
                          Harnew, S., Naik, P., Prouve, C., Rademacker, J., & Asner, D. (2018).
Model-independent determination of the strong phase difference between D 0
and D¯ 0 ++ amplitudes. Journal of High Energy Physics, 2018, [144].
https://doi.org/10.1007/JHEP01(2018)144

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1007/JHEP01(2018)144

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
https://link.springer.com/article/10.1007%2FJHEP01%282018%29144 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/159074820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/JHEP01(2018)144
https://doi.org/10.1007/JHEP01(2018)144
https://research-information.bris.ac.uk/en/publications/modelindependent-determination-of-the-strong-phase-difference-between-d-0-and-d-0--amplitudes(54e37ffd-0169-4312-b245-9d01cf7062f9).html
https://research-information.bris.ac.uk/en/publications/modelindependent-determination-of-the-strong-phase-difference-between-d-0-and-d-0--amplitudes(54e37ffd-0169-4312-b245-9d01cf7062f9).html


J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

Published for SISSA by Springer

Received: September 12, 2017

Accepted: December 12, 2017

Published: January 29, 2018

Model-independent determination of the strong phase

difference between D0 and D0 → π+π−π+π−

amplitudes

Samuel Harnew,a Paras Naik,a Claire Prouve,a Jonas Rademackera and David Asnerb

aH.H. Wills Physics Laboratory, University of Bristol,

Tyndall Avenue, Bristol, U.K.
bPacific Northwest National Laboratory,

Richland, WA 99354, U.S.A.

E-mail: sam.harnew@bristol.ac.uk, paras.naik@bristol.ac.uk,

claire.prouve@cern.ch, jonas.rademacker@bristol.ac.uk,

david.asner@pnnl.gov

Abstract: For the first time, the strong phase difference between D0 and D0→π+π−π+π−

amplitudes is determined in bins of the decay phase space. The measurement uses 818 pb−1

of e+e− collision data that is taken at the ψ(3770) resonance and collected by the CLEO-c

experiment. The measurement is important for the determination of the CP -violating

phase γ in B± → DK± (and similar) decays, where the D meson (which represents a

superposition of D0 and D0) subsequently decays to π+π−π+π−. To obtain optimal sen-

sitivity to γ, the phase space of the D → π+π−π+π− decay is divided into bins based on

a recent amplitude model of the decay. Although an amplitude model is used to define

the bins, the measurements obtained are model-independent. The CP -even fraction of

the D → π+π−π+π− decay is determined to be F 4π
+ = 0.769 ± 0.021 ± 0.010, where the

uncertainties are statistical and systematic, respectively. Using simulated B± → DK±,

D → π+π−π+π− decays, it is estimated that by the end of the current LHC run, the LHCb

experiment could determine γ from this decay mode with an uncertainty of (±10 ± 7)◦,

where the first uncertainty is statistical based on estimated LHCb event yields, and the

second is due to the uncertainties on the parameters determined in this paper.
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1 Introduction

A primary goal in modern flavour physics is to constrain the unitarity triangle (UT); an

abstract representation of the famous Cabibbo-Kobayashi-Maskawa matrix that describes

transitions between different quark flavours [1, 2]. Key to determining the UT is better

experimental constraints on the angle γ (or φ3), which is related to the phase difference
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between b → u W− and b → c W− quark transitions. Currently, γ is the least-well

constrained angle of the UT, and can be determined, for example, using B− → DK−

decays,1 where D represents a superposition of D0 and D0 states [3–8]. The amplitudes

B−→ D0K− and B−→ D0K− are overwhelmingly dominated by the tree-level transitions

b → u cs and b → c us, respectively, and therefore offer an extremely clean method to

measure γ. In order to obtain the necessary interference between B− → D0K− and

B−→ D0K− amplitudes, a final state f must be chosen that is accessible from both D0

and D0, such as π+π−π+π− (4π±).

To determine γ in B−→ DK− decays, one must know the relative magnitude and

phase of D0 → f and D0 → f amplitudes, collectively known as the D → f hadronic

parameters. The relative magnitudes can be determined by measuring D∗+ → D0π+

decays that are subsequently followed by a D0→ f decay; this is possible at a large variety

of collider experiments, such as LHCb and the B-factories. Measuring the relative phase,

however, is more challenging. One method is to infer the relative phase through use of an

amplitude model; in principle this is the best way to exploit the available statistics, but

theoretical uncertainties in determining the model can lead to large systematic uncertainties

on γ. The relative phase can also be determined model-independently by using samples

of D→ f decays, where the D meson is in a known superposition of D0 and D0 states.

Previously, such data samples have been obtained from two sources: correlated DD pairs

from the decay of a ψ(3770) meson [6, 9–15] (the first charmonia resonance above the

charm threshold); and the decay D∗+ → Dπ+, where the superposition of D0 and D0

states depends on the D meson decay-time [16–18]. In this paper we determine the relative

magnitude and phase of D0 → 4π± and D0 → 4π± amplitudes using ψ(3770) decays

collected by the CLEO-c experiment.

In multi-body D decays, such as D→ 4π±, there are infinitely many configurations

of the final state momenta, each with a different amplitude. The parameter space that

describes these final state configurations is known as the phase space of the decay. For

the 4π± final state, a phase space-integrated measurement was performed in ref. [19] to

determine the CP -content of the inclusive decay, and then applied in a B±→ DK± study

at LHCb [20]. However, to better exploit the information available in multi-body D decays,

the phase space can be divided into bins such that regions of constructive and destructive

interference do not dilute each other. Such a method has already been applied to the

K0
Sπ

+π− final state [21] which gives the best single measurement of γ to date [22]; here

an amplitude-model was used to group regions of phase space that have a similar phase

difference between D0 → K0
Sπ

+π− and D0 → K0
Sπ

+π− amplitudes [23]. Recently an

amplitude model for D→ 4π± has become available [24], so in this paper a similar technique

is applied to the 4π± final state. It is important to note that although the binning scheme

is defined by an amplitude model, this will not result in any model-dependent bias. If the

model is incorrect, this will just result in an increased statistical uncertainty.

This paper is organised as follows: section 2 gives an overview of the formalism for

correlated ψ(3770) → DD decays; section 3 introduces the D0→ 4π± amplitude model

1Charge-conjugate decays are implied throughout this paper.
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that is used in section 4 to inspire the phase space binning schemes; section 5 discusses the

dataset used in the analysis and the selection criteria applied; section 6 describes the fit

used to obtain constraints on the D→ 4π± hadronic parameters; section 7 discusses the

systematic uncertainties associated to the results in section 8; section 9 uses the measured

hadronic parameters to estimate the γ constraints that are possible with current and future

LHCb datasets; finally a summary is given in section 10.

2 Formalism

The mass eigenstates of the D meson, |D1,2〉, can be written in terms of the flavour

eigenstates,

|D1,2〉 = |D0〉 ± |D0〉, (2.1)

where the convention CP |D0〉 = +|D0〉 is followed such that |D1〉 and |D2〉 are the CP+

and CP - eigenstates, respectively. Throughout this paper CP violation in the D meson

system is neglected, which is a good assumption given current experimental limits [25].

The masses and widths of D1,2 are given by m1,2 and Γ1,2 respectively, which allows the

average width, ΓD = 1
2(Γ1 + Γ2), and the charm mixing parameters, xD = (m1 −m2)/ΓD

and yD = (Γ1 − Γ2)/2ΓD, to be defined. Due to the effects of D-mixing, a D meson

produced in a |D0〉 eigenstate at t0 = 0 evolves to an admixture of |D0〉 and |D0〉 states,

denoted |D0(t)〉, after time t. Similarly, the |D0〉 eigenstate evolves to |D0(t)〉.
The D0 and D0 decay amplitudes for a final state f are defined Afp = 〈fp|H|D0〉 and

Āfp = 〈fp|H|D0〉, where H is the relevant Hamiltonian. The parameter p describes a point

in the phase space of the D → f decay, and has a dimensionality that depends on the

number of final state particles and their spin. For two-, three- and four-body pseudo-scalar

final states the phase space dimensionality is 0, 2 and 5, respectively.

In this paper, the measured observables will always be integrated over bins of phase

space. For the final states f and g, these regions are labeled by i and j, respectively.2 The

branching fraction for D0 → fi and D0 → fi decays are defined,

Kf
i =

∫
i
|Afp|2φ(p)dp K̄f

i =

∫
i
|Āfp|2φ(p)dp, (2.2)

where φ(p) gives the density of states at p. From these follow the quantities T fi =Kf
i/
∑

iK
f
i

and T̄ fi = K̄f
i /
∑

i K̄
f
i , which give the fraction of D0→ f and D0→ f decays that populate

phase space bin i, respectively.3 To describe the interference of D0 → f and D0 → f

amplitudes integrated over the region i, the bin-averaged sine and cosine are defined,

cfi =
1√

Kf
i K̄

f
i

∫
i
|Afp||Āfp| cos

(
∆δfp

)
φ(p)dp, (2.3)

sfi =
1√

Kf
i K̄

f
i

∫
i
|Afp||Āfp| sin

(
∆δfp

)
φ(p)dp, (2.4)

2Having labels for two final states will later be important for describing correlated D decays.
3This is the fraction with respect to all phase space bins considered in an analysis, which is not necessarily

the entire phase space.

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

where ∆δfp = arg(Afp) − arg(Āfp). Collectively, the parameters cfi , sfi , Kf
i and K̄f

i are

referred to as the hadronic parameters of the D→ f decay.

Using the formalism above, the decay ψ(3770) → DD → figj is now considered. The

strong decay ψ(3770)→ DD results in a correlated DD pair in a C = −1 state. Therefore,

|ψ(3770)〉 → |D0D0〉 − |D0D0〉. (2.5)

Since the two D mesons evolve coherently, D-mixing has no observable consequences until

one meson decays. Therefore, when studying such decays, what is important is the time

difference, δt, between the D → f and D → g decays. The decay amplitude for ψ(3770)→
DD → fpgq is given by [26],

A(ψ(3770)→ DD → fpgq) ∝
〈fp|H|D0〉〈gq|H|D0(δt)〉 − 〈fp|H|D0〉〈gq|H|D0(δt)〉. (2.6)

To obtain the decay rate, the magnitude of this amplitude is squared and integrated over

the phase space regions i and j, and all decay-times. Expanding to second order in the

small parameters xD and yD gives,

Γ[ψ(3770)→ DD → figj ] ∝(
1 +

y2
D − x2

D

2

)[
Kf
i K̄

g
j + K̄f

i K
g
j − 2

√
Kf
i K̄

g
j K̄

f
i K

g
j

(
cfi c

g
j + sfi s

g
j

)]
+

(
y2
D + x2

D

2

)[
Kf
i K

g
j + K̄f

i K̄
g
j − 2

√
Kf
i K̄

g
j K̄

f
i K

g
j

(
cfi c

g
j − s

f
i s
g
j

)]
. (2.7)

This single formula is used to describe all decays studied in this paper. Note that eq. (2.7)

can be significantly simplified for some final states; for example CP eigenstates such as

K+K− (CP+) and K0
Sπ

0 (CP -) have Kg
j ≡ K̄g

j , sgj ≡ 0 and cgj = ηCP , where ηCP = ±1 for

CP+ and CP - eigenstates, respectively.4

When only one of the D meson final states is reconstructed it is known as a single-tag.

In this case, the final state g represents all possible D meson final states and Kg ≡ K̄g ≡ 1,

sg ≡ 0 and cg = yD, leading to,

Γ[ψ(3770)→ DD → fiX] ∝
(
1 + y2

D

) [
Kf
i + K̄f

i − 2

√
Kf
i K̄

f
i c
f
i yD

]
. (2.8)

The sg ≡ 0 can be understood by realising that for every final state g, there is a charge-

conjugate final state g that has sg = −sg. The cg = yD can be understood by rewriting

eq. (2.3) as,

cfi =
1√

Kf
i K̄

f
i

∫
1

2

∣∣∣∣∣Afp + Āfp√
2

∣∣∣∣∣
2

−

∣∣∣∣∣Afp − Āfp√
2

∣∣∣∣∣
2
φ(p)dp, (2.9)

=
Γ[DCP+ → f ]− Γ[DCP - → f ]

2
√

Γ[D0 → f ]Γ[D0 → f ]
. (2.10)

Therefore if g represents all final states, cgj = (Γ1 − Γ2)/2ΓD = yD.

4This follows from the convention CP |D0〉 = +|D0〉 that was chosen earlier.
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Although the decay B±→ DK±, D→ f is not measured in this paper, it is important

to consider its decay rate so that the D→ 4π± binning schemes defined in section 4 give

optimum sensitivity to γ in a future measurement of B±→ DK± decays. The ratio of

B−→ D0K− to B−→ D0K− amplitudes is given by A(B−→ D0K−)/A(B−→ D0K−) =

rBe
i(δB−γ), where rB is that ratio of their magnitudes, and δB is the strong phase difference.

The B±→ DK±, D → fp decay rates are then given by,

Γ[B−→DK−,D→ fp]∝
∣∣∣Āfp∣∣∣2 r2

B+
∣∣∣Afp∣∣∣2+2

∣∣∣AfpĀfp∣∣∣[x− cos(∆δfp)+y− sin(∆δfp)
]
, (2.11)

Γ[B+→DK+,D→ fp]∝
∣∣∣Afp∣∣∣2 r2

B+
∣∣∣Āfp∣∣∣2+2

∣∣∣AfpĀfp∣∣∣[x+ cos(∆δfp)+y+ sin(∆δfp)
]
, (2.12)

where x± = rB cos(δB ± γ) and y± = rB sin(δB ± γ). Integrating this expression over a

phase space bin i then gives,

Γ[B−→ DK−, D → fi] ∝ K̄f
i r

2
B +Kf

i + 2

√
Kf
i K̄

f
i (cfi x− + sfi y−), (2.13)

Γ[B+→ DK+, D → fi] ∝ Kf
i r

2
B + K̄f

i + 2

√
Kf
i K̄

f
i (cfi x+ − sfi y+). (2.14)

3 Amplitude model for D0 → 4π± decays

An amplitude model is used to define how the five-dimensional phase space is divided into

bins. Such a model has recently become available [24], which was determined from a fit to

flavour tagged D0→ 4π± decays collected by the CLEO-c experiment. To construct the

total amplitude, the isobar approach was used, which assumes the decay can be factorised

into consecutive two-body decay amplitudes. The dominant contributions to the model are

D0→ a1(1260)+π−, D0→ σf0(1370) and D0→ ρρ. In addition to the main (‘nominal’)

model, ref. [24] also includes a further 8 alternative models which use a different set of

amplitude components — these are used for systematic studies.

Since CP conservation in D→ 4π± decays is assumed, the D0→ 4π± model implies

the D0→ 4π± model, since Āfp ≡ Afp. Here p is the CP conjugate point of p, which has all

charges reversed (C) and three-momenta flipped (P ). The assumption of CP conservation

in D→ 4π± decays is explicitly tested in ref. [24] by determining Afp and Āfp independently

from samples of D0 and D0 tagged decays, respectively. The results are consistent with

the CP conservation hypothesis.

4 Binning

The definition of the 4π± phase space bins strongly influences sensitivity to γ in B±→DK±,

D→ 4π± decays. To best exploit the symmetries of the self-conjugate 4π± final state, phase

space bins are defined in pairs that map to each other under the CP operation. The bins

are labeled such that bin +i is paired with bin −i, therefore, for any point p in +i, the

CP conjugate point p will fall into bin −i. This choice of binning means that the following

relations exist between the hadronic parameters of +i and −i bins: Kf
−i ≡ K̄

f
i , K̄f

−i ≡ K
f
i ,

cf−i ≡ c
f
i and sf−i ≡ −s

f
i .

– 5 –
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Figure 1. The equal ∆δD binning from ref. [21]. The absolute bin number, |i|, is indicated by

the colouring. The positive bins are defined in the region m2
+ > m2

−, and the negative bins in the

region m2
+ < m2

−.

Since the relative magnitude and phase of A4π
p and Ā4π

p varies over the D → 4π±

phase space, so will the relative size of the interference term in B± → DK±, D→ 4π±

decays. If a single bin contains regions of phase space with differing levels of interference

(for example, constructive and destructive interference) the overall interference is diluted,

and the sensitivity to γ is reduced. It is therefore preferable for both r4π
p = |A4π

p /Ā4π
p | and

∆δ4π
p = arg(A4π

p /Ā4π
p ) to be approximately constant within each bin. This is possible by

using an amplitude model to assign each point in phase space a value of r4π
p and ∆δ4π

p ,

which are used to determine the bin number. Although a model is used to determine the

bin number, this will not introduce any model-dependent systematic uncertainties, since

the hadronic parameters will still be determined model-independently. An incorrect model

will only lead to a non-optimal binning, and an increased statistical uncertainty.

Before discussing the D→ 4π± binning scheme used in this paper, it is informative

to review previous work on the final state K0
Sπ

+π− in ref. [21]. This decay has a two-

dimensional phase space (the Dalitz plot) which can be parameterised by the variables

m2
+ = m2(K0

Sπ
+) and m2

− = m2(K0
Sπ
−). The region m2

+ > m2
− is divided into N bins,

labelled +1 to +N , which are reflected over the line m2
+ = m2

− to obtain the −N to −1

bins (a reflection over this line is equivalent to CP ). Using the line m2
+ = m2

− to divide

the Dalitz plot is a good choice since most Cabibbo favoured (CF) amplitudes, such as

D0 → K∗−π+, fall in the region m2
+ > m2

−, whereas most Doubly Cabibbo suppressed

(DCS) amplitudes fall into the region m2
− > m2

+. This is beneficial since it makes r
K0

Sππ
p

consistently large (small) over the +i (−i) bins. To determine the absolute bin numbers, the

model prediction for ∆δ
K0

Sππ
p is divided into 8 equal regions. The K0

Sπ
+π− binning scheme

for N = 8 is shown in figure 1. The authors of ref. [21] also provide a fine granularity

lookup table that describes the binning shown in figure 1; this is very useful because the

amplitude model is not necessary to reproduce the binning scheme. A similar idea will be

used for the 4π± binning schemes.

