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Abstract: Novel linear 3-nitro-1H-1,2,4-triazole-based piperazides were synthesized and 

evaluated as antitrypanosomal agents. In addition, some bisarylpiperazine-ethanones which were 

formed as by-products were also screened for antiparasitic activity. Most 3-nitrotriazole- based 

derivatives were potent and selective against T. cruzi parasites, but only one displayed these 

desired properties against T. b. rhodesiense. Moreover, two 3-nitrotriazole-based 

chlorophenylpiperazides were moderately and selectively active against L. donovani. Although 

the bisarylpiperazine-ethanones were active or moderately active against T. cruzi, none of them 

demonstrated an acceptable selectivity. In general, 3-nitrotriazole-based piperazides were less 

toxic to host L6 cells than the previously evaluated 3-nitrotriazole-based piperazines and seven 

of 13 were 1.54- to 31.2-fold more potent antichagasic agents than the reference drug 

benznidazole. Selected compounds showed good ADMET characteristics. One potent in vitro 

antichagasic compound (3) was tested in an acute murine model and demonstrated antichagasic 

activity after a 10-day treatment of 15 mg/kg/day. However, neither compound 3 nor 

benznidazole showed a statistically significant P value compared to control due to high 

variability in parasite burden among the untreated animals. Working as prodrugs, 3-nitrotriazole-

based piperazides were excellent substrates of trypanosomal type I nitroreductases and constitute 

a novel class of potentially effective and more affordable antitrypanosomal agents.  
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Introduction 

American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT) and 

leishmaniasis are caused by parasitic infections and constitute major health problems in poor 

countries worldwide. They are considered ‘neglected’ because they have received limited 

funding for discovery, development and delivery of new therapies. African trypanosomiasis is 

endemic in many sub-Saharan African countries and is caused by Trypanosoma brucei 

rhodesiense and Trypanosoma brucei gambiense. Chagas disease affects populations in South 

and Central America and is caused by Trypanosoma cruzi, whereas leishmaniasis, caused by 

more than 20 Leishmania species, occurs throughout tropical and sub-tropical regions [1]. It is 

estimated that together these three diseases infect approximately 20 million people and are 

responsible for more than 110,000 deaths per year [2].  

Currently available pharmaceuticals for the treatment of neglected diseases suffer from poor 

efficacy, toxic side effects, high cost, the need for intravenous administration in certain cases, 

long duration of treatment, and the emergence of resistance. For example, severe toxicity and 

long treatment requirements are associated with nifurtimox (nfx) and benznidazole (bnz), the two 

medications used against Chagas disease in its initial acute stage [3, 4]. Similarly, drugs used to 

treat HAT disease and leishmaniasis are highly toxic and/or are based on i.v. administration (e.g., 

eflornithine, antimony- and arsenic-based compounds) resulting in severe side effects, or are of 

high cost (e.g,. eflornithine, liposomal amphotericin B, miltefosine, and paromomycin) [5-7]. 

Therefore, new effective, safe and affordable drugs are urgently needed for the treatment of these 

neglected tropical diseases. 

Although inhibitors of the fungal sterol 14-demethylase enzyme (CYP51) and of the 

orthologous enzyme T. cruzi CYP51 (TcCYP51) demonstrated promising efficacy against 
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Chagas disease in preclinical studies [8-13], data from clinical trials using posaconazole were 

proved disappointing [14]. Recent evidence indicates that nitroheterocyclics might be more 

efficacious trypanocidal agents than CYP51 inhibitors [15], and combination treatments of 

nitroheterocyclics with CYP51 inhibitors might offer a better solution [16].
 
 

We have shown that several chemical classes of 3-nitro-1H-1,2,4-triazole-based compounds 

exhibit excellent antichagasic activity both in vitro and in vivo; furthermore, appreciable anti-

HAT activity was observed in vitro with several such analogs [17-22]. Interestingly, 3-

nitrotriazole-based compounds are significantly more potent and less toxic than their 2-

nitroimidazole-based counterparts [17-23],
 
with part of the trypanocidal activity being dependent 

on the parasite’s expression of a mitochondrially targeted, oxygen-insensitive type I 

nitroreductase (NTR), an enzyme absent from most other eukaryotes [17, 18, 20-22]. Type I 

NTRs, via a series of 2 electron reduction reactions leading to the production of toxic 

metabolites, is responsible for the trypanocidal activity of Nfx, Bnz and other nitroheterocyclic  

prodrugs [24-27]. 

