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Abstract Independent sets play a central role in distributed
algorithmics. We examine here the minimal requirements
for computing non-trivial independent sets. In particular, we
focus on algorithms that operate in a single communication
round. A classic result of Linial shows that a constant number
of rounds does not suffice to compute amaximal independent
set. We are therefore interested in the size of the solution that
can be computed, especially in comparison to the optimal.
Our main result is a randomized one-round algorithm that
achieves poly-logarithmic approximation on graphs of poly-
nomially bounded-independence. Specifically, we show that
the algorithm achieves the Caro-Wei bound (an extension of
the Turán bound for independent sets) in general graphs up
to a constant factor, and that the Caro-Wei bound yields a
poly-logarithmic approximation on bounded-independence
graphs. The algorithm uses only a single bit message and
operates in a beeping model, where a node receives only
the disjunction of the bits transmitted by its neighbors. We
give limitation results that show that these are the minimal
requirements for obtaining non-trivial solutions. In particu-
lar, a sublinear approximation cannot be obtained in a single
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round on general graphs, nor when nodes cannot both trans-
mit and receive messages. We also show that our analysis of
theCaro-Wei boundonpolynomially bounded-independence
graphs is tight, and that the poly-logarithmic approximation
factor does not extend to O(1)-claw free graphs.

Keywords Maximum independent set · Bounded-
independence graphs · Distributed algorithms · Randomized
algorithms

1 Introduction

1.1 Something for almost nothing

When designing approximation algorithms, the usual goal
is to find desirable trade-offs between approximation guar-
antee and the resources required by the algorithm, such
as computation time, memory consumption, or, in the area
of distributed computing, message size and the number of
communication rounds. If only very limited access to com-
putational resources is available, it is often asked how much
effort it takes to obtain at least something from the given
problem instance. In distributed computing, those limits are
explored for examplewith regards to communication patterns
and the total number of communication rounds. It has been
shown that non-trivial computation is possible even when the
communication pattern of nodes is restricted to beeps [10].
Moreover, highly non-trivial local algorithms [24,31,35] that
employ only a constant number of communication rounds
have been obtained (e.g. even some NP-hard problems can
be solved by local algorithms [5–7]).

In this paper, we ask whether non-trivial computation is
possible ifwe grant a distributed algorithmonly a single com-
munication round. Specifically, we ask whether reasonable
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70 M. M. Halldórsson, C. Konrad

approximations to the maximum independent set problem
can be computed in this harsh setting.

1.2 Computational model

We consider a network of computational units V modelled
by a graph G = (V, E), which also constitutes the problem
input. Algorithms run in a single round: They first compute
locally, then send a message to their neighbors, and after
receiving they compute locally again and declare their output.

Our algorithm works in a restricted beeping model, where
the message transmitted is a single bit sent to all neighbors.
A node (whether transmitting or not) receives only the dis-
junction of the bits sent by the neighbors (or, equivalently, it
learns whether some neighbor beeped or not). Additionally,
the algorithm operates anonymously, without information
about identifiers, port labels or orientations. We assume that,
initially, each node v ∈ V knows its degree dG(v). This is
a non-standard assumption in beeping models, but is neces-
sary for one-round algorithmswith non-trivial approximation
guarantees. Indeed, we give a proof in the “Appendix” show-
ing that if degree information is not provided, then every
algorithm has an approximation ratio of Ω( n

log n ).
For lower bounds, we assume themore powerfulLOCAL

model, where nodes can send (receive) individual messages
of unbounded sizes to (resp. from) their neighbors.

1.3 Independent sets

An independent set I in a graph G = (V, E) is a subset
of pairwise non-adjacent vertices. An independent set I is
maximal if it is inclusion-wise maximal, i.e., I ∪{v} is not an
independent set for any v ∈ V \ I . A maximum independent
set is one ofmaximumcardinality. The independence number
of graph G is the size of a maximum independent set in G
and is denoted by α(G). Computing maximum independent
sets is NP-hard on general graphs [22] and is even hard to
approximate within factor n1−ε , for any ε > 0 [18,38].

1.4 Main result

Our main result concerns graphs of polynomially bounded-
independence, a graph class that includes unit disc graphs
and similar graph classes that are used formodellingwireless
networks (for a precise definition see the next subsection).
We show that in the harsh setting of a single communi-
cation round, a poly-logarithmic approximation ratio can
be achieved in polynomially bounded-independence graphs.
Furthermore, we show that not only the number of commu-
nication rounds but also message size can be reduced to an
absolute minimum, i.e., to a single bit message.

1.5 Bounded-independence graphs

Graphs of bounded-independence capture many intersection
graphs of geometrical objects which are used for modelling
conflict graphs of wireless networks. Given a collection
X = {X1, . . . , Xn}of geometrical objects, the corresponding
intersection graph on vertex set X is obtained by introduc-
ing an edge between two vertices Xi , X j iff the objects Xi

and X j intersect. In the literature, conflict graphs of wireless
networks are often modelled by unit disc graphs [15,33],
the intersection graph of discs with equal radii, where the
radii of the discs correspond to the transmission range of the
wireless transmitters. Unit disc graphs have many beneficial
properties that allow for the design of efficient distributed
algorithms, but the assumption of identical transmission radii
for all wireless transmitters is often too restrictive. Conse-
quently, the unit disc graphs model has been extended to
more elaborate models such as quasi unit disc graphs [26]
or general disc graphs. In a general disc graph, no restric-
tion on the radii of the discs are imposed, but the parameter
δ = rmax/rmin is introduced into the analysis of algorithms,
where rmax and rmin denote themaximum andminimum radii
of a disc, respectively.

All graphs of the graph classes mentioned above are of
bounded-independence, a property that restricts the size of
a maximum independent set within the set of nodes at a
given maximal distance from any node. The (inclusive) r -
neighborhood of a node v is the set of nodes at distance at
most r from v (including v).

Definition 1 (Bounded-independence) Graph G = (V, E)

is of bounded-independence if there is a bounding function
f (r) so that for eachnodev ∈ V , the size of amaximum inde-
pendent set in the inclusive r -neighborhood of v is at most
f (r),∀r ≥ 1. We say that G is of polynomially bounded-
independence if f (r) is a polynomial.

If G is of bounded-independence, then we say that
G is a BI-graph, and if G is of polynomially bounded-
independence, then we say that G is a PBI-graph.

It is easily verified that unit disc graphs areBI-graphs with
respect to a bounding function in O(r2), and (general) disc
graphs are BI-graphs with respect to a bounding function
in O((rδ)2). Many important problems such as the maximal
independent set problem, or the (Δ + 1)-coloring problem
can be solved on BI-graphs in O(log∗ n) rounds by an algo-
rithm of Schneider and Wattenhofer [34], underlining the
usefulness of this graph class for distributed computation.