– 6 –
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4.1 K0
S

veto bin

A large peaking background to D→ 4π± decays is D→ K0
Sπ

+π− where K0
S→ π+π−. In

order to remove the majority of this background, a K0
S -veto bin is included in all D→ 4π±

binning schemes that are later described in sections 4.2–4.5. The region of phase space

that contains any π+π− pair satisfying 480 MeV < m(π+π−) < 505 MeV is designated as

the K0
S -veto bin. Using the nominal D0→ 4π± amplitude model, the K0

S -veto was found

to remove approximately 10% of signal.

4.2 Equal/variable ∆δ4πp binning

When comparing the K0
Sπ

+π− to the 4π± final state, one clear difference is the decay

amplitudes that contribute. As discussed, K0
Sπ

+π− has contributions from both CF and

DCS amplitudes, whereas 4π± only has contributions from singly Cabibbo suppressed

(SCS) amplitudes. This means that there is no clear way to divide the phase space, like

the line m2
+ = m2

− in the K0
Sπ

+π− Dalitz plot. A different approach is therefore followed.

The baseline amplitude model from ref. [24] is used to assign each point p a value of ∆δ4π
p ,

then a bin number is assigned using,

+i := ∀p : δi−1 < ∆δ4π
p < δi

−i := ∀p : −δi−1 > ∆δ4π
p > −δi (4.1)

where δ0 ≡ 0, δN ≡ π and δi < δi+1. This automatically fulfils the requirement that bin

+i maps to bin −i under CP , since ∆δ4π
p ≡ −∆δ4π

p . The values of δi are chosen using two

methods: the equal ∆δ4π
p binning, for which δi = iπ/N ; and the variable ∆δ4π

p binning, for

which the values of δi are chosen such that K4π
i +K̄4π

i is approximately the same in each bin.

Since amplitude models are difficult to reproduce, it is desirable to have a model-

implementation-independent binning scheme. This is possible by splitting the five dimen-

sional phase space into many small hypervolumes, each of which is assigned a bin number.

The overall bin is then formed from the combination of all hypervolumes with that bin

number. To create a model-implementation-independent binning scheme, referred to as a

hyper-binning, a set of variables must be defined that parameterises the five-dimensional

phase space of D → 4π± decays. The variables {m+,m−, cos θ+, cos θ−, φ} are chosen,

where m+ (m−) is the invariant mass of the π+π+ (π−π−) pair; θ+ (θ−) is the helicity an-

gle of the π+π+ (π−π−) pair; and φ is the angle between the π+π+ and π−π− decay planes

(a full definition of these variables can be found in appendix A). Since the hyper-binning is

most easily implemented with square phase space boundaries, the following transformation

is made,

m′± = m± + δ where δ = min{m+,m−} −mmin, (4.2)

where mmin is the minimum value kinematically possible for m+ (or m−). When using the

variables {m′+,m′−, cos θ+, cos θ−, φ}, the kinematically allowed region of phase space is a

hypervolume defined by the corners {mmin, mmin, −1, −1, −π} and {mmax, mmax, 1, 1, π}.
This set of variables has been chosen to exploit the symmetries of the system, these being

– 7 –
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Figure 2. Two-dimensional slices of the D→ 4π± phase space showing the equal ∆δ4πp binning

with N = 5. The colour denotes the absolute value of the bin number, and the cross hatching

denotes a negative bin number. In each of the two-dimensional slices, the remaining three variables

are fixed to (left) cos θ+ = cos θ− = 0.5 and φ = 0.625π (centre) m′− = 1226 MeV, cos θ− = 0.5 and

φ = 0.5π (right) m′+ = m′− = 932 MeV and cos θ+ = 0.425π.

CP -conjugation and identical particle interchange:

CP{m′+,m′−, cos θ+, cos θ−, φ} → {m′−,m′+, cos θ−, cos θ+,−φ}, (4.3)

[π+
1 ↔ π+

2 ]{m′+,m′−, cos θ+, cos θ−, φ} → {m′+,m′−,− cos θ+, cos θ−, φ− π}, (4.4)

[π−1 ↔ π−2 ]{m′+,m′−, cos θ+, cos θ−, φ} → {m′+,m′−, cos θ+,− cos θ−, φ− π}. (4.5)

The symmetries for identical particle exchange allow the phase space to be ‘folded’ twice

along the lines cos θ+ = 0 and cos θ− = 0, reducing the phase space volume by a factor of

four. A further folding is also possible by considering the CP operation; for a point p with

bin number i, it follows that point p has bin number −i.
An adaptive binning algorithm is used to create a hyper-binning scheme. At the begin-

ning of the algorithm one hypervolume is defined with corners {mmin, mmin, 0, 0, 0} and

{mmax, mmax, 1, 1, π}. At each iteration of the algorithm, the hypervolumes from the previ-

ous iteration are split in two, choosing to split in the dimension that has the fastest varying

∆δ4π
p , and picking a split point that is as close as possible to one of the bin boundaries

defined in eq. (4.1). The algorithm runs until either: splitting a hypervolume will always

result in two hypervolumes with the same bin number; splitting a hypervolume will always

result in a hypervolume that has an edge length narrower than the minimum allowed. Sev-

eral minimum edge lengths were tested and the values {39 MeV, 39 MeV, 0.06, 0.06, 0.19 rad}
were chosen since this results in a reasonable number of volumes (∼ 250, 000) while repro-

ducing the parameters ci and si to within 2% compared to a binning scheme that uses

the model directly. It is possible to visualise the hyper-binning by taking two-dimensional

slices of the five-dimensional phase space. Some examples are shown for the equal ∆δ4π
p

binning with N = 5 in figure 2. The full binning schemes used in this paper are provided

in both ASCII and Root format as supplementary material.

4.3 Model predictions of the hadronic parameters

Using the integral expressions in eqs. (2.2)–(2.4) it is possible to calculate the hadronic

parameters for a given amplitude model and binning scheme. This is done using the base-
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Figure 3. The model predictions of the hadronic parameters for the (left) equal ∆δ4πp binning

(centre) variable ∆δ4πp binning (right) alternative binning, with N = 5. (top row) The red diamonds

(black dots) show the cfi and sfi predictions calculated from the baseline model (alternative models).

The grey shaded ellipses shows cfi and sfi model prediction and uncertainty as described in the text.

(bottom row) The (red diamonds) black horizontal lines show the T fi and T̄ fi predictions calculated

from the baseline model (alternative models). The grey shaded band shows the T fi and T̄ fi model

prediction and uncertainty as described in the text.

line and alternative amplitude models given in ref. [24]. Since the baseline-model is used

to determine the D→ 4π± binning schemes, using the hadronic parameters predicted with

this model could result in a bias. Therefore, the arithmetic-mean of the hadronic parame-

ters from all alternative models is used as the model prediction, and the covariance of the

results is used to determine a model-uncertainty. To determine the statistical and system-

atic uncertainties, the hadronic parameters are calculated many times using the baseline

model, each time varying the model parameters within their statistical and systematic un-

certainties. The covariance of the results is used to determine a combined statistical and

systematic uncertainty, which is added to the model-uncertainty in quadrature to obtain

the total uncertainty. The model predictions for the equal/variable ∆δ4π
p binning are shown

in figure 3.

4.4 Alternate binning

One drawback of the ∆δ4π
p binning schemes is that the variation of r4π

p across each bin is

not considered, leading to Kf
i ∼ K̄

f
i , as seen in figure 3. This means that the interference

term in the B−→ DK− decay rate, given in eq. (2.13), is relatively small in all phase space

bins. Ideally, one would choose to have r4π
p � 1 in half of the phase space bins, enhancing

the interference in these regions (and therefore the sensitivity to γ). The r4π
p � 1 condition

is satisfied in the K0
Sπ

+π− final state, where many bins are dominated by DCS amplitudes.
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Although the SCS 4π± final state has no clear line of symmetry that divides favoured from

suppressed phase space regions, the amplitude model can be used to define such a split.

Any point p that satisfies r4π
p < 1 is assigned a bin number +i, whereas any satisfying

r4π
p > 1 is assigned a bin number −i. The +i bin numbers are assigned using,

+i := ∀p :

[
− π +

2π

N
(i− 1) < +∆δ4π

p < −π +
2π

N
i

]
&

[
r4π
p > 1

]
, (4.6)

which also uniquely defines the −i bin numbers i.e.

−i := ∀p :

[
− π +

2π

N
(i− 1) < −∆δ4π

p < −π +
2π

N
i

]
&

[
r4π
p < 1

]
. (4.7)

The same hypervolumes from the equal ∆δ4π
p binning schemes are used for the alternative

binning schemes, but the bin number associated to each hypervolume is reassigned using

eq. (4.6). The model predictions for the alternative binning with N = 5 is shown in figure 3.

4.5 Optimal binning

To determine how sensitive a binning scheme is to a measurement of γ, the Q± values are

defined [23],

Q2
± =

∑
i

(
1√
N i
B±

dN i
B±

dx±

)2

+

(
1√
N i
B±

dN i
B±

dy±

)2

∫
D

[(
1√

ΓB± (p)

dΓB± (p)
dx±

)2

+

(
1√

ΓB± (p)

dΓB± (p)
dy±

)2
]

dp

, (4.8)

where N i
B± is the number of B± → DK±, D → f decays expected in bin i (eq. (2.11)

and eq. (2.12)), and ΓB±(p) gives the differential decay rate (eq. (2.13) and eq. (2.14)).

The value of Q± gives the statistical sensitivity on the parameters x± and y± from a

binned analysis of B±→ DK±, D→ f decays, divided by the statistical sensitivity from

an analysis with infinitely many bins. Substituting eqs. (2.11)–(2.14) into eq. (4.8) gives,

Q2
± = 1−

∑
i

Kf
i K̄

f
i

(
1− (cfi )2 − (sfi )2

)
N i
B±

/∑
i

Kf
i . (4.9)

The Q value, Q2 = 1
2(Q2

+ + Q2
−), is then used to rank the sensitivity of different binning

schemes to γ. The values δB = 140◦, γ = 70◦ and rB = 0.1 are used to determine Q.

For the optimisation of the K0
Sπ

+π− binning schemes in ref. [21], a simplified Q value was

used where it was assumed rB = 0. Since the relative size of Kf
i and K̄f

i does not need

to be optimised for K0
Sπ

+π− (due to the division at m2
+ = m2

−), this assumption works

well. For 4π± decays, the simplified expression gives solutions where Kf
i ∼ K̄

f
i , so the full

expression is used instead.

An iterative algorithm is used to take any hyper-binning scheme (i.e. a collection of

hypervolumes, each with a bin number, that span the D → 4π± phase space) and re-

assign the bin numbers in order to maximise the model-prediction of Q. Each iteration

– 10 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

of the algorithm involves looping over every hypervolume in the hyper-binning. For each

hypervolume, every possible bin number (−N , . . . ,−1,+1,+N ) is assigned, and Q is recal-

culated; the bin number that gave the largest Q is then kept. The algorithm keeps running

until no hypervolumes change their bin number, typically taking around 20−50 iterations.

Since the number of free parameters being optimised is so large, it is unavoidable that

the optimisation procedure will fall into a local maximum. The outcome is therefore depen-

dent on the starting values (i.e. the bin numbers assigned to each hypervolume). The start-

ing bin numbers are therefore assigned using two methods: the equal ∆δ4π
p binning scheme

(eq. (4.1)); and the alternate binning scheme (eq. (4.6)). The two sets of starting values

give the ‘optimal binning’ and ‘optimal-alternative binning’, respectively. The set of hyper-

volumes used for the optimisation must have sufficient flexibility to describe the optimal

binning. For all optimal binning schemes, the hypervolumes are first taken from the equal

∆δ4π
p binning scheme with N = 8, then further divided so that, for the sample sizes used

in this paper, the probability of any single hypervolume being populated is less than 1/50.

After running the Q optimisation procedure it was found that occasionally the results

had very small values of Kf
i + K̄f

i for one or more bin pairs. For this reason a small change

was made to the optimisation metric,

Q
′2 = Q2 +

1

10

N∑
i=1

Kf
i + K̄f

i < t :

[
Kf
i +K̄f

i −t
t

]2

Kf
i + K̄f

i > t : 0

, (4.10)

where t = 2
3N
∑N

i=1(Kf
i + K̄f

i ) is the lower threshold at which a constraint is applied

to Kf
i + K̄f

i .

The Q value for the optimal and optimal-alternative binning schemes is shown in

figure 4 for N = 1 − 8. Also shown are the Q values for the other binning schemes

discussed in this paper.

5 Event selection

The data set analysed consists of e+e− collisions produced by the Cornell Electron Storage

Ring (CESR) at
√
s = 3.77 GeV corresponding to an integrated luminosity of 818 pb−1

and collected with the CLEO-c detector. The CLEO-c detector is described in detail

elsewhere [27–30]. Monte Carlo (MC) simulated samples of signal decays are used to

estimate selection efficiencies. Possible background contributions are determined from a

generic D0D0 simulated sample corresponding to approximately fifteen times the integrated

luminosity of the data set. The EVTGEN generator [31] is used to simulate the decays.

The detector response is modelled using the GEANT software package [32].

Table 1 lists all D decay final states that are reconstructed in conjunction with a

D → 4π± decay, referred to as double-tagged decays. Underlined in table 1 are the D

decay final states that are also reconstructed alone, referred to as single-tagged decays.

Unstable final state particles are reconstructed in the following decay modes: π0→ γγ;

K0
S→ π+π−; ω→ π+π−π0; η→ γγ; η→ π+π−π0; and η′→ η(γγ)π+π−.
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Figure 4. The model predictions of the Q values found from all binning schemes considered in this

paper. The uncertainties are found by varying the model predictions of the hadronic parameters

within their uncertainties.

Type Final States

Flavoured K∓e±ν

Quasi-Flavoured K∓π± K∓π±π0 K∓π±π∓π±

CP even K+K− π+π− K0
Sπ

0π0 K0
Lπ

0 K0
Lω

CP odd K0
Sπ

0 K0
Sω K0

Sη K0
Sη
′

Self-conjugate K0
Sπ

+π− K0
Lπ

+π− π+π−π0

Table 1. List of all D decay final states that are reconstructed in conjunction with a D→ 4π± decay

(double-tag modes). The underlined final states are also reconstructed alone (single-tag modes).

The selection procedure used for this paper is intended to be almost identical to that

in ref. [19]. The only change is to the selection criteria used to reject peaking background

from D → K0
Sπ

+π− decays that are reconstructed as D → 4π±; henceforth referred to

as K0
Sπ

+π− background. In ref. [19] any π+π− pair with an invariant mass in the range

[0.470, 0.530] GeV is required to have a reconstructed vertex that is compatible with the

e+e− collision point. In this paper, any π+π− pair with an invariant mass in the range

[0.480, 0.505] GeV is rejected, regardless of its compatibility with the e+e− collision point.

The 4π± phase space bins defined in section 4 have the same region of phase space removed,

so no corrections to the measured hadronic parameters are needed. In addition to the tags

in ref. [19], this analysis also uses the flavour-tags K∓e±ν, and the quasi-flavour-tags

K∓π±, K∓π±π0 and K∓π±π∓π±. These decays are selected following the same criteria

as ref. [21].

The final states that do not include a neutrino or a K0
L are fully reconstructed using the

beam-constrained candidate mass, mbc ≡
√
s/(4c4)− p2

D/c
2, where pD is the D-candidate
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Figure 5. (left) The mave
bc distribution of selected double-tagged π+π−π0 candidates. Superimposed

with a red line is the result of a unbinned maximum likelihood fit described in the text. The shaded

purple area shows the background PDF, and the blue line shows the signal PDF. The vertical lines

show the signal region. (right) Two dimensional D1mbc vs. D2mbc distribution of selected double

tagged K∓π±π0 candidates. The square box covering the range 1.86 − 1.87 GeV shows the signal

region, and the remaining boxes show the various sideband regions that are used to determine the

combinatorial background contribution.

momentum, and ∆E ≡ ED −
√
s/2, where ED is the D-candidate energy. Requirements

are first placed on the value of ∆E, then mbc is used as the discriminating variable to

distinguish signal from non-peaking backgrounds. For double-tags that are dominated by

background from continuum production of light quark-antiquark pairs (π+π−, K+K−,

π+π−π0 and 4π±), the signal yield is determined using an unbinned maximum likelihood

fit to the average mbc of the two D decays, mave
bc ≡

1
2(D1mbc + D2mbc). The signal

probability density function (PDF) is parameterised using the sum of a bifurcated Gaussian

and a Gaussian, which have shape parameters fixed from a fit to samples of simulated signal

decays.5 The background PDF is parameterised using an Argus function [33]. Figure 5

shows an example of this fit for double-tagged π+π−π0 candidates — the signal yield is

determined in the mave
bc window [1.86, 1.87] GeV. For fully-reconstructed decays that are

not continuum dominated, the double-tag yield is determined by counting events in signal

and sideband regions of the two dimensional D1mbc vs. D2mbc plane, as indicated in

figure 5 for double-tagged K∓π±π0 candidates.

The final states containing a neutrino or a K0
L cannot be fully-reconstructed; the en-

ergy and momentum, pmiss and Emiss, of the missing particle is inferred by using knowledge

of the initial e+e− state and conservation of energy and momentum. The missing-mass

squared, m2
miss ≡ E2

miss/c
4 − p2

miss/c
2, and the quantity Umiss ≡ Emiss − |pmiss|c, are used

to discriminate signal from background for decays involving a K0
L or a neutrino, respec-

tively. The double-tag yields are determined using an unbinned maximum likelihood fit

to the discriminating variable, where the signal and background PDFs are taken from

histograms of simulated data samples. Figure 6 shows an example of this fit for double-

tagged K∓e±ν and K0
Lπ

+π− candidates — the signal yields are determined within the

signal windows indicated.

5A bifurcated Gaussian has a different width below and above the mean.
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Figure 6. Distribution of Umiss(m
2
miss) for selected double tags containing a neutrino (K0

L). Su-

perimposed is the result of an unbinned maximum likelihood fit that is described in the text. The

blue/green/red shaded area shows the distribution of combinatoric/continuum/peaking background

respectively. The red line shows the total signal + background PDF. The black vertical lines indicate

the events that fall within the signal region that are used for further analysis.