Among the chemical classes of 3-nitro-1H-1,2,4-triazole-based compounds studied as 

antitrypanosomal agents, several piperazine- and amide-analogs were of exceptional antichagasic 

activity [18-20]. However, 3-nitrotriazole-based piperazines tend to be more toxic than 3-

nitrotriazole-based amides. In addition, 3-nitrotriazole-based amides demonstrate excellent 

ADMET characteristics [20, 22]. Therefore, we decided to investigate 3-nitrotriazole-based 

piperazides as antitrypanosomatid agents with potentially improved characteristics. The synthesis 

and biological evaluation of such compounds is described in the present work. In addition, some 

bisarylpiperazine-ethanones, which were produced during the synthesis of the piperazides as by-

products, were also evaluated as antitrypanosomal agents. 
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Results and Discussion 

Chemistry  

The structures of tested compounds are shown in Table 1. Piperazides 2-14 were prepared in 

good yields by nucleophilic substitution of chloroacetylpiperazides 1a-l with the potassium salt 

of 3-nitrotriazole (or 2-nitroimidazole in one case) under refluxing conditions. 

Chloroacetylpiperazides 1a-l and bisarylpiperazine-ethanones 15-19 were formed in the same 

reaction between chloroacetylchloride and an appropriate piperazine. When the reaction time 

was short (2 h), only the chloroacetylpiperazides 1a-l were formed by nucleophilic substitution 

of the acylchloride. At longer reaction times (usually 24 h) nucleophilic substitution of the 

alkylchloride also took place, and the bisarylpiperazine-ethanones 15-19 were formed in addition 

to chloroacetylpiperazides 1a-l (Scheme 1).  

 

Biological Evaluation. 

Anti-parasitic activity and toxicity. Compounds were tested for antiparasitic activity against T. 

cruzi amastigotes, bloodstream form (BSF) of T. b. rhodesiense and L. donovani axenic 

amastigotes and, for toxicity in L6 rat skeletal myoblasts, the host cells for T. cruzi amastigotes.  

Dose response curves were constructed from which the concentration of compound that inhibits 

parasite or mammalian cell growth by 50 % (IC50) was calculated (Table 1).  Selectivity index 

(SI) for each compound towards each parasite was calculated from the equation: SI = 

IC50L6/IC50parasite (Table 1). According to the TDR (Special Programme for Research and Training 

in Tropical Diseases, World Health Organization) criteria for antiparasitic activity and 

selectivity, an IC50 of <4.0 µM, between 4.0-60 µM or >60 µM, denotes ‘active’, ‘moderately 
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active’ or ‘inactive’ compounds, respectively, against T. cruzi amastigotes, whereas a SI of ≥50 

is required; for blood stream form (BSF) T. b. rhodesiense, IC50 values of <0.5 µM, between 0.5-

6.0 µM or > 6.0 µM identify ‘active’, ‘moderately active’ or ‘inactive’ compounds, respectively, 

whereas a SI value of ≥100 is desired; finally, for L. donovani amastigotes, IC50  of <1 µM, between 

1.0-6.0 µM or > 6.0 µM, provides ‘active’, ‘moderately active’ or ‘inactive’ compounds, respectively, 

whereas a SI value of ≥20 is ideal [28]. Most (9 of 12) of the 3-nitrotriazole-based piperazides  

tested were deemed to be ‘active’ antichagasic agents, one was ‘active’ anti-HAT agent and two 

of them moderately active antileishmanial agents, all displaying an acceptable selectivity (Table 

1). Although the bisarylpiperazine-ethanones were active or moderately active against T. cruzi, 

none demonstrated acceptable selectivity (Table 1). 

 

2.2.1. SAR analysis for antichagasic activity 

The arylpiperazides (2-7) exhibited appreciative antichagasic activity with IC50 values ranging 

between 169 nM to 2.85 μM. There was a direct correlation between activity and the 

compound’s lipophilicity with most lipophilic dichlorophenylpiperazide 3 being the most potent 

agent of this sub-group (Table 1). In addition, compound 3 demonstrated the greatest selectivity 

(SI = 641), despite the fact that it was the most toxic analog of the subgroup against L6 cells 

(Table 1).  

The two 3-nitrotriazole-based heteroarylpiperazides (8 and 9) were moderately active, 

according to the criteria set, but with unacceptable selectivity. Therefore, introducing 

heteroatoms in the phenyl group of arylpiperazides reduced antichagasic activity, most likely due 

to decreased lipophilicity, and, thus, selectivity (Table 1). When the 3-nitrotriazole ring in 9 was 

replaced with a 2-nitroimidazole ring in 10, the activity was completely lost irrespective of 

lipophilicity (Table 1).   
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Antichagasic activity increased in benzylpiperazides (11-13) with the most lipophilic 

compound 13 exhibiting an IC50 of 73 nM against T. cruzi. However, and despite a SI of 302, the 

high lipophilicity of 13 (clogP = 3.102) resulted in an IC50 of ca. 22 μM in L6 cells, designating  

it as the most toxic analog among all tested piperazides (Table 1). Finally, introducing a second 

amide in 14, also abolished antichagasic activity (Table 1).  