1.6 Turán’s bound and a one-round algorithm

A starting point of our work is an extension of a celebrated
theorem by Paul Turán. Turán showed that every graph G =
(V, E) contains an independent set of size at least n/(d+1),
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Computing large independent sets in a single round 71

where d is the average degree of G [36]. This was extended
by Caro [8] and Wei [37] who showed that G contains an
independent set of size at least

β(G) :=
∑

v∈V

1

dG(v) + 1
,

where dG(v) denotes the degree of vertex v inG. An indepen-
dent set of expected size β(G) can be found by a (folklore)
simple linear time randomized algorithm that follows from
the analysis of the Caro-Wei bound given by Alon and
Spencer in [3]. This algorithm works as follows: Each node
v chooses a random real value between 0 and 1 and adds
itself to the independent set I if none of its neighbors have
chosen a larger real value than v. Then, the probability that
v is added to the independent set is 1

dG (v)+1 , and, hence, by

linearity of expectation, E|I | = ∑
v∈V 1

dG (v)+1 = β(G).
This algorithm can also be implemented distributively in

a single communication round. Instead of choosing a ran-
dom real value, every node chooses a random value from
a large enough ordered set (e.g. {1, 2, . . . , n3} suffices) so
that neighboring nodes choose different values with large
enough probability. In order to be able to determine such a
number, nodes require knowledge of n, i.e., the order of the
input graph. Furthermore, communicating the chosen value
to neighboring nodes requires messages of size O(log n).
In the following, we will refer to this algorithm as Alon-
Spencer- IS.

It is easy to see that in general graphs, an independent set
of size β(G) may be a factor Θ(n) smaller than the indepen-
dence number α(G)1. This raises the following questions:

1. Are there interesting graph classes for which β(G) is a
non-trivial approximation to the independence number
α(G)?

2. What are the minimum communication requirements for
achieving the β(G) bound?

3. Is there a one-round independent set algorithm with
approximation factor o(n) on general graphs?

1.7 Our results in detail

Concerning Question 1, we prove that an independent set
of size β(G) is a poly-logarithmic approximation to a maxi-
mum independent set in PBI-graphs. For instance on unit disc
graphs, an independent set of size β(G) is an O((

log n
log log n )2)-

approximation to amaximum independent set. Moreover, we
prove that our analysis is tight up to a constant factor by con-
structing families of d-dimensional unit sphere graphs, for

1 Consider for instance a complete bipartite graphG with equally sized
bipartitions on 2n vertices where edges are added that turn one biparti-
tion into a clique. Then, α(G) = n and β(G) = O(1).

any constant integer d. We also show that on the more gen-
eral class of k-claw-free graphs2, for k ≥ 3, the Caro-Wei
bound constitutes a O(

√
nk)-approximation, and this bound

is tight.
With regards to Question 2, we show that the communica-

tion requirements can be reduced to an absolute minimum,
at the price of a constant factor in the bound. We present
a different and even simpler one-round algorithm that com-
putes an independent set of expected size at least 0.267β(G)

using a single bit message, thus decreasing the message
sizes from O(log n) to 1. This algorithm has the additional
advantage that it does not require knowledge of n. The lat-
ter property and the low communication requirements make
an implementation in a beeping model possible (see Sect. 2
for a detailed discussion of the model requirements of our
algorithm). Note that our main result, a poly-logarithmic
approximation one-round single-bit message algorithm for
the maximum independent set problem in PBI-graphs, fol-
lows from the previous two results.

Last, we answer Question 3 in the negative. We provide a
lower bound that shows that any (possibly randomized) one-
round algorithm has approximation ratio Ω(n), even on disc
graphs.

1.8 Further related work

Independent sets are among the most studied problems in
distributed computing. However, most works consider the
maximal independent set problemwhile this paper addresses
the maximum independent set problem. It is known that
in general graphs, computing a maximal independent set

requires Ω
(
min{

√
log n

log log n ,
logΔ

log logΔ
}
)

rounds of commu-

nication [24], and even on a ring, Ω(log∗ n) rounds are
necessary [27]. The currently fastest maximal indepen-
dent set algorithm for general graphs of Ghaffari [12] runs
in O(logΔ) + 2O(

√
log log n) rounds. It is known that the

2O(
√
log log n) term is best possible unless the 2O(

√
log n) deter-

ministic maximal independent set algorithm of Panconesi
and Srinivasan [32] can be improved [9].

Concerning approximations to the maximum independent
set problem, a O(nε)-approximation can be computed in
O( 1

ε
) rounds in general graphs, and that is best possible [7].

In planar graphs, a (1 + ε)-approximation can be computed
in O(log∗ n) [11]. The O(log∗ n)-round algorithm of [34]
gives a constant-factor approximation in BI-graphs, since in
this graph class, any maximal independent set is a constant
approximation of a maximum independent set.

The study of constant-round distributed algorithms was
proposed in [4,27,31], and today a multitude of such algo-

2 A graph is k-claw-free, if it does not contain the complete bipartite
graph K1,k as an induced subgraph.

123



72 M. M. Halldórsson, C. Konrad

rithms are known, as evidenced by the survey of Suomela
[35]. Few non-trivial one-round distributed algorithms are
known. For example, Linial showed that a vertex coloring
with O(Δ2 log n) colors can be computed in a single commu-
nication round [27]. Kuhn and Wattenhofer [25] proved that
every coloring computed in one round uses Ω(Δ2/ logΔ +
log log n) colors.

In recent years, numerousworks have studied themaximal
independent set problem in beepingmodels [1,10,19,20,29],
but all those algorithms require a (poly-)logarithmic number
of rounds.

Last, we note that the Caro-Wei and Turán bounds have
previously been used as quality guarantees for independent
set approximation (e.g., [13,14]).

1.9 Notations

Throughout the paper, we use the following notations. Let
G = (V, E) be a graph with n = |V |. For a node v ∈
V , let ΓG(v) denotes the neighborhood of v and dG(v) =
|ΓG(v)| its degree. If the graph G in which vertex v appears
is clear from the context, then we may also write d(v) or
Γ (v) to denote v’s degree or neighborhood, respectively. The
d-neighborhood of v, denoted Γ d

G (v), is the set of nodes
of distance at most d from v excluding v, while the set of
nodes at distance exactly d from v is denoted by Γ

(d)
G (v).

Let Γ d
G [v] := Γ d

G (v) ∪ {v} (and ΓG[v] = ΓG(v) ∪ {v}). For
a subset of vertices U ⊆ V , the graph G[U ] is the subgraph
of G induced by the vertices U .

1.10 Outline

An algorithm with single-bit messages achieving the Caro-
Wei bound up to a constant factor is presented in Sect. 2.
It is then shown in Sect. 3 that the Caro-Wei bound is a
poly-logarithmic approximation to the independence num-
ber in PBI-graphs. In Sect. 4, these results are shown to be
the strongest such results possible in several different ways.
We conclude in Sect. 5 and point out interesting research
directions.

2 One-round algorithm with single bit message

In this section, we give a randomized one-round algorithm
that achieves the Caro-Wei bound up to a constant factor and
is even simpler than the Alon- Spencer- IS algorithm.

We will consider the one-round algorithm, Algorithm 1,
which can be seen as a simplified version of a well-known
distributed maximal independent set algorithm commonly
referred to as Luby’s algorithm [28] (a similar version of the
algorithm was independently discovered at the same time by
Alon, Babai and Itai [2]). In each round of Luby’s algorithm,

nodes of a general graphG = (V, E) are added to an initially
empty independent set. One round consists of two phases:
First, each node v ∈ V pre-selects itself with probability
Θ( 1

dG (v)
) as a candidate to join the independent set. Then,

in the second phase, ties are broken among the pre-selected
nodes so that nodes with larger degree are preferred. Finally,
selected nodes and their neighbors are removed from G, and
the round is completed. The algorithm terminates when G is
empty.

