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ABSTRACT 

Ultraviolet (UV) light occupies the spectral range of wavelengths slightly shorter than those 

visible to humans.  Due to its shorter wavelength, it is more energetic (and potentially more 

photodamaging) than ‘visible light’, and it is scattered more efficiently in air and water.  Until 

1990, only a few animals were recognized as being sensitive to UV light, but we now know that 

a great diversity, possibly even the majority, of animal species can visually detect and respond to 

it.  Here, we discuss the history of research on biological UV photosensitivity and review current 

major research trends in this field.  Some animals use their UV photoreceptors to control simple, 

innate behaviors, but most incorporate their UV receptors into their general sense of vision.  

They not only detect UV light but recognize it as a separate color in light fields, on natural 

objects or living organisms, or in signals displayed by conspecifics.  UV visual pigments are 

based on opsins, the same family of proteins that are used to detect light in conventional 

photoreceptors.  Despite some interesting exceptions, most animal species have a single 

photoreceptor class devoted to the UV.  UV’s roles in vision are manifold, from guiding 

navigation and orientation behavior, to detecting food and potential predators, to fostering high-

level tasks such as mate assessment and intraspecific communication. Our current understanding 

of UV vision is restricted almost entirely to only two phyla: arthropods and chordates 

(specifically, vertebrates), so there is much comparative work to be done.   
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GLOSSARY: 

α-Band:  the spectral region containing the main absorbance peak (λmax) of a visual pigment, 

responsible for most of its overall sensitivity. 

β-Band:  a secondary absorbance peak placed at shorter wavelengths than the α-band that can 

also contribute to a visual pigment’s spectral sensitivity.  The β-band lies within the UV 

spectral range. 

Chromatic aberration:   an effect caused by the fact that the focal lengths of most lenses vary 

with wavelength.  Thus, light of only one wavelength is focused sharply on the retina.  

Generally, the shorter the wavelength, the shorter the focal length of a lens. 

Long-pass filter:  an optical filter that transmits longer wavelengths and blocks shorter ones.  

When placed in front of a photoreceptor cell, it generally narrows the cell’s spectral 

sensitivity and shifts its maximum to longer wavelengths.  

Polarized light:  as used here, light in which the electric vector lies within a plane.  In air or 

water, it is usually produced by scattering of unpolarized light (with random electric 

vectors). 

Rayleigh scattering:   a scattering process caused by particles much smaller than the wavelength 

of light.  It is most effective at short wavelengths. 

Refractive index:  a measure of the ability of a material to refract light.  Materials with higher 

refractive indices refract light to greater degrees.  Refractive index varies with 

wavelength for lenses, causing chromatic aberration. 
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Short-pass filter:  an optical filter that transmits shorter wavelengths and blocks longer ones.  

When placed in front of a photoreceptor cell, it generally narrows the cell’s spectral 

sensitivity and shifts its maximum to shorter wavelengths.  

Spectral tuning:  factors that affect the spectral absorbance of a visual pigment or the spectral 

sensitivity of a photoreceptor cell.  Molecular factors of spectral tuning generally involve 

changes in the amino acids near the chromophore of a visual pigment.  Other factors 

include various kinds of optical filtering, including long-pass and short-pass filtering. 

Tapetum:  also called the “tapetum lucidum”,  a layer behind the retina which reflects any light 

that has not been absorbed back through the photoreceptors, increasing sensitivity.  

Ultraviolet light:  here, the region of the electromagnetic spectrum that has wavelengths 

between 100 and 400 nm.   See also UVA, UVB, and UVC. 

UVA:  ultraviolet light with wavelengths between 315 and 400 nm. 

UVB:  ultraviolet light with wavelengths between 280 and 315 nm. 

UVC:  ultraviolet light with wavelengths between 100 and 280 nm. 

Visible light:  sometimes called “human-visible” light.  Refers to the wavelength range that is 

perceptible to most people, generally taken to be the range from 400 to 700 nm. 
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Introduction 

In 1881, Sir John Lubbock, 1st Baron Avebury, published a fascinating paper concerning 

his “Observations on Ants, Bees, and Wasps”.  In it, he disputed the position of the eminent 

French zoologist, Paul Bert, who had claimed on the basis of limited experiments with Daphnia 

that all animals perceive the same spectral range (and thus the same colors) as humans.  Sir John, 

a neighbor and lifelong friend of Charles Darwin and an early proponent of evolutionary theory, 

noted that “Such a generalization would seem to rest on but a slight foundation”, and went on to 

show in a series of elegant and rather charming publications that both ants and Daphnia are 

indeed capable of seeing wavelengths well below those at the violet end of the spectrum - they 

perceive ultraviolet (UV) light (Lubbock, 1881, 1882).  To do this, Lubbock took advantage of a 

natural behavior of disturbed ants.  He placed them and their larvae on a table top at a particular 

location in a spectrum of light thrown onto the experimental space by a glass prism.  Ants will 

quickly scurry to move their larvae to a dark place when they are exposed like this, and Sir John 

found that the adult ants were particularly anxious to remove the larvae from the apparently dark 

region well beyond the violet end of the spread-out spectrum.  They even preferred to move the 

larvae to the red spectral region instead of this beyond-violet location.  From these results, and 

others on the phototaxis of Daphnia, he correctly concluded that these animals perceive what he 

called “ultra-violet rays” of light and thus that their visual worlds differ from our own. 

Lubbock’s work was followed nearly a half century later by that of Alfred Kühn, who 

found that bees can be trained to search for sugar water in spectral lights as short as 313 nm 

(Kühn, 1924, 1927).  At about the same time, two other Germans, Schiemenz (1924) and Wolff 

(1925) demonstrated that minnows learn to discriminate wavelengths down to 360 nm or so, well 

into the UV.  None of these early vision scientists worked with terrestrial vertebrate animals, and 
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somehow the misconception persisted until recently that UV sensitivity is rare among animals, 

and probably absent in terrestrial vertebrates.  A number of arguments were advanced in support 

of this conjecture, including the traditional claim that because humans couldn’t see UV, it 

probably was unimportant for most other animals.  Besides this, it was noted that UV light is 

much more energetic than longer-wavelength radiation and known to cause cellular damage, so it 

was expected to be destructive to retinal tissues.  Chromatic aberration was another reason 

advanced to discount UV vision; this it would cause biological optical systems to focus short-

wavelength light far in front of the retinal surface.  Furthermore, until quite recently it was 

assumed that natural waters quickly extinguish UV wavelengths, in which case aquatic animals 

would achieve no benefit from UV sensitivity.   Finally, it was argued that the β-bands 

(sometimes called the cis-absorption bands or cis-peaks) of visual pigments are always placed at 

UV wavelengths anyway, so UV photosensitivity is available as a byproduct of visible-light 

sensitivity and would in any case be corrupted by visible light, making UV photosensitivity  

nearly worthless. 

