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Abstract The observed rise in atmospheric methane (CH4) from 375 ppbv during the Last Glacial
Maximum (LGM: 21,000 years ago) to 680 ppbv during the late preindustrial era is not well understood.
Atmospheric chemistry considerations implicate an increase in CH4 sources, but process-based estimates
fail to reproduce the required amplitude. CH4 stable isotopes provide complementary information that can
help constrain the underlying causes of the increase. We combine Earth System model simulations of the
late preindustrial and LGM CH4 cycles, including process-based estimates of the isotopic discrimination
of vegetation, in a box model of atmospheric CH4 and its isotopes. Using a Bayesian approach, we show
how model-based constraints and ice core observations may be combined in a consistent probabilistic
framework. The resultant posterior distributions point to a strong reduction in wetland and other biogenic
CH4 emissions during the LGM, with a modest increase in the geological source, or potentially natural
or anthropogenic fires, accounting for the observed enrichment of 𝛿13CH4.

Plain Language Summary Methane is the next most important greenhouse gas in the
atmosphere after carbon dioxide. Since industrialization, methane has risen from around 680 ppbv
(parts per billion volume) to 1,800 ppbv today. Before industrialization, methane levels were dominated
by natural processes. The largest recent changes occurred during ice age to interglacial transitions.
Measurements on gas bubbles preserved in ice cores show that methane rose with global temperatures,
from around 375 ppbv during the ice age, to 680 ppbv prior to the Industrial Revolution. Explaining
this amplitude remains a challenge, because there are no measurements of past sources or sinks
of methane. Stable isotopes of methane provide additional information, because different sources and
sinks impart unique signatures to the methane measured in ice cores. We use these measurements with
a computer model of the global methane cycle. We then employ a statistical approach to learn how
sources changed, taking account of uncertainties. We find that a near doubling of the wetland methane
source is required. This is much greater than the change simulated in this and other methane models.
This potentially indicates that methane models are undersensitive, with implications for understanding how
the methane cycle will evolve in the near future.

1. Introduction

Atmospheric methane (CH4) is an important greenhouse gas. Its concentration has risen sharply over the past
two centuries, reaching 1,799 ppbv by Common Era (CE) 2010 (Kirschke et al., 2013). This is estimated to have
contributed around 25% of the anthropogenic greenhouse gas effect since CE 1750 (Myhre et al., 2013). CH4

is also reactive with a lifetime of about 9 years (Prather et al., 2012), and so its abundance indirectly affects the
concentrations of other trace gases such as nitrous oxide and ozone.

Observed variations in the growth rate over the past decades are not well understood (e.g., Bousquet et al.,
2011; Kirschke et al., 2013). Different studies have implicated changes in biogenic emissions (e.g., Nisbet et al.,
2016; Schaefer et al., 2016), lifetime (Rigby et al., 2017) or biomass burning emissions (Worden et al., 2018) in the
recent growth rate. Prior to the observational era, changes in atmospheric methane can be accurately recon-
structed from gas bubbles recovered in ice cores. During the late Quaternary, CH4 mixing ratios are correlated
with climate (e.g., Loulergue et al., 2008). Explaining the magnitude of these variations remains a challenge
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(Hopcroft et al., 2017; Levine, Wolff, Jones, Sime, Valdes, et al., 2011; Murray et al., 2014), reflecting incomplete
understanding of the source and sink processes.

The increase in atmospheric CH4 concentration from the LGM to the beginning of the Industrial Revolu-
tion (hereafter the late preindustrial) is among the largest such changes, with an increase from 375 ppbv to
680 ppbv (Loulergue et al., 2008; Mitchell et al., 2013; WAIS Divide Project Members, 2015). This concentration
increase is likely the result of a near doubling of the source of methane (Levine, Wolff, Jones, Sime, Valdes, et al.,
2011; Murray et al., 2014). Considerable debate remains over how this occurred (Kaplan et al., 2006; Levine,
Wolff, Jones, Sime, Valdes, et al., 2011; Murray et al., 2014; Valdes et al., 2005), because of uncertainties in the
response of methane sources and sinks to climate, and in terms of the relative importance of different sources
in the late preindustrial era (Hopcroft et al., 2017).