In our version of the algorithm, a simplified method for
breaking ties is used. Instead of preferring nodes with larger
degree, we only add a pre-selected node to the independent
set if none of its neighbors have been pre-selected. This
method of breaking ties has previously been used, e.g., in
[16,17,23].

Algorithm 1 One-round independent set algorithm
Require: G = (V, E) {Input graph}
1: I ← ∅ {the independent set to be computed}
2: pi ← 1

dG (v)+1
3: Tv ←coin(pi ) {Pre-selection step: If Tv = true then v is a candidate

to join I}
4: for all v ∈ V with Tv = true do
5: if

∨
u∈ΓG (v) Tu = false then {Check whether a neighbor of v has

been pre-selected}
6: I ← I ∪ {v} {v is selected into the IS}
7: end if
8: end for

In a distributed implementation of this algorithm, a node
v beeps (broadcasts the same message 1 to all its neighbors)
if Tv = true and remains silent otherwise. In Line 5 of the
algorithm, it is required that every candidate node v learns
whether at least oneneighbor emitted abeep signal. It is hence
enough if nodes have the ability to learn the disjunction of
incoming messages.

We will first prove that the algorithm achieves the Caro-
Wei bound up to a constant factor and then discuss the precise
model requirements of the algorithm.

Our main theorem relies on a technical lemma, which
bounds a certain quantity away from zero and is proved first.

Lemma 1 Let G = (V, E) be any graph. Then:

S(G) :=
∑

v∈V

1

d(v) + 1

⎛

⎝1 −
∑

u∈Γ (v)

1

d(u) + 1

⎞

⎠ > 0.

Proof First, observe that

1 −
∑

u∈Γ (v)

1

d(u) + 1
>

∑

u∈Γ (v)

(
1

d(v) + 1
− 1

d(u) + 1

)
,
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Computing large independent sets in a single round 73

which implies

S(G) >
∑

v∈V

1

d(v) + 1

∑

u∈Γ (v)

(
1

d(v) + 1
− 1

d(w) + 1

)
.

The contribution of each edge (v, u) ∈ E to the right side
of the previous inequality is

1

d(v) + 1

(
1

d(v) + 1
− 1

d(u) + 1

)

+ 1

d(u) + 1

(
1

d(u) + 1
− 1

d(v) + 1

)

=
(

1

d(v) + 1
− 1

d(u) + 1

)2

≥ 0,

and hence, S(G) > 0. 
�
Theorem 1 Algorithm 1 is a randomized distributed one-
round algorithm using single bit messages that finds on each
input graph G an independent set of expected size at least
0.224β(G).

Proof Let v be a node in G. Algorithm 1 adds v to the
independent set if two independent events happen: v is
pre-selected in Line 3 while none of its neighbors are pre-
selected. Then, by linearity of expectation,

E |I | =
∑

v∈V
P

[
v pre-selected

] · P
[
v ∈ I | v pre-selected

]

=
∑

v∈V

1

dG(v) + 1

⎛

⎝
∏

u∈ΓG (v)

(
1 − 1

dG(u) + 1

)⎞

⎠

︸ ︷︷ ︸
K

. (1)

We first bound the quantity K from the previous inequality.
To this end, fix a vertex v ∈ V . Use the notation Dv :=∑

w∈ΓG (v)
1

dG (w)+1 . Using that 1+ x ≤ ex , for any real value

x , and 1 − x ≥ e−1.39x , for 0 ≤ x ≤ 1/2, we have that for a
node v,

K ≥ exp

⎛

⎝−1.39
∑

w∈ΓG (v)

1

dG(w) + 1

⎞

⎠

= 1

e
exp (1 − 1.39Dv) ≥ 1

e
(2 − 1.39Dv)

= 0.224 + 1.39

e
(1 − Dv).

Plugging K back into Equality 1 gives

P[v ∈ I ] ≥ 0.224 · 1

dG(v) + 1

+1.39

e
· 1

dG(v) + 1
(1 − Dv) .

Summing up and applying the linearity of expectation,

E[|I |] =
∑

v∈V
P[v ∈ I ] ≥ 0.224β(G) + 1.39

e
S(G)

≥ 0.224β(G),

by Lemma 1. 
�

2.1 Model requirements

InAlgorithm1, nodes donot require information about global
properties, such as the total number of nodes or a polyno-
mial upper bound thereof. They also do not need to know
their neighbors, but only an estimate of their degree. In beep-
ing, radio or sensor network models, degree information is
not generally provided. For the maximal independent set
problem, algorithms with degree information generally out-
perform algorithms that operate without such information:
While for many models that do not provide degree informa-
tion, algorithms typically useΩ(log2 n) rounds [1,10,19,20,
29,30] (see also theΩ(log2 / log log n) lower bound of [21]),
degree information as employed for example in Luby’s algo-
rithm [2,28] allows for O(log n) rounds. In our one-round
setting, degree information is however crucial for obtain-
ing non-trivial approximation guarantees. We proof in the
“Appendix” that if degree information is not provided then
every one-round randomized algorithmhas an approximation
ratio of Ω( n

log n ).
The amount of local computation is proportional to the

length of the bit representation of the degree, while the
amount of space needed (in bits) is constant, besides access
to the node’s (approximate) degree.

Synchronization is not really needed: Nodes can converge
to a solution once theyhave heard fromall transmitting neigh-
bors.

In terms of transmission capabilities, one bit messages
are enough, and a broadcast transmission (the same message
goes to all neighbors) is sufficient. The algorithm requires
that transmitting nodes are able to hear if at least one neigh-
bor is also transmitting. This ability is known as sender-side
collision detection.

These requirements are matched by the model Bcd L
(Broadcasting nodes possess collision detection) in the spec-
trum of beeping models of [29]. It has previously been used
for maximal independent set computation in [1,20].

Sender-side collision detection is the strongest require-
ment that we impose on the underlying model. Interestingly,
it can be avoided if we equipped listening nodes with a
stronger reception ability that we denote by full reception,
i.e., the ability to detect whether all neighbors of a node
transmitted.
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74 M. M. Halldórsson, C. Konrad

Lemma 2 Suppose nodes have the ability to detect if all
neighbors transmitted or not. Then, Algorithm 1 can be
implemented without sender-side collision detection.

Proof We invert themeaning of transmit and no transmit, i.e.,
nodes v with Tv = true remain silent and nodes with Tv =
false transmit a beep signal. The decision rule of the algo-
rithm is now equivalent to checking if all neighbors transmit
while the node listens. 
�

Full reception is also a strong assumption, and one may
wonder whether a weaker requirement would suffice. In
Sect. 4.2, we show however that either sender-side collision
detection or full reception is required for computing non-
trivial independent sets in one round, even in almost 3-regular
unit interval graphs.

3 Poly-logarithmic approximation on
bounded-independence graphs

In this section, we show that an independent set of size β(G)

is a poly-logarithmic approximation of a maximum indepen-
dent set in PBI-graphs.