Evolution was not aware of all these philosophical constraints.  Finally, a half century 

after Kühn’s work with bees, the first terrestrial vertebrate was demonstrated to have excellent 

UV vision when Goldsmith (1981) found that three different hummingbird species can 

discriminate UV targets from all other wavelengths.  This was quickly followed by the discovery 

of dedicated UV photoreceptor classes in fishes (Avery et al., 1983; Hárosi and Hashimoto, 

1983), birds (Chen et al., 1984), reptiles (Arnold and Neumeyer, 1987) and (after long denial) 

mammals (Jacobs et al., 1991).  Since then, work on the dedicated UV visual receptors and 

visual pigments of vertebrates (and of invertebrates) has accelerated nearly exponentially.  For a 

history of early research into UVt vision in vertebrates, see Jacobs (1992). 



7 
 

UV photosensitivity and UV vision 

Before going further, we need to define what part of the electromagnetic spectrum falls 

into the UV.  The term ‘ultraviolet’, literally ‘beyond violet’, originally referred to light at 

wavelengths shorter than those perceptible to humans. (The human spectral range is often called 

‘human-visible light’; here we use the less awkward term ‘visible light’.)  Since the actual cutoff 

wavelength between violet and ultraviolet would varies among individuals, for reasons about to 

be discussed, the term is now defined more strictly as light between the wavelengths of 100 and 

400 nm.  Most of this range is not naturally present at the earth’s surface, due to atmospheric 

absorption.  By convention, the UV spectrum is divided into three regions: UVA extends from 

315 to 400 nm, UVB between 280 and 315 nm, and UVC below 280 nm down to 100 nm.  UVC 

is removed by the atmosphere, but a small amount of UVB and much more UVA passes through 

the atmosphere to the earth’s surface (Fig. 1). The UVB range is significant for its biological 

effects resulting from its absorption by proteins and nucleic acids, but animal UV-light visual 

sensitivity is almost entirely restricted to the UVA.  Although it is true, as noted above, that most 

visual pigments (including those of human retinas) have significant photosensitivity in the UV, 

we and many other mammals have UV-absorbing pigments in the lens that entirely block the 

passage of this spectral range to the retina (Douglas and Cronin, 2016).  However, the density of 

these lens pigments varies with age, and people are actually sensitive to wavelengths extending 

down to at least 380 nm when young.  Aphakic individuals, who have had their lenses removed, 

are very sensitive to UV light, nearly as far as the UVB, which compromises their color vision.  

This is why artificial intraocular lenses used today strongly absorb UV, much like a natural lens 

does. 
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The other distinction that will be important throughout this Review is between ultraviolet 

photosensitivity and ultraviolet vision.  UV photosensitivity simply refers to the ability to detect 

UV light; as used in this paper, it means that the retina contains photoreceptor cells that absorb 

UV light and can transduce it to a cellular signal.  UV photosensitivity is required for UV vision, 

but the latter term means that an animal can visualize UV patterns and recognize UV-containing 

images of objects, light fields, and signals.  The distinction is important, because many animals 

respond strongly to UV stimuli, but the response is stereotyped and is different from the same 

animal’s response to longer wavelengths (most animals with such responses avoid UV or move 

away from a UV source, evidently interpreting such a stimulus as noxious or dangerous).  

Menzel discusses these responses at length, calling them “wavelength-specific behaviors” as 

opposed to true color vision (Menzel, 1979).  When UV is included in the color-vision system of 

an animal, it is discriminable from other colors and does not automatically elicit a specific 

response.  Also, as the term implies, color vision is always associated with visual imaging and 

object recognition. Many animals with UV photosensitivity, particularly invertebrates, have both 

wavelength-specific behaviors and color vision (Menzel, 1979; see also Kelber and Osorio, 

2010). 

How is UV light detected?   UV visual pigments, opsins, and receptors 

The phototransduction cascade 

Animals detect light through a phototransduction cascade mediated by visual pigments 

sequestered in the membranes of photoreceptor cells.  Visual pigments are formed by the Schiff 

base covalent linkage of an opsin G-protein coupled receptor with a vitamin A-derived 

chromophore.  The chromophore, typically 11-cis-retinal in the inactive state, is nested in a 
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binding pocket within the seven transmembrane α-helices of the opsin.  Upon photon absorption, 

the chromophore isomerizes, causing a conformational change in the opsin protein that initiates a 

biochemical cascade culminating in a downstream cellular signal.  On its own, the retinal 

chromophore maximally absorbs photons with wavelengths near 380 nm.  However, by varying 

the amino acid residues of the opsin, especially those residues within the chromophore-binding 

pocket, interactions between the amino acid side chains and the chromophore can stabilize and 

spectrally ‘tune’ the maximum absorption of the visual pigment within a range from about 330 to 

570 nm.  Because free retinal absorbs light at ~380 nm, the earliest opsin-based visual pigments 

may well have been UV- sensitive.  

UV visual pigments  

The first visual pigment responsible for UV sensitivity was not directly characterized 

until nearly 50 years ago, in an owlfly (Hamdorf et al., 1971), and a Drosophila UV opsin was 

fully sequenced a few years later (Zuker et al., 1987).   The first vertebrate UV visual pigment 

was identified in a fish, the dace (Hárosi and Hashimoto, 1983); subsequently UV opsins were 

sequenced from goldfish and mice (Chiu et al., 1994; Johnson et al., 1993).   UV opsin sequences 

are now known for many species of animals, with those involved in chordate and arthropod 

visual systems being the best surveyed.  Of the four major clades of metazoan opsins established 

by Porter et al. (2012), three are known to contain UV opsins: C-type, R-type and Group 4 opsins 

(Fig. 2A,B).  Within vertebrate C-type opsins, the short-wavelength-sensitive (SWS1) clade and 

parapinopsins have been found to include UV-sensitive visual pigments.  The SWS1 clade 

contains all known vertebrate UV opsins implicated in visual tasks, whereas the parapinopsins, 

first identified in lamprey, exist in pineal-associated photoreceptive organs of non-mammalian 

vertebrates (Koyanagi et al., 2004).  These organs are thought to have diverse roles, including 
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melatonin regulation, luminance detection, and even chromatic discrimination between UV and 

longer wavelengths (Koyanagi et al., 2015).  Among invertebrates, investigations of UV opsins 

involved in vision have thus far been restricted to the arthropods.  Their R-type opsins include a 

SWS opsin clade responsible for all confirmed arthropod UV visual pigments (Henze and 

Oakley, 2015).  Sister to the arthropod SWS clade, a poorly-understood “UV7” opsin clade, 

homologous to Drosophila Rh7, contains some opsin sequences that suggest the possibility of 

UV tuning.  Finally, the enigmatic neuropsins (NEUR in Fig. 2A) from the Group 4 opsin clade 

form UV-sensitive visual pigments and are expressed in a variety of vertebrate neuronal tissues, 

including retinal ganglion cells and the pineal body (Buhr et al., 2015; Yamashita et al., 2010).  