Concurrent changes in the stable isotopes of methane can provide additional constraints, because different
sources and sinks of methane have distinct isotopic signatures and fractionation rates (e.g., Bock et al., 2017).
Between the LGM and preindustrial, 𝛿13CH4 became depleted from−43±0.3‰ to−48±0.3‰, with a similar
depletion of deuterium of CH4 (𝛿DCH4) from −79 ± 4‰ to −98 ± 3‰ (Fischer et al., 2008; Möller et al., 2013;
Sowers, 2006, 2010).

Fischer et al. (2008) used a box model of atmospheric CH4 and CH4 isotopes and adjusted the relative con-
tributions of sources and sinks to explain the observed glacial-interglacial changes. They inferred an increase
in wildfire CH4 emissions (+18%) at the LGM and a reduction in wetland emissions (−41%) and CH4 lifetime
(−32%). The latter is in conflict with most model-based estimates.

More recently, Möller et al. (2013) extended ice core records to 160,000 years Before Present and found
that the 𝛿

13CH4 is positively correlated with the atmospheric concentration of CO2 and not CH4. This sug-
gests that the observed variations of 𝛿13CH4 likely arise through the effect of CO2 and climatic changes
on the isotopic fractionation rates of CH4 sources or sinks (Whiticar & Schaefer, 2007), rather than only
by changes in the relative importance of the different source types, as previously assumed (Fischer et al.,
2008). Möller et al. (2013) suggest that shifts in the isotopic signature of tropical wetland CH4 are the main
contributor.

Here we use process-based Earth System model simulations of the late preindustrial and LGM methane cycles
(Hopcroft et al., 2017, H17 hereafter), to better understand the change in CH4. We calculate the implied iso-
topic composition of methane, including the environmentally driven change in the isotopic discrimination
of vegetation and hence the isotopic signature of wetland and biomass burning emissions. We combine
these results in a Bayesian framework, which allows us to incorporate uncertainty estimates and include
prior information.

2. Incorporating Process-Based Estimates of Changes in Methane Sources
and Lifetime Into a Model of Atmospheric Methane Stable Isotopes

We use the CH4 sources as incorporated in the Earth System model simulations of the late preindustrial
and LGM with HadGEM2-ES (Collins et al., 2011; HadGEM2 Development Team, 2011, and see supporting
information), configured with glacial boundary conditions as described previously (Hopcroft & Valdes, 2015;
Singarayer & Valdes, 2010; H17). HadGEM2-ES is a widely used, coupled Earth System model (e.g., Booth et al.,
2012; Caesar et al., 2013; Hopcroft & Valdes, 2015; Jones et al., 2011; Kandlbauer et al., 2013). It includes wet-
lands (Gedney et al., 2004; Marthews et al., 2015) and tropospheric chemistry (O’Connor et al., 2014). Separate
models of peatlands (Wania et al., 2010), biomass burning (Kaplan et al., 2016; Pfeiffer et al., 2013), oceans,
and termites (Kaplan et al., 2003; Sanderson, 1996) were also used, see the supporting information.

Using the standard wetland scheme, the high-latitude emissions are likely underestimated, as shown by a
comparison of CH4 concentrations for the present day (Hayman et al., 2014). Including the peatland flux leads
to a stronger high-latitude source, as well as a larger reduction in total wetland/peatland emissions at the LGM
of 42% versus 30% without.

H17 presented three alternative scenarios of LGM fire emissions: standard-fire (simulated with a process-based
dynamic vegetation model), standard+LGM humans, which additionally incorporates an empirically based
estimate of hunter-gatherer fire activities during the LGM (Kaplan et al., 2016), and low fire, in which LGM fire
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Table 1
Preindustrial and Prior and Posterior LGM Methane Sources and Lifetime

LGM

Prior Posterior

Sources (TgCH4/year) Late Preindustrial Mean ±1 s.d. ΔLGM (%) Mean ±1 s.d. ΔLGM (%)