We first show that in any graph G = (V, E), for any
node v ∈ V , the sum of the inverted degrees of the nodes in
the 2 log n

log log n -neighborhood of v is Ω(1) (Lemma 3). In BI-
graphs, the size of an independent set in the subgraph induced
by such a 2 log n

log log n -neighborhood is at most f (2 log n
log log n ), by

definition. Hence, within the 2 log n
log log n -neighborhood of any

node v ∈ V , the ratio between the size of a maximum inde-
pendent set and the sum of inverted degrees is O( f ( log n

log log n )).
This argument is then extended to hold for the entire graph
(Theorem 2), which implies our main result.

Lemma 3 Let G = (V, E) be an arbitrary graph with max-
imum degree Δ, and let m = min{Δ, 2 log n

log log n }. Then:
∑

u∈Γ m
G [v]

1

dG(u)
= Ω(1).

Proof Let v ∈ V be a node, and let d0 = dG(v). For
abbreviation, let s j = |Γ ( j)

G (v)| for j ≥ 1. We set s0 =
1, and we have s1 = d0. Furthermore, we define di =
1
si

∑
u∈Γ

(i)
G (v)

dG(u) to be the average degree of the nodes

in Γ
(i)
G (v). Then, the inverted degree sum of the nodes in the

m-neighborhood can be bounded as follows:

∑

u∈Γ m
G [v]

1

dG(u)
= 1

d0
+

m∑

j=1

∑

u∈Γ
( j)
G (v)

1

dG(u)

≥ 1

d0
+

m∑

j=1

∑

u∈Γ
( j)
G (v)

1

d j

Γ
(j−1)
G (v)

Γ
(1)
G (v)

v

s0
s1 sj−2

sj−1
sj

v

s0
s1 s2

s3

Fig. 1 Left sequence si is not strictly increasing. This implies that
there exists an index j such that s j−1 > s j−2 and s j−1 ≥ s j . Thus, the
expression

s j−1
s j−2+s j−1+s j

is bounded from below by 1/3. Right sequence
si is strictly increasing. This implies that the number of indices j ∈
J such that

s j
2s j+s j+1

≥ log log n
log n is at most log n

log log n (1 + o(1)). Thus,

Θ(
log n

log log n ) indices outside J are enough such that
∑

i /∈J
s j

2s j+s j+1
=

Ω(1)

= 1

s1
+ s1

d1
+

m∑

j=2

s j
d j

, (2)

where the first inequality follows from the relationship
between the harmonic mean and the arithmetic mean. For
i ≥ 2, consider a node u ∈ Γ

(i)
G (v) of degree at least di .

Then, ΓG(u) ⊆ Γ
(i−1)
G (v) ∪ (Γ

(i)
G (v) \ {u}) ∪ Γ

(i+1)
G (v).

Hence, dG(u) ≤ si−1 + si − 1+ si+1, and since di ≤ dG(u),
we also have di ≤ si−1 + si + si+1. Similarly, for d1 we
obtain the inequality d1 ≤ s1+ s2. Using this in Inequality 2,
we obtain:

∑

u∈Γ m
G [v]

1

dG(u)
≥ 1

s1
+ s1

d1
+

m∑

j=2

s j
d j

≥ 1

s1
+ s1

s1 + s2

+
m∑

j=2

s j
s j−1 + s j + s j+1

. (3)

In order to bound the right side of Inequality 3, we treat the
cases when the sequence si is strictly increasing and when it
is not strictly increasing separately. Both cases are illustrated
and summarized in Fig. 1.

Suppose that the sequence (si )1≤i≤m is not strictly increas-
ing. Let j be the smallest index so that s j ≤ s j−1. If j = 2,
then the term s1

s1+s2
of Inequality 3 can be bounded by s1

s1+s2
≥

s1
s1+s1

= 1/2, and thus,
∑

u∈Γ m
G [v] 1

dG (u)
> 1

2 = Ω(1). Sup-
pose that j > 2. Then, since j is the smallest index, we have
s j−2 < s j−1. Therefore, the addend with index j − 1 of
the sum in the right side in Inequality 3 can be bounded as
follows:

s j−1

s j−2 + s j−1 + s j
>

s j−1

3 · s j−1
= 1/3,

which implies
∑

u∈Γ m
G [v] 1

dG (u)
> 1

3 = Ω(1).
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Assume now that the sequence (si )i is strictly increasing.
We bound the right side of Inequality 3 as follows:

1

s1
+ s1

s1 + s2
+

m∑

j=2

s j
s j−1 + s j + s j+1

≥ 1

s1
+ s1

s1 + s2
+

m∑

j=2

s j
2 · s j + s j+1

. (4)

Let J ⊆ {2, . . . ,m} be the subset of indices so that for each
j ∈ J : s j

2·s j+s j+1
≤ log log n

log n . This implies that we have

s j+1 ≥ s j
(

log n
log log n − 2

)
, for j ∈ J . Since the sequence

(si )i is strictly increasing, we can bound the size of the set J
as follows:

(
log n

log log n
− 2

)|J |
≤ n,

and thus |J | ≤ log n
log log n (1 + o(1)). Since m = 2 log n

log log n ,

there are Θ(
log n

log log n ) indices i with i /∈ J and si
2·si+si+1

≥
log log n
log n . Then, the addends in the right side of Inequality 4

that correspond to those indices i /∈ J sum up to a constant
bounded away from 0, for sufficiently large values of n. This
proves part 1 of the lemma.

We derive now a bound on m in terms of the maximum
degree Δ. To this end, we depart from Inequality 4. Notice
that the bound on Δ implies s j ≤ s j−1Δ. Thus, for any j ,
the addend in Inequality 4 that corresponds to j is bounded
as follows:

s j
2s j s j−1

≥ s j
2s j+Δs j

= 1
2+Δ

. Sincem = Θ(Δ), the
right side of Inequality 4 sums up to a constant. 
�

Theorem 2 Let G = (V, E) be a PBI-graph with maximum
degree Δ and bounding function f . Then:

α(G) = O

(
β(G) · f

(
min

{
Δ,

log n

log log n

}))
.

Proof Letm = min{Δ, 2 log n
log log n }. Let S be amaximal (2m+

1)-independent set in G, i.e., a maximal set of vertices of
mutual distance at least 2m + 1. Let I ∗ denote a maximum
independent set in G. Since S is maximal, every vertex in
I ∗ is at a distance at most 2m from a vertex in S, and thus
|I ∗| ≤ |S| · f (2m). Since S is (2m + 1)-independent, the m-
neighborhoods around nodes in S are disjoint. Thus, using
Lemma 3, we have

β(G) =
∑

v∈V

1

dG(v) + 1
≥

∑

s∈S

∑

v∈Γ m
G (s)

1

dG(v) + 1

= Ω(|S|).

Thus,

α(G) ≤ |S| · f (2m) = O(β(G) · f (2m)) = O(β(G) f (m)),

where we used that f (2m) = O( f (m)) holds since f is
bounded by a polynomial. 
�

4 Limitation results

We present here several results that indicate that our algorith-
mic result cannot be improved on. We first see in Sect. 4.1
that one-round algorithms only yield a Ω(n)-approximation
on (general) disc graphs. In Sect. 4.2, we prove that either
sender-side collision detection or full reception is necessary
for one round algorithms. Then, we prove in Sect. 4.3 that
our analysis for d-dimensional unit sphere graphs is tight.We
show in Sect. 4.4 that multiple iterations of our algorithm do
not substantially improve its approximation factor. Finally,
we see in Sect. 4.5 that going beyond BI-graphs is hard, in
particular, there are claw-free graphs for which the Caro-Wei
bound only yields polynomial approximation factors.