The function of neuropsin is poorly understood, but it appears to play a role in circadian 

entrainment in some cases.  There may well be additional types of UV opsins in existence, 

especially among non-arthropod invertebrate taxa.  For instance, the giant clam, Tridacna, has 

UV-sensitive hyperpolarizing photoreceptors on its mantle (Wilkens, 1984; Fig. 3F). Although 

the actual opsin is not known in Tridacna, it may be homologous to scallop Go opsin (which also 

produces hyperpolarizing responses), placing it in Porter et al.’s (2012) Group 4 peropsin clade 

(PER in Fig. 2A).  As noted above, functional studies of UV visual pigments are currently quite 

limited outside of the vertebrates and arthropods.      

Spectral tuning of UV opsins 

Upon examining the evolution and spectral tuning of various UV opsins, some interesting 

trends emerge.  A unifying feature of UV opsins appears to be the conservation or coevolution of 

primary spectral tuning sites responsible for shifting the maximum absorption of the visual 

pigment maximum absorption between UV and violet or blue wavelengths (Yokoyama et al., 

2016).  Whereas longer-wavelength opsins tend to rely on smaller, additive spectral shifts from 
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multiple tuning sites, UV/blue pigments need alter only one or a few tuning sites to shift their 

wavelengths of maximum absorption.  Amazingly, often only a single residue is involved (Shi et 

al., 2001, Takahashi and Ebrey, 2003; Yokoyama, 2002).   Indeed, spectral shifts of over 50 nm 

can be achieved by the mutation of a single residue in many vertebrate SWS1 opsins (Cowing et 

al., 2002; Fasick et al., 2002; Wilkie et al., 2000), arthropod SWS opsins (Salcedo et al., 2003), 

and probably parapinopsins (Koyanagi et al., 2015).  Furthermore, this dominant tuning site 

occurs at roughly the same location in transmembrane helix II across disparate opsin clades, at 

the residues homologous to position 86 or 90 in bovine rhodopsin (Fig. 2B).  Positively charged 

residues in the binding pocket at these positions deprotonate the Schiff base (Babu et al., 2001; 

Dukkipati et al., 2002; Dukkipati et al., 2001), returning the visual pigment absorption maximum 

to near that of the native chromophore and explaining the large tuning shifts inherent in UV/blue 

opsins.  Interestingly, although most chordates primarily use SWS1 position 86 for UV tuning, 

birds instead use SWS1 position 90, which has independently evolved as the UV tuning site 

employed by arthropod SWS opsins (Hunt et al., 2004; Salcedo et al., 2003).  

In both vertebrate SWS1 and arthropod SWS opsin clades, the ancestral form was 

probably a UV opsin (Fig. 2C) (Shi and Yokoyama, 2003; Henze and Oakley, 2015).  Among 

vertebrates, SWS1 opsin is present in all major extant groups except elasmobranchs, including 

early-branching lampreys where it forms a UV visual pigment (Collin et al., 2003; Collin et al., 

2009).  In teleosts and lungfish, SWS1 seems to form only UV visual pigments (Bailes et al., 

2007; Hart et al., 2008); the single known exception is the deep-sea scabbardfish in which the 

position 86 tuning site is deleted, resulting in a violet visual pigment (Tada et al., 2009) (Fig. 

3E).  Tetrapod SWS1 pigments, however, apparently shifted from UV into violet or blue 

sensitivity independently on multiple occasions in each lineage (Yokoyama et al., 2016; Hunt 
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and Peichl, 2014).  The ancestral amphibian, reptile, and mammal presumably all expressed a 

UV SWS1, and modern reptiles have no reported violet SWS1 opsins (de Lanuza and Font, 

2014).  Surprisingly, the common reptilian ancestor of birds probably did have a violet SWS1, 

but some avian groups re-evolved UV sensitivity, often through the alternate tuning site at 

position 90 (Hunt et al., 2004; Ödeen and Håstad, 2013).  It should be noted that, with the 

exception of  teleosts, vertebrates typically only possess one copy of SWS1, making the tuning 

of this opsin sequence critical in spectrally-mediated visual tasks.  Arthropods, by contrast, often 

express multiple SWS opsins, and the ancestral arthropod SWS opsin also likely formed a UV 

visual pigment (Kashiyama et al., 2009; Koyanagi et al., 2008; Henze and Oakley, 2015).  

Chelicerate and crustacean SWS opsins always seem to form UV visual pigments, but in insects 

one duplicated SWS clade has become blue- or violet-absorbing primarily by mutation of tuning 

site 90.  This is perhaps in compensation for the previous loss of middle-wavelength-sensitive 

(MWS) opsins in insects (Henze and Oakley, 2015; Bok, 2013).  

Although most animals with UV sensitivity possess only a single UV receptor type 

incorporated into a tri- or tetrachromatic color visual system, there are some notable exceptions.  

Drosophila expresses two distinct UV visual pigments with absorption maxima at 345 and 375 

nm (Feiler et al., 1992).  The situation in dipterans is further complicated by the frequent 

presence of a sensitizing pigment in the photoreceptor membranes that absorbs light strongly in 

the UV and transfers that energy to the visual pigment, adding a second UV sensitivity peak to 

longer wavelength visual pigments or augmenting the sensitivity of UV visual pigments (Hardie 

and Kirschfeld, 1983; Kirschfeld et al., 1977) (Fig. 3K).  The significance of multiple UV 

receptors in flies is unknown.   
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Additionally, though the purpose of UV filtering pigments in the lenses or ocular media 

of eyes is often to attenuate UV light falling on the retina, there are a few notable cases of 

spectral tuning and even the production of multiple receptor sensitivity types within the UV 

range by filtering.  In a rare case of short-pass optical filtering, at least one species of thrips (an 

insect) has a UV-absorbing pigment in certain facets of its compound eyes that shifts the 

sensitivity maximum of a probable 360-nm visual pigment down to below 330 nm (Mazza et al., 

2010) (Fig. 3J).  However, the true champions of spectral expansion and photoreceptor tuning in 

the UV (and throughout the entire visible spectrum for that matter) are the mantis shrimps.  