The above SAR clearly shows that independently of variations in structure among all 3-

nitrotriazole-based piperazides tested, there was very good correlation between lipophilicity 

(clogP values) and antichagasic activity (IC50 against T. cruzi). The correlation is described by a 

2
nd

 degree polynomial equation and the R
2
 value was 0.97 (Fig. 1). Other physical characteristics 

of each structure such as electronegativity of the substituent on the phenyl ring or polar surface 

area (PSA) did not play a major role in the anti-chagasic activity although those compounds that 

had the lowest PSA values exhibited the lower IC50 values against T. cruzi (Table 1). Several 

analogs (2-5, 11-13) were from 1.5 to 31-fold more potent than benznidazole. 

With regard to bisarylpiperazine-ethanones (15-19), the active derivatives 16 and 17 violate 2 

of the Lipinski rules of 5 (MW and clogP), while compound 15 violates one rule (clogP). The 

antichagasic activity of 15-17 is most likely related to high lipophilicity coupled with their low 

PSA value; however, these properties also contribute to the high toxicity of 16 and 17 and the 

unacceptable selectivity of 15-17 towards T. cruzi parasite (Table 1). The two remaining 

bisarylpiperazine-ethanones 18 and 19 are moderately active against T. cruzi, but also had poor 

SI values towards this parasite.  

 

2.2.2. Analysis of anti-HAT activity 
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Displaying an IC50 value of 231 nM and a SI of 260, only the dichlorobenzylpiperazide 12 was 

selectively active against T. b. rhodesiense (Table 1). Four additional 3-nitrotriazole-based 

piperazides (3, 4, 11 and 13) exhibited moderate anti-HAT activity, but had unacceptable 

selectivity (Table 1). As observed with antichagasic activity (with the exception of compound 2), 

there was good correlation between clogP values and anti-HAT activity among 3-nitrotriazole-

based piperazides (data not shown). None of the bisarylpiperazine-ethanones (15-19) exhibited 

anti-HAT activity according to TDRs set criteria (Table 1). 

 

2.2.3. Analysis of antileishmanial activity 

Two arylpiperazides (3, 4) and one benzylpiperazide (13) exhibited moderate but appreciable 

antileishmanial activity with IC50 values against L. donovani axenic amastigotes < 2 μM. 

However, only compounds 3 and 4 demonstrated acceptable selectivity towards the parasite 

(Table 1). Once again, lipophilicity seems to be the driving force for the leishmanicidal activity. 

 One bisarylpiperazine-ethanone (17) exhibited moderate antileishmanial activity, but with an 

unacceptable SI value of 6. Since 17 does not demonstrate the highest clogP value among 

ethanones, it is not clear whether or not lipophilicity is the only factor contributing to 

antileishmanial activity.  

 

2.2.4. Involvement of type I Nitroreductase  

Representative  3-nitrotriazole-based piperazides  (2-5, 9, 11-13) were evaluated as substrates of 

purified, recombinant trypanosomal NTRs and compared to benznidazole (Table 2). Enzyme specific 

activity was measured as oxidized NADH per min per mg of protein. All tested compounds were 

excellent substrates of both TcNTR and TbNTR. When tested against the T. cruzi enzyme, the 

selected compounds were metabolized at rates comparable or slightly better than that of Bnz 
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while the T. b. brucei enzyme could reduce the same analogs at rates 1.3 to 2.5-fold higher than 

the reference 2-nitroimidazole (Table 2).  

To determine whether NTR plays a role in metabolizing the substrates within the parasite, the 

above subset of 3-nitrotriazole-based piperazides were tested against BSF T. b. brucei. In initial 

screens, 2, 5 and 9 did not affect the growth of wild type parasites at concentrations up to the 30 

μM and these were not analyzed further (Table 3).  

For the remaining compounds T. b. brucei engineered to express elevated levels of TbNTR 

were shown to be ca. 4- to 17-fold more susceptible to the 3-nitrotriazole-based piperazides 

under study than parasites expressing wild type levels of the enzyme, with 3, 4, 11 and 12 

generating a ≥ 7-fold shift in parasite sensitivity: nfx tested in parallel generated a 10-fold 

difference in IC50 values. For these four structures that demonstrate activity against T. cruzi and 

T. rhodesiense (Table 1), this difference in sensitivity indicates that all function as prodrugs in 

the parasite itself with NTR playing a key role in their activation. When TbNTR/TcNTR 

enzymatic activity and anti-trypanosomal activity were compared no obvious correlation was 

observed possibly due to existence of additional targets in the trypanosome, permeability issues 

with regard to mitochondrion, compound stability and pharmacokinetic factors in general.  

