object 

and information involved getting more and more complex nowadays, an integrated group knowledge will be 

more comprehensive and insightful for us to get the decision done, and GDM has been developed according 

to the ever-changing environments. Multi-attribute large-scale GDM (MALSGDM) is a combination of the 

basic theory and procedure of GDM with an application context in which large number of decision makers 

(DMs) from multiple backgrounds make their evaluations toward a set of alternatives over multiple 

attributes and select the best alternative after the decision results are aggregated [1-3]. Given the wide 

variety DMs‘ different backgrounds and expertise, DMs will have different evaluations on attributes or 

ordering of alternatives and conflict can easily arises [4]. Recent research has paid great attention to the 

consensus degree reached after decision results are collected from DMs, especially regarding decision 

making for public issues such as environmental problems [5][6], policy making [7][8], and infrastructure 

planning [9][10]. 

Consensus reaching processes (CRPs) are widely utilized in the GDM and the MALSGDM problems. 
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The objective of the CRP is to reach a final decision which can satisfy most DMs, instead of giving some 

DMs an impression that their opinions are not considered seriously [11-13]. In a CRP, DMs or clusters of 

them [14][15] are asked to modify their decision results towards the aggregated group preference under the 

supervision of a moderator [16]. Under more complex circumstances where DMs are concerned with 

different aspects of the evaluation objects and thus every individual has a unique set of attributes and 

alternatives, suggestions for DMs to change their attributes and alternative set are also generated [17]. Many 

studies have investigated how to improve the efficiency of the CRPs, and the most widely used concept in 

the CRP is the co-called ―soft consensus‖ [18], during which a threshold of group consensus degree is 

predefined, and the CRP is conducted over DMs‘ or clusters‘ evaluation information to improve the group 

consensus degree of the decision result iteratively [19][20].   

However, certain modification behaviors of individuals or clusters may prevent the group from reaching 

a consensus and these behaviors can be generalized as non-cooperative behaviors. In this paper, evaluation 

modification behavior, or simply modification behavior, refers to the conduct that (clusters of) DMs present 

regarding their willingness to bring their preferences closer to the rest of the group. According to the study 

by R. Yager [21], driven by selfish intentions, DMs may strategically manipulate the GDM by the 

information they provide towards a direction that can benefit themselves, while at the same time disregard 

the intention of the majority. Indicated by [22], this strategic manipulation of GDM can also be achieved by 

assigning biased weights to different attributes. Palomares [23] proposed a quantitative model to detect and 

penalize the non-cooperative behaviors of DMs, and used Self-Organizing Maps to visualize the CRP. Xu [3] 

designed a comprehensive adjustment coefficient by combining both subjective and objective information to 

obtain modified preference matrices and identify non-cooperative behaviors. Quesada [24] proposed that a 

modification behavior should be quantified by the number of assessments that move closer to consensus, and 
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that stricter restrictions should be laid upon DMs as the CRP proceeds in order to stimulate cooperative 

behaviors. This methodology demonstrated that a properly evolving regulation on DMs can enhance the 

efficiency of the CRP compared with a steady regulation system. In [25], three types of non-cooperative 

behaviors were proposed: (i) non-cooperative behaviors owing to a DM‘s refusal to change their preferences; 

(ii) non-cooperative behaviors owing to dishonest expression; and (iii) non-cooperative behaviors owing to 

significantly distinct preferences. After identifying different types of non-cooperative behaviors that the 

DMs present, dynamic multi-attribute mutual evaluation matrices (MMEMs) which evaluate DMs‘ 

professional skills, cooperation as well as fairness are updated and experts‘ weights are derived from 

MMEMs iteratively. This precise quantified description of different kinds of non-cooperative behaviors 

shows high efficiency and can help us get the real intentions of DMs which are behind the information they 

provide, making it possible to manage non-cooperative behaviors according to its sources. While under more 

complex environment where DMs are not familiar with each other, generating MMEMs may be hard or 

costly and a more direct way for weight updating may be needed. 

It is worth noticing that for some DMs, after each round of modification behaviors, some assessments in 

the evaluation information may come closer to consensus, while other assessments may evolve in the 

opposite direction. This indicates that every modification behavior consists of both cooperative components 

and non-cooperative components, but previous studies categorize the overall behavior of a DM as either 

cooperative or non-cooperative exclusively. To date, studies concerning identification of modification 

behaviors have focused on only one of the two aspects, seldom taking both into account. Importantly, it 

should be noticed that for those who are deemed as non-cooperative, there may also exist certain degree of 

cooperativeness in their modified preferences, which should be also deemed as the presence of a cooperative 

behavior to some extent. Namely, the impact of a modification behavior on CRPs should actually be a fusion 
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of its consisting two (cooperative and non-cooperative) components. Based on this analysis, it is more 

rational to depict and define every modification behavior through the comprehensive consideration of both 

cooperative and non-cooperative components, thus giving every DM a more tailored and personalized 

treatment. 

In a CRP, aside from non-cooperative behaviors, other behaviors presented by individuals or clusters 

may also need to be specifically treated. For example, in [3], it was stressed that minority opinions are 

influential during the CRP, while owing to its comparatively low decision weight these minority positions 

can be easily overlooked. Considering the principle that every DM‘s preference should be taken into account, 

minority opinions need special attention. However, no study has yet investigated the influence of 

highly-weighted cluster opinions, namely majority opinions, on the efficiency of CRPs. In [26], it was 

pointed out that a highly-weighted cluster tends to be more aggressive in enforcing their own will against 

others, through its large number of members and high decision weight. For most circumstances, allocating a 

higher decision weight to a certain entity is deemed as a reward for its contribution to reaching a consensus, 

which also contains an expectation that they can keep up this cooperative behavior and contribute more. If 

the later modification behavior presented by a highly-weighted cluster evolves towards a rather 

non-cooperative one, it will seriously bias the group consensus, as it is much easier for a highly-weighted 

cluster to strategically manipulate group preference. In other words, the non-cooperative component of a 

modification behavior can be amplified by its high decision weight, thereby causing drastic conflict in the 

group.  

Meanwhile, it is entirely possible for a highly-weighted cluster to present non-cooperative behaviors, 

especially if the cluster is formed by a coalition of DMs with similar interests in mind. In most decision 

making problems, not all behaviors presented by DMs are consistent. In other words, it is possible for a DM 
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to be cooperative at the beginning of the process, and then become non-cooperative in later rounds of the 

CRP. The requirements for a modification behavior to be classified as cooperative should therefore be raised 

as decision weight increases. At the same time, if non-cooperative behavior is ever identified in 

highly-weighted clusters, they should be punished more severely compared with clusters with low decision 

weights, to prevent them from causing further conflict. 

  Based on the challenges discussed above, we propose a novel consensus model for MALSGDM 

problems, named as uninorm-based comprehensive behavior classification (UBCBC) model to tackle these 

gaps. The contributions of the proposed UBCBC model in this paper are summarized as, 

(i). In order to depict and define modification behaviors more rationally, the cooperative component and 

non-cooperative component of a modification behavior are separately quantified. Three types of 

behaviors, namely cooperative leading behavior, non-cooperative leading behavior and average 

behavior, are defined according to the constituent components of modification behaviors.  

(ii). Based on a uninorm aggregation operator, either reward or penalty is applied on the decision weight of 

each cluster of DMs according to the classification of its modification behavior to enhance the 

efficiency of reaching consensus in the CRP. 

(iii). In order to lay stricter behavior supervision on highly-weighted clusters in the CRP, a floating neutral 

element which is positively correlated with decision weight, is also introduced to the proposed 

UBCBC model. 

The remainder of this paper is organized as follows. Section 2 presents some basic concepts and 

knowledge concerning MALSGDM problems, the CRP procedures, and uninorm aggregation operators, as 

preparations for further discussion. In Section 3 and Section 4, we give detailed elaboration of the proposed 
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UBCBC model. In Section 3, we propose the methodology to quantify the cooperative component and 

non-cooperative component of a modification behavior. By comprehensive consideration of the cooperative 

index and the non-cooperative index, modification behaviors are classified into three categories and 

accordingly rewarded or penalized by using a uninorm aggregation operator. In Section 4, a uninorm 

aggregation operator with a floating neutral element is used to lay stricter supervision on highly-weighted 

clusters and regulate their behavior. Section 5 provides an illustrative example and a numerical simulation to 

justify the model we propose in this paper. Finally, some conclusions and future research interest are drawn 

in Section 6. 

2. Preliminaries 

This section provides preliminary information regarding MALSGDM problems, the CRP, and uninorm 

aggregation operators, in preparation for further discussion on these topics. 