The dominant peaking background contribution to all double-tags is from K0
Sπ

+π−

background, which is estimated from the generic MC sample of DD events, and typically

constitutes about 5−10% of the selected events. A data-driven estimate of this background

is also calculated using the events that are rejected by the π+π− mass cut — this shows

good agreement with the estimates from generic MC. All decays involving a K0
L decay have

a peaking background from the equivalent decay with a K0
S instead of a K0

L— these are

referred to as cross-feed backgrounds. Using the simulated samples of D→ K0
SX decays

it is possible to find the ratio of D→ K0
SX decays that are incorrectly reconstructed as

D→ K0
LX to those correctly reconstructed as D→ K0

SX. Since for every D→ K0
LX decay

considered in this paper, the equivalent D→ K0
SX decay is also considered, this allows the

background to be estimated using the measured D→ K0
SX yields. The decay π+π−π0 has

a peaking background from K0
Sπ

0 that is largely suppressed by requiring the π+π− vertex

to be consistent with e+e− collision point. Since the decay K0
Sπ

0 is also considered in this

paper, the K0
Sπ

0 signal yield can be used (in the same manner as for the cross-feed back-

grounds) to estimate the background contribution. All remaining peaking backgrounds are

either negligible, or considered in the systematics uncertainties in section 7.

Single-tagged candidates are selected using identical criteria to the corresponding dou-

ble tags, with the exception of π+π−, K+K− and K∓π± decays that have additional cuts

to veto cosmic ray muon and radiative Bhabha events [34]. The number of single-tags is

estimated from a fit to the mbc distribution. The signal and background PDFs are the same

as those used in the fit to the mave
bc distribution of continuum dominated double-tags. The

signal shape parameters are fixed from a sample of simulated signal decays. Figure 7 shows

an example of this fit for single-tagged π+π−π0 candidates — the signal yield is determined

in the signal region indicated. Following ref. [34], a further uncertainty is assigned to each

of the single-tag yields to account for any mismodelling of the signal PDF. For final states

with no electromagnetically neutral final state particles (K+K−, π+π−, K∓π±) the un-

certainty assigned is 2.0% of the measured signal yield. For final states where the neutrals

are relatively hard (K0
Sπ

0, K0
Sη(γγ)) or soft (all other modes), uncertainties of 2.5% and

5.0% are assigned, respectively.
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Figure 7. The mbc distribution of selected π+π−π0 single tagged candidates. Superimposed with

a red line is the result of a unbinned maximum likelihood fit described in the text. The shaded

purple area shows the background PDF, and the blue line shows the signal PDF. The vertical lines

show the signal region.

In events where more than one single- or double-tagged candidate is reconstructed, an

algorithm is used to select a single candidate based on information provided by the ∆E

and mbc variables. The particular choice of metric varies depending on the category of

double-tag, and is optimised through simulation studies.

For double-tagged decays, the signal yields are evaluated in bins of 4π±, K0
Sπ

+π− and

K0
Lπ

+π− phase space. For these final states, the four-momenta of the D daughters are

determined with a constraint on the previously measured D0 mass [35], ensuring that all

signal candidates fall within the kinematically allowed region of phase space. The 4π± final

state is binned using the schemes in section 4. The K0
Sπ

+π− and K0
Lπ

+π− final states are

binned according to the ‘Equal ∆δD BABAR 2008’ scheme from ref. [21], which is shown

in figure 1. For non-continuum dominated decays, the binned yields are determined by

counting the number of candidates in the signal region of the D1mbc vs. D2mbc plane —

the background estimates are discussed in section 6. For continuum-dominated final states

a fit the mave
bc distribution is performed in each phase space bin. In the case where 2 or more

phase space bins have an identical decay rate (e.g. 4π± vs. π+π−π0 has the same decay

rate in bin +i and −i) they are merged before determining the signal yield. The samples

of flavour and quasi-flavour double-tags are split using the charge of the kaon before the

binned yields are determined. The phase space-integrated background subtracted event

yields for all single- and double-tagged decays are given in table 2.

6 Fit for 4π± hadronic parameters

This section describes the fitting algorithm used to determine constraints on the

D → 4π± hadronic parameters. Following from eq. (2.7), the expected number of

ψ(3770)→DD→figj signal decays is given by,

N sig
figj

=

NDD

{(
1 +

y2
D − x2

D

2

)[
Kf
i K̄

g
j + K̄f

i K
g
j − 2

√
Kf
i K̄

g
j K̄

f
i K

g
j

(
cfi c

g
j + sfi s

g
j

)]
+

(
y2
D + x2

D

2

)[
Kf
i K

g
j + K̄f

i K̄
g
j − 2

√
Kf
i K̄

g
j K̄

f
i K

g
j

(
cfi c

g
j − s

f
i s
g
j

)]}
, (6.1)

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

Decay Mode π+π−π+π− All

K+K− 18.2± 6.5 11887.5± 318.8

π+π− 3.0± 8.3 5599.5± 170.8

K0
Sπ

0π0 18.2± 5.6 6989.7± 374.1

K0
Lπ

0 41.6± 10.6 –

K0
Lω 23.4± 6.7 –

K0
Sπ

0 111.1± 11.1 19984.0± 520.8

K0
Sω 47.4± 7.3 8033.6± 413.3

K0
Sη(γγ) 18.9± 4.6 2903.7± 99.1

K0
Sη(π+π−π0) 6.7± 2.7 1283.2± 80.3

K0
Sη
′

7.6± 2.9 1321.9± 76.6

K0
Lπ

+π− 488.0± 27.1 –

K0
Sπ

+π− 237.4± 16.6 –

π+π−π0 63.1± 14.1 30032.4± 1553.9

K±e∓ν 484.5± 22.1 –

K±π∓ 595.6± 24.7 131613.0± 2658.1

K±π∓π0 1243.4± 36.5 –

K±π∓π±π∓ 923.7± 41.2 –

Table 2. Number of selected single- and double-tagged decays after background subtraction.

Type Kf
i K̄f

i cfi sfi

D0 flavour tag BF(D0→ f) 0 0 0

D0 quasi-flavour tag BF(D0→ f) BF(D0→ f)(rfD)2 RfD cos δfD RfD sin δfD

CP tag BF(D0→ f) BF(D0→ f) ηCP 0

Self-conjugate tag BF(D0→ f) BF(D0→ f) 2F f+ − 1 0

4π±/K0
S/Lππ Kf

i K̄f
i cfi sfi

All D decay final states 1 1 yD 0

Table 3. List of the different parameterisations used for the hadronic parameters of different

categories of final state, and how they relate the Kf
i , K̄f

i , cfi and sfi parameterisation used to

derive the formalism in this paper.

where NDD is the total number of ψ(3770)→ DD decays in the data sample. In the litera-

ture, different parameterisations of the hadronic parameters are used for different categories

of final state, which sometimes differ from Kf
i , K̄f

i , cfi and sfi parameterisation used to

derive the formalism in this paper. The different parameterisations used are summarised

in table 3, which are used as free parameters in the fit for the relevant final states. The

new parameters introduced are: the CP -even fraction, F f+; the coherence factor, RfD; the

average strong phase difference, δfD; and the ratio of D0→ f to D0→ f amplitudes, rfD.

The relationship between these and the Kf
i , K̄f

i , cfi and sfi parameters is given in table 3.

– 16 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

Substituting the various parameterisations in table 3 into eq. (6.1), it is clear that

different categories of tag provide sensitivity to different hadronic parameters. The flavour

and quasi-flavour tags give sensitivity to Kf
i and K̄f

i ; the CP tags and π+π−π0 tags give

sensitivity to Kf
i , K̄f

i , and cfi ; and the K0
Sπ

+π− and K0
Lπ

+π− tags give sensitivity to all

hadronic parameters.

The expected efficiency and background corrected yield is given by,

N tot
figj

= N sig
figj

εfigj +Nbkg
figj

, (6.2)

where εfigj is the reconstruction and selection efficiency for the decay in question, and Nbkg
figj

is the expected number of background. The quantity εfigj is determined from large samples

of simulated signal decays, correcting for known discrepancies between data and simula-

tion. Before efficiencies are calculated, the simulated samples containing K0
Sπ

+π− and

4π± decays are reweighted to their model expectations (using the D0→ K0
Sπ

+π− BABAR

model [36] and the nominal D0→ 4π± model [24]) including the effects of quantum cor-

relations. The simulated sample of K0
Lπ

+π− decays is also reweighted to the K0
Sπ

+π−

model with ∆δ
K0

Lππ
p = −∆δ

K0
Sππ

p ; this approximation holds in the scenario that only CF

and DCS amplitudes contribute, and the two do not overlap in the Dalitz plot. A sys-

tematic uncertainty is later assigned to account for any model dependence in the efficiency

determination.

The total background estimate is broken down into the following expression,

Nbkg
figj

= N
K0

Sππ

fg κ
K0

Sππ

figj
+Nflat

fg κ
flat
figj

+N sig
fihj

εfihjf
h
g , (6.3)

where N
K0

Sππ

fg and Nflat
fg are the total number of K0

Sπ
+π− and combinatoric background

in the DD → fg decay, respectively. The quantities κ
K0

Sππ

figj
and κflat

figj
give the fraction of

background that falls into the phase space bins i and j. The final term, N sig
fihj

εfihjf
h
g , gives

the number of cross-feed background from the decay DD→ fihj . The quantity fhg gives

the fraction of DD → fihj decays that are incorrectly reconstructed as DD → figj , to

those correctly reconstructed. The value of N
K0

Sππ

fg is taken from generic MC, as was used

for the determination of the background subtracted yields in table 2. The value of κ
K0

Sππ

figj

is found using a large sample of simulated D→ K0
Sπ

+π− decays that are reconstructed

as D→ 4π±. Before calculating κ
K0

Sππ

figj
, the simulated sample is first reweighted to the

model expectation, based on the phase space location of the generated K0
Sπ

+π− decay,

and including quantum correlations. Since the K0
Sπ

+π− model has been shown to give

good agreement with model-independent measurements [21], any model dependent bias

should be small, but this is considered as a systematic uncertainty later. The value of

Nflat
fg is determined from the sideband regions, as described in section 5. For continuum-

dominated and single-tagged decays Nflat
fg = 0, since the signal yields are determined from a

fit to mave
bc , so already have the combinatoric background component subtracted. The value

of κflat
figj

is determined using simulated signal decays distributed according to the density

of states (phase space). Where possible, this assumption is checked using the sideband
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regions, which shows good agreement. Systematic uncertainties are assigned to cover any

bias from this assumption.

The values of the 4π± hadronic parameters are obtained by maximising the log-

likelihood, logL. The Poisson distribution, P (k;λ) ≡ λke−λ/k!, gives the probability of

observing k events when λ are expected. For double-tagged decays that are not continuum-

dominated the log-likelihood receives a term,

logL += logP (Mfigj ;N
tot
figj

), (6.4)

where Mfigj is the number of events counted in the signal region of the decay DD → figj .

For continuum-dominated double-tags and single-tags, the signal yield is obtained from a

fit, which has an associated uncertainty σfigj . Therefore, the log-likelihood receives a term,

logL += logG
(
N tot
figj

;Mfigj , σfigj

)
, (6.5)

where G(k;µ, σ) is a Gaussian distribution with mean µ and width σ.

External inputs are needed to constrain various parameters in the fit. For the partially-

reconstructed CP final states K0
Lπ

0 and K0
Lω it is not possible to obtain a single-tagged

sample, which would provide the fitter with constraints on the product NDD × BF(D0 →
f). This constraint is important for normalising the respective double-tag yield, so an

alternative method is followed for the K0
Lπ

0 and K0
Lω final states. In order to constrain

NDD, the single-tagged K∓π± yield is measured in conjunction with an external constraint

on BF(D0 → K∓π±) [35]. External constraints on BF(D0 → K0
Lπ

0) and BF(D0 → K0
Lω)

then lead to the desired constraint on NDD × BF(D0 → f) [35]. For the quasi-flavour

tags, external constraints are provided for the hadronic parameters rfD, RfD and δfD, which

are taken from ref. [25] and ref. [37]. The self-conjugate final state π+π−π0 is not a

CP eigenstate, so its CP -even fraction, F πππ
0

+ , is constrained to its previously measured

value [19]. The charm-mixing parameters are constrained to their world-average values [25].

The central values and uncertainties of the constraints are listed in table 4. All constraints

are applied by including a Gaussian constraint, similar to eq. (6.5), in the logL; where

available, correlations between the parameters are also included.

The hadronic parameters of the K0
Sπ

+π− and K0
Lπ

+π− final states are also constrained.

The parameters c
K0

Sππ
i , s

K0
Sππ

i , c
K0

Lππ
i and s

K0
Lππ

i are constrained using the covariance matrix

for the BABAR equal ∆δD binning given in ref. [21]. An adjustment must be made to the

constraints on c
K0

Lππ
i and s

K0
Lππ

i , since a different convention is used in ref. [21] such that

c
K0

Lππ
i → −cK

0
Lππ

i and s
K0

Lππ
i → −sK

0
Lππ

i . Constraints on the parameters F
K0

Lππ
i and F̄

K0
Lππ

i

are taken directly from ref. [38]; since it is the parameters K
K0

Lππ
i and K̄

K0
Lππ

i that are

used as free parameters in the fit, F
K0

Lππ
i and F̄

K0
Lππ

i are calculated dynamically so that

the constraint can be applied. The parameters F
K0

Sππ
i and F̄

K0
Sππ

i are constrained from

an average of BELLE and BABAR model predictions [39, 40], as determined in ref. [41].

Since the amplitude models are fit to D decay-time integrated samples of D∗+→ D0π+

decays, small corrections must be made for D-mixing using the expression [18],

B
K0

Sππ
i ∝ FK

0
Sππ

i −
√
F
K0

Sππ
i F̄

K0
Sππ

i

(
c
K0

Sππ
i yD + s

K0
Sππ

i xD

)
+
x2
D + y2

D

2
, (6.6)
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Fit Parameter Constraint Source

BF(D0 → K−π+) (3.93 ± 0.04)% Ref. [35]*

BF(D0 → K0
Lπ

0) (1.00 ± 0.07)%

BF(D0 → K0
Lω(3π)) (0.99 ± 0.05 ± 0.20)%

rK
−π+

(5.90 ± 0.03)% Ref. [25]†

δK
−π+

3.41 ± 0.14

rK
−π+π0

(4.47 ± 0.12)% Ref. [37]

RK
−π+π0

0.81 ± 0.06

δK
−π+π0

3.46 ± 0.25

rK
−3π (5.49 ± 0.06)%

RK
−3π 0.43 ± 0.15

δK
−3π 2.23 ± 0.39

xD (0.322 ± 0.140)% Ref. [25]

yD (0.688 ± 0.060)%

F πππ
0

+ 0.973 ± 0.017 Ref. [19]

*The constraint on BF(D0→K0
Lω(3π)) is taken from BF(D0→K0

Sω(3π))

with a systematic uncertainty of 20%.
†Ref. [25] uses the convention CP |D0〉 = −|D0〉, so the transformation

δK
−π+

→ δK
−π+

+ π is applied.

Table 4. List constraints used in the analysis. The right hand column gives the source of the con-

straint, along with any conventional adjustments that have to be made to use them in this analysis.

where B
K0

Sππ
i is the fraction of D∗+ → D0π+, D0→ K0

Sπ
+π− decays in phase space bin i.

Using external inputs from refs. [21, 25], the system of equations is solved to find F
K0

Sππ
i

and F̄
K0

Sππ
i .

In principle, the normalisation parameter NDD can be shared for every decay mode

considered in the analysis, since the same e+e− collision data are used. In reality, however,

this is not always desirable since the estimation of NDD relies on the absolute efficien-

cies (rather than the relative, bin-to-bin, efficiencies) determined from simulated sam-

ples. For the double-tagged samples of K0
Sπ

+π−, K0
Lπ

+π−, K∓π±π0, K∓π±π∓π±, and

K∓e±ν decays, almost all information comes from the relative bin-to-bin yields, so sharing

a normalisation parameter provides little benefit while introducing a potential source of

systematic uncertainty. Therefore, these final states each have their own normalisation pa-

rameter, Nf

DD
, in the fit. On the other hand, the double- and single-tagged K∓π± samples

share a normalisation constant, which allows the fitter to constrain BF(D0→ 4π±), since

BF(D0→ K−π+) has an external constraint (table 4). This normalisation constant is also

shared with all single- and double-tagged CP and π+π−π0 final states.
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The logL expression is maximised numerically using the MINUIT software [42]. The

maximisation procedure is repeated 5 times with different starting values to ensure the

global maximum of logL has been found (as opposed to a local maximum). Statistical un-

certainties and correlations between fit parameters are provided by Minuit from evaluating

the second derivatives of logL with respect to the fit parameters.

The fitting procedure is tested using 400 simulated experiments that use the back-

ground and efficiency estimates from the fit to data. The D→ 4π± hadronic parameters

used to generated the pseudo-experiments are taken from model predictions. The hadronic

parameters of other final states are taken from their previously measured values, and ran-

domly sampled from their associated uncertainties. No statistically significant bias was

found in the fit procedure.

The central values and statistical uncertainties of the D→ 4π± hadronic parameters

from the fit to data are given in table 7, and the statistical correlations in appendix B. In

this paper only results using 4π± binning schemes with N = 5 are presented, although the

results for N = 1− 5 can be found in the supplementary material.

7 Systematics

The systematic uncertainties on the 4π± hadronic parameters are broken down into several

components, as listed in the systematic uncertainty breakdown in table 5. Each of these

components will be discussed in the following.

Bin migration. Due to the finite detector resolution, it is possible for an event occurring

in one phase space bin to be reconstructed in another; this bin-migration is relevant to the

4π±, K0
Sπ

+π− and K0
Lπ

+π− final states. Since decays to these final states do not proceed

by any narrow resonances, bin migration is not expected to significantly bias the result.

Using samples of simulated signal events (that are reweighted to their model expectations),

a migration matrix is calculated, whose elements Mik give the probability of an event

generated in bin k to be reconstructed in bin i. For the fully-reconstructed final states

4π± and K0
Sπ

+π−, the diagonal elements of Mik are typically ∼ 95%, whereas for the

partially reconstructed K0
Lπ

+π− final state they are ∼ 85%. The migration matrices are

used in the calculation of the expected yields (eq. (6.2)) and the fit is rerun. The absolute

difference between this result and the nominal result, which is obtained without correcting

for bin-migration, is taken as a systematic uncertainty.