 

2.2.5. ADMET studies 

Limited ADMET studies were performed with compounds 11 and 12 to check metabolic 

stability, Caco-2 permeability and cytochrome P450 inhibition. These two compounds were 

shown to be relatively stable with half lives (T1/2) of >180 and 72 min, respectively, in the 

presence of NADPH and T1/2 of >180 and 174 min, respectively, in the absence of NADPH 

(Table 4).  Neither compound inhibited CYP3A4, CYP2C9, CYP2D6, CYP2C19 and CYP2C8, 
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demonstrating an IC50 > 20 μM for all enzymes (data not shown). Both compounds exhibited 

very good Caco-2 permeability with efflux ratios (Re) of 0.97 and 0.91, respectively (Table 5).   

 

2.2.6. In vivo antichagasic activity 

The 3-nitrotriazole-based dichlorophenyl piperazide 3 was selected for in vivo evaluation 

because of its good in vitro antichagasic activity (IC50 of 169 nM against T. cruzi), excellent 

selectivity (SI of 641, the highest in the series) and relatively low toxicity (IC50 in L6 cells of 

108.4 μM). Groups of 5 mice each were treated i.p. with compound 3 or bnz, at 15 mg/kg/day x 

10 days. The mean ratio of parasite levels was calculated after 10 days of treatment. The data are 

summarized in Fig. 2. No apparent toxicity was observed at the given dose and time-frame for 

compound 3, which reduced the parasite ratio by 77% after 10-day treatment; the corresponding 

reduction by bnz was 99%. However, this reduction was not statistically significant for either 

compound 3 or bnz due to high variability in parasite burden among the untreated animals.  

 

3. Conclusions 

Piperazide-based compounds demonstrate a broad range of biological activities including, but 

not limited to, antibacterial, antiparasitic, antifungal, anthelmintic and antitubercular activity [29-

33]. In particular, some metronidazole-bearing piperazides exhibit appreciable antigiardial and/or 

antitrichomonal activity [31]. In addition, aryloxyphenyl piperazides have been described as 

histamine H3 antagonists and serotonin reuptake inhibitors for the treatment of depression [34], 

while other piperazine amides are considered useful for the treatment of obesity or diabetes [35, 

36].  



11 
 

Our novel 3-nitrotriazole-based aryl- and benzylpiperazides were potent and selective 

antichagasic agents in vitro. In addition, two such analogs (3, 4) exhibited moderate but selective 

antileishmanial activity, while another analog (12) demonstrated remarkable anti-HAT activity in 

vitro. The antitrypanosomal activities of tested compounds were attributed, at least in part, to 

their high lipophilicity and their activation by the type I nitroreductases. 3-Nitrotriazole-based 

heteroarylpiperazides, dipiperazides and bisarylpiperazine-ethanones were varyingly active, but 

toxic antichagasic agents in vitro. Although in vivo antichagasic activity was demonstrated with 

compound 3, the data were not of statistical significance due to high variability in parasite 

burden among the untreated animals. However, favorable ADMET studies with two analogs (11, 

12) and lack of mutagenicity or developmental toxicity in previously studied 3-nitrotriazole-

based amides [20, 23] suggest that 3-nitrotriazole-based aryl/benzylpiperazides could be of real 

value in the treatment of Chagas disease, provided that further in vivo evaluation in the chronic 

mouse model is successful.  

 

4. Experimental 

4.1. Chemistry 

4.1.1. General 

All starting materials and solvents purchased from Sigma-Aldrich (Milwaukee, WI), were of 

research-grade quality and used without further purification. Solvents used were anhydrous and 

the reactions were carried out under a nitrogen atmosphere and exclusion of moisture.  Melting 

points were determined by using a Mel-Temp II Laboratory Devices apparatus (Holliston, MA) 

and are uncorrected. Proton NMR spectra were obtained on a Varian Inova-500 or an Agilent 

Hg-400 spectrometer at 500 or 400 MHz, respectively, and are referenced to Me4Si or to the 
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corresponding solvent, if the solvent was not CDCl3. High-resolution electrospray ionization 

(HRESIMS) mass spectra were obtained on a Agilent 6210 LC-TOF mass spectrometer at 11000 

resolution.  Thin-layer chromatography was carried out on aluminum oxide N/UV254 or 

polygram silica gel G/UV254 coated plates (0.2 mm, Analtech, Newark, DE). Chromatography 

was carried out on preparative TLC alumina GF (1000 microns) or silica gel GF (1500 microns) 

plates (Analtech). All compounds were purified by preparative TLC chromatography on silica 

gel or alumina plates and also checked by HPLC (≥ 95% purity).   