2.1. MALSGDM problems 

For simplicity, let 𝑋 = *𝑥1, 𝑥2, … , 𝑥𝑚+ be a finite set of 𝑚 alternatives, let 𝐴 = *𝑎1, 𝑎2, … , 𝑎𝑛} be a 

finite set of 𝑛 attributes, and let 𝐷 = *𝑑1, 𝑑2, … , 𝑑𝑙+ be a finite set of 𝑙 DMs that evaluate alternatives. 

Usually, when the number of DMs exceeds 11, which is 𝑙 ≥ 11, it can be treated as a large-scale group 

decision making problem [3]. For a specific alternative, each DM 𝑑ℎ provides his/her opinion by means of 

a 𝑚 × 𝑛 matrix. Suppose 𝐸ℎ = (
𝑒11
ℎ … 𝑒1𝑛

ℎ

⋮ ⋱ ⋮
𝑒𝑚1
ℎ … 𝑒𝑚𝑛

ℎ
) is the evaluation matrix provided by DM 𝑑ℎ, where 

𝑒𝑖𝑗
ℎ  denotes the assessment on the attribute 𝑎𝑗  of alternative 𝑥𝑖 . As application scenario varies, the 

assessments made by DMs are expressed in different mathematical forms to tackle the uncertainty and 

complexity, including linguistic information [27], fuzzy preference relation [28], intuitionistic fuzzy set [29] 
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and etc. Here for brevity, the assessment 𝑒𝑖𝑗
ℎ  is presented in the form of accurate numerical value under a 

pre-determined scale, for example ,0,10-. 

Regarding the initial decision weight of a DM, it is common practice in GDM approaches based on 

behavior management to place equal weights on DMs before the CRP [30-32], so the initial decision weight 

vector of DMs can be denoted as 𝑊 = *𝑤1, 𝑤2, … , 𝑤𝑙+ = *
1

𝑙
,
1

𝑙
, … ,

1

𝑙
+. 

The procedural framework for a MALSGDM problem is briefly summarized as follows: 

Step 1: Normalization of data 

In order to remove the effect of magnitude of information, all assessments in evaluation matrices should 

be normalized into the interval ,0,1-. 

Step 2: Group clustering  

Clustering is recognized as an unsupervised machine learning method. The principle of clustering is to 

separate DMs into comparatively small clusters, in which DMs‘ evaluation information have higher 

consistency and a lower degree of conflict. Various clustering methods have been developed. Niknam [33] 

proposed a hybrid clustering algorithm based on K-means. Liu [34] developed a partial binary tree DEA-DA 

cyclic classification model to analyze DM‘s preferences and form clusters. When DM‘s preferences are 

illustrated in vector space, the relativity degree can be calculated by a certain measurement, which in 

essence transforms the relativity degree between two vectors into cosine similarity degree, to form clusters 

[35]. After clustering, individuals‘ evaluations are represented by the cluster‘s evaluations to simplify the 

CRP. Using the clustering method proposed by Xu [35], the group can be divided into several small clusters 

according to the evaluation matrices. 

Step 3: Aggregation of clusters‘ preferences 
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Various aggregation operators have been proposed to aggregate individuals‘ information, including 

weighted averaging (WA) operators, ordered weighted averaging (OWA) operators [36], and intuitionistic 

fuzzy weighted averaging (IFWA) operators [37]. In this paper, we adopt a WA operator to simplify this 

process. It will be used to aggregate individual evaluation matrices into a cluster evaluation matrix, and to 

aggregate clusters‘ evaluation matrices into group evaluation matrix in each iteration of the CRP. 

Step 4: Alternative selection 

   A proper selection methodology is used to order the alternatives and select the most suitable alternative 

for the decision making problem. 

2.2. The CRP framework 

   In real-world decision making problems, there is a growing demand to choose the alternative with a high 

consensus degree among DMs, especially in public decision making issues. In order to achieve a soft 

consensus among DMs, a CRP can be used to improve group consensus degree iteratively. Based on the 

general scheme of the CRP proposed by Palomares [23], the framework adopted in this paper for 

undertaking a CRP is illustrated below: 

(a) Calculate group consensus degree and determine parameters 

   Wang classified the consensus measure functions in clustering-based GDM approaches into two types: 

one is based on the compactness of clusters, and the other is based on the level of separation [38]. In this 

paper, the group consensus degree is evaluated by the average distance between clusters and aggregated 

group evaluation. By comparing it with a threshold, the moderator can determine whether the group needs to 

enter the next iteration of the CRP. The time for conducting the CRP cannot be unlimited, thus a maximum 

number of iterations needs to be determined as a stopping condition. 
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(b) Modify preferences and update decision weight 

   If the previous group consensus degree fails to meet the demand of the threshold, clusters are required to 

modify their evaluations in response to the specific explanations made by the moderator, to enhance group 

consensus degree. Actions taken to improve the efficiency of the CRP can be divided into two types: 

modification of evaluation information under compulsion, such as replacing parts of assessments of 

evaluation matrices with group evaluation [39]; and penalizing the decision weights of non-cooperative 

clusters [23]. During this process, various patterns of modification behaviors may be identified, such as 

non-cooperative behaviors and minority opinions. In this paper, modifications on evaluation matrices are 

done under no compulsion, while decision weights of clusters will be rewarded or penalized according to the 

classification of their modification behaviors. Meanwhile, behaviors of highly-weighted clusters are also 

given special treatment, as discussed later. 

(c) Generate feedback information 

   Following modification behaviors, the group consensus degree is once more calculated and compared 

with the consensus threshold, until it meets the demand or reaches the maximum number of iterations. 

   The general CRP framework in this paper is illustrated below as Fig. 1: 
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Fig. 1. Consensus reaching process for MALSGDM problems. 

   For a better understanding of how the CRP works, here we list two real-world examples to help the 

readers to gain a deeper insight. 

Example 1. A company is considering changing its market strategy next year. The board of directors has 

come up with 3 strategies to choose from. Each of the strategies is evaluated by the attributes of 

profitability, feasibility and conformity. They hold a formal meeting to discuss this issue and need to 

select one strategy by the end of the day. After the initial evaluation is done, a collective evaluation will 

be gained by summarizing individual evaluations based on each director‘s influence, which is affected 

by the proportion of shares he/she is holding. The chairman will act as a moderator to coordinate and ask 

everybody to modify their evaluations to help them achieve a balance between voicing their opinions 

and improving group consensus degree. If someone only cares about his/her own opinion and hampers 

the board from reaching a consensus, the board will consider less of this person‘s opinion and vice versa. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13 

Multiple rounds of discussion and modification may take place until a considerable consensus is 

achieved in the board or until the meeting‘s time is over. A final decision will be made based on the 

high-consensus evaluations. 

Example 2. A series of public hearings will be held by the local government to choose the best location 

for a waste disposal site from 3 possible locations. The representatives of the government, specialists, 

citizens from the neighborhood are going to discuss over this issue. The main aspects they are going to 

discuss will be the proposal‘s influence on the job market, surrounding environment, community safety 

etc. It will be hard for people from all walks of life to achieve a consensus at the beginning so there will 

always be several hearings before the final decision is made. During each hearing, the host will collect 

opinions from everyone by means of survey and will talk people into devoting to group consensus. If any 

participator does so, his/her opinion will be more valued by the hearing thus he/she will be given a 

higher decision weight. Once the local government confirms a preferable consensus is reached in the 

hearing, the final decision will be made. 

2.3. Uninorm aggregation operator 

A uninorm aggregation operator is a unification of t-norm and t-conorm operators, as proposed by Yager 

and Rybalov [40]. A unique property of the uninorm operator is that it can reinforce two-dimensional 

samples upwards or downwards, according to the identification of a neutral element. This property has been 

widely used in group decision making problems, including retrieving historical weight information [24], 

regulating strategic preference manipulation [41], and constructing gossip-based protocols [42]. The 

uninorm aggregation operator is defined as follows: 

Definition 1. A uninorm is a mapping, 
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𝑈: ,0,1- × ,0,1- → ,0,1-, 

having the following properties for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ,0,1- 

i ).  Commutativity: 𝑈,𝑎, 𝑏- = 𝑈,𝑏, 𝑎-; 

ii).  Monotonicity: 𝑈,𝑎, 𝑏- ≥ 𝑈,𝑐, 𝑑-, if 𝑎 ≥ 𝑐 and 𝑏 ≥ 𝑑; 

iii).  Associativity: 𝑈(𝑎, 𝑈(𝑏, 𝑐)) = 𝑈(𝑈(𝑎, 𝑏), 𝑐); 

iv).  Neutral element: ∃𝑔 ∈ ,0,1-: 𝑈(𝑎, 𝑔) = 𝑎. 