Multiple candidate selection. To check that the multiple candidate selection (MCS)

procedure does not bias the result, an alternative MCS procedure is followed where one

candidate is chosen at random (rather than based on a metric). The difference between

the hadronic parameters determined using this selection and the nominal selection is taken

as a systematic uncertainty.

Relative efficiencies. In the nominal fit, the relative efficiency between phase space

bins is determined using simulated signal samples that are reweighted to their model ex-

pectation. To estimate an upper limit on the systematic uncertainty introduced by the
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model uncertainty, the efficiency estimates are redetermined with the simulated samples

reweighted to phase space. The absolute difference between the result using alternative

efficiency estimates and the nominal result is taken as a systematic uncertainty.

Relative K0
S
π+π− background distribution. To determine the relative distribution

of K0
Sπ

+π− background, a sample of simulated D → K0
Sπ

+π− decays, reconstructed as

D→ 4π±, is reweighted to its model prediction, including quantum correlations. In order to

determine a systematic uncertainty, the quantum correlations are neglected (equivalent to

setting cfi = sfi = 0 in eq. (6.1)) and the K0
Sπ

+π− background distribution is recalculated.

The absolute difference between this result and the nominal result is taken as a systematic

uncertainty.

Absolute K0
S
π+π− background yields. In the nominal fit, the total number of

K0
Sπ

+π− background events are estimated using the generic sample of simulated data.

Alternatively, this is determined using a data-driven technique. The relative event num-

bers in the K0
S veto region and the signal region is determined from simulation for both

K0
Sπ

+π− background and 4π± signal. These numbers are used to estimate the K0
Sπ

+π−

background contamination in the signal region based on the observed number of events in

the K0
S veto region. The fit is rerun with the alternative K0

Sπ
+π− background yields, and

the absolute difference between this result and the nominal result is taken as a systematic

uncertainty.

Relative flat background distribution. The relative number of combinatorial back-

ground events across phase space bins is assumed to be distributed according to phase

space. As an alternative method, the relative numbers are taken from the combinatorial

background events in the generic MC sample. The absolute difference between this result

and the nominal result is taken as a systematic uncertainty.

Absolute flat background yields. For fully-reconstructed non-continuum dominated

double-tagged decays, the total number of combinatorial background is estimated from the

number of events in five sideband regions of the two dimensional D1mbc vs. D2mbc plane

(see figure 5). Each sideband region is associated with a particular background type, which

is assumed to have the same density in the sideband and signal regions. Alternatively, the

relative density of background between the sideband and signal regions is taken from generic

MC. The alternative background estimates are used in the fit, and the difference between

this result and the nominal result is taken as a systematic uncertainty.

For partially-reconstructed double-tagged decays, the total number of combinatorial

background is determined from a fit to the m2
miss or Umiss distribution (see figure 6). Al-

ternatively, the combinatorial background yield is determined using a simpler sideband-

subtraction approach. The alternative background estimates are used in the fit, and the

difference between this result and the nominal result is taken as a systematic uncertainty.

Continuum dominated signal yields. For continuum-dominated double-tagged de-

cays, the signal yield in each phase space bin is determined from a fit to the mave
bc distribu-

tion. The fits are repeated with an alternative signal (sum of a Johnson function [43] and a
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Gaussian) and background (second order polynomial) parameterisation, in a reduced mave
bc

range. The alternative signal yields and uncertainties are used to determine the hadronic

parameters, and the difference between this result and the nominal result is taken as a

systematic uncertainty.

Non-resonant dilution. The final states K0
Sω and K0

Sη(π+π−π0) have small contribu-

tions from non-resonant K0
Sπ

+π−π0 decays, which are estimated from generic MC. Since

this background contributes to both the single-tagged and double-tagged modes, it can be

accounted for by making a small adjustment to the CP -even fraction of each final state,

which would be identically zero (CP -odd) in the case of no background. Since the CP -

content of this background is not known, it is conservatively assumed to be CP -even. The

fit is rerun with the updated CP -even fractions, and the difference between this result and

the nominal result is taken as a systematic uncertainty.

Simulated sample statistics. In the nominal fit, the background and efficiency esti-

mates all have an uncertainty due to limited statistics in simulated data samples. The fit

is rerun twenty times, each time randomly varying the efficiency and background estimates

within their uncertainties. The covariance of the results obtained is used to determine a

systematic uncertainty.

A breakdown of the systematic uncertainties for the optimal alternative binning with

N = 5 is given in table 5. The largest systematic uncertainty comes from imperfect knowl-

edge of the combinatorial background. The total systematic uncertainties for all binning

schemes with N = 5 are given in table 7, and the systematic correlations in appendix B.

The equivalent information for the other binning schemes considered is provided in the sup-

plementary material. For all parameters the total uncertainty is statistically dominated.

8 Results and consistency checks

The measurement of the 4π± hadronic parameters with statistical and systematic uncer-

tainties is given in table 7, with correlations in appendix B. The results are compared to the

model predictions in figure 8 and figure 9. The compatibility between the results and the

model predictions is quantified by calculating the χ2 between the two, where all correlations

are included. This is done independently for the c4π
i /s4π

i , and T 4π
i /T 4π

i parameters, and

for the combination, with the results in table 6. The parameters T 4π
i and T̄ 4π

i show good

agreement with the model predictions, which is expected since the model was determined

from a fit to D0 and D0 tagged data. The parameters cfi and sfi are in slight tension with

the model predictions, with p-values ranging from 0.03 to 0.18, but they clearly follow the

same general trend in the cfi -sfi plane. It is worth repeating here that any incompatibility

with the model will not introduce additional systematic uncertainties to a measurement of

γ, but will only increase the statistical uncertainty.

Using the measured 4π± hadronic parameters, the CP -even fraction of all phase space

bins, F̃ 4π
+ , is calculated using the formula,

F̃ 4π
+ =

1

2
+

1

2

∑
i

c4π
i

√
T 4π
i T̄ 4π

i , (8.1)
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c4π
+1 [%] c4π

+2 [%] c4π
+3 [%] c4π

+4 [%] c4π
+5 [%] s4π

+1 [%] s4π
+2 [%] s4π

+3 [%] s4π
+4 [%] s4π

+5 [%]

Bin migration 1.493 1.063 0.911 0.824 0.643 2.888 2.312 2.911 3.221 2.527

MCS 4.753 1.858 0.438 0.734 0.058 5.211 3.659 1.914 2.294 11.313

Rel. Efficiency 0.576 0.011 0.045 0.032 1.902 1.225 0.686 0.942 0.722 0.301

Abs. Flat Bkg. 7.823 5.167 3.441 4.143 2.053 6.344 3.860 0.688 4.899 5.486

Rel. Flat Bkg. 2.067 0.015 0.693 0.089 0.947 5.012 3.640 0.227 1.517 2.930

Cont. Dom. Fit 2.058 1.146 0.347 0.791 2.220 0.079 0.075 0.005 0.005 0.278

Abs. K0
Sπ

+π− Bkg. 1.953 0.455 0.372 0.831 0.409 0.100 0.092 0.074 0.162 0.730

Rel. K0
Sπ

+π− Bkg. 0.628 0.193 0.716 0.454 0.058 0.388 0.061 0.144 0.049 0.279

Non Res. Dilution 0.142 0.449 0.396 0.118 0.050 0.021 0.029 0.020 0.003 0.012

MC stats 1.475 1.158 0.399 1.211 1.483 2.203 1.978 1.097 1.339 1.249

Total Sys. 10.063 5.863 3.799 4.626 4.055 10.363 7.161 3.845 6.655 13.244

Total Stat. 14.283 9.542 5.668 9.916 13.847 29.095 23.734 16.236 21.471 26.346

Total 17.472 11.199 6.824 10.942 14.428 30.885 24.791 16.685 22.478 29.488

T 4π
+1 [%] T 4π

+2 [%] T 4π
+3 [%] T 4π

+4 [%] T 4π
+5 [%] T 4π

−1 [%] T 4π
−2 [%] T 4π

−3 [%] T 4π
−4 [%] T 4π

−5 [%]

Bin migration 0.049 0.011 0.091 0.089 0.027 0.041 0.101 0.115 0.059 0.060

MCS 0.006 0.143 0.055 0.084 0.108 0.072 0.055 0.000 0.115 0.154

Rel. Efficiency 0.153 0.260 0.107 0.020 0.110 0.076 0.091 0.128 0.011 0.051

Abs. Flat Bkg. 0.099 0.149 0.427 0.406 0.135 0.469 0.276 0.052 0.337 0.186

Rel. Flat Bkg. 0.041 0.033 0.100 0.084 0.062 0.129 0.059 0.066 0.054 0.029

Cont. Dom. Fit 0.009 0.004 0.023 0.005 0.020 0.009 0.000 0.020 0.001 0.016

Abs. K0
Sπ

+π− Bkg. 0.002 0.008 0.005 0.005 0.004 0.019 0.005 0.002 0.002 0.005

Rel. K0
Sπ

+π− Bkg. 0.003 0.003 0.004 0.001 0.001 0.002 0.002 0.004 0.002 0.001

Non Res. Dilution 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000

MC stats 0.080 0.104 0.133 0.146 0.071 0.055 0.076 0.161 0.112 0.067

Total Sys. 0.209 0.350 0.483 0.457 0.228 0.503 0.327 0.251 0.382 0.265

Total Stat. 0.517 0.568 0.743 0.605 0.463 0.391 0.438 0.699 0.506 0.385

Total 0.558 0.667 0.886 0.758 0.516 0.637 0.546 0.743 0.634 0.467

Table 5. A breakdown of the systematic uncertainties for the optimal alternative binning scheme

with N = 5.

Binning scheme c4π
i , s4π

i T 4π
i , T̄ 4π

i c4π
i , s4π

i , T 4π
i , T̄ 4π

i

χ2/ndof (p-value) χ2/ndof (p-value) χ2/ndof (p-value)

Equal ∆δ4π
p 19.9/10 ( 0.03 ) 7.4/9 ( 0.59 ) 30.0/19 ( 0.05 )

Variable ∆δ4π
p 13.9/10 ( 0.18 ) 9.9/9 ( 0.36 ) 27.9/19 ( 0.09 )

Alternate 16.6/10 ( 0.08 ) 10.3/9 ( 0.33 ) 27.0/19 ( 0.10 )

Optimal 17.8/10 ( 0.06 ) 9.9/9 ( 0.36 ) 29.6/19 ( 0.06 )

Optimal Alternate 13.7/10 ( 0.19 ) 17.2/9 ( 0.05 ) 31.2/19 ( 0.04 )

Table 6. The compatibility of the measured 4π± hadronic parameters with the model predictions

for all binning schemes with N = 5.

where the tilde indicates that a π+π− mass window is excluded from the D→ 4π± phase

space i.e. F 4π
+ represents the CP -even fraction for the entire phase space. The values of F̃ 4π

+

are presented in table 7, and are consistent among binning schemes. The nominal model

is used to determine F 4π
+ − F̃ 4π

+ = −0.002± 0.002 which can be used as a correction factor

to determine F 4π
+ from the values of F̃ 4π

+ in table 7.
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Equal ∆δ4π
p binning

i ci si Ti T i

1 0.881 ± 0.053 ± 0.044 0.303 ± 0.149 ± 0.046 0.237 ± 0.008 ± 0.004 0.217 ± 0.008 ± 0.003

2 0.501 ± 0.084 ± 0.046 -0.032 ± 0.201 ± 0.025 0.122 ± 0.006 ± 0.002 0.127 ± 0.006 ± 0.003

3 0.450 ± 0.113 ± 0.064 0.441 ± 0.228 ± 0.072 0.059 ± 0.004 ± 0.002 0.075 ± 0.005 ± 0.002

4 -0.201 ± 0.167 ± 0.068 0.132 ± 0.304 ± 0.039 0.039 ± 0.004 ± 0.002 0.045 ± 0.004 ± 0.001

5 -0.397 ± 0.152 ± 0.036 -0.446 ± 0.381 ± 0.132 0.040 ± 0.004 ± 0.001 0.039 ± 0.004 ± 0.002

F̃ 4π
+ 0.768 ± 0.021 ± 0.013

Q 0.733 ± 0.052 ± 0.035

Variable ∆δ4π
p binning

i ci si Ti T i

1 0.966 ± 0.101 ± 0.052 0.086 ± 0.316 ± 0.068 0.069 ± 0.005 ± 0.001 0.062 ± 0.004 ± 0.003

2 0.810 ± 0.070 ± 0.051 -0.136 ± 0.229 ± 0.051 0.123 ± 0.006 ± 0.003 0.112 ± 0.006 ± 0.002

3 0.910 ± 0.080 ± 0.059 0.225 ± 0.259 ± 0.107 0.078 ± 0.005 ± 0.001 0.078 ± 0.005 ± 0.002

4 0.405 ± 0.083 ± 0.046 0.215 ± 0.188 ± 0.041 0.133 ± 0.006 ± 0.003 0.152 ± 0.006 ± 0.003

5 -0.154 ± 0.105 ± 0.047 0.213 ± 0.207 ± 0.031 0.090 ± 0.005 ± 0.003 0.103 ± 0.006 ± 0.002

F̃ 4π
+ 0.772 ± 0.021 ± 0.010

Q 0.698 ± 0.049 ± 0.020

Alternative binning

i ci si Ti T i

1 -0.205 ± 0.189 ± 0.094 -0.057 ± 0.384 ± 0.127 0.057 ± 0.004 ± 0.001 0.019 ± 0.003 ± 0.003

2 0.445 ± 0.105 ± 0.066 -0.041 ± 0.259 ± 0.073 0.129 ± 0.006 ± 0.004 0.060 ± 0.005 ± 0.004

3 0.888 ± 0.053 ± 0.045 -0.150 ± 0.159 ± 0.027 0.263 ± 0.008 ± 0.007 0.192 ± 0.007 ± 0.004

4 0.530 ± 0.097 ± 0.044 0.239 ± 0.209 ± 0.084 0.121 ± 0.006 ± 0.004 0.073 ± 0.005 ± 0.003

5 -0.451 ± 0.162 ± 0.053 -0.238 ± 0.416 ± 0.157 0.059 ± 0.004 ± 0.002 0.027 ± 0.003 ± 0.002

F̃ 4π
+ 0.764 ± 0.022 ± 0.011

Q 0.702 ± 0.051 ± 0.027

Optimal binning

i ci si Ti T i

1 0.949 ± 0.057 ± 0.039 -0.041 ± 0.171 ± 0.041 0.193 ± 0.007 ± 0.004 0.173 ± 0.007 ± 0.003

2 0.641 ± 0.110 ± 0.073 0.331 ± 0.257 ± 0.087 0.045 ± 0.004 ± 0.004 0.123 ± 0.006 ± 0.005

3 0.542 ± 0.094 ± 0.059 0.034 ± 0.224 ± 0.063 0.135 ± 0.006 ± 0.005 0.070 ± 0.005 ± 0.004

4 0.309 ± 0.123 ± 0.073 0.294 ± 0.236 ± 0.058 0.054 ± 0.005 ± 0.003 0.092 ± 0.005 ± 0.002

5 -0.492 ± 0.130 ± 0.041 0.665 ± 0.256 ± 0.100 0.069 ± 0.004 ± 0.002 0.045 ± 0.004 ± 0.002

F̃ 4π
+ 0.768 ± 0.021 ± 0.012

Q 0.757 ± 0.052 ± 0.026

Optimal-alternative binning

i ci si Ti T i

1 0.279 ± 0.143 ± 0.101 -0.379 ± 0.291 ± 0.104 0.096 ± 0.005 ± 0.002 0.032 ± 0.004 ± 0.005

2 0.622 ± 0.095 ± 0.059 -0.486 ± 0.237 ± 0.072 0.123 ± 0.006 ± 0.004 0.055 ± 0.004 ± 0.003

3 0.969 ± 0.057 ± 0.038 -0.089 ± 0.162 ± 0.038 0.202 ± 0.007 ± 0.005 0.164 ± 0.007 ± 0.003

4 0.463 ± 0.099 ± 0.046 0.245 ± 0.215 ± 0.067 0.134 ± 0.006 ± 0.005 0.077 ± 0.005 ± 0.004

5 -0.332 ± 0.138 ± 0.041 0.484 ± 0.263 ± 0.132 0.074 ± 0.005 ± 0.002 0.043 ± 0.004 ± 0.003

F̃ 4π
+ 0.771 ± 0.021 ± 0.010

Q 0.760 ± 0.057 ± 0.017

Table 7. The hadronic parameters measured for each of the 4π± binning schemes discussed in sec-

tion 4 where N = 5. The first uncertainty given is statistical, and the second systematic. Also given

is the CP-even fraction, F̃ 4π
+ , and the Q value, defined in section 4; the uncertainties on these param-

eters are propagated from the statistical and systematic uncertainties on the hadronic parameters.
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Figure 8. Each figure shows the hadronic parameters c4πi and s4πi measured using one of the

4π± binning schemes discussed in section 4 where N = 5. The grey shaded ellipses give the

model predictions and uncertainties discussed in section 4. The black (blue) ellipses show the

measured values and statistical (statistical + systematic) uncertainties. In all cases the ellipse

contains the 39.3% confidence region, defined by the logLmax − logL = 1
2 contour, where logLmax

is the maximum value of logL.
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Figure 9. Each figure shows the hadronic parameters T 4π
i and T̄ 4π

i measured using one of the 4π±

binning schemes discussed in section 4 where N = 5. The grey bands give the model predictions

and uncertainties discussed in section 4. The black (blue) points with errors give the measured

values and statistical (statistical + systematic) uncertainties.