4.1 Lower bound for one-round algorithms on general
graphs

In this subsection, we prove that every possibly randomized
distributed one-round algorithmcomputes an independent set
of size at most n/ω(G) on any regular graph G, where ω(G)

denotes the clique number, i.e., the size of a largest clique.
This implies that every one-round algorithm has an approxi-
mation factor of at least α(G)ω(G)

n . We then show that there is
a disc graph with ω(G) = Ω(n) and α(G) = Ω(n), imply-
ing that even on disc graphs, no non-trivial approximation is
possible in one round.

To this end, let G = (V, E) be a d-regular graph, for
an integer d. We assume that each node has a unique label
chosen from U = {1, . . . ,m}, where m ≥ n. Let L denote
the set of all possible labellings of V . In order to prove our
lower bound, we exploit the fact that all nodes in V have the
same local views, i.e., in one round, all nodes can only learn
the d labels and random coin flips of their adjacent nodes.
Since all nodes run the same algorithm, in average over all
possible labellings L, the probabilities for all nodes to end
up in I are equal. This fact is used in the following theorem:

Theorem 3 Every possibly randomized one-round
distributed algorithm for maximum independent set on a d-
regular graph G = (V, E) that outputs a correct solution
with probability at least 1 − 1/n has an expected approxi-
mation factor of at least ω(G)α(G)

2n .

Proof Consider a possibly randomized one-round algorithm
for maximum independent set. Then, as previously argued,
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clique C1 of size r − 1

clique C2 of size r − 1

indep. set
I of size r

Fig. 2 A (2r − 2)-regular disc graph Gr with 3r − 2 vertices and
ω(Gr ) = α(Gr ) = r

for all u, v ∈ V , we have P [u ∈ I ] = P [v ∈ I ], where the
probabilities are taken over all possible labellings L and the
random coin flips of the algorithm. Let p = P [v ∈ I ], for
any node v. Then,

E|I | =
∑

u∈V
P [u ∈ I ] = np.

Let C be a clique of G of size ω(G). Then, since the error
probability of the algorithm is at most 1/n, we have

ω(G)p = E|C ∩ I | =
∑

i

P [|C ∩ I | = i]

≤ P [|C ∩ I | ≤ 1] + P [|C ∩ I | ≥ 2]ω(G)

≤ 1 + 1

n
· n = 2,

and hence, p ≤ 2
ω(G)

. Therefore, E|I | = np ≤ 2n
ω(G)

. The

expected approximation ratio is hence at least ω(G)α(G)
2n . 
�

Consider now the following disc graph Gr = (C1 ∪C2 ∪
I, E), parametrized by an integer r ≥ 2, as in Fig. 2. Set
I consists of r non-overlapping unit discs arranged on a
line. Set C1 (C2) contains r − 1 identical discs of large
radii (radius O(n3) suffices) arranged such that they over-
lap with all vertices of I from above (below, respectively).
Graph Gr has n = 3r − 2 vertices, is (2r − 2)-regular, and
α(Gr ) = ω(Gr ) = r holds.

Plugging Gr into Theorem 3, we obtain the following
corollary:

Corollary 1 Every possibly randomized one-round distri-
buted algorithm for maximum independent set that is correct
with probability at least 1 − 1/n has an expected approxi-
mation factor of at least 1

18n on disc graphs.

4.2 Model aspects

In this subsection, we show that every randomized one-
round algorithm that computes a o(n)-approximation to the
independent set problem either uses sender-side collision
detection (a transmitting node can detect whether at least one
of its neighbors also transmitted) or full reception (receiving
nodes can detect whether all of its neighbors transmitted).

4j 4j + 1 4j + 2 4j + 3

Fig. 3 Graph G = ({0, 1, . . . , n − 1}, E) used in the lower bound
construction of Theorem 4. G consists of n/4 repetitions of the boxed
pattern. Nodes 0 and n−1 are of degree 2; all other nodes are of degree
3. A key property of G is that ΓG [4 j + 1] = ΓG [4 j + 2], for every
0 ≤ j ≤ n/4 − 1

Theorem 4 Every randomized one-round algorithm that is
correct with probability 1−1/n without sender-side collision
detection or full reception has an expected approximation
ratio ofΩ(n), even on almost 3-regular unit-interval graphs.

Proof We consider one-round algorithms that learn noth-
ing when transmitting. When listening, they have collision
detection, i.e., can distinguish between 0, 1, or at least 2
neighbors transmitting. The basic requirement is correctness:
The set computed must be independent with probability at
least 1 − 1/n.

Given number n, which we assume to be a multiple of
4, consider the following almost-cubic graph G = (V, E),
where V = {0, 1, . . . , n − 1} and E = {(i, i + 1) : i =
0, 1, 2, . . . , n − 2} ∪ {(i, i + 2) : i mod 4 ≤ 1}. All nodes
except nodes 0 and n − 1 are of degree three; nodes 0 and
n−1 are of degree 2. GraphG can be represented as a proper
interval graph. A portion of the graph is illustrated in Fig. 3.

We allow the graph to be labeled. In this case, we assume
a uniform distribution over the possible labeling from a finite
set set of labels [m], where m ≥ n. Thus, each node receives
a unique label uniformly at random from [m].

When listening, a node can only learn the label of their
transmitting neighbor when hearing from a single neighbor.
Each node makes two decisions: whether to transmit in the
round and whether to join the independent set, where the
latter can depend on how many (and which) neighbors it
heard from if it was listening. Both of these actions can be
probabilistic. We show that the expected number of nodes
joining the independent set must be constant, in order for the
solution to be correct with probability 1 − 1/n.

We first treat the case of nodes joining after transmitting.
Let p denote the probability that a node transmits, averaged
over the labelings of the node. Let qT denote the probability
that a node joins the independent set in the case that it trans-
mits, again averaged over the labelings of the node. Consider
the event A j , for j = 1, 2, . . . , n/2, that both i and i+1 trans-
mit and join the independent set. None of these independent
events can take place for the solution to be correct. The proba-
bility of each event A j is (pqT )2, so the probability that none

occurs is (1− (pqT )2)n/2 ≤ e−(pqT )2·n/2 ≤ 1− (pqT )2n/4,
using that 1− x ≤ e−x ≤ 1− x/2, for 0 ≤ x ≤ 1. Since the
probability of correctness is assumed to be at least 1−1/n, it
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Computing large independent sets in a single round 77

holds that 1−1/n ≤ 1−(pqT )2n/4 or 1/n ≥ (pqT )2n/4 or
pqT ≤ 2/n. On the other hand, the probability that a given
node joins the independent set after transmitting is pqT , so
the expected number of nodes that join this way is at most
npqT ≤ n · 2/n = 2.