N extratropical wetland 55 18 4.7 −67 12.0 4.0 −78

Tropical wetland 73 55 14.3 −25 32.0 4.7 −56

S extratropical wetlanda 11 6.2 — −44 — —

Biomass burning 21 13.5 4.8 −36 16.6 2.0 −21

Termites 20 12 3.1 −40 10.8 3.0 −46

Hydrates 10 10 3.6 0 6.9 2.2 −31

Other geological 10 10 4.6 0 10.5 2.5 5

Oceansa 1 0.8 − −20 − − −
Sum 201 126 34 −38 96 18 −52

Total lifetime (yr) 9.7 10.3b 0.2 6 10.4c 0.1 7

Note. The LGM means and standard deviations are derived from the PDFs shown in the blue curves in Figure 3. The
individual prior sink terms are given in Table S4 in the supporting information. Refer to Tables S2 and S3 for isotopic
signatures of individual sources and sinks.
aIndicates sources not varied as part of the Bayesian algorithm. bCalculated using the prior mean LGM fire emissions.
cCalculated using the posterior mean LGM fire emissions. LGM = Last Glacial Maximum.

emissions are arbitrarily set to 10% of late preindustrial values. Here preindustrial fire emissions are scaled
based on ice core evidence and other modeling studies (Ferretti et al., 2005; Thonicke et al., 2005), as described
in the supporting information.

We introduce a geological source which comprises mud volcanoes, marine seeps, microseepage, and geother-
mal methane, which are commonly missing from methane inventories (e.g., Etiope et al., 2008). We reduce the
ocean source to 1 TgCH4/year in light of recent observations (Kirschke et al., 2013) and set both the hydrate
and geological terms to 10 TgCH4/year (Petrenko et al., 2017; H17). We incorporate OH, soil, and stratospheric
sink terms as modeled by H17. We also here include a boundary layer atomic chlorine (Cl) sink, which we set
to 3% of the total CH4 sink (Allan et al., 2007; Platt et al., 2004). The assumed isotopic signature of each source
and the fractionation factors for the four methane sinks are listed in Table 1, along with estimated prior and
posterior values.

We combine these estimates using a three-box model of atmospheric CH4 and stable isotopes as described
in the supporting information (Lassey et al., 2000; Miller, 2005). The results show a preindustrial CH4 concen-
tration, 𝛿13C and 𝛿D of 683 ppb, −49.0‰ and −98.4‰ respectively. These are in agreement with ice core

Figure 1. Box model calculations of late preindustrial and Last Glacial Maximum (LGM) CH4, 𝛿13CH4, and 𝛿
13D(CH4).

The model is driven with emissions and lifetime derived from HadGEM2-ES climate-chemistry simulations. Ice core data
(Fischer et al., 2008; Möller et al., 2013; Sowers, 2006, 2010) are shown by star symbols. Three different model fire
estimates for the LGM are shown (low-fire, standard-fire, and standard with LGM human fire).
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measurements, as compared in Figure 1. Using LGM fluxes (with standard-fire) results in LGM CH4, 𝛿13C and
𝛿D(CH4) values of 447 ppbv,−48.6‰, and−93.7‰, respectively, also shown in Figure 1. For both time periods,
the box model values are extracted at either the northern or southern box depending on the relevant ice core
location, as listed in Table S1. This LGM simulation underestimates both the reduced LGM CH4 concentration
and shift in isotopes. The low-fire scenario in which all fire emissions are set to 10% of the late preindustrial
results in a better prediction of the LGM CH4 change, but at the expense of the 𝛿

13CH4 and 𝛿D(CH4), which
both shift to more isotopically depleted values. The standard-fire+LGM humans has the opposite effect but
is closer to the standard-fire simulation. As a result, to simplify the presentation we only use the standard-fire
scenario (filled circles in Figure 1) in the following.

We evaluated the potential influence of changes in the Cl sink following the approach of Levine, Wolff,
Jones, and Sime (2011). Using monthly fields from late preindustrial and LGM simulations with HadGEM2-ES
(Hopcroft & Valdes, 2015; H17), this results in a small enrichment of 𝛿13C at the LGM of 0.12‰, shown
in Figure 1.

3. Changes in the Isotopic Discrimination by Vegetation and Potential Influence
on CH4 Emissions

During the LGM the 𝛿
13C of atmospheric CO2 was enriched by 0.1‰ (Schmitt et al., 2012), and thus, this has

relatively little impact. More significant are climate-induced variations in the isotopic discrimination by plants
(e.g., Kaplan, Prentice, & Buchmann, 2002). Three natural sources of CH4 (wetlands, biomass burning, and ter-
mites) are potentially influenced by the isotopic signature of leaf carbon. For example, C3 and C4 plants exhibit
very different leaf carbon isotope ratios. Termites are not observed to show any relationship between emit-
ted 𝛿

13CH4 and the proportion of C3 versus C4 plants (Tyler et al., 1988), so we do not further consider this
source term.