Many of these pugnacious crustaceans express two SWS visual pigments in their R8 

photoreceptors, one peaking at 383 nm and the other at 334 nm (Bok et al., 2014; Cronin et al., 

1994).  This is certainly unusual, and yet they go much further:  by expressing these two visual 

pigments in conjunction with four different short- or long-pass UV-specific filtering pigments, 

stomatopods expand their UV photoreceptor arsenal to at least five distinct, finely-tuned 

photoreceptor types with sensitivity maxima distributed from 310 nm to 390 nm (Bok et al., 

2014; Bok et al., 2015; Marshall and Oberwinkler, 1999) (Fig. 3L).  Furthermore, one of these 

photoreceptor types is also sensitive to the polarization of UV light (Kleinlogel and Marshall, 

2009).  The UV filtering pigments are mycosporine-like amino acids, used by other animals as 

sunscreens or ocular filters to remove UV light, not to shape its spectrum (Bok et al., 2014). 

Challenges associated with ultraviolet photosensitivity and ultraviolet vision 

The problem of chromatic aberration  

 Chromatic aberration arises from a property that essentially all transparent materials 

(such as those used in biological optics) possess – their refractive index decreases with 

wavelength.  Consequently, short-wavelength images are focused closer to a lens than longer-
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wavelength ones.  Because UV has unusually short wavelengths, its focal plane lies well in front 

of those of visible wavelengths, and the overall effect is to blur the image and decrease its 

contrast.  The effect of chromatic aberration increases with eye size, so one might expect only 

animals with small eyes to tolerate it and thus to be UV-sensitive.  This is generally true, but as 

we show here, the exceptions are numerous.  

Management of chromatic aberration in invertebrates  

Given the optics of chromatic aberration, one possible way to manage it is to place UV 

photoreceptors closer to the lens than longer-wavelength classes.  Invertebrates are generally 

small animals, and those that have compound eyes are essentially immune to the effects of 

chromatic aberration because the entire length of the photoreceptor acts as a single light guide, 

and resolution depends only on the separation of independent units.  Nevertheless, the UV 

receptors are almost always found closer to the lens than other receptor types. Here, however, the 

reason is to boost their sensitivity, not to cope with aberrations.  Because all visual pigments 

absorb fairly well in the UV, placing UV receptors deeper in the retina would put them at the 

mercy of the overlying receptors, greatly diminishing number of the UV photons that actually 

reach them. 

Still, there are invertebrates with multiple spectral receptor types and single-lens optics.  

Where these species have been carefully described, they generally do manage chromatic 

aberration by layering UV receptor classes at the top of the retina (and also the longest-

wavelength receptors in the bottom layers).  Jumping spiders have large-lensed principal eyes, 

and their retinal tiers are nicely spaced to correct the chromatic aberration of the lens; the UV 

receptors are on top and the green receptors are lower – both at the correct focal plane for light to 
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which they most strongly respond (Blest et al., 1981).  As an aside, jumping spiders use focal 

plane changes to judge distance, but this apparently involves only green-sensitive receptors, not 

the UV system (Nagata et al., 2012).  Of the relatively small number of other single-lensed, 

imaging invertebrate eyes that have been well characterized, only those of larvae of the diving 

beetle Thermonectes marmoratus definitely contain UV photoreceptors.  Here, however, the UV 

receptors lie deeper in the retina than the middle-wavelength class, where they would be both 

shielded by the overlying retina and well behind the proper focal plane (Maksimovic et al., 

2009).  This counterintuitive arrangement has yet to be explained. 

Management of chromatic aberration in vertebrates 

Vertebrates have simple eyes, nearly always large ones.  Consequently, many species 

with UV photoreceptors potentially face chromatic aberration difficulties.  In aquatic species, 

UV photosensitivity is mainly correlated with habitat, not with eye size. The largest fish eyes 

occur in high-speed predators such as tuna, swordfish, or other billfishes; because these hunt 

away from the surface of the sea the UV flux they experience is not strong, and they tend to be 

dichromats with blue and green receptor types.  The lenses of most billfishes, in fact, block the 

entry of UV light into the eye (Fritsches et al., 2000).  Amphibians tend to be small animals with 

rather poor spatial resolution, so they need not bother with correcting for chromatic issues. 

Most terrestrial animals, however, live in a world drenched with UV photons.  If they 

have large eyes, they must face the issues caused by chromatic defocus.  Birds, as mentioned 

already, have two types of SWS1 cones: UV-sensitive (UVS) or violet-sensitive (VS).  The 

corresponding opsins vary at a single critical amino acid residue (Wilkie et al., 2000; Yokoyama 

et al., 2000; Carvalho et al., 2007).  This makes it relatively easy to categorize a given species as 
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UVS or VS using genetic approaches.  It turns out that the evolution of avian UV sensitivity is 

complex and chaotic, and there is no clear pattern to be discerned (Ödeen et al., 2011; Ödeen and 

Håstad, 2013). Nevertheless, the largest birds, including cranes and ratites (ostrich and emu) are 

VS, consistent with their very large eyes (Wright and Bowmaker, 2001; Ödeen and Håstad, 

2013; Porter et al., 2014).  A potential solution to the chromatic aberration challenge that UV 

sensitivity imposes is the use of multifocal lenses in many avian species (Lind et al., 2008).  

Such lenses have the ability to focus both short- and medium-wavelength images simultaneously. 

Another solution is to remove UV light by filtering it out.   A comprehensive study of ocular 

media among birds did show decreasing UV transmittance with increasing eye size, a finding 

consistent with controlling chromatic aberration at very short wavelengths (Lind et al., 2014).  

This same study found that raptors have among the least UV-transmissive eyes of all birds, 

which strongly suggests that their eye designs provide very high acuity without the 

contamination of out-of-focus light on the retina. 