The distinction between a uninorm and t-norm or t-conorm is that a uninorm has a neutral element 𝑔 in 

the interval ,0,1-. If 𝑔 reaches 1 or 0, the uninorm evolves into a t-norm or a t-conorm. The uninorm 

aggregation operator performs differently when the input values vary, as illustrated in Fig. 2. 

Averaging Disjunctive

-

Conjunctive Averaging

a

g

g0 1

1

b

 

Fig. 2. Behaviors of a uninorm aggregation operator for different input values (adapted from [43]). 

A general form of the uninorm aggregation operator was given by Fodor [44] as: 

𝑈(𝑎, 𝑏) =

{
 
 

 
 𝑔 ∙ 𝑇𝑢 .

𝑥

𝑔
,
𝑦

𝑔
/                                   𝑖𝑓 0 ≤ 𝑎, 𝑏 ≤ 𝑔,                        

𝑔 + (1 − 𝑔)𝑆𝑢 .
𝑥−𝑔

1−𝑔
,
𝑦−𝑔

1−𝑔
/         𝑖𝑓 𝑔 ≤ 𝑎, 𝑏 ≤ 1,                         

 𝐴𝑢(𝑎, 𝑏)                                         𝑖𝑓 min(𝑎, 𝑏) ≤ 𝑔 ≤ max(𝑎, 𝑏).

  (1) 

where 𝑇𝑢 and 𝑆𝑢 can be any t-norm and any t-conorm operator, and 𝐴𝑢 is an averaging operator. It can be 

seen from the model that when both input values are greater than the neutral element, an upward 
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reinforcement is realized, and the aggregated value is higher than the inputs. When input values are below 

the neutral element, the opposite effect occurs. The uninorm aggregation operator used in this paper was 

introduced by Fodor [44], as illustrated below: 

𝑈(𝑎, 𝑏) =

{
 
 

 
 

𝑎𝑏

𝑔
                                 𝑖𝑓 0 ≤ 𝑎, 𝑏 ≤ 𝑔,                        

𝑎+𝑏−𝑎𝑏−𝑔

1−𝑔
                     𝑖𝑓 𝑔 ≤ 𝑎, 𝑏 ≤ 1,                         

 𝐴𝑢(𝑎, 𝑏)                      𝑖𝑓 min(𝑎, 𝑏) ≤ 𝑔 ≤ max(𝑎, 𝑏).

          (2) 

3. Classification of modification behaviors and uninorm-based decision weight updating scheme  

In this section, the initial group consensus degree is calculated and compared with the pre-defined 

consensus threshold. If the group consensus degree does not meet the threshold, a CRP is required to be 

conducted iteratively in the group to enhance the group consensus degree to the expected level. During the 

CRP, clusters of DMs are required to modify their evaluation information. The modification behaviors can 

be deemed as consisting of both cooperative components and non-cooperative components. By 

quantification of both components, the characteristics of modification behaviors can be identified in detail 

and these behaviors can be further classified into three categories: cooperative leading behaviors, 

non-cooperative leading behaviors, and average behavior. The updated decision weight of each cluster is 

obtained according to its modification behavior category, using a uninorm aggregation operator. 

3.1. Measurement of group consensus degree 

After DMs are divided into clusters by the clustering method proposed by Xu [35], group consensus 

degree should be measured as a prerequisite of the CRP. For MALSGDM problems, a clustering method is 

applied to analyze and classify DMs‘ evaluation information. Suppose that all the evaluation matrices are 

collected from 𝑙 DMs and they are divided into 𝐾 clusters. The number of DMs in the k
th

 cluster is 𝑙𝑘. 

Suppose DMs are allocated the same decision weight before the CRP, thus 𝑊 = *𝑤1, 𝑤2, … , 𝑤𝑙+ =
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*
1

𝑙
,
1

𝑙
, … ,

1

𝑙
+. The evaluation matrix of the k

th
 cluster can be illustrated as 𝐶𝑘 = (𝑐𝑖𝑗

𝑘 )𝑚×𝑛. 𝑐𝑖𝑗
𝑘  is the k

th
 

cluster‘s assessment towards the j
th

 attribute of the i
th

 alternative and can be denoted as: 

𝑐𝑖𝑗
𝑘 = 𝑊𝐴.𝑒𝑖𝑗

1 , 𝑒𝑖𝑗
2 , … , 𝑒𝑖𝑗

𝑙𝑘/ = ∑ 𝑤ℎ ∙ 𝑒𝑖𝑗
ℎ𝑙𝑘

ℎ=1 ,                   (3) 

where 𝐸1, 𝐸2, … , 𝐸𝑙𝑘 ∈ 𝐶𝑘. 

The initial decision weight of a certain cluster is determined by the number of DMs it contains, thus the 

weight of the k
th

 cluster can be denoted as: 

𝜆𝑘 =
𝑙𝑘

𝑙
⁄ .                                     (4) 

The group evaluation is given by 𝐺 = (𝑔𝑖𝑗)𝑀×𝑁, where 𝑔𝑖𝑗 denotes the group‘s assessment towards the 

j
th

 attribute of the i
th

 alternative: 

𝑔𝑖𝑗 = 𝑊𝐴(𝑐𝑖𝑗
1 , 𝑐𝑖𝑗

2 , … , 𝑐𝑖𝑗
𝐾) = ∑ 𝜆𝑘 ∙

𝐾
𝑘=1 𝑐𝑖𝑗

𝑘 ,                       (5) 

Conflict is reflected by the distance between clusters and the aggregated group evaluation. By 

calculating the Manhattan distance between evaluation matrices, the conflict degree can be quantified. Take 

the conflict degree between cluster evaluation matrix 𝐶𝑘 and group evaluation matrix 𝐺 for example, the 

conflict is given by: 

𝐶(𝐶𝑘, 𝐺) = d(𝐶𝑘, 𝐺) =
1

𝑚×𝑛
∑ ∑ |𝑐𝑖𝑗

𝑘 − 𝑔𝑖𝑗|
𝑛
𝑗=1

𝑚
𝑖=1 .                     (6) 

Thus, the consensus degree between 𝐶𝑘 and 𝐺 can be defined as: 

𝐶𝐷(𝐶𝑘, 𝐺) = 1 − 𝐶(𝐶𝑘, 𝐺).                               (7) 

The higher the value of 𝐶𝐷, the more favorable the consensus degree that has been reached between 

entities. Conversely, the lower the value of 𝐶𝐷, the greater the disagreement between two entities, hence 

special attention should be paid to this cluster in the CRP. If 𝐶𝐷 = 0, the k
th

 cluster is in total conflict with 
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the group evaluation. If 𝐶𝐷 = 1, the k
th

 cluster is in total consensus with the group. 

Group consensus degree can then be obtained as: 

𝐺𝐶𝐷 = ∑ 𝜆𝑘 ∙ 𝐶𝐷(𝐶
𝑘, 𝐺)𝐾

𝑘=1 .                              (8) 

The value of 𝐺𝐶𝐷 ranges from 0 to 1. If 𝐺𝐶𝐷 is lower than the consensus threshold 𝜀, CRP is applied 

to help reach a favorable consensus.  

3.2. Measurement of cooperative index and non-cooperative index 

In a CRP, DMs or clusters of them are required to modify their evaluation matrices under the guidance of 

the moderator. The modification of evaluation matrix 𝐸ℎ is composed of modifications on its constituent 

assessments 𝑒𝑖𝑗
ℎ . The modification on each assessment can be undertaken in two possible ways: either 

movement towards the expected consensus, or movement in the opposite direction. Here, we use the 

percentage of shrinkage or enlargement of the distance before and after modification to define the 

cooperative index and the non-cooperative index, instead of using the exact distance they move. The reason 

is that if two clusters have different original distances from the group evaluation, the distances they move 

cannot be directly interpreted into the endeavor they make owing to the different original distance basis. 

This is illustrated in detail in the following example 3. 