The Q value of each binning scheme is determined using eq. (4.8), and presented in

table 7; as expected, the optimal binning schemes give the largest Q values. The Q value

for a single phase space bin is calculated, using F̃ 4π
+ , to be 0.505. Therefore, based on

the relative Q values, and using the optimal-alternative binning scheme with N = 5, the

increase in statistical power for a measurement of γ is increased by ∼ 2.2 times with respect

to the phase space integrated case.6

6Note that it impossible to discuss the improvement in γ sensitivity since an independent measurement

of γ is impossible in the phase space integrated regime.
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The consistency of the c4π
i and s4π

i constraints obtained using different categories of

final state is shown in figure 10 and figure 11 for the optimal alternative binning scheme

with N = 5. For figure 10, each fit to one of the five categories (CP+, CP -, π+π−π0,

K0
Sπ

+π− and K0
Lπ

+π−) uses all flavour and quasi-flavour tags. The constraints obtained

are consistent between all categories of final state.

The fit is also run using a single 4π± phase space bin, which gives F̃ 4π
+ = 0.760±0.021±

0.021. The consistency of this result is checked between all final states in figure 12, following

a similar method to the one used to obtain figure 10. Good consistency is observed.

As a ‘default’ binning scheme, we take the optimal-alternative binning with N = 5,

as this has highest predicted Q value. The default binning scheme also has the largest

measured Q value, although this information was not used to pick the default binning

since it could bias the results. The value of F̃ 4π
+ determined using the default model is

0.771 ± 0.021 ± 0.010, which leads to F 4π
+ = 0.769 ± 0.021 ± 0.010 ± 0.002, where the

final uncertainty is due to the K0
S veto. The value of F 4π

+ is an important input for

determining the total CP content of the neutral D meson, which is related to the charm

mixing parameter yD through eq. (2.10) [44].

9 Sensitivity studies

In this section the measured 4π± hadronic parameters from section 8 are used to simulate

B±→ DK±, D→ 4π± datasets, which in turn are used to estimate the sensitivity to γ.

Three scenarios with different event yields are studied, based on measured and extrapo-

lated B±→ DK±, D→ 4π± event yields from LHCb: “LHCb run I”, with event yields of

∼ 1, 500 already recorded by LHCb with 3 fb−1 [20] of data; “LHCb run II”, with plausible

event yields of ∼ 6, 500 at the end of the next LHC data taking period with approximately

twice the collision energy and an estimated 8 fb−1 of data; and “LHCb phase 1 upgrade”,

with plausible event yields of ∼ 100, 000 after phase 1 of the LHCb upgrade. The increase

in the heavy flavour cross section at higher collision energies is accounted for, along with

the expected improvement in trigger efficiency at the LHCb phase 1 upgrade [45]. The

extrapolations have of course large uncertainties. The presence of background and system-

atic effects has been neglected in these studies, which is a reasonable assumption given

previous measurements [20].

Toy datasets of B± → DK±, D → 4π± decays are generated using eq. (2.13) and

eq. (2.14) with δB = 140◦, γ = 70◦ and rB = 0.1. For each toy dataset, the central

values of the 4π± hadronic parameters are randomly sampled from the measured values

and uncertainties. When fitting the toy datasets, the parameters δB, γ, rB and an overall

normalisation parameter are allowed to float, whereas the 4π± hadronic parameters are

fixed to their measured values. Therefore, the uncertainties obtained from the fit only

account for the finite B± → DK±, D → 4π± statistics, σstat. The uncertainties on the

parameters c4π
i and s4π

i are propagated to δB, γ and rB by repeating the fit 200 times,

where for each fit c4π
i and s4π

i are randomly sampled from their associated covariance

matrix. The covariance of the values obtained is used to assign an uncertainty, σhad. The

parameters K4π
i and K̄4π

i can be determined to an arbitrarily high precision at LHCb
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Figure 10. Constraints on the c4πi and s4πi parameters using the optimal alternative binning scheme

with N = 5, determined using different subsets of tags. The grey bands show the model predictions

and uncertainties. The red lines show the measured values and uncertainties when using a single

subset of tags — the inner error bar shows the statistical uncertainty, and the outer error bar shows

the combined statistical and systematic uncertainty. The yellow band shows the combined result

using all subsets of tags — the lighter shade of yellow represents the statistical uncertainty, and the

darker shade of yellow shows the combined statistical and systematic uncertainties.

using D∗+→ D0π+ decays, so the uncertainties on these parameters are neglected. As an

alternative approach, the c4π
i and s4π

i parameters are Gaussian constrained in the fit, but

this method was found to give a heavily biased estimate of γ, up to 70% of the statistical

uncertainty. The nominal fit method gives good coverage and small biases of less than 10%.

The expected γ uncertainties are presented in table 8 for several binning schemes. For

each case the expected γ uncertainty is median uncertainty determined from fits to 100

simulated datasets. For each binning scheme type the uncertainty on γ generally decreases

with increasing numbers of bins — for illustration, the uncertainty on γ is shown for the

optimal-alternative binning scheme for N = 2− 5 in table 8. The γ uncertainties are also

compared between different binning scheme types with N = 5; all result in similar values

of σstat(γ), although the values of σhad(γ) are notably larger for the ‘variable ∆δ4π
p ’ and the

– 28 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4

i

π4
T

0 0.1 0.2

+1

+2

+3

+4

+5

±

π
±

K

0
π

±

π
±

K

±

π±π

±

π
±

K

ν

±

e
±

K

±

π
±

K

0
π

±

π
±

K

±

π±π

±

π
±

K

ν

±

e
±

K

±

π
±

K

0
π

±

π
±

K

±

π±π

±

π
±

K

ν

±

e
±

K

±

π
±

K

0
π

±

π
±

K

±

π±π

±

π
±

K

ν

±

e
±

K

±

π
±

K

0
π

±

π
±

K

±

π±π

±

π
±

K

ν

±

e
±

K

i

π4

T

0 0.1 0.2

Figure 11. Constraints on the T 4π
i and T̄ 4π

i parameters (fraction of D0 and D0 flavour tagged

decays in each bin, repspectively) using the optimal alternative binning scheme with N = 5, deter-

mined using different subsets of tags. The grey bands show the model predictions and uncertainties.

The red lines show the measured values and uncertainties when using a single subset of tags —

the inner error bar shows the statistical uncertainty, and the outer error bar shows the combined

statistical and systematic uncertainty. The yellow band shows the combined result using all subsets

of tags — the lighter shade of yellow represents the statistical uncertainty, and the darker shade of

yellow shows the combined statistical and systematic uncertainties.

‘alternative’ binning schemes. This is likely due to the measured central values of the s4π
i

parameters being consistent with zero for these schemes. For the default binning (optimal

alternative with N = 5) the expected uncertainties are (18⊕13)◦, (10⊕7)◦ and (2.5⊕4.4)◦

for the LHCb “Run I”, “Run II” and “Phase 1 Upgrade” scenarios, respectively, where the

uncertainties are given in the form σstat (γ)⊕ σhad (γ).

Since σhad (γ) ≈ σstat (γ) for the LHCb “Run I” and “Run II” scenarios, and σhad (γ) >

σstat (γ) for the “Phase 1 Upgrade” scenario, it is interesting to consider the impact that

BESIII could have on reducing σhad (γ). Currently BESIII have collected 2.9 fb−1 of e+e−

collisions at the ψ(3770) resonance, and a further ∼ 7 fb−1 is planned for the future. These

datasets correspond to approximately 3.5 and 12 times the amount collected by CLEO-c,

respectively. It is assumed that the uncertainties on the 4π± hadronic parameters would

be reduced by 1/
√

3.5 and 1/
√

12, respectively, compared to the constraints obtained in

section 8. The central values of the estimated BESIII measurements are different for each

simulated dataset, and are randomly sampled from the constraints obtained in section 8.

– 29 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
4+

π4
F
~

0.5 1

-
π+π

S

0
K

-
π+π

L

0
K

0
π

-
π+π

CP+

-
K+K

-
π+π

0
π

0
π

S

0
K

0
π

L

0
K

ω
L

0
K

CP-

0
π

S

0
K

ω
S

0
K

)
0

π
-

π
+

π(η
S

0
K

)γγ(η
S

0
K

'
η

S

0
K

Figure 12. The CP -even fraction over all phase space bins, F̃ 4π
+ , determined using different subsets

of tags. The grey bands show the model predictions and uncertainties. The red/grey lines show the

measured values and uncertainties when using a single subset of tags — the inner error bar shows

the statistical uncertainty, and the outer error bar shows the combined statistical and systematic

uncertainty. The yellow band shows the combined result using all subsets of tags — the lighter

shade of yellow represents the statistical uncertainty, and the darker shade of yellow shows the

combined statistical and systematic uncertainties.

Figure 13 shows, for the default binning scheme, the expected values of σhad (γ) for dif-

ferent numbers of B±→ DK±, D→ 4π± decays. This is shown for the hadronic param-

eter constraints measured in this paper, and the expected constraints for the two BESIII

data taking periods. With 10.0 fb−1 of BESIII data, the expected γ uncertainties become

(18⊕ 3)◦, (10 ⊕ 1.7)◦ and (2.5 ⊕ 1.2)◦ for the LHCb “Run I”, “Run II” and “Phase 1

Upgrade” scenarios, respectively. It is also possible that BESIII could make further gains

in sensitivity by using additional numbers of phase space bins. Improved constraints on

the 4π± hadronic parameters could be obtained using D-mixing, as has been done for the

K±π∓π±π∓ final state in ref. [18]; this would require further investigation.
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(σstat (γ)⊕ σhad (γ)) [◦]

LHCb LHCb LHCb

Binning scheme N Run I Run II Ph.1 Upgrade

Optimal Alternative 2 20.4 ⊕ 27.0 16.2 ⊕ 20.5 4.6 ⊕ 15.6

3 18.0 ⊕ 10.1 10.0 ⊕ 5.4 2.6 ⊕ 3.6

4 18.2 ⊕ 15.9 10.5 ⊕ 10.6 2.9 ⊕ 6.5

(default binning) 5 18.0 ⊕ 13.2 9.7 ⊕ 7.4 2.5 ⊕ 4.4

Equal ∆δ4π
p 5 16.7 ⊕ 12.6 9.2 ⊕ 7.2 2.4 ⊕ 4.0

Variable ∆δ4π
p 5 19.8 ⊕ 23.3 10.2 ⊕ 14.7 2.9 ⊕ 11.1

Alternative 5 19.2 ⊕ 24.6 11.4 ⊕ 18.1 3.3 ⊕ 14.2

Optimal 5 17.3 ⊕ 13.9 10.0 ⊕ 7.9 2.6 ⊕ 5.0

Table 8. Expected γ sensitivity determined from simulated samples of B± → DK±, D→ 4π±

decays for a variety of D→ 4π± binning schemes. Details of the simulation and fitting procedure

can be found in the text. The uncertainties are given for three different data taking periods of

the LHCb experiment, where the number of signal decays in each case it taken/extrapolated from

existing measurements. The uncertainty on γ comes from two sources: the uncertainty due to

limited B±→ DK±, D→ 4π± statistics, σstat (γ); and the uncertainty due to limited knowledge

of the 4π± hadronic parameters that are measured in this paper, σhad (γ). Both uncertainties are

shown in the table, and are given in the format (σstat (γ)⊕ σhad (γ)). All expected uncertainties

are the median uncertainty from 100 simulated experiments.

10 Summary

Using 818 pb−1 of e+e− collision data collected by the CLEO-c detector, the hadronic

parameters of the D→ 4π± decay are measured in bins of phase space for the first time.

This allows the UT angle γ to be determined using only B± → DK± decays where

D decays to the 4π± final state; previously only phase space integrated measurements

have been possible [19, 20], which need to be combined with other final states to obtain

constraints on γ [20, 46].

The phase space of the D → 4π± decay is divided into bins based on the nominal

amplitude model from ref. [24]. The equal and variable ∆δ4π
p binning schemes are based

on an equal/variable division of ∆δ4π
p , whereas the alternate binning scheme also uses the

relative magnitude of D0 → 4π± to D0 → 4π± amplitudes. The optimal and optimal

alternative binning schemes are defined to optimise the expected sensitivity to γ in B±→
DK± decays. Although an amplitude model is used to inspire the binning schemes,

the results are model-unbiased; any modelling deficiencies will only result in an increased

statistical uncertainty on γ.

Since amplitude models can be notoriously difficult to reproduce, it is useful to have

a model-implementation independent method to represent a binning scheme. The phase

space of the D→ 4π± decay is five-dimensional, so using traditional techniques to divide

the phase space into N5 equally sized hypervolumes, where each is assigned a bin-number,

would result in an unmanageable number of hypervolumes. An adaptive binning scheme
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Figure 13. Expected γ uncertainties obtained using different numbers of B±→ DK±, D→ 4π±

decays and the default binning scheme. The black line shows the estimated uncertainty due to

limited B± → DK±, D → 4π± statistics. The red, green and blue lines shows the estimated

uncertainty due to the measured/predicted constraints on the 4π± hadronic parameters from CLEO-

c data with 0.818 fb−1, BES III with 2.9 fb−1, and BES III with 10.0 fb−1, respectively. The grey

bands highlight the event numbers that correspond to different LHCb data taking periods.

is developed that uses an array of differently sized hypervolumes to drastically reduce the

total number of hypervolumes needed, typically around 250, 000.

The measured values of the hadronic parameters are compared to the model-

predictions, which show good agreement for the parameters T 4π
i and T̄ 4π

i , but a slight

tension for c4π
i and s4π

i . This could either be due to statistical fluctuations, which could

be tested with larger datasets at BESIII, or a possible residual mismodelling of the phase

motion across the D→ 4π± phase space in ref. [24].

The consistency of the results is checked using different subsets of final states, which

give statistically compatible results. The CP even fraction over all phase space bins, F̃ 4π
+ , is

observed to be consistent between all binning schemes. Using the ‘default’ binning scheme,

F 4π
+ is determined as 0.769± 0.021± 0.010± 0.002 where the uncertainties are statistical,

systematic, and from the K0
S veto, respectively. This is the most precise determination

F 4π
+ to date.

Using the 4π± hadronic parameters measured in this paper, samples of B±→ DK±,

D → 4π± decays are simulated, then used to estimate the potential sensitivity to γ. It

is shown that, using estimated sample sizes from LHCb at the end of its current running

period (“Run II”) and the hadronic parameter constraints from this paper, constraints of
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σ(γ) = (10 ⊕ 7)◦ could be obtained, potentially making 4π± one of the most sensitive

final states for a measurement of γ. The first uncertainty is due to limited B±→ DK±

statistics, and the second is due to uncertainties on the 4π± hadronic parameters. It is

shown that the latter uncertainty could be reduced to around 1.7◦ by using current and

future BESIII datasets.
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A Helicity variables

In this paper the variables {m+,m−, cos θ+, cos θ−, φ} are used to parameterise a point in

the D→ 4π± phase space; their full definition is given in this appendix. The variables m+

and m− are defined,

m2
+ = (pπ+

1
+ pπ+

2
)2, (A.1)

m2
− = (pπ−1

+ pπ−2
)2, (A.2)

where pπ+
1

and pπ+
2

(pπ−1
and pπ−2

) are the four-vectors of the positively (negatively) charged

pions in the final state. The cosine of the two helicity angles, cos θ+ and cos θ−, are defined,

cos θ+ =
~pπ+

1
· ~pD

|~pπ+
1
||~pD|

evaluated in the frame where ~pπ+
1

+ ~pπ+
2

= 0 (A.3)

cos θ− =
~pπ−1
· ~pD

|~pπ−1 ||~pD|
evaluated in the frame where ~pπ−1

+ ~pπ−2
= 0 (A.4)

where ~pπ±1,2
is the three-vector associated to pπ±1,2

. The angle between the π+π+ and π−π−

decay planes, φ, is defined by,

sinφ=

[
(~pπ+

1
×~pπ+

2
)

|~pπ+
1
×~pπ+

2
|
×

(~pπ−1
×~pπ−2 )

|~pπ−1 ×~pπ−2 |

]
·
~pπ−1

+~pπ−2
|~pπ−1 +~pπ−2

|
evaluated in the ~pD = 0 frame (A.5)

cosφ=

[
(~pπ+

1
×~pπ+

2
)

|~pπ+
1
×~pπ+

2
|
·

(~pπ−1
×~pπ−2 )

|~pπ−1 ×~pπ−2 |

]
evaluated in the ~pD = 0 frame (A.6)

To avoid sign errors it is important to copy these expressions exactly and use consistent

particle labelling when computing cos θ+, cos θ− and φ i.e. which positively charged pion

is π+
1 and which is π+

2 .
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B Statistical and systematic correlations

Equal ∆δ4π
p binning statistical correlations

c4π
+1 c4π

+2 c4π
+3 c4π

+4 c4π
+5 s4π

+1 s4π
+2 s4π

+3 s4π
+4 s4π

+5 T 4π
+1 T 4π

+2 T 4π
+3 T 4π

+4 T 4π
+5 T 4π

−1 T 4π
−2 T 4π

−3 T 4π
−4 T 4π

−5

c4π
+1 1.00 0.03 0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.00 -0.04 0.03 0.02 0.02 0.02 -0.08 0.04 0.03 0.02 0.02

c4π
+2 0.03 1.00 0.02 0.02 0.02 -0.00 0.03 0.00 0.00 -0.01 0.03 -0.06 0.01 0.00 0.00 0.03 -0.05 0.01 0.01 0.00

c4π
+3 0.02 0.02 1.00 0.02 0.01 0.00 0.00 0.00 -0.00 0.00 0.02 0.01 -0.08 0.00 0.00 0.02 0.01 -0.03 0.00 0.00

c4π
+4 0.00 0.02 0.02 1.00 0.02 -0.01 0.00 -0.01 0.03 -0.01 0.02 0.01 0.01 -0.06 0.00 0.02 0.01 0.01 -0.06 0.00

c4π
+5 0.01 0.02 0.01 0.02 1.00 -0.01 -0.00 -0.01 -0.00 -0.09 0.01 0.00 0.00 -0.00 -0.03 0.01 0.00 0.00 -0.00 -0.03

s4π
+1 0.01 -0.00 0.00 -0.01 -0.01 1.00 -0.01 0.05 0.01 0.02 -0.02 0.00 -0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00

s4π
+2 0.00 0.03 0.00 0.00 -0.00 -0.01 1.00 -0.00 0.02 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.01 0.00 0.00 -0.00

s4π
+3 0.01 0.00 0.00 -0.01 -0.01 0.05 -0.00 1.00 -0.00 0.01 0.00 0.00 -0.06 0.00 0.00 0.00 0.00 0.04 0.00 0.00

s4π
+4 0.00 0.00 -0.00 0.03 -0.00 0.01 0.02 -0.00 1.00 -0.01 -0.00 0.00 -0.00 0.01 0.00 0.01 0.00 0.00 -0.03 -0.00

s4π
+5 0.00 -0.01 0.00 -0.01 -0.09 0.02 0.00 0.01 -0.01 1.00 -0.00 -0.00 -0.00 0.00 -0.03 -0.00 -0.00 0.00 0.00 0.05