Leaf 𝛿13C is a function of the isotopic discrimination at each stage of gas transfer from the ambient environ-
ment to the chloroplasts within the leaf where photosynthesis occurs (Lloyd & Farquhar, 1994). Changes in
moisture stress and water use efficiency of a plant will influence the amount of time that stomata are open
and hence the overall ratio of intercellular and ambient CO2. During the LGM, the lower CO2 significantly
reduced plant water use efficiency and is thought to be responsible for around 15% of the total change in
𝛿

13C between the two time periods (Kaplan, Prentice, Knorr, et al., 2002). The lower temperatures and hence
potential evaporation and generally drier environment will have competing impacts on the plant available
moisture (e.g., Scheff et al., 2017).

We performed late preindustrial and LGM atmosphere-only simulations with HadGEM2-ES similar to those
reported previously (Hopcroft & Valdes, 2015; H17) but with new intercellular leaf CO2 diagnostics (imple-
mented within the dynamic vegetation scheme of Cox (2001), see supporting information, to calculate the
isotopic discrimination by vegetation for the two time periods (following Kaplan, Prentice, & Buchmann, 2002;
Lloyd & Farquhar, 1994). The resultant leaf to ambient CO2 ratio and 𝛿

13Cleaf anomalies are shown in Figure 2
(weighted by plant functional type fractional coverage). There is a global shift to less negative 𝛿

13Cleaf val-
ues, from a global average of −26.3‰ to −25.9‰. This is dominated by positive changes in semiarid regions.
A reduction in 𝛿

13C during the LGM relative to the late preindustrial in South Africa is in agreement with the
model-data comparison of Bragg et al. (2013).

To decompose the drivers of the leaf 𝛿13C change, we used an updated version of the land surface component
of HadGEM2-ES (JULES v4.1: Harper et al., 2016), to quantify the relative influence from changes in climate,
atmospheric CO2, and vegetation, shown in Figure S1. Compared to the globally averaged leaf 𝛿13C increase
of 0.36‰ (which is close to the global average change simulated with HadGEM2), CO2, climate, and dynamic
vegetation separately cause changes of−0.29‰,−0.11‰, and 0.21‰, respectively (and averaged over prein-
dustrial land points only). The CO2 forced change dominates in the tropics, whereas climate is more significant
in midlatitudes. Both of these factors lead to negative excursions for the LGM relative to the preindustrial. The
vegetation distribution change has a more widespread and mixed influence, with regions of negative shifts
(LGM relative to preindustrial) in leaf 𝛿13C in southern Africa, western north America, and Eurasia, and positive
changes in South East Asia, South America, and Australia.

The isotopic signature of CH4 emissions was calculated from the weighted sum of the simulated monthly
leaf 𝛿13C values, using either wetland CH4 emissions or monthly burned area (H17), see Figure 2. We retain
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Figure 2. HadGEM2-ES simulated Last Glacial Maximum minus preindustrial anomalies in intercellular/ambient CO2 ratio, leaf 𝛿13C (this study) and wetland CH4
emissions, and burned area fraction (from H17). The CO2 ratios and 𝛿

13C fields are masked over desert and ice regions. Emissions and burned area anomalies are
shown over new land points and where ice sheets change to clarify the role of geographical differences between the two time periods.

the 4‰ difference in 𝛿
13CH4 between tropical and extratropical wetlands and assumed no offset between

𝛿
13Cleaf and that of biomass burning (Chanton et al., 2000). We are unable to model this offset for wetland emis-

sions, because, like most global models, JULES does not represent the production, transport, and oxidation
of CH4 isotopes. The 𝛿

13C shift is averaged regionally corresponding with the three-box model.

The global mean wetland source increases by 0.7‰ and the biomass burning source increases by 1.6‰.
For wetlands, the change in the distribution of emissions alone, mostly a relocation to the southern extra-
tropics and tropics, causes a shift of 0.9‰. The leaf 13CH4 change alone induces a change of 3.3‰. The
influence from the assumed offset between the tropical and extratropical wetlands was quantified by setting
this difference to zero. It has a strong influence on the result: without this effect the overall signature change
is negligible. We find that these separate changes do not combine linearly. For the biomass burning, the
change in the global distribution of burning causes a 1.4‰ increase, while the leaf 13CH4 change alone causes
a 1.3‰ increase.