Turning to terrestrial mammals, we already know from earlier sections that human lenses 

block UV entry very effectively.  What about other species?  All mammals known to have a 

designated UV receptor class (based, as in birds, on an SWS1 opsin) are small and/or shortlived 

– either rodents (mice, rats, gophers, gerbils; Jacobs et al. 1991) (Fig. 3A) or microbats (Feller et 

al., 2009; Müller et al., 2009).  The microbat Glossophaga soricina is an exception which  lacks 

a UV cone class but has UV-transmissive optics; it derives UV sensitivity from the β–band of its 

green-sensitive visual pigment (Winter et al., 2003). Until recently, it was assumed that larger 

mammals were generally similar to humans, using yellow lenses to block UV.  Marine mammals 

lack even blue-sensitive cones (much less UV types), although this is not an adaptation for 

chromatic aberration (Peichl et al., 2001; Levenson and Dizon, 2002).  However, in 2011, Hogg 
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et al. published their discovery of UV sensitivity in Arctic reindeer.  This came as something of a 

shock, because reindeer obviously have very large eyes and must view bright (and potentially 

photodamaging) UV-reflective snow in winter.  The sensitivity is based on a standard 

mammalian SWS1 cone pigment absorbing maximally in the blue (Hogg et al., 2011) and being 

excited simply from the transparency of the optics. The finding seemed to be a strange exception 

until the publication of a major comparative study of mammalian ocular media (Douglas and 

Jeffery, 2014) revealing that the lenses of many good-sized mammals - including, surprisingly,  

dogs, cats, and pigs - admit a sizable fraction of environmental UVA light into the eye, thus 

conferring UV sensitivity (albeit with the probable use in most cases of the β–bands of typical 

SWS or MWS cone pigments).   It was subsequently found that even a deep-diving seal 

(Crystophora cristata), an animal that presumably has no UVS- or blue-sensitive cones, still has 

the ability to detect UV light; in fact, the ability is improved by the presence of a UV-reflecting 

tapetum (Hogg et al., 2015).  Clearly, the wash of largely unfocused UV images on some 

mammalian retinas apparently is tolerable, although it is also true that most UV-sensitive 

mammals have relatively poor acuity in any case, and in addition many mammals have 

multifocal lenses that could partially alleviate this problem (Kröger et al., 1999).  Nevertheless, 

some mammalian groups including primates and a few rodents  do have UV-blocking lenses.  

This may be related to visual acuity, or have another basis; answering this question requires yet 

more comparative data. 

The problem of UV-associated photodamage 

As noted above, it is thought that high-energy UV light is potentially damaging to retinal 

tissues.  The energy in UV photons can break chemical bonds, potentially producing free radicals 

and mutating DNA, and thus interfering with cellular function.  At present, it is not at all obvious 
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how large and long-living animals manage the cumulative photodamage expected from UV 

irradiation.  Carvalho et al. (2011)  noted that like the mammals just discussed, parrots, very 

long-lived birds (commonly attaining 50 years) also have continuous, bright UV irradiance on 

their corneas, lenses, ocular humors, and retinas and seem to tolerate this well.  They suggest that 

protection from oxidative radicals produced by UV absorption may be offset by the action of 

carotenoid pigments in the eye.  Similar mechanisms may act in mammals (Douglas and Cronin, 

2016). Clearly, the costs of accepting visual damage are manageable given the widespread 

appearance of UV transmission in mammalian eyes.   

Functions of UV vision and UV photosensitivity 

Expansion of visual spectral range and color vision  

 It sometimes seems as if every time a new species is discovered to have UV sensitivity, 

some special – or secret – use is attributed to the ability.  Perhaps because humans are insensitive 

to this part of the spectrum, we imagine that there is something unusual there.  In fact, the 

general advantage of UV sensing is simply to extend the visual spectrum, just as adding a red 

cone receptor class to the retina extends the visual sense of primates to longer wavelengths 

compared to other mammals.  It allows animals to sense stimuli that otherwise would be missed.  

In a later section of this Review we will explore some of the reasons why animals might wish to 

be aware of these stimuli.  Here we are concerned with how UV photosensitivity fits into vision 

itself. 

 Lubbock’s (1881) experiments showed that ants remove larvae from patches of UV light, 

but because UV is photodamaging this response simply could have been an adaptive wavelength-

specific behavior.  When Kühn (1924, 1927) later found that bees could be trained to forage in a 
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UV patch, this suggested something more – that the bees recognized a color quality of UV that 

differed from other colors.  Much later Daumer (1956) definitively proved that bees have true 

color vision based on three primary colors, much like the color vision of humans except that bee 

primaries turned out to be UV, blue, and yellow (now known to actually be green) (Fig. 3H).  

Daumer also recognized that equal intensities of the primaries were equivalent to white light 

(“bee-white”) and that mixes of UV and yellow produced a non-spectral color which he named 

“bee-purple”, analogous to the human perception of non-spectral purple when blue and red light 

are mixed.  It turns out that many insects have trichromatic color-vision systems similar to those 

of bees (Menzel, 1979; Briscoe and Chittka, 2001; Kelber and Osorio, 2010), and, indeed, much 

like that of humans except for the downward shift in the spectral range. 

 Vertebrates have found a different solution to evolving a color-vision system that 

includes the UV.  Many years ago, Horace Barlow noted that because of the relatively broad 

sensitivity spectra of opsin-based visual pigments, only about three classes are needed to sample 

the visible spectrum fully (Barlow, 1982).  If an additional class were desirable for some reason 

(perhaps to improve color discrimination), an extension to the visible spectrum would generally 

be required.  Birds, reptiles, and many fish have done this by adding the UV receptor, building a 

fourth primary and potentially achieving tetrachromatic color vision (Fig. 3B,C,E). Neumeyer 

(1986) showed that goldfish make UV/blue color discriminations, proving that the UV cone is 

involved in color vision, and later proved that these fish are true tetrachromats, requiring four 

primaries to match white light (Neumeyer 1992).  Subsequent research demonstrated UV color 

discriminations in reptiles (common slider turtle: Arnold and Neumeyer, 1987), mammals 

(gerbil: Jacobs and Deegan, 1994), and birds (budgerigar: Goldsmith and Butler, 2005).  In the 

case of birds, Goldsmith and Butler (2005) proved tetrachromacy, and it is likely that all birds 
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with four cone classes (both UVS and VS) are true tetrachromats, as, perhaps, are many fish.  

Avian (and reptilian) color vision is enhanced by the presence of colored oil droplets in the inner 

segments of their cone photoreceptors, which sharpens the spectral sensitivity of individual cone 

classes and expands the range of perceptible colors, including UV colors (Vorobyev, 2003). 

 The overall message here is that when animals have UV photoreceptors, they generally 

are incorporated into the overall color-vision system of the animal.  Although this does not 

exclude color-specific responses in the UV (see Menzel, 1979), for most animals, UV is just 

another color dimension that affects their perception of the visual world.  Mantis shrimps, with 

their multiple classes of UV receptors, probably are capable of color discrimination within the 

UV range (Bok et al., 2014) in addition to their well-documented color vision at longer 

wavelengths (Marshall et al., 1996). In subsequent sections we review the utility of  UV 

perception. 

Navigation and orientation  

On a clear day, UV wavelengths dominate in the atmosphere due to Rayleigh scattering, 

which has a greater effect on shorter wavelengths.  It appears that insects use patches of bright 

UV light as a surrogate for the open sky when flying through vegetation, and insects certainly 

show strong phototaxis towards UV stimuli (Menzel, 1979).  Spiders exploit this by spinning 

webs with silks that strongly scatter UV or by decorating the webs with ornamental patterns that 

reflect UV effectively.  Webs from which these decorations have been removed are significantly 

less effective at catching insects (Craig and Bernard, 1990). 