 

4.1.2. Synthesis of chloroacetylpiperazides 1a-l: Compounds 1a-l and compounds 15-19 were 

synthesized in the same reaction: In a dichloromethane solution (2-3 mL) of chloroacetylchloride 

(1.1 eq), a dichloromethane solution (8-10 mL) of the appropriate piperazine (1 eq) and 

triethylamine (2.5 eq) was added dropwise and the reaction mixture was stirred overnight at 

room temperature under a nitrogen atmosphere. The reaction mixture was evaporated and the 

residue was extracted with ethyl acetate-brine. The organic layer was dried over Na2SO4 and 

chromatographed on silica preparative TLC to give the desired products. When the reaction was 

run for 2 h, compounds 1a-l were the main products (>90%). Compounds 1a-l are known in the 

literature and their spectroscopic data are provided in the supplementary material. 

 

4.1.3. Synthesis of compounds 2-14: The potassium salt of 3-nitro-1,2,4-triazole or 2-

nitroimidazole (1 eq) was formed in CH3CN (6-10 mL), by refluxing with KOH (1.2 eq) for 30 

min. To this suspension 1a-l (1.1 eq) was added and the reaction mixture was refluxed under a 

nitrogen atmosphere for 9 h. If chloride 1 was an oil, it was added in CH3CN solution. The 

reaction mixture was checked by TLC for completion of the reaction and the solvent was 



13 
 

evaporated. The residue was redissolved in ethyl acetate or acetone and the inorganic salts were 

filtered away. Upon preparative TLC (usually on silica gel; ethyl acetate-petroleum ether), the 

desired product was obtained as a powder. Purity was checked also by HPLC and it was ≥ 95%.   

 

4.1.3.1. 1-(4-(4-Chlorophenyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone (2): 

Yellow powder (77%): mp 226 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3 + a drop of DMSO-

6d) δ: 8.66 (s, 1H), 7.26 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H), 5.59 (s, 2H), 3.80 (t, J = 

5.2 Hz, 2H), 3.73 (t, J = 5.2 Hz, 2H), 3.35 (t, J = 5.2 Hz, 2H), 3.23 (t, J = 5.2 Hz, 2H). 

HRESIMS calcd for C14H16ClN6O3 and C14H15ClN6NaO3 m/z [M+H]
+
 and [M+Na]

+  
351.0967 

and 373.0786, 375.0762 found 351.0964 and 373.0786, 375.0752. 

 

4.1.3.2. 1-(4-(3,4-Dichlorophenyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone (3): 

Yellow crystals (78%): mp 130-132 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.60 (s, 1H), 

7.39 (d, J = 8.8 Hz, 1H), 7.16 (d, J = 3.2 Hz, 1H), 7.00 (dd, J = 8.8,  3.2 Hz, 1H),  5.59 (s, 2H), 

3.84 (t, J = 5.2 Hz, 2H), 3.75 (t, J = 5.2 Hz, 2H), 3.44 (t, J = 5.2 Hz, 2H), 3.31 (t, J = 5.2 Hz, 

2H). HRESIMS calcd for C14H15Cl2N6O3 m/z [M+H]
+
 385.0577, 387.0550, found 385.0578, 

387.0549.  

 

4.1.3.3. 2-(3-Nitro-1H-1,2,4-triazol-1-yl)-1-(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl) 

ethanone (4): Off white powder (74 %): mp 224 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 

8.60 (s, 1H), 7.55 (d, J = 9.2 Hz, 2H), 7.14 (d, J = 9.2 Hz, 2H), 5.59 (s, 2H), 3.86 (t, J = 5.2 Hz, 
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2H), 3.76 (t, J = 5.2 Hz, 2H), 3.54 (t, J = 5.2 Hz, 2H), 3.42 (t, J = 5.2 Hz, 2H). HRESIMS calcd 

for C15H16F3N6O3 m/z [M+H]
+
 385.1230, found 385.1237. 

 

4.1.3.4. 2-(3-Nitro-1H-1,2,4-triazol-1-yl)-1-(4-(p-tolyl)piperazin-1-yl)ethanone (5): Yellow 

powder (70 %): mp 172-174 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.60 (s, 1H), 7.07 

(d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 5.57 (s, 2H), 3.80 (t, J = 5.2 Hz, 2H), 3.72 (t, J = 

5.2 Hz, 2H), 3.26 (t, J = 5.2 Hz, 2H), 3.15 (t, J = 5.2 Hz, 2H). HRESIMS calcd for C15H19N6O3 

m/z [M+H]
+  

331.1513, found 331.1516.  

 

4.1.3.5. 1-(4-(4-Methoxyphenyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone (6). 

This compound is listed in the Aurora Screening Library but no reference is available: Orange  

powder (88 %): mp 181-183 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.60 (s, 1H), 6.97 

(d, J = 8.8 Hz, 2H), 6.85 (d, J = 9.2 Hz, 2H), 5.57  (s, 2H), 3.79 (t, J = 5.0 Hz, 2H), 3.74 (s, 3H), 

3.72 (t, J = 5.2 Hz, 2H), 3.19 (t, J = 5.0 Hz, 2H), 3.08 (t, J = 5.2 Hz, 2H). HRESIMS calcd for 

C15H19N6O4 and C15H18N6NaO4 m/z [M+H]
+
 and [M+Na]

+  
347.1462 and 369.1282 found 

347.1466 and 369.1283. 