The isotopic fractionation of CH4 shows a very small effect from the temperature dependence of fractionation
during methanogenesis and methane consumption (following empirical evidence from Tyler et al., 1994) and
as described in the supporting information (Blair et al., 1993; Conrad, 2005; Moosavi & Crill, 1998; Schaefer &
Whiticar, 2008; Whiticar, 1999). The changes of −0.3‰ and −2‰ for the wetland signature and soil uptake
fractionation factor respectively have a negligible impact on the 𝛿

13CH4.

The calculated changes in the isotopic signature of wetland 𝛿
13C averaged in three latitude bands (−0.1, 0.1,

and 0.23‰ in the northern, tropical, and southern boxes, respectively) and similarly for biomass burning (2.6,
−0.1, and 4.5‰) were included along with the small change in fractionation factors due to the temperature
dependence of methanogenesis and uptake in the box model. The zonally averaged values can be summed
to give the global total when weighted by changing sources strengths in the three bands, given in Table 1. The
results are also shown in Figure 1. The simulated influence of leaf 𝛿13C on the atmospheric isotopic signature
is relatively limited at 0.6‰. This does not capture a substantial fraction of the observed change and implies
that changes to both the source mixture and the individual source signatures are required.
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4. Inferring Source Changes From Ice Core Observations

To infer the CH4 sources that are consistent with the ice core observations, we employ a Bayesian framework
(e.g., Denison et al., 2002). In this, information from ice cores is combined with the model simulations in a prob-
abilistic formulation which accounts for the estimated uncertainties. We use the model simulations of H17 as
prior information and condition the posterior probability density functions (PDFs) for the source strengths
using the ice core observations. This approach differs from that of Fischer et al. (2008), because we incorporate
prior information rather than sampling unconstrained.

We use a Metropolis-Hastings Markov chain Monte Carlo algorithm (MCMC, see Gilks et al., 1995) to sample the
posterior, conditioned on how well the model reproduces the LGM CH4 concentration and the preindustrial
and LGM 𝛿

13C and 𝛿D(CH4) values. Assigned observational uncertainties are 2 ppbv, 0.3‰, and 4.0‰ for CH4,
𝛿

13CH4, and 𝛿DCH4, respectively (Mitchell et al., 2013; Möller et al., 2013; Sowers, 2006, 2010; WAIS Divide
Project Members, 2015), see Table S1. These could be modified to account for representational uncertainty
associated with the use of a coarse box model, but we have not done this here.

Uncertainty surrounding the isotopic signatures or fractionation factors for sources and sinks are taken into
account by sampling from prior distributions. The mean values are detailed in supporting information Table
S2 for sources (Etiope et al., 2008; Fisher et al., 2017; Miller, 2005; Sherwood et al., 2017; Snover et al., 2000;
Thornton et al., 2016; Whiticar & Schaefer, 2007) and sinks (DeMore, 1993; Gierczak et al., 1997; Saueressig
et al., 2001). The uncertainty estimates are given in Table S3 for sources (Etiope et al., 2008; Fischer et al., 2008;
Quay et al., 1999; Sherwood et al., 2016; Snover et al., 2000) and sinks (Röckmann et al., 2011; Saueressig et al.,
1995, 1996, 2001; Snover & Quay, 2000).

The prior information (summarized in Table 1) on the five methane source terms are normal distributions, with
mean values equal to the LGM simulated values from H17, except for hydrate and geological sources for which
the preindustrial values are used. The standard deviation of these prior distributions is set to the average of
top-down estimates of Kirschke et al. (2013). Assuming the quoted ranges are representative of the 95% limits,
these equal 13%. We double this value to account for additional uncertainty for past time periods. Since mod-
ern biomass burning rates are influenced by anthropogenic activity (Bowman et al., 2009), we take a range
from the literature of 14.3 TgCH4/year (Lamarque et al., 2010) and 37 TgCH4/year (Thonicke et al., 2005) and
derive a normal distribution standard deviation of approximately 4 TgCH4/year. The geological and hydrates
terms are also subject to wider uncertainties (Etiope et al., 2008; Petrenko et al., 2017. We assume that these
terms have a similar relative uncertainty as biomass burning, that is, a standard deviation of 2.8 TgCH4/year.