 Besides its relative brightness, celestial scattered light is linearly polarized, and when the 

sky is clear and multiple scattering events are relatively rare, a strong and predictable 
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polarization pattern appears in the atmosphere (Waterman, 1981; Wehner, 2001). This pattern is 

bilaterally symmetrical about the plane that includes the sun, the zenith, and the observer, and it 

can be used for axial orientation.  In general, UV photoreceptors are the most reliable for 

detecting celestial polarization (Seliger et al., 1994), so many insects (especially bees, ants, and 

butterflies) devote a subset of their UV photoreceptors to celestial polarization analysis.  The 

polarization analyzers are restricted to a patch of ommatidia near the dorsal margin of the eye, a 

region called the ‘dorsal rim area’.  Here, UV receptors are oriented such that each ommatidium 

contains a pair of polarization analyzers orthogonal to each other (Wehner and Labhart, 2006; 

Cronin et al., 2014).  The entire array within the dorsal rims of the two eyes is organized to 

sample a small patch of overhead sky and to provide signals to specialized cells in the brain that 

respond to each of its time-varying polarization patterns (Rossel, 1989; Homberg et al., 2011).  

Thus, the UV array as a whole analyzes the celestial polarization at any given time, allowing the 

insect to orient appropriately.  The system permits insects like bees and ants to make long 

excursions from a given location and return to it precisely. Oddly, fish are thought to have a 

polarization-sensitive system that also involves UVS cones in the analysis.  However, the system 

has relatively low polarization sensitivity, and it is at present unclear whether or not it has a 

special function (Kamermans and Hawryshyn, 2011). 

Foraging and predator/prey detection 

In his very early work with bees, Kühn (1924, 1927) suggested that bees could use UV 

patterns to recognize flowers, and in fact, taking photographs of flowers in UV light has been 

possible since long before his pioneering work on UV color vision (Fig. 4B).  There is nothing 

special about UV colors in flowers.  It just happens that bees have excellent UV photoreceptors, 

perhaps fostered by the navigational tasks just discussed, and flower evolution has been shaped 
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by the need to attract pollinating bees.  Thus, floral UV colors and patterns are useful to plants 

and to bees as well (Chittka et al., 1994; Kevan et al., 2001).  Similarly, many fruits and berries 

that are dispersed by birds (for instance those of Panamanian shrub Psychotria emetica) reflect 

UV upon ripening (Fig. 4B).  Altschuler (2001) found that when their UV reflectance was 

blocked, they were far less likely to be taken by fruit dispersers.  These dispersers are mostly 

UVS birds, but might include small UVS rodents as well.  UV vision also may improve avian 

foraging success on insects, as Church et al. (1998) demonstrated with blue tits feeding on moth 

caterpillars. In an interesting twist, night-foraging hawkmoths (which possess UV-sensitive 

photoreceptors) actively avoid flowers that reflect UV, demonstrating both that UV is not itself 

invariably attractive and that a UV signal can be useful by its absence as well as its presence 

(White et al., 1994).  In an analogous case from the Arctic, reindeer browse on plants including 

lichen and moss in dim Arctic twilight; because these plants reflect little UV light they contrast 

well against white snow and are easily seen by a reindeer (Tyler et al., 2014a).  Thus, a major 

benefit of UV sensitivity in these animals could be an enhanced ability to forage effectively in 

snow. Reindeer have a further adaptation that is appropriate for twilight foraging in snow.  Their 

tapetum reorganizes in the winter from a broadband, specularly reflecting structure to a form that 

strongly and diffusely scatters short-wavelength light (Stokkan et al., 2013).  This greatly 

increases short-wavelength sensitivity.  The change is associated with increased intra-ocular 

pressure which apparently compresses the collagen fiber organization of the tapetum, creating a 

seasonally tunable reflector that produces a more UV-sensitive, albeit less acute, visual system in 

winter. 

Because UV light is scattered effectively in marine waters, it creates a bright spacelight 

against which nearby objects can be seen in silhouette (Losey et al., 1999) (Fig. 4A).  Even 
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seemingly transparent plankton may absorb in the UVA (Johnsen and Widder, 2001) and small 

pigmented zooplankton even more so.  Consequently, planktivorous fishes should be well 

adapted for feeding using only UV light (Loew et al., 1993; Browman et al., 1994.)  Many small 

reef fishes have UV-transparent ocular media (Siebeck and Marshall, 2001), and there is even 

some evidence that zooplankton prey may adjust their vertical migration behavior when UV light 

is present (Leech et al., 2009).  All this strongly suggests that UV vision is a critical aspect of 

feeding in small fishes.  Recently, this was directly tested in two ways.  First, Novales 

Flamarique (2013) used hormone treatment to encourage the early conversion of UVS cones to 

blue-sensitive cones in very young rainbow trout (a process that normally occurs somewhat later 

in these fish).  The treatment made prey detection more difficult, showing that the UV system 

plays an important role in predation.  In a later set of experiments, foraging by mutant zebrafish 

that have relatively few UVS cones was compared to that of wild-type fish of similar sizes.  

Again, diminished UV sensitivity (or resolution) decreased foraging success (Novales 

Flamarique, 2016).  The use of UV for silhouette predation by juvenile fishes is perhaps the best-

documented case of a specialized predation behavior that relies on UV sensitivity.  Because the 

UV spacelight in clear marine water potentially permits sighting of other organisms at distances 

of several meters (Fig. 4A), larger predators may use this ability as well, although there is no 

direct evidence that they do.  Similarly, small fish could detect incoming predators in the same 

way – unfortunately, solid evidence of this is again lacking. 

There is only one published claim that credits UV vision with a role in predation by birds.  

Both Eurasian kestrels (Viitala et al., 1995) and rough-legged buzzards (Koivula and Viitala, 

1999) are said to hunt more frequently in areas where vole trails have been marked with urine.  