 

4.1.3.6. 2-(4-(2-(3-Nitro-1H-1,2,4-triazol-1-yl)acetyl)piperazin-1-yl)benzonitrile (7): Off white 

powder (79 %): mp 92-94 
o
C (dec); 

1
H NMR (400 MHz, CD3COCD3) δ: 8.61 (s, 1H), 7.70 (dd, J 

= 8.0, 1.6 Hz, 1H), 7.63 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.17 (ddd, J = 

8.4, 7.2, 0.8 Hz, 1H), 5.60 (s, 2H), 3.88 (t, J = 5.2 Hz, 2H), 3.80 (t, J = 5.2 Hz, 2H), 3.38 (t, J = 

4.8 Hz, 2H), 3.25 (t, J = 4.8 Hz, 2H). HRESIMS calcd for C15H16N7O3 m/z [M+H]
+  

342.1309, 

found 342.1309.  
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4.1.3.7. 2-(3-Nitro-1H-1,2,4-triazol-1-yl)-1-(4-(pyridin-2-yl)piperazin-1-yl)ethanone (8): White 

powder (67 %): mp 108-109 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.61 (s, 1H), 8.16 

(ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 7.56 (ddd, J = 10.8, 7.2, 2.0 Hz, 1H), 6.85 (dd, J = 8.8, 0.8 Hz, 

1H), 6.68 (ddd, J = 7.2, 5.2, 0.8 Hz, 1H), 5.58 (s, 2H), 3.77 (m, 4H), 3.69 (m, 2H), 3.61 (m, 2H). 

HRESIMS calcd for C13H16N7O3 and C13H15N7NaO3 m/z [M+H]
+
 and [M+Na]

+  
318.1309 and 

340.1129 found 318.1313 and 340.1129. 

 

4.1.3.8. 2-(3-Nitro-1H-1,2,4-triazol-1-yl)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethanone (9): 

White crystals (79 %): mp 106-108 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.61 (s, 1H), 

8.38 (d, J = 4.8 Hz, 2H), 6.65 (t, J = 4.8 Hz, 1H), 5.59 (s, 2H), 3.99 (br t, J = 5.4 Hz, 2H), 3.86 

(br t, J = 5.4 Hz, 2H), 3.75 (br t, J = 5.4 Hz, 2H), 3.67 (br t, J = 5.4 Hz, 2H). HRESIMS calcd for 

C12H15N8O3 and C12H14N8NaO3 m/z [M+H]
+
 and [M+Na]

+  
319.1262 and 341.1081 found 

319.1268 and 341.1083. 

 

4.1.3.9. 2-(2-Nitro-1H-imidazol-1-yl)-1-(4-(pyrimidin-2-yl)piperazin-1-yl)ethanone (10): Light 

yellow crystals (77 %): mp 148-150 
o
C (dec); 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.38 (d, J = 

4.8 Hz, 2H), 7.44 (d, J = 1.0 Hz, 1H), 7.13 (d, J = 1.0 Hz, 1H), 6.64 (t, J = 4.8 Hz, 1H), 5.60 (s, 

2H), 3.97 (br t, J = 5.0 Hz, 2H), 3.84 (br t, J = 5.4 Hz, 2H), 3.74 (br t, J = 4.8 Hz, 2H), 3.64 (br t, 

J = 4.8 Hz, 2H). HRESIMS calcd for C13H16N7O3 and C13H15N7NaO3 m/z [M+H]
+
 and [M+Na]

+  

318.1309 and 340.1129 found 318.1313 and 340.1136. 
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4.1.3.10. 2-(3-Nitro-1H-1,2,4-triazol-1-yl)-1-(4-(4-(trifluoromethyl)benzyl)piperazin-1-yl) 

ethanone  (11): White microcrystals (69 %): mp 162-164 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 

8.36 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 5.16 (s, 2H), 3.69 (t, J = 5.0 Hz, 

2H), 3.61 (s, 2H), 3.54 (t, J = 4.8, Hz, 2H), 2.54 (t, J = 5.2 Hz, 2H), 2.50 (t, J = 5.2 Hz, 2H). 

HRESIMS calcd for C16H18F3N6O3 m/z [M+H]
+  

399.1387, found 399.1395.  

 

4.1.3.11. 1-(4-(3,4-Dichlorobenzyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone 

(12): White microcrystals (88 %): mp 140-142 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 8.36 (s, 1H), 

7.47 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.17 (dd, J = 8.4, 2.0 Hz, 1H), 5.16 (s, 2H), 

3.68 (t, J = 4.8 Hz, 2H), 3.53 (t, J = 4.8 Hz, 2H), 3.51 (s, 2H), 2.53 (t, J = 4.8 Hz, 2H), 2.48 (t, J 

= 4.8 Hz, 2H). HRESIMS calcd for C15H17Cl2N6O3 m/z [M+H]
+  

399.0734, 401.0707 found 

399.0738, 401.0710. 