Example 3. For 2 × 2 evaluation matrices 𝐶1(𝑡) = .
0.63 0.54
0.40 0.28

/ and 𝐶2(𝑡) = .
0.43 0.83
0.45 0.56

/, the group 

matrix they are advised to move towards is 𝐺(𝑡) = .
0.80 0.55
0.50 0.34

/ . The evaluation matrices after 

modification are 𝐶1(𝑡+1) = .
0.73 0.54
0.40 0.28

/  and 𝐶2(𝑡+1) = .
0.53 0.83
0.45 0.56

/ . Take assessments 𝑐11
1 = 0.63 

and 𝑐11
2 = 0.43 for example, the exact distances they moved are 0.1 in both cases, but the endeavors they 

make are different. It is comparatively easier for 𝐶2 to move 0.1 closer to consensus, because this requires 

covering only 27% of the original distance. For 𝐶1, moving 0.1 closer to consensus means a compromise of 
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59% of the original conflict, which is a greater sacrifice of its own interest. Thus, it is fair to evaluate the 

modification behavior by the shrinkage or enlargement of the original distance.  

Thus, we first define the overall distance between cluster 𝐶𝑘 and group evaluation matrix 𝐺 in the t
th

 

iteration as:  

𝑂𝐷𝑘(𝑡) = ∑ ∑ |𝑐𝑖𝑗
𝑘(𝑡)

− 𝑔𝑖𝑗
(𝑡)
|𝑛

𝑗=1
𝑚
𝑖=1 .                           (9) 

Algorithm 1. Procedures to compute the cooperative index #𝐶𝑂𝑂𝑃 of cluster 𝐶𝑘 in the t
th
 iteration. 

_______________________________________________________________________________________ 

1) Assign  #COOPk(t) ← 0. 

2) For each pair of cij
k(t) and cij

k(t+1), 

if |cij
k(t+1)

− gij
(t)
| < |cij

k(t)
− gij

(t)
| , 

then #COOPk(t) ← #COOPk(t) +
|cij
k(t)

−gij
(t)
|−|cij

k(t+1)
−gij

(t)
|

ODk(t)
. 

       Until i = m, j = n. 

3) end if 

4) end for 

The computation of the cooperative index requires the overall percentage shrinkage of the distance 

between the k
th

 cluster and the collective evaluation matrix, before and after the t
th

 iteration modifications on 

𝑚 × 𝑛 assessments. The index #𝐶𝑂𝑂𝑃 ranges from 0 to 1. When the index approaches 1, the k
th

 cluster 

has a predominantly cooperative attitude. If #𝐶𝑂𝑂𝑃 = 0, all assessments of the k
th

 cluster have moved 

away from the group preference or remained unchanged, indicating that cluster 𝐶𝑘 has disregarded the 
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advice from the moderator, nor has it taken any action to improve consensus. The cooperative index 

#𝐶𝑂𝑂𝑃 is positively correlated with the number of assessments that move nearer to group evaluation and 

the percentage of shrinkage in the distance between these assessments, thus shows the extent to which the k
th

 

cluster wants to cooperate with others in reaching a consensus. 

Algorithm 2. Procedures to compute the non-cooperative index #𝑁𝐶𝑂𝑂𝑃 of cluster 𝐶𝑘 in the t
th
 iteration. 

_______________________________________________________________________________________ 

1) Assign #NCOOPk(t) ← 0. 

2) For each pair of cij
k(t)

 and cij
k(t+1)

, 

if |cij
k(t+1)

− gij
(t)
| > |cij

k(t)
− gij

(t)
| , 

then #NCOOPk(t) ← #NCOOPk(t) +
|cij
k(t+1)

−gij
(t)
|−|cij

k(t)
−gij

(t)
|

ODk(t)
. 

        Until i = m, j = n 

3) end if 

4) end for 

Computation of the non-cooperative index requires the overall percentage of enlargement in the distance 

between the k
th

 cluster and the group evaluation matrix, before and after the t
th

 iteration modifications on 

𝑚 × 𝑛 assessments. When the index has a value of 0, no evidence of non-cooperative attitude is found. The 

assessments either come closer to consensus or stay the same. As a prerequisite requirement of uninorm 

aggregation operator presented in next section, we set 1 as the maximum value of the non-cooperative index 

#𝑁𝐶𝑂𝑂𝑃. #𝑁𝐶𝑂𝑂𝑃 is positively correlated with the number of assessments that move further from 

consensus, and with the percentage of enlargement in the distance between these assessments, thus shows 
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the extent to which the k
th

 cluster refuses to accept advice from moderator or cooperate to achieve a 

consensus. 

The following example 4 gives a numerical illustration of the calculation of #𝐶𝑂𝑂𝑃 and #𝑁𝐶𝑂𝑂𝑃. 

Example 4. For 2 × 2 evaluation matrix 𝐶1(𝑡) = .
0.63 0.52
0.40 0.28

/, the group evaluation matrix towards 

which it is advised to move is 𝐺(𝑡) = .
0.72 0.59
0.50 0.34

/. The evaluation matrix after modification is 𝐶1(𝑡+1) =

.
0.70 0.62
0.35 0.50

/ . The overall distance can be calculated as 𝑂𝐷1(𝑡) = |0.63 − 0.72| + |0.52 − 0.59| +

|0.40 − 0.50| + |0.28 − 0.34| = 0.32 using Eq. (9). For assessments 𝑐11
1 = 0.63 and 𝑐12

1 = 0.59, their 

distances from group evaluation diminished, even though 𝑐12
1(𝑡+1)

= 0.62 became higher than 𝑔12
(𝑡)

= 0.59 

after modification. Thus, the cooperative index is calculated as #𝐶𝑂𝑂𝑃1(𝑡) =
(0.09−0.02)+(0.07−0.03)

0.32
= 0.344. 

Assessments 𝑐21
1  and 𝑐22

1  moved further from group evaluation. Even though 𝑐22
1  moved towards 

consensus, the extent of change applied on this assessment was exceedingly large, therefore the distance to 

consensus still enlarges. Thus, the non-cooperative index is calculated as 

#𝑁𝐶𝑂𝑂𝑃1(𝑡) =
(0.15−0.10)+(0.17−0.06)

0.32
= 0.500. 

3.3. Classification of modification behaviors and updating decision weight based on the uninorm 

aggregation operator 

The #𝐶𝑂𝑂𝑃 and #𝑁𝐶𝑂𝑂𝑃 indices provide detailed information about a cluster‘s endeavor to enhance 

or reduce the consensus degree in the group. By combing both indices with the uninorm aggregation 

operator, modification behaviors can be specifically classified in a meaningful way. The uninorm 

aggregation operator has the properties of upward and downward reinforcement. That is, for a 

two-dimensional uninorm aggregation operator, if values of both dimensions surpass the neutral element 𝑔, 

the aggregated value will be upward reinforced to amplify its positive influence in reaching consensus; and 
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if both values are below 𝑔, the aggregated value will be downward reinforced. This feature of the uninorm 

aggregation operator can be used in the classification of decision behaviors and the computation of 

performance value (PV) of each behavior, which can be used to determine the decision weight of the k
th

 

cluster in the next round of the CRP.  

The different categories of modification behaviors are defined based on the value of #𝐶𝑂𝑂𝑃 and 

#𝑁𝐶𝑂𝑂𝑃 as follows. 

1) Cooperative leading behavior (CLB); when 𝑔 < #𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃 ≤ 1 

A modification behavior is classified as a cooperative leading behavior if this behavior makes a 

significant contribution to reaching a consensus, and the non-cooperative attitude it shows is negligible 

by comparison. In traditional models, a modification behavior is defined by evaluation of either 

cooperative or non-cooperative degree, but never both of them. Thus, such models cannot 

comprehensively depict the behavior presented by clusters. In our model, we give freedom to clusters to 

preserve opinions that may interfere with reaching a consensus. As long as a modification behavior is 

dominated by its cooperative component, its decision weight can still be lifted in the CRP. This behavior 

will be upward reinforced by utilizing the uninorm aggregation operator to accelerate CRP efficiency. Its 

performance value (PV) is calculated as an upward enhancement on the basis of #𝐶𝑂𝑂𝑃  and 

(1 − #𝑁𝐶𝑂𝑂𝑃). 

2) Non-cooperative leading behavior (NLB); when 0 ≤ #𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃 < 𝑔 

The non-cooperative behavior is dominated by components that enlarge the distance between a cluster 

and group preference. This type of behavior has negative performance on both the cooperative and 

non-cooperative dimensions. It seriously damages the efficiency of the CRP and causes further conflict 
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in the group. When it occurs, the cluster will be penalized by a decrease in its decision weight, using the 

uninorm aggregation operator to downward reinforce the decision weight. Its PV is calculated as a 

downward enhancement on the basis of #𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃). 

3) Average behavior (AB); when min (#𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃) ≤ 𝑔 ≤ max(#𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃) 

The Average behavior has no dominant component. It consists of similar contributions from both the 

cooperative component and the non-cooperative component. Thus, it cannot be categorized as either 

cooperative leading behavior or non-cooperative leading behavior. No reinforcement is applied to such 

behavior. Its PV will be the average of #𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃). 