The urine deposited by voles apparently reflects strongly in the UV, and kestrels in the 
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laboratory spent more time inspecting vole trails that were illuminated with UV light (Viitala et 

al., 1995), suggesting that they use UV brightness within these trails to look for prey.  However, 

more recent work has questioned these conclusions.  Raptors possess VS cones (with peak 

sensitivity near 405 nm) and have ocular media that reduce UV transmission within the eye 

(Lind et al., 2013).  Further, Lind et al. (2013) found that, at least in Swedish bank voles, the 

urine is much less reflective in the UV than at visible wavelengths (and much less reflective than 

water alone).  Together with reflectance data from urine and water on grass and sand, this 

research provided little evidence for UV-enhanced predation by raptors. So, the voles should be 

able to urinate to their hearts’ content without fear of alerting nearby raptors.  If anything, the 

shoe is on the other foot – UV sensitivity should help the voles to detect aerial predators.  Mice, 

and likely voles as well, have regionally specialized sets of cones in the retina, and the UV cones 

heavily dominate in the ventral retina, which views the sky (Calderone and Jacobs, 1995).  These 

animals should be very aware of dark objects against the bright UV sky, even at twilight (when 

the sky is particularly enriched at UV wavelengths), and able to sight hovering raptors well 

before they themselves are easily seen in dim twilight.  Returning briefly to reindeer, their ability 

to sense contrast in the UV may serve them in an antipredator role as well (Hogg et al., 2011).  

The white fur of wolves and polar bears weakly reflects UV light, rendering them visible to 

reindeer against UV-bright snow.  Of course, reindeer are also more sensitive to UV light in the 

winter (Stokkan et al., 2013), perhaps providing improved early predator detection. 

It’s difficult to decide whether avoidance of power lines is predator evasion or 

orientation, but we will close this section with an unexpected observation related to this.  Power 

lines emit UV discharges in the spectral range 200-400 nm as a constant ‘corona’ along the cable 

itself and as transient flashes at insulators on poles (Tyler et al., 2014b).  UVS birds, and even 
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bats, should be able to see these cables on a dark night, and potentially avoid them (Tyler et al., 

2014b).  Perhaps this accounts for the UV sensitivity of reindeer, as it means that Rudolph has no 

worries about entangling Santa’s sleigh in power transmission lines! 

Signaling: communicating in the UV 

UV cues play major roles in animal communication, including aggression, mate choice 

and species recognition (Tovée, 1995).  This topic could easily deserve its own review, but here 

we will highlight a few notable cases and themes.  Alhough much research regarding UV visual 

signals relies on inference based on gender- or species-specific UV reflectance differences, there 

is also extensive experimental evidence documenting alterations in animal interactions when UV 

cues are manipulated.  UV-mediated intraspecific signaling was first noted in gender 

discrimination tasks in butterflies (Obara, 1970; Obara and Hidaka, 1968; Silberglied and Taylor, 

1978).  These exciting discoveries revealed how some butterflies discriminate genders using only 

visual cues, despite appearing nearly identical to us.  Bennett et al. (1996) revealed that zebra 

finches evaluate UV cues when assessing mates, and a similar situation has also been identified 

in the blue tit, or perhaps more accurately, the ‘UV tit’ (Andersson et al., 1998; Hunt et al., 

1998).  Additionally, many animals that are dimorphic outside of the UV range have nonetheless 

been shown to make mate choices based on UV cues (Detto and Backwell, 2009; Hausmann et 

al., 2003; Siitari et al., 2002; Smith et al., 2002).  Further, UV signals are often used in species 

recognition, again sometimes allowing animals to visually discriminate between otherwise 

identical-looking species.  The most surprising example may be two species of yellow 

damselfish that can tell each other apart based solely on subtle differences in UV-reflective 

patterns on their faces (Siebeck et al., 2010).  UV cues are also involved in intraspecific 

aggressive displays, often male-male altercations over territory or access to females (Xu and 
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Fincke, 2015; Stapley and Whiting, 2006; Whiting et al., 2006).  It is also possibile that the 

various UV signals discussed here can serve in covert signaling in cases where an animal’s 

primary predators lack UV sensitivity (Cummings et al., 2003).    When UV is outside the visual 

spectral range of potential predators, it is unique in this situation, but in general the roles of UV 

signals are probably not different from the roles of colors and patterns in other parts of the 

spectrum (Hunt et al., 2001; Maddock et al., 2001).  In this sense, UV is really nothing special in 

signaling, only an additional way to provide species-specific signals. 

Just as UV vision was long ignored because UV is not perceived by humans, most studies 

of UV signaling have been restricted to the UVA where the majority of animals are maximally 

sensitive.  However, the UVB is proving to be an important region of the spectrum for some 

animals.  Besides the aforementioned thrips, which exhibit strong UVB attraction for an 

unknown purpose (Mazza et al., 2010), jumping spiders have also been found to use UVB 

reflectance as an important cue in mate choice (Li et al., 2008; Painting et al., 2016).  Mantis 

shrimp may be the premiere example of UV signaling.  Perhaps explaining their extreme 

expansion of UV photoreceptor spectral types, mantis shrimp apparently use different regions 

within the UV spectrum for different tasks.  They can be trained to associate UV cues above 350 

nm in wavelength with food rewards, and many species-specific chromatic cues reside in this 

area of the spectrum as well.  However, untrained mantis shrimp also appear to respond 

antagonistically to UVB light (Bok, 2013).  It may be no coincidence that structures presented 

during aggressive displays reflect light at these far-UV wavelengths, and these cues may provide 

covert, mantis shrimp-specific visual warnings.          

Summary and outlook     
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Although long neglected, in part due to our own spectral deficiencies, recent decades 

have shown a tremendous advancement in our understanding of UV photoreception and vision in 

animals.  Following the original observations that animals respond to wavelengths of light 

beyond our perception, researchers have found UV sensitivity in an impressive diversity of 

animal species, where it mediates a variety of sophisticated behaviors.  They have traced the 

evolution of the visual pigments responsible for UV photoreception and begun to probe the 

genetics and biochemical properties that confer the preferential absorption of UV photons on 

these molecules.   

There is of course much yet to do.  Firstly, because essentially all of what we know about 

UV photoreception and UV vision applies to only two phyla (chordates and arthropods), to gain 

a full understanding of the physiology and ecology of this modality it is necessary to explore UV 

sensitivity in a far more comparative manner.  Secondly, the mechanisms used to tune visual 

pigments to wavelengths in the mid-UV range and below are simply not understood.  The 

unbound chromophore, most commonly retinal1, has a spectral absorbance peak near 385 nm, 

but UV visual pigments range in maximum absorbance down to at least ~330 nm.  Most opsins 

produce visual pigments with peaks well above 385 nm, sometimes approaching 600 nm.  The 

interactions between the chromophore and its surrounding amino acid residues in UV opsins that 

shift absorbances to wavelengths shorter than the  natural absorbance of the chromophore remain 

a mystery.   A third potential area of research is the nature and role of UV vision in the UVB 

range.  A few animals detect light with wavelengths as short as 300 nm.  Does this extreme UV 

vision have special significance to them?  If so, what?  A final issue that has repeatedly arisen in 

our Review is the question of tolerating UV-induced photodamage.  A great many animals 

permit UV to enter the eye and directly impact the ocular tissues, and specifically the neural 
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retina.  How do the tissues of the eye protect themselves against this lifelong onslaught?  Do 

some species tolerate the damage, evolutionarily taking their chances of making it to 

reproductive age?  The balance between damage and repair, and the mechanisms involved, are 

significant research concerns that may have both basic biological and clinical implications.  