 

4.1.3.12. 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl) 

ethanone (13): Off white microcrystals (84 %): mp 94-96 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 

8.34 (s, 1H), 7.37-7.23 (m, 9H), 5.13 (s, 2H), 4.27 (s, 1H), 3.65 (br t, J = 5.0 Hz, 2H), 3.50 (br t, 

J = 5.0 Hz, 2H), 2.47 (br t, J = 5.0 Hz, 2H), 2.42 (t, J = 5.0 Hz, 2H). HRESIMS calcd for 

C21H22ClN6O3 and C21H21ClN6NaO3 m/z [M+H]
+
 and [M+Na]

+  
441.1436, 443.1416 and 

463.1256, 465.1235 found 441.1436, 443.1425 and 463.1254, 465.1233. 

 

4.1.3.13. 1-(4-(Cyclopropanecarbonyl)piperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanone 

(14): White crystals (84 %): mp 63-65 
o
C ; 

1
H NMR (400 MHz, (CD3COCD3) δ: 8.59 (s, 1H), 
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5.57 (s, 2H), 3.80-3.50 (br m, 8H), 1.96 (m, 1H), 0.85-0.81 (m, 2H), 0.76-0.71 (m, 2H). 

HRESIMS calcd for C12H16N6NaO4 m/z [M+Na]
+  

331.1125, found 331.1126.  

 

4.1.3.14. 1,2-bis(4-(4-chlorophenyl)piperazin-1-yl)ethanone (15): Off white powder (44%): mp 

165-167 
o
C ; 

1
H NMR (400 MHz, (CD3Cl) δ: 7.23 (d, J = 9.2 Hz, 2H), 7.21 (d, J = 9.2 Hz, 2H), 

6.85 (d, J = 9.2 Hz, 2H), 6.83 (d, J = 9.2 Hz, 2H), 3.79 (t, J = 4.8 Hz, 4H), 3.30 (s, 2H), 3.18-

3,12 (m, 8H), 2.69 (t, J = 4.8 Hz, 4H). HRESIMS calcd for C22H27Cl2N4O  m/z [M+H]
+  

433.1556,  435.1531 found 433.1560,  435.1535.  

 

4.1.3.15. 1,2-bis(4-(3,4-dichlorophenyl)piperazin-1-yl)ethanone (16): Off white powder (33%): 

mp 79-81 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 7.29 (d, J = 9.2 Hz, 1H), 7.28 (d, J = 9.2 Hz, 1H), 

6.96 (d, J = 2.8 Hz, 1H), 6.95 (d, J = 2.8 Hz, 1H), 6.76-6.72 (m, 2H), 3.77 (t, J = 5.2 Hz, 4H), 

3.29 (s, 2H), 3.18-3.14 (m, 8H), 2.67 (t, J = 5.2, 4H).  HRESIMS calcd for C22H25Cl4N4O m/z 

[M+H]
+  

501.0777, 503.0750 found 501.0788, 503.0761.  

 

4.1.3.16. 1,2-bis(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)ethanone (17): Off white powder 

(49%): mp 150-152 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 7.51 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 

Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.80 (t, J = 4.8 Hz, 4H), 3.30 (m, 

10H), 2.70 (t, J = 4.8 Hz, 4H). HRESIMS calcd for C24H27F6N4O m/z [M+H]
+
 501.2084, 

502.2114 found 501.2094, 502.2123. 
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4.1.3.17. 1,2-bis(4-(p-tolyl)piperazin-1-yl)ethanone (18): Off white powder (37%): mp 149-151 

o
C; 

1
H NMR (400 MHz, (CD3Cl) δ: 7.09 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.84 (d, J 

= 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.78 (m, 4H), 3.28 (s, 2H), 3.14 (m, 8H), 2.69 (t, J = 4.8 

Hz, 4H), 2.28 (s, 3H), 2.27 (s, 3H). HRESIMS calcd for C24H33N4O m/z [M+H]
+  

393.2649, 

394.2680 found 393.2659, 394.2688. 

 

4.1.3.18. 1,2-bis(4-(2-cyanophenyl)piperazin-1-yl)ethanone (19): Off white powder (55%): mp 

115-117 
o
C; 

1
H NMR (400 MHz, (CD3Cl) δ:  7.62-7.47 (m, 4H), 7.10-7.00 (m, 4H), 3.86 (t, J = 

4.8 Hz, 4H), 3.33 (s, 2H), 3.27-3.16 (m, 8H), 2.77 (t, J = 4.8 Hz, 4H).  HRESIMS calcd for 

C24H27N6O m/z [M+H]
+
 415.2241 found 415.2239.  