Any change in biomass burning CH4 would be accompanied by a change in wildfire emission of nitrogen
oxides and carbon monoxide which would impact on the CH4 lifetime. In H17 varying the LGM fire source
between 10% and 84% of the late preindustrial source total, led to 2% and 8% relative increase in CH4 lifetime.
Thus, we include this co-variation.

The MCMC algorithm was run for one million iterations, with the initial 250,000 iterations discarded (Gilks
et al., 1995). The four cases in Figure 3 are using (i) only CH4 concentration observations (green), (ii) both the
concentration and 𝛿

13CH4 or (iii) 𝛿DCH4, and (iv) the concentration and both isotopes (blue). The top three
panels show the fit to the LGM ice core observations in each case. In the lower panels, the distributions of
the model parameters are shown (i.e., inferred source strengths at the LGM). Prior distributions are shown by
dashed lines.

The results show that the MCMC algorithm reproduces the observed LGM methane concentration, 𝛿13CH4

and 𝛿D(CH4) well. All four cases point to a reduced tropical wetland CH4 flux at the LGM. The posterior mean
derived by considering all observations is 32.0 ± 5.0 TgCH4/year (mean ±1 standard deviation), and this is
59% of the prior mean (54.7 ± 15 TgCH4/year), or 44% of the preindustrial value. Northern wetlands are
inferred to decrease to 22% of the preindustrial value when all observations are included, a reduction of
33% relative to the prior distribution. The prior and posterior are less divergent for termite, geological, and
hydrate source strengths. The geological term is the only source with an increase at the LGM (posterior mean
is 10.5 ± 2.5 TgCH4/yr), prior (10.0 ± 2.8 TgCH4/year). This emerges in both the all data and the concentra-
tion with 𝛿

13C cases. It is driven by the high 𝛿
13CH4 of geological sources (−33‰) and the model-informed

prior distribution (H17) on biomass burning (the other 𝛿13CH4-enriched source), which points to a reduction
in biomass burning at the LGM.
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Figure 3. Posterior probability density functions of Last Glacial Maximum CH4 concentrations (ppbv), isotopes (‰), and
emission rates (TgCH4/year) as inferred with the MCMC algorithm, with annotated prior and posterior mean values
(for the all case as shown by blue curves). The four different posteriors show the impact of including all of the
observations, the CH4 concentration alone or combined with the 𝛿

13CH4 or the 𝛿DCH4. The strongest overall constraint
comes from the concentration itself, while the deuterium appears to have the weakest overall influence. The influence
of 𝛿13CH4 mostly manifests as a subtle increase in the mean for both geological and biomass burning fluxes
(compare light gray versus green curves). The posterior mean for the geological emissions is the only term for
which the inferred Last Glacial Maximum value is close to or higher than the preindustrial value.

In the remaining cases, the solutions that stem from only considering the CH4 concentration alone or with
one isotope type, are caused by the interplay between satisfying the prior information and the observations.
For example, in the CH4-only case, both the biomass burning and geological terms are reduced, because the
isotopic constraint is absent and because this allows the wetland source to stay nearer to its prior distribution.

The inferences drawn separately from the 𝛿
13CH4 and 𝛿D(CH4) are not entirely consistent. Including the con-

centration with deuterium leads to an increased hydrate flux and a reduced biomass burning term, while
𝛿

13CH4 leads to the opposite behavior. Overall the reduced tropical wetlands are required to satisfy the
concentration constraint, while relatively high biomass burning and geological sources are required by the
𝛿

13CH4. The main constraint from 𝛿D is more difficult to isolate. It acts in a compensatory manner between
the biomass burning and hydrate terms.