Therefore, the modification behaviors can be classified into three categories, as shown in Fig. 3. 

Average
behavior

Cooperative
leading

behavior

Non-
cooperative

leading 
behavior

Average
behavior

1-#NCOOP

g

g0 1

1

#COOP

 

Fig. 3. Classification of modification behaviors. 

After the modification behavior presented by each cluster has been identified and classified, the 𝑃𝑉 of 

each cluster is calculated using a uninorm aggregation operator, in order to update the decision weight of 

each cluster in the next iteration of the CRP. 

The following uninorm aggregation operator, based on Eq. (2), is defined to calculate the 𝑃𝑉 of each 

cluster according to its modification behavior classification in the t
th

 iteration, with 𝐴𝑢 being an averaging 
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operator. 

                        𝑃𝑉𝑘(𝑡) =

{
 
 

 
   

#𝐶𝑂𝑂𝑃∙(1−#𝑁𝐶𝑂𝑂𝑃)

𝑔
                                                 0 ≤ 𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃 < 𝑔; 

#𝐶𝑂𝑂𝑃+(1−#𝑁𝐶𝑂𝑂𝑃)−#𝐶𝑂𝑂𝑃∙(1−#𝑁𝐶𝑂𝑂𝑃)−𝑔

1−𝑔
          𝑔 < 𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃 ≤ 1;

𝐴𝑢(#𝐶𝑂𝑂𝑃, 1 − #𝑁𝐶𝑂𝑂𝑃)                                      𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

                (10) 

3.4. Weight updating and normalization 

The decision weight of each cluster is updated according to the 𝑃𝑉  calculated in the previous 

subsection to reward cooperative behaviors and penalize non-cooperative behaviors: 

𝜃𝑘
(𝑡+1)

= 𝜆𝑘
(𝑡)
∙ 𝑃𝑉(𝐶𝑘(𝑡)).                              (11) 

In order to meet ∑ 𝜃𝑘
(𝑡+1)

= 1𝐾
𝑘=1 , where 𝜃𝑘

(𝑡+1)
 represents the non-normalized decision weight, the 

decision weight of each cluster in the (𝑡 + 1)th
 iteration is normalized into 𝜆𝑘

(𝑡+1)
 by: 

𝜆𝑘
(𝑡+1)

=
𝜃𝑘
(𝑡+1)

∑ 𝜃
𝑘
(𝑡+1)𝐾

𝑘=1

.                                  (12) 

 

4. Supervision on the behavior of highly-weighted clusters based on the uninorm aggregation operator 

with a floating neutral element 

The CRP is an iterative process. DMs or clusters are rewarded or penalized according to their 

modification behaviors in each round of the CRP. In real-world decision making problems, the pattern of 

modification behaviors presented by a cluster may not always be consistent. It is highly possible for a cluster 

to cooperate in the first rounds of the CRP in order to gain a heavy decision weight, before becoming 

non-cooperative in later rounds. Considering the amplification effect of the non-cooperative component 

caused by a heavy decision weight, the CRP may be seriously sabotaged by non-cooperative behavior 

presented by highly-weighted clusters. 
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By adopting a floating neutral element, which is positively correlated with decision weight, in the 

behavior classification model, behaviors of heavy-weighted clusters will be supervised under a stricter 

standard. It will be more difficult for them to be classified as showing cooperative leading behavior and 

upward reinforced because standard has been raised. This methodology suits for real decision making 

situations, where enhanced high decision weight also brings about expectations from clients that DMs 

should do better and further accelerate the CRP. Example 5 illustrates the advantages of applying this 

method. The second advantage of introducing a floating neutral element is that non-cooperative leading 

behavior by heavy-weighted cluster will be penalized more severely, as the PV will be calculated lower. An 

example of this can be found in the illustrative example in Section 5.  

Example 5. Suppose we have a group consisting of three clusters, 𝐶1, 𝐶2, and 𝐶3 (detailed information is 

provided in Table 1). For Cluster 𝐶1, 𝜆1
(𝑡)

= 0.3. The group consensus degree after the t
th

 iteration is 

𝐺𝐶𝐷(𝑡) = 0.826. For better illustration, only cluster 𝐶1 modifies its evaluation matrix, and the other two 

clusters remain the same in the next round of the CRP. Table 2 illustrates the updated evaluation matrices of 

the clusters. It can be seen that the cooperative index and the non-cooperative index of 𝐶1 are both 0.5. If 

𝑔 has a stable value and 𝑔 = 0.5, the modification behavior of 𝐶1 will be classified as average behavior, 

and 𝑃𝑉1(𝑡) =
0.5+0.5

2
= 0.5. The group consensus degree in the (𝑡 + 1)th

 iteration will be 𝐺𝐶𝐷(𝑡+1) =

0.821, which is higher than that of the t
th

 iteration. On the other hand, if 𝑔 is given a floating value that is 

positively correlated with decision weight, the results are as shown in Table 3. Suppose 𝑔∗ = 0.6. The 

modification behavior of 𝐶1 will be classified as a non-cooperative leading behavior, 𝑃𝑉1(𝑡)∗ =
0.5∗0.5

0.6
=

0.42 and its decision weight will be downward reinforced. The group consensus degree can then be 

calculated as 𝐺𝐶𝐷(𝑡+1)∗ = 0.833, which is higher than in the t
th

 iteration. This means the CRP can benefit 

from laying stricter supervision on highly-weighted clusters. This also shows that, to improve the efficiency 
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of the CRP, modification behaviors consisting of the same components may be classified into different 

categories, as decision weight differs in this model. 

Table 1 

Evaluation information and decision weights of clusters after the t
th

 iteration. 

 𝑐11
(𝑡)

 𝑐12
(𝑡)

 𝑐21
(𝑡)

 𝑐22
(𝑡)

 𝜆𝑘
(𝑡)

 

𝐶1 0.50 0.80 0.20 0.30 0.30 

𝐶2 0.10 0.30 0.60 1.00 0.10 

𝐶3 0.20 0.40 0.80 0.60 0.60 

𝐺 0.28 0.51 0.60 0.55  

Table 2  

Evaluation information and updated decision weights of clusters in the (t + 1)
th
 iteration based on a stable 𝑔 value. 

 𝑐11
(𝑡+1)

 𝑐12
(𝑡+1)

 𝑐21
(𝑡+1)

 𝑐22
(𝑡+1)

 𝑃𝑉𝑘 𝜆𝑘
(𝑡+1)

 

𝐶1 0.88 0.57 0.55 0.10 0.5 0.3 

𝐶2 0.10 0.30 0.60 1.00 0.5 0.1 

𝐶3 0.20 0.40 0.80 0.60 0.5 0.6 

𝐺 0.39 0.44 0.71 0.49   

 

Table 3 

Evaluation information and updated decision weights of clusters in the (𝑡 + 1)th
 iteration based on a floating 𝑔 value. 

 𝑐11
(𝑡+1)

 𝑐12
(𝑡+1)

 𝑐21
(𝑡+1)

 𝑐22
(𝑡+1)

 𝑃𝑉𝑘 𝜆𝑘
(𝑡+1)

 

𝐶1 0.88 0.57 0.55 0.10 0.42 0.26 

𝐶2 0.10 0.30 0.60 1.00 0.50 0.11 
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𝐶3 0.20 0.40 0.80 0.60 0.50 0.63 

𝐺 0.37 0.43 0.71 0.51   

Based on these hypotheses, we propose an approach to dynamically assign a floating value to the 

neutral element 𝑔 with the following characteristics: 

1) The neutral element 𝑔 is positively correlated with the cluster‘s weight. 

2) The neutral element 𝑔 ranges from 0 to 1 to fit the uninorm aggregation model. 

3) When the cluster‘s weight reaches 1, 𝑔 reaches its maximum value of 1 and no longer goes up, which 

means 
𝑑𝑔

𝑑𝜆𝑘
(𝜆𝑘 = 1) = 0.  

4) The floating neutral element 𝑔 is used to regulate the behavior of highly-weighted clusters. For clusters 

whose weights are near 0, the value of 𝑔 shall not be sensitive. Conversely, 𝑔 shall be sensitive when 

the decision weight is comparatively high. Thus, we set 
𝑑𝑔

𝑑𝜆𝑘
(𝜆𝑘 = 0) = 0. 

To satisfy all the requirements for the floating neutral element, we propose the formula of 𝑔 as: 

𝑔 =
1+𝑔𝜆𝑘= 

2
+ 0

1−𝑔𝜆𝑘= 

2
∗ cos ((𝜆𝑘 − 1) ∗ 𝜋)1.                        (13) 
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Fig. 4. Graphical illustration of the neutral element (𝑔𝜆𝑘=0 = 0.5). 