 

4.2. Biological evaluation.  

4.2.1. In vitro screening: 

In vitro activity against T. cruzi, T. b. rhodesiense, L. donovani and cytotoxicity assessment 

using L6 cells (rat skeletal myoblasts) was determined using a 96-well plate format as previously 

described [37]. Data were analyzed with the graphic program Softmax Pro (Molecular Devices, 

Sunnyvale, CA, USA), which calculated IC50 values by linear regression from the sigmoidal dose 

inhibition curves. 

4.2.2. In vitro T. brucei brucei antiproliferating assays and susceptibility studies.   

T. brucei brucei bloodstream form parasites were seeded at 1 x 10
3
 mL

-1
 in 200 µL of growth medium 

containing different concentrations of  a nitrotriazole or nifurtimox. Where appropriate, induction of the 

TbNTR was carried out by adding tetracycline (1 µg/mL). After incubation for 3 days at 37 
o
C, 20 µL of 

Alamar blue was added to each well and the plates incubated for a further 16 h. The cell density of each 

culture was determined as described before [24] and the IC50 established. 
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4.2.3. Enzymatic activity studies with Type I NTRs.  

Recombinant TbNTR and TcNTR were prepared and assayed as previously described [38, 39]. The 

activity of purified his-tagged TbNTR was assessed spectrophotometrically at 340 nm using various 

nitrotriazole substrates (100 µM) and NADH (100 µM) and expressed as nmol NADH oxidized min
-1

 mg
-

1
 of enzyme.  

 

4.2.4. ADMET studies 

4.2.4.1. Caco-2 permeability assay was performed as described before [40]. For Apical to Basolateral (A-

>B) permeability, the compound was added to the apical (A) side and amount of permeation was 

determined on the basolateral (B) side; for Basolateral to Apical (B->A) permeability, the compound was 

added to the B side and the amount of permeation was determined on the A side. Assays were run for 2 h 

in duplicate and the amount of compound present in each compartment was quantified by LC-MS/MS. 

Control compounds for low and high permeability were included in each experiment as well as the P-gp  

efflux control, talinolol [41]. 

 

4.2.4.2. Inhibition of CYP P450 isoforms was assessed by using CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

CYP2D6 and CYP3A4. For each assay, human liver microsomes were incubated at 37 
o
C with a probe 

substrate for each CYP isoform in the presence of a compound at various concentrations (up to 20 μM) 

for 5 min (except CYP2C19 for 35 min). The formation of metabolites for each isoform was quantified by 

LC-MS/MS as a measure of enzyme activity and an IC50 value (the compound concentration which 

produces 50% inhibition) was generated [42]. 

 

4.2.4.3. Microsomal stability. Compounds were tested for microsomal stability by using pooled human 

liver S9 microsomes (0.3 mg/mL), which were incubated with test compound at 37
o
C in the presence or 

absence of the co-factor NADPH. The reaction was terminated, the supernatant recovered and test 
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compound quantified by LC-MS/MS. A fixed compound-concentration was tested in duplicate at 5 time-

points and compound stability expressed as a function of time [43]. 

 

4.2.5. In vivo antichagasic activity assessment of compound 3: 

The study was performed as described before [20, 22]. Briefly, trypomastigote forms from 

transgenic T. cruzi Y strain expressing firefly luciferase were injected in Balb/c mice (10
5
 

trypomastigotes per mouse) and three days later mice were anesthetized by inhalation of 

isofluorane, followed by an injection with 150 mg/kg of D-luciferin potassium-salt in PBS. Mice 

were imaged 5 to 10 min after injection of luciferin with an IVIS 100 (Xenogen, Alameda, CA) 

and the data acquisition and analysis were performed with the software LivingImage (Xenogen) 

as described before [44]. Treatment with test compound or bnz was started 4 days after infection 

at 15 mg/kg/day x 10 days, given i.p. The vehicle control was 2% methylcellulose + 0.5% Tween 

80 and groups of 5 mice/group were used. Mice were imaged after a 10-day treatment. The ratio 

of parasite levels was calculated for each animal dividing the luciferase signal after treatment by 

the luciferase signal on the first imaging (before treatment). Mean values of all animals in each 

group  SD were used for plotting. 
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Captions: 

 

Fig. 1. Correlation graph between lipophilicity and antichagasic activity in the 3-nitrotriazole-

based arylpiperazides. Compounds 2-9 and 11-13 were used.  

Fig. 2. In vivo evaluation of the antichagasic efficacy of compound 3 and benznidazole (Bnz) in 

an acute murine model. Compounds were administered (i.p.) at 15 mg/kg/day for 10 consecutive 

days. Parasite ratios were calculated on day 10. Groups of 5 mice/group were used. 
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