T 4π
+1 -0.04 0.03 0.02 0.02 0.01 -0.02 -0.00 0.00 -0.00 -0.00 1.00 -0.17 -0.11 -0.10 -0.10 -0.42 -0.17 -0.14 -0.11 -0.10

T 4π
+2 0.03 -0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 -0.00 -0.17 1.00 -0.08 -0.07 -0.07 -0.16 -0.27 -0.09 -0.07 -0.07

T 4π
+3 0.02 0.01 -0.08 0.01 0.00 -0.01 -0.00 -0.06 -0.00 -0.00 -0.11 -0.08 1.00 -0.05 -0.05 -0.11 -0.08 -0.23 -0.05 -0.04

T 4π
+4 0.02 0.00 0.00 -0.06 -0.00 0.00 -0.00 0.00 0.01 0.00 -0.10 -0.07 -0.05 1.00 -0.04 -0.10 -0.07 -0.05 -0.16 -0.04

T 4π
+5 0.02 0.00 0.00 0.00 -0.03 0.01 0.00 0.00 0.00 -0.03 -0.10 -0.07 -0.05 -0.04 1.00 -0.09 -0.07 -0.05 -0.04 -0.15

T 4π
−1 -0.08 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.01 -0.00 -0.42 -0.16 -0.11 -0.10 -0.09 1.00 -0.16 -0.11 -0.10 -0.09

T 4π
−2 0.04 -0.05 0.01 0.01 0.00 0.00 -0.01 0.00 0.00 -0.00 -0.17 -0.27 -0.08 -0.07 -0.07 -0.16 1.00 -0.09 -0.07 -0.07

T 4π
−3 0.03 0.01 -0.03 0.01 0.00 0.01 0.00 0.04 0.00 0.00 -0.14 -0.09 -0.23 -0.05 -0.05 -0.11 -0.09 1.00 -0.05 -0.05

T 4π
−4 0.02 0.01 0.00 -0.06 -0.00 0.00 0.00 0.00 -0.03 0.00 -0.11 -0.07 -0.05 -0.16 -0.04 -0.10 -0.07 -0.05 1.00 -0.04

T 4π
−5 0.02 0.00 0.00 0.00 -0.03 0.00 -0.00 0.00 -0.00 0.05 -0.10 -0.07 -0.04 -0.04 -0.15 -0.09 -0.07 -0.05 -0.04 1.00

Equal ∆δ4π
p binning systematic correlations

c4π
+1 c4π

+2 c4π
+3 c4π

+4 c4π
+5 s4π

+1 s4π
+2 s4π

+3 s4π
+4 s4π

+5 T 4π
+1 T 4π

+2 T 4π
+3 T 4π

+4 T 4π
+5 T 4π

−1 T 4π
−2 T 4π

−3 T 4π
−4 T 4π

−5

c4π
+1 1.00 -0.01 0.00 0.01 -0.01 -0.00 -0.04 -0.00 -0.01 0.01 0.01 -0.01 0.00 0.01 -0.00 -0.02 0.00 0.00 -0.02 0.03

c4π
+2 -0.01 1.00 0.04 0.04 0.05 0.01 0.06 0.01 0.04 0.00 -0.00 0.06 0.00 -0.02 -0.07 -0.00 -0.04 0.05 0.03 -0.01

c4π
+3 0.00 0.04 1.00 0.04 0.04 0.03 -0.01 0.00 -0.00 -0.01 -0.00 0.04 -0.00 0.01 -0.01 -0.00 -0.05 0.06 -0.00 -0.01

c4π
+4 0.01 0.04 0.04 1.00 0.05 0.02 0.05 0.01 -0.00 0.01 0.02 -0.03 -0.01 -0.01 0.02 0.00 -0.03 0.04 0.00 -0.00

c4π
+5 -0.01 0.05 0.04 0.05 1.00 0.07 -0.03 0.00 -0.00 -0.02 0.03 -0.02 -0.02 -0.02 0.02 0.03 -0.05 0.00 -0.00 -0.01

s4π
+1 -0.00 0.01 0.03 0.02 0.07 1.00 0.08 -0.01 -0.02 -0.01 -0.10 0.09 0.00 -0.02 0.09 0.12 -0.06 0.02 -0.00 -0.02

s4π
+2 -0.04 0.06 -0.01 0.05 -0.03 0.08 1.00 0.04 0.03 -0.03 -0.11 -0.13 -0.01 -0.01 0.12 0.19 0.09 0.01 0.04 -0.20

s4π
+3 -0.00 0.01 0.00 0.01 0.00 -0.01 0.04 1.00 0.00 -0.01 0.00 -0.05 -0.01 -0.01 0.02 0.01 0.02 -0.00 0.04 -0.02

s4π
+4 -0.01 0.04 -0.00 -0.00 -0.00 -0.02 0.03 0.00 1.00 -0.02 -0.01 -0.03 0.02 -0.01 -0.04 0.06 -0.05 0.06 -0.01 -0.03

s4π
+5 0.01 0.00 -0.01 0.01 -0.02 -0.01 -0.03 -0.01 -0.02 1.00 0.02 0.06 0.01 -0.01 -0.04 -0.06 0.01 -0.01 -0.03 0.06

T 4π
+1 0.01 -0.00 -0.00 0.02 0.03 -0.10 -0.11 0.00 -0.01 0.02 1.00 0.01 -0.00 0.00 -0.06 -0.18 -0.03 -0.00 -0.06 0.07

T 4π
+2 -0.01 0.06 0.04 -0.03 -0.02 0.09 -0.13 -0.05 -0.03 0.06 0.01 1.00 0.03 -0.09 -0.25 -0.19 -0.14 0.12 -0.03 0.12

T 4π
+3 0.00 0.00 -0.00 -0.01 -0.02 0.00 -0.01 -0.01 0.02 0.01 -0.00 0.03 1.00 -0.01 -0.05 0.00 0.00 -0.05 -0.08 0.02

T 4π
+4 0.01 -0.02 0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 0.00 -0.09 -0.01 1.00 0.05 -0.02 -0.00 0.01 -0.05 -0.00

T 4π
+5 -0.00 -0.07 -0.01 0.02 0.02 0.09 0.12 0.02 -0.04 -0.04 -0.06 -0.25 -0.05 0.05 1.00 0.16 0.02 -0.03 0.02 -0.10

T 4π
−1 -0.02 -0.00 -0.00 0.00 0.03 0.12 0.19 0.01 0.06 -0.06 -0.18 -0.19 0.00 -0.02 0.16 1.00 0.03 -0.04 0.03 -0.16

T 4π
−2 0.00 -0.04 -0.05 -0.03 -0.05 -0.06 0.09 0.02 -0.05 0.01 -0.03 -0.14 0.00 -0.00 0.02 0.03 1.00 -0.16 0.05 -0.05

T 4π
−3 0.00 0.05 0.06 0.04 0.00 0.02 0.01 -0.00 0.06 -0.01 -0.00 0.12 -0.05 0.01 -0.03 -0.04 -0.16 1.00 0.01 0.00

T 4π
−4 -0.02 0.03 -0.00 0.00 -0.00 -0.00 0.04 0.04 -0.01 -0.03 -0.06 -0.03 -0.08 -0.05 0.02 0.03 0.05 0.01 1.00 -0.05

T 4π
−5 0.03 -0.01 -0.01 -0.00 -0.01 -0.02 -0.20 -0.02 -0.03 0.06 0.07 0.12 0.02 -0.00 -0.10 -0.16 -0.05 0.00 -0.05 1.00

Table 9. The statistical and systematic correlations between the 4π± hadronic parameters using

the equal ∆δ4πp binning scheme with N = 5.
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Variable ∆δ4π
p binning statistical correlations

c4π
+1 c4π

+2 c4π
+3 c4π

+4 c4π
+5 s4π

+1 s4π
+2 s4π

+3 s4π
+4 s4π

+5 T 4π
+1 T 4π

+2 T 4π
+3 T 4π

+4 T 4π
+5 T 4π

−1 T 4π
−2 T 4π

−3 T 4π
−4 T 4π

−5

c4π
+1 1.00 0.03 0.02 0.01 0.00 -0.05 0.02 -0.00 0.01 0.01 -0.08 0.02 0.02 0.02 0.02 -0.14 0.02 0.02 0.03 0.02

c4π
+2 0.03 1.00 0.02 0.02 0.01 -0.01 0.01 0.00 0.01 0.01 0.01 -0.05 0.02 0.02 0.01 0.01 -0.07 0.02 0.02 0.02

c4π
+3 0.02 0.02 1.00 0.02 0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.02 -0.07 0.02 0.01 0.01 0.02 -0.08 0.02 0.02

c4π
+4 0.01 0.02 0.02 1.00 0.04 0.00 -0.00 -0.00 0.02 -0.00 0.02 0.03 0.02 -0.09 0.01 0.02 0.03 0.02 -0.06 0.02

c4π
+5 0.00 0.01 0.01 0.04 1.00 0.01 -0.01 -0.00 -0.00 0.00 0.01 0.01 0.01 0.01 -0.04 0.01 0.01 0.01 0.01 -0.04

s4π
+1 -0.05 -0.01 -0.01 0.00 0.01 1.00 -0.16 0.03 -0.09 -0.08 -0.01 -0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.01 -0.00

s4π
+2 0.02 0.01 0.01 -0.00 -0.01 -0.16 1.00 -0.08 0.09 0.12 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00 0.01 0.00 0.01 0.00

s4π
+3 -0.00 0.00 0.01 -0.00 -0.00 0.03 -0.08 1.00 0.01 -0.01 0.00 -0.00 0.01 -0.00 0.00 0.00 0.00 -0.01 0.00 0.00

s4π
+4 0.01 0.01 0.01 0.02 -0.00 -0.09 0.09 0.01 1.00 0.08 0.00 0.00 0.00 -0.01 0.00 -0.00 0.00 0.00 0.00 0.01

s4π
+5 0.01 0.01 0.01 -0.00 0.00 -0.08 0.12 -0.01 0.08 1.00 0.00 0.00 0.00 -0.00 0.01 -0.00 -0.00 0.00 0.00 -0.01

T 4π
+1 -0.08 0.01 0.01 0.02 0.01 -0.01 -0.00 0.00 0.00 0.00 1.00 -0.08 -0.06 -0.09 -0.08 -0.22 -0.08 -0.07 -0.10 -0.08

T 4π
+2 0.02 -0.05 0.02 0.03 0.01 -0.00 -0.00 -0.00 0.00 0.00 -0.08 1.00 -0.09 -0.12 -0.10 -0.08 -0.27 -0.09 -0.13 -0.11

T 4π
+3 0.02 0.02 -0.07 0.02 0.01 0.00 -0.00 0.01 0.00 0.00 -0.06 -0.09 1.00 -0.09 -0.08 -0.06 -0.08 -0.22 -0.10 -0.09

T 4π
+4 0.02 0.02 0.02 -0.09 0.01 0.00 -0.01 -0.00 -0.01 -0.00 -0.09 -0.12 -0.09 1.00 -0.11 -0.09 -0.12 -0.10 -0.30 -0.12

T 4π
+5 0.02 0.01 0.01 0.01 -0.04 0.00 -0.00 0.00 0.00 0.01 -0.08 -0.10 -0.08 -0.11 1.00 -0.07 -0.10 -0.08 -0.12 -0.23

T 4π
−1 -0.14 0.01 0.01 0.02 0.01 0.01 -0.00 0.00 -0.00 -0.00 -0.22 -0.08 -0.06 -0.09 -0.07 1.00 -0.08 -0.06 -0.09 -0.08

T 4π
−2 0.02 -0.07 0.02 0.03 0.01 0.00 0.01 0.00 0.00 -0.00 -0.08 -0.27 -0.08 -0.12 -0.10 -0.08 1.00 -0.08 -0.12 -0.10

T 4π
−3 0.02 0.02 -0.08 0.02 0.01 0.00 0.00 -0.01 0.00 0.00 -0.07 -0.09 -0.22 -0.10 -0.08 -0.06 -0.08 1.00 -0.10 -0.08

T 4π
−4 0.03 0.02 0.02 -0.06 0.01 -0.01 0.01 0.00 0.00 0.00 -0.10 -0.13 -0.10 -0.30 -0.12 -0.09 -0.12 -0.10 1.00 -0.12

T 4π
−5 0.02 0.02 0.02 0.02 -0.04 -0.00 0.00 0.00 0.01 -0.01 -0.08 -0.11 -0.09 -0.12 -0.23 -0.08 -0.10 -0.08 -0.12 1.00

Variable ∆δ4π
p binning systematic correlations

c4π
+1 c4π

+2 c4π
+3 c4π

+4 c4π
+5 s4π

+1 s4π
+2 s4π

+3 s4π
+4 s4π

+5 T 4π
+1 T 4π

+2 T 4π
+3 T 4π

+4 T 4π
+5 T 4π

−1 T 4π
−2 T 4π

−3 T 4π
−4 T 4π

−5

c4π
+1 1.00 0.01 0.01 0.01 -0.02 -0.01 -0.02 0.00 -0.00 0.03 0.01 -0.00 -0.00 0.00 -0.01 -0.01 0.01 -0.01 -0.02 0.06

c4π
+2 0.01 1.00 0.00 0.01 0.01 -0.02 -0.00 0.00 0.02 0.01 0.01 0.02 0.01 -0.01 -0.02 -0.01 -0.01 0.02 0.00 0.02

c4π
+3 0.01 0.00 1.00 -0.01 -0.01 -0.00 -0.01 0.00 -0.00 0.01 0.00 0.00 0.03 0.01 -0.00 -0.01 -0.01 -0.01 -0.02 0.04

c4π
+4 0.01 0.01 -0.01 1.00 0.04 -0.00 0.02 0.00 -0.01 0.00 0.03 -0.00 -0.01 -0.02 0.00 -0.00 -0.02 0.06 0.01 -0.02

c4π
+5 -0.02 0.01 -0.01 0.04 1.00 0.05 -0.03 0.00 -0.01 -0.02 0.04 0.01 -0.01 -0.01 0.01 0.00 -0.04 0.02 0.01 -0.02

s4π
+1 -0.01 -0.02 -0.00 -0.00 0.05 1.00 -0.05 -0.02 -0.05 -0.03 -0.11 0.04 -0.00 -0.01 0.04 0.05 -0.07 0.01 -0.02 -0.01

s4π
+2 -0.02 -0.00 -0.01 0.02 -0.03 -0.05 1.00 0.00 0.03 0.02 -0.09 -0.06 -0.01 -0.00 0.02 0.04 0.09 0.02 0.04 -0.12

s4π
+3 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 1.00 0.00 0.01 0.01 -0.02 -0.02 -0.01 0.00 -0.01 0.02 -0.02 0.03 0.00

s4π
+4 -0.00 0.02 -0.00 -0.01 -0.01 -0.05 0.03 0.00 1.00 -0.02 -0.00 0.02 0.07 -0.04 -0.03 0.02 -0.05 0.09 -0.00 -0.02

s4π
+5 0.03 0.01 0.01 0.00 -0.02 -0.03 0.02 0.01 -0.02 1.00 0.03 0.03 0.07 -0.01 -0.01 -0.05 0.04 -0.07 -0.04 0.09

T 4π
+1 0.01 0.01 0.00 0.03 0.04 -0.11 -0.09 0.01 -0.00 0.03 1.00 0.04 0.01 -0.03 -0.03 -0.10 -0.05 -0.02 -0.05 0.12

T 4π
+2 -0.00 0.02 0.00 -0.00 0.01 0.04 -0.06 -0.02 0.02 0.03 0.04 1.00 0.04 -0.10 -0.05 -0.03 -0.06 0.06 -0.02 0.05

T 4π
+3 -0.00 0.01 0.03 -0.01 -0.01 -0.00 -0.01 -0.02 0.07 0.07 0.01 0.04 1.00 -0.01 -0.01 0.01 -0.01 -0.06 -0.17 0.03

T 4π
+4 0.00 -0.01 0.01 -0.02 -0.01 -0.01 -0.00 -0.01 -0.04 -0.01 -0.03 -0.10 -0.01 1.00 0.04 -0.04 -0.04 -0.02 -0.11 0.01

T 4π
+5 -0.01 -0.02 -0.00 0.00 0.01 0.04 0.02 0.00 -0.03 -0.01 -0.03 -0.05 -0.01 0.04 1.00 0.02 0.01 -0.02 -0.01 -0.04

T 4π
−1 -0.01 -0.01 -0.01 -0.00 0.00 0.05 0.04 -0.01 0.02 -0.05 -0.10 -0.03 0.01 -0.04 0.02 1.00 0.03 -0.02 0.03 -0.10

T 4π
−2 0.01 -0.01 -0.01 -0.02 -0.04 -0.07 0.09 0.02 -0.05 0.04 -0.05 -0.06 -0.01 -0.04 0.01 0.03 1.00 -0.20 0.07 -0.08

T 4π
−3 -0.01 0.02 -0.01 0.06 0.02 0.01 0.02 -0.02 0.09 -0.07 -0.02 0.06 -0.06 -0.02 -0.02 -0.02 -0.20 1.00 -0.01 -0.04

T 4π
−4 -0.02 0.00 -0.02 0.01 0.01 -0.02 0.04 0.03 -0.00 -0.04 -0.05 -0.02 -0.17 -0.11 -0.01 0.03 0.07 -0.01 1.00 -0.08

T 4π
−5 0.06 0.02 0.04 -0.02 -0.02 -0.01 -0.12 0.00 -0.02 0.09 0.12 0.05 0.03 0.01 -0.04 -0.10 -0.08 -0.04 -0.08 1.00