Doubling the observational or prior uncertainty estimates has very little impact on the posterior distributions
(Figures S2 and S3). With uniform priors (Figure S4), the posterior distributions show even stronger reductions
in both extratropical and tropical wetlands (for example, the posterior mean for tropical wetlands is 61% lower
than the prior mean). The termite term is significantly higher than assumed with the original prior, but this
is inconsistent with the best estimate for the LGM emission strength (H17). This demonstrates the potential
value of introducing prior information. We also tested the approach by using the prior for the LGM but with
the CH4 concentration and isotope observations replaced with the late preindustrial values (see Figure S5).
Overall, the sensitivity tests compared in Figures S2–S5, support the main conclusions above.
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5. Discussion

Using recent process-based Earth Model simulations of the late preindustrial and LGM methane budget, we
calculate the likely impact on atmospheric CH4 isotopes. This shows that current estimates of the methane
cycle underestimate both the concentration change and the isotopic response, even accounting for uncer-
tainty in LGM biomass burning emissions.

We extend previous work (Kaplan, 2002; Ringeval et al., 2013; H17) to calculate the potential influence of
leaf 𝛿13C of terrestrial vegetation on the natural sources of CH4 (i.e., wetlands and biomass burning). Though
the results are likely model dependent (because they are sensitive to the spatial distribution of emissions),
they suggest a limited role for changes in the isotopic discrimination of vegetation in the glacial-interglacial
changes in 𝛿

13CH4. This raises the question of why there is such a clear correlation between 𝛿
13CH4 and CO2

in the ice core record, which Möller et al. (2013) have attributed in part to the influence of leaf 13C on the
emissions of CH4 from tropical wetlands.

We also found that climatically driven changes in the boundary layer Cl sink contributed only 0.12‰ to the
𝛿

13CH4 at the LGM relative to the preindustrial, consistent with past work (Levine, Wolff, Jones, & Sime, 2011).
A substantial increase in sea salt aerosols at high latitudes during the LGM (Fischer et al., 2007) may have
enhanced the Cl sink (Levine, Wolff, Jones, & Sime, 2011), but this is yet to be included in models (Levine et al.,
2014). We have also not included any terrestrial sources of CH3Cl.

We used a probabilistic approach to show that both biomass burning and geologic sources of methane
may have played a role in setting the observed enrichment of atmospheric CH4 (Bock et al., 2017). The lat-
ter is supported by the proposed sea level control on marine seepage of CH4 (Etiope et al., 2008; Luyendyk
et al., 2005). Hence, our modeling results are potentially consistent with the Möller et al. (2013) observations
because of the high degree of covariance between CO2, sea level, and other climatically relevant variables on
a glacial-interglacial timescale.

Further, the estimated modern day natural geological CH4 source of around 54 TgCH4/year (Kirschke et al.,
2013) cannot be reconciled with the required reduction in total methane sources at the LGM (H17). This is
because the geological source likely increased at the LGM and because 54 TgCH4/year is a substantial fraction
of the natural source. Recent mass balance calculations based on late glacial 14CH4 measurements (Petrenko
et al., 2017) also support this.

The inferred large reduction in wetland emissions is not simulated by H17 and is at the extreme limit of the
uncertainty range of recent model-based estimates of the LGM-PI wetland change, (29% to 67%: Hopcroft
et al., 2014; Ringeval et al., 2013; Weber et al., 2010). However, several processes (e.g., wetland carbon cycle
processes, nutrient status, and tree-mediated transport) that are not properly represented (Melton et al., 2013;
Pangala et al., 2017; Wania et al., 2013; H17) need to be evaluated.

6. Conclusions

Current process-based estimates suggest that a 50% reduction in sources is required to explain the CH4 con-
centration during the LGM. Bottom-up estimates of emissions fail to replicate this. A comprehensive Earth
System model study (H17) also underestimates the changes in CH4 stable isotopes. Accounting for changes
in isotopic discrimination of vegetation does not explain the observed LGM-PI 𝛿13CH4 shift.

We applied a Bayesian framework to resolve the potentially conflicting information from models and obser-
vations. The results suggest that the concentration change was predominantly driven by wetlands, but the
inferred emissions response is at the extreme end of model predictions. The isotopic change is either driven
by a relatively limited reduction in biomass burning at the LGM, perhaps brought about by human activi-
ties (Kaplan et al., 2016), or an increase in nonhydrate geological CH4 emissions. Future work needs to better
understand the climatic sensitivity of natural CH4 sources, including wetland and geological terms, and this
study suggests that incorporation of CH4 stable isotopes into Earth System model simulations is one avenue
for further progress.
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