Research into the biology of UV photosensitivity and vision will involve approaches at every 

level of biological inquiry, from genetic through biochemical, cellular, neurobiological, to 

ecological and further to behavioral and evolutionary aspects. 

In this Review, we have attempted to provide a complete look at the rapidly expanding 

research being done with the role of UV in animal light sensitivity and vision. The ability to 

detect and respond to UV is largely just an extension of normal animal vision, but it is surprising 

that so many animals permit UV reach the retina even when it may lower visual contrast and 

resolution while simultaneously attacking the tissues of the eye.  An impressive range of 

creatures have exploited the susceptibility of UV light to scattering in air and water, using it for 

contrast enhancement and navigation.  They use it in signals and displays, and they have 

discovered mechanisms that tune their UV receptors to a surprising diversity of wavelength 

bands within the narrow spectral range that UV light spans. UV vision is a fascinating research 

area to vision scientists, and indeed to the public at large – perhaps in part because it seems so 

exotic.  In the end, however, we can wonder at the UV worlds perceived by so many of our 

fellow creatures and hope to learn how this ability contributes to their function and survival. 
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Figure captions 

Figure 1: Ultraviolet light in nature.  Solar spectral irradiance in arbitrary units at sea level 

(yellow trace, indicated by a sun symbol), in clear water at 5 meters depth (blue, indicated by a 

waves symbol), and under a forest canopy (green, indicated by a leaf symbol).  UVA and UVB 

ranges are indicated.  Adapted from ASTM G173 (A1.5) solar irradiance standard, Smith and 

Baker (1981) aquatic attenuation coefficients, and Chiao et al., (2000).  

Figure 2. Ultraviolet opsins.  (A) Phylogeny of metazoan opsin sequences based on Porter et al. 

(2012).  (Abbreviations, going clockwise around the figure: Rh1, class 1 rhodopsin; Rh2, class 2 

rhodopsin; SWS2, class 2 short-wavelength-sensitive opsin; SWS1, class 1 short-wavelength-

sensitive opsin; PIN, pinopsin; LWS, long-wavelength-sensitive opsin; PPIN, parapinopsin; VA, 

vertebrate ancient opsin; PAR, parietopsin; TMT, teleost multiple-tissue opsin; ENC, 

encephalopsin; IB, invertebrate brain opsin; MWS, middle-wavelength-sensitive opsin; SWS, 

short-wavelength-sensitive opsin; UV7, ultraviolet-sensitive opsin 7; LOP, lophotrochozoan 

opsin; MEL, melanopsin; RGR, retinal G-protein coupled receptor; PER, peropsin; NEUR, 

neuropsin; CNID, cnidarian opsins)  Clades are colored to reflect the four major groups of 

opsins.  (B) Sub-clades containing opsins that are known to form visual pigments with peak 

absorbances in the UV (highlighted in black). The UV-blue/violet tuning site is indicated for 

clades where representatives have been examined by sequence analysis or heterologous 

mutagenesis (see text).  Note that phylogenetically distant opsins are all primarily tuned by the 

same two sites (homologous to bovine rhodopsin positions 86 and 90) located on the second 

transmembrane alpha-helix.  (C) Evolutionary history of UV visual opsins in vertebrates and 

arthropods.  Node color refers to the presence of UV (black) or blue/violet-sensitive opsins in 
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extant lineages (purple).  Branch color refers to likely ancestral states of the SWS1 and arthropod 

SWS opsins.  Gray branches indicate groups with unknown sensitivity. 

Figure 3. Examples of photoreceptor spectral sensitivities involved in animal color vision 

systems.  The UV range is shaded grey.  Some spectra (A-E, J) are inferred based on visual 

pigment absorbance and lens and ocular media transmittance.  The thrips spectral sensitivity (J) 

is inferred from behavioural response.  All others are confirmed by direct electrophysiological 

measurements.  Panels with multiple species use alternate colors, indicated on the plot.  

Vertebrate ultraviolet-sensitive (UVS) versus violet-sensitive (VS) SWS1 visual pigment type is 

indicated.  See text for additional information.  (A) Mammalian cones: Mouse, Mus musculus 

(Sun et al., 1997; Yokoyama et al., 1998) and Homo sapiens (Bowmaker and Dartnall, 1980; 

Norren and Vos, 1974).  (B) Avian cones: Blue tit, Cyanistes caeruleus (Hart et al., 2000; 

Vorobyev, 2003) and chicken, Gallus gallus (Bowmaker et al., 1997; Olsson et al., 2015).  (C) 

Reptilian cones: Anolis cristatellus (Loew et al., 2002).  (D) Amphibian cones: Poison dart frog, 

Dendrobates pumilio (Siddiqi et al., 2004) and tiger salamander, Ambystoma tigrinum (Ma et al., 

2001; R J Perry, 1991).  (E) Fish cones:  Goldfish, Carassius auratus (Bowmaker et al., 1991; 

Douglas, 1989) and scabbardfish, Lepidopus fitchi SWS1 (Tada et al., 2009).  (F) Molluscan 

photoreceptors from giant clam, Tridacna maxima mantle eyes (Wilkens, 1984).  (G) Jumping 

spider: Habronattus pyrrithrix principal eyes (Zurek et al., 2015).  (H) Bumblebee: Bombus 

terrestris (Skorupski et al., 2007).  (I) Butterfly: PapiIio xuthus (Arikawa et al., 1987).  (J) 

Thrips, Caliothrips phaseoli (Mazza et al., 2010).  It is assumed that the thrips also has a green 

receptor (dashed line), but this has not been confirmed.  (K) Fly: Musca domestica with UV 

sensitizing pigment peaks indicated (Hardie, 1986).  (L) Mantis shrimp: Neogonodactylus 

oerstedii (Bok et al., 2014; Marshall et al., 2007). 
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Figure 4.  Uses for UV light in nature.  Photographs at human-visible wavelengths (left) and 

the UV (right).  (A) Predator and prey detection:  A coral reef scene photographed through filters 

for green (left) and UV (right) light.  Scattered UV light in the water column silhouettes the fish.  

(B) Advertisements for foragers: A juniper berry (i), a buttercup (ii), and a daisy (iii).  The berry 

and the outer ring of the buttercup reflect UV light.  (C)  Gender discrimination and mate choice: 

Female and male Pieris rapae.  While the genders look similar in visible light, females reflect 

more UV light.  

 