Table 10. The statistical and systematic correlations between the 4π± hadronic parameters using

the Variable ∆δ4πp binning scheme with N = 5.
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Alternative binning statistical correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 0.02 0.01 0.02 0.02 0.04 0.00 0.01 -0.00 0.01 -0.04 0.01 0.02 0.01 -0.00 -0.05 0.00 0.01 0.00 -0.00

c4π
+2 0.02 1.00 0.03 0.03 0.02 0.00 0.01 0.01 0.00 0.00 0.01 -0.01 0.04 0.02 0.01 0.00 -0.15 0.03 0.01 0.00

c4π
+3 0.01 0.03 1.00 0.03 0.00 -0.01 -0.00 0.01 0.01 -0.01 0.02 0.04 0.00 0.04 0.02 0.01 0.02 -0.13 0.03 0.01

c4π
+4 0.02 0.03 0.03 1.00 0.02 -0.00 -0.01 0.00 0.04 -0.01 0.01 0.01 0.03 -0.00 0.00 0.00 0.01 0.02 -0.11 0.00

c4π
+5 0.02 0.02 0.00 0.02 1.00 0.01 0.00 0.01 -0.00 -0.02 -0.00 0.00 0.01 0.00 -0.05 -0.00 0.00 0.01 0.00 -0.01

s4π
+1 0.04 0.00 -0.01 -0.00 0.01 1.00 0.01 0.00 -0.00 0.12 0.02 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 -0.00 -0.00

s4π
+2 0.00 0.01 -0.00 -0.01 0.00 0.01 1.00 -0.02 0.04 0.02 0.00 0.01 -0.00 0.00 -0.00 -0.00 -0.01 0.00 -0.00 0.00

s4π
+3 0.01 0.01 0.01 0.00 0.01 0.00 -0.02 1.00 -0.01 -0.05 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.01 0.00 0.00

s4π
+4 -0.00 0.00 0.01 0.04 -0.00 -0.00 0.04 -0.01 1.00 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 -0.01 0.00

s4π
+5 0.01 0.00 -0.01 -0.01 -0.02 0.12 0.02 -0.05 -0.00 1.00 0.00 0.00 0.00 0.00 0.01 -0.01 -0.00 -0.00 0.00 -0.02

T 4π
+1 -0.04 0.01 0.02 0.01 -0.00 0.02 0.00 0.00 0.00 0.00 1.00 -0.08 -0.13 -0.08 -0.05 -0.15 -0.06 -0.10 -0.06 -0.04

T 4π
+2 0.01 -0.01 0.04 0.01 0.00 0.00 0.01 0.00 0.00 0.00 -0.08 1.00 -0.18 -0.12 -0.08 -0.05 -0.24 -0.15 -0.09 -0.06

T 4π
+3 0.02 0.04 0.00 0.03 0.01 0.00 -0.00 0.00 0.00 0.00 -0.13 -0.18 1.00 -0.18 -0.13 -0.08 -0.13 -0.41 -0.13 -0.09

T 4π
+4 0.01 0.02 0.04 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.08 -0.12 -0.18 1.00 -0.08 -0.05 -0.08 -0.15 -0.24 -0.06

T 4π
+5 -0.00 0.01 0.02 0.00 -0.05 0.00 -0.00 0.00 0.00 0.01 -0.05 -0.08 -0.13 -0.08 1.00 -0.03 -0.06 -0.11 -0.06 -0.14

T 4π
−1 -0.05 0.00 0.01 0.00 -0.00 -0.04 -0.00 -0.00 0.00 -0.01 -0.15 -0.05 -0.08 -0.05 -0.03 1.00 -0.04 -0.07 -0.04 -0.02

T 4π
−2 0.00 -0.15 0.02 0.01 0.00 0.00 -0.01 0.00 -0.00 -0.00 -0.06 -0.24 -0.13 -0.08 -0.06 -0.04 1.00 -0.11 -0.06 -0.04

T 4π
−3 0.01 0.03 -0.13 0.02 0.01 0.00 0.00 -0.01 0.00 -0.00 -0.10 -0.15 -0.41 -0.15 -0.11 -0.07 -0.11 1.00 -0.11 -0.07

T 4π
−4 0.00 0.01 0.03 -0.11 0.00 -0.00 -0.00 0.00 -0.01 0.00 -0.06 -0.09 -0.13 -0.24 -0.06 -0.04 -0.06 -0.11 1.00 -0.04

T 4π
−5 -0.00 0.00 0.01 0.00 -0.01 -0.00 0.00 0.00 0.00 -0.02 -0.04 -0.06 -0.09 -0.06 -0.14 -0.02 -0.04 -0.07 -0.04 1.00

Alternative binning systematic correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 0.01 0.00 0.03 0.01 0.01 -0.00 -0.02 0.00 0.01 -0.02 0.00 0.01 -0.01 -0.01 -0.00 -0.01 0.02 -0.02 0.00

c4π
+2 0.01 1.00 -0.00 0.03 0.04 0.01 0.02 0.01 0.01 0.00 -0.01 0.01 -0.00 -0.01 -0.03 -0.01 -0.03 0.05 0.02 -0.01

c4π
+3 0.00 -0.00 1.00 0.00 -0.01 -0.00 -0.01 0.02 -0.01 0.01 0.01 -0.00 0.01 0.01 -0.00 -0.01 0.00 -0.01 -0.02 0.01

c4π
+4 0.03 0.03 0.00 1.00 0.03 0.01 0.03 0.04 -0.00 0.01 0.00 -0.02 0.00 0.01 0.01 -0.01 -0.02 0.04 -0.01 -0.00

c4π
+5 0.01 0.04 -0.01 0.03 1.00 0.03 -0.01 -0.01 -0.00 0.00 0.02 0.00 -0.00 -0.00 -0.00 -0.01 -0.02 0.02 0.01 -0.00

s4π
+1 0.01 0.01 -0.00 0.01 0.03 1.00 0.01 -0.02 -0.01 0.01 -0.03 0.01 0.00 0.00 0.01 -0.00 -0.01 0.00 -0.01 0.00

s4π
+2 -0.00 0.02 -0.01 0.03 -0.01 0.01 1.00 0.02 0.01 -0.00 -0.03 -0.03 0.00 0.00 0.03 0.02 0.03 -0.00 0.01 -0.03

s4π
+3 -0.02 0.01 0.02 0.04 -0.01 -0.02 0.02 1.00 -0.01 0.00 0.04 -0.06 -0.01 0.00 0.02 -0.01 0.02 -0.01 0.06 0.02

s4π
+4 0.00 0.01 -0.01 -0.00 -0.00 -0.01 0.01 -0.01 1.00 -0.01 -0.01 -0.00 0.01 -0.01 -0.01 0.00 -0.01 0.02 -0.01 -0.00

s4π
+5 0.01 0.00 0.01 0.01 0.00 0.01 -0.00 0.00 -0.01 1.00 0.00 0.02 0.01 -0.01 -0.02 -0.01 0.00 -0.02 -0.01 0.02

T 4π
+1 -0.02 -0.01 0.01 0.00 0.02 -0.03 -0.03 0.04 -0.01 0.00 1.00 0.01 -0.00 -0.01 -0.02 -0.03 0.00 -0.03 -0.01 0.02

T 4π
+2 0.00 0.01 -0.00 -0.02 0.00 0.01 -0.03 -0.06 -0.00 0.02 0.01 1.00 0.01 -0.05 -0.05 -0.01 -0.01 -0.00 -0.01 0.02

T 4π
+3 0.01 -0.00 0.01 0.00 -0.00 0.00 0.00 -0.01 0.01 0.01 -0.00 0.01 1.00 -0.01 -0.01 -0.00 0.00 -0.04 -0.04 0.01

T 4π
+4 -0.01 -0.01 0.01 0.01 -0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.05 -0.01 1.00 0.03 -0.01 -0.01 -0.00 -0.04 -0.01

T 4π
+5 -0.01 -0.03 -0.00 0.01 -0.00 0.01 0.03 0.02 -0.01 -0.02 -0.02 -0.05 -0.01 0.03 1.00 0.02 0.02 -0.04 0.01 -0.02

T 4π
−1 -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 0.02 -0.01 0.00 -0.01 -0.03 -0.01 -0.00 -0.01 0.02 1.00 0.01 -0.01 0.02 -0.02

T 4π
−2 -0.01 -0.03 0.00 -0.02 -0.02 -0.01 0.03 0.02 -0.01 0.00 0.00 -0.01 0.00 -0.01 0.02 0.01 1.00 -0.07 0.02 -0.01

T 4π
−3 0.02 0.05 -0.01 0.04 0.02 0.00 -0.00 -0.01 0.02 -0.02 -0.03 -0.00 -0.04 -0.00 -0.04 -0.01 -0.07 1.00 0.01 -0.01

T 4π
−4 -0.02 0.02 -0.02 -0.01 0.01 -0.01 0.01 0.06 -0.01 -0.01 -0.01 -0.01 -0.04 -0.04 0.01 0.02 0.02 0.01 1.00 -0.01

T 4π
−5 0.00 -0.01 0.01 -0.00 -0.00 0.00 -0.03 0.02 -0.00 0.02 0.02 0.02 0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 1.00

Table 11. The statistical and systematic correlations between the 4π± hadronic parameters using

the Alternative binning scheme with N = 5.
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Optimal binning statistical correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 0.02 0.02 0.02 0.01 0.01 -0.01 0.00 0.01 -0.00 -0.05 0.02 0.04 0.02 0.02 -0.10 0.04 0.02 0.03 0.02

c4π
+2 0.02 1.00 0.02 0.01 0.02 0.00 0.03 0.00 0.00 0.00 0.02 -0.21 0.02 0.01 0.01 0.02 0.04 0.01 0.01 0.01

c4π
+3 0.02 0.02 1.00 0.02 0.02 -0.00 0.00 -0.00 0.00 0.00 0.03 0.01 0.01 0.01 0.01 0.03 0.02 -0.15 0.01 0.00

c4π
+4 0.02 0.01 0.02 1.00 0.02 -0.00 -0.00 -0.00 0.02 -0.01 0.03 0.01 0.02 -0.13 0.01 0.03 0.02 0.01 -0.04 0.00

c4π
+5 0.01 0.02 0.02 0.02 1.00 0.01 0.01 -0.01 -0.00 0.06 0.01 0.00 0.00 -0.00 -0.05 0.01 0.01 0.00 0.00 -0.01

s4π
+1 0.01 0.00 -0.00 -0.00 0.01 1.00 0.03 -0.03 -0.01 -0.02 -0.02 -0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

s4π
+2 -0.01 0.03 0.00 -0.00 0.01 0.03 1.00 -0.06 0.01 0.04 0.00 -0.03 -0.00 -0.00 -0.00 0.00 0.02 0.00 0.00 -0.00

s4π
+3 0.00 0.00 -0.00 -0.00 -0.01 -0.03 -0.06 1.00 0.02 -0.02 0.00 -0.00 0.02 0.00 -0.00 -0.00 0.00 -0.03 0.00 0.00

s4π
+4 0.01 0.00 0.00 0.02 -0.00 -0.01 0.01 0.02 1.00 0.01 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.01 0.00 -0.02 0.01

s4π
+5 -0.00 0.00 0.00 -0.01 0.06 -0.02 0.04 -0.02 0.01 1.00 0.01 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 -0.03

T 4π
+1 -0.05 0.02 0.03 0.03 0.01 -0.02 0.00 0.00 0.00 0.01 1.00 -0.09 -0.16 -0.11 -0.12 -0.36 -0.15 -0.11 -0.13 -0.10

T 4π
+2 0.02 -0.21 0.01 0.01 0.00 -0.00 -0.03 -0.00 -0.00 0.00 -0.09 1.00 -0.07 -0.04 -0.05 -0.08 -0.22 -0.05 -0.06 -0.05

T 4π
+3 0.04 0.02 0.01 0.02 0.00 0.00 -0.00 0.02 0.00 0.00 -0.16 -0.07 1.00 -0.08 -0.09 -0.15 -0.12 -0.24 -0.11 -0.08

T 4π
+4 0.02 0.01 0.01 -0.13 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.11 -0.04 -0.08 1.00 -0.06 -0.10 -0.08 -0.06 -0.22 -0.05

T 4π
+5 0.02 0.01 0.01 0.01 -0.05 0.00 -0.00 -0.00 -0.00 -0.01 -0.12 -0.05 -0.09 -0.06 1.00 -0.11 -0.09 -0.07 -0.08 -0.16

T 4π
−1 -0.10 0.02 0.03 0.03 0.01 0.01 0.00 -0.00 0.00 0.01 -0.36 -0.08 -0.15 -0.10 -0.11 1.00 -0.14 -0.10 -0.12 -0.09

T 4π
−2 0.04 0.04 0.02 0.02 0.01 0.00 0.02 0.00 0.01 0.00 -0.15 -0.22 -0.12 -0.08 -0.09 -0.14 1.00 -0.09 -0.10 -0.07

T 4π
−3 0.02 0.01 -0.15 0.01 0.00 0.00 0.00 -0.03 0.00 0.00 -0.11 -0.05 -0.24 -0.06 -0.07 -0.10 -0.09 1.00 -0.08 -0.05

T 4π
−4 0.03 0.01 0.01 -0.04 0.00 0.00 0.00 0.00 -0.02 0.00 -0.13 -0.06 -0.11 -0.22 -0.08 -0.12 -0.10 -0.08 1.00 -0.06

T 4π
−5 0.02 0.01 0.00 0.00 -0.01 0.00 -0.00 0.00 0.01 -0.03 -0.10 -0.05 -0.08 -0.05 -0.16 -0.09 -0.07 -0.05 -0.06 1.00

Optimal binning systematic correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 -0.00 0.00 0.01 -0.01 -0.02 -0.02 0.00 -0.01 0.00 0.01 -0.00 0.00 0.01 -0.01 -0.02 0.00 -0.00 -0.03 0.02

c4π
+2 -0.00 1.00 0.02 0.02 0.01 -0.02 0.00 0.01 0.01 0.00 -0.00 0.00 0.00 -0.00 -0.02 -0.00 -0.01 0.01 0.03 -0.01

c4π
+3 0.00 0.02 1.00 0.03 0.03 0.02 0.00 -0.00 -0.00 0.00 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.02 0.02 -0.02 -0.01

c4π
+4 0.01 0.02 0.03 1.00 0.03 0.01 0.01 0.01 -0.01 0.00 0.01 -0.00 -0.01 -0.01 0.01 -0.00 -0.01 0.01 0.01 -0.01

c4π
+5 -0.01 0.01 0.03 0.03 1.00 0.07 -0.01 -0.00 -0.01 0.00 0.04 0.00 -0.00 -0.01 -0.00 -0.01 -0.02 0.00 0.01 -0.00

s4π
+1 -0.02 -0.02 0.02 0.01 0.07 1.00 0.04 -0.05 -0.04 -0.00 -0.11 0.03 0.01 -0.03 0.09 0.15 -0.04 0.01 0.01 -0.03

s4π
+2 -0.02 0.00 0.00 0.01 -0.01 0.04 1.00 -0.00 -0.00 -0.00 -0.04 -0.01 -0.00 -0.01 0.03 0.05 0.01 0.00 0.02 -0.04

s4π
+3 0.00 0.01 -0.00 0.01 -0.00 -0.05 -0.00 1.00 -0.00 0.00 0.02 -0.01 -0.01 -0.00 0.01 -0.03 0.01 -0.01 0.03 0.00

s4π
+4 -0.01 0.01 -0.00 -0.01 -0.01 -0.04 -0.00 -0.00 1.00 -0.01 -0.00 -0.00 0.02 -0.01 -0.03 0.02 -0.01 0.01 -0.00 -0.01

s4π
+5 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 -0.01 1.00 0.01 0.01 0.02 -0.00 -0.02 -0.03 0.01 -0.01 -0.04 0.01

T 4π
+1 0.01 -0.00 0.01 0.01 0.04 -0.11 -0.04 0.02 -0.00 0.01 1.00 0.01 -0.00 0.00 -0.05 -0.14 -0.02 -0.00 -0.06 0.05

T 4π
+2 -0.00 0.00 0.01 -0.00 0.00 0.03 -0.01 -0.01 -0.00 0.01 0.01 1.00 -0.00 -0.01 -0.04 -0.04 -0.01 0.02 0.00 0.02

T 4π
+3 0.00 0.00 0.01 -0.01 -0.00 0.01 -0.00 -0.01 0.02 0.02 -0.00 -0.00 1.00 0.00 -0.02 -0.01 -0.01 -0.01 -0.09 0.01

T 4π
+4 0.01 -0.00 0.01 -0.01 -0.01 -0.03 -0.01 -0.00 -0.01 -0.00 0.00 -0.01 0.00 1.00 0.02 -0.03 -0.01 0.00 -0.07 0.01

T 4π
+5 -0.01 -0.02 -0.01 0.01 -0.00 0.09 0.03 0.01 -0.03 -0.02 -0.05 -0.04 -0.02 0.02 1.00 0.09 0.00 -0.01 -0.01 -0.04

T 4π
−1 -0.02 -0.00 -0.01 -0.00 -0.01 0.15 0.05 -0.03 0.02 -0.03 -0.14 -0.04 -0.01 -0.03 0.09 1.00 0.02 -0.02 0.05 -0.10

T 4π
−2 0.00 -0.01 -0.02 -0.01 -0.02 -0.04 0.01 0.01 -0.01 0.01 -0.02 -0.01 -0.01 -0.01 0.00 0.02 1.00 -0.03 0.04 -0.02

T 4π
−3 -0.00 0.01 0.02 0.01 0.00 0.01 0.00 -0.01 0.01 -0.01 -0.00 0.02 -0.01 0.00 -0.01 -0.02 -0.03 1.00 0.02 -0.00

T 4π
−4 -0.03 0.03 -0.02 0.01 0.01 0.01 0.02 0.03 -0.00 -0.04 -0.06 0.00 -0.09 -0.07 -0.01 0.05 0.04 0.02 1.00 -0.05

T 4π
−5 0.02 -0.01 -0.01 -0.01 -0.00 -0.03 -0.04 0.00 -0.01 0.01 0.05 0.02 0.01 0.01 -0.04 -0.10 -0.02 -0.00 -0.05 1.00