Fig. 4 shows a graphical illustration of 𝑔 when 𝑔𝜆𝑘=0 is set to 0.5. The function graph of 𝑔 may 

differ when 𝑔𝜆𝑘=0 is given different values, while it must be in the range ,0,1-. The feasibility and 

performance of Eq. (13) is justified through an illustrative example in Section 5. Other formulations of 𝑔 

may also fit this model, but only the formulation in Eq. (13) is illustrated in detail here without any loss of 

generality. 

5. Illustrative example and numerical simulations 

In this section, we present an illustrative example to justify the UBCBC CRP model for MALSGDM 

problem that we propose in this paper. A MALSGDM problem consisting of 30 DMs is formulated. DMs are 

first clustered into several clusters by the clustering method proposed by Xu [35]. Initial group consensus 

degree is measured between clusters and aggregated group evaluation. If consensus degree fails to meet a 

pre-set threshold, a CRP is required to be complemented. During the CRP, every cluster is requested to 

present a modified evaluation matrix under the guidance of moderator. The decision weight of each cluster is 

updated in view of the modification behavior it presents. Once the group consensus degree meets with the 

threshold, a soft consensus is achieved in the group. The threshold of consensus degree is set as 0.9 and the 

acceptable maximum number of iterations of CRP is set as 10. 

To demonstrate the enhancement of CRP efficiency that results from adopting UBCBC model, three 

baseline consensus models are presented for comparison: (i) The model that neither rewards nor penalizes 

clusters, with no supervision on modification behaviors; (ii) The model that classifies modification 

behaviors and updates decision weights of clusters based on a uninorm aggregation operator with a stable 

neutral element; (iii) Our proposed model, that classifies modification behaviors and updates decision 
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weights of clusters based on a uninorm aggregation operator with a floating neutral element, laying stricter 

supervision on highly-weighted clusters. 

5.1. A MALSGDM problem formulation 

Suppose the government decides to add a new subway line to the public transportation system in the city 

of Tianjin, China. A group of 30 DMs collected from different stakeholders must evaluate three construction 

plans, 𝑥1, 𝑥2, and 𝑥3 . Each of the plans is evaluated with respect to 4 attributes: social impact, 

environmental impact, project budget and technical feasibility. 

Each DM‘s evaluation information is interpreted and standardized into a 3 × 4 matrix, which is 

visualized using SOM Toolbox PDA projection (Fig. 5). SOM Toolbox is a plug-in for the well-known 

software package MATLAB, which can realize the 2-D PCA projection of multi-dimensional information 

[45]. By combining the clustering method proposed by Xu [35] and this visualization of evaluation 

information, DMs are divided into 5 clusters. The evaluation information of each cluster is aggregated using 

Eq. (3). The detailed aggregated evaluation information of each cluster is illustrated in Table 4. The initial 

decision weight of each cluster is decided by the number of DMs it contains. The group consensus degree 

before CRP is calculated as 0.759 by using Eq. (6), (7), and (8). As the consensus degree is lower than the 

threshold 0.9, a CRP is conducted among clusters. 
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Fig. 5. Visualization of DMs’ evaluation information before CRP. 

Table 4 

Evaluation information and decision weights of clusters before CRP. 

 𝑐11
𝑘  𝑐12

𝑘  𝑐13
𝑘  𝑐14

𝑘  𝑐21
𝑘  𝑐22

𝑘  𝑐23
𝑘  𝑐24

𝑘  𝑐31
𝑘  𝑐32

𝑘  𝑐33
𝑘  𝑐34

𝑘  𝜆𝑘
(0)

 

𝐶1 0.24  0.43  0.26  0.51  0.56  0.31  0.59  0.76  0.46  0.28  0.51  0.56  0.233  

𝐶2 0.91  0.62  0.82  0.06  0.12  0.54  0.49  0.89  0.90  0.08  0.58  0.24  0.333  

𝐶3 0.12  0.80  0.88  0.18  0.93  0.80  0.20  0.53  0.88  0.03  0.90  0.92  0.100  

𝐶4 0.06  0.09  0.18  1.00  0.88  0.22  0.96  0.14  0.16  0.92  0.58  0.87  0.167  

𝐶5 0.50  0.14  0.40  0.44  0.57  0.74  0.89  0.32  0.51  0.74  0.15  0.19  0.167  

𝐺 0.46  0.43  0.52  0.40  0.51  0.49  0.63  0.60  0.61  0.37  0.53  0.48   

5.2. Comparison between the UBCBC models and the no-penalizing model 

For brevity, only the first two rounds of the CRP are described in detail here. Under the guidance of the 

moderator, all clusters are advised to move towards group evaluation to enhance the consensus degree. 

Modified evaluation information of each cluster is illustrated in Table 5. As mentioned at the beginning of 

Section 5, three models are used to conduct the CRP, namely: 

i). M1: The model with no supervision on modification behaviors. 
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ii). M2: The UBCBC model with a stable neutral element value. 

iii). M3: The UBCBC model with a floating neutral element value. 

The results of the modification behavior classification and updated decision weights after the first 

round of the CRP are listed in Table 6. 

By conducting: 

 M1: No supervision is laid upon clusters‘ modification behaviors. Decision weights of clusters are 

neither rewarded nor penalized. Decision weight stays the same, at 

𝜆(1) = (0.233,0.333,0.100,0.167,0.167). Consensus degree is calculated as 𝐺𝐶𝐷(1) = 0.767 after the 

first round of the CRP.  

 M2: 𝐶1 and 𝐶2 are detected as presenting non-cooperative leading behaviors, in which the values of 

#𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃) are both lower than the neutral element 𝑔. The endeavors of 𝐶1 and 

𝐶2 have limited contributions to improving group consensus degree on some assessments, while at the 

same time cause severe conflict on other assessments. Thus, the decision weights of 𝐶1 and 𝐶2 are 

downward reinforced to prevent them causing higher levels of conflict. The modification behavior of 

𝐶4 has high scores for both #𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃). Thus, it is classified as cooperative leading 

behavior, which is highly beneficial for reaching a consensus. 𝑃𝑉4(1) = 0.913, which is much higher 

than those of other clusters. The modification behavior of 𝐶4 in the first round of the CRP helps it to 

be allocated the highest decision weight in the next round. The behaviors of 𝐶3 and 𝐶5 are typically 

mixed, either #𝐶𝑂𝑂𝑃 is high and (1 − #𝑁𝐶𝑂𝑂𝑃) is low, or vice versa. They are classified as 

showing average behavior and neither rewarded nor penalized. The updated decision weights after 
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normalizing are 𝜆(1) = (0.177,0.162,0.133,0.350,0.179) according to Eq. (12). Group consensus 

degree is calculated as 𝐺𝐶𝐷(1) = 0.787, which is still below the threshold of 0.9. 

 M3: The classification of modification behaviors in M3 is the same as M2. The difference appears in the 

𝑃𝑉 s of the modification behaviors. 𝐶1  and 𝐶2  are classified by both M2 and M3 as having 

non-cooperative leading behaviors. While as two comparatively highly-weighted clusters, they have 

high neutral element values. Based on Eq. (10), more severe penalties are laid upon them. The 𝑃𝑉s of 

these behaviors are decreased by 27% and 20% respectively compared to M2. The 𝑃𝑉s of other clusters 

are almost unchanged. The updated decision weight is changed to 

𝜆(1) = (0.166,0.137,0.141,0.367,0.190). Consensus degree is updated to 𝐺𝐶𝐷(1) = 0.793, which is 

higher than the value obtained by applying M1 or M2. 

Table 5  

Evaluation information of clusters after the first round of the CRP. 

 𝑐11
𝑘(1)

 𝑐12
𝑘(1)

 𝑐13
𝑘(1)

 𝑐14
𝑘(1)

 𝑐21
𝑘(1)

 𝑐22
𝑘(1)

 𝑐23
𝑘(1)

 𝑐24
𝑘(1)

 𝑐31
𝑘(1)

 𝑐32
𝑘(1)

 𝑐33
𝑘(1)

 𝑐34
𝑘(1)

 

𝐶1 0.41  0.55  0.49  0.71  0.72  0.20  0.49  0.71  0.48  0.20  0.55  0.49  

𝐶2 0.95  0.91  1.00  0.25  0.00  0.90  0.63  0.77  0.70  0.05  0.20  0.00  

𝐶3 0.12  1.00  0.92  0.18  0.80  0.74  0.39  0.73  0.90  0.33  0.95  0.60  

𝐶4 0.40  0.34  0.44  0.61  1.00  0.42  0.80  0.42  0.40  0.53  1.00  0.49  

𝐶5 0.25  0.29  0.18  0.24  0.30  0.52  0.81  0.35  0.40  0.50  0.11  0.11  

Table 6  

Classification of modification behaviors and calculation of updated weights in the first round of the CRP. 