Consider now the case of nodes joining after listening.
There are four cases, depending on howmany of their neigh-
bors transmitted. Let qi denote the probability that a node
joins the solution after i neighbor transmitted, averaged over
the labels of the node and its transmitting neighbors. Fix
i = 0, 1, 2.Consider the event Bj,i , for j = 0, 1, . . . , n/4−1
and i = 0, 1, 2, that nodes 4 j + 1 and 4 j + 2 both join
after hearing from exactly i neighbors (adjacent nodes can-
not both hear from three neighbors). Observe that nodes
4 j + 1 and 4 j + 2 have two common neighbors and no
other neighbors. Thus, the probability of Bj,i occurring is
P

[
Bj,i

] = pi (1− p)4−i q2j , and the probability that none of
them occurs (for fixed i) is

P

⎡

⎣
∧

j

B j,i

⎤

⎦ ≤
(
1 − pi (1 − p)4−i q2j

)n/4

≤ 1 − pi (1 − p)4−i q2j
n

8
,

where we used 1 − x ≤ e−x ≤ 1 − x/2, for 0 ≤ x ≤ 1,
again. Since the solution is correct with probability at least
1 − 1/n, it follows that 1/n ≥ pi (1 − p)4−i q2i

n
8 , or

pi/2(1 − p)2−i/2qi ≤ √
8/n ≤ 3/n. (5)

On the other hand, the probability that any node different
from 0 and n−1 joins the independent set after listening and
hearing from exactly i nodes is

(3
i

)
(1 − p)4−i pi qi , so the

expected number Ei of nodes that join this way is at most
(n − 2)

(3
i

)
(1 − p)4−i pi qi . Applying Inequality 5, we find

that expected number of nodes that join this way is

Ei ≤ (n − 2)

(
3

i

)
(1 − p)4−i pi qi ≤

(
3

i

)
.

In total, the expected number of nodes that join the inde-
pendent set is then bounded by: two nodes that join after
transmitting, the two nodes 0 and n−1, and

(3
0

)+(3
1

)+(3
2

) =
1 + 3 + 3 = 7 of the nodes V \ {0, n − 1} that join after lis-
tening. 
�

The argument can be extended to the intermediate setting
where a node can count up to k transmitting neighbors, but
cannot distinguish how many beyond k are transmitting, for
a fixed value k.

4.3 Lower bound for d-dimensional unit sphere graphs

In this section, we design d-dimensional unit sphere graphs

G such that α(G) = Ω
(
β(G) f (min{Δ,

log n
log log n })

)
holds,

rendering the analysis of Theorem 2 tight.
A d-dimensional unit sphere graph G = (S, E) is

the intersection graph of d-dimensional unit spheres S =
{s1, . . . , sn} (all spheres have the same radius): Each sphere
si constitutes a vertex in G and two spheres are adjacent iff
they intersect. For d = 1, a unit sphere graph is a unit interval
graph, and for d = 2, a unit sphere graph is a unit disc graph.

Let d > 0 be some fixed dimension. We will denote
our hard instance graph with Hk = (VH , EH ) where k
is a parameter which we define later. We start our con-
struction of Hk with a grid graph Gk = (VG , EG) that is
parametrized by an integer k ≥ 1. The vertex set of Gk is
defined as VG = {vx | x ∈ {0, 1, . . . , k − 1}d}. Let vx , vy
with x, y ∈ {0, . . . , k − 1}d be two vertices of VG . Then vx
and vy are adjacent iff |x− y| = 1, where |x | = ∑

1≤i≤d |xi |.
The hard instance graph Hk is obtained from Gk as fol-

lows: For every vertex vx ∈ VG , a clique Cx of size s(|x |) is
introduced in Hk , where

s(i) = di kdi logi n. (6)

Suppose that vx and vy are adjacent nodes in Gk . Then all
nodes of Cx are connected to all nodes of Cy in Hk , or, in
other words, Cx ∪Cy also forms a clique in Hk . We say that
a node vx or a clique Cx is in layer i , if its distance from the
vertices of clique C(0,...,0) is i , or, in other words, |x | = i .

First, notice that Hk is in fact a d-dimensional unit sphere
graph. Each vertex v ∈ Cx ⊆ VH with x ∈ {0, . . . , k − 1}d
corresponds to a sphere centered at position x with radius
1/2 (for convenience, in this construction we suppose that
all spheres have the radius 1/2 instead of 1). An example is
provided in Fig. 4.

Fig. 4 Illustration of the two-dimensional case: on the left, the grid
graph G4 is illustrated. On the right, the hard instance unit disc graph
H4 is shown. H4 is obtained fromG4 by replacing each node at position
(i, j) with a clique of size s(i + j)
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We first observe that graph Hk contains an independent
set of size ( k2 )

d .

Lemma 4 Consider graph Hk. Then α(Hk) ≥ ( k2 )
d .

Proof Let X = {2i : i ∈ N ∪ {0} and 2i ≤ k − 1} be the
even numbers up to k − 1 including 0, and let I be a set that
contains exactly one vertex fromeach cliqueCx with x ∈ Xd .
Then I is independent and |I | = |Xd | = |X |d ≥ ( k2 )

d . 
�
We prove now that Hk is a PBI-graph with respect to the

bounding function f (r) = (2r + 1)d .

Lemma 5 The d-dimensional unit sphere graph Hk is of
bounded independence with respect to the bounding function
f (r) = (2r + 1)d .

Proof For some x ∈ {0, . . . , k−1}d , the size of a maximum
independent set in the k-neighborhood of a node v ∈ Cx ⊆
VH is the same as the size of a maximum independent set of
the node vx ∈ VG in the corresponding grid graph. Therefore,
the r -neighborhood of an arbitrary node vx ∈ VG with x ∈
{0, . . . , k − 1}d is a subset of the nodes with indices j ∈
{x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}. Thus,
|{x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}| = (2r +
1)d is a bound on the size of an independent set in the r -
neighborhood of v. 
�

Next, we identify the correct value for k so that Hk has
O(n) vertices, and we show that β(Hk) = O(1).

Lemma 6 Consider graph Hk = (VH , EH ) with k = C·
log n

d2 log log n
, for a small enough constant C. Then, Hk hasO(n)

vertices, and β(Hk) = Θ(1).

Proof Let Vi := {v ∈ Cx : |x | = i} be the set of nodes in
layer i , and denote by ni the number of cliques in layer i .
Then, |Vi | = ni · s(i). First, note that by construction of Hk

we have ni ≤ ni+1d. This allows us to establish a relation
between |Vi | and |Vi+1|:

|Vi | = ni · s(i) ≤ ni+1d · (di kdi logi n) ≤ ni+1 · s(i + 1)

kd log n

= |Vi+1|
kd log n

.

Then, since |VH | = ∑d(k−1)
i=0 |Vi | and by the previous

inequality, we obtain |VH | = O(|Vd(k−1)|). We compute:

|Vd(k−1)| = s(d(k − 1)) = O
(
dkdkd

2k logkd n
)

= O(n),

where the last equality can be verified using the definition
k = C log n

d2 log log n
. We thus established |VH | = O(n).

Next, in order to prove β(Hk) = Θ(1), notice that for
i < (k − 1)d, the degree of every node of Vi is at least

s(i + 1), the size of a clique in layer i + 1. Furthermore,
the degrees of the nodes of clique C(k−1,...,k−1) are at least
s(d(k − 1)). Thus,

β(Hk) =
d(k−1)−1∑

i=0

ni · s(i)
s(i + 1)

+ nd(k−1)sd(k−1)

sd(k−1)

≤
d(k−1)−1∑

i=0

kd

dkd log n
+ 1 = k − 1

log n
+ 1 = Θ(1),

where we used the rough estimate ni ≤ kd . 
�
Using the previous lemma, we show that the analysis of

Theorem 2 is best possible.