Table 12. The statistical and systematic correlations between the 4π± hadronic parameters using

the Optimal binning scheme with N = 5.
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Optimal alternative binning statistical correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 0.02 0.00 0.02 0.03 0.02 0.00 -0.00 0.00 -0.01 -0.00 0.02 0.02 0.01 0.01 -0.15 0.01 0.02 0.01 0.00

c4π
+2 0.02 1.00 0.02 0.02 0.02 -0.00 -0.05 0.00 -0.00 0.01 0.01 0.05 0.02 0.01 0.00 0.00 -0.17 0.02 0.01 0.00

c4π
+3 0.00 0.02 1.00 0.02 0.01 -0.01 0.01 0.02 -0.00 0.01 0.03 0.04 -0.03 0.03 0.02 0.01 0.02 -0.12 0.03 0.02

c4π
+4 0.02 0.02 0.02 1.00 0.02 -0.00 0.01 -0.00 0.01 0.00 0.02 0.03 0.03 -0.03 0.01 0.01 0.01 0.03 -0.15 0.01

c4π
+5 0.03 0.02 0.01 0.02 1.00 0.01 0.00 -0.00 -0.00 0.06 0.00 0.01 0.01 0.01 -0.05 0.00 0.00 0.01 0.00 -0.03

s4π
+1 0.02 -0.00 -0.01 -0.00 0.01 1.00 -0.01 0.01 -0.02 -0.04 0.00 -0.00 -0.00 0.00 0.00 0.02 0.00 -0.00 -0.00 -0.01

s4π
+2 0.00 -0.05 0.01 0.01 0.00 -0.01 1.00 -0.01 0.07 -0.08 -0.00 -0.02 -0.00 0.00 0.00 0.00 0.03 0.00 -0.00 -0.00

s4π
+3 -0.00 0.00 0.02 -0.00 -0.00 0.01 -0.01 1.00 0.02 -0.00 0.00 0.00 -0.02 0.00 -0.00 -0.00 -0.00 0.01 0.00 0.00

s4π
+4 0.00 -0.00 -0.00 0.01 -0.00 -0.02 0.07 0.02 1.00 -0.03 0.00 0.00 0.00 0.02 0.00 0.00 -0.00 0.00 -0.04 0.00

s4π
+5 -0.01 0.01 0.01 0.00 0.06 -0.04 -0.08 -0.00 -0.03 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.04

T 4π
+1 -0.00 0.01 0.03 0.02 0.00 0.00 -0.00 0.00 0.00 0.00 1.00 -0.10 -0.14 -0.11 -0.08 -0.21 -0.07 -0.12 -0.08 -0.06

T 4π
+2 0.02 0.05 0.04 0.03 0.01 -0.00 -0.02 0.00 0.00 0.00 -0.10 1.00 -0.15 -0.12 -0.09 -0.07 -0.23 -0.13 -0.09 -0.06

T 4π
+3 0.02 0.02 -0.03 0.03 0.01 -0.00 -0.00 -0.02 0.00 0.00 -0.14 -0.15 1.00 -0.16 -0.12 -0.09 -0.10 -0.36 -0.12 -0.09

T 4π
+4 0.01 0.01 0.03 -0.03 0.01 0.00 0.00 0.00 0.02 0.00 -0.11 -0.12 -0.16 1.00 -0.09 -0.07 -0.08 -0.14 -0.25 -0.08

T 4π
+5 0.01 0.00 0.02 0.01 -0.05 0.00 0.00 -0.00 0.00 0.00 -0.08 -0.09 -0.12 -0.09 1.00 -0.05 -0.05 -0.11 -0.07 -0.17

T 4π
−1 -0.15 0.00 0.01 0.01 0.00 0.02 0.00 -0.00 0.00 0.00 -0.21 -0.07 -0.09 -0.07 -0.05 1.00 -0.04 -0.08 -0.05 -0.04

T 4π
−2 0.01 -0.17 0.02 0.01 0.00 0.00 0.03 -0.00 -0.00 0.00 -0.07 -0.23 -0.10 -0.08 -0.05 -0.04 1.00 -0.08 -0.06 -0.05

T 4π
−3 0.02 0.02 -0.12 0.03 0.01 -0.00 0.00 0.01 0.00 0.00 -0.12 -0.13 -0.36 -0.14 -0.11 -0.08 -0.08 1.00 -0.11 -0.09

T 4π
−4 0.01 0.01 0.03 -0.15 0.00 -0.00 -0.00 0.00 -0.04 0.00 -0.08 -0.09 -0.12 -0.25 -0.07 -0.05 -0.06 -0.11 1.00 -0.05

T 4π
−5 0.00 0.00 0.02 0.01 -0.03 -0.01 -0.00 0.00 0.00 -0.04 -0.06 -0.06 -0.09 -0.08 -0.17 -0.04 -0.05 -0.09 -0.05 1.00

Optimal alternative binning systematic correlations
c4π

+1 c4π
+2 c4π

+3 c4π
+4 c4π

+5 s4π
+1 s4π

+2 s4π
+3 s4π

+4 s4π
+5 T 4π

+1 T 4π
+2 T 4π

+3 T 4π
+4 T 4π

+5 T 4π
−1 T 4π

−2 T 4π
−3 T 4π

−4 T 4π
−5

c4π
+1 1.00 0.00 0.00 0.03 0.02 0.01 -0.01 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.01 -0.01 -0.00 -0.01 0.03 -0.01 0.00

c4π
+2 0.00 1.00 -0.00 0.01 0.01 -0.01 -0.01 -0.00 0.02 0.00 -0.01 0.03 0.00 -0.01 -0.04 -0.00 -0.02 0.06 0.01 0.01

c4π
+3 0.00 -0.00 1.00 0.00 -0.01 -0.00 -0.01 0.01 -0.01 0.00 0.02 -0.00 0.01 0.01 -0.00 -0.01 0.00 -0.02 -0.01 0.01

c4π
+4 0.03 0.01 0.00 1.00 0.05 0.00 0.01 0.02 -0.01 -0.00 0.01 -0.01 0.00 -0.01 0.00 -0.01 -0.02 0.06 -0.01 -0.01

c4π
+5 0.02 0.01 -0.01 0.05 1.00 0.03 -0.02 -0.01 -0.00 0.00 0.04 0.02 -0.00 -0.01 -0.01 -0.01 -0.02 0.02 0.01 -0.00

s4π
+1 0.01 -0.01 -0.00 0.00 0.03 1.00 0.00 -0.01 -0.01 0.00 -0.03 0.01 0.00 -0.00 0.02 0.00 -0.01 0.01 -0.00 -0.00

s4π
+2 -0.01 -0.01 -0.01 0.01 -0.02 0.00 1.00 0.02 0.00 -0.01 -0.03 -0.03 -0.00 0.01 0.03 0.01 0.03 0.00 0.01 -0.04

s4π
+3 -0.00 -0.00 0.01 0.02 -0.01 -0.01 0.02 1.00 -0.01 0.01 0.02 -0.04 -0.01 0.00 0.02 -0.00 0.02 -0.02 0.02 0.01

s4π
+4 0.00 0.02 -0.01 -0.01 -0.00 -0.01 0.00 -0.01 1.00 -0.00 -0.02 -0.00 0.02 -0.00 -0.02 0.00 -0.01 0.05 -0.01 -0.01

s4π
+5 -0.00 0.00 0.00 -0.00 0.00 0.00 -0.01 0.01 -0.00 1.00 0.01 0.01 0.01 -0.01 -0.01 -0.00 0.00 -0.02 -0.01 0.01

T 4π
+1 -0.00 -0.01 0.02 0.01 0.04 -0.03 -0.03 0.02 -0.02 0.01 1.00 0.01 -0.00 -0.01 -0.02 -0.02 0.01 -0.07 -0.01 0.04

T 4π
+2 0.00 0.03 -0.00 -0.01 0.02 0.01 -0.03 -0.04 -0.00 0.01 0.01 1.00 0.01 -0.06 -0.06 -0.01 -0.02 0.03 -0.00 0.02

T 4π
+3 0.00 0.00 0.01 0.00 -0.00 0.00 -0.00 -0.01 0.02 0.01 -0.00 0.01 1.00 -0.01 -0.01 -0.00 0.00 -0.06 -0.05 0.01

T 4π
+4 -0.01 -0.01 0.01 -0.01 -0.01 -0.00 0.01 0.00 -0.00 -0.01 -0.01 -0.06 -0.01 1.00 0.04 -0.01 -0.00 -0.02 -0.04 -0.01

T 4π
+5 -0.01 -0.04 -0.00 0.00 -0.01 0.02 0.03 0.02 -0.02 -0.01 -0.02 -0.06 -0.01 0.04 1.00 0.01 0.02 -0.06 0.00 -0.03

T 4π
−1 -0.00 -0.00 -0.01 -0.01 -0.01 0.00 0.01 -0.00 0.00 -0.00 -0.02 -0.01 -0.00 -0.01 0.01 1.00 0.01 -0.01 0.01 -0.01

T 4π
−2 -0.01 -0.02 0.00 -0.02 -0.02 -0.01 0.03 0.02 -0.01 0.00 0.01 -0.02 0.00 -0.00 0.02 0.01 1.00 -0.10 0.02 -0.01

T 4π
−3 0.03 0.06 -0.02 0.06 0.02 0.01 0.00 -0.02 0.05 -0.02 -0.07 0.03 -0.06 -0.02 -0.06 -0.01 -0.10 1.00 0.00 -0.02

T 4π
−4 -0.01 0.01 -0.01 -0.01 0.01 -0.00 0.01 0.02 -0.01 -0.01 -0.01 -0.00 -0.05 -0.04 0.00 0.01 0.02 0.00 1.00 -0.02

T 4π
−5 0.00 0.01 0.01 -0.01 -0.00 -0.00 -0.04 0.01 -0.01 0.01 0.04 0.02 0.01 -0.01 -0.03 -0.01 -0.01 -0.02 -0.02 1.00

Table 13. The statistical and systematic correlations between the 4π± hadronic parameters using

the Optimal alternative binning scheme with N = 5.
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Filename Description

cisi.pdf Figure of c4πi and s4πi measurements compared to the model predictions.

kikbi.pdf Figure of T 4π
i and T̄ 4π

i measurements compared to the model predictions.

results.txt The central values, statistical uncertainties, and systematic uncertainties for

the measured hadronic parameters.

statcor.txt The statistical correlations between the measured hadronic parameters.

systcor.txt The systematic correlations between the measured hadronic parameters.

stat.root The central values, statistical uncertainties, and statistical correlations of the

measured hadronic parameters in Root format. This can be loaded with the

Root macro loadresults.C.

syst.root The central values, systematic uncertainties, and systematic correlations of the

measured hadronic parameters in Root format. This can be loaded with the

Root macro loadresults.C.

statsyst.root The central values, combined statistical and systematic uncertainties, and

combined statistical and systematic correlations of the measured hadronic

parameters in Root format. This can be loaded with the Root macro

loadresults.C.

hypbinning.root The hyper-binning scheme in Root format. Further description of how to use

this file is described in appendix C.2.

hypbinning.zip A compressed directory containing the hyper-binning scheme in a text file.

Further description of how to use this file is described in appendix C.2.

benchmark.txt The four-vectors associated to 100 phase space points, and their associated bin

numbers. This can be used to check that the phase space binning has been

correctly implemented.

modpred.txt The central values and uncertainties of the hadronic parameter model predic-

tions.

modpredcor.txt The correlations between the uncertainties of the hadronic parameter model

predictions.

modpred.root The central values, uncertainties, and correlations of the hadronic parameter

model predictions in Root format. This can be loaded with the Root macro

loadresults.C.

modcompat.txt The compatibility between the measured hadronic parameters and the model

predictions.

Table 14. List of files in the supplementary material that are used to describe the measured

hadronic parameters for a particular phase space binning scheme.

C Supplementary material

C.1 List of files

The supplementary material can be found at ref. [47]. The directory structure is organised

so that each phase space binning scheme has its own directory. Each of these directories

has the same file structure inside, which is described in table 14. Additionally there is a

Root macro loadresults.C, and a collection of C++ functions in usehypbinning.cpp

that can be used to load the supplementary material files that are in Root format. All

results are additionally given in text format for greater flexibility.
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C.2 Hyper-binning

For flexibility, the hyper-binning schemes are given in three different formats in the supple-

mentary material, which will be discussed in this section. All binning schemes have been

produced with a D0 mass of 1864.84 MeV, and a π± mass of 139.57 MeV; this defines the

boundaries of the m+ and m− variables.

It is recommended to use the Root format (hypbinning.root), which can be loaded

using the HyperPlot C++ package located at,

http://samharnew.github.io/HyperPlot/index.html,

using the HyperHistogram class. An example C++ function is given in usehypbinning.cpp

that can be compiled with the HyperPlot package to load any of the hyper-binning

schemes.

The compressed directory hypbinning.zip contains two text files; hypbinning.txt

and hypbinningwlinks.txt. Implementing the hyper-binning using the information in

hypbinning.txt is significantly easier than hypbinningwlinks.txt, but the resulting code

will be up to 10, 000 times slower (although this may still be fast enough for small event

numbers). Using the previously discussed Root format will automatically include this

speed benefit.

The hypbinning.txt file lists the low and high corner of each hypervolume in the bin-

ning scheme with its associated bin content. The bin content gives the phase space bin num-

ber ∈ {−N , . . . ,−1,+1, . . . ,+N}. The coordinates are given in the order {m′+, m′−, cos θ+,

cos θ−, φ}; where invariant masses are given in units of MeV, and φ is given in radians.

To describe the format of the hypbinningwlinks.txt file, it is useful to revisit how

the binning algorithm works. At iteration 0, there is one hypervolume; at iteration 1,

this gets split to give two hypervolumes; at iteration 2 each of these gets split to give 4

hypervolumes etc. Rather than discard the hypervolumes from iteration 0 and iteration

1, these can be kept to speed up the binning process later. The final set of hypervolumes

that come out of the binning algorithm are known as ‘bins’ (B). Other hypervolumes that

were used during the binning algorithm (but were then further divided) are known simply

as ‘volumes’ (V). The first volume from iteration 0 is known as the primary volume (PV).

A simple example of a 2 dimensional binning scheme, iteration-by-iteration, is given in

figure 14, with bins and volumes labelled. Each volume and bin has a unique identifier

called a ‘volume number’. Every volume has links to two volume numbers, whereas each

bin has a bin content (which gives the phase space bin number). The simple binning

scheme in figure 14 is described by the information in figure 15, which has the same format

as hypbinningwlinks.txt. For comparison, the same binning scheme is described in the

same format as hypbinning.txt in figure 16.

The general use case of a binning scheme is to find the bin (and its associated bin

content), that an arbitrary phase space point, p, falls into. Using the information in

hypbinning.txt requires looping over every bin, and seeing which one contains p; on

average this will take ∼ N/2 operations, where N is the number of bins. To use the

information in hypbinningwlinks.txt, one would first check if p is within the PV; if it is,
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Iteraon	0	 Iteraon	1	 Iteraon	2	

0	

1	

2	

3	

4	

PV	

V	

B	

B	

B	

5	

-3	

-1	

Volume	

Idenfier	

Volume	

Number	

Bin	Content	

PV	=	Primary	Volume	

		V	=	Volume	

		B	=	Bin	

Figure 14. Simple example that demonstrates how the hyper-binning algorithm works. At iteration

0 there is a single primary volume (PV) with volume number 0. At iteration 1, the primary volume

is split into two volumes with volume numbers 1 and 2. Volume number 1 is not split any further,

so it is labelled as a ‘bin’ (B) rather than a ‘volume’ (V) — the content of this bin is -3. In iteration

2, volume number 2 is further divided into volume numbers 3 and 4; since this is the final iteration,

these volumes are labelled as bins, which have bin contents of 5 and -1 respectively.

Vol # Vol ID Low Corner High Corner Vol Links/Bin Cont

------------------------------------------------------------------

0 PV ( 0.0, 0.0 ) ( 1.0, 1.0 ) 1 2

1 B ( 0.0, 0.5 ) ( 1.0, 1.0 ) -3

2 V ( 0.0, 0.0 ) ( 1.0, 0.5 ) 3 4

3 B ( 0.0, 0.0 ) ( 0.5, 0.5 ) 5

4 B ( 0.5, 0.0 ) ( 1.0, 0.5 ) -1

Figure 15. Representation of the hyper-binning in figure 14 using the same format as

hypbinningwlinks.txt.

then one would see which of the linked volumes p falls into etc. On average this will take

∼ log2N operations.

C.3 Binning schemes

As described in section 4, the hyper-binning schemes are only defined in the region with

corners {mmin,mmin, 0, 0, 0} and {mmax,mmax,+1,+1,+π}, which is 1/8 of the entire phase
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Low Corner High Corner Bin Cont

-------------------------------------------

( 0.0, 0.5 ) ( 1.0, 1.0 ) -3

( 0.0, 0.0 ) ( 0.5, 0.5 ) 5

( 0.5, 0.0 ) ( 1.0, 0.5 ) -1

Figure 16. Representation of the hyper-binning in figure 14 using the same format as

hypbinning.txt.

space. The following algorithm can be used to determine the phase space bin of any given

phase space point:

• Calculate the variables {m+,m−, cos θ+,cos θ−, φ} using the formalism in appendix A.

• Use the transformation in eq. (4.2) to determine m′+ and m′−.

• Is cos θ+ < 0? If yes, cos θ+ → − cos θ+ and φ→ φ− π.

• Is cos θ− < 0? If yes, cos θ− → − cos θ− and φ→ φ− π.

• Is φ < 0? If no, cflip = 1. If yes, cos θ+ ↔ cos θ− and m′+ ↔ m′−, cflip = −1.

• After the above steps it is guaranteed that the transformed phase space point is in the

region with corners {mmin,mmin, 0, 0, 0} and {mmax,mmax,+1,+1,+π} (neglecting

abitrary 2π rotations).

• Use the hyper-binning scheme to find the bin number, i, of the transformed point

{m′+,m′−, cos θ+, cos θ−, φ} (see section C.2).

• The bin number of the original point is cflip × i.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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