 #COOP 1 − #NCOOP Categor  

P  

(M2/M3) 

Updated  eight 

(M2/M3) 
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𝐶1 0.396  0.417  NLB 0.330/0.293  0.177/0.166  

𝐶2 0.216  0.491  NLB 0.212/0.169  0.162/0.137  

𝐶3 0.252  0.908  AB 0.580/0.580  0.133/0.141  

𝐶4 0.634  0.882  CLB 0.913/0.907  0.350/0.367  

𝐶5 0.292  0.645  AB 0.468/0.468  0.179/0.190  

 

In the second round of the CRP, the group evaluation that clusters are recommended to move towards is 

calculated first. Detailed modified evaluation information for the second round of the CRP is provided in 

Table 7. Updated weights are different when applying different CRP methods, and the aggregated group 

evaluation in this round is also slightly different. These differences also lead to the differences in the values 

of #𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃), which are given in Table 8.  

 M1: No supervision is laid upon clusters‘ modification behaviors. Decision weight stays the same at 

𝜆(2) = (0.233,0.333,0.100,0.167,0.167) . The group consensus degree is calculated as 𝐺𝐶𝐷(2) =

0.803 after the second round of the CRP.  

 M2: All clusters except for 𝐶5  present average behavior. 𝐶2  and 𝐶3  have comparatively higher 

values of 𝑃𝑉 than 𝐶1 and 𝐶4, which means the modification behaviors of 𝐶2 and 𝐶3 consist of 

higher percentages of cooperative components. 𝐶5  presents cooperative leading behavior, 

#𝐶𝑂𝑂𝑃5(2) = 0.594 and (1 − #𝑁𝐶𝑂𝑂𝑃5(2)) = 0.989. Only the decision weight of 𝐶5 is upward 

reinforced, as a reward for its contribution to reaching a consensus. The updated decision weight after 

the second round of the CRP is 𝜆(2) = (0.125,0.159,0.145,0.249,0.323) . The updated group 

consensus degree is 𝐺𝐶𝐷(2) = 0.819. 
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 M3: In the second round of the CRP, the biggest difference between M2 and M3 is in the classification 

of the behavior of 𝐶4. As the cluster with the highest decision weight in this round, stricter supervision 

should be laid upon 𝐶4. By applying M3, the neutral element, which is positively correlated with 

decision weight, can be calculated as 𝑔 = 0.75 + 0.25 ∗ cos((0.367 − 1) ∗ 𝜋) = 0.649, according to 

Eq. (13). As the values of #𝐶𝑂𝑂𝑃 and (1 − #𝑁𝐶𝑂𝑂𝑃) are both below 𝑔, the behavior of 𝐶4 is 

classified as non-cooperative behavior and downward reinforced. The 𝑃𝑉 of 𝐶4 in this round is 0.189, 

much lower than the 𝑃𝑉 of 0.390 which was obtained by applying M2. For the other clusters, 𝑃𝑉s are 

almost the same regardless of which method is applied. The updated decision weight is 𝜆(2) =

(0.131,0.154,0.176,0.146,0.393). The updated group consensus degree is 0.832, which is significantly 

higher than the value obtained by applying M2. 

Table 7 

 Evaluation information of clusters after the second round of the CRP. 

 𝑐11
𝑘(1)

 𝑐12
𝑘(1)

 𝑐13
𝑘(1)

 𝑐14
𝑘(1)

 𝑐21
𝑘(1)

 𝑐22
𝑘(1)

 𝑐23
𝑘(1)

 𝑐24
𝑘(1)

 𝑐31
𝑘(1)

 𝑐32
𝑘(1)

 𝑐33
𝑘(1)

 𝑐34
𝑘(1)

 

𝐶1 0.410  0.640  0.570  0.640  0.700  0.260  0.580  0.800  0.450  0.150  0.340  0.650  

𝐶2 0.760  0.850  0.880  0.100  0.210  0.750  0.850  0.870  0.950  0.100  0.310  0.080  

𝐶3 0.200  0.920  0.850  0.240  0.740  0.600  0.220  0.700  0.780  0.280  0.900  0.450  

𝐶4 0.250  0.260  0.250  0.820  0.900  0.310  0.870  0.340  0.450  0.400  0.950  0.380  

𝐶5 0.360  0.450  0.380  0.350  0.500  0.550  0.720  0.550  0.510  0.330  0.350  0.210  

 

Table 8 

Classification of modification behaviors and calculation of updated weights in the second round of the CRP. 

 #COOP 1 − #NCOOP Categor  P  Updated  eight 
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(M2/M3) (M2/M3) (M2/M3) (M2/M3) (M2/M3) 

𝐶1 0.196/0.179  0.580/0.576  AB/AB 0.388/0.378 0.125/0.131  

𝐶2 0.239/0.232  0.840/0.847  AB/AB 0.539/0.539  0.159/0.154  

𝐶3 0.263/0.263  0.931/0.931  AB/AB 0.597/0.597  0.145/0.176  

𝐶4 0.214/0.228  0.567/0.538  AB/NLB 0.390/0.189  0.249/0.146  

𝐶5 0.594/0.587  0.989/0.989  CLB/CLB 0.991/0.990  0.323/0.393  

 

Fig. 6 illustrates the evolution of the CRP results by visualizing the clusters‘ and the group‘s evaluation 

information when M2 is applied. The behavior patterns of clusters can be easily identified. For example, 

between (a) and (b) in Fig. 6, we can see that 𝐶4 moved a large distance to the group evaluation, making a 

significant contribution to reaching consensus. Thus, it was classified as showing cooperative leading 

behavior and upward reinforced. Both 𝐶1 and 𝐶2 moved further from the first round‘s group evaluation 

(even though 𝐶1 was closer to the second round‘s center); thus, they were classified as showing 

non-cooperative leading behavior and downward reinforced. 𝐶3  and 𝐶5  had mixed behaviors, with 

contributions from both the cooperative component and the non-cooperative component being equal. It is 

also difficult to tell whether they moved nearer to or further from the group evaluation in (a); thus, they are 

classified as showing average behavior. 
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                     (a) Before CRP (GCD =0.759).             (b) Round 1 (GCD =0.787). 

 

                     (c) Round 2 (GCD =0.819).                (d) Round 3 (GCD =0.833). 

 

                     (e) Round 4 (GCD =0.855).                (f) Round 5 (GCD =0.879). 

             

               (g) Round 6 (GCD =0.908). 

Fig. 6. Visualization of clusters and group evaluation information during CRP, based on the uninorm aggregation 

operator with a stable neutral element. 

After six rounds of the CRP, as illustrated in Fig. 6, the group has reached a group consensus degree of 
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0.908, which is higher than the threshold, and therefore a soft consensus is achieved.  

For better comparison of the three different CRP models, Fig. 7 shows the evolution of group consensus 

degree when different CRP models are applied. When M1 is utilized, during which no supervision is laid 

upon clusters‘ behaviors, soft consensus is far from being reached after six rounds of the CRP. M1 also 

cannot promote consensus when non-cooperative behavior happens, as the group consensus degree 

decreases after the third round of modification. M2, which classifies modification behaviors and either 

rewards or penalizes them using a uninorm aggregation operator, shows high efficiency in reaching 

consensus. Non-cooperative behavior is penalized, and cooperative behavior is rewarded. After six rounds of 

the CRP, the group consensus degree is 0.908 and the threshold is reached. With M3, further improvements 

are made. Stricter supervision is laid upon highly-weighted clusters by introducing a neutral element with a 

floating value, which is positively correlated with decision weight. The efficiency of M3 is even higher than 

that of M2, reaching consensus after only five rounds of CRP. In specific situations, the efficiency of M3 

may be higher still. 

 

Fig. 7. Evolution of group consensus degree when different CRP methods are applied. 