Theorem 5 There is an infinite family of PBI-graphs G such
that for every G ∈ G with bounding function f :

α(G) = Ω

(
β(G) · f

(
min

{
Δ,

log n

log log n

}))
.

Proof Let n be an arbitrary large integer and let d ≥ 1 be a
constant integer. Furthermore, let k = C · log n

log log(n)d2
, for a

small enough constantC , as in Lemma 6. ByLemma 6, graph
Gk hasO(n)vertices andβ(Gk) = Θ(1)holds. Furthermore,
by Lemma 5, f (r) = (2r + 1)d is a bounding function of
Gk . By Lemma 4, Gk contains an independent set of size
Ω(( k2 )

d), and thus:

β(Gk) · f

(
log n

log log n

)
= O

((
log n

log log n

)d
)

, and

α(Gk) = Ω

((
k

2

)d
)

= Ω

((
log n

2d2 log log n

)d
)

.

The theorem thus holds for any constant d. 
�
Since the expected size of an independent set computed by

Algorithm 1 is Θ(β(G)) (and β(G) if computed by Alon-
Spencer- IS), we obtain the following corollary, which
shows that the analysis of Theorem 1 is tight.

Corollary 2 There is an infinite family of PBI-graphsG such
that for every G ∈ G with bounding function f , the expected
approximation ratios of Algorithm 1 and Alon- Spencer-
IS are Ω( f (min{Δ,

log n
log log n })) on input G.

4.4 Lower bound for multiple iterations

Instead of running Algorithm 1 or Alon- Spencer- IS once,
one may wonder whether applying these algorithms repeat-
edly leads to an improved approximation ratio. In this section,
we show that this is not the case: We show that running con-
stant number of iterations improves the approximation factor
at most by a constant factor.
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We consider the algorithm as depicted in Algorithm 2
(One- round- IS denotes either Algorithm 1 or Alon-
Spencer- IS):

Algorithm 2 Multiple iterations independent set alg.
Require: G = (V, E) {Input graph}, r {number of rounds}
1: V ′ ← V {active nodes}, I ← ∅ {the independent set to be com-

puted}
2: for i = 1 . . . r do
3: I ← I ∪ One- round- IS(G[V ′])
4: V ′ ← V ′ \ (I ∪ ΓG(I ))
5: end for
6: return I

We will show that in r iterations, Algorithm 2 com-
putes an independent set of size at most rd with probability
(1−O( 1

d log n ))i on graph Hk , which was defined in the pre-
vious section. Since Hk contains an independent set of size
Ω(( k2 )

d) (Lemma 4), this proves that the approximation ratio
of Algorithm 2 is Ω

(
( k
2r )

d
)
.

Consider the situation of Algorithm 2 at the end of the i th
iteration of the for-loop.Wewill prove that at thismoment, all
cliques of layers atmost (k−1)d−2i are contained in V ′ with
high probability. This proves that with high probability, in
each iteration the algorithm selects vertices of the outermost
layer, which then leads to the removal of a subset of the
vertices of the two outermost layers.

In the following, denote by V ′
i the set V

′ of Algorithm 2
after the i th iteration of the for-loop, and denote by Ii the set I
after the i th iteration. The index i = 0 describes the situation
before the first execution of the for-loop, i.e., V ′

0 = V and
I0 = ∅.

Lemma 7 In Algorithm 2, all cliques of layers ≤ (k − 1)d

− 2i are contained in V ′
i , with probability (1 − O( 1

d log n ))i .

Proof The proof is by induction on i . As a base case, it is eas-
ily verified that V ′

0 and I0 fulfill the statement of the lemma.
Suppose now the lemma holds for iteration i . We will prove
that it still holds after iteration i + 1.

Denote by E the event that all cliques of layers at most
(k − 1)d − 2i are included in V ′

i , and assume that E holds.
Let Cx be a clique with |x | ≤ (k − 1)d − 2i − 1 (recall that
|x | = ∑

1≤i≤d |xi |). Then, the probability that a node v of
Cx is chosen into the independent set by either Algorithm 2
or Alon- Spencer- IS in iteration i + 1 is at most 1

s(|x |+1) ,
since, conditioned on E , there is at least one clique Cy ∈ V ′

i
of layer |x | + 1 incident to v. Thus, by the union bound, the
probability that at least one node of Cx is chosen is at most

|Cx |
s(|x | + 1)

= s(|x |)
s(|x | + 1)

= O

(
1

dkd log n

)
.

Applying the union bound again, the probability that a node
of any of the cliques of layers at most (k − 1)d − 2i − 1 is
chosen in round i + 1 is O( 1

d log n ), since the total number of

cliques in Hk is kd .
This implies that, conditioned on E , with probability

O( 1
d log n ), all cliques of layers at most (k − 1)d − 2i − 2

are included in V ′
i+1. Note that even though we proved that,

with high probability, nodes of layer (k − 1)d − 2i − 1 are
not chosen by the algorithm, some of their neighbors of layer
(k − 1)d − 2i might be chosen, which would lead to their
removal in Line 4 of the algorithm.

By the induction hypothesis, P [E] ≥ (1 − O( 1
d log n ))i ,

and, therefore, with probability at least (1 − O( 1
d log n ))i+1,

all cliques Cx of layers at most (k − 1)d − 2i − 2 = (k −
1)d − 2(i − 1) are included in V ′

i+1, which completes the
lemma. 
�
Theorem 6 There is an infinite family of PBI-graphs G such
that for every G ∈ G with bounding function f , running r
iterations of Algorithm 2 obtains an

Ω

(
f

(
1

r
· min

{
Δ,

log n

log log n

}))

approximation on input G with probability (1−O( 1
d log n ))i .

Proof Let n be an arbitrary large integer and let d ≥ 1 be
a constant integer. Furthermore, let k = C · log n

log log(n)d2
, for

a small enough constant C , as in Lemma 6. By Lemma 7,
all cliques Cx of layers at most (k − 1)d − 2r are included
in V ′

r with probability Ω((1 − O( 1
d log n ))i ). Hence, among

the eliminated nodes, every independent set is of size O(rd).
Since Hk contains an independent set of size Ω((

log n
log log n )d)

(Lemma 4), the result follows. 
�

4.5 The Caro-Wei bound in claw-free-graphs

Every PBI-graph is O( f (1) + 1) = O(1)-claw free. Claw-
free graphs are a natural superclass of PBI graphs, and one
may wonder how well the Caro-Wei bound behaves on this
graph class. We find that β(G) is a Θ(

√
bn)-approximation

to α(G) on b-claw-free graphs.
For integer b ≥ 1 with b = O(

√
n), we construct a

(b + 2)-claw-free graph G on O(n) vertices that contains
an independent set of size Ω(

√
nb) while β(G) = O(1).

This construction shows that in (b + 2)-claw-free graphs,
β(G) may only be a polynomial approximation of the size
of a maximum independent set.

To this end, let G ′ be the graph that consists of k copies of
Ka,b, the complete bipartite graphwith bipartitions of sizes a
and b. Then,G is obtained fromG ′ by joining all left sides of
the copies of Ka,b (the bipartitions of size a) into a clique. In
other words, G = (U ∪ V, E) is a split graph with a clique
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U = {u1, . . . , uka} and independent set V = {v1, . . . , vkb},
where uiv j ∈ E ⇔ � i

a � = � j
b �. Notice that G is (b + 2)-

claw-free.