5.3. Further numerical simulation 

In order to get a deeper insight into the advantages of applying the proposed UBCBC CRP model, a 
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further numerical simulation is conducted to compare the efficiency of M1, M2 and M3. For simplicity, we 

still use the settings in the fore-mentioned illustrative example, starting at the point where 5 clusters are 

going through the CRP. There are 3 alternatives and each alternative has 4 attributes to be evaluated. M1, 

M2 and M3 are parallelly applied on one round of CRP for 10000 times. The reason why we focus on only 

one round of the CRP is that the overall performance of it can be considered as a cumulation of independent 

rounds. The evaluation matrices and decision weights of each clusters before this round of the CRP is 

generated by random number generator in MATLAB. Especially, one of the five cluster‘s decision weight is 

set to a comparatively higher value (0.3 in this simulation). We track this cluster down to demonstrate the 

advantages of applying floating neutral element scheme (M3) when highly-weighted cluster presents 

non-cooperative behaviors. The modifications made to evaluation matrices are simulated by scaled 

normal-distribution numbers. The reason to scale them is to better simulate DM‘s behaviors in the CRP 

because each assessment in the evaluation matrices are not expected to go through huge modifications 

during the CRP. For example, it is hardly seen the scenario that one assessment changes from 0.2 to 0.9 but 

it is more possible for it to change to 0.1 or 0.3 in CRP. Another restriction is that the assessments in 

evaluation matrices after this round of CRP must range from [0,1].  

The results of the simulation are summarized in Table 9. If the group consensus degree after this round 

of CRP is higher when methodology A is adopted compared to methodology B, we say A out-performs B. 6 

different sets of data are tested on and they differ from each other by the degree to which the normal 

distributed modification behaviors are scaled. For each set of data, M1, M2 and M3 are implemented 

parallelly for 10000 times each with the randomly generated evaluation matrices and decision weights of 

DMs. For example, when the modification behaviors are scaled to 0.3, it means that all the modifications 

made to the assessments of the evaluation matrices will fall into a normal distribution in the scaled range of 
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[-0.3,0.3]. Here we present some explanations for the results when the normal distributed modification 

behaviors are scaled to a specific level, for instance 0.3. 

 The out-performance rate of M2 over M1 is 83.57%. This rate is calculated by the number of 

simulations in which M2 out-performs no penalty scheme M1 divided by the number of simulations, 

which is 10000. A high value of this rate indicates that by applying uninorm based weight updating 

scheme M2, we can achieve higher efficiency of improving consensus. 

 The out-performance rate of M3 over M2 is 69.65%. This rate is calculated by the number of 

simulations in which M3 out-performs M2 and M2 outperforms M1, divided by the number of 

simulations in which M2 out-performs M1 in 10000 simulation times. This rate indicates that, under the 

circumstances where M2 can have prominent effect in improving consensus, the possibility of achieving 

an even better consensus result by adopting M3 is approximately 70%. 

 The percentage of the highly-weighted cluster presents NLB when M3 out-performs M2 is 61.00%. 

This rate indicates that when M3 out-performs M2, the highly-weighted cluster is presenting NLB in 

61.00% out of 10000 simulations. We can say that the reason why M3 can achieve a higher efficiency is 

related to the NLB presented by highly-weighted cluster. 

Table 9 

Statistical results of the numerical simulation. 

To what degree the modifications are scaled 0.20 0.25 0.30 0.35 0.40 

Out-performance rate of M2 over M1 73.71% 79.85% 83.57% 86.79% 88.78% 

Out-performance rate of M3 over M2 63.44% 70.18% 69.65% 65.70% 62.19% 

Percentage of the highly-weighted cluster presents NLB 

when M3 out-performs M2 

47.84% 54.41% 61.00% 60.29% 58.80% 
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To have a more direct vision of the comparison between different methodologies, we recorded 500 

simulation results when modifications are scaled to 0.3 and put them into a graph as shown in Fig.8. The 

vertical axis shows the group consensus degree after one round of CRP. A higher value in the vertical axis 

can be interpreted as having a higher efficiency in achieving consensus, as the group consensus degrees 

before applying the CRP models in each simulation are the same. The green line of M1 is predominantly 

below other lines in the simulations. The blue line of M2 predominantly outperforms M1 but is still covered 

or conquered by the red line of M3. The red line of M3 is predominantly above all other lines. This indicates 

by applying M3 in the CRP can harvest the most favorable results of improving consensus. 

 

Fig. 8. The group consensus degree after one round of the CRP with three different methodologies. 

5.4. Complexity analysis of proposed methodologies 

For a convenient narrative, we let 𝑇 be the limit on the number of iterations in the CRP, 𝑙 be the 

number of DMs, and 𝑚, 𝑛 be the number of alternatives and the corresponding attributes, respectively. The 

proposed consensus model can be divided into three phases: the clustering process, calculation of group 
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consensus degree and modification process, as well as the procedures to compute the cooperative and 

non-cooperative indices of each cluster. In the CRP, the clustering process is with the computational 

complexity 𝑂(𝑙 ∗ (𝑙 − 1))  and is implemented as an off-line process. Therefore, the computational 

complexity of the clustering phase is usually ignored in practical applications. The computational 

complexity of the calculation and modification process is 𝑂(𝑇). In the third phase, there are two algorithms 

in the former phase with the same computational complexity, which is 𝑂(𝑚 ∗ 𝑛). As the third phase is 

nested in the calculation and modification phase, the computational complexity of second phase cannot be 

ignored. The alternative selection process is also an off-line process. In consequence, the proposed 

consensus model has the computational complexity 𝑂(𝑇 ∗ 𝑚 ∗ 𝑛). 

5.5. Conclusions 

In conclusion, the advantages of the proposed UBCBC CRP model can be summarized as follows. 

 The cooperative component and the non-cooperative component of a modification behavior presented 

by a certain DM or cluster can be quantified separately. By comparing the cooperative index and 

non-cooperative index with a neutral element, modification behaviors can be classified into three 

categories. Non-cooperative behaviors can be strictly supervised. 

 Decision weights are rewarded or penalized according to behavior classification. The enhancement of 

the CRP efficiency resulting from applying the UBCBC model (in terms of convergence towards the 

desired level of consensus) is clearly illustrated by the illustrative example and numerical simulation. 

 By adopting a floating neutral element in the uninorm aggregation operator, the efficiency of the CRP is 

further improved for MALSGDM problem. On one hand, stricter supervision is laid upon 

highly-weighted clusters, which means they have to make more contributions to reaching a consensus, 
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and behavior once deemed as cooperative may be deemed as non-cooperative when decision weight 

increases. On the other hand, the non-cooperative behavior of highly-weighted clusters is more severely 

penalized.  

6. Concluding remarks 

   A growing demand for reaching consensus in multi-attribute large-scale group decision making 

(MALSGDM) has made improvement of consensus reaching process (CRP) efficiency increasingly 

necessary. At the same time, in terms of the rationality of the CRP, specific behavior patterns should also be 

described and supervised as comprehensively as possible throughout the whole process. In this paper, a 

novel CRP model named as UBCBC model is proposed. First, the cooperative and the non-cooperative 

component of a modification behavior are measured separately for each cluster of DMs. By comparing the 

cooperative and non-cooperative indices with a neutral element, behaviors of clusters can be classified into 

three categories. A cluster is rewarded or penalized according to its behavior category, by increasing or 

decreasing its decision weight. During this process, not only are non-cooperative behaviors specifically 

identified, but all modification behaviors are given directed treatment, and the convergence efficiency of the 

CRP for MALSGDM problems is improved. Moreover, by introducing a floating neutral element into the 

UBCBC model, highly-weighted clusters can be restricted by stricter supervision, and the negative impact of 

their non-cooperative behaviors can be hugely relieved. An illustrative example along with a numerical 

simulation is presented to provide a detailed insight into the potential improvements in efficiency and 

rationality by comparison of three models, showing that the UBCBC model proposed in this paper has great 

potential for applications in real-world decision making problems. 

     One of the hottest topics in the future will be investigating the influence of trust information over 

GDM problems. The basic idea towards this combination is that, DMs in the group are prone to be 
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influenced by the ones they trust. Social Network Analysis, which takes a group of individuals as a network 

and studies the relationship between them, combined with trust evaluation information, has been adopted by 

researchers on the derivation of the decision weights of DMs [46][47] and evolution of missing evaluation 

information [48] in GDM problems. Another future interest of research is the GDM problems under 

emergency scenarios. The frequent occurrences of natural disasters have posed great challenge towards 

human society. At the same time, a collection of group wisdom will provide us with advantages in these 

situations. An overview of the development of emergency decision making (EDM) problems was given in 

[49] and the construction of a emergency decision support system was also illustrated. In [50], considering 

the ever-changing characteristics of the EDMs, a dynamic attributes‘ weights determination scheme based 

on Bayesian network along with a fuzzy decision making framework was proposed. Future research related 

to the combination of GDM and EDM problems can be further investigated under the guidance of these 

pioneer works. 
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