Theorem 7 Let n, b be integers with b = O(
√
n). Then there

exists a (b+2)-claw-free graph G onO(n) vertices such that
α(G) = Ω(

√
nb)β(G).

Proof Consider the graph G as defined above with a =
Θ(

√
nb) and k = Θ(

√
n/

√
b). Observe that U has ka node

in a clique, each adjacent to b nodes in V , while nodes in V
are independent and of degree a. Then,

α(G) = kb = Θ(
√
nb),

β(G) = ka

ka − 1 + b
+ kb

a + 1
≤ 1 + Θ(

√
nb)

Θ(
√
nb) + 1

= O(1),

and thus α(G)
β(G)

= Ω(
√
nb). Graph G has k(a + b) = O(n +√

nb) = O(n) vertices, since b = O(
√
n). 
�

We now prove a matching upper bound.

Theorem 8 Let b ≥ 2 be an integer, and let G be a (b+ 1)-
claw-free graph. Then, α(G) ≤ √

nb · β(G).

Proof Let I ∗ denote an independent set of size α(G). Let
d = 1

α(G)

∑
v∈I ∗ dG(v) be the average degree of the nodes

in I ∗. Notice that since G is (b + 1)-claw-free, each vertex
outside I ∗ is incident to at most b nodes of I ∗. Count-
ing edges incident on I ∗, using that I ∗ is independent, we
get that

∑
v∈I ∗ dG(v) ≤ (n − α(G))b. That implies that

d ≤ (n−α(G))b
α(G)

. Then, since β(G) ≥ ∑
v∈I ∗ 1

dG (v)+1 ≥ |I ∗|
d+1

(using the relationship between the harmonic and arithmetic
mean),

β(G) ≥ α(G)

d + 1
≥ α(G)2

(n − α(G))b + α(G)
>

α(G)2

nb
,

since α(G)(1 − b) < 0. Since β(G) ≥ 1, we obtain that
α(G)
β(G)

≤ min{α(G), nb
α(G)

} ≤ √
nb. 
�

5 Conclusion

In this paper, we gave a one-round, single-bit messages ran-
domized algorithm, which computes an independent set of
expected sizeΘ(β(G)), where β(G) is the Caro-Wei bound.
We proved that the Caro-Wei bound approximates the size
of a maximum independent set in polynomially bounded-
independence graphs within a poly-logarithmic factor, which
implies that the approximation factor of our algorithm is
poly-logarithmic for this graph class. We complemented our
results by showing that no one-round algorithm can achieve
an o(n)-approximation factor on general graphs.

A natural question to examine in the future is whether
using larger (but still constant) number of rounds gives
markedly better results, either by extending the graph class
or resulting in asymptotically better approximations. A per-
tinent question might then be whether there is a property of a
larger neighborhood that materially improves on just know-
ing the degree.
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Appendix: Impossibility result for one-round algo-
rithms without degree information

We show in this section that degree information is required in
order to obtain non-trivial approximation guarantees in one
round.

We assume the following setting. Let n be an integer. We
will consider labelled graphs on n vertices, where the labels
of the nodes are chosen from the set L = [4n + 3]. Initially,
nodes only know their labels and the cardinality n of the
graph; in particular, the nodes do not know their degrees.
Nodes then either transmit a signal or remain silent. Each
node v subsequently receives a bit bv indicating whether at
least one of v’s neighbors transmitted; this is full-duplex, i.e.,
independent of whether v transmitted or not. Last, based on
this information each node decides whether to join the output
independent set. The output must be correct with probability
1. Let A be a randomized distributed one-round maximum
independent set algorithm operating in this way.

We show that, for each A, there is an input graph labeled
with labels of L for which the approximation factor of A
is Ω( n

log n ). Specifically, we use the clique graph Kn when
the algorithm is aggressive, opting to transmit with relatively
high probability, and use the path Pn , when transmissions are
unlikely.

Theorem 9 The approximation factor of A is Ω( n
log n ).

Proof For a label l ∈ L let p(l) denote the probability that
a node with label l transmits. Furthermore, for t, b ∈ {0, 1}
let ptb(l) be the probability that a node with label l joins the
independent set conditioned on transmitting/not transmitting
(indicated by t) and receiving/not receiving (indicated by b).

First, we observe that if the algorithm is to achieve any
approximation at all, the algorithm can decide to transmit
deterministically on only few labels. Specifically, for at most
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2n labels l does it hold that p(l) ∈ {0, 1}. Namely, if all
the nodes are deterministic in the same way, then no infor-
mation is passed between them. Thus, they must make their
choice of joining the solution depending only on their label.
Since adjacent nodes cannot both join the solution with pos-
itive probability, there can be at most one label that allows
the node to join. Thus, if there are n + 1 labels for which
p(l) = 0 (or symmetrically, p(l) = 1), then for n of these
labels the nodes will never join the solution; the output of
the algorithm is then zero, for an infinite approximation
ratio.

We focus therefore on the set L′ of at least 2n + 3 labels
for which transmission is not deterministic, i.e., labels l
such that p(l) ∈ (0, 1). We argue that L′ contains at most
one label l1 with p01(l1) > 0, at most one label l2 with
p00(l2) > 0, and at most one label l3 with p11(l3) > 0. We
only give the argument for l1, the arguments for l2 and l3
are similar: Suppose that there were two labels l1, l ′1 ∈ L′
with p01(l1) > 0 and p01(l ′1) > 0. Then, suppose there
are nodes u, v with those labels that form a clique together
with a third node w with a label of L′. Since there is a
non-zero probability that w transmits while neither u or v

transmit, both u and v may join the solution with positive
probability, which contradicts the correctness of the algo-
rithm.

Thus, for all l ∈ L′′ = L′ \ {l1, l2, l3}, we have
p00(l) = p01(l) = p11(l) = 0. The only safe con-
figuration for a node with a label from L′′ to join the
independent set is then when it transmits and does not
receive a message from its neighbors. If there are n labels
l ∈ L′′ with p(l) ≥ 24 log(n)/n, then consider the
n-clique graph with nodes assigned such labels. The ran-
dom variable X counting the number of transmissions
has expectation EX ≥ 24 log(n) and by a Chernoff
bound,

P [X ≤ EX/2] ≤ exp

(
−1

8
· 24 log(n)

)
≤ n−2.

Thus, with high probability, more than one node of G trans-
mits, and since only transmitting nodes whose neighbors do
not transmit can join the independent set, none of these nodes
join the independent set. The approximation factor of the
algorithm is thus at least 1

n−2 = n2.
On the other hand, if there are n labels l ∈ L′′ with

p(l) ≤ 24 log(n)/n, then consider the path graph Pn with
nodes assigned such labels. The number X of transmitting
nodes has expectation EX ≤ 24 log(n) and by a Chernoff
bound,

P [X ≥ 2EX ] ≤ exp (−24 log n/3) ≤ n−2.

Thus, with high probability, at most 48 log n nodes transmit,
and by the discussion above, the independent set computed
is thus of size at most 48 log n. The approximation factor of
the algorithm in this case is Ω( n

log n ).
In all cases, the approximation factor is Ω( n

log n ), giving
the result. 